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Abstract 1 
Riley, Karin L., PhD in Geosciences, December 2012                                                  Geosciences 

 

Frequency-magnitude distribution of debris flows compiled from global data, and comparison 

with post-fire debris flows in the western U.S.   

 

Rebecca Bendick and Anna E. Klene, Co-chairs 

Forecasting debris flow hazard is challenging due to the episodic occurrence of debris 

flows in response to stochastic precipitation and, in some areas, wildfires. In order to facilitate 

hazard assessment, we have gathered available records of debris flow volumes into the first 

comprehensive global catalog of debris flows (n = 988). We also present results of field 

collection of recent debris flows (n = 77) in the northern Rocky Mountains, where debris flow 

frequency increases following wildfire. As a first step in parameterizing hazard models, we use 

frequency-magnitude distributions and empirical cumulative distribution functions (ECDFs) to 

compare volumes of post-fire debris flows to non-fire-related debris flows. The ECDF of post-

fire debris flow volumes is significantly different (at 95% confidence) from that of non-fire-

related debris flows, suggesting that the post-fire distribution is composed of a higher proportion 

of small events than that of non-fire-related debris flows. The slope of the frequency-magnitude 

distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, 

corroborating evidence that small post-fire debris flows occur with higher relative frequency than 

non-fire-related debris flows. Taken together, the statistical analyses suggest that post-fire debris 

flows come from a different population than non-fire-related debris flows, and their hazard must 

be modeled separately. We propose two possible non-exclusive explanations for the fact that the 

post-fire environment produces a higher proportion of small debris flows: 1) following fires, 

smaller storms or effective drainage areas can trigger debris flows due to increased runoff and/or 

decreases in root strength, resulting in smaller volumes and increased probability of failure, 2) 

fire increases the probability and frequency of debris flows, causing their distribution to shift 

toward smaller events due to limitations in sediment supply. 
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Abstract 2 
Riley, Karin L., PhD in Geosciences, December 2012                                                  Geosciences 

 

The relationship of large fire occurrence with drought and fire danger indices in the western US: 

the role of temporal scale 

 

Rebecca Bendick and Anna E. Klene, Co-chairs 

 

The relationship between large fire occurrence and drought has important implications for fire 

hazard prediction under current and future climate conditions. The primary objective of this 

study was to evaluate correlations between drought and fire-danger-rating indices representing 

short- and long-term drought, to determine which had the strongest relationships with large fire 

occurrence at the scale of the western United States during the years 1984-2008. We combined 

4-8 km gridded drought and fire-danger-rating indices with information on fires greater than 

1000 acres from the Monitoring Trends in Burn Severity project. Drought and fire danger indices 

analyzed were: monthly precipitation (PPT), Energy Release Component for fuel model G 

(ERC(G)), Palmer Drought Severity Index (PDSI), 3-month Standardized Precipitation Index 

(SPI3), SPI6 , SPI9, SPI12, and SPI24. To account for differences in indices across climate and 

vegetation assemblages, indices were converted to percentile conditions for each pixel, to 

indicate the relative anomaly in conditions during large fires. Across the western US, 

correlations between area burned and short-term indices ERC(G) and PPT percentile were strong 

(R
2 
= 0.92 and 0.89 respectively), as were correlations between number of fires and these indices 

(R
2
=0.94 and 0.93 respectively). As the period of time tabulated by the index lengthened, 

correlations between fire occurrence and indices weakened:  PDSI and 24-month SPI percentile 

showed weak or negligible correlations with area burned (R
2
 = 0.25 and -0.01 respectively) and 

number of large fires (R
2
 = 0.3 and 0.01 respectively). This result suggests the utility of shorter-

term rather than longer-term indices in fire danger applications. We attribute strong correlations 

between shorter-term indices and fire occurrence to strong associations between these indices 

and moisture content of dead fuels, which are the primary carriers of surface fire.  
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Chapter 1.  

Introduction 

 

 

Statistical modeling of rare stochastic disturbance events presents a number of 

challenges. This dissertation investigates two disparate types of disturbance events: post-fire 

debris flows and large wildland fires. Debris flows and large fires are driven in part by stochastic 

events including lightning, wind events, and short-duration convective rainstorms. Because of 

their stochastic nature, it is often difficult to predict timing, location, or magnitude of these 

events. Due to their rarity, there are not sufficient records to predict wall-to-wall hazard or risk 

for an area solely using previous occurrences (Finney et al., 2011).  

Despite the challenges mentioned above, prediction of these events is critically important, 

since debris flows and wildfires result in loss of human lives, as well as infrastructure including 

homes and roads (Cannon et al., 1998), These events also have direct or indirect effects on 

sediment transport (Wondzell and King, 2003), the water cycle, water quality, stream 

morphology (Hoffmann and Gabet, 2007), geomorphology of zero-order basins, transport of 

woody material to streams (Benda and Sias, 2003), habitat of threatened and endangered species, 

and carbon and nitrogen nutrient fluxes between vegetation, soil, water, and atmospheric pools 

(DeLuca and Sala, 2006; Riley et al., 2011). Thus, prediction of when and where fire and post-

fire debris flow events will occur, and/or what magnitude they are likely to be, is of interest to a 

wide range of scientists, land managers, and residents of fire-prone ecosystems.  

Input parameters for debris flow and wildfire hazard/risk vary widely from location to 

location, posing another challenge for researchers (Hungr et al., 2008; Finney et al., 2011). 

Hazard can be defined as either the consequence to a valued resource from a disturbance event or 

simply as the magnitude of the event (Hungr et al., 2008; Finney et al., 2011), while risk may be 

defined as the product of consequence and probability the event will occur.  

Estimation of hazard and risk often requires records of event magnitudes for 

parameterization and accuracy assessment. Fairly comprehensive records of large wildland fires 

in the United States have existed for the past 20-30 years, but in order to parameterize statistical 

models of debris flows for a particular location, new data on debris flow extent and timing must 

usually be collected, a time-consuming and expensive endeavor (Hungr et al., 2008).  
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Obtaining other input data needed for parameterization of statistical and simulation 

models can also pose a challenge. Simulation models for wildfire occurrence incorporate 

predictors including weather, fuels, and topography (Finney et al., 2011). The relevance of these 

parameters may vary regionally (Littell et al., 2009). Statistical models predicting debris flow 

occurrence and magnitude have used factors including precipitation and slope thresholds, which 

vary locally, as well as basin morphology, lithology, and fire severity (Hyde et al., 2007; Gartner 

et al., 2008). While non-fire-related debris flows have been shown to follow a power-law 

frequency-magnitude distribution (van Steijn, 1996), the parameters of which can be used in 

predictive models, little was known about the distribution of post-fire debris flows when this 

research was undertaken. 

This research sought to explain the variation in these two disparate and complex 

phenomena using simple unifying statistical models that worked across a range of coarse spatial 

scales (regional, continental, and global) regardless of lithology, climate, precipitation patterns, 

or vegetation assemblage. Such models have utility for broad hazard prediction at continental 

and global scales, and can illuminate physical mechanisms driving these disturbance phenomena. 

Another advantage is that such models minimize reliance on multiple input factors for which 

data may be difficult to obtain. Simple coarse-scale models are more readily related to other 

broad patterns, such as synoptic weather patterns or coupled sea-surface temperature and 

atmospheric teleconnections such as El Niño-Southern Oscillation or Pacific Decadal 

Oscillation, giving such models potential applications to long-lead forecasting and prediction of 

disturbances under climate change scenarios. 

These studies are presented in this dissertation document in the form of two journal 

articles. Chapter 2 compares the empirical size distributions of post-fire and non-fire-related 

debris flows. This chapter was submitted to Geomorphology on June 2, 2012, and was 

subsequently revised based on the comments of reviewers and resubmitted on November 28, 

2012, where it is in review as of this writing. Chapter 3 analyzes the relationship of drought with 

fire occurrence in the western US. This chapter was submitted to the International Journal for 

Wildland Fire in December 2011, and was revised and resubmitted on December 19, 2012. 

In Chapter 2, the primary focus was to investigate the size distribution of debris flows. As 

a first step in parameterizing statistical hazard models, we used frequency-magnitude 

distributions and cumulative distribution functions to compare volumes of post-fire debris flows 
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to non-fire-related debris flows. A catalog of debris flow magnitudes from all over the world was 

compiled from a thorough literature review. Due to the large number of events required to 

parameterize frequency-magnitude distributions, and the relatively small number of post-fire 

event magnitudes recorded in the literature, field work was done to collect data on 73 recent 

post-fire events in the field. Field sites ranged from the Bitterroot Mountains of southwest 

Montana to the Smoky Mountains of Idaho. The resulting catalog of 988 debris flow has been 

accepted to the online data archive Pangaea, and is presented as a downloadable appendix to this 

document due to its large size (http://doi.pangaea.de/10.1594/PANGAEA.783654). 

In Chapter 3, the main objective was to determine which, if any, drought and fire-danger-

rating indices have the strongest relationship with large fire occurrence across the western United 

States during the years 1984-2008. Four-to-eight kilometer gridded drought and fire-danger-

rating indices (monthly precipitation, Palmer Drought Severity Index, Standardized Precipitation 

Index, and daily Energy Release Component) were related to information on large fires (>1000 

acres) from the Monitoring Trends in Burn Severity project (Eidenshink et al., 2007). To account 

for differences in indices across climate and vegetation assemblages, indices were converted to 

percentile conditions for each pixel, to indicate the relative anomalies in conditions during large 

fires. 

In Chapter 4, the conclusions from each article were briefly reviewed, and accompanied 

by discussion of how these two disparate studies can be integrated to inform global and 

continental prediction of hazard and risk. 
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Abstract 

 

Forecasting debris flow hazard is challenging due to the episodic occurrence of debris 

flows in response to stochastic precipitation and, in some areas, wildfires. In order to facilitate 

hazard assessment, we have gathered available records of debris flow volumes into the first 

comprehensive global catalog of debris flows (n = 988). We also present results of field 

collection of recent debris flows (n = 77) in the northern Rocky Mountains, where debris flow 

frequency increases following wildfire. As a first step in parameterizing hazard models, we use 

frequency-magnitude distributions and empirical cumulative distribution functions (ECDFs) to 

compare volumes of post-fire debris flows to non-fire-related debris flows. The ECDF of post-

fire debris flow volumes is significantly different (at 95% confidence) from that of non-fire-

related debris flows, suggesting that the post-fire distribution is composed of a higher proportion 

of small events than that of non-fire-related debris flows. The slope of the frequency-magnitude 

distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, 

corroborating evidence that small post-fire debris flows occur with higher relative frequency than 

non-fire-related debris flows. Taken together, the statistical analyses suggest that post-fire debris 

flows come from a different population than non-fire-related debris flows, and their hazard must 

be modeled separately. We propose two possible non-exclusive explanations for the fact that the 
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post-fire environment produces a higher proportion of small debris flows: 1) following fires, 

smaller storms or effective drainage areas can trigger debris flows due to increased runoff and/or 

decreases in root strength, resulting in smaller volumes and increased probability of failure, 2) 

fire increases the probability and frequency of debris flows, causing their distribution to shift 

toward smaller events due to limitations in sediment supply. 

 

Introduction 

The majority of sediment transport in mountainous areas is caused by episodic events 

such as debris flows (Dietrich and Dunne, 1978; Kirchner et al., 2001). Debris flows move 

sediments ranging in size from mud to boulders several meters in diameter, and introduce them 

to stream channels, where this sudden influx of material can alter stream course and morphology 

(Costa, 1988; Benda et al., 2003; Ritter et al., 2006; Hoffmann and Gabet, 2007). When debris 

flows occur following wildfire events, they also transport burned tree trunks into streams, 

providing an additional source of topographic roughness as well as habitat for fish (Angermeier 

and Karr, 1984; Swanston, 1991; Brookes et al., 1996; Montgomery et al., 1996; Rieman and 

Clayton, 1997; Roghair et al., 2002; Benda and Sias, 2003). However, habitat may be negatively 

affected for 2-3 years after debris flows, and human populations are impacted when debris flows 

cross roads or collide with buildings (Lamberti et al., 1991; Rieman and Clayton, 1997; Cannon 

et al., 1998; Roghair et al., 2002). As the Wildland-Urban Interface in the Western US expands 

(Theobald and Romme, 2007), management of wildfire impacts to structures and roads, 

including damage from post-fire debris flows, has become an increasingly difficult issue. 

Prediction of debris flow events is desirable in order to mitigate short-term negative impacts and 

understand long-term benefits to habitat; however, prediction is difficult due to the stochastic 

nature of debris flow events. 

Frequency-magnitude (FM) distributions quantify the relative probability of events of 

various sizes, and thus provide a means for evaluating stochastic natural hazards (Hungr et al., 

2008; Finney et al., 2011; Thompson et al., 2011). Generally, small events occur exponentially 

more frequently than large events, and thus FM distributions for natural hazards often follow a 

power law, as has been demonstrated for earthquakes, landslides, and wildfires, as well as debris 

flows (Malamud and Turcotte, 1999; Helsen et al., 2002; Hungr et al., 2008; Jakob and Friele, 

2010; Thompson et al., 2011). FM distributions have been used to parameterize local models for 
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debris flow hazard, but parameters vary from region to region, necessitating extensive data 

collection (Moon et al., 2005; Hungr et al., 2008; Conway et al., 2010; Jakob and Friele, 2010). 

Previous work on frequency-magnitude distributions has focused on non-fire-related debris 

flows, with the volume distribution of post-fire debris flows so far not addressed in the literature. 

As a first step toward creating universal models of debris flow hazards, we have compiled a 

global catalog of debris flow events in order to investigate similarities and differences between 

the populations of post-fire and non-fire-related debris flows. 

The volume of a debris flow may be related to the process by which it initiates. Debris 

flows initiate through several mechanisms: 1) Landslides. During low-intensity long-duration 

storms, water infiltrates into the soil, causing elevated pore pressures; sediments that were close 

to their angle of repose while dry are likely to fail when saturated, thus increasing the probability 

of landslides (Ritter et al., 2006). Once a saturated parcel of soil fails, it can mobilize into a 

debris flow (Iverson et al., 1997). Landslide-initiated debris flows can start from shallow failures 

on the order of 1-2 cm where soils are hydrophobic (Gabet, 2003a) or from deeper failures 

measured in meters (Iverson et al., 1997; Wilkerson and Schmid, 2003; Stock and Dietrich, 

2006; Jakob and Friele, 2010). Landslide-initiated debris flows often continue to entrain 

sediment as they move downslope, growing in volume (Hungr and Evans, 2004; Iverson et al., 

2011; Mangeney, 2011). 2) Rockfall. Rockfall can be precipitated by earthquake, unstable slope 

angle (found in areas of deglaciation), or loss of vegetation (which commonly occurs following 

fire) (Jakob and Friele, 2010). When dry rocks fall into a channel that is carrying water, 

instantaneously increasing its sediment concentration, a debris flow can initiate. 3) Runoff. 

