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Reimer, Yolanda Jacobs, M.S., July 1996 Computer Science

Task-Centered User Interface Design of an Algorithm Animation Program

Director: Nicholas P. Wilde

Numerous algorithm animation systems designed and implemented in the last decade 
have been predicated on the belief that graphical animation tools will help students learn 
algorithms better than traditional methods alone. Many studies have been conducted to 
date, both informally and empirically, to test whether or not this initial belief is true. The 
results of these studies have been somewhat mixed. In general, existing algorithm 
animation systems have not proved as significantly effective in helping students to learn 
as was initially hypothesized. The question of how to make algorithm animation systems 
more effective as instructional tools continues to be studied today.

This research attempts to find more effective ways to create algorithm animation 
systems by using a task-centered user interface design approach to design and implement 
a prototypical algorithm animation program. Also incorporated into this prototype 
system are the results and conclusions derived from previous studies. Upon completion 
of the implementation of the algorithm animation program, user testing is conducted to 
see which elements of the design were most successful.

Although this research is informal and exploratory in nature, it nonetheless reaches 
important conclusions in the area of effectiveness of algorithm animation programs as 
instructional tools. Certain conclusions reached in this study are found to coincide with 
those of prior studies -- for example, all the users of the algorithm animation system in 
this study reported feeling excited and interested in using the program, a result that also 
occurred in previous studies. However, this study also reaches some new and important 
conclusions in its own right, such that algorithm animation systems are greatly enhanced 
when they are designed from the user’s perspective and when they include visual and 
textual semantic redundancy.
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1. Introduction

Tango [25], Balsa [8], Zeus [5], and AACE [14] are just a few of the algorithm animation 

systems that have been created to date. The conceptual belief behind such systems is that 

students will learn algorithms faster and more thoroughly using graphical animation tools 

than using more traditional learning methods. Proponents, seeking to bring students 

beyond the passivity of learning through lecture alone, laud the active engagement and 

dynamic nature of these systems. Unknown at the time these systems were built, 

however, and still an open question, is the extent to which these animation programs 

assist the learning process, and the optimal ways to use them in conjunction with the 

more traditional methods of teaching. In their paper entitled Do Algorithm Animations 

Assist Learning? An Empirical Study and Analysis [23], Stasko, Badre and Lewis discuss 

the widely held belief that animations should help in the learning process, but then add 

that "...the viability of algorithm animations as instructional aids remains rooted in 

intuition. No substantive empirical evidence has ever been presented to support these 

claims." Also cited in this paper are several informal studies that have been conducted in 

an effort to explore the value of animations as instructional tools. These studies reveal a 

variety of conclusions, including that stronger students seem to benefit more than weaker 

students from using algorithm animations [28], and that any immediate advantages 

gained by students who have learned using animations diminish with the passage of time 

[21]. The empirical study conducted by Stasko et al. and described in their paper, 

involved two groups of student subjects: one was given only a textual description of the 

pairing heap algorithm, while the second group was presented with both an algorithm 

animation system (XTango) demonstrating pairing heaps, and the same textual 

description given to the first group. The results of this study affirmed that although the 

group that had access to XTango in addition to the text scored slightly higher on post



tests than the alternate group, and completed the post-tests slightly faster, the 

competency gap was not as significant as had been expected. Another important result of 

this empirical study, as well as of many other informal studies, is that in each instance the 

students using animation tools reported feeling interested and excited about using them. 

While such benefits are perhaps non-quantifiable, they are no less important. In 

concluding this article, Stasko, et al. list some key findings that they feel should be 

incorporated in future animation systems, such as rewind/replay capabilities, and warn 

that their results "suggest that any general virtues that visual, animated presentations may 

possess are not powerful enough to produce good performance unless the presentations 

are keyed to specific learner needs."

In a more recent empirical study, Stasko, this time in conjunction with Lawrence and 

Badre [24], examined students who learned Kruskal's Minimum Spanning Tree algorithm 

using a variety of methods. This experiment studied the effects of students learning the 

algorithm through lecture, or through a lecture and lab combination. The lecture portion 

of this experiment was divided into two sub-groups: one with a teacher lecturing on the 

algorithm and using in-class examples generated by the Polka animation system, and 

another with a teacher lecturing on the algorithm and presenting in-class examples with 

overhead transparencies. The lecture/lab combination group was further sub-divided into 

the two categories of passive lab and active lab. In the passive lab, the students viewed 

pre-defined scripts of an animation illustrating the algorithm, while in the active lab, the 

students were able to create and view their own animation examples of the algorithm.

The results of this study were that the students in the lecture/lab combination group 

showed an advantage over the students in the lecture group, and that those students using 

the active lab with user generated examples benefited the most.
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In their as yet unpublished paper Testing Effectiveness o f  Algorithm Animation , Gurka 

and Citrin [18] look at some of the factors they believe are responsible for the 

ineffectiveness of past algorithm animation systems. One of the issues they present is 

that many of the existing algorithm animation systems rely too much on the visual, and 

often lack what they refer to as "semantic redundancy", the displaying of additional 

information, such as text, in an animation along with the visualization. Gurka and Citrin 

believe that the inclusion of semantic redundancy in an algorithm animation program will 

add to its overall effectiveness.

So while we are perhaps closer to understanding some of the effects and issues 

surrounding algorithm animation programs as instructional aids, the question of how to 

make these programs as effective as possible remains. The nature of the study described 

here, revolves around conducting exploratory research into the task-centered user 

interface (UI) design, implementation, and user testing of an algorithm animation 

program. The task-centered UI design process focuses on the statement by Stasko et al. 

quoted above: that an effective algorithm animation program must be "keyed to specific 

learner needs." This research also strives to incorporate sbme of the other techniques and 

hypotheses aimed at making an algorithm animation program more effective, such as 

rewind and replay capabilities, and semantic redundancy. The goal is to help clarify how 

algorithm animations may affect an individual's learning, and to work towards making 

algorithm animation systems as useful as possible in assisting the learning process.

Formal and empirical studies can be extremely difficult to accomplish, especially in a 

relatively limited time. This study admittedly lacks the necessary breadth and formality 

of data to make conclusive claims about algorithm animations as instructional tools. 

Additionally, the numerous factors that can bias such a study, and therefore must be
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controlled, such as prior knowledge of the students/users, realistic post-testing 

conditions, representative testing body, statistically relevant numbers of testers, etc., are 

beyond the scope of this research. As exploratory research, this study seeks to gather 

further insight into this area of research, and perhaps to lay a foundation for future 

research in this area.

2. The Design Process

2.1 Task-Centered User Interface Design

The user interface design methodology I am ascribing to in this research project is a 

modified version of task-centered user interface design, as described by Lewis and 

Rieman in [19]. The task-centered UI design methodology stresses that the key to the 

development of any good interface is user participation throughout the entire system 

design and development process, from inception to system testing and beyond. Since the 

goal of my algorithm animation system design was to design a program that proves most 

effective from the user point of view, this methodology was the most advantageous.

Lewis and Rieman cite the following key points to effective task-centered UI design:

1. Determine who the system users will be.
2. Address the specific tasks users expect to accomplish in using the system, 

developing system functionality in consultation with the user's actual needs.
3. Intelligently borrow from existing interfaces and interaction designs for the to- 

be-designed system.
4. Design the system by balancing user needs with system limitations.
5. Assess design usability early before the prototype implementation is too far 

along.
6. Test prototypes with the users.
7. Iterate parts of the process repeatedly until the optimal blend of user 

satisfaction and system functionality is achieved.
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While addressing the user-related question raised by the first two of Lewis and 

Rieman’s key points, I did not have the advantage of consulting with potential users. 

