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Plant introductions have caused substantial
losses of native diversity, alterations to ecosys-
tem functions, and economic losses. The spread
of introduced species at the margins of their
new range, where invasive status is less certain,
provides useful insights on the ecology of bio-
logical invasions and the potential for further
spread. At novel range margins, introduced
species should expand their range until they
experience environmental (e.g., climate) and
biological (e.g., competitive exclusion) barriers,
similar to native distributional limits (Sykes et
al. 1996). Here we examine the occurrence and
expansion of populations of an introduced plant
near its range margin and assess potential im-
pacts normally ascribed to portions of its range
where its status is “invasive.”

Saltcedar (Tamarix ramosissima Ledeb.,
Tamarix chinensis Lour., and the hybrids be-
tween these species [Gaskin and Schaal 2002])
is a deciduous shrub native to Europe and

Asia that is widespread in riparian habitats of
the western U.S. (Robinson 1965). Since the
introduction of saltcedar in the 19th century
(Brock 1994), it has been listed as an invasive
species in many southwestern states (USDA and
NRCS 2004). In the colder, northern margins
of its distribution, including central eastern
Montana, where it was introduced as late as the
1960s (Sexton 2000), saltcedar is less abundant
and has a smaller stature (Brock 1994, Dixon
and Johnson 1999, Lesica and Miles 2001).

While shorter growing seasons and colder
temperatures in northern climates may limit
saltcedar’s growth potential, the wide distribu-
tion in its native range (Baum 1978) suggests
that the species is highly plastic and adaptive.
Consistent with this, saltcedar has been shown
to exhibit high genetic variation within its North
American range (Gaskin and Schaal 2002) and
significant functional and genetic differentia-
tion between latitudinal extremes in the western
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OCCURRENCE, PERSISTENCE, AND EXPANSION OF SALTCEDAR 
(TAMARIX SPP.) POPULATIONS IN THE GREAT PLAINS OF MONTANA
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ABSTRACT.—Saltcedar (Tamarix spp.), a shrub native to Eurasia, is associated with major alterations to wetland and
riparian systems in the southwestern United States. Since the 1960s saltcedar has been naturalized in northern states of
the U.S. where its growth potential and impacts are not well known. Here, we describe the occurrence, age, size, and
relative cover of saltcedar populations in several river basins in central eastern Montana, USA, to identify potential pat-
terns of spread across the region and changes in individual populations as they age. Stands were aged according to the
oldest saltcedar individuals and were sampled for dominant plant cover and soil properties. Multiple introductions
appear to have occurred in Montana, with the oldest stands occurring on the Bighorn River in southern Montana.
Saltcedar absolute and relative cover and stand area increased significantly with stand age, while native tree and shrub
relative cover remained low across all stand ages. These results suggest that saltcedar stands establish where woody
natives are not abundant and that they persist and expand over time. Although soil salinity remained constant, soil pH
decreased with saltcedar stand age, indicating a possible effect of organic matter inputs. An analysis of annual wood
increment of saltcedar and sandbar willow (a native with analogous growth form) stems along a latitudinal gradient
showed that stem growth of both species did not differ significantly among regions. Stem growth decreased inversely
with elevation for both species while growth responses to elevation did not differ between species. Our results show an
increase in number of populations and continued viability of these populations. Mechanisms of saltcedar increases in
this region are yet to be determined. Anthropogenic influences, such as saltcedar plantings, watershed alterations (e.g.,
river flow control), and habitat disturbances (e.g., cattle grazing or habitat clearing) may facilitate its spread in similar
climates of the Great Plains.
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U.S. (Sexton et al. 2002). These results suggest
that saltcedar has the potential to expand its
current introduced range.

In the southwestern U.S., saltcedar can alter
important ecosystem properties by creating
different environments than native dominant
plants (Busch and Smith 1995, Sala et al. 1996,
Cleverly et al. 1997, Smith et al. 1998, Kennedy
and Hobbie 2004). In these systems saltcedar
establishment has a negative impact on the
cover of native vegetation (Cleverly et al. 1997),
although flooding may mitigate this effect
(Shafroth et al. 2002). In Montana, saltcedar
grows poorly beneath stands of native woody
riparian vegetation such as Populus spp. (Lesica
and Miles 2001), which is consistent with its
low seedling competitive ability and the hy-
pothesis that it requires disturbed (natural or
anthropomorphic) areas free from competitors
for successful recruitment (Sher et al. 2002,
Sher and Marshall 2003). However, whether
or not establishment of saltcedar in disturbed
sites constrains the establishment of native
vegetation is not known.

