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Spatially nonrandom tree mortality and ingrowth maintain
equilibrium pattern in an old-growth Pseudotsuga–Tsuga forest
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Abstract. Mortality processes in old-growth forests are generally assumed to be driven by
gap-scale disturbance, with only a limited role ascribed to density-dependent mortality, but
these assumptions are rarely tested with data sets incorporating repeated measurements. Using
a 12-ha spatially explicit plot censused 13 years apart in an approximately 500-year-old
Pseudotsuga–Tsuga forest, we demonstrate significant density-dependent mortality and
spatially aggregated tree recruitment. However, the combined effect of these strongly
nonrandom demographic processes was to maintain tree patterns in a state of dynamic
equilibrium. Density-dependent mortality was most pronounced for the dominant late-
successional species, Tsuga heterophylla. The long-lived, early-seral Pseudotsuga menziesii
experienced an annual stem mortality rate of 0.84% and no new recruitment. Late-seral species
Tsuga and Abies amabilis had nearly balanced demographic rates of ingrowth and mortality.
The 2.34% mortality rate for Taxus brevifolia was higher than expected, notably less than
ingrowth, and strongly affected by proximity to Tsuga. Large-diameter Tsuga structured both
the regenerating conspecific and heterospecific cohorts with recruitment of Tsuga and Abies
unlikely in neighborhoods crowded with large-diameter competitors (P , 0.001). Density-
dependent competitive interactions strongly shape forest communities even five centuries after
stand initiation, underscoring the dynamic nature of even equilibrial old-growth forests.

Key words: Abies amabilis; long-term data sets; Pseudotsuga menziesii; Taxus brevifolia; tree
mortality; Tsuga heterophylla; Wind River Forest Dynamics Plot.

INTRODUCTION

Detecting and understanding changes in forest com-

position and structure is critical to understanding how

forests are responding to environmental variability and

change, but subtle changes can often be missed by

insufficient sample size or temporal interval. With

demographic rates of annual ingrowth and mortality

averaging ,1% to 3% in old-growth forests (Larson and

Franklin 2010, Runkle 2013), changes to less abundant

species or subpopulations may be impossible to detect

with small numbers of individuals or short periods of

observation. Furthermore, even when demographic

rates of ingrowth and mortality are balanced, forest

structure and tree spatial patterns may be changing

(Getzin et al. 2006, Das et al. 2011).

Most conceptual models of temperate old-growth forest

dynamics assume that change is primarily driven by small-

scale disturbances such as wind, insects, and pathogens

(operating without Janzen-Connell effects, but see Das et

al. [2008]), and that competitive density-dependent

mortality has ceased to play a major role, with the

remaining large trees widely spaced and permissive of

understory regeneration (Franklin et al. 2002). In contrast,

He and Duncan (2000) and Getzin et al. (2006) inferred

density-dependent mortality in old-growth conifer forests,

but their studies were based on pattern analysis of a single

census. Work from mature and old-growth Pinus resinosa

(red pine) forests in northern Minnesota (Aakala et al.

2012, Silver et al. 2013) found no evidence for density-

dependent mortality, and Das et al. (2011) found only

modest support for competitive density-dependent mor-

tality in mixed-conifer forests.

In our previous work using the initial surveys of two

permanent 25.6-ha plots (Lutz et al. 2012, 2013), we

proposed a generally limited role for competitive

mortality as a driver of tree spatial patterns in old-

growth conifer forests. But we also found spatial

segregation of understory and canopy trees (Larson and

Franklin 2006), especially for large-diameter Tsuga
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heterophylla (Raf.) Sarg., suggesting that those individu-

als could influence forest dynamics through competitive
interactions (Lutz et al. 2013). Based on that work, we

expected ingrowth to be strongly suppressed in the
neighborhood of large-diameter Tsuga. This hypothesis

is supported by Getzin et al. (2006), who found evidence
for strong intraspecific competition based on spatial
relationship of live and dead Tsuga at their Vancouver

Island study site, and by Stewart (1986), who found
limited understory tree recruitment when the main

canopy was dominated by Tsuga.
In the current study, we predicted that Tsuga,

especially the large-diameter subpopulation, act as strong
organizers of spatially structured tree demography at

decadal scales, particularly on ingrowth of shade-tolerant
species. Using a 12-ha old-growth Pseudotsuga–Tsuga

forest plot sampled at a 13-year interval (1999–2012), we
addressed three questions: (1) Were there significant

demographic changes in shade-intolerant and shade-
tolerant tree species, (2) notwithstanding constant de-

mography (a balance of ingrowth and mortality), did
spatial patterning of the forest trees change due to

nonrandom mortality and ingrowth, and (3) what species
and subpopulations caused changes in spatial pattern?