Although I had a general idea who my initial users would be, the group nevertheless 

remained uncertain, as did the users who might make use of the algorithm animation 

system in the future. Consequently, I was forced to rely on my own experience and 

research in designing user interfaces, as well as on the advice of my thesis advisor, in 

order to assemble a rough user assessment.

Mindful of Lewis and Rieman's third key point, I was able not only to borrow ideas from 

some of the better user interfaces I had experience with, but also to benefit from the 

growing number of articles covering this area of research. In AACE - Algorithm  

Animation fo r  Computer Science Education [14], for example, Peter Gloor discusses his 

own experience in developing an algorithm animation system for educational purposes.

In the article, Gloor cites numerous factors he deems critical to the design of an effective 

user interface component to such a system. Not only must the system be clear and 

concise, Gloor explains, but it must also have a historic component to it, must emphasize 

the important steps, retain the user's interest, and be interactive. The system described in 

this thesis was prototyped using Apple’s HyperCard program — a valuable resource for 

working with HyperCard is Apple Corporation's HyperCard Stack Design Guidelines [1]. 

This book focuses on techniques for developing good stacks in HyperCard, while also 

highlighting important general user interface issues to be mindful of while designing. 

Perhaps most important to my project, though, were the results of other algorithm 

animation systems research studies. One of the conclusions reached by the earlier Stasko 

et al. experiment [23] was that a good animation system should have rewind and/or replay 

capabilities, providing some sort of historical view of the algorithm animation. I kept all
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of these points and results in mind when designing my algorithm animation program, 

and incorporated them where applicable and when possible.

Key point 4 of the design methodology was not an issue for this design and 

implementation project for two main reasons. First of all, I knew from the outset that my 

algorithm animation program would be relatively minor in scope: I only wanted to test 

one algorithm for this initial research, and early benchmarks of the both the size of my 

algorithm animation program and the speed at which I wanted it to run showed no 

problems. Thus I was confident of having sufficient machine resources to run my 

animation adequately without memory or processing speed becoming a major concern.

The algorithm animation program developed for this study can be viewed ultimately as 

being a prototype for the development of future algorithm animation systems. Upon 

completion of a skeletal version of the animation program, where enough of the program 

was implemented to illustrate the intended design direction, I discussed and reviewed this 

partial implementation with my advisor before continuing. While such a consultation 

may seem to be somewhat trivial as it did not include potential future users of the 

program, it proved to be useful in solidifying the direction of my design as well as in 

rectifying minor misdirections before the more substantial implementation of the 

program. Thus, key point 5 of the task-centered UI design was completed.

As for key point 6 of the methodology, after the design and implementation of the system 

was complete, I conducted user testing sessions, the preparation and results of which are 

described in section 7 of this paper. I was unable, however, to incorporate the iterative 

nature of key point 7 in this study, a step that would make for possible future work on this 

animation program.



2.2 Choosing the Application Tool

One of the first decisions I had to make before I could design my animation was what 

application tool I would use. Available resources did not limit me in any way, as I had 

access to a Unix network of RS/6000 machines, IBM compatible PCs and Macintosh 

PCs, all with a wide variety of software installed. I briefly considered creating my 

program using C, X/Motif or HyperStudio before settling on the Macintosh HyperCard 

application (version 2.3) with HyperTalk scripting language. Although I had 

programming experience with both C and X/Motif and not with HyperCard/HyperTalk at 

the time I made this decision, I was fairly convinced from the outset that to chose C or 

X/Motif would mean a longer implementation time with consequently less time devoted 

to actual design issues, something I expressly wanted to avoid. I was aware from the 

outset that a project like this could easily get side-tracked into becoming nothing more 

than a major programming project of yet another algorithm animation system. To 

counter this, my plan was to focus first on the task-centered UI design process, and then 

on the user testing and feedback stage, creating just enough of a program implementation 

in between to allow me to complete these two main tasks satisfactorily. From my 

preliminary investigation of the capabilities of HyperCard, I was persuaded that this 

application tool would be suitable for creating the major functionality and features that I 

wanted to include in my animation. I could only hope that any shortcomings I might find 

with the HyperCard application as I learned more about it would create only minor 

deviations of my animation program from the initial design.

Though initially I lacked specific HyperCard knowledge, I was generally familiar with 

the Macintosh environment, as well as with many of its application tools, making me 

confident that I would pick up the specifics of HyperCard and HyperTalk with relative
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ease. In addition, I knew from experience that Apple's documentation was usually both 

abundant and well-written. For materials that I relied on in learning this tool, see 

[15][29].

Since user testing of my animation was to be a major part of my study, the final 

component in my decision to user HyperCard was the necessity of an installation location 

that would allow me to conduct my user testing privately. My access to C and X/Motif 

would have meant conducting testing in a public lab with up to a dozen other computer 

users; with the Macintosh and HyperCard application, however, I had access to a private 

office, one more than adequate for holding my user testing sessions. Additionally, I had 

to verify that the Macintosh PC on which I would be doing not only my user testing, but 

also the development of the animation program, had sufficient memory to hold my 

program, and was fast enough to run the animation smoothly and without any obvious 

time delays. Both of these factors were tested early in the development stage, and were 

found to be sufficient.

2.3 Choosing the Algorithm

Essential in choosing the algorithm to use in my animation was that the algorithm be one 

which my eventual users were not previously familiar with. Even though my research 

was mostly informal, one of my primary focuses was the user testing and feedback 

session. To be as accurate and unbiased as possible, I needed an algorithm that was new 

to all of my users, especially since only a limited number of users were available for 

testing. Since I was planning to use volunteers from the CS332 Algorithms course, I 

checked with the instructor to determine what types of algorithms he would and would
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not be covering throughout the semester. Beyond this knowledge, I had to hope that my 

users did not have other prior exposure to the algorithm I would choose.

In addition to picking an algorithm that I believed would be new to my users, I also 

wanted one that was of medium complexity, and one fertile enough for animating in a 

variety of ways during my task-centered UI design. I also needed an algorithm that I was 

confident could be thoroughly completed in the given time frame, again realizing that the 

focus of my research was not to be the implementation, but the task-centered UI design 

and user testing process. I was concerned that if my algorithm were too simple, it would 

prove futile in trying to test the reception of key parts of the algorithm using various 

tactics. Conversely, if I chose something too involved, I might only have been able to 

achieve fragmented and incomplete results, again creating difficulties when trying to 

reach conclusions from the overall effort.

Keeping all of these factors in mind, I settled on Graham’s scan version of the convex 

hull algorithm [9] [22]. The convex hull algorithm falls under the category of 

computational geometry, an area I believed people were generally less familiar with than, 

for example, trees or heaps. The convex hull algorithm determines the smallest convex 

polygon of a given set of points such that all points end up either a vertex of the polygon, 

on one of the edges of the polygon, or in the interior of the polygon [9]. A common way 

of envisioning the concept of the convex hull algorithm is to picture the set of points as 

being nails sticking out of a board, and the smallest convex polygon (convex hull) of 

those points being formed by wrapping a tight rubber-band around the outside of all the 

nails. The convex hull algorithm is also used as an initial step in the computation of other 

geometric algorithms, such as the two-dimensional farthest-pair problem.
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The convex hull algorithm has multiple methods of implementation: Graham’s scan, 

Jarvis’s march, the incremental method, the divide-and-conquer method, and the prune- 

and-search method, see [9] for further details of these methods. Because it has multiple 

interesting parts to illustrate, I chose to implement Graham's scan method, again in the 

interests of making the task-centered UI design a challenging process. See [16] for the 

original version of Graham’s scan as given by Graham.