Association with saltcedar and increased soil
salinity has been shown at some sites (Busch
and Smith 1995) but not others (Stromberg
1998b). Increases in percent clay beneath older
saltcedar stands have also been documented
in southern Arizona (Stromberg 1998b).
Whether or not saltcedar alters soil properties
at the limits of its introduced range is not
known.

Here we document the occurrence of salt-
cedar populations in central eastern Montana
and address the following questions: (1) On
which watersheds is saltcedar found in central
eastern Montana, and can a geographic pat-
tern of spread be identified based on stand
age? (2) Do saltcedar stands persist and increase
in size as they get older? (3) Does saltcedar
stem growth change across latitudes, and is
this pattern similar to that of a native species
of similar growth form? (4) Do vegetation and
soil properties change as saltcedar stands age?

METHODS

Survey of Saltcedar Stands 
in Eastern Montana

Presence of saltcedar was surveyed during
the summer of 1998 at sites accessible by road
along rivers of central eastern Montana. Salt-
cedar occurs in the Great Plains region of east-

ern Montana within various riparian habitats
of the Missouri River system (Pearce and Smith
2003), including the Yellowstone River and its
major tributaries such as the Powder and
Bighorn Rivers (Swenson et al. 1982). A total
of 23 saltcedar stands, where saltcedar was
present in variable quantities (from patches
containing a few, scattered individuals to patches
dominated by saltcedar), were sampled (Fig. 1,
Table 1). Sites were not selected at random,
but rather to uniformly represent the Great
Plains watersheds drained by the Yellowstone
River in central eastern Montana. We sampled
6 additional sites noted as “seedling beds,”
where only seedlings occurred on alluvial
sandbars, for inclusion in soil and plant cover
analyses. Depending on stand size, 1–3 ten-m2

(2 × 5-m) plots were positioned randomly with-
in the stand with the long axis perpendicular
to the direction of river flow. We transformed
absolute and relative cover (%) estimates of
living saltcedar, willow (Salix spp.), and plains
cottonwood (Populus deltoides Marsh.) into
the following cover scale as in Cleverly et al.
(1997): 1 ≤ 5%, 2 = 5%–15%, 3 = 15%–35%, 
4 = 35%–65%, 5 = 65%–85%, 6 = 85%–95%,
7 ≥ 95%. Plot cover values were averaged to
calculate mean stand values. We also measured
the following physical characteristics for each
stand: stand age, stand area (m2) as estimated
from stand length and width, and elevation
(determined from topographic maps). Stand
age was estimated by counting annual growth
rings from root crowns of the estimated 3
largest (greatest height, number of stems, and
basal stem diameter) saltcedar individuals found
within the stand. Cross sections were collected
by handsaw from each plant below the point at
which stems diverged, and above the point at
which roots diverged. “Expansion” in this study
refers to increases in size of individual popula-
tions (stands). “Spread” refers to regional in-
creases in population number.

Soil Sampling

Soil samples were collected from all sites (n
= 29) to assess soil properties across different-
aged stands. Within each 2 × 5-m plot, 10 soil
cores (7.5 cm depth and 2.54 cm diameter) were
collected at random and analyzed for texture
(percent sand, silt, and clay), electrical con-
ductivity (EC), and pH. We measured pH
because it has been shown to vary with salin-
ity (Buckman and Brady 1969). Samples from
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each plot were combined and mixed, air-dried,
and sieved to 2 mm. We determined soil texture
by hydrometer method (Gee and Bauder 1986).
EC was measured using a Cole-Parmer con-
ductivity meter. We measured pH with an
Orian 710 meter equipped with a combination
gel-filled electrode. Texture, EC, and pH val-
ues for each plot were pooled to obtain a stand
average.