Further, because of the apparent contradictions in the
literature (e.g., Getzin et al. 2006, Silver et al. 2013), we
specifically tested the prediction of competitive density-

dependent mortality, and also tested our hypothesis (Lutz
et al. 2013) of competitive inhibition of tree recruitment

by large-diameter trees.

STUDY AREA

The study site is located in the Pseudotsuga–Tsuga

(Douglas-fir/western hemlock) forest in the T. T. Munger
Research Natural Area of the Gifford Pinchot National

Forest in western Washington State, USA (45.828 N,
121.968 W) between 352 m and 379 m elevation. Tree

composition is primarily conifers consisting of the shade-
tolerant Tsuga heterophylla, Taxus brevifolia Nutt., Thuja

plicata Donn ex D. Don, and Abies amabilis Douglas ex
J. Forbes, and the shade-intolerant Pseudotsuga menziesii

(Mirb.) Franco. Pseudotsuga constitutes about two-thirds
of the largest trees, with a maximum age about 500 years
(inferred from ring counts on stumps in adjacent

clearcuts; Franklin and DeBell 1988). Plant nomenclature
follows Flora of North America (Flora of North America

Editorial Committee 1993þ). Following disturbance, the
archetypical successional sequence involves establishment

of a relatively even-aged Pseudotsuga cohort, intense
intra-cohort competition and density-dependent mortal-

ity, gap creation, and subsequent recruitment of shade-
tolerant species, especially Tsuga (e.g., Franklin et al.

2002).

METHODS

Field sampling

In 1999, a 12-ha permanent forest plot (400 3 300 m)
was established in which all live and dead trees �5 cm

dbh (diameter at breast height; 1.3 m above the forest

floor) were identified to species, mapped, and tagged

(Chen et al. 2004). In 2010, the 12-ha plot was overlain

and incorporated into a 25.6-ha plot (800 3 320 m)

during the establishment of the Wind River Forest

Dynamics Plot (Lutz et al. 2013; see Plate 1). Within the

new 25.6-ha plot, all live trees and shrubs �1 cm dbh and

all snags �10 cm were identified, mapped, and tagged,

noting tag numbers from the 1999 survey to facilitate

merging the two data sets. In 2012, we located and

reconciled all trees, snags, and downed stems from the

1999 data set that were not present in the 2010 data set.

Analyses

We generated annually compounded demographic

rates for mortality and ingrowth. We similarly generated

the annual basal area increment for those trees that were

alive in both censuses. To examine changes in tree

spatial patterns (Appendix: Fig. A1), we used the

univariate, bivariate, and multi-type forms of the pair

correlation function, g(r), to quantify at inter-tree

distance r the spatial patterns of tree mortality and

ingrowth, and spatial relationships between mapped tree

subpopulations represented as marked point patterns

(Wiegand and Moloney 2004). The pair correlation

function is defined as

gðrÞ ¼ K 0ðrÞ
2pr

where K0(r) is the derivative of Ripley’s K function. The

bivariate form, gi,j(r), quantifies spatial relationships

between points of type i and j; the multi-type form,

gi,.(r), characterizes relationships between points of type

i and all other types. Values of g(r) . 1 indicate spatial

aggregation, while values ,1 suggest spatial uniformity.

All analyses were performed in the statistical program R

version 3.0.0 (R Development Core Team 2013) and

used functions in the spatstat library (Baddeley and

Turner 2005). Estimates of g(r) used isotropic edge

correction; details on estimation are provided in the

spatstat documentation (Baddeley and Turner 2005).