Infiltration-excess flow during high-intensity short-duration storms can produce rilling, 

entrainment of sediment, and gully rejuvenation through progressive sediment bulking, a process 

whereby sediment within the channel is mobilized until the fluid acquires a high enough solid 

component that interactions between particles affect the properties of the mixture and positive 

pore pressures are present (Iverson, 1997; Cannon et al., 1998; van Steijn, 1999; Cannon et al., 

2001; Cannon et al., 2003; Conedera et al., 2003; Gabet and Mudd, 2006; Hyde et al., 2007; 

Gabet and Bookter, 2008; Santi et al., 2008; Jakob and Friele, 2010).  4) “Firehose effect”. 

Sediments are mobilized by focused turbulent-water flows, often where water pours from a 

nickpoint or cliff (Helsen et al., 2002; Larsen et al., 2006; Conway et al., 2010). Although these 

mechanisms refer to separate triggering events, it is important to recognize that debris flows may 
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exhibit a combination of these different behaviors. For example, landslide-initiated debris flows 

often continue to entrain sediment as they move downslope, growing in volume (Hungr and 

Evans, 2004; Iverson et al., 2011; Mangeney, 2011). In addition, the generation of runoff in 

progressively bulked debris flows may initially be due to the failure of a thin layer of ash or soil 

on the order of 1-2 cm thick (Gabet, 2003a; Gabet and Sternberg, 2008). 

Flow volume is also related to topographic relief and watershed area, with zero- and first-

order watersheds with greater basin length or elevation change from ridge to valley potentially 

providing more material for entrainment by progressively bulked debris flows (Johnson et al., 

1991; Hungr et al., 2008). Presence of side channels is also an important factor where debris 

flows are initiated by overland flow; Santi et al. (2008) found that side channels contributed 

material to debris flows in over half of the events they studied, with these contributions 

amounting to an average of 23% of the total volume. 

The amount of sediment available for entrainment by debris flows is affected by the rate 

of sediment generation and erosion, which in turn is influenced by lithology and climate (Ritter 

et al., 2006). Time since last debris flow event is also an important factor, with more material 

becoming available as time since previous event increases (Jenkins et al., 2011). Time since 

previous debris flow event may be a more important factor in climate-limited systems (where 

sediment supply will be limited by the amount of time that has passed since the last event) than 

in transport-limited systems (where plenty of sediment is available, and becomes freed for 

transport by debris flows when vegetation is removed by fire). 

Debris flow probability is related to a number of topographic factors, especially average 

slope (Gartner et al., 2008; Cannon et al., 2010). Precipitation amount, duration, and rate also 

influence debris flow probability and magnitude. In the case of runoff-initiated debris flows, 

precipitation amount and rate is related to the amount of infiltration-excess flow (Gartner et al., 

2008). In most post-fire debris flow events in the Northern Rockies, the majority of material 

comes from hillslopes (Cannon et al., 2001) or gullies (Parrett et al., 2004; Santi et al., 2008) 

rather than soil-slip scars, so we expect that the location of rill and gully rejuvenation is 

important in determining debris flow volume, with more material available for entrainment if the 

debris flow initiates higher in the watershed. Higher precipitation amounts or rates also may 

increase the likelihood of the firehose effect, as well as the amount of material thus entrained. 

Longer precipitation durations increase the likelihood of mass failures caused by saturation 
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(Wondzell and King, 2003), but may not be directly related to debris flow volume, except where 

additional material is added through progressive sediment bulking in the gully (Hungr and 

Evans, 2004; Iverson et al., 2011; Mangeney, 2011).  

High- and moderate-severity fire is strongly related to debris flow occurrence within 

zero- and first-order drainages (Hyde et al., 2007; Gartner et al., 2008; Cannon et al., 2010). In 

fire-dependent ecosystems, debris flow frequency is related to fire frequency, and may be 

responsible for driving Holocene aggradation through increases in erosion rates due to more 

frequent fire (Roering and Gerber, 2005). In Yellowstone, Pierce et al. (2004) found that debris 

flow magnitude and frequency were driven by climate and fire occurrence during the past 8000 

years, with warmer climate being associated with severe droughts and stand-replacing fires in 

ponderosa pine forests (Pinus ponderosa), corresponding to large debris flow events. Cooler 

periods such as the Little Ice Age were associated with more frequent and less severe fire, and 

more frequent smaller debris flow events. Thus, climate effects on fire regime drive debris flow 

frequency and volume. 

Fire increases the probability of debris flows through effects on soils and live and dead 

vegetation. Fire often changes the degree of soil repellency and its spatial pattern (Woods et al., 

2007). Soil repellency can increase or decrease following fire (Prosser and Williams, 1998; 

Robichaud, 2000; Doerr et al., 2006; Doerr et al., 2009). The extent and connectivity of 

repellency affects infiltration of precipitation, and thus the amount of overland flow contributing 

to gully rejuvenation, but in general, patches of repellent soils are discontinuous, and infiltration 

is able to occur between them (Woods et al., 2007). Hyper-dry soil conditions following fire may 

entirely prevent infiltration during storm events (Moody and Ebel, 2012). Soil cohesion may 

decrease after fire due to loss of mycorrhizal associations and/or consumption of organic matter 

that binds soil aggregates, increasing post-fire sediment entrainment during precipitation events 

or through dry ravel (Spittler, 1995; Wondzell and King, 2003; Roering and Gerber, 2005). The 

presence of ash can decrease infiltration by clogging soil pores, especially in areas of coarser 

soils, and increase the transport capacity of runoff (Gabet and Sternberg, 2008; Woods and 

Balfour, 2010). 

Fire severity is related to the extent of consumption of litter, duff, downed woody debris, 

and mortality of live vegetation (Prosser and Williams, 1998; Campbell et al., 2007). Live and 

dead vegetation intercepts precipitation, making it unavailable for overland flow, and impedes 
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dry ravel (Gabet, 2003b; Wondzell and King, 2003). When surface vegetation is removed by fire, 

dry ravel can accelerate: 2/3 of the total ravel occurring the year following a fire may occur 

during the first 24 hours (Bennett, 1982, as cited in Wondzell and King, 2003), rapidly filling 

gullies with material that can be mobilized by debris flows. Removal of vegetation increases 

incidence of raindrop splash on bare soil, which can mobilize sediment in the early stages of 

runoff-initiated debris flows, or cause surface sealing that promotes overland flow (Swanson, 

1981; Meyer and Wells, 1997; Martin and Moody, 2001). Live vegetation contributes to the 

strength of mountainous slopes through root networks; when vegetation is killed by fire, roots 

decay over a period of years, causing a reduction in slope strength and reducing the resisting 

forces on a package of sediment, thus increasing the likelihood of landslide-initiated debris flows 

(Swanson, 1981; Meyer et al., 2001; Wondzell and King, 2003). Where debris flows are 

mobilized by landslides, loss of live vegetation can be a factor due to reduced evapotranspiration, 

which causes soils to remain wet over longer periods of time and thus decrease the amount of 

precipitation necessary for soil saturation (Swanson, 1981; Wondzell and King, 2003). However, 

most post-fire debris flows in the Rocky Mountain region appear to be mobilized by infiltration-

excess flow, which is increased by the removal of live and dead vegetation.  

Post-fire debris flow volume increases with areal extent of a zero-order basin burned by 

moderate- or high-severity fire (Gartner et al., 2008), due to removal of forest floor material, 

mycorrizae, and live vegetation, resulting in transport of more sediment by increased overland 

flow. Where vegetation is limited, debris flow occurrence is not influenced as heavily by fire 

(Larsen et al., 2006). 

Timing of precipitation in relationship to fire events (and presumably other disturbances 

or land use change) strongly affects the amount of sediment delivery by debris flows (Lanini et 

al., 2009), as well as their probability (Wondzell and King, 2003). Following fire events, 

relatively small storm events can mobilize debris flows; Cannon (2008) found that a storms with 

less than 2-year recurrence interval were sufficient to generate debris flows in 25 recently burned 

watersheds in Colorado. Timing of precipitation event with regard to fire influences initiation 

mechanism as well. Debris flow events occurring approximately 0-5 years after a wildfire are 

likely to be runoff-initiated (prompted by increased overland flow due to fire effects on soil, and 

removal of live and dead vegetation), while events occurring approximately 5-10 years after fire 

are likely to be caused by saturation-induced slope failure (due to reduced root strength from 
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fire-induced vegetation mortality) (Meyer et al., 2001; Wondzell and King, 2003). These time 

periods vary with climate, which drives rates of vegetation regrowth. 

Rather than attempt explicit prediction of debris flow volume and probability based on 

the above suite of factors, we statistically compared the size distributions and frequency-

magnitude distributions of post-fire and non-fire-related debris flows, in order to establish 

similarities and differences. In order to have sufficient data for this task, we first assembled a 

catalog of debris flow magnitudes from the literature, and second, augmented this dataset with 

additional field collection.  

 

Methods 

Data acquisition 

Catalog of previously researched events 
 

Observations of individual debris flows were compiled into a global catalog from original 

field observations, unpublished raw observations from other researchers (Sue Cannon, Oldrich 

Hungr, and Dieter Rickenmann), and previously published studies (Sharp and Nobles, 1953; 

Doehring, 1968; Scott, 1971; Cleveland, 1973; Morton and Campbell, 1974; Klock and Helvey, 

1976; Plafker and Ericksen, 1978; Fairchild and Wigmosta, 1983; Wells, 1987; Wieczorek et al., 

1988; Cannon, 1989; Slosson et al., 1989; Pierson et al., 1990; Rickenmann and Zimmermann, 

1993; Thurber Engineering and Golder Associates, 1993; McNeeley and Atkinson, 1996; 

DeGraff, 1997; Vallance and Scott, 1997; Booker, 1998; Cannon et al., 1998; Cenderelli and 

Kite, 1998; Iverson et al., 1998; van Steijn, 1999; Meyer et al., 2001; Helsen et al., 2002; Marchi 

et al., 2002; McDonald and Giraud, 2002; Clague et al., 2003; Conedera et al., 2003; Gartner et 

al., 2004; Gartner, 2005; Stock and Dietrich, 2006; Gabet and Bookter, 2008; Griswold and 

Iverson, 2008; Hungr et al., 2008; Santi et al., 2008; Conway et al., 2010; Stoffel, 2010).  

In order to be included in this catalog, an estimate of the volume of material transported 

by the debris flow was required. Volume is the most common parameter chosen to represent 

magnitude of debris flows (van Steijn, 1996), and is directly related to the amount of material 

displaced by the event, as opposed to planimetric area, which may or may not be constrained by 

topography. Volume estimates were made using several different methods: 1) estimation from 
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the dimensions of the deposit, based on excavation, ground-penetrating radar, and/or GPS (as in 

some of our field measurements, as well as Cannon et al., 1998; Stock and Dietrich, 2006; Bothe, 

2009; Jakob and Friele, 2010; Stoffel, 2010), 2) measurement of the amount of material 

displaced from gully by a series of cross-sections over the length of downcutting (Cannon, 1989; 

van Steijn, 1999; Gartner, 2005; Gabet and Bookter, 2008; Santi et al., 2008), 3) instrument 

measurement of flow velocity and cross-sectional area of channel (Marchi et al., 2002; Jakob and 

Friele, 2010), 4) estimates of scarp volume from aerial photos (Cannon, 1989), and 5) amount of 

material removed by cleanup crews (as in Cannon, personal communication). Each measurement 

method has associated error, but we were unable to estimate these errors in either sign or 

magnitude, and accepted the estimates of previous work as being the best available. Since most 

measurement methods were used in the samples of both post-fire and non-fire-related debris 

flows, their effect can be expected to be similar in both samples. Volume was the only required 

attribute for inclusion in the catalog, but we have included several additional attributes in the 

catalog when available (e.g. planimetric area of deposit, date of event, location, origin/cause, 

volume measurement method, the source of the debris flow information, whether the debris flow 

was post-fire, and the name of the associated fire event where applicable). 

 

Field collection 

While records of debris flows are rare, records of post-fire debris flows are even more 

sparse, with the volumes of only 97 events reported in the literature. Because FM distributions 

require a large number of events for parameterization, additional field collection of post-fire 

debris flow magnitudes was necessary for this study. We mapped debris flow fan inundation 

areas in recently burned areas in the Bitterroot, Sapphire, White Cloud, Smoky, and Sawtooth 

Mountains of Montana and Idaho (Figure 1). We visited sites as soon after the event as possible, 

a period which varied from as short as 3 months to as long as 8 years for events that occurred 

before this study was undertaken. At debris flow sites, we also collected data regarding initiation 

mechanisms (referenced in the catalog under the “Origin” field). Lithology of debris flow 

deposits varied by mountain range: in the Bitterroot and Smoky Mountains, primarily granite; in 

the Sapphires, primarily granite and metagranite; and in the Sawtooths, primarily porphyritic 

andesite and quartzite. 
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Field mapping employed kinematic GPS using a Trimble Juno SB. Specifically, we 

walked the perimeter of each deposit with the GPS unit in record mode. Perimeter files were 

corrected using the nearest base station. In order to check the fidelity of debris flow fan areas 

generated by this method, we selected a subset of four fans in Sleeping Child Creek, and 

measured these using a series of transects and a tape measure. Area estimates using the two 

methods were within 10% of each other, except in one case where the transect method missed a 

narrow lobe of the fan. Santi et al. (2008) cite the expected error when measuring debris flow 

volumes via GPS as -27% to + 37%, but our accuracy appeared to be much higher, perhaps due 

to improvements in GPS technology. We concluded that the kinematic GPS method was more 

accurate as well as more efficient than the transect method, and also had the advantage of 

producing georeferenced polygons which could be used in a GIS for further analysis. 

For our field data, conversion of planimetric fan area to debris flow volumes followed 

Bothe (2009). The gravelly composition of the fans in Laird Creek permitted excavation of the 

fan material and direct location of the depth at which the new deposit was underlain by a thin 

organic horizon and older more weathered material. By digging in a number of locations 

interspersed on the fan, Bothe (2009) produced a mean estimate of depth for five of the fans in 

Laird Creek where we collected perimeter data; planimetric areas of each fan were multiplied by 

the mean depth estimate for that fan to produce volume estimates. These average depth estimates 

ranged from 0.14 – 0.34 m, with a watershed mean of 0.24 m. For fans in Laird Creek that lacked 

a direct measurement, the mean depth estimate of 0.24 m was used to produce volume estimates. 