Stem Growth

During the summers of 1997 and 1998, we
collected stem cross sections on low-gradient
floodplains in Arizona, Nevada, Utah, Wyoming,
and Montana where saltcedar was abundant
and formed dense stands (Tables 1, 2). Across
this latitudinal gradient, we chose at least 3
localities within each region (state), keeping
elevation in each as similar as possible. Except
for Montana (see below), we collected 30 stem
samples at each locality to evenly represent
the range of stem diameters present at the site.
Stem samples from all localities within each
region were pooled to represent regional stem
growth. Stems of Montana saltcedar were ran-
domly sampled from a pool of 1100 samples

from 23 localities (Table 1) in eastern Montana
that had been collected for a demographic
dataset (Sexton 2000). Stems of sandbar willow
(Salix exigua Nutt.), a native shrub with a
ground-branching growth form similar to
saltcedar, were sampled for comparison at
sites where these species co-occurred (all but
Arizona sites). Stem age was determined by
counting annual growth rings. We collected
fewer willow samples (maximum of 20 at each
locality) as these plants were less abundant
than saltcedar. Irregularly shaped or deformed
stem samples were excluded from analyses.
Climate data from meteorological stations with
similar latitudes and elevations to field sites
were obtained from Weather America (Garoog-
ian 2001) for regression analyses (below).

Data Analyses

All data were screened and transformed
when necessary to meet the assumptions of
parametric analyses (Sokal and Rohlf 1995).
Spearman’s coefficient of rank correlation (rs)
between stand age and elevation was used to
detect directional saltcedar dispersal patterns
separately within the Bighorn, Powder, and
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Fig. 1. Saltcedar study area in central eastern Montana showing sampling sites and estimated years of establishment
of saltcedar stands.



Yellowstone Rivers. We used linear regression
analysis to describe and test the relationships
between saltcedar stand age and estimated
stand area, saltcedar cover, and soil parameters.

We analyzed stem growth data in 3 steps.
First, least square means of regional stem
diameter/age (stem growth) were plotted to
detect latitudinal patterns in stem growth.
Second, we analyzed data using analysis of
variance (ANOVA) to test for regional differ-
ences in stem growth rates. In this model,
stem diameter was the dependent variable, stem
age a covariate, and state of origin (region) the
independent variable. Third, we used ANOVA
to test for effect of elevation on stem growth
and species-specific differences in growth re-
sponses to elevation (interaction of species and
elevation). In this model, stem diameter/age
was the dependent variable, elevation a covar-
iate, and species the independent variable.
ANOVAs (ANCOVAs) were performed using
General Linear Model in SYSTAT, version 10.

RESULTS

Stand Distribution and History

Saltcedar was found on alluvial sandbars,
channel banks, terraces, and islands along the
Yellowstone River and its major tributaries  (Fig.
1). The oldest individual saltcedar encountered
in this study (34 years in 1998) was located at
Bighorn Access on the Bighorn River (Table 1).
Older stands were found mostly along the Big-
horn River near Yellowtail Dam in Bighorn
County, with some on the Powder and Yellow-
stone Rivers. Stand age correlated with eleva-
tion only on the Bighorn River where there was
a positive relationship (Spearman correlation:
rs = 0.675, P = 0.050, n = 9).

Stand Dynamics

Overall, older stands were larger (r2 = 0.276,
P = 0.003; Fig. 2) and had greater saltcedar
absolute cover (r2 = 0.291, P = 0.003; Fig. 3A).
Because our criterion to select stands was the
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TABLE 1. Characteristics of Tamarix spp. stands in central eastern Montana. Unless listed, longitude/ latitude was
recorded at each site, not per individual stand within a site.

Elevation Stand age Stand area
Site # Stand Watershed Latitude Longitude (m) (years) (m2)

1 BHBH1 Bighorn River 45°25′N 107°47′W 944.4 31 358
“ BHBH2 “ “ “ “ 34 544
2 BHGM1 “ 45°50.553′N 107°35.235′W 836.7 24 2230
“ BHGM2 “ “ “ “ 17 242
3 BHLM1 “ 46°08.436′N 107°27.777′W 795 24 437
“ BHLM2 “ “ “ “ 1 176
“ BHLM3 “ “ “ “ 1 289
“ BHLM4 “ “ “ “ 21 372
4 BHML “ 45°31.5′N 107°43.4′W 897 24 260
5 BHTL “ 45°38.566′N 107°39.492′W 880.8 30 1696
6 BHTM “ 45°20.668′N 107°52.668′W 994.5 27 314
7 CYS Clark’s Fork, 45°18.838′N 108°54.639′W 1086 14 15

Yellowstone R.
8 PRBC Powder R. 45°11.863′N 105°45.252′W 965.7 14 300
9 PRBLM1 “ 45°20.865′N 105°31.827′W 903 20 246
“ PRBLM2 “ 45°20.788′N 105°31.938′W “ 11 448
“ PRBLM3 “ 45°20.921′N 105°31.387′W “ 4 147