Graham's scan runs in 0(n  Ig n) time, and uses a method known as rotational sweep to 

process points in the order of the polar angle they form with a reference point. The 

process by which Graham’s scan finds the convex hull of a set of points is first to label 

and order all the points in the set. This is done by establishing a base point, p 0 , which is 

the lowest point on the y-axis (and leftmost point on the x-axis in case of multiple points 

having same minimum y values). The rest of the points are then labeled in order of least 

polar angle to greatest polar angle relative to p 0, Once the points have been labeled and 

ordered, the stack is initialized. From here, three points are compared (top of stack, next- 

to-top of stack, and next point in ordered list) to see if the angle they create forms a "left 

turn" or not. If they do form a left turn, the third point is pushed onto the stack; if not, the 

stack pops a point and continues analyzing the angles formed by the next three points.

This continues for all points in the set, eventually yielding the stack that holds only the 

points in the smallest convex polygon. Figure 1 lists the pseudocode of Graham’s scan 

convex hull algorithm used in my animation program. See [9] for more information on 

the details of the algorithm.



GRAHAM-SCAN (Q)
1 l e t  p 0 b e  t h e  p o i n t  i n  Q w i t h  t h e  m i n i m u m  

y - c o o r d i n a t e , o r  t h e  l e f t m o s t  s u c h  p o i n t  i n  
c a s e  o f  a  t i e

2  l e t  < p x, p 2, . . . , p m> b e  t h e  r e m a i n i n g  p o i n t s
i n  Q, s o r t e d  b y  p o l a r  a n g l e  i n  c o u n t e r c l o c k w i s e  
o r d e r  a r o u n d  p 0, ( i f  m o r e  t h a n  o n e  p o i n t  h a s  
s a m e  a n g l e ,  r e m o v e  a l l  b u t  t h e  o n e  t h a t  i s  
f a r t h e s t  f r o m  p 0)

3 t o p [ S ]  < - -  0
4 P U S H ( p 0, S )
5  P U S H ( p lf S)
6  P U S H ( p 2, S )
7 f o r  i  < - -  3 t o  m
8 d o  w h i l e  t h e  a n g l e  f o r m e d  b y  p o i n t s  

N E X T - T O - T O P ( S ) , T O P ( S ) ,  a n d p i 
m a k e s  a  n o n - l e f t  t u r n

9  d o  P O P( S )
1 0  P U S H ( S , p i )
1 1  r e t u r n  S

Figure 1. Graham's scan algorithm pseudocode

Although the convex hull algorithm, being geometric in nature and relatively easy to 

visualize, is a conducive one for a visual animation, this was not one of the reasons I 

chose it. Had I chosen a less graphical algorithm, I would simply have had to be more 

creative in deriving a visualization for it. For example, many algorithms animated by 

other systems, such as some of the sorting algorithms illustrated by XTango and Zeus, 

created from the authors' visualization (or research) of that algorithm. Douglas, 

Hundhausen, and McKeown, in a University of Oregon research project detailed in 

Toward Empirically-Based Software Visualization Languages [13], used a visual 

storyboarding technique to study tendencies of human conceptualization of the bubble- 

sort algorithm. Their report illustrates common features discovered during this 

experiment, such as the fact that all of the participant groups used a different element 

(squares, stick figures) to represent the elements being sorted, different method to 

illustrate magnitude of elements (numbers, colors), and so on. Had I chosen an non- 

graphical algorithm to animate, I would have used a similar process (albeit with much
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less formality) to derive my own visualization of that algorithm. One may also argue 

that nearly any algorithm will yield at least one obvious graphical representation. It is 

rare, for example, to find an algorithm in a traditional text without a commonly 

associated accompanying picture. As it is, I do not believe the geometric algorithm I 

chose adversely affects my overall goals, nor do I think it makes my tasks any easier or 

harder to accomplish than a non-graphical algorithm would have made them. Although 

Graham’s scan convex hull algorithm has an overall natural graphical representation, its 

detailed steps do not suggest intuitive individual representations. I had to determine not 

only the interesting and salient characteristics of the algorithm, but also how to represent 

them graphically in the animation. For example, the process whereby three points are 

compared to determine if they create a left turn angle, as described above and seen in 

Figure 1, might be illustrated in a variety of ways. It was part of my task-centered UI 

design process to find the best manner of illustrating this step, as well as the other 

detailed steps.

2,4 Design Details

As indicated by the previous summary of the task-centered UI design process, one of the 

first and most important questions a designer needs to ask and understand is “Who are my 

users?” In this study, the answer was an easy one: students who want or need to learn 

about the algorithm. I am not making any assumptions about whether these users are 

using this animation tool in conjunction with other forms of learning, as this is not the 

focus of my research. Also beyond the range of my thesis are issues relating to how easy 

or difficult it may be to create additional animations using my method or application 

program, as this too, is not the focus of my thesis. Instead, I am interested in the
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individual’s learning process, and as such, how different views of an algorithm 

animation and different methods for accomplishing this view affect the learning process.

Also worth repeated a mention is the fact that I am designing this algorithm animation 

program from the task-centered user interface approach. In other words, my design and 

implementation is centered around the user, who is in this case the learner, not the teacher 

or the animation designer. This is an important distinction to make, as both are valid 

views with quite different approaches and results. One observation often present in the 

literature describing past algorithm animation programs is that the users have had to 

possess expert knowledge about the algorithm before using the animation in order to 

benefit from it substantially. “For a student to benefit from the animation, the student 

must understand this mapping (from the abstract computational algorithm domain to the 

animated computer graphics domain) and the underlying algorithm upon which the 

mapping is based" [23]. This implies that the wrong approach might have been taken in 

the design process of these animations, perhaps having focused on the teacher’s view and 

understanding of the algorithm instead of the student’s (user’s) and his or her probable 

inexperience.

The next critical question in the task-centered UI design method to ask is, “What tasks do 

the users hope to accomplish in using the animation program?” There are different ways 

to answer this question, ranging from a general answer to more specific learning tasks. In 

general, the users hope to learn as much about Graham’s scan convex hull algorithm as 

possible using the animation program. This generality, however, must be broken down 

and analyzed more specifically in order to be of practical use in the design process. I 

settled on the following basic characteristics, or user learning tasks, of this algorithm that



I felt necessitated illustration in some way, if possible, in the animation program that I 

was to develop:

1. Labeling (in order), all points in set Q.
2. How the points/angles are compared.
3. How the stack is initialized and works throughout algorithm.

Closely related to the question of what are the learning tasks of the users in using this 

system, is, “How am I going to design a system that will help the users accomplish these 

learning tasks?” This question really drove the rest of the design process. For 

experimental purposes, and in an effort to learn as much about how an algorithm 

animation system best assists in the learning process, I settled on designing five different 

views of the algorithm in my animation program. The five views developed are 

associated with two varying levels of information provided, labeled Overall Strategy and 

Implementation Detail, and with three different methods of illustrating the algorithm 

animation, Visual, Visual & Code, and Code.