This coefficient was also used for similar deposits in Warm Springs Creek (fan deposits 

consisted of primarily gravelly material and were generally not constrained by topography). In 

Sleeping Child Creek, digging was not possible due to the prevalence of cobble and boulder-

sized clasts in the fan deposits, and deposits appeared to be thicker, perhaps due to a more 

viscous slurry and/or confinement by the narrow valley. Here, we used linear regression of our 

planimetric area measurements against lower-bound volume estimates produced by 

measurements of gully morphology by Gabet and Bookter (2008) for the same gullies (m = 0.6, n 

= 6, R
2
 = 0.55). The lower-bound estimate was chosen since it is likely that some material was 

lost into Sleeping Child Creek during the debris flow event, meaning the fan deposit is smaller 

than the material displaced from the gully. For deposits in Sleeping Child Creek, planimetric area 

was thus multiplied by 0.6 m to produce a volume estimate. Notably, this coefficient is almost 
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identical to that produced by linear regression of area and volume figures presented by Cannon et 

al. (1998) for debris flows following a fire on Storm King Mountain in Colorado. This 

coefficient was also applied to debris flow fan areas in Rooks Creek, Fourth of July Creek, Rye 

Creek, Two Bear Creek, and the Sawtooths, where the clast size distribution of the deposits was 

similar to that of Sleeping Child Creek and/or debris flows tended to be constrained by narrow 

valley topography. 

Comparing our estimates of volume derived by direct measurements of thickness and 

area for five debris flows in Laird Creek with volume estimates derived from our model using 

0.24 m thickness, errors varied from as low as 1 m
3
 to as high as 641 m

3
 (1% to 79%). We expect 

similar error rates where this model was used, in the remainder of Laird Creek and Warm 

Springs Creek, with an additional up to 10% estimated error resulting from kinematic GPS 

measurements of areas. Error rates are difficult to estimate for the other watersheds, where we 

were not able to collect direct measurements of debris flow thickness. Such uncertainty in 

volume measurements does not affect FM distributions greatly, since measurements are grouped 

into bins; for this study, bin sizes were 10,000 m
3
, and multiplying most debris flow volumes 

collected for this study by +/-79% would not change the subsequent bin assignment, since most 

volumes are less than 300 m
3
. In addition, unless this method systematically over- or under-

estimated volumes, the net effect of error on the slope of the FM distribution would be small. 

 

Statistical methods 

In order to compare the distribution of post-fire debris flow volumes with that of non-

fire-related debris flows, we divided events into two categories: those that occurred in recently-

burned areas and those that did not. Volume data was explored graphically, using boxplots and 

regional groupings. 

For both categories, debris flow frequency-magnitude distributions were compiled from 

the catalog. Robust regression was performed on the data in log-log space, using the Kendall’s 

Tau statistic, which is more robust to outliers than traditional linear regression methods and does 

not assume normality of residuals (Sen, 1968). We used the median volume for each frequency 

as the dependent variable as in Finney et al. (2011), which reduced the disproportionate effect of 

the rarest largest events on the slope coefficient, and produced a better fit with more frequently 
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occurring event sizes. The slope parameter quantifies the ratio of small to large debris flows 

(Finney et al., 2011), and thus is the parameter of interest in this project. The intercept parameter 

is of little interest in this study, since it is strongly influenced by sample size; larger y values are 

generated by larger sample sizes. To evaluate the similarity of the slope parameter of the post-

fire debris flow frequency-magnitude distribution to that of non-fire-related debris flows, we 

calculated a 95% confidence interval around the slope parameters.  

In addition, the empirical cumulative distribution functions (ECDFs) of volume for post-

fire and non-fire-related debris flows were compared. We computed the nonparametric test 

statistic D, the maximum separation distance between the two distributions. As D increases, so 

does the likelihood that the two distributions are different. The Kolmogorov-Smirnov test was 

used to determine the likelihood that the ECDF of post-fire debris flows is different than that of 

non-fire-related debris flows, based upon D.  

 

Results 

Field collection 

In the field, we collected volume measurements of recent debris flows in 77 zero-order 

drainages at the sites shown in Figure 1 and Table 1. Of these debris flows, only three were not 

related to wildfires. Debris flows occurred in clusters in several watersheds; these clusters appear 

to be due to the conjunction of two events: a wildfire of moderate to high severity and a localized 

rainstorm. The upper third of zero-order watersheds that produced debris flows generally had 

experienced high tree mortality following wildfire, likely resulting in increased overland flow 

during storms. From observations of rejuvenated rill networks and available rainfall records, we 

determined that all 74 post-fire debris flow events were initiated by intense precipitation within 

1-2 years of a wildfire, which led to overland flow, rilling, and mobilization of material in the 

gully, in other words, runoff initiation. Physical evidence for runoff initiation consisted of a 

sudden transition from rill to a gully head with abrupt downcutting, as well as the absence of a 

discrete scarp (Figure 2). Data were insufficient to reconstruct rainfall that initiated some debris 

flows, but where precipitation data were available from a nearby station, recurrence intervals for 

storms related to these debris flows had a less than 2- to 25-year recurrence interval (Parrett et 

al., 2004).  
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Recent deposits are visibly less weathered than the paleofan, and lack lichen and 

vegetative cover. It is possible that several recent debris flows have occurred in an individual 

gully, and are superposed. We were not able to differentiate multiple recent debris flow deposits 

from pulses within a single debris flow, and found evidence of multiple surges in the form of 

lobes perched atop the main deposit. At Sleeping Child Creek, we concluded that in some cases 

tributary gullies failed after the main gully, but during the same storm. It was not possible, 

however, to determine whether the time interval between failures was seconds, minutes, or 

hours. Superposition of recent debris flow deposits is a potential source of error in the catalog as 

a whole. It is uncertain whether errors of this type would occur with the same frequency in the 

post-fire and non-fire-related populations. We assume here that each recent deposit was 

generated during a single storm. The combined volume at the end of the storm is arguably the 

best estimation of hazard and impact to highly valued resources, and might still be considered a 

single “event” since it was generated during a single storm.   

A debris flow site typical of our study area is shown in Figure 3: a rejuvenated gully 

leading to a poorly-sorted non-stratified deposit, often with levees present. Deposits consisted of 

a sandy matrix, with clasts ranging from sand to cobble or boulder (Figure 4). Some valley 

floors, such as Rye Creek of the Sapphire Mountains and nearby Laird Creek in the southern 

Bitterroot Mountains, are formed entirely from a sequence of alternating debris flow fans and 

paleofans (Figure 5).  

 

Statistical analyses of debris flow volumes in catalog 

The 77 debris flows measured during this study were combined with those from the 

literature to form a catalog of 988 events. The catalog can be accessed through Pangaea at 

http://doi.pangaea.de/10.1594/PANGAEA.783654. Figure 6 shows the geographical distribution 

of debris flows by nation. Canada, France, Switzerland, and the USA are the only nations to have 

over 50 records of debris flow volumes. No records are present in the catalog for Asia, Africa, or 

Australia, which of course does not suggest that these areas do not experience debris flows, only 

that no debris flow volume data have been published in the scientific literature. Even with our 

effort to augment the sample of post-fire debris flows via field collection, it was smaller than that 

of non-fire-related debris flows (n = 264 vs. n = 724). Given the limitations of this dataset, 



 17

statistical analyses in this manuscript must therefore be considered a first step toward hazard and 

risk modeling of debris flows, and understanding of differences and similarities in the size 

distributions of post-fire and non-fire-related debris flows.  

Debris flow volumes in the catalog spanned 10 orders of magnitude. Volumes in the 

same region are generally more similar to one another than to volumes at other locations, but 

volumes vary as much as four orders of magnitude even within the same location (Table 2; 

Figure 7). This regional similarity may be a result of the topography (e.g. difference in elevation 

from ridge to valley floor, slope, and/or basin length), geology, disturbance history (e.g. fire-

prone versus non-fire-prone ecosystem), and/or climate (e.g. size of the characteristic storm of 

the area, temperature ranges). The Wasatch is the only region with a number of both post-fire 

and non-fire-related debris flows recorded, and there the median post-fire debris flow is larger 

than the median non-fire-related debris flow. However, we lack information on basin geometry, 

storm rainfall that precipitated these debris flows, geology, etc. at these Wasatch sites, and 

cannot attribute this difference to recent burning. 

The global size distributions of post-fire debris flows and non-fire-related debris flows 

showed some notable differences. The median volume of post-fire debris flows was smaller than 

that of non-fire-related debris flows, with the largest non-fire-related debris flow in the catalog 

being three orders of magnitude larger than the largest post-fire debris flow (Figure 8, Table 3). 

To test whether the lack of large events among post-fire debris flows could be a result of the 

smaller sample size, since large events are extremely rare, we took a random sample from the 

non-fire-related debris flows of the number as the post-fire debris flow sample (n = 264), and 

compared the size of the largest events. In 98 of 100 samples, the largest non-fire-related debris 

flow was still larger than the largest post-fire debris flow, suggesting that catalog completeness is 

not the source of differences in the size distribution. 

The slope of the frequency-magnitude distribution of post-fire debris flows is steeper than 

that of non-fire-related debris flows (Figure 9, Table 3). The 95% confidence intervals around 

the two slope parameters do not overlap, signifying that the two parameters are significantly 

different (Figure 10), and meaning that the ratio of large to small debris flows is different for the 

two categories, with a higher proportion of small events occurring in the post-fire debris flow 

sample. 
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Another method for comparing two distributions is to plot the empirical cumulative 

distribution functions (ECDFs). The ECDF of post-fire debris flows generally plots to the left of 

the ECDF of non-fire-related debris flows (Figure 11), signifying that post-fire debris flows tend 

to consist of more smaller volumes. The maximum separation between the two distributions, or 

D, was equal to 0.1. The Kolmogorov-Smirnov test was used to test the hypothesis that post-fire 

debris flows tend to be smaller, yielding a p-value of 0.02 –  meaning that the likelihood of a 

separation distance that large or larger occurring by chance in a random sample if indeed the two 

distributions are from the same population is approximately 1 in 50. This result constitutes strong 

evidence that the distribution of post-fire debris flow volumes is composed of smaller values 

than that of non-fire-related debris flows.  

Initiation mechanism was reported for 422 debris flows in the catalog, or 43%. Of those 

debris flows, runoff is the most common initiation mechanism for both non-fire-related (n = 199, 

or 63%) and post-fire debris flows (n = 90, or 87%). Landslides are the second most common 

initiation mechanism in both groups, with 90 non-fire-related debris flows (28%) and 14 post-fire 

events (13%) initiating this way. Of non-fire related debris flows, 15 (5%) are known to have 

initiated through the firehose effect and 14 (4%) through rockfall.  This result is consistent with 

previous studies, which observed that the most prevalent initiation mechanism for post-fire 

debris flows in the U.S. Interior West is runoff (Spittler, 1995; Hyde et al., 2007; Santi et al., 

2008). 

Runoff-initiated debris flows tended to be larger and less variable in volume than those 

initiating through landslides (Figure 12). The median volume of runoff-initiated debris flows was 

1951 m
3
, in contrast to 279 m

3
 for those that initiated through landslides. The largest volumes for 

runoff-initiated debris flows were recorded by van Steijn (1999) in the French Alps (n = 198); 

debris flows in the Alps tend to have larger volumes than most other areas (Figure 7). When 

runoff-initiated debris flows are further grouped into post-fire and non-fire-related events, post-

fire events are smaller (Figure 13). These results demonstrate that initiating mechanism is not 

driving the differences in volumes between post-fire and non-fire-related samples.  

In summary, these statistical analyses indicate differences in magnitudes of post-fire and 

non-fire-related debris flows, independent of initiation mechanism. The ECDF of volumes of 

post-fire debris flows differs from that of non-fire-related debris flows, as does the slope of the 

FM distribution, indicating that small debris flows occur more frequently in the post-fire sample. 
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Discussion 

Two major contributions of this manuscript are: 1) compilation of the first global catalog 

of debris flows, and 2) statistical analyses suggesting that the size distributions of post-fire and 

non-fire-related debris flows are different. However, these efforts constitute only a first step 

toward hazard and risk modeling at global scales due to the low number of debris flow volumes 

published in the literature and lack of attribute data on many important drivers of debris flow 

volume (e.g. topography, climate, weather, and geology). We see an analogy between debris 

flow and earthquake catalogs. Prior to the 1950s, the seismograph network was small; 

correspondingly, records of earthquakes were relatively few, and it was thus difficult to 

characterize earthquake risk. For the past several decades, the seismograph network has been 

extensive enough to capture all earthquakes globally, resulting in sufficient records to 

parameterize the frequency-magnitude distribution of earthquakes at the global scale. The state 

of the current debris flow catalog is not dissimilar to that of earthquakes in the 1950s. 

Despite the small number of records of debris flow magnitudes, it is evident that 

moderate- and high-severity wildfire increases the probability of debris flows by increasing their 

frequency through a suite of changes in vegetation, soil characteristics, and sediment supply. By 

removing vegetation, adding ash, and producing changes in the soil surface, fires decrease the 

stability of zero-order watershed systems and make them more prone to debris flow activity. As 

evidence, we rely on our field observations as well as previous research demonstrating that 

relatively small storms (e.g. with a 2-year return interval (Parrett et al., 2004; Cannon et al., 

2010)) can provoke debris flows in recently burned basins while nearby unburned basins do not 

experience debris flow activity.  

However, post-fire debris flows tend to be smaller. We expect that in most fire-prone 

environments, sediment transport is supply-limited. Once fire removes vegetation, dry ravel can 

dramatically accelerate, moving material into gullies, where it can be mobilized by overland flow 

when a storm occurs (Bennett, 1982, as cited in Wondzell and King, 2003). Sediments that were 

stable when retained by live and dead vegetation now roll downhill under the influence of 

gravity (Gabet 2003b). Once in the gully, gravel, cobbles, and boulders can be mobilized by a 

slurry of overland flow during fairly short-return-interval (~2 yrs) storms. Once the gully is 
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empty and sediments have been mobilized, repeat debris flows at the same site are unlikely in the 

short term (unless additional side channels fail during future storms).  