We conducted exploratory analyses of the overall

change in tree patterns, spatial pattern of mortality,

spatial relationships between dead and surviving trees,

and spatial patterns of tree ingrowth. We quantified the

net change (i.e., arising from the combined effect of

mortality and ingrowth) in tree patterns from 1999 to

2012 with the summary statistic g2012(r) – g1999(r). The

expected value of this statistic under random mortality

and ingrowth is zero; positive values indicate that tree

patterns became more aggregated; negative values

indicate that tree patterns became more uniform. We

used gd,d(r) to determine if mortality was aggregated

within the initial live tree population and gd,1(r) to

evaluate if dead (d) and surviving trees (live, l) were

segregated or attracted (Raventós et al. 2010). Patterns

of ingrowth were quantified using the inhomogeneous

(inh) pair correlation function, ginh(r), because of the
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obvious heterogeneity of ingrowth across the plot

(Baddeley et al. 2000, Das et al. 2011). We simulated

random mortality using random labeling (Goreaud and

Pélissier 2003) and random ingrowth as an inhomoge-

neous Poisson process with intensity estimated from

observed ingrowth locations.

We used two different statistics and the null model of

random mortality (Goreaud and Pélissier 2003) to test

for density-dependent competitive mortality. First, we

assessed if the initial neighborhoods of surviving trees

differed from those of trees that died during the study

period using gi,.(r). Under random mortality gd,all(r) –

g1,all ¼ 0 (Yu et al. 2009, Jacquemyn et al. 2010). If

mortality is density-dependent, then gd,all(r) – g1,all . 0,

indicating that trees that died had more crowded initial

neighborhoods than trees that survived. Competitive

density-dependent mortality is expected to cause the

pattern of live trees to become more uniform through

time (Das et al. 2011, Aakala et al. 2012, Silver et al.

2013). Therefore, we quantified the change in pattern of

surviving trees due to mortality. If mortality is random

then the initial (liveþ dead trees in 2012) and final (live

FIG. 1. Diameter distributions for all trees �5 cm dbh and those species with n � 150 present in 1999 and 2012 in the T. T.
Munger Research Natural Area of the Gifford Pinchot National Forest in western Washington State, USA.
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only in 2012) patterns will not differ: g1,1(r) – g1þd,1þd(r)

¼ 0. If mortality is density-dependent, causing the

pattern of surviving trees to become more uniform, then

g1,1(r) – g1þd,1þd(r) , 0 We similarly evaluated if

ingrowth changed the pattern of trees that survived to

2012 with g1þing,1þing(r)� g1,1(r). If ingrowth caused the

pattern of surviving trees to become more aggregated,

then g1þing,1þing(r) � g1,1(r) . 0.

We used the null model of population independence

(simulated by toroidal displacement of the ingrowth

population [Goreaud and Pélissier 2003]) with gi,j.(r) to

test the predictions that large-diameter (�70 cm dbh)

Tsuga heterophylla, in particular, and large-diameter

trees in general, constrain the spatial pattern of ingrowth

through asymmetrical competition (Larson and Frank-

lin 2006, Lutz et al. 2013). If large-diameter trees (lrg)

suppress ingrowth, then glrg,ing(r) , 0.

Monte Carlo methods with the respective null models

were used for exploratory analysis and plotting, and also

combined with the goodness-of-fit (GoF) test of

Loosmore and Ford (2006) for formal inference (n ¼
2000 simulations for each analysis). All GoF tests were

performed at distances of 9 m, our estimate of the

effective tree neighborhood for temperate old-growth

conifer forests (Das et al. 2011, Larson et al. 2012), and

the scale up to which we expect density-dependent

competitive processes to occur and resultant changes of

tree patterns to manifest. We only considered individual

species with n � 150 individuals in both 1999 and 2012.

RESULTS

Between 1999 and 2012, tree composition changed

little in absolute terms, with slight declines in both the

numbers of trees and basal area of most species (Fig. 1,

Table 1). The initial cohort of shade intolerant Pseudo-

tsuga declined as expected. However, there were also

large declines in the very shade-tolerant Taxus. Increases

in basal area were limited to the shade-tolerant Thuja

and Tsuga. Mortality and ingrowth rates were relatively

balanced in demographic terms (Table 1), but Pinus

monticola and Abies grandis experienced declines of

larger diameter trees (Table 1).