The two different levels of information provided, Overall Strategy and Implementation 

Detail, differ in the amount of information provided to the user. For example, in the 

views displaying the algorithm’s code (pseudocode), the Overall Strategy level has a 

summary version of the pseudocode shown in Figure 1, whereas the Implementation 

Detail level has the lower-level code shown exactly as in Figure 1. Similarly, in these 

same views that illustrate the algorithm’s code, the accompanying data structures in the 

Overall Strategy level show just the key stack, and in the Implementation Detail view, 

other variables are shown in addition to the stack.
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The three methods designed and studied for accomplishing the learning tasks, Visual, 

Visual & Code, and Code, work in conjunction with the different levels of information 

provided. The Visual method uses only a visualization of the algorithm to try and help 

the user accomplish the learning tasks, and has only the Overall Strategy level of 

information corresponding to it (the Visual method has no Implementation Detail 

counterpart). The Visual & Code method, which has views for both Overall Strategy and 

Implementation Detail levels of information, uses a combination of visualization and 

algorithm pseudocode to accomplish the learning tasks. An important note to make is 

that the Code method, whether used by itself or in conjunction with the Visual method, 

also contains graphical representation of the data structures of the algorithm. So as not to 

confuse the reader, the data structures component of the Code method is usually spelled 

out throughout the remainder of this document; however, where it is not, the reader must 

remember that the Code method always contains the data structures as well. Finally, the 

Code method, which also has views for both levels of information, uses a combination of 

pseudocode and data structures to help the user accomplish the learning tasks. Figure 2, 

which displays an actual screen from the animation program, illustrates the five different 

views available to the user as just discussed.
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Code

Code

o
Quit HyperCard

Figure 2. Different views available to user

To summarize, the five views provided by the animation program are listed below, along 

with their respective identification codes (in capital letters) utilized throughout the 

remainder of this document.

1. Visual /  Overall Strategy (VO)
2. Visual & Code / Overall Strategy (VCO)
3. Code /  Overall Strategy (CO)
4. Visual & Code /  Implementation Detail (VCI)
5. Code / Implementation Detail (Cl)
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2.5 Common Features

Before detailing each of.the five unique views found in the animation program, it may be 

worthwhile to discuss the common features designed for the animation program in 

general. At the start of the algorithm animation program, each user has the option of 

looking at a preliminary description of the convex hull algorithm. This preliminary 

description is the same for all users, regardless of the view he/she will ultimately look at. 

Included in this initial description is a textual description of the convex hull algorithm as 

well as a simple animation of the algorithm, a list of other algorithms (in addition to 

Graham’s scan) that compute the convex hull, and the run time of Graham’s scan 

algorithm for computing the convex hull.

Other common features of the program, which deal primarily with navigation through the 

animation, were incorporated into all views of the animation whenever applicable, and 

are summarized in Figure 3. The user has the basic option of viewing the animation 

frame-by-frame, or playing multiple steps of the algorithm at once. The frame-by-frame 

option allows the user to go either forward or backward, the backward option providing 

the animation’s historic component, something often missing from other algorithm 

animation systems. For longer steps, the user can often choose between fast or slow play 

speeds. There is a stop button for all play options that allows the user to stop and 

eventually resume (using any of the other options/buttons available) the animation. Once 

a step of the animation consisting of multiple moves has completed playing, or is at the 

last frame, the user can reset the entire step from the beginning. This allows the user the 

ability to review different steps of the animation, possibly viewing them in a different 

manner than before. At any time during the course of viewing the algorithm animation, 

the user can choose to start the animation over from the beginning, or return to the stack 

map, where they can then choose a different view of the algorithm, or exit HyperCard
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altogether. This variety and combination of navigational features provides a flexible 

viewing environment for the user, allowing him/her to choose his/her individual pace 

throughout different parts of the animation.

■■■= .=== an im at io n  m ^  ....'..............  igli

'Tips on running this animation
The fol lowing buttons,  which are inactive on this screen ,  are s tandard  
buttons  that  you will encounter  throughout this animation. Each of  
their  e f f e c t s  are l is ted.  Press  the continue button when you are done.

o
P re v  F ram e

T ak es  you to the pr ev ious  
f r ame. Plag S tep  2

Pla ys  t he  e n t i r e  i n d i c a t e d  
s t e p  of t he  a lg o r i t hm .

N ext F ram e

Ta ke s  you to t he  next  
f rame.

j j l l

R ese t S tep  2

R e s e t s  t he  i n d i c a t e d  
s t e p  of t he  a lg o r i t h m .

(  S tack  Map  )

S O
S ta r t  O ver

T ak es  you back to t he  s t a c k  
map,  f r om w he re  you can 
e i t h e r  pick a d i f f e r e n t  
v i s u a l i z a t i o n ,  r e t u rn  to  the  
ma in  menu,  o r  qui t  hypercard .

S t a r t s  the an i ma t ion  over.

5
STOP

log
Quit H yperC ard

S to p s  t h e  a n i m a t i on .  

Qui ts  HyperCard.

£ Cont inue. . .

Figure 3. Navigational Buttons

This algorithm animation program uses pre-determined datasets only, meaning that the 

user is not able to choose his/her own data with which to run the algorithm. W hile 

allowing the user to create individualized exercises might suggest a more effective 

algorithm animation program, see [23], to incorporate such a feature into this program 

was beyond the scope of the current research. This feature is, however, a topic discussed 

in the future work section of this paper.
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Although HyperCard version 2.3 has both sound and color capability, I chose not to 

use sound in my animation, and to use color only minimally. Both of these features, if 

not used carefully, can be a distraction in a user interface and can often adversely impact 

its effectiveness [19]. Additionally, the nature of my animation is such that sound would 

be an extraneous feature. I might have chosen to use color more prominently than I did if 

this feature of HyperCard was easier to implement. As it was, I found the color tools 

difficult to use in this version of HyperCard, to the extent that I generally avoided them. 

The difficulties I had in using color are discussed in greater detail in the Implementation 

section of this paper, along with some other HyperCard shortcomings I experienced.

An attempt was made to maintain consistency between the various views of the 

animation, although this was not a critical issue in my initial research. Because of the 

specific nature of my user testing, and because I had a limited number of users to test 

with, it seemed likely that the same user would not look at multiple views of the 

algorithm animation. However, in addition to being good design practice to add the 

extended functionality, this animation system may someday be expanded for future work. 

It therefore made sense to design the animation so that all views were consistent in their 

overall layout, structure, point set Q, convex hull and button availability.

2.6 View 1 -- Visual /  Overall Strategy (VO)

The VO view of this algorithm animation program is the simplest, shortest and most 

concise of all the views. It consists of a visualization of the set of points Q, and the 

animation of that point set as the convex hull is determined. Initially, only the set of 

points appear on the screen. When the user chooses either play or next frame buttons, the
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points are first labeled as a ray sweeps over the set of points in a counter-clockwise 

rotation. Once the points are labeled, the appropriate angles are compared to determine if 

they form a non-left turn or not (the words left and non-left appear above the angle to 

notify the user which type of angle it is), and therefore, whether they currently remain 

part of the convex hull or not. Although not noticeable in Figure 4, which shows a step in 

this view of the animation, the labels of the three points whose angle is currently being 

analyzed appear in the color red to help the user to distinguish them more easily. 

Eventually, after all the points in the set are analyzed, the convex hull is displayed.

;0is tack l

Vtsuafizatton

p7 p6

p 1 2 .

