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Cbu.L1917, a group I intron present in the 23S rRNA gene of Coxiella burnetii, possesses a unique 3�-terminal
adenine in place of a conserved guanine. Here, we show that, unlike all other group I introns, Cbu.L1917
utilizes a different cofactor for each splicing step and has a decreased self-splicing rate in vitro.

Coxiella burnetii is an obligate intracellular gammapro-
teobacterium that causes Q fever in humans (3). In addition, C.
burnetii infects domestic ruminants and has been isolated from
a wide variety of wild vertebrates and arthropods (9). Inside
the host cell, C. burnetii replicates in a parasitophorous vacuole
that has features of a mature phagolysosome (20). Genome
sequences of four C. burnetii isolates have been published
recently and show diversity in their pseudogene content and
other pathoadaptive features (1, 18). Previously, we described
two highly conserved self-splicing group I introns in the 23S
rRNA gene of ten C. burnetii isolates belonging to eight geno-
types (14, 15). Here, we present the unique self-splicing mech-
anism of one of the introns (Cbu.L1917), which is altered from
and slower than the canonical group I intron-splicing process
described to date.

Group I introns are ribozymes that catalyze a two-step trans-
esterification reaction that results in a free intron and spliced
exons (21). All group I introns share conserved features such as
a secondary structure that consists of about 10 paired (P)
elements and their terminal nucleotide, which until the discov-
ery of Cbu.L1917 was always a guanine (15). The conserved
terminal guanine (�G) plays an important role in group I
intron self-splicing. In the first splicing step, the 3�-OH group
of an exogenous guanosine bound to the G-binding site (GBS)
in P7 carries out a nucleophilic attack on the 5� splice site to
release the 5� end of the intron. The guanosine is now co-
valently attached to the free 5� end of the intron and is re-
moved from the GBS, allowing �G to occupy the site and mark
the 3� splice site. The second splicing step is chemically equiv-
alent to the reverse of the first step, where the free 3�-OH
group of the 5� exon attacks the 3� splice site, releasing the
intron and leaving the exons spliced together (19). When we
first characterized Cbu.L1917 as a self-splicing intron by func-
tional analyses, we were unclear about its classification as a
group I intron due to its unique 3�-terminal adenine (�A).
Since �A marks the site for Cbu.L1917’s second splicing step,
we wanted to determine the cofactor used in its first splicing
step.

Genomic DNA was isolated from C. burnetii Nine Mile
phase II (RSA 439; clone 4) using a High Pure PCR template
preparation kit (Roche Diagnostics, Basel, Switzerland), and

the region coding for Cbu.L1917 and its flanking exons were
amplified using specific primers (L1917_flank, Table 1) by
PCR, as previously described (14). The amplicons were puri-
fied (QIAquick nucleotide removal kit; Qiagen, Valencia, CA)
and used as a template for in vitro transcription utilizing the T7
promoter sequence (underlined in L1917_flank, Table 1) and a
MEGAscript high-yield transcription kit (Ambion, Austin,
TX). The resulting RNA was electrophoresed in a 5% (wt/vol)
acrylamide-8 M urea gel, and the precursor RNA (unspliced
intron with flanking exons) was excised from the gel; eluted
overnight at 37°C into a buffer containing 0.5 M ammonium
acetate, 1 mM EDTA, and 0.1% sodium dodecyl sulfate; and
subsequently purified with an RNeasy minikit (Qiagen). In
vitro intron splicing was performed for 30 min at 37°C using 1
�g of precursor RNA in a buffer containing 10 mM Tris-HCl,
pH 7.5, 50 mM KCl, 50 mM MgCl2, and 0.8 mM ribonucleo-
side triphosphate mix (0.2 mM each of rATP, rGTP, rCTP, and
rUTP). Unincorporated nucleotides were removed using a
NucAway kit (Ambion), and the spliced intron RNA (which has
the nucleotide cofactor used in the first splicing step covalently
attached to its 5� end) was used as a template for cDNA
synthesis with a primer that nestles within the intron sequence
(L1917_internal, Table 1). Template RNA was removed by
RNase treatment, and the cDNA was tailed using terminal
deoxynucleotidyltransferase (5� rapid amplification of cDNA
ends system; Invitrogen, Carlsbad, CA) and 2 mM dATP. The
tailed cDNA was purified (QIAquick nucleotide removal kit;
Qiagen) and PCR amplified using a primer that hybridizes to
the poly(A) tail and a primer complementary to a sequence
within the intron (L1917_tail, Table 1). The amplicons were
cloned into pCR2.1-TOPO using a TOPO TA cloning kit
(Invitrogen). Twenty random clones were sequenced with a
BigDye Terminator cycle sequencing ready reaction kit and
an automated DNA sequencer (ABI3130x1; ABI, Foster City,
CA). Sequencing results showed that all 20 clones had guanine
incorporated at the 5� end of the intron RNA, revealing that
the cofactor used by Cbu.L1917 in its first splicing step is GTP.