Tree spatial patterns (for all species pooled) experi-

enced no net change from 1999 to 2012, despite strongly

nonrandom tree mortality and ingrowth (Fig. 2A).

Mortality was aggregated up to ;30 m, and again at

;45 m, with the strongest aggregation apparent at

distances ,7 m (Fig. 2B; Appendix: Fig. A2). No spatial

relationships were evident between live and dead trees

for all species pooled or for individual species (Appen-

dix: Fig. A3). At the tree neighborhood scale (�9 m), we

found evidence for density-dependent mortality for all

species pooled (GoF test, P , 0.001; Fig. 2C). This

density-dependent mortality caused the spatial distribu-

tion of surviving trees to become significantly more

uniform by 2012 (GoF test, P , 0.001; Fig. 2D). The

increasing spatial uniformity caused by density-depen-

dent mortality was offset by strongly aggregated

ingrowth (Fig. 2E), especially of Tsuga (Appendix:

Fig. A4). Ingrowth caused the pattern of trees that

survived to 2012 to become more aggregated (Fig. 2F),

with both Abies and Tsuga contributing to this shift

(Appendix: Fig. A5), ultimately maintaining tree pat-

terns in dynamic equilibrium over the 13-year study

period (Fig. 2A).

The density-dependent mortality detected at the

community level appears largely attributable to Tsuga

heterophylla. Intraspecific density-dependent mortality of

TABLE 1. Tree demography between 1999 and 2012 in the 12-ha study site in the T. T. Munger Research Natural Area of the
Gifford Pinchot National Forest, Washington State, USA.

Species Family

Trees Basal area

1999
(no. trees)

2012
(no. trees)

Ingrowth Mortality

1999
(m2)

2010
(m2)

Growth
rate

Ingrowth Mortality

No.
trees Rate

No.
trees Rate

Area
(m2) Rate

Area
(m2) Rate

Abies amabilis Pinaceae 574 593 132 1.60 113 1.67 13.77 12.38 0.97 0.36 0.20 2.91 1.81
Abies grandis� Pinaceae 46 30 � � � � � � 16 3.23 7.76 5.70 0.82 � � � � � � 2.55 3.01
Abies procera� Pinaceae 7 7 � � � � � � � � � � � � 2.24 2.23� 0.05 � � � � � � � � � � � �
Alnus rubra Betulaceae 3 5 2 4.01 � � � � � � 0.06 0.05� 3.75 0.01 1.09 � � � � � �
Cornus nuttallii Cornaceae 57 58 17 2.03 16 2.50 0.41 0.35 1.52 0.06 1.03 0.14 3.04
Pinus monticola Pinaceae 7 2 � � � � � � 5 9.19 4.10 0.95 0.122 � � � � � � 3.17 10.81
Pseudotsuga

menziesii
Pinaceae 374 335 � � � � � � 39 0.84 349.42 319.19 0.234 � � � � � � 37.61 0.87

Taxus brevifolia Taxaceae 1173 877 15 0.10 311 2.34 24.72 18.36 0.38 0.07 0.02 4.87 1.67
Thuja plicata Cupressaceae 169 156 � � � � � � 13 0.61 80.51 85.12 0.90 � � � � � � 0.47 0.05
Tsuga

heterophylla
Pinaceae 2900 2894 206 0.53 212 0.58 374.45 387.87 0.79 0.62 0.01 16.51 0.34

All species 5310 4957 372 0.52 725 1.12 857.44 832.20 0.63 1.12 0.01 68.23 0.63

Notes: Ingrowth, mortality, and growth rates reflect annually compounded rates (expressed as a percent). Growth rate was
calculated using those trees where dbh2012� dbh1999 ��1 cm, with dbh representing diameter at breast height. Ellipses indicate ‘‘no
data.’’

� Abies grandis and Abies procera were not pooled with Abies amabilis in the spatial analyses.
� Overall basal area of Abies procera and Alnus rubra declined because of mechanical damage to one tree for each species.