( Stack Map )
Play SlowPlay FastSTOP

Figure 4. View 1 — Visual / Overall Strategy (VO)



2.7 View 2 — Visual & Code /  Overall Strategy (VCO)

The VCO view of the animation, as depicted in Figure 5, has three distinct partitions: the 

pseudocode, the visualization, and the key data structures. The pseudocode is high-level; 

the original pseudocode as seen in Figure 1 has been summarized into four main steps 

and displayed as our high-level pseudocode. The current displayed step of the algorithm 

is highlighted in bold and is boxed within the pseudocode partition. The visualization 

partition has the same picture as in view 1, but with additional text explicitly stating 

which points and angle are being evaluated. These point labels are also in color at this 

point, as described in view 1. Finally, the data structures partition shows a visualization 

of the key data structure in this algorithm, a stack. Pointers show the TOP element of the 

stack as well as the NEXT-TO-TOP element. The motion of an element getting either 

pushed onto or popped from the stack is also animated. As the user navigates forward 

through this view of the animation, appropriate and meaningful elements in each of the 

partitions are animated in conjunction with one another and relative to the active step of 

the algorithm. While this motion or animation is difficult to illustrate in this static 

document, the same type of animation exists for the remainder of the views in the 

program (all views consisting or two or more partitions).
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Figure 5. View 2 — Visual & Code / Overall Strategy (VCO)

2.8 View 3 - Code /  Overall Strategy (CO)

The CO view of this animation system, as shown in Figure 6, has two basic partitions, the 

pseudocode partition and the data structures partition. Since this view corresponds to the 

Overall Strategy level of information provided, the pseudocode partition displays the 

higher-level pseudocode, as discussed in view 2. Within the pseudocode partition, there 

is a sub-partition showing only the set of points in Q, along with their labels after step 1 

of the pseudocode runs. There is no visualization of the algorithm on this set of points 

however, as this is not a visual view. The points are shown just to give the user a sense 

of perspective so that he/she might better relate the pseudocode to the data structure 

movements. The active step of the pseudocode is highlighted as in the other views. The



23

stack, being the key data structure, is displayed in the data structures partition, along 

with the added text informing the user which points and angle are currently being 

evaluated, and if that angle is a left-tum angle or not. The stack features TOP and NEXT- 

TO-TOP pointers, and also illustrates movements of elements being pushed and popped.

s t a c k 3
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po in t s  in Q
2 I n i t i a l i z e  s t a c k
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PUSH If le f t  turn angle 
POP if  n on -left turn angle

4  Return  s t a c k

S e t  o f  p o in t s  Q:
<P0,P 1 1 3> p7 p6

P9
p i o  p5"
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o (  S ta ck  Map j  r  u  ^
SLOW Platj S tep  3  FAST PU ^ S tep  3  Ng><:* F ram e

Figure 6. View 3 — Code /  Overall Strategy (CO)

2.9 View 4 -- Visual & Code /  Implementation Detail (VCI)

The VCI view of the animation, shown in Figure 7, is similar to view 2. The same three 

basic partitions exist in each case, with more detail provided for this implementation level 

view. The pseudocode partition has the lower-level pseudocode displayed, exactly as
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appears in Figure 1. The current step is highlighted the same way as in view 2. The 

visualization partition is identical to that in view 2. The data structures partition has the 

stack data structure, but also displays the data variables i and m which are used in the 

lower-level pseudocode of this view.
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Figure 7. View 4 — Visual & Code / Implementation Detail (VCI)

2.10 View 5 — Code /  Implementation Detail (Cl)

Finally, the C l view, shown in Figure 8, is similar to view 3. The pseudocode partition 

displays the lower-level pseudocode (see Figure 1), and the active step is highlighted as 

in each of the other views. As in view 3, the set of points in Q are illustrated, but it
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appears in the data structures partition instead of in the pseudocode partition, solely 

due to spatial reasons. The data structures partition is nearly identical to its appearance in 

view 3, with the exception that this view, being the Implementation Detail level, shows 

the active point p r
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Figure 8. View 5 — Code / Implementation Detail (Cl)

3. Implementation

The final animation program consists of five different HyperCard stacks, one for each of 

the five unique views discussed in Section 2. The stacks range in memory required from 

553K to 689K, and they range in size from 44 total cards to 84 total cards. As anticipated
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during the design phase, neither machine memory nor processing speed was in any way 

detrimental to the performance of the implemented algorithm. I was able to create as 

many cards in each stack as needed to maintain a smooth and fluid appearance for the 

animated parts of the program. Additionally, the choice to use HyperCard as the 

programming application tool proved to be a sound one. HyperCard's functionality 

enabled me to implement nearly all of the design goals. HyperCard, and its scripting 

component HyperTalk, were not difficult application tools to learn, the learning process 

being made easier by the abundant available documentation and my prior Macintosh and 

programming experience.

The biggest shortcoming I found in using HyperCard was in its color and shading 

functionality. HyperCard does support color, but it was a difficult and time-consuming 

process to incorporate the color text or object into a stack card, and, further, to edit that 

color once it became a part of the card. The color feature of HyperCard is located within 

a "color tools" function window, which forces the user to open and close this function 

each time he/she wishes to create, edit, or delete any color aspect of the card. While this 

may sound like a typical user process when invoking features in application tools, it was 

an especially time-consuming and tedious one as implemented in HyperCard. 

Additionally, color text does not copy when a card is duplicated. Since the creation of an 

animated sequence essentially means copying a card multiple times and changing each 

card slightly from the previous one, the lack of color copying capability makes this 

process very ineffective in dealing with color text or objects on the source card. I would 

have liked to have incorporated more color into the animation program than I did, but the 

overall process was too difficult and too time-consuming to make it practical.
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Other functionality within HyperCard that I found poorly implemented and difficult to 

use was its text and drawing capabilities. Once text is created and positioned on a card, it 

is not possible to select that text again as a group and to edit pieces of it. The user is 

forced either to erase the part he/she wishes to edit and refit the new text with the existing 

text, or to start the whole text over again from scratch. This also makes the interweaving 

of bold, italics, or super/subscripts into the same text passage nearly impossible. This 

feature of HyperCard was so ineffective that for the longer passages of text in my 

animation program, I was forced to create them in a different, more user-friendly 

Macintosh application tool, and then import them into the HyperCard stack. The drawing 

capabilities supported by HyperCard were also limited. HyperCard did not support some 

of the drawing tools that I needed in creating my program, such as arcs, curves, and 

arrows. This forced me to either choose different, less desirable graphics in their stead, or 

to draw the pictures I wanted using free-hand, a process that often left me editing these 

objects at the pixel level.

4. User Testing

4.1 Set-up

The individual user testing sessions, which lasted between one and two hours apiece, 

were conducted over the course of a week. In total, six users tested the animation system; 

one of the five different animation views was randomly chosen for each user prior to 

testing, with the last user duplicating one of the previously tested views. Each user 

testing meeting began with a brief discussion of the research being conducted and the 

pending testing procedures. The user was reminded that participation was purely 

voluntary, and that he/she was free to stop the testing at any point. The user was likewise 

made aware of the informal nature of the testing, and assured that anonymity would be
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preserved even if the results were published. Any concerns or questions, the users 

were told, could be directed to the Instructional Review Board (IRB) administrator, who 

reviewed and approved the user testing portion of this research [see Appendix 1]. A 

discussion of the testing procedures followed, with the user instructed to ...

• ... take as much time as necessary to learn as much about the algorithm as 

possible.

• ... use the "think aloud" methodology [19], or thought verbalization, while 

navigating through the program.

• ... use the resources provided by the animation program to resolve unexpected 

difficulties.

