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We isolated and characterized mutants of Bartonella bacilliformis that are resistant to the fluoroquinolone
antibiotic ciprofloxacin, which targets the A subunit of DNA gyrase. Mutants had single point mutations in the
gyrA gene that changed either Asp-90 to Gly or Asp-95 to Asn and had 3- or 16-fold higher resistance,
respectively, to ciprofloxacin than did wild-type B. bacilliformis. Asp-95 is homologous to Asp-87 of Escherichia
coli GyrA and is a common residue mutated in fluoroquinolone-resistant strains of other bacteria. This is the
first report of a mutation at an Asp-90 homologue, which corresponds to Asp-82 in E. coli GyrA.

Bartonella bacilliformis is the bacterial agent of Carrión’s
disease in humans, an ailment endemic to the high-altitude
regions of Ecuador, Colombia, and Peru (12). The pathogen is
transmitted between humans through the bite of contaminated
phlebotamine sand flies (22), and three outcomes of infection
are possible. In the first syndrome, a patient develops chronic,
asymptomatic bacteremia. Usually, these patients are indige-
nous to the area where the disease is endemic and may serve as
reservoirs of infection (12). In the second syndrome, a patient
develops chronic angiomatic lesions of the skin, referred to as
verruga peruana, that are virtually indistinguishable from ba-
cillary angiomatosis that can develop during infection by Bar-
tonella quintana or Bartonella henselae (21). Although rarely
fatal, verruga peruana lesions may scar the patient and can be
accompanied by chronic bacteremia (22). The third syndrome,
Oroya fever, produces a life-threatening course of acute he-
molytic anemia characterized by disseminated erythrocyte in-
fection and a severe reduction in hematocrit (16). Patients who
present with Oroya fever are often not indigenous to areas
where the disease is endemic (10, 17). Oroya fever is fatal in 40
to 88% of patients unless antibiotics are administered (10, 17,
22). Antimicrobial therapy varies with syndrome and includes
the use of chloramphenicol for Oroya fever (4, 19) and of
streptomycin or rifampin for verruga peruana (13). Reports of
successful treatment of a limited number of infected patients
with fluoroquinolones (ciprofloxacin) or macrolides (roxithro-
mycin or erythromycin) hold promise for alternative therapeu-
tic strategies (13).

The primary targets of fluoroquinolone antibiotics are the
bacterial type II topoisomerases, DNA gyrase and topoisom-
erase IV (6, 9). Both enzymes catalyze the cleavage, passage,
and reunion of double-stranded DNA in an ATP-dependent
fashion (6, 15). However, DNA gyrase introduces negative
supercoiling in order to relieve torsional stress imposed on
DNA during transcription and replication, whereas topoisom-
erase IV decatenates interlinked daughter chromosomes fol-
lowing replication and is involved in relaxation (6, 15, 25). Both

enzymes are A2B2 tetramers. The A subunit (GyrA or ParC)
catalyzes DNA breakage and reunion, whereas the B subunit
(GyrB or ParE) binds and hydrolyzes ATP to drive the process
(15).

Fluoroquinolones effectively inhibit type II DNA topoisom-
erases by disrupting DNA breakage-reunion reactions (6, 15).
The result is an accumulation of lethal, double-stranded breaks
(11, 24). Resistance to these drugs is typically conferred by
point mutations in the quinolone resistance-determining re-
gion (QRDR) located near the N terminus of the A subunits of
both gyrase (GyrA) and topoisomerase IV (ParC) (6, 23). The
specific target of fluoroquinolones, either DNA gyrase or to-
poisomerase IV, varies among different bacterial species as
well as with different fluoroquinolones (1, 6–8, 14). Given the
growing potential of ciprofloxacin for treatment of bartonello-
sis (13), this study was undertaken to genetically determine the
specific target and frequency of mutations that confer resis-
tance to this drug. We hypothesized that mutations in gyrA of
B. bacilliformis would cause resistance to ciprofloxacin.

GyrA, a target of fluoroquinolone antibiotics, has not pre-
viously been described in any species of Bartonella. The entire
gyrA gene of strain KC583 (ATCC 35685) was analyzed to
obtain a wild-type sequence for comparison with fluoroquin-
olone-resistant mutants. The gyrA gene was cloned from a �
Zap Express (Stratagene) genomic library of B. bacilliformis
and sequenced as previously described (3). The gene contains
2,784 bp and encodes a protein of approximately 103 kDa. The
open reading frame is characterized by a GTG initiation codon
and is preceded by a putative strong promoter region spanning
nucleotides �16 to �65 (promoter neural network score �
0.93). The gyrA gene is flanked upstream by a 560-bp gene
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FIG. 1. Linkage map of the B. bacilliformis gyrA locus, including
two putative flanking genes encoding a single-stranded DNA binding
protein (ssb) and phosphopantetheine adenylyltransferase (coaD).
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encoding a putative single-stranded DNA binding protein (ssb)
and is followed immediately by a 492-bp gene encoding the
phosphopantetheine adenylyltransferase enzyme (coaD) (Fig.
1). The encoded GyrA protein contains the GyrA-specific con-

sensus sequences, including the A and B boxes plus the GyrA
box (Fig. 2), all of which are elements that are absent in ParC
(20). BLASTp searches suggest that GyrA homologues from
other �-Proteobacteria, including Brucella melitensis and Agrobac-