This change in frequency and magnitude relations in the post-fire regime can be 

attributed to either or both of the two components prerequisite to the generation of runoff-

initiated debris flows: overland flow and fine-grained sediment. Both components increase in the 

post-fire environment. More overland flow occurs during intense storms due to: 1) decreased 

rainfall interception by vegetation, resulting from mortality of the overstory and consumption of 

live and dead vegetation by fire, with removal of vegetation increasing with fire severity 

(Wondzell and King, 2003; Campbell et al., 2007; Parise and Cannon, 2012); 2) surface 

roughness may decrease due to consumption of litter and duff layers, removing impediments to 

runoff (Lavee et al., 1995); 3) where ash overlays coarse soils, infiltration is reduced due to the 

small grain size of the ash particles (Gabet and Sternberg, 2008; Woods and Balfour, 2010; 

Gabet and Bookter, 2011); and 4) extent of hydrophobic soil and/or hyperdryness sometimes 

increase following fires, although their spatial pattern is generally discontinuous enough to allow 

infiltration (Woods et al., 2007; Moody and Ebel, 2012). Availability of fine-grained sediments 

increases following fire due to several factors: 1) vegetation has been converted to ash, which is 

abundant following high-severity fire (Gabet and Sternberg, 2008); 2) consumption of litter and 

duff exposes underlying soil; and 3) fire can break down soil aggregates (Spittler, 1995; 

Wondzell and King, 2003; Roering and Gerber, 2005); 4) pH of debris flow fluid can be 

increased by ash, which can cause dispersion of clay compounds and thus facilitate their 

entrainment (Gabet and Bookter, 2011). In addition, the bulk density and viscosity of runoff can 

be increased by the incorporation of ash (Burns, 2007; Gabet and Sternberg, 2008), which 

enables it to entrain more sediment and prevents positive pore pressures from dissipating. These 

changes allow runoff-initiated post-fire debris flows to occur in smaller zero-order drainages 

during smaller precipitation events than in unburned environments, increasing the proportion of 

small debris flows following fires. 

Changes in the post-fire environment also increase initiation of debris flows by 

landsliding in some areas, due to increased soil saturation and decreased strength of regolith. 

owever, these factors also apply to debris flow initiation by landslides. Soil saturation during 

long-duration low-intensity storms can increase following fires, especially those of 

moderate/high severity due to: 1) mortality of trees, shrubs, and herbaceous plants leads to 
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decreased evapotranspiration, increasing soil moisture and decreasing the amount of infiltration 

necessary for saturation (Swanson, 1981; Wondzell and King, 2003); and 2) interception by 

canopy, understory, litter and duff layers is reduced (Dunne and Leopold, 1978 as cited in Gabet 

and Sternberg, 2008), making more water available for infiltration. A second factor is that the 

strength of the regolith is reduced due to vegetation mortality, causing a loss of root strength. We 

hypothesize that because debris flows can occur in response to smaller perturbations (e.g. smaller 

storms) due to changes in the post-fire environment or in smaller hollows where elevated 

subsurface flow is concentrated, the frequency of small debris flows increases after fires. 

In the catalog as well as our field research, all post-fire debris flows in the U.S. Interior 

West were initiated by runoff within 0-5 years of fire, while post-fire debris flows near the U.S. 

West Coast initiated by either landslides or runoff. This pattern is likely due to characteristics of 

precipitation: in the Interior West, summer convective storms are common, and can generate 

high enough precipitation rates to produce overland flow (Wondzell and King, 2003). Summer 

convective storms can occur near the West Coast as well. Long-duration low-intensity storms 

that can produce saturation-induced debris flows are not common in the Interior West, however, 

but do occur on the West Coast.  

The level and patterning of fire severity within a watershed adds a source of variability to 

the magnitude of debris flows generated therein. For most post-fire debris flows in the Northern 

Rockies, the majority of material comes from rilling of hillslopes (Cannon et al., 2001) or gullies 

(Parrett et al., 2004; Santi et al., 2008), rather than soil-slip scars, so we expect that the location 

of rill and gully rejuvenation is important in determining debris flow volume, with more material 

available for entrainment if the debris flow initiates higher in the watershed. Where more 

material is removed in the upper reaches of a catchment by high severity fire, we expect that 

gully rejuvenation will occur higher in the watershed, increasing the runout length, and the 

amount of material entrained. 

This study entails large formal and informal uncertainties driven largely by the small 

sample size. We do not expect that uncertainty in debris flow volume estimation significantly 

affects our results, however, since FM distributions are fairly robust to such uncertainty, due to 

binning of observations. Augmentation of the catalog will require further data collection or 

cooperation of additional researchers. While literature review supports the conclusion that this 

catalog is currently the most complete record of debris flow magnitudes, it is only marginally 
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sufficient for parameterizing FM distributions. For example, if we omit debris flows that 

followed the Station Fire (n = 94) from our analysis, then the confidence intervals of the slope 

parameters of the two FM distributions overlap. Given the limited sample size and the lack of 

attribute data on topography, precipitation, time since last debris flow, sediment generation rates, 

and fire severity, we could not examine the interaction of these driving factors in producing 

predictions of debris flow volume. We also noted that some geographic areas were better-

represented than others in our catalog; despite efforts to contact researchers, we were not able to 

obtain data for debris flows in Asia, Australia, or Africa. Some geographic areas were 

represented only by post-fire or non-fire-related debris flows, but not both, e.g. all debris flows 

except three in the Rockies and Southern California are post-fire, while all debris flows in 

Hawaii, British Columbia, and the Alps are non-fire-related (with the exception of one post-fire 

debris flow recorded by Conedera et al. (2003)).  

Despite inherent error and challenges presented by small sample sizes, the catalog and 

associated statistical analyses provide a first step in global hazard modeling of debris flows. As a 

possible starting point for future research, we propose two alternate and non-exclusive 

hypotheses to explain why post-fire debris flows tend to be smaller than non-fire-related debris 

flows. First, smaller storms or effective drainage areas can trigger debris flows because of 

increases in the generation of overland flow, in the case of runoff-initiated debris flows, or 

decreases in root cohesion, in the case of landslide-initiated debris flows. These changes result in 

a higher probability of failure and smaller debris flow volumes. Second, debris flow volumes in 

most environments are limited by the supply of available loose material; we expect that fire 

increases the probability and frequency of debris flows, causing post-fire debris flows to be 

smaller because less sediment is available in each event. 

 

Conclusions 

Based on our catalog of 988 events, post-fire debris flows tend to be smaller than non-

fire-related debris flows. For post-fire debris flows, the slope of the frequency-magnitude 

distribution is steeper, meaning that the ratio of small to large events is higher than in unburned 

areas, indicating that small debris flows occur with higher proportional frequency.  Fire produces 

a number of changes in vegetation and soil characteristics that increase overland flow, available 
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sediment, and soil moisture, as well as decreasing the strength of the regolith; we propose that 

these changes increase the proportional frequency of small debris flows, and produce debris 

flows in small zero-order drainages not susceptible to debris flows under unburned conditions. In 

regions where sediment transport is supply-limited, wildfire provokes smaller debris flows by 

increasing their probability and frequency. Models for hazard prediction of post-fire debris flows 

therefore should be parameterized separately from non-fire-related debris flows, and will likely 

include different predictor variables. 
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Figure 1. Field sites for debris flow fan dimensions collected for this study. Mountain ranges 

where debris flows were mapped during this study are shown in gray, with the total number of 

debris flows occurring in that mountain range noted. Clusters of debris flows occurred in some 

watersheds, and these are titled in black, with the number of debris flows in that watershed 

given. Note that the number of debris flows occurring in a watershed is also included in the total 

amount for the corresponding mountain range; for example, all debris flows mapped in the 

Bitterroot Mountains (n=18) occurred in Laird Creek (n=18). Clusters of debris flows were likely 

produced by the conjunction of a recent high severity burn and intense localized rainfall. 

Relevant fire perimeters are shown in orange. 
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Figure 2. The abrupt transition from rill to gully head is physical evidence for runoff initiation. 

Note abrupt downcutting on the order of 0.8 m. Gully head is finger-shaped. Scarp indicating 

landsliding is absent. 
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Figure 3. Post-fire debris flow in the Fourth of July Creek drainage in the White Cloud 

Mountains. Note the rejuvenated gully in the background, and the levees at lower left and middle 

right. 
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Figure 4.  Detail of fan deposit in Rye Creek in the Sapphire Mountains of Montana, representing 

a typical deposit for the region. Note size distribution of clasts, from cobble to sand. 
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Figure 5. This photograph shows topography typical of the Sapphire and southern Bitterroot 

Mountains, where a cluster of debris flows occurred following the extensive fires of 2000.  Three 

paleofan perimeters are roughly outlined in yellow. One of the recent debris flows entered the 

backyard of the house shown in this photo, which is built atop a much larger paleofan. A second 

fan is visible at right. From the vantage of this photo, taken from atop a third debris flow fan, it is 

evident that alternating debris flow fan/paleofan deposits define the topography of the valley 

floor as well as the course of Laird Creek (stream course shown in blue). Debris flow events 

occurred following the fires of 2000 atop each of these three paleofans, but fan boundaries were 

already obscured by regrowth of vegetation by the time this photo was taken in 2008. 
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Figure 6. Geographical distribution of debris flows in catalog, by nation. 
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Figure 7. Debris flow volumes, grouped by location. Only locations with more than five debris 

flows are shown in this figure. Specific locations were known for some debris flows (e.g. 

Sleeping Child Creek), while only general locations were known for others (e.g. Switzerland). 

The highest degree of specificity was retained in this graph, resulting in some groupings being 

broader geographically than others. Post-fire debris flows are plotted in red. Location codes 

identify these debris flows in the catalog. 
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Figure 8. Boxplots of volumes of post-fire and non-fire-related debris flows. 
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Figure 9. Frequency-magnitude distribution of post-fire and non-fire-related debris flows. 
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Figure 10. 95% confidence interval of slope parameters of the frequency-magnitude distribution 

for post-fire and non-fire-related debris flows. 

 

 

Figure 11. Empirical cumulative distribution functions (ECDFs) of post-fire and non-fire-related 

debris flow volumes 
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Figure 12. Boxplots comparing the volume of debris flows initiating through landslides (“L”, n = 

104) to those initiating through runoff (“RO”, n = 383). 
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Figure 13. Boxplots comparing runoff-initiated debris flow volumes, for non-fire-related (n = 

199) and post-fire events (n = 184). 
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Table 1. Sites where debris flow data were collected in the field for this study. Likely dates of debris flows were based on: 1) US 

Geological Survey precipitation stations, as reported by Parrett et al (2004), or 2) local newspaper reports (Wutz et al 2010), as 

indicated by superscripts. Peak 5-minute precipitation intensity and recurrence interval were derived from precipitation data in Parrett 

et al (2004). Three-hour total precipitation was recorded by nearby NEXRAD stations. Initiation mechanism was based on field 

observations during this study. 

 

Site Location State Number 

of 

debris 

flow 

events 

Associated 

fire event 

Likely 

event 

dates 

Peak 5-

minute 

precipitation 

intensity 

(cm/h) 

3-hour total 

precipitation 

(mm) 

Precipitation 

recurrence 

interval 

(years) 

Initiation 

mechanism 

Frenchman 

Creek 

Sawtooth 

Mountains 

 

Idaho 1 NA     firehose 

effect 

Smiley 

Creek 

Sawtooth 

Mountains 

 

Idaho 2 NA     unknown 

Rooks 

Creek 

Smoky 

Mountains 

Idaho 13 Castle 

Rock Fire, 

2007 

June 

2009, 

multiple 

days 
2 

 

No data 1.2 – 5.1  runoff 

Warm 

Springs 

Creek 

Smoky 

Mountains 

Idaho 7 Castle 

Rock Fire, 

2007 

June 

2009, 

multiple 

days 
2 

 

No data 2.5 – 12.7  runoff 

Fourth of 

July Creek 

White 

Cloud 

Mountains 

 

Idaho 1 unknown     runoff 
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Laird 

Creek 

Bitterroot 

Mountains 

Montana 18 Bitterroot 

Fires,  

2000 

 

 15, 20, 

21 July 

2001 
1 

2.7 – 6.4 5.1 – 31.8 <2 - 25 runoff 

Sleeping 

Child 

Creek 

Sapphire 

Mountains 

Montana 21 Bitterroot 

Fires,  

2000 

30 Sept. 

– 1 Oct., 

2000; 15 

and 21 

July 2001 
1 

 

5.8 - 6.4 12.7 – 19.1 5 runoff 

Two Bear 

Creek 

Sapphire 

Mountains 

Montana 1 Bitterroot 

Fires,  

2000 

30 Sept. 

– 1 Oct., 

2000; 15 

and 12 

July 2001 
1 

 

5.8 – 6.4 12.7 – 19.1 5 runoff 

Rye Creek Sapphire 

Mountains 

Montana 13 Bitterroot 

Fires, 2000 

30 Sept. 

– 1 Oct., 

2000; 15 

and 20 

July 2001 
1 

 

6.7  10 runoff 
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Table 2. Location name, code, description, source literature, number of debris flows, and 

whether debris flows were post-fire, for locations in Figure 7. Debris flow data collected for this 

study are shown in italics. 

 

Location 

name 

Location 

Code 

Location description Source n post-

fire? 

Chalance 

Torrent 

 

CT Chalance Torrent, French 

Alps 

Helsen, Koop, and van Steijn (2002) 14 no 

Cheekye 

River 

 

CR British Columbia, Canada cited in Jakob and Friele (2010) 13 no 

Coal Seam 

Fire 

CSF near Glenwood Springs, 

Colorado, USA 

 

Gartner (2005) 6 yes 

French Alps FA French Alps van Steijn (1999) 198 No 

 

Grand 

Prix/Old Fire 

 

GPOF southern California, USA Gartner (2005) 27 yes 

Laird Creek LC Bitterroot Mountains, 

Northern Rocky Mountains, 

Montana, USA 

 

 18 yes 

Los Angeles 

County 

LAC Los Angeles County, 

California, USA 

Scott (1971), as cited in Gartner, 

Bigio, and Cannon (2004); Sue 

Cannon, personal communication 

 

102 yes 

Missionary 

Ridge Fire 

 

MRF near Durango, Colorado, 

USA 

Gartner (2005) 8 yes 

Moscardo 

Torrent 

 

MT Italian Alps Marchi et al (2002) 10 no 

Oahu OH Oahu, Hawaii, USA Sue Cannon, personal 

communication 

 

40 no 

Queen 

Charlotte 

Island 

 

QCI British Columbia, Canada Oldrich Hungr, personal 

communication; see also Hungr et 

al. (2008) 

174 no 

Ritigraben 

Torrent 

 

RT Swiss Alps Stoffel (2010) 62 no 

Rooks Creek ROC Smoky Mountains, near 

Ketchum, Idaho, USA 

 

 13 yes 

Rye Creek RC Sapphire Mountains, 

Northern Rocky Mountains, 

 13 yes 
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Montana, USA 

 

Sleeping 

Child Creek 

SCC Sapphire Mountains, 

Northern Rocky Mountains, 

Montana, USA 

 

 21 yes 

Storm King 

Mountain 

SKM near Glenwood Springs, 

Rocky Mountains, 

Colorado, USA 

 

Cannon, Powers, Savage (1998) 7 yes 

Switzerland SW Switzerland Dieter Rickenmann, personal 

communication; see also 

Rickenmann and Zimmermann 

(1993) 

 

99 no 

Warm Spring 

Creek 

 

WSC Smoky Mountains, near 

Ketchum, Idaho, USA 

 7 yes 

Wasatch 

Front 

WM Wasatch Front and Plateau, 

Utah, USA 

 

Cannon (1989 ) 30 no 

Wasatch 

Front 

WMF Wasatch Front and Plateau, 

Utah, USA 

Gartner (2005); McDonald and 

Giraud (2002); Santi et al (2008) 

 

9 yes 

Westfjords, 

Iceland 

WI Westfjords, Iceland Conway et al (2010) 7 no 
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Table 3. Selected statistics for post-fire and non-fire-related debris flow volumes. Volumes are in 

m
3
. 