10 PRF “ 45°42.000′N 105°10.693′W 855 31 1024
11 PRGR1 “ 46°28.387′N 105°18.521′W 681 13 125
“ PRGR2 “ “ “ “ 1 155

12 PRT1 “ 46°44.409′N 105°25.917′W 674.1 1 150
“ PRT2 “ “ “ “ 10 100
“ PRT3 “ “ “ “ 1 200

13 PRWY “ 45°00.350′N 105°53.993′W 1032.6 7 270
14 YSC Yellowstone R. 46°08.421′N 107°32.821′W 840 17 198
15 YSDC “ 45°41.622′N 108°38.434′W 960 11 32
16 YSM “ 46°30. 225′N 105°44.128′W 711.3 30 144
17 YSMB1 “ 46°15.429′N 107°20.285′W 810 21 20,574
“ YSMB2 “ “ “ “ 1 360

18 YSRR “ 46°15.909′N 106°41.915′W 758.7 19 115



presence (although in variable quantities) of
saltcedar in discrete patches, relative cover of
saltcedar was usually higher at all stand ages
than cottonwood or willow. Saltcedar relative
cover values varied between 1 (<5%) and 5
(>65%–85%) in younger stands (<10 years)
and between 5 and 7 (>95%) in older stands
(>20 years). Relative covers of cottonwood
and willow declined over time, varying between
1 and 5 in younger stands and between 0 (0%)
and 4 (35%–65%) in older stands (Fig. 3B).

Soils

Soil EC and texture did not change with
saltcedar stand age (Table 3). However, pH
decreased with increasing stand age (r2 =
0.450, P < 0.001; Table 3, Fig. 4). To check for
river of origin substrate bias, we subsampled
data from the entire data set such that all stand
ages were equally represented in each water-
shed. Subsampled data showed the same trend
(Spearman correlation: rs = –0.520, P = 0.020,
n = 19), indicating that differences in soil pH
over time were not driven by watershed-spe-
cific factors.

Stem Growth

Saltcedar stem growth was greatest in the
southernmost region (Arizona; Fig. 5), although

growth rates were not significant among regions
(Table 4), i.e., no significant interaction of state
× stem age was found. Sandbar willow stem
growth rates did not differ among regions (Fig.
5, Table 4). Stem growth of both species de-
creased inversely with elevation (Table 4, bot-
tom section). There was no significant interac-
tion of elevation × species.

DISCUSSION

While the introduction of saltcedar in cen-
tral eastern Montana is recent (<40 years), salt-
cedar populations are now present on most
rivers. This increase appears to be due to mul-
tiple human introductions and dispersal. Recent
searches for saltcedar in eastern Montana have
added to initial reports by Robinson (1965)
and Swenson et al. (1982). The species has
been found on most river watersheds (8 of 10
in this region), with extensive naturalized stands
on the Clark’s Fork, Yellowstone, Bighorn, Little
Bighorn, Musselshell, Powder, and Yellowstone
Rivers (Sexton 2000, Lesica and Miles 2001,
Pearce and Smith 2003), and isolated plants on
the Milk and Tongue Rivers (Sexton 2000,
Pearce and Smith 2003). There are no records
on the Little Missouri and Poplar Rivers. The
spread of saltcedar in this region appears as a
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TABLE 2. Geographic and climate characteristics of localities where saltcedar and sandbar willow stems were collected.
Saltcedar stems from Montana were sampled across localities in Table 1. Climate data are from meteorological stations
(30-year averages listed in Weather America [Garoogian 2001]), with elevations and latitudes similar to localities. Mean
temperatures are averages over the entire year.

State and Elevation Climate Mean Frost-
watershed Latitude Longitude (m) center temp. (°C) free days

MONTANA Hysham, Treasure Co., MT 8.33 194
Fort Peck Lake 47°37.3′N 106°11.5′W 703
Fort Peck Lake 47°33.7′N 106°13.2′W 697
Hell Creek 47°35.3′N 106°54.8′W 710

WYOMING Lovell, Big Horn Co., WY 7.00 177
Bighorn River 44°29.3′N 108°02.9′W 1155
Shoshone River 44°51.3′N 108°19.8′W 1169
Unnamed Creek 44°41.2′N 108°04.4′W 1331