It was understood that I would remain in the room observing and taking notes, and that I 

would only be available to assist the user in the event of a seemingly unresolvable 

problem. The users were subsequently told that after using the animation program they 

would be given as much time as necessary to complete a post-test and a questionnaire, 

both to be taken without the animation program available to them. It was made explicitly 

clear to the users that they might not be able to answer all of the questions on the post

test, depending on which view of the animation they were exposed to, and that it was the 

animation program that was being evaluated, not them. In place of individual post-tests, 

the users were to be given the same post-test, with the stated assumption that some 

questions would be unanswerable for certain users. After the above material was fully 

discussed and understood, the user was asked to read and sign a consent form [see 

Appendix 2], and then to begin the animation program.
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4.2 Results

None of the users reported having any knowledge of the convex hull algorithm prior to 

using the animation program. The average amount of time that the user looked at the 

animation program was approximately 14* minutes, while the average amount of time 

taken to complete the post-test was 31 minutes. There were a total of 14 questions on the 

post-test, and each of these questions were marked (after the testing) to be one of two 

types: procedural or conceptual. See [23] for further discussion.

The procedural questions are short-term memory type questions that were designed 

primarily to determine if the user paid close attention to the animation program. As such, 

the procedural questions did not necessarily test understanding of the algorithm 

presented, but rather exposure to the animation material. Although this hypothesis was 

not tested, one might surmise that since the procedural questions tested short-term 

memory and diligence of the users in using the animation program, many of the users 

might not be able to answer some of the same procedural questions on a delayed post-test 

that they were able to answer initially.

Conversely, the conceptual group of questions were mostly open-ended, essay type 

questions that tested the user's overall level of comprehension of the convex hull 

algorithm. It is this group of questions and answers that indicates how well the user 

understood the algorithm, and subsequently, how well the animation program succeeded 

in helping the user to learn the algorithm. Examples of two questions from the post-test, 

one procedural and one conceptual in nature, are listed below [see Appendix 3 for the full 

list of post-test questions and their type designations].

Procedural. W hat were the respective purposes of the variables i and m l
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Conceptual'. How is it determined if a point is a vertex on the convex hull or 

not?

To facilitate the displaying of results, andun order to maintain anonymity, each user was 

referred to by the identification code assigned to each view. For example, the user who 

used the Visual / Overall Strategy animation view was VO, the user who used the Visual 

& Code / Overall Strategy view was VCO, etc. Since two users utilized the Code / 

Implementation Detail view of the animation, they are coded as CI#1 and CI#2 

respectively.

The users' performance on the procedural questions are reflected by the chart in Table 1. 

The procedural questions were each assigned a point value [see Appendix 3], and these 

questions on the post-tests were graded much like a test would be graded, with the 

number of points awarded for any given question corresponding to how well the user 

answered the question. If a user was unable to answer a question because of the 

particular view he/she was exposed to, that question was deleted from the grading. For 

example, the user who saw the VO animation view would not be expected to answer the 

procedural question about specific variables listed above. This explains the discrepancies 

in the totals numbers for the procedural group of questions for each user. As illustrated 

by Table 1, all of the users scored sufficiently high on the procedural questions, 

indicating that they were engaging the animation program diligently and paying close 

attention. The fact that the users displayed adequate procedural proficiency lends greater 

authority to conclusions derived from the results of the post-test's conceptual questions.
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R aw  Score 15/20 30/35 31/35 46/50 44/50 36/50

Percentage 75% 86% 89% 92% 88% 72%

Table 1. Matrix of Procedural Understanding

The answers to the post-test's conceptual questions were reviewed to assess how well the 

users understood the three main points that the animation attempted to illustrate: labeling 

the points in the correct order, analyzing the angles to determine if a point is part of the 

convex hull or not, and the relation to the stack to the overall algorithm. After studying 

the users' answers to the conceptual questions, I ranked their understanding of the 

algorithm for each of the three main points as being either HIGH, MEDium, or LOW 

(unlike the point based system used for the procedural questions). I chose to use a 

general ranking system for the conceptual questions rather than the more quantitative 

point approach because these questions were of an essay type, and did not necessarily 

have absolute answers. Most critical to the final conceptual ranking given was the user's 

success in answering the last conceptual question on the post-test, which called for 

illustrating, step by step, how the convex hull is determined for a given set of points.

This last question was significant in that it quickly revealed any of the user's 

misconceptions about the overall working of the algorithm after using the animation 

program, regardless of how well other specific conceptual questions on the post-test were 

answered. For example, a user might have answered a limited conceptual question 

adequately, one that referred to one specific part of the overall algorithm, but then failed 

to demonstrate comprehensive understanding when faced with a question, like the last 

one, that required associating the various pieces of the algorithm. A user may also have
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been able to answer a specific conceptual question adequately by writing down a 

suitable answer earlier on the post-test, but then was unable to illustrate his/her practical 

knowledge of that same answer using the exercise presented by the last conceptual 

question. Table 2 shows the results of the users' conceptual understanding, ranked from 

their answers to the conceptual questions on the post-test.

As I was the only person ‘grading’ the users’ post-tests and ranking their knowledge of 

Graham’s scan algorithm, I was conscious not to let any external biases interfere. I had 

no prior experience as to the abilities of any of the users, and as previously mentioned, 

each of the user / animation view pairs were chosen randomly prior to user testing. I 

believe I was successful in maintaining a fair and objective mind while evaluating the 

users’ experience with the animation program, an effort that was made easier by my past 

teaching (and grading) experience.

Key L earn ing  Tasks y Q VCO

\  * 

V / V / V C I
' f’t; H ''
CI#1 CI#2

Labeling points in correct order. HIGH

.1

HIGH LOW HIGH MED HIGH

Analyzing angles to determine if a point is 
part of the convex hull or not.

LOW HIGH HIGH HIGH LOW LOW

Relation of stack to overall algorithm. MED HIGH HIGH LOW LOW

Table 2. Matrix of Conceptual Understanding

As seen in Table 2, those users provided with a visual animation, step-by-step textual 

descriptions of the algorithm in the form of pseudocode, and illustrations relating the key
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data structures (VCO,VCI), had the highest overall conceptual ranking. Conversely, 

the users presented with a view of the algorithm that had either just the visualization 

alone (VO) or the code (and data structures) alone (CO, CI#1, CI#2) had the lowest 

overall conceptual understanding of the algorithm.

The question of whether the overall strategy level of information works better or worse 

than the implementation detail level of information, yields mixed and somewhat 

surprising results. In the absence of a visualization, higher-level information (Overall 

Strategy) appears to be more efficient than lower-level information (Implementation 

Detail), which is unexpected. It seems as though the users exposed to code (and data 

structures) but not to visualization (CO,CI#l,CI#2 in Table 2) were better prepared for 

the conceptual questions when presented with the higher-level pseudocode (CO) as 

opposed to the lower-level pseudocode (CI#1,CI#2). This is surprising in that, given the 

lack of an accompanying visualization for these views, one would expect that the more 

detailed information would be preferable for supplying missing links than the higher- 

level information. One possible explanation for the apparent advantages of higher-level 

information in the absence of an accompanying visualization, however, might be that 

without a visualization to make the steps of the algorithm clearer, the user may become 

mired in the details of the lower-level code and further confused. Comparing the levels 

of information may not be as relevant for VCO and VCI, since any missing information 

in these views might also be explained by the accompanying visual aspect of these views. 