 

 Minimum 

volume 

Median 

volume 

Maximum 

volume 

Slope of 

frequency-

magnitude 

distribution 

n 

Post-fire 0.4 1,579 864,308 -1.44 264 

 

Non-fire-

related 

3 2,000 100,000,000 -0.96 724 
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Abstract 

The relationship between large fire occurrence and drought has important implications 

for fire hazard prediction under current and future climate conditions. The primary objective of 

this study was to evaluate correlations between drought and fire-danger-rating indices 

representing short- and long-term drought, to determine which had the strongest relationships 

with large fire occurrence at the scale of the western United States during the years 1984-2008. 

We combined 4-8 km gridded drought and fire-danger-rating indices with information on fires 

greater than 1000 acres from the Monitoring Trends in Burn Severity project. Drought and fire 

danger indices analyzed were: monthly precipitation (PPT), Energy Release Component for fuel 

model G (ERC(G)), Palmer Drought Severity Index (PDSI), 3-month Standardized Precipitation 

Index (SPI3), SPI6 , SPI9, SPI12, and SPI24. To account for differences in indices across climate 

and vegetation assemblages, indices were converted to percentile conditions for each pixel, to 

indicate the relative anomaly in conditions during large fires. Across the western US, 
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correlations between area burned and short-term indices ERC(G) and PPT percentile were strong 

(R
2 
= 0.92 and 0.89 respectively), as were correlations between number of fires and these indices 

(R
2
=0.94 and 0.93 respectively). As the period of time tabulated by the index lengthened, 

correlations between fire occurrence and indices weakened:  PDSI and 24-month SPI percentile 

showed weak or negligible correlations with area burned (R
2
 = 0.25 and -0.01 respectively) and 

number of large fires (R
2
 = 0.3 and 0.01 respectively). This result suggests the utility of shorter-

term rather than longer-term indices in fire danger applications. We attribute strong correlations 

between shorter-term indices and fire occurrence to strong associations between these indices 

and moisture content of dead fuels, which are the primary carriers of surface fire.  

 

Brief summary for table of contents 

Shorter-term drought and fire-danger-rating indices, in particular Energy Release 

Component and monthly precipitation totals, were strongly correlated with area burned and 

number of large fires in the western US during the period 1984-2008, likely due to strong 

associations of these indices with dead fuel moistures. Longer-term indices (Palmer Drought 

Severity Index and SPI24) showed weak or negligible correlations with area burned and number 

of large fires. 

 

Additional keywords: precipitation, ERC, PDSI, SPI, area burned, number of fires, 

MTBS, fire danger 

 

Introduction 

Estimation of burn probability and wildland fire risk to highly valued resources 

influences land management planning, budgeting for firefighting and fuels reduction work, and 

positioning of suppression resources in the United States (Ager et al., 2010; Calkin et al., 2011; 

Finney et al., 2011b). Current modeling efforts have produced burn probability maps for the 

continental US which are statistically similar to recent fire activity (Finney et al., 2011b), and 

statistical models that incorporate climate data have exhibited better-than-random prediction of 

area burned (Westerling et al., 2002; Preisler and Westerling, 2007; Preisler et al., 2009), but a 
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number of challenges in fire prediction remain. Large fires occur stochastically, in response to 

lightning produced by localized convective storms and human ignitions, making prediction of the 

location and timing of fires difficult. As the climate changes, temperature and precipitation 

regimes fluctuate, which may affect the occurrence of large fires. Given these uncertainties, it is 

important to understand the mechanisms by which various drought and fire danger indices 

(which capture different timescales of drought) are empirically related to large fire occurrence, 

and the strength of these relationships.  

Another challenge in studies of wildland fire and climate is that large fires are rare 

events. Accordingly, much previous work on fire and climate has taken place at large spatial 

scales at annual timesteps, in order to encompass a large enough sample size of fires for 

statistical analysis to be possible. In the case of fire history work, most studies take place at a 

regional scale and at an annual timestep which chronicles both drought (inferred from tree ring 

width) and fire occurrence (based on positioning of fire scars relative to tree rings) (e.g. Baisan 

and Swetnam, 1990; Swetnam and Betancourt, 1998; Hessl et al., 2004; Heyerdahl et al., 2008b; 

Morgan et al., 2008). Some studies have linked some of the variability in fire occurrence and 

area burned with synoptic weather patterns such as persistent high pressure blocking ridges and 

coupled atmosphere-ocean teleconnections (e.g. El Niño-Southern Oscillation and Pacific 

Decadal Oscillation) that correlate with droughts (e.g. Trouet et al., 2009; Abatzoglou and 

Kolden, 2011). ENSO and PDO fluctuate on annual timesteps, and thus many of these studies 

focus at this timescale. However, daily and monthly fluctuations in weather are strong 

determinants of fire ignition and spread. Recently, finer-scale weather data and a comprehensive 

database of large fires have become available, enabling analysis of the relationship between 

drought and fire at a more detailed spatial and temporal scale. An improved understanding of the 

time-scales and means through which climate and weather influence fire occurrence would be 

beneficial to fire prediction efforts as well as operational fire management, and provide a way for 

researchers to link predictions of climate change with their potential effect on future fire 

occurrence. 

Precipitation is related to fire occurrence via several mechanisms.  1) In dead fuels such 

as litter and downed woody debris, fuel moisture is controlled by environmental conditions 

including precipitation, relative humidity, solar radiation, and temperature. In the absence of 

precipitation, dead vegetation (fuels) will dry out, converging toward ambient relative humidity 
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over a period of days or weeks, the period increasing with fuel diameter (Fosberg, 1971).  2) 

During prolonged dry periods (which occur seasonally in some areas), live herbaceous and 

woody shrub vegetation may enter dormancy or die, contributing to the loading of fine dead 

surface fuels (<0.25” diameter), which are the primary carriers of surface fire (Scott and Burgan, 

2005).  3) Live fuels decrease in moisture content during dry periods, and the proportion of 

flammable compounds may increase (Matt Jolly, personal communication).  4) Ignition and 

propagation of fire is more likely when fuels are dry, and fire rates of spread are higher 

(Rothermel, 1972; Andrews et al., 2003; Scott and Burgan, 2005).  

Live and dead fuel moistures thus fluctuate across a range of timescales, from daily (due 

to rain events), to seasonally (in the western US, new live vegetation typically grows during 

spring and matures and/or cures during dry summers), to decadally (in response to extended 

droughts). Various fire danger and drought metrics utilize different temporal scales, which are 

implicitly related to these fuel moisture dynamics, but more work is needed to relate these 

metrics to fire occurrence in the western US, both empirically and physically. Use of indices 

based on fuel moisture values derived from recent weather could strengthen fire modeling 

efforts, since some frequently used metrics may not be directly related to fire ignition and 

behavior. 

We quantified the correlation of eight drought and fire danger metrics with large (>1000 

acres) fire occurrence, defined using two criteria:  area burned and number of fires. The drought 

and fire danger indices included in this study were: Standardized Precipitation Index (SPI) 

calculated for 3, 6, 9, 12, and 24 month intervals, Palmer Drought Severity Index (PDSI), 

monthly precipitation totals (PPT), and Energy Release Component (ERC). These indices were 

selected based on their common usage in the literature regarding drought and fire in the western 

US, and/or our assessment of their potential for capturing the relationship between drought and 

fire occurrence. The goals of this study were to:  1) examine which, if any, of these metrics were 

strongly related to fire occurrence across the western US, independent of ecoregion, climatic 

zone, and vegetation type, and 2) investigate whether the timescale of the indices affected the 

strength of their correlations with fire occurrence. A metric that is strongly correlated with fire 

occurrence across this region could be utilized with high confidence in fire prediction work. 

Examining which metrics are strongly correlated with fire occurrence suggests physical 

mechanisms linking drought and fire. 
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Methods  

Study area 

The western US was chosen for this study because it spans a number of diverse fire-

adapted ecoregions. In order to delineate the study area (Figure 1) from the grasslands of the 

Great Plains, we used Omernik ecoregions (Omernik, 1987). 

Data sources: addressing challenges in reporting 

Fire records 

Fire records were obtained from the Monitoring Trends in Burn Severity (MTBS) project, 

conducted jointly by the US Forest Service and US Geological Survey, which maps the extent of 

large fires since 1984 based on Landsat imagery (Eidenshink et al., 2007). Fires included in our 

study (n = 5976) were limited to those that had centroids within our study area boundary, 

occurred between 1 January 1984 and 31 December 2008, and were larger than 404.7 ha (1000 

acres), since large fires burn the vast majority of the area in this region (Strauss et al., 1989). We 

used data on fire perimeters, areas, locations, and discovery dates provided by MTBS. 

The MTBS dataset addresses some issues that previously existed in fire records due to 

inconsistent and incomplete reporting of wildland fires (Brown et al., 2002; Schmidt et al., 

2002).. No single comprehensive database tracks all fires in the US, so a complete record of fires 

must be compiled from records of multiple federal agencies (US Department of Agriculture 

Forest Service uses one system, a second system is employed by the US Department of Interior 

(USDOI) Fish and Wildlife Service, and a third system is used by USDOI’s Bureau of Land 

Management, Bureau of Indian Affairs, and National Park Service) as well as non-federal 

records (state databases, National Association of State Foresters records, and the US Fire 

Administration’s national Fire Incident Reporting System). Compiled records are subject to 

several issues, including incongruent reporting standards. For example, more than half of non-

federal fire records lack information on date, location, or size, meaning that they cannot be used 

for analyses with spatial or temporal questions (Karen Short, personal communication). The 

MTBS project has determined the spatial locations and discovery dates of all fires in its dataset 

through geolocated burn scars, an advantage of this dataset. A second issue in compilations is 
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duplicate records, which can cause overestimates of area burned on the order of 40% (Karen 

Short, personal communication). Duplicate records occur most frequently where large fires cross 

land ownership boundaries, causing records to appear in multiple land agency reporting systems. 

Since the MTBS dataset is based on changes in spectral signatures in Landsat imagery, duplicate 

records are eliminated and some previously unreported fires are detected. Compilations of fire 

records may also suffer from omissions, especially of smaller fires, which can cause 

underestimates of fire numbers. Because the MTBS dataset includes only fires larger than 404.7 

ha (1000 acres) in the western United States, this problem is minimized, but analysis is confined 

to large fire events. 

The intention of MTBS is to track wildland fires, but some prescribed fires have been 

included in the database through detection of changes in spectral signatures. At the time of this 

study, MTBS did not state whether each fire was prescribed or wildland, so we were unable to 

separate them. Data on daily fire progression is lacking or not readily available from MTBS or 

other sources, meaning the contribution of daily winds (an important factor in fire growth) could 

not be quantified for this study. 

 

Drought and fire danger indices 

The eight drought and fire danger indices analyzed in this study provide a means for 

assessing relative wetness or dryness of the fire environment, and may serve as predictors of 

water availability, vegetation health, and fire danger. We utilized spatially and temporally 

complete high-resolution gridded climate and meteorological datasets (Figure 2). Monthly 

climate data from Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly 

et al., 1994a) at 4-km horizontal resolution were used to derive the PPT, PDSI and SPI indices 

following Kangas and Brown (2007). The drought indices were calibrated to the 1895-2009 

period of record, making them more robust than monthly drought indices calculated over shorter 

time periods.  A complementary dataset developed by Abatzoglou (2011) provided a spatially 

and temporally complete daily meteorological dataset from 1979-2010 upsampled to 8-km 

resolution by employing high-frequency meteorological conditions from the North American 

Land Data Assimilation System (NLDAS) that is then bias-corrected using PRISM. The resultant 

dataset provided daily maximum and minimum temperatures, relative humidity, daily 

precipitation amount and duration, temperature, and state-of-the-weather code for 1300 local 
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time, all components necessary for NFDRS calculations of ERC(G). This study utilized the 

products of these efforts: PPT, PDSI, SPI3, 6, 9, 12, and 24 at a 4-km scale and monthly 

timestep, and ERC(G) at an 8-km scale on a daily timestep. 

Previous work on fire and climate faced challenges in obtaining weather records; these 

gridded datasets address some of these challenges. For example, Remote Automated Weather 

Stations (RAWS) used for fire danger calculations are often switched off when fire season ends, 

meaning that weather records are temporally incomplete. Until recently, weather data has 

typically been available only at sparse point locations with weather stations or summarized at 

coarse resolution. Researchers were presented with the choice of using weather data from a 

single station as a proxy for a large area, or using a dataset such as the National Climatic Data 

Center climate division data, which averages conditions from weather stations over large areas 

that do not necessarily correspond to ecoregion boundaries (e.g. Balling et al., 1992; Littell et al., 

2009). Microclimates can vary widely within a few square kilometers, especially in the 

mountainous terrain that characterizes much of the western US (Thornthwaite, 1953; Sellers, 

1965; Holden et al., 2011), suggesting that coarse-resolution climate division data may not be 

representative of conditions at remote wildfire locations, as was noted by Westerling et al. 

(2002). 

By applying physically- and statistically-based algorithms to weather station records, 

recent efforts have produced gridded weather datasets with a resolution of several kilometers, 

such as the ones used in this study (Daly et al., 1994b; Abatzoglou, 2011; Thornton et al., 2012). 

Such datasets have made more detailed analysis possible by avoiding the spatial limitations of 

climate division datasets and the often temporally sporadic and spatially non-uniform data from 

weather stations. Gridded datasets at 4-8 km resolution cannot account for all microclimate 

variability, but represent an advance in this effort. 