Growth rates were calculated based on the undamaged individuals.
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Tsuga (P ¼ 0.025; Appendix: Fig. A6) caused surviving
Tsuga to become more uniformly distributed (P¼ 0.041;

Appendix: Fig. A7). But, Tsuga also suffered hetero-
specific density-dependent mortality (P ¼ 0.015; Appen-

dix: Fig. A8), as did Taxus (P ¼ 0.002; Appendix: Fig.
A8). Tsuga were apparently strong competitors against
Taxus and Thuja. Taxus that died had more Tsuga in

their initial (1999) neighborhoods than did Taxus that
survived (P , 0.001; Appendix: Fig. A9); and dying

Thuja had more large-diameter Tsuga in their initial
neighborhoods than did Thuja that survived (P ¼ 0.026;

Appendix: Fig. A10). No evidence for conspecific or
heterospecific density-dependent mortality was found for

either Abies or Pseudotsuga (Appendix: Figs. A6–A10).
Overstory trees �70 cm dbh of Tsuga (n¼ 344) and all

other species combined (n¼ 402) inhibited recruitment of
new individuals into the tagged tree population. Loca-

tions of Tsuga ingrowth, Abies ingrowth, and ingrowth of

all species combined were spatially segregated from large-
diameter trees (Fig. 3). The inhibitory effect of large-

diameter Tsuga on ingrowth was stronger than that of
large-diameter stems of other species (Fig. 3).

DISCUSSION

Overall changes in the abundance of species generally

followed our expectations. The decline of Pseudotsuga
matched predictions for this forest type: a gradual loss

of the shade-intolerant pioneer cohort (Franklin et al.
2002). Declines in Pinus monticola were mostly due to

endemic activity of Dendroctonus ponderosae (mountain
pine beetle), and potentially to past infection with

Cronartium ribicola (white pine blister rust), as inferred
from visits to those trees in 2012. Demographic rates of

ingrowth and mortality were almost perfectly balanced
for the shade-tolerant species Tsuga and Abies. Mortal-

ity of Taxus was surprising because the 2.34% per year

FIG. 2. Overall changes in tree patterns, and patterns of mortality and ingrowth, 1999–2012. (A) Net change in pattern resulting
from combined mortality and ingrowth. Values above (below) the simulation envelope indicate that the pattern became more
aggregated (uniform) during the study. (B) Spatial pattern of mortality conditioned on the initial pattern of live trees. Values above
(below) the simulation envelope indicate aggregated (dispersed) mortality. (C) Density-dependent mortality. Values above (below)
the simulation envelope indicate that the initial 1999 neighborhoods of trees that died by 2012 were more (less) crowded the initial
neighborhoods of trees that survived to 2012. (D) Change in pattern due to mortality. Values above (below) the simulation
envelope indicate that the pattern of surviving trees became more aggregated (dispersed) due to mortality. (E) Spatial pattern of
ingrowth. Values above (below) the simulation envelope indicate that ingrowth is more aggregated (dispersed) than expected. (F)
Change in pattern due to ingrowth. Values above (below) the simulation envelope indicate that the pattern of surviving trees
became more aggregated (dispersed) due to ingrowth. For each panel, the function ‘‘g’’ is the pair correlation function at inter-tree
distance ‘‘r’’; subscript abbreviations are: d, dead; l, live; and ing, ingrowth. P values are based on the goodness-of-fit test of
Loosmore and Ford (2006).
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documented here is three to eight times higher than

previously documented for this slow-growing, stress-

tolerant species in similar old-growth forests (Franklin

and DeBell 1988, Busing and Spies 1995, Larson and

Franklin 2010). We speculate that much of this

mortality occurred as a result of several consecutive

dry summers in the study period, which undoubtedly

compounded the effects of density-dependent processes,

particularly competitive interactions with Tsuga (Ap-

pendix: Fig. A9).

Forest-wide tree spatial patterns were maintained in a

dynamic equilibrium by strongly nonrandom demograph-

ic processes: density-dependent mortality and spatially

aggregated recruitment into the tree size class. Mortality

of the pioneer Pseudotsuga population was aggregated at

moderate scales, with no density-dependence apparent, as

proposed by Franklin et al. (2002). In contrast, compet-

itive density-dependent mortality is occurring within the

population of the dominant late-successional species

Tsuga, likely concentrated in tree clumps developing in

old canopy gaps (Appendix: Fig. A1B), as postulated by

Franklin et al. (2002). But, because Tsuga ingrowth was

spatially aggregated, the overall pattern was maintained.