However, if one does attempt any sort of comparison for the VCO and VCI views, the 

results appear to be more expected and not all that significant. The user exposed to the 

VCI view seemed to have a slightly better conceptual understanding of how the stack is 

used in the algorithm than the VCO user. This difference can easily be reconciled by the
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fact that the VCI user had the lower-level pseudocode in his view, which explains the 

stack in more detail than the higher-level pseudocode shown to the VCO user.

There do not appear to be any tendencies indicated by the conceptual chart which suggest 

that the program's illustrations favored any one of the three key learning tasks over the 

others. However, it appears most conclusive that views with ‘semantic redundancy’ (a 

concept defined and referenced earlier in this paper) in the form of a visualization 

accompanied by code, portrayed the key aspects of the algorithm more thoroughly than 

the views that did not contain this redundancy.

4.3 Observations

The following notes are derived from my observations of the users as they viewed the 

animation system, from things they may have said in "thinking aloud" while using the 

system, and from the post-test questionnaires (see Appendix 4 for a complete listing of 

the questionnaire) filled out at the end of the user testing sessions:

• All of the users initially looked at the preliminary description screens and then 

the screen that provided navigational tips on running the animation (Figure 2) 

before proceeding on to his/her specific animation view.

• Some of the users who used a view of the animation that lacked certain 

information commented later that the inclusion of the view's withheld 

information would have helped them. For example, user VO, whose view did 

not have any textual descriptions or data structures, remarked after testing that 

the visual picture alone was not sufficient for learning the algorithm
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thoroughly, and that he would have benefited from textual assistance 

accompanying the visual image. Similarly, user CI#2, whose view did not 

have the visual image animation, said that a picture revealing how the angles 

were compared would have aided her understanding.

• All of the users reported enjoying the animation program; all felt that having 

such a tool would greatly assist and often facilitate learning algorithms.

• The buttons used for navigating through the algorithm were used in a variety 

of ways. Some users used the play buttons (both fast and slow), while other 

users used the next frame  buttons for forward movement in the program. It 

became obvious that different users preferred different methods of navigation; 

this might indicate that the optimal animation program would offer at least as 

many options for navigation as this program did. The flexibility of navigation 

methods in this program was cited in some of the questionnaires as being a 

beneficial characteristic.

• None of the users utilized the prev frame  button for backwards, historical 

movement in the program. It may be that the nature of this algorithm does not 

demand the degree of historical perspective that other algorithms might (like a 

sorting algorithm, for instance, where it's critical to compare detailed 

information in a frame-by-frame manner).

5. Conclusions

So, are we any closer to defining key elements that make algorithm animation systems 

more effective, and can we say anything about using the task-centered UI design 

methodology as the basis for designing such systems? Despite the relatively ad-hoc
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nature of this research, user testing analysis revealed definitive trends and positive 

results that can contribute to the dialogue about algorithm animation systems. Perhaps 

the most significant conclusions drawn from this research is the evidence that supports...

• the increased efficacy of an algorithm animation system designed from the 

user's perspective.

• incorporating an appropriate level of visual and textual semantic redundancy 

in the system, and designing this redundancy, again, from the user’s 

perspective.

With the learning tasks of the user constituting the guiding issues of the entire design 

process, an approach consistent with the task-centered UI design methodology, the 

resulting algorithm animation system was concise and geared towards accomplishing 

specific goals. A natural complement to the user-oriented design process is determining 

and offering the optimal blend of information in the animation program to help the user 

accomplish the defined learning tasks. This 'optimal blend of information' was shown in 

our research to translate directly into semantic redundancy in the form of a visualization 

accompanied by pseudocode or other meaningful textual descriptions. The results of this 

study indicate that the views featuring this type of semantic redundancy (VCO,VCI) were 

more efficient in accomplishing the learning tasks than the views that did not (VO, CO, 

C l) .

The results of this study also indicate that beyond simply including visual and textual 

information, an algorithm animation system's success depends on a careful assessment of 

what information is offered and how it is presented. That a user-oriented approach to 

designing and including this information is critical recalls, perhaps, those experiments
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cited earlier in this paper in which results were not as positive as initially hypothesized. 

Some of these other experiments were conducted using a visual algorithm animation 

supported by lecture comments (audio) and/or textual descriptions, but these other forms 

of semantic redundancy were perhaps n o t incorporated into the learning process in a user- 

oriented manner, thus making them less efficient and adding to the disappointing results

[23] [24].

Additional evidence that supports the conclusion that the v is u a l  animation and the 

t e x tu a l  descriptions are the key components of the semantic redundancy is provided in 

the comparison between the VCO, VCI views and the CO,Cl views of the animation 

program in this study. It could easily be argued that the CO and Cl views of this 

animation did contain a form of semantic redundancy, as these views displayed not only 

pseudocode for the algorithm, but also the key data structures. However, it has been 

clearly stated from the Results in Section 4.2, that the views combining a visualization of 

the algorithm, the pseudocode, and the relating data structures (VCO,VCI) were more 

effective than those views that combined just the pseudocode and relating data structures 

(CO,Cl). This strongly suggests that the visualization accompanied by the text is the key 

component in the mix of information presented to the user. Furthermore, within the 

views combining pseudocode and relating data structures, the manner in which the 

pseudocode is displayed (high-level, low-level) also appears to be significant.

Among the other conclusions that can be reached, it appears that an algorithm animation 

system that provides various methods of navigation and that allows for flexibility based 

on individual preferences is helpful to users, and ultimately contributes to a more 

effective learning tool than one that is less user-oriented. Sometimes, however, features 

that are expected to assist the user may also prove to be nearly irrelevant: considering
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that the rewind function was never utilized, for example, it may be that historical 

snapshots are more critical to certain types of algorithms than to others. Ultimately, this 

study does not diverge from the finding of earlier experiments that users respond 

positively to using algorithm animation systems, an encouraging notion for the use of 

such systems in the future.

6. Future Work

There are many possible branches of continued study in this area that might use this 

research project as a base or as a supplement. To begin with, a more formal, empirical 

version of this study might be conducted, one that more thoroughly considers the 

potential biases and that alters the controlling variables accordingly (includes a larger 

group of users, achieves a greater pre-testing knowledge of these users, establishes more 

realistic post-testing conditions, conducts delayed post-testing, etc.). It would also be 

intriguing to study to what extent an animation system would benefit from further 

iterations in the task-centered UI design process (key point 7, as defined in section 2.1), 

with intensified user interviews and perhaps greater integration of user ideas into the 

animation program. This animation program, or one like it, might also be expanded to 

include multiple algorithms, user-defined data sets, more color, and on-line quizzes to 

evaluate the impact of these additions on the conclusions reached. Additionally, 

remembering that none of the users in this study chose to look at the historical 

perspective provided by the system, further research might search for the conditions when 

historical access is more integral in an algorithm animation system.
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Another possible focus for future research would be to continue to use the task- 

centered UI design process to target the visualization and textual comments of the 

animation to make them more efficient as viewed in conjunction with one another. The 

conclusion has already been made that the visual / textual pair makes for the most 

effective algorithm animation, but future work might endeavor to use the task-centered 

process to determine the best way of using or displaying each of these forms of 

information in relation to one another. The results of this study indicate that the level of 

information provided in an algorithm animation system (high-level, low-level) is 

important, but exactly how and to what extent remains to be further studied. Different 

levels of textual descriptions depending on the accompanying visualization, hidden 

versus visible text, and help text are just a few of the different paths that such further 

experimentation might take.