UTAH Dewey, Grand Co., UT 12.11 209
Green River 39°11.5′N 110°04.6′W 1245
Price River 39°14.3′N 110°15.2′W 1410
Price River 39°27.0′N 110°37.7′W 1450

NEVADA Valley of Fire State Park, NV 20.5 354
Virgin River 36°47.4′N 114°05.8′W 517
Virgin River 36°50.4′N 113°59.0′W 528
Virgin River 36°53.8′N 113°55.1′W 546

ARIZONA Buckeye, Maricopa Co., AZ 21.9 344
Gila River 33°20.5′N 112°37.5′W 271
Gila River 33°22.7′N 112°19.5′W 274
Gila River 33°15.2′N 112°09.7′W 280



scattered or “satellite” pattern (Bazzaz 1986),
as opposed to a continuous spread from an ini-
tial entry point. Humans are apparently aiding
this jump dispersal via ornamental plantings
(Pearce and Smith 2003). While the oldest
stands were found on the Bighorn River, stands
older than 30 years occurred on the Powder
and Yellowstone Rivers (Fig. 1) and are reported
north at Fort Peck Lake (Pearce and Smith
2003). We note that stand ages are likely under-
estimates, as stand-pioneering saltcedars may
have died or been intentionally removed before
we sampled. Additionally, failed saltcedar
patches would go unnoticed.

The positive correlation between stand age
and elevation on the Bighorn River suggests
downstream spread within that watershed. No
such correlations were found in stands on the
Yellowstone and Powder Rivers (Fig. 1), sug-
gesting multiple sites of introduction and/or
upstream spread via wind dispersal. On the
Powder River, stand ages decreased with dis-
tance from a site near Powderville (site PRF;
Table 1, Fig. 1), indicating a possible site of
introduction and upstream and downstream
dispersal. Saltcedars as old as 51 years in 1997
were found upriver from the Yellowtail Dam
(Wyoming, Bighorn River; Table 2) in Wyoming,
suggesting downstream dispersal to the Bighorn
River from older populations. 

Stand Persistence and 
Expansion

The regional spread of saltcedar in Montana
may be enhanced by anthropogenic effects

such as altered flood cycles (Smith et al. 1998,
Stromberg 1998b) and grazing (Pearce and
Smith 2003, Lesica and Miles 2004). While we
do not have a quantitative assessment, a large
fraction of stands occurred at sites with anthro-
pogenic disturbances such as grazing and
clearing for improvements and diversions. The
discrete nature of saltcedar patches in Mon-
tana likely denotes an affinity for such distur-
bances, which often produce introductions with
noncontinuous distributions (Bazzaz 1986).
Study sites were within sight of roads and may
all share a common history of high human dis-
turbance, differing from remote sites. Hence,
our results could be biased since we sampled
only road-accessible sites. However, 15% of
study stands occurred on river channel islands,
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Fig. 2. Saltcedar stand area as a function of stand age in
central eastern Montana study stands. Area was square-root
transformed to increase homoscedasticity. Regression equa-
tion: y = 0.59x + 7.35; r2 = 0.276, P = 0.003, n = 29.

Fig. 3. A, Saltcedar absolute cover as a function of stand
age in central eastern Montana study stands. Regression
equation: y = 0.051x + 2.224; r2 = 0.291, P = 0.003, n =
29. B, Mean relative cover class (1 < 5%, 2 5%–15%, 3 15%–
35%, 4 35%–65%, 5 65%–85%, 6 85%–95%, 7 > 95%) ver-
sus stand age class (1 saltcedar seedling beds, 2 ≤ 10 years,
3 11–20 years, 4 > 20 years) in study stands. Bars represent
95% confidence intervals.

Stand age (years)

A

B



where grazing and clearing disturbances are
reduced, and on undammed river stretches,
where flood cycles are less perturbed, suggest-
ing that saltcedar spread may also occur in
reaches with lower anthropogenic disturbances.