FIG. 2. Multiple-sequence alignment of B. bacilliformis GyrA (Bb) with GyrA proteins from Rhizobium meliloti (Rm) and Brucella melitensis
(Bm). Identical amino acid residues are shown in black, conserved residues are shown in gray, and introduced gaps are indicated with hyphens.
The GenBank accession numbers for the Rm and Bm homologues are NP385666 and NP539801, respectively. The QRDR is boxed and the nested
ciprofloxacin resistance mutations observed at Asp-90 and Asp-95 are indicated by arrowheads. The highly conserved GyrA, A, and B boxes of the
GyrA subunit are also shown.
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terium tumefaciens (81 and 77% amino acid identities, respec-
tively), are the closest relatives, while E. coli GyrA shares 55%
identity with this protein (Fig. 2). Unlike GyrB of B. bacillifor-
mis (2), GyrA does not have an unusually long N terminus
compared with those of closely related homologues (Fig. 2).

Wild-type B. bacilliformis strain KC583 was routinely grown
for 4 days at 30°C and 100% relative humidity on heart infu-
sion agar (Difco, Detroit, Mich.) supplemented with 4% sheep
erythrocytes and 2% sheep serum (Quad Five, Ryegate,
Mont.). Antibiotic-resistant mutants were obtained by plating
cells on medium supplemented with 0.4 �g of ciprofloxacin
(Pentex; Miles Inc., Kankakee, Ill.)/ml. Twenty of the resulting
mutants were isolated. The putative QRDR sequence of B.
bacilliformis gyrA (Fig. 2) was amplified by PCR using primers
QRDR-F (CATGCGATGAATGAAATGGGACTTTTG) and
QRDR-R (AAACGACATTCCGTGTAACGCATCGC) and
sequenced on both strands as previously described (2).

The mutation rate was calculated to be 6 � 10�9 ciprofloxa-
cin-resistant mutants per generation, a value that is about
10-fold higher than the estimated point mutation rate of E. coli
(5) and that is the same as the rate we observed for coumer-
mycin A1 resistance in B. bacilliformis gyrB (2). Twenty cipro-
floxacin-resistant mutants were obtained in vitro, and their
QRDR regions were characterized by sequence analysis. Of
these, four contained transitions of GAT to AAT (G283 to A),
encoding predicted substitutions of Asn for Asp-95. A single
mutant contained a transition of GAT to GGT (A269 to G),
encoding a predicted substitution of Gly for Asp-90. Asp-90
and Asp-95 are homologous to Asp-82 and Asp-87 of E. coli
GyrA, respectively. The level of ciprofloxacin resistance of the
mutant with the A269-to-G mutation was threefold higher
(MIC of ciprofloxacin, 0.9 �g/ml) than that of the wild-type
parental strain, for which the MIC was 0.3 �g/ml (a previous
study [18] obtained a similar MIC [0.25 �g/ml] for the same
wild-type strain), and the level for the mutant with the G283-
to-A mutation was approximately 16-fold higher (MIC, 4.7
�g/ml) (these MICs were determined as described previously
[2]). The remaining 15 ciprofloxacin-resistant mutants appar-
ently possess mutations that map outside the gyrA QRDR,
possibly being located in gyrB, parC, or other regions of gyrA
(6). The replacement of Asp-95 by Asn that was observed in
the majority of ciprofloxacin QRDR mutants of B. bacilliformis
is similar to the mutation of Asp-87 to Asn commonly observed
in E. coli and the homologous Asp-94 and Asp-95 substitutions
reported for several other bacteria (6). Mutations at Asp-90 or
its homologues, including Asp-82 of E. coli GyrA, that are
associated with fluoroquinolone resistance have not, to our
knowledge, been reported previously in the literature.

This study includes the first characterization of a gyrA gene
for the Bartonella genus, a group responsible for several
emerging infectious diseases of humans. The sequence data
will be useful for future studies examining mechanisms of flu-
oroquinolone resistance in these pathogens. Our results also
show that B. bacilliformis mutations occur in the gyrA QRDR
of ciprofloxacin-resistant mutants, particularly at residue
Asp-95 and infrequently at Asp-90. Our data also suggest that
fluoroquinolone resistance in B. bacilliformis arises more fre-
quently from mutations that map outside the gyrA QRDR.
Although genetic tools are limited in B. bacilliformis, the as-
sociation of these two mutations within the well-established

QRDR of GyrA is strong evidence for their involvement in
fluoroquinolone resistance. This is the first description of mu-
tations in a Bartonella species that may cause resistance to a
clinically useful antimicrobial agent. These data may have clin-
ical relevance as ciprofloxacin and other fluoroquinolones gain
popularity as treatment regimens for bartonellosis.

Nucleotide sequence accession number. The nucleotide se-
quence reported in this paper is listed in GenBank under
accession no. AF469609.
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