Future work might also consider the efficacy of teaching algorithms using an animation 

system, and how the efficiency of the accompanying textual descriptions might compare 

with audio (lecture) descriptions. This current study suggests that the semantic 

redundancy provided by textual comments (pseudocode) is clearly advantageous to the 

user, especially when the user has the ability to control the pace and the manner of 

viewing the comments during the animation. Also intriguing to consider would be the 

question of whether the more ‘permanent’ and ‘reusable’ textual comments have more 

utility than the fleeting words of a teacher who lectures as the animation runs. While the 

presentation of a lecturer is a more flexible and dynamic medium, the embedded textual 

comments of the animation system, although “stagnant,” remain available if the user 

wishes to revisit and review any areas of the animation (provided the animation has 

rewind capabilities). A formal study analyzing the advantages and disadvantages of 

audio versus textual comments in an algorithm animation program might thus assist



40

efforts to create and use algorithm animation systems more effectively, and to better 

understand their value as instructional aids.

A more ambitious goal in the future of this research area would be to develop an 

algorithm animation system using the program developed in this research as the 

prototype, but one geared towards a wider user base. Such a system might be oriented 

towards both the algorithm animation creators (educators) as well as towards the 

animation viewers (students). The differences in targeted users (animation creators vs. 

animation viewers) might explain the discrepancies between previous algorithm 

animation systems and the prototype developed in this research. Whereas systems such 

as Balsa and XTango were developed with the intent of not only providing a solid user 

interface, but also of allowing for relatively quick and easy implementation of algorithm 

animations, the prototype created in this research focuses solely on the efficiency of the 

user interface. Ultimately, then, future work in the area of algorithm animation systems 

will yield a system that is efficient from both the educator’s and the student’s perspective, 

that allows for greater variety and more dynamic construction of algorithm 

representations, but that does not sacrifice the tangible benefits of the end-user (animation 

viewer) oriented approach that this study has favored.

The research area of algorithm animation is currently an active and dynamic one, which 

means that results of a study like this one point towards new studies as much as they 

suggest definitive conclusions. It is hoped, then, that this study will be an encouraging 

and useful aid in continued efforts to improve the effectiveness of algorithm animation 

systems as learning tools.



Appendix 1. IRB Approval.
41

Form RA-10S 
(Rev. 2/95)

, THE UNIVERSITY OF MONTANA 
INSTITUTIONAL REVIEW BOARD (IRB)

C h e c k l is t

Submit one completed copy of this Checklist, including any required attachments, for each project invoking human subjects. 
The IRB meets monthly to evaluate proposals, and approval is granted for one academic year. Sec IRB Guidelines and 
Procedures for details. . /

P roject D ir e c to r :  V o L A o P A  R p i M g / b / ______________ D e p t.:  C c m P PhoT ie: 3 2 1 - ^ 1 3

S ign atu re  T U ,*T •_____________________ ____________________D a t e :  V  ~~ P*~ ^ 6

\1 • w ’
C o -D ir e c to r ( s ) :______________________________________________     D e p t .:_________________P h o n e : .____________

Project Title: V S C d  T  E ^ T t r f  £ -  O F  ALCOA/HM/ M i  M A - J 1 c ^ > ________________

Project Description:  / 'i'L  0 JL 'f'-r i (< c /  a . a .  1 76 o. /■-, /
( in  n o n te c h n ic a l la n g u a g e) ■ u ~V  7“  ̂ _ y  1 0 y // ! ~i T" ~

/Vr Ay/suva gr>~L f / ■ GcrU t <T v  A,♦mb 7a..CT~
t V , , ,  . / 2 tT?'

hib f r   ̂ mAmAC I l\)l  7'A A A d  <? /o o  rrasr, t i l

Please provide the dates requested  below;

Date Submit ted to IRB P r o je c te d  S ta r t  D a le E n d in g  D a le

' 5  -  / b  -  7 6 30-90
S tu d en ts  only: _
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Graham's scan convex hull post-test

Thank you for participating in this algorithm animation research. Please answer the 
following questions to the best of your ability. Note: It is our intention that you will not 
necessarily be able to answer all the questions, but do what you can. This is NOT a test 
of you or your intelligence. Instead it is a tool that we hope will help us gain insight into 
how algorithm animations can be most effectively used. Again, thanks for all your help.

1. Why was it necessary to keep track of the NEXT-TO-TOP element of the stack?

Conceptual

2. Do all points in the set Q eventually get labeled? Yes No

Procedural 5 points

If no, why not?

Procedural 5 points

3. How is the first point, pO, determined?

Procedural 5 points

4. W hat does the stack get initialized with?

Procedural 5 points

5. W hat is the average run-time of Graham’s scan convex hull algorithm?

Procedural 5 points

6. How is it determined if a point is a vertex on the convex hull or not?

Conceptual

7. When do points get PUSHED onto the stack?

Conceptual

8. Explain how the points in set Q are labeled as specifically as you can.

Conceptual
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9. What were the purpose of the variables i and m l

Procedural 5 points

10. If you were trying to explain the convex hull algorithm to a friend in non-technical 
terms (not mentioning pseudocode or data structures), how would you describe it?

Conceptual

11. Is there a minimum number of points in set Q required to run this algorithm?

Yes No

Conceptual

12. Write down your understanding of the main steps of the algorithm, in the order that 
they occur, in either pseudocode or plain English.

Procedural fo r  users VCO, CO, VCI, CW1, Cl#2 10 points

Conceptual fo r  user VO

13. Is Graham's scan the only algorithm used to determine the convex hull of a set of 
points?

Yes No

Procedural 5 points

If not, can you name any of the others?

Procedural 5 points

14. Use as many of the following pictures as needed in order to find the convex hull of 
the set of points below. Try to illustrate this process as clearly as you can by using a 
different picture to show the main steps of the algorithm and by describing briefly what 
you're doing at each step.

Conceptual
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D e scrip tio n :

D e sc rip tio n :

D e sc rip tio n :

D e sc rip tio n :

1 D e s c rip tio n :

8

D e s c rip tio n :

D e s c rip tio n :

D e s c rip tio n :
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Appendix 4: Post-test questionnaire.

Questionnaire

1. Do you feel that this animation helped you in learning Graham's scan convex hull 
algorithm? If so, how and why. Please be as specific as possible.

2. Did you have any knowledge of the convex hull algorithm or Graham's scan convex 
hull algorithm prior to using this tool?

Yes No

If yes, please explain how much and where acquired.

3. Are there any features or functionality that you felt would have helped you to better 
learn this algorithm that were not part of the animation? If so, what were they 
(specifically).

4. Did you feel, in general, there was too much, too little, or just the right amount of 
information in the animation?

5. What did the animation do particularly well, if anything?

6. Where could improvements be made in this animation?

7. What aspect of this algorithm took you longer to understand (check all that apply):

  comparison of points to determine if non-left angle

  how things got pushed and popped from stack

  how stack was initialized

  how points were initially labeled

  what angle was currently being analyzed

8. How did you feel in using this animation tool? (excited, bored, etc.)

9. Rank the following ways in which this tool would be best utilized to help you in 
learning this and other algorithms? (5-best use, 1-worst use)
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teacher using this as lecture support (to 
show examples in class, etc.)

teacher using this as lecture support and 
having required lab sessions and/or 
homework with this type of animation 
program

teacher giving traditional lectures, and 
having required lab sessions and/or 
homework with this type of animation 
program

using the animation program only as lab and 
homework tool, not in conjunction with any 
lectures

not at all
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