This 13-year study of spatially explicit tree demogra-

phy revealed the role of Tsuga heterophylla as a strong

organizer of tree population and community dynamics

through intra- and interspecific competitive interactions

that give rise to negative density-dependent survival and

recruitment. Analysis of this long-term data set sup-

ported our prediction that large-diameter Tsuga would

suppress tree recruitment in their immediate neighbor-

hood, which was based on prior analysis of spatial

relationships between large and small stems (Stewart

1986, Getzin et al. 2006, Larson and Franklin 2006, Lutz

et al. 2013). We did not anticipate, however, that the

competitive effects of Tsuga would also manifest

conspecific and, in the case of Thuja and Taxus,

heterospecific density-dependent mortality, because pre-

vious long-term studies have emphasized the importance

of noncompetitive mortality agents in temperate old-

growth forests (Franklin and DeBell 1988, Larson and

Franklin 2010).

FIG. 3. Spatial relationships between ingrowth (trees reaching 5 cm dbh between 1999 and 2012) and large-diameter (�70 cm
dbh; lrg) trees. In all panels, values above (below) the simulation envelope indicate attraction (segregation) between large-diameter
trees and ingrowth. Species abbreviations: all, all species pooled; TSHE, Tsuga heterophylla; and ABAM, Abies amabilis. P values
are based on the goodness-of-fit test of Loosmore and Ford (2006).
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This study is the first to confirm density-dependent

mortality in very old forests through repeat measure-

ments, although other studies (e.g., Getzin et al. 2006)

have inferred intraspecific competition from the patterns

of live and dead trees. The importance of self-thinning

(density-dependent) mortality in young even-aged stands

developing after high-severity disturbance is well estab-

lished (Kenkel 1988, Getzin et al. 2006, Lutz and Halpern

2006, Halpern and Lutz 2013). Studies in maturing

forests still undergoing rapid compositional change (e.g.,

Ward et al. 1996) have shown density-dependent

mortality up to two centuries following stand initiation,

but our study shows density-dependent mortality in a

very old forest where compositional change is low and

successional development is largely complete. The limited

role of competitive mortality in old-growth Sierra Nevada

forests (Das et al. 2011) could be explained by the greater

importance of pathogens and insects, a lower relative

competitive strength of shade-tolerant species compared

to Tsuga, or alternatively, that 1-ha to 4-ha plots do not

include sufficient numbers of trees to obtain a statistically

significant result. The lack of density-dependent mortality

in Pinus resinosa forests (Aakala et al. 2012, Silver et al.

2013) could be due to relatively large size and advanced

age of the pioneer Pinus, consistent with the results for

the shade-intolerant pioneer species Pseudotsuga docu-

mented here (Appendix: Fig. A6).

The finding of strong density-dependent mortality in

old-growth forests has implications for forest develop-

ment in a changing climate (Das et al. 2013). Van

Mantgem et al. (2009) demonstrated increasing mortality

rates in western United States old-growth forests, but

were not able to attribute the causes. Our finding of

strong density-dependent mortality, especially when

considered alongside the density-dependence and elevat-

ed rate of Taxus mortality, suggests the imperative of

examining the effect of the local tree neighborhood on

tree mortality. The interaction of climate variability and

tree neighborhood effects will likely be a significant

future driver of tree mortality and resultant forest change

(Dwyer et al. 2010). Disentangling the relative contribu-

tions of climate variability and density-dependent biotic

processes to tree mortality will be crucial to understand-

ing how forests may change with changing climate.

PLATE 1. The Pseudotsuga-Tsuga forest of the Wind River Forest Dynamics Plot includes most of the plant community types
defined for the Tsuga heterophylla Zone (Franklin and Dyrness 1988) and a gradient of productivities leading to diverse structure
throughout the plot (Larson et al. 2008). Here, a shade-intolerant Pseudotsuga (right foreground) is accompanied by shade-tolerant
Tsuga amid an understory of Acer circinatum, regenerating Tsuga and Abies amabilis, Mahonia nervosa, moss, and large woody
debris. Photo credit: J. A. Lutz.
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Spatial patterns and simulations for all tree species from 1999 to 2012 (Ecological Archives E095-181-A1).
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