The positive relationship between saltcedar
stand age and area suggests that patches are
expanding as well as persisting over time.
Although saltcedar often grows in even-aged
stands from seedbed-forming flood events
(Shafroth et al. 1998, Shafroth et al. 2002), sev-
eral saltcedar stands in Montana had mixed
demographics (seedlings among adult plants).
The largest saltcedar stand surveyed (Myers
Bridge, Yellowstone River; 23 years old) also
had the highest seedling density (>3500 seed-
lings ⋅ m–2). If seedlings rely on new sedimen-
tation, this finding suggests that sediment
deposition (via flood events) can occur within
established saltcedar stands and that new seed-
lings can recruit successfully beneath con-
specifics. In addition to this sexual recruitment,
we observed young suckers (<3 years) sprout-
ing abundantly in older stands. Hence, it 

appears that saltcedar stands can increase in
area by both sexual and vegetative means after
initial flood-related establishment events. These
results are correlative, and the possibility exists
that the oldest stands represent large coloniza-
tion patches that have remained large over
time (e.g., a decrease in the mean magnitude
of recruitment floods over time could cause
successively smaller patches). Alternatively,
stands may expand from coalescing geomor-
phic surfaces (i.e., multiple sandbars may form
into one larger bar following subsequent flood-
ing and sediment deposition). The observed
increase in saltcedar absolute cover with stand
age is also correlative but suggests that either
cover increases with time or that only young
stands with high saltcedar absolute cover are
able to persist over time. Older stands may be
a source of higher seed production if cover
and seed production covary. 

Vegetation and Soils

Our results suggest that saltcedar estab-
lished and persisted where woody natives
were not abundant. This is consistent with the
measured low competitive ability of saltcedar
seedlings (Sher and Marshall 2003) and the
hypothesis that saltcedar establishment depends
on disturbances unfavorable to natives (Busch
and Smith 1995, Shafroth et al. 1998, Shafroth
et al. 2002). Although saltcedar in Montana
experience diminished growth beneath mature
cottonwood stands (Lesica and Miles 2001),
our results suggest that once saltcedar stands
establish, they are unlikely to shift to stands of
native vegetation within the observed age
span (<35 years).

Little is known about long-term succes-
sional processes in saltcedar stands (Everitt
1998, Stromberg 1998a). Populus and Salix
seedlings were occasionally encountered be-
neath mature saltcedar stands, although in low
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TABLE 3. Soils values and regression coefficients (r2) with stand age in riparian stands (n = 29) of saltcedar in central
eastern Montana.

Variable Mean ± s Range r2

Electrical conductivity (µS) 992.1 ± 1447.7 115.0–6716.7 0.003
Sand (%) 47.8 ± 20.8 7.8–88.0 0.001
Silt (%) 34.9 ± 15.4 7.0–66.5 0.028
Clay (%) 17.2 ± 8.9 4.5–42.0 0.052
pH 7.6 ± 0.32 6.98–8.35 0.450a

aP < 0.001

Fig. 4. Soil pH as a function of stand age in central eastern
Montana study stands. Regression equation: y = –0.02x +
7.90; r2 = 0.450, P< 0.001, n = 29.



densities. Native phreatophytes (e.g., Populus)
may not be able to establish on alluvium de-
posited beneath mature saltcedar. Decreases
in native woody plants with increases of salt-
cedar are often correlated (Busch and Smith
1995), but the cause is difficult to identify and
may include complex interacting factors such
as altered flood cycles, drawdown, and human-
caused disturbances (Sala et al. 1996, Cleverly
et al. 1997, Shafroth et al. 2000, 2002).

In the Southwest saltcedar is hypothesized
to generate or associate with higher soil salin-
ity (Busch and Smith 1993, Smith et al. 1998),

although comparisons between similar river
sites with and without saltcedar have lacked
evidence for this (Stromberg 1998b). We found
no relationship between surface (0–7.5 cm)
soil salinity and stand age, although we did
observe a decrease of soil pH in older stands
(decreasing to 7.0). This is consistent with
general patterns of aging soils (Helyar and
Porter 1989) and may be an effect of increas-
ing organic inputs over time in the sandstone
and shale soils (Alt and Hyndman 1986) of
eastern Montana. Busch and Smith (1995) re-
ported pH values that varied unpredictably 
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Fig. 5. Saltcedar (A) and sandbar willow (B) stem growth rates illustrated as regressions of stem age vs. stem diameter,
with the y-intercept set to 0 (forced through the origin), along a latitudinal gradient in the western United States. AZ =
Arizona, NV = Nevada, UT = Utah, WY = Wyoming, MT = Montana.

A

B



among sites differing in saltcedar dominance.
Soil acidification may be an artifact of long-
term, natural successional changes occurring
on sand bars where saltcedar populations ini-
tially recruit.