Below, we briefly describe the calculation of each index and previous work relating this 

index to fire occurrence. Throughout this manuscript, we qualitatively define the strength of 

correlations as follows: weak (R
2
 < 0.45), moderate (0.45 < R

2
 < 0.8), or strong (0.8 <= R

2
 <= 1). 
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Palmer Drought Severity Index (PDSI) 

Palmer (1965) outlined calculation of his drought metric as “a first step toward 

understanding drought,” but the metric has since become widely institutionalized, especially for 

estimating agricultural drought. Positive values of PDSI suggest wetter-than-normal conditions, 

and negative values suggest drought (-1 = mild drought, -2 = moderate drought, -3 = severe 

drought, and -4 = extreme drought) (Palmer, 1965). The PDSI uses a water balance method 

which adds precipitation to soil moisture in the top two layers of soil, while a simple 

temperature-driven evapotranspiration algorithm (Thornthwaite, 1948) removes it. The 

calculation of PDSI is autoregressive, based on a portion of the current month’s value and the 

preceding value (Guttman, 1998). Thus, PDSI has no inherent time scale, with PDSI values 

having different “memories” varying from 2 to more than 9 months depending on the location 

(Guttman, 1998). The spatial scale of PDSI also varies, since the index can be calculated for a 

single weather station or a number of stations may be averaged, as in the case of climate division 

data. 

Criticisms of the PDSI are numerous. The algorithm lacks information on important 

drivers of evapotranspiration, vegetation curing, and dead fuel moisture, including relative 

humidity, solar radiation, and wind speed (Sheffield et al., 2012). All precipitation is assumed to 

be rain, meaning the algorithm is potentially ill-suited for areas where a significant proportion of 

the precipitation is snowfall. Hence, PDSI has been found to be only weakly to moderately 

correlated with soil moisture (r = 0.5-0.7, equivalent to R
2 
= 0.25 – 0.49), with the strongest 

correlation in late summer and autumn, corresponding with fire season in much of the western 

US (Dai et al., 2004). Due to data and processing limitations, Palmer developed the index for 

nine climate divisions in the Midwest, resulting in empirically derived constants that are not 

locally calibrated for other locations (Palmer, 1965). Consequently, the PDSI’s value has been 

found to vary across precipitation regimes, with a single value having different meanings in 

different areas (Guttman et al., 1992; Guttman, 1998). In addition, PDSI values are sensitive to 

the time period used to calibrate the metric (Karl, 1986).  

Despite these shortcomings and lack of a clear mechanism relating PDSI to fire 

occurrence, the PDSI is the index most commonly used to assess drought in the fire literature 

(Table 1; Baisan and Swetnam, 1990; Swetnam and Betancourt, 1998; Hessl et al., 2004; 

Heyerdahl et al., 2008b). For fire history studies, PDSI is often the only available metric. 



 

 

55

Current-season PDSI values have also been related to contemporary fire occurrence in some 

ecosystems of the western US, although correlations are rarely strong (Table 1). 

 

Monthly precipitation totals (PPT) 

Several studies have used measured precipitation amount to relate drought to fire 

occurrence. This metric is simple to measure and calculate; however, because precipitation 

regimes vary across climatic regions, amounts must be normalized to local records in order to 

indicate departure from normal conditions. Littell et al. (2009) found seasonal precipitation to be 

a significant factor in multivariate models predicting area burned for some but not all ecoregions 

in the western US, with negative summer precipitation included in models for 7 of 16 

ecoregions. Balling et al. (1992) found total annual precipitation had a Spearman’s rank 

correlation of -0.52 to -0.54 with area burned in Yellowstone National Park, a stronger 

correlation than they found with PDSI (Table 1).  

 

Standardized Precipitation Index (SPI) 

The SPI is calculated as “the difference of precipitation from the mean for a specified 

time period divided by the standard deviation” (McKee et al., 1993); where precipitation 

amounts are not normally distributed, they must be first converted to a normal distribution 

(Lloyd-Hughes and Saunders, 2002). Benefits of the SPI include: 1) it can be used to derive 

probability of precipitation deviation, 2) it is normalized, so wet and dry climates are represented 

in similar fashions (McKee et al., 1993), 3) SPI spectra exhibit similar patterns at all locations, 

meaning the values are comparable across regions (Guttman, 1998), and 4) the index can be 

calculated for any time length in order to capture short- or long-term drought. Despite the 

advantages of the SPI, we found only one study relating SPI to fire occurrence:  Fernandes et al. 

(2005) found strong correlations between summer 3-month SPI (SPI3) and anomalies in fire 

incidence in the Western Amazon. 
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Energy Release Component (ERC) 

The Energy Release Component (ERC), an index in the US National Fire Danger Rating 

System (NFDRS), provides an approximation of dryness based on estimates of fuel moisture 

(Andrews et al., 2003). ERC is a continuous variable calculated from a suite of meteorological 

and site variables, including relative humidity, temperature, precipitation duration, weather 

station latitude, and day of year (Cohen and Deeming, 1985). ERC is calculated daily and is thus 

more dynamic than current implementations of PDSI and SPI, since it is sensitive to daily 

relative humidity and precipitation timing and duration (i.e., large rain events cause a significant 

reduction in ERC). ERC calculation is also affected by fuel loadings in different size classes. For 

example, in this study, ERC was calculated for fuel model G, which includes a substantial 

loading of large dead fuels as well as fine fuels (Bradshaw et al., 1983; Andrews et al., 2003). 

ERC(G) is commonly used for regional-scale calculations (Finney et al., 2011b). Due to the 

heavy weighting of large dead fuels, ERC(G) is mainly driven by weather conditions during the 

previous month and a half, which is the time it takes for dead woody debris 7.6-20.3 cm (3-8 

inches) in diameter (also called 1000-hour fuels) to mostly equilibrate to constant ambient 

conditions (Fosberg et al., 1981).  

ERC(G) has been shown to have a strong relationship with fire occurrence in Arizona:  

the probability of fire increases with ERC(G), and can be quantified with logistic regression 

(Andrews and Bevins, 2003; Andrews et al., 2003). Therefore, the ERC(G) is used by US federal 

land agencies both operationally (Predictive Services) and in simulation models that predict fire 

size and probability, including FSPro and FSim (Finney et al., 2011a; Finney et al., 2011b). 

However, the parameters of the logistic regression relating ERC(G) and fire occurrence vary 

with location, suggesting that fires are likely to ignite at different ERC(G) values in different 

areas due to variations in climate and fuels. For example, fuels tend to burn at a much lower 

(moister) ERC(G) on Washington’s Olympic Peninsula, where relative humidity is higher and 

temperatures are lower during fire season, than in the Great Basin, where relative humidity is 

lower and temperatures are higher. Thus, ERC(G) should be regarded as a relative index; current 

ERC(G) values must be compared to historic values in the same location, as well as local fire 

occurrence information, in order to interpret them correctly (Schlobohm and Brain, 2002). 



 

 

57

Associating fire occurrence and weather data 

Each fire’s location was assigned to the latitude/longitude of the centroid of its perimeter, 

and the discovery date was used as a proxy for ignition date. For each fire, we identified the 

closest pixel of weather data, in both space and time. For monthly indices (PPT, PDSI, and all 

SPIs), we queried the spatially closest pixel during the month of the fire’s discovery. Values of 

monthly indices are based on conditions at the end of each month. We queried the daily ERC(G) 

data to identify the ERC(G) of the closest pixel on the fire’s discovery date, as well as the six 

following days, and averaged these seven daily ERC(G) values. In the absence of data on 

containment dates and daily fire progression, we assumed that these first seven days were critical 

to fire spread. This assumption may not always hold true, since some large fires, especially those 

ignited by lightning under moderate conditions, may grow slowly for a period of weeks until a 

weather event spurs their growth. However, we were hesitant to use an analysis window longer 

than seven days for ERC(G) since this would increase the chance of erroneously incorporating 

low ERC(G) values associated with weather events that curtailed fire growth.  

 

Statistical analyses 

Empirical distributions of indices for fire vs. all conditions 

The empirical frequency distributions of indices vary. For example, the SPI is normally 

distributed and centered at zero, with more than two-thirds of values between -1 and 1, indicating 

relatively normal conditions. Therefore, if fires occurred at random with respect to this index, 

from a purely probabilistic standpoint, fires would be more likely to occur at values close to zero 

than at extreme values of the index, simply because mild values occur more often by an order of 

magnitude. The same is true for PDSI: PDSI values signifying mild drought also occur much 

more frequently than extreme values. This property of PDSI may be why some studies have 

found that synchronous fires tend to occur at PDSI values signifying mild (frequently occurring) 

rather than extreme (rarely occurring) drought (e.g., Baisan and Swetnam, 1990; Hessl et al., 

2004). 

To remove the confounding effect of different empirical distributions in relation to fire 

occurrence, we tested whether the distribution of each index was significantly different during 

conditions under which large fires occurred than under all conditions, using two tests based on 
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the empirical frequency distribution (EFD) and the empirical cumulative distribution function 

(ECDF). To determine the empirical frequency distribution (EFD) of each index’s values, we 

queried the gridded index data and created a histogram of all pixel values occurring during the 

study period from 1 January 1984 through 31 December 2008. We used all days of the year 

rather than attempt to delineate a fire season, since the length of fire season varies spatially 

across the western US and temporally from year to year. We then created histograms of index 

values associated with large fire events. For each index, to test whether the means of the two 

EFDs (“fire” vs. “all”) were different, we compared the bootstrapped means of the two EFDs, 

using 500 random samples of n=1000 with replacement, and then constructed a 90% confidence 

interval around the means. Because many of the empirical distributions are non-normal, this 

bootstrapping approach was needed to create a confidence interval around the mean. We chose a 

sample size of 1000 in order to rectify bias introduced by extremely large (n>1,000,000 for “all” 

conditions) and unequal (n=5976 for “fire” conditions) population sizes.  

Second, we plotted the empirical cumulative distribution function (ECDF) of each index 

for all values and statistically compared it to values associated with large fires. The null 

hypothesis was that the two distributions were the same. Because smaller values of PPT, PDSI, 

and SPI indicate drier conditions, the alternative hypothesis we tested was that the ECDF of the 

metric associated with large fires was greater than that of all values of the metric (if the ECDF is 

greater, the distribution is shifted to the left, suggesting lower index values). Conversely, higher 

values of ERC(G) indicate drier conditions, so the alternative hypothesis is that the ECDF of the 

“fire” distribution is less than that of “all” conditions (in this case, if the ECDF is less, the 

distribution is shifted to the right, signifying higher index values). The non-parametric test 

statistic D measures the maximum separation distance between the two distributions. As D 

increases, so does the likelihood that the two distributions are from different populations. The 

Kolmogorov-Smirnov (KS) test was applied to determine the probability that D occurred by 

chance. Due again to large and unequal sample sizes, we ran the KS test for 500 samples of n = 

1000 for each index. We then calculated how many times the null hypothesis would have been 

rejected at alpha = 0.1 in order to determine whether the “fire” and “all” ECDFs were different. 

This methodology removes the confounding effect of the different frequency distributions of the 

indices, and determines whether each metric has power in detecting conditions conducive to 

large fire events. 
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Correlations of metrics with large fire occurrence 

In order to remove confounding effects introduced by the distribution of the metric and 

by variations in microclimate, we converted weather and climate data to percentile-based 

measures that convey the relative rarity of a given index value for each microclimate/pixel. Thus, 

we focused on departure from median precipitation conditions as a metric for severity of dry or 

wet conditions, as measured by a suite of drought and fire-danger indices, rather than attempting 

to find a definition of drought that applies to all climates in the western US. 

For each pixel where a fire occurred, we queried all values that occurred during the 

period of study. These were then sorted, in order to establish the rank of the index’s value during 

each fire. Ranks were calculated based on the index values as a single pool for all seasons, all 

months, and all years. Ranks were then converted to percentiles. For PDSI, SPIs, and PPT, low 

percentiles (near zero) indicate extremely dry conditions, while high percentiles (near 100) 

indicate wet conditions. For ERC(G), the reverse is true: low percentiles (near zero) indicate 

fuels with high moisture content, while high percentiles (near 100) indicate dry fuels. Each fire 

was thus assigned a percentile for each index. For example, if the value of PPT for March 1997 

ranked 100
th
 of 200 values, signifying average conditions, the PPT percentile would be 50. 

Because each pixel has a different distribution of weather data, we found index percentiles for 

each individual pixel (therefore, an ERC(G) value of 57 may indicate 95
th
 percentile conditions 

in one cell, while in another cell the 95
th
 percentile ERC(G) value may be 89 – but in both cases 

the 95
th
 percentile value indicates a comparable level of aridity for that microclimate). This 

methodology is similar to that of Alley (1984), who recommended a similar rank-based 

approach. 

For each metric separately, we summed area burned and number of fires across the 

western US, binning fires by percentile class (e.g. 1
st
 percentile, 2

nd
 percentile). For example, if 

there were three fires that occurred during 100
th
 percentile ERC(G) conditions (a 1000-ha fire 

that occurred in June 2000 in Arizona, a 1200-ha fire during August 2003 in Montana, and a 

1500-ha fire in southern California in November 2008) then the total area burned during 100
th
 

percentile ERC(G) conditions would be 3700 ha. Essentially, the output is a histogram of area 

burned with 100 bins where each drought/precipitation percentile corresponds to a bin. The 

relationship of index percentiles to total area burned was then quantified using linear regression, 
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and evaluated by means of regression analysis (R
2
) and tests of significance (p-values). Note that 

these correlations are based on index values during time periods when a fire occurred. The same 

methodology was repeated to produce linear models relating number of fires to index percentiles. 

 

Results  

Empirical distributions of indices for “fire” vs. “all” conditions 

Empirical frequency distributions (EFDs) of drought indices are varied, and include 

bimodal, normal, and right-skewed (Figure 3). The EFD of PDSI is bimodal, due to the fact that 

the index value is reset at the end of a drought or pluvial episode, resulting in a dip in the 

frequency of the metric at values near zero (Palmer, 1965). Mild to moderate PDSI values (-2 to 

+2) occur most frequently in our dataset, with extreme values (e.g. -5 or +5) occurring very 

rarely, indicating the rarity of extreme drought and wet conditions as recorded by this index 

(Figure 3). Based on visual inspection of the graph, the distribution of PDSIs associated with 

large fire occurrence is shifted slightly to the left of the distribution of all PDSIs, indicating that 

fires tend to occur during lower PDSIs. The PDSI values most commonly associated with large 

fires are -0.5 to -2, indicating mild drought. The fact that most fires occur at values of PDSI 

indicating mild drought does not necessarily imply that mild drought is more conducive to large 

fire than extreme drought; rather, values of the index near zero occur much more frequently, 

meaning there is a relatively small number of months during which fires could potentially occur 

at rare extreme values of the index. This result also illustrates that extreme drought that 

cumulates over prolonged period of moisture deficit is not a prerequisite for fire occurrence. 

Instead, the proclivity for fire occurrence during mild drought conditions as assessed by the 

PDSI, may explain why years of fire synchrony tend to occur during years of mild-moderate 

rather than extreme drought simply because mild droughts occur much more frequently (Baisan 

and Swetnam, 1990; Balling et al., 1992; Swetnam and Betancourt, 1998; Westerling et al., 

2003; Hessl et al., 2004; Heyerdahl et al., 2008a).  

The EFD of ERC(G) is characterized by frequent occurrence of moderate ERC(G) 

values, while high values indicating extremely dry conditions are rare (Figure 3). Zero values 

occur most frequently (zero is assigned to indicate snow or high fuel moistures that preclude 

burning). The distribution of ERC(G) values associated with large fire events is visibly different 
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from that of ERC(G)s as a whole, being skewed toward the higher ERC(G) values typically 

associated with dry fuels. 

In contrast to PDSI and ERC(G), the EFD of monthly precipitation values (PPT), in 

millimeters, is heavily right-skewed, with the lowest precipitation values being most common 

(Figure 3). The distribution of PPT during large fires events is more heavily skewed toward low 

PPTs than the distribution of PPT during the entire period of study, indicating fire events take 

place preferentially at lower PPTs. 

The EFD of the Standard Precipitation Index is by definition normal due to its 

calculation, as discussed previously (Figure 3). The distribution of SPI3 values under which 

large fires ignite is shifted toward more negative (drier) values of SPI3 than that of the 

distribution of the metric as a whole, indicating that large fires do tend to burn more frequently 

under values of SPI3 that indicate drought. However, visual inspection of these figures indicates 

that this shift weakens as the period tabulated by the metric lengthens, until it is not visible for 

SPI24 (Figure 3). 

We also performed quantitative testing of the means of the EFDs. Testing of the means 

indicated that the mean values of ERC(G), PPT, and SPI3 associated with large fires are 

significantly drier than the mean of all values at the 90% confidence level (Figure 4, Table 2). 

Confidence intervals of the means of the “fire” and “all” values distributions for PDSI, SPI6, 

SPI9, SPI12, and SPI24 overlapped, indicating that the means are not significantly different. 

A second method for testing whether the distributions of fire and all conditions are 

different used the Kolmogorov-Smirnov test of the D statistic of the empirical cumulative 

distribution functions (ECDFs; Table 2). These Kolmogorov-Smirnov tests indicated that the 

“fire” distributions of ERC(G) and PPT are significantly different than the distributions of these 

metrics under all conditions, and strong evidence existed for SPI3 as well (Figure 5; Table 2).  

Evidence that the “fire” distributions of SPI6, SPI9, SPI12, and SPI24 are different from “all” 

conditions weakened as the time period tabulated by the metric increased (Table 2; Figure 5). For 

PDSI, relatively weak evidence exists that the two distributions are different, and this hypothesis 

would be rejected by both testing of the means (Figure 4) and approximately one-third of 

Kolmogorov-Smirnov statistic tests at alpha=0.1 (Figure 5; Table 2). Thus, PDSI is not strongly 

related to large fire occurrence. 
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Taken as a whole, these results suggest that shorter-term indices (ERC(G), PPT, and 

SPI3) are more strongly associated with large fire occurrence than longer-term metrics (PDSI, 

SPI6, SPI9, SPI12, and SPI24). 

 

Correlations of metrics with large fire occurrence 

The area burned by individual fires was not strongly related to raw index values. Results 

are shown for ERC(G) and PDSI, with the pattern being similar for the other metrics (Figure 6). 

The largest fires occur at frequent values of indices (moderate ERC(G), low PPT, moderate 

PDSI, and moderate SPI), rather than the most extreme values. For example, the largest fires did 

not occur at the highest ERC(G)s, which are rare in the record. Large fires occurred more often 

during the drier phase of the metrics (higher ERC(G)s, negative PDSI, and negative SPI); this 

relationship with SPI is stronger in the shorter phase of this metric (SPI3), and weakens 

progressively as the duration of the metric becomes longer. In the case of ERC(G), PPT, and 

PDSI, the relationship with fire area is further obscured by the fact that these metrics vary 

regionally (e.g. a precipitation value of 20 mm in a month may signify wet conditions in the 

Great Basin and dry conditions on the Washington Coast). However, by transforming indices to 

percentile values for each fire, the relationships become more apparent. For example, a 

scatterplot of ERC(G) percentile versus fire size illustrates that large fires tend to occur when 

ERC(G) is above the 80
th
 percentile (Figure 7). 

We parameterized linear models relating index percentile to number of large fires (Table 

3, Figure 8) and area burned (Table 4, Figure 9). Correlations between index percentile and 

number of large fires were stronger than those between index percentile and area burned for all 

metrics. ERC(G) percentile demonstrated the strongest relationship with area burned (adjusted 

R
2 
=0.92; Table 4; Figure 9) as well as number of fires (adjusted R

2
 = 0.94; Figure 8; Table 3). 

Number of fires and area burned increased exponentially with ERC(G) percentile. PPT percentile 

(Figure 8 and 9) demonstrated almost as strong a relationship with number of fires and area 

burned as ERC(G) (for number of fires, adjusted R
2
 = 0.93; for area burned, adjusted R

2 
=0.89).  

SPI3 percentile (Figure 8 and 9) had a strong correlation with number of fires (adjusted R
2
 = 

0.83) and moderate correlation with area burned (adjusted R
2
 = 0.70). For SPI6, 9, 12, and 24 

percentile (Figure 9), the models explained less than half of the variability in area burned, 

indicating a weak relationship between area burned and these indices. PDSI percentile also 
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showed a weak relationship with area burned (adjusted R
2
=0.34, Figure 9), except perhaps at 

extremely low PDSI values (0-30
th
 percentile), where area burned increases with drought 

severity. In addition, PDSI percentile had a weak relationship with number of large fires 

(adjusted R
2
 = 0.30). Correlations with number of fires were somewhat stronger, with models 

explaining more than half the variability in the data for SPI6, 9, and 12 percentile, declining with 

the time period measured by the index. Based on these results, we concluded that ERC(G) 

percentile is the index with the most power in predicting large fire occurrence across the western 

US, followed closely by PPT percentile. 

 

Discussion 

We found strong correlations between fire occurrence (defined as total area burned and 

total number of fires) and certain drought/fire danger indices across the western US, indicating 

that models based on a single metric can account for over 90% of the variability in area burned 

across a large region, once metrics have been normalized to account for local climate. We 

therefore concluded that our methodology was successful in reducing the effect of confounding 

factors discussed in the background section, by: 1) accounting for the empirical distribution of 

indices by normalizing metrics to percentile, 2) removing the relative meanings of some indices 

by normalizing them to local climate, 3) using a consistent georeferenced dataset for fire 

occurrence provided by MTBS, which reduced problematic fire records, and 4) utilizing gridded 

index data to more closely represent weather and climate conditions near remote fire locations 

than datasets with coarser resolutions. 

Once metrics were normalized to percentile, we found that metrics based on the previous 

1-3 months of weather data had strong correlations with both total area burned and number of 

large fires, indicating that this time period is critical to producing the conditions conducive to 

large fires. As the time period tabulated by the metric lengthened, the relationship weakened. 

This result indicates the importance of dead fuel moisture in promoting or retarding the spread of 

large fires. Dead surface fuels (grass, litter, duff, and woody debris) are the primary carrier of 

surface fires, and provide the intensity necessary for surface fires to transition to crown fires 

(Van Wagner, 1977). Fine fuels such as grass are frequently referred to as 1-hour fuels, because 

they mostly equilibrate to constant ambient conditions within a few hours, while woody debris 

7.6-20.3 cm (3-8 inches) in diameter falls into the 1000-hr category, meaning they take 
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approximately 40 days to mostly equilibrate with constant environmental conditions (Fosberg et 

al., 1981). Dead fuel moistures therefore largely depend on weather conditions within the 

previous month and a half. It follows, therefore, that monthly precipitation totals (PPT), which 

were strongly related to area burned and number of fires in the western US, are a major driver of 

dead fuel moisture values. Because ERC(G) contains fuels of all size classes, including a heavy 

weighting of 1000-hour fuels (Bradshaw et al., 1983; Andrews et al., 2003), this index also 

captures trends in fuel moistures largely based on weather during the previous month and a half. 

ERC(G) has two other properties which likely caused it to have a stronger relationship with fire 

occurrence than other indices in this study. First, ERC(G) calculation includes relative humidity 

and solar radiation terms, which are important determinants of fuel moisture and vegetation 

curing. As vegetation cures, it becomes more readily available to burn and thus contribute to 

increased fire intensity and rate of spread (Scott and Burgan, 2005).  Second, ERC(G) is 

calculated on a daily timestep and can capture timing of precipitation events, which affect the 

potential for fires to grow. Of the indices analyzed, only ERC(G) captures daily weather, since 

other indices are summed over monthly intervals. However, ERC(G) calculation is more 

complex than that of PPT, which performed nearly as well, indicating that PPT could be used in 

situations where time, processing power, or data inputs are limited. SPI3 did not perform as well 

as ERC(G) or PPT, but was strongly correlated with number of large fires and moderately 

correlated with area burned in the western US. Given that SPI3 is based on precipitation during a 

3-month period, we expect that it would have a moderately strong relationship with fuel 

moistures. 

Indices based on longer timeframes had weaker or no relationship with fire occurrence. 

This result was likely due to the fact that longer-term indices do not strongly reflect recent 

precipitation and thus have weaker relationships with dead fuel moistures. For example, because 

PDSI is autoregressive, summer PDSI values will reflect antecedent conditions and are affected 

by winter/spring precipitation. Similarly, SPI9 for October-June could have an equivalent value 

for a 9-month period encompassing a dry October-March followed by a wet April-June, as it 

would for a wet October-March followed by a dry April-June. However, the effect on dead fuel 

moistures as well as the amount of vegetation that has cured would be extremely different.  

The weather conditions surrounding the extensive 1910 fires in Montana and Idaho 

demonstrate a case where shorter-term metrics would have likely been more strongly correlated 
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with fire occurrence than longer-term metrics. In a 1931 study, the year 1910 was not listed as 

being among the 10 driest years for either state during the period of record (for Montana, 1895-

1930, and for Idaho, 1898-1930) (Henry, 1931). Henry (1931) notes that, “The dry year 1910 is 

seemingly in a class by itself,” with the onset of the drought being “quite sudden as compared 

with the others.” Work by Brown and Abatzoglou (2010) using gridded weather data reinforces 

these conclusions: an anomalously wet and cool winter was followed by an anomalously dry and 

warm spring and summer. In the case of 1910, an infamous year of synchronous fires, longer-

term metrics such as PDSI, SPI9, 12, or 24 would likely not have captured the conditions that 

promoted fire, while shorter-term metrics such as ERC(G) or PPT likely would have (Chuck 

McHugh, personal communication). 

While shorter-term fluctuations in precipitation strongly affect dead fuel moistures, 

longer-term periods of dry weather affect live fuels. As noted above, long periods of dry weather 

may result in mortality and/or curing of some live fuels, increasing rates of spread and fire 

intensity (Scott and Burgan, 2005). This dynamic occurs seasonally in many ecosystems, but 

longer-than-average dry periods contribute to additional mortality. In addition, long droughts 

may reduce live fuel moisture of trees, which likely contributes to crown fire potential. However, 

live fuel flammability is still not well understood, with current research focusing on differences 

between new and old foliage and the abundance of flammable compounds, which fluctuate in 

response to seasonal drivers (Matt Jolly, personal communication). Metrics capturing longer time 

periods may relate in some way to these factors, but further research is needed to measure 

seasonal fluctuations in live fuel moistures and link them to index values. 

Fire suppression has likely affected the relationship of fire occurrence with fuel 

conditions. Some evidence indicates that the relationship of PDSI and fire occurrence was 

stronger during the pre-suppression era (Miller et al., 2012), when fires may have burned under 

more moderate conditions. Current fire management policies in the western US tend to eliminate 

fires that can be suppressed, with suppression more effective under mild and moderate conditions 

(Finney et al., 2009), leaving fires that escape suppression under the most extreme weather 

conditions to burn most of the acreage. There are exceptions, including fires that are allowed to 

burn in remote areas under mild or moderate conditions. Suppression forces can often take 

advantage of small precipitation events to control or contain fires, with such precipitation events 

being captured by ERC(G) calculation. In the pre-suppression era, fires might have continued to 
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grow once these precipitation events ended. Prior to European colonization, Native American 

burning was also common in the US, with many tribes choosing to ignite burns during mild 

weather conditions in the spring (Lewis, 1973; Riley, 2001). MTBS data do not contain 

information on suppression efforts, therefore, it could not be included in our analysis. More 

research is needed to investigate how suppression affects the relationship between fire 

occurrence and drought. 

We found stronger correlations between index percentiles and number of large fires than 

with area burned. We conclude short-term drought is a stronger driver of number of large fires 

than of total area burned, since probability of ignition increases with drier fuel moistures, while 

the area burned by large fires is also affected by other factors responsible for fire growth, 

including wind, temperature, topography, barriers to spread, fuel type, availability of fine fuels in 

some ecoregions, suppression tactics, and maturity of forest in stand-replacing regimes. We note 

that individual fire sizes were not strongly related to drought and fire danger indices, likely due 

to the effect of these factors. It is noteworthy, however, that precipitation indices showed a 

strong correlation with fire occurrence without including these other factors in statistical models.  

 

Conclusions 

The primary goals of this study were to: 1) investigate how shorter- and longer-term 

drought are related to fire occurrence in the western US by evaluating the strength of the 

correlation of various drought and fire danger indices with area burned and number of large fires, 

and 2) determine whether a single drought/fire danger index is strongly related to fire occurrence 

across the western US, since such a metric could be used in predictive modeling of large fires in 

current fire danger applications, fire history studies, and studies predicting future fire occurrence 

under changing climatic conditions. When converted to a percentile-based measure indicating 

departure from local median conditions, short-term metrics ERC(G) and monthly precipitation 

(PPT) had strong correlations with area burned (R
2 
= 0.92 and 0.89 respectively) and number of 

large fires (R
2 
= 0.94 and 0.93 respectively) in the western US over the study period (1984-

2008). As the temporal scale of indices increased, the strength of their relationship with fire 

occurrence decreased. A likely reason for this result is that shorter-term metrics are more 

strongly related to dead fuel moistures, which are largely dependent on weather during the past 
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1-3 months. Longer-term metrics are not as sensitive to recent precipitation events that affect 

fuel moistures and thus fire occurrence. Although PDSI is the most commonly used drought 

metric in fire history studies and in efforts to predict area burned, we found that it is not strongly 

correlated with area burned (R
2  

= 0.34 for PDSI percentile) or number of large fires (R
2
 = 0.30), 

likely due to the fact that it is not strongly related to dead fuel moistures. We therefore 

recommend the use of ERC(G) or the more easily calculated PPT for use in applications that 

associate precipitation and fire occurrence.  