Contrary to the findings of Stromberg
(1998b), we found no increase in surface clay
content or other changes in soil texture in
older saltcedar stands. A weakness of this study
is that we did not examine soils beneath native
stands free from saltcedar. Such comparisons
are needed to understand saltcedar-specific
effects. 

Stem Growth Across Climate 
and Latitude

Consistent with the decrease of saltcedar
seedling growth rates under low temperature
(Sexton et al. 2002), we found a decrease in
stem growth rates in adult plants (including
sandbar willow) at higher elevations, which
also have colder climates (Table 2). Saltcedar
and sandbar willow did not differ from each
other in stem growth responses to elevation,
indicating similar growth responses to climate.
Climate does not vary linearly with latitude
among sites sampled in this study. Hence,
despite potential site condition effects (Haigh
1998), latitude was not a reliable predictor of
abiotic constraint on stem growth. We ob-
served no significant difference in stem growth

rates among regions for either species, al-
though the highest growth rate found was for
saltcedar in southern Arizona, the lowest lati-
tude and elevation in the study (Table 2, Fig.
5). Stem growth rates are used here as indica-
tors of the growth potential of discrete recruit-
ment units, but they are not necessarily indi-
cators of whole-plant growth and productivity,
which is related to survival and fitness of
mature individuals (Aarssen and Keogh 2002).
Differences in biomass allocation, height, and
stem mortality along the latitudinal gradient
(i.e., fewer, larger stems in southern popula-
tions versus many, smaller stems in northern
populations [Sexton 2000]) may offset individ-
ual stem growth rates such that whole-plant
productivity and plant size are reduced in
colder climates. However, because stems are
discrete sexual reproductive units, their sus-
tained growth across a wide latitudinal range
suggests sustained sexual reproductive potential.

Conclusion

Results from this study show an increase of
saltcedar in central eastern Montana. Saltcedar
stands are present in most major riparian cor-
ridors and are able to persist and increase in
size over time. Our results also suggest that
saltcedar establishes at sites with low cover of
native species and that, over time, woody natives
within saltcedar stands do not increase in
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TABLE 4. Summary of analysis of variance for stem growth of Tamarix spp. (saltcedar) and Salix exigua (sandbar wil-
low) stems among regions and elevations. Results below are from 3 separate ANOVAs. In the first 2 ANOVAs (Saltcedar,
Willow), stem diameter was the dependent variable, stem age a covariate, and state of origin (region) the independent
variable. For saltcedar, n = 401 stem samples (88 for Arizona, 76 for Nevada, 79 for Utah, 78 for Wyoming, 80 for Mon-
tana). For willow, n = 186 stem samples (56 for Nevada, 32 for Utah, 48 for Wyoming, 50 for Montana). In the 3rd
ANOVA (All stems), saltcedar stems from Arizona were not included. Stem diameter/age was the dependent variable,
elevation a covariate, and species the independent variable. For saltcedar and willow n = 313 and 186, respectively. All
noncategorical variables were log transformed.

ANOVA SS df MS F-ratio Significance

SALTCEDAR

Stem age 25.634 1 25.634 776.599 0.001
Region 0.476 4 0.119 3.607 0.007
Region × Stem age 0.198 4 0.050 1.500 0.201

WILLOW

Stem age 6.878 1 6.878 345.851 0.001
Region 0.158 3 0.053 2.645 0.051
Region × Stem age 0.019 3 0.006 0.324 0.808

ALL STEMS

Species 0.092 1 0.092 2.578 0.109
Elevation 2.416 1 2.416 67.709 0.001
Elevation × Species 0.070 1 0.070 1.971 0.161



cover and displace saltcedar. These results sug-
gest that saltcedar has the potential to spread
in the North and, as a consequence, reduce
establishment area for native phreatophytes as
well as change the functional character of wet-
lands they inhabit. We recommend proactive
approaches, such as managing for native phrea-
tophytes (Lesica and Miles 2001, 2004) and
measures outlined in Pearce and Smith (2003)
and Stromberg (2001), to diminish saltcedar’s
spread in the Great Plains. Habitats of the
Great Plains with climates similar to central
eastern Montana may expect saltcedar to spread,
regardless of latitude, in the presence of suit-
able recruitment sites.

Future research is needed to understand
the functional differences between habitats with
and without saltcedar in marginal climates
where stands persist long-term. Direct observa-
tion of recruiting populations (e.g., abundance,
mortality, or genetic data) at distributional
margins would allow a clearer understanding
of the mechanisms and rate of spread.
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