Because ERC(G) and PPT are largely based on weather conditions during the previous 

month, they cannot be used for long-lead forecasting of fire occurrence, nor can we see a way 

that they could be calculated for use in fire history studies, which necessarily rely on annual tree-

ring data. Little is currently known about the mechanisms that drive drought, especially during 

fire seasons, with precipitation anomalies associated with El Niño-Southern Oscillation (ENSO) 

being more strongly linked to winter than summer precipitation across much of the western US 

(Ropelewski and Halpert, 1986; McCabe and Dettinger, 1999). Hence, long-lead forecasting of 

fire danger is currently challenging, given our result that fire season precipitation is the strongest 

predictor of fire occurrence. However, if it were possible to predict synoptic patterns that cause 

negative precipitation anomalies that endure for more than a month, areas of high fire danger 

could in turn be predicted using forecast ERC(G) and PPT values.  
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Figure 1. The study area was the western US, west of the grasslands of the Great Plains region, 

as delineated by Omernik ecoregion boundaries. This figure shows all fires included in the 

analysis, selected from the Monitoring Trends in Burn Severity database based on the following 

criteria: 1)  fires with centroid inside the study area, and 2) greater than or equal to 404.7 ha 

(1000 ac) in size. Map projection: Albers. 
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Figure 2. Gridded 3-month Standardized Precipitation Index (SPI3) data for June 2008, with US 

Climate Division boundaries, illustrating fine-scale variability in SPI3. Map projection: Albers. 
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Figure 3. Empirical frequency distribution (EFD) of index values 1/1/1984 – 12/31/2008 in the 

study area (shown in black), plotted with EFD of index values associated with large fire events 

(shown in gray). Empirical frequency distribution of some indices is markedly different for fire 

events than as a whole, suggesting that these indices are related to fire occurrence. Units of PPT 

are given in millimeters. 
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Figure 4. The 90% confidence interval around the mean value of indices, for all index values 

during 1/1/1984 – 12/31/2008 and for index values associated with large fires events. 

Bootstrapped mean was calculated on a sample with replacement, with sample size =1000, and 

sample conducted 500 times. Pairs of confidence intervals overlapped for PDSI, SPI6, SPI9, 

SPI12, and SPI24, meaning there is no statistical evidence that the means are different under 

conditions when large fires occurred. 
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Figure 5. Empirical cumulative distribution functions of indices, for all conditions and those 

associated with fires. For fires, n=5976 (shown in gray). Due to processing limitations, 1,000,000 

values were randomly sampled from the index values to create the ECDF of “all” values (shown 

in black). a) ERC(G) (7-day average), b) PPT, c) PDSI, d) SPI3, e) SPI6, f) SPI9, g) SPI12, h) 

SPI24. 
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Figure 6. Fire area versus ERC(G) (left), and fire area versus PDSI (right). 

 

 

 

Figure 7. Fire area versus ERC(G) percentile. 
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Figure 8. Total number of fires, summed by index percentile. Each point represents the total area 

burned in that percentile, with 100 percentile bins. a) ERC(G), b) PPT, c) PDSI, d) SPI3, e) SPI6, 

f) SPI9, g) SPI12, h) SPI24. 
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Figure 9. Sum of area burned, by index percentile. Each point represents the total area burned in 

that percentile, with 100 percentile bins. a) ERC(G), b) PPT, c) PDSI, d) SPI3, e) SPI6, f) SPI9, 

g) SPI12, h) SPI24. 

 



 

 

80

Table 1. Review of literature relating drought and precipitation indices calculated from weather 

records to area burned in the western US during the modern era. Studies utilize fire records kept 

by US Department of Interior National Park Service, Bureau of Land Management, Bureau of 

Indian Affairs, US Department of Agriculture Forest Service, states, and/or private landowners. 

Region Authors Years Statistic relating drought index to area burned 

Yellowstone 

National Park 

Balling et al. 

(1992) 

1895-1990 Summer PDSI for two adjacent climate divisions. 

Pearson product-moment correlation (r) = -0.04 to   

-0.38 

Interior 

Western US 

Collins et al. 

(2006) 

1926-2002 Average PDSI calculated for 3 regions (1=MT, ID, 

WY; 2=NV, UT; 3=AZ, NM) based on averaging 

PDSI value for each state.  

R
2 
= 0.27 – 0.43 for current year; 

R
2 
= 0.44 – 0.67 for model including current year 

and two previous years 

Western US Littell et al. 

(2009) 

1916-2003 

and 

1980-2003 

Forward selection regression used to parameterize 

generalized linear models based on seasonal 

precipitation, temperature, and PDSI for current and 

previous year; dependent variable was annual area 

burned by ecoprovince,  

R
2
 = 0.33 – 0.87 

National 

Forests in 

northwestern 

California 

Miller et al. 

(2012) 

1910-1959 

and 

1987-2008 

Regression models predicted number of fires based 

on summer PDSI (June, July, and August) (R
2
 = 

0.37) and total annual area burned (R
2
 = 0.37) for 

the first time period. For the later time period, total 

precipitation in June, July, and August was 

correlated with number of fires (R
2
 = 0.60) and total 

annual area burned (R
2
 = 0.54). 

Idaho and 

western 

Montana, US 

Morgan et al.  

(2008) 

1900-2003 Spearman’s rank correlation between annual area 

burned and climate-division temperature and 

precipitation. 

Summer precipitation: r = -0.49 

Summer temperature (normalized): r = 0.59 

Two National 

Forest groups 

in southern 

Oregon and 

northern 

California 

Trouet et al. 

(2009) 

1973-2005 National Forests clustered into 2 groups with similar 

temporal sequences of area burned. Daily ERC(G) 

was averaged to produce a seasonal value for July-

August-September. Correlation (r) between annual 

area burned and seasonal ERC(G) = 0.32 – 0.4 

US West Westerling et 

al. (2003) 

1980-2000 Monthly PDSI values are “the average of values 

interpolated from US climate divisions” onto a 1x1 

degree grid.   

Pearson’s correlation (r)  ~ -0.7 – 0.8.  

(note: lagged positive correlations in arid regions 

may indicate abundant moisture for fine fuel 

growth) 
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Table 2. Statistics comparing empirical distributions of indices during large fire events with 

those during all conditions. The null hypothesis (Ho) was that the two distributions were the 

same. The alternative hypothesis (Ha) for PDSI, SPIs, and PPT was that the ECDFs of the index 

during fires is greater than that of all values; for ERC(G), Ha was that the ECDF of ERC(G) 

associated with fire events is less than that of all ERC(G)s. Ho was rejected a higher percentage 

of the time for shorter-term metrics (at alpha=0.1), constituting evidence that large fire 

occurrence is more strongly related to shorter-term metrics. The D statistic measures the 

maximum separation distance between the two distributions, with higher values suggesting 

higher likelihood that the two distributions are different. 

 

Index 

Median of 

means 

(fire) 

Median 

of 

means 

(all) 

Means 

different 

based 

on 90% 

CI? 
D 

(median) 

Percent of  

tests in 

which Ho 

rejected 

ERC(G) 79.8 52.1 yes 0.52 100 

PPT 15.1 42.6 yes 0.36 100 

SPI3 -0.3 0.1 yes 0.26 95.5 

SPI6 -0.2 0.1 no 0.2 78.6 

SPI9 -0.1 0.2 no 0.2 77.8 

SPI12 -0.05 0.2 no 0.19 72.6 

PDSI -0.7 -0.1 no 0.19 70 

SPI24 0.23 0.26 no 0.11 18.6 
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Table 3. Linear models relating index percentiles to number of large fires. 

Index Model R
2 

ERC(G) 2333.0)(*02768.010 −= pctERCNLog  0.94 

PPT 303.2)(*01389.010 +−= pctPPTNLog  0.93 

PDSI 878.1)(*002438.010 +−= pctPDSINLog  0.30 

SPI3 058.2)3(*006487.010 +−= pctSPINLog  0.83 

SPI6 944.1)6(*003710.010 +−= pctSPINLog  0.68 

SPI9 910.1)9(*002978.010 +−= pctSPINLog  0.52 

SPI12 903.1)12(*002813.010 +−= pctSPINLog  0.52 

SPI24 743.1)24(*000473.010 +−= pctSPINLog  0.012 

 

  
Key to table: 

A = area burned 

N = number of large fires 

ERC_pct = ERC(G) percentile 

PPT_pct = PPT percentile 

PDSI_pct = PDSI percentile 

SPI3_pct = SPI3 percentile 

SPI6_pct = SPI6 percentile 

SPI9_pct = SPI9 percentile 

SPI12_pct = SPI12 percentile 

SPI24_pct = SPI24 percentile 

R
2 
= adjusted R

2 
of model 
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Table 4. Linear models relating drought indices to area burned. 

 

Index Model R
2 

ERC(G) 592.2)(*03551.010 += pctERCALog  0.92 

PPT 984.5)(*01862.010 +−= pctPPTALog  0.89 

PDSI 4875.5)(*003780.010 +−= pctPDSIALog  0.25 

SPI3 738.5)3(*009755.010 +−= pctSPIALog  0.70 

SPI6 595.5)6(*005972.010 +−= pctSPIALog  0.46 

SPI9 502.5)9(*003784.010 +−= pctSPIALog   0.28 

SPI12 492.5)12(*003366.010 +−= pctSPIALog  0.23 

SPI24 317.5)24(*000007998.010 += pctSPIALog  -0.010 

 

Key to table: 

A = area burned 

N = number of large fires 

ERC_pct = ERC(G) percentile 

PPT_pct = PPT percentile 

PDSI_pct = PDSI percentile 

SPI3_pct = SPI3 percentile 

SPI6_pct = SPI6 percentile 

SPI9_pct = SPI9 percentile 

SPI12_pct = SPI12 percentile 

SPI24_pct = SPI24 percentile 

R
2 
= adjusted R

2 
of model 
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Chapter 4.   

Conclusions 

 

 The two studies presented in this dissertation document illustrate two disparate 

approaches to statistical modeling of hazard and risk resulting from rare stochastic disturbance 

events. These two studies can be integrated to inform global and continental prediction. In this 

chapter, I briefly review conclusions of the studies, discuss similarities between them, and 

present some key insights. 

Chapter 2 demonstrated that small post-fire debris flows occur with a higher relative 

frequency than non-fire-related debris flows. The empirical cumulative distribution function of 

post-fire debris flow volumes was composed of smaller events than that of non-fire-related 

debris flows. In addition, this study demonstrated for the first time that post-fire events follow a 

power-law distribution, but that the slope of this distribution was steeper than that of non-fire-

related debris flows. These results suggest that fire produces a number of changes in vegetation 

and soil characteristics that produce a higher proportion of small debris flows, by increasing the 

proportional frequency of small events and/or producing debris flows in small zero-order 

drainages not susceptible to them under unburned conditions. These changes in vegetation and 

soil characteristics tend to increase overland flow, available sediment, and soil moisture, as well 

as decrease the strength of the regolith. In regions where sediment transport is supply-limited, 

wildfire likely provokes smaller debris flows by increasing their probability and frequency. 

Because the distribution of post-fire debris flows is different from that of non-fire-related debris 

flows, post-fire debris flows must be regarded as coming from a different population, with 

commensurate differences in driving factors. Unfortunately, because the two types of events are 

from different populations, what is known about non-fire-related debris flows (a much larger n), 

cannot be applied directly to statistical modeling of post-fire debris flows (a smaller n) without 

further investigation of these differences. Collection of magnitude information on more post-fire 

debris flows will be necessary to contribute to understanding of how changes in the post-fire 

environment are related to debris flow volume, and produce definitive statistical models for post-

fire debris flows. 
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In Chapter 3, strong correlations were found between short-term drought/fire-danger 

indices and fire occurrence across the western US for the study period 1984-2008. Statistical 

models for Energy Release Component for fuel model G (ERC(G)) explained 92% of the 

variability in area burned and 94% of the variability in number of fires. Model performance for 

monthly precipitation (PPT) was almost as strong, explaining 93% of the variability in number of 

fires and 89% of the variability in area burned. Both of these metrics measure short-term 

precipitation, on the order of a month to a month and a half. As the time period measured by the 

metrics lengthened, correlations weakened. Notably, Palmer Drought Severity Index (PDSI), 

which has a timescale of approximately 2-9 months and is the most commonly used metric in 

studies relating drought to fire occurrence, had weak correlations with both area burned (R
2 
= 

0.34) and number of fires (R
2 
= 0.3), suggesting it is not strongly related to fire occurrence across 

the western US during the period of study.  The strong correlations between shorter-term indices 

and fire occurrence are likely related to strong associations between these indices and moisture 

content of dead surface fuels, which are the primary carrier of surface fires. This result suggests 

the utility of shorter-term rather than longer-term indices in fire danger applications. 

In both studies, simple mathematical models accounted for variation in rare stochastic 

disturbance events at regional to global scales, suggesting the utility of such models for hazard 

prediction at these scales. This work contributed to understanding of factors influencing debris 

flows and large fires, as well as their impacts. Bringing together information and techniques from 

disparate fields, these studies provided an integrated understanding of hazard prediction for rare 

and/or stochastic events.  

 Additional key insights included:  

• Advances in technology over the past few decades aided this work. These advances 

included: 1) handheld GPS units with a high degree of accuracy, which were used for 

mapping the perimeter of debris flow fans, 2) mapping of burns from remote sensing 

using satellite imagery, 3) gridded weather data with 4-8 km resolution, and 4) the ability 

of desktop computers to process large datasets resulting from the use of such data. These 

advances in technology allowed for higher precision in model inputs. 

• Compilations of disturbance events were needed for statistical models. This research was 

aided by a new publicly available dataset, the Monitoring Trends in Burn Severity 

project, which records fire size, location, and date (Eidenshink et al., 2007). However, 
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debris flow magnitudes had to be compiled from the literature and original field work for 

this dissertation, with a comprehensive database presented as one of the results. 

• Parameterization of hazard models for both post-fire debris flows and large fires would 

benefit from better records. Fire records in the US are not tracked by a single system, and 

when multiple systems are aggregated, duplicate records result. Debris flow events (at 

least those that are published in the scientific literature) have been studied and recorded 

primarily in certain areas (the Alps, North American Coast Ranges, and the Rockies), 

with other areas having little or no coverage (including Asia, Australia, and Africa). 

 

 In conclusion, prediction of the magnitude of a single rare stochastic disturbance event 

remains a challenge, but the statistical models presented in this dissertation contribute to hazard 

prediction at regional and global scales, as well as understanding of driving mechanisms. For 

debris flows, the frequency-magnitude distributions presented herein can be used to derive the 

relative probability of an event of a certain size, for non-fire-related debris flows at the global 

scale and for post-fire debris flows in the western US. In the case of fire occurrence, the analysis 

contributes to real-time identification of areas of high hazard in the western US using short-term 

drought/fire-danger indices.  
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