To confirm the above observations, we performed in vitro
splicing in the presence of either GTP or ATP (Fig. 1). Un-
spliced precursor RNA (Cbu.L1917 with flanking exons) was
synthesized and purified as described above. In vitro splicing
was carried out with 2 �g of precursor RNA and the same
buffer and reaction conditions as those described above, except
that 0.2 mM of either rATP or rGTP was provided along with
relevant controls (without essential MgCl2 or nucleotide co-
factors). After the splicing reactions (37°C, 30 min), equal
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volumes of gel loading buffer (Ambion) were added to the
RNA and heated at 95°C for 5 min to disrupt secondary struc-
tures. The samples were then electrophoresed in a 5% (wt/vol)
acrylamide-8 M urea gel (150 V, 60 min). The gel was stained
with ethidium bromide and visualized using a Gel Doc system
(Bio-Rad, Hercules, CA). As shown in Fig. 1, the intron splices
only in the presence of GTP but not ATP, confirming that GTP
is the cofactor in the first splicing step of Cbu.L1917.

Results from the above experiments demonstrate that, un-
like all other group I introns studied to date, Cbu.L1917 uses
a different cofactor for each splicing step (guanine for the first
step and its terminal adenine for the second step). Earlier
studies showed that if the 3�-terminal guanine was mutated to
adenine, the efficiency of group I intron splicing was markedly
reduced (2, 10, 13). To investigate how the natural guanine-
to-adenine mutation observed in Cbu.L1917 affects its splicing
efficiency, we compared the rates of intron splicing between
wild-type Cbu.L1917(�A) and Cbu.L1917(�A3G).

During the first step of group I intron splicing, the nucleo-
tide cofactor (guanosine, GMP, or GTP) is covalently linked to
the 5� end of the intron (19). By using 35S-GTP in the splicing
reaction and quantifying its incorporation into spliced introns
at various time points, the rate of intron splicing can be calcu-
lated. To perform a comparative analysis, we first mutated the
terminal adenine to guanine using a PCR-based strategy. A
primer that replaces the terminal adenine with guanine
(L1917_mut, Table 1) and a primer with T7 promoter se-
quence (L1917_flank, 5� primer, Table 1) were used in the
PCR. The amplicon with the T7 promoter region and the
�A-to-G mutation was used as the template for in vitro tran-

scription using a MEGAscript kit (Ambion) to produce the
unspliced precursor RNA. The RNA was purified using an
acrylamide gel as described above, and 500 ng was used per
reaction. Splicing reactions were carried out as described
above but with 25 �Ci of �-35S-GTP (Perkin-Elmer, Waltham,
MA). The reactions were started by the addition of 50 mM
MgCl2, and the samples were incubated at 37°C for either 2
min or 10 min. The reactions were stopped by chilling the
mixtures on ice and by adding 10 mM EDTA. Unincorporated
nucleotides were removed using an RNeasy minikit (Qiagen).
The RNA was mixed with scintillation cocktail (Aquasol-2;
Perkin-Elmer) and counted using a liquid scintillation system
(Beckman Coulter, Fullerton, CA). The amounts of 35S-GTP
incorporated into spliced introns are presented as counts per
minute (Fig. 2). The rate of splicing for each intron was de-
termined from the slope (m) of the plots (8). As shown in Fig.
2, the slope of wild-type Cbu.L1917(�A) (m � 10.90 � 1.32) is
significantly lower (P � 0.015, paired t test) than that of
Cbu.L1917(�A3G) (m � 15.09 � 2.20). This observation is
consistent with earlier reports showing that when �G of a
group I intron was mutated to adenine, it resulted in a signif-
icant loss in splicing efficiency (2, 10, 13).

The GBS binds an exogenous guanine during the first splic-
ing step and then the terminal guanine during the second step

TABLE 1. PCR primers used in the study

Designation
Sequence

5� primer 3� primer

L1917_flanka TAATACGACTCACTATAGGGAGGTGGCTGCGACTGTTTAC GGAATTTCGCTACCTTAGGACCG
L1917_internal TATTGACGTTATGTTAATCATG
L1917_tail GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTTT CGCTATAGAGATCGGACTC
L1917_mutb GGAATTTCGCTACCTTAGGACCGTTCATTG

a T7 promoter sequence is underlined.
b Mutation site is in boldface.

FIG. 1. Cbu.L1917 splices in the presence of GTP but not ATP.
Two micrograms of precursor unspliced intron RNA was spliced in the
presence of either 0.2 mM rGTP (lane 3) or 0.2 mM rATP (lane 4).
Splicing reaction mixtures without MgCl2 (lane 1) or without nucleo-
tides (lane 2) were included as controls. RNA size standards are shown
to the left in bases.

FIG. 2. Comparison of intron splicing rates. Cbu.L1917 with ter-
minal adenine (�A) or terminal guanine (�G) was spliced in the
presence of �-35S-GTP. CPM recorded after 2- and 10-min incubations
were plotted, and the slopes were determined. One graph representa-
tive of three independent experiments is shown. The slope for
Cbu.L1917(�A) (filled circles, dashed line) is significantly lower than
that of Cbu.L1917(�A3G) (open circles, solid line) (P � 0.015, paired
t test).
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to facilitate group I intron self-splicing. The GBS has evolved
to accommodate guanine efficiently to the exclusion of other
nucleotides (10, 13). The guanine cofactor interacts with a
G � C base pair in the GBS to form a stable base triple (4, 19).
However, in the case of Cbu.L1917, the GBS is forced to
accommodate an adenine in place of guanine during the sec-
ond splicing step. The resulting less-compatible binding of �A
to GBS is likely the reason for the decreased splice rate exhib-
ited by Cbu.L1917. In fact, earlier studies have shown that
when the G � C pair in GBS is mutated to A � U such that it
can efficiently accommodate �A during intron splicing, the
rate of intron splicing is restored (2, 10). It is likely that some
C. burnetii proteins help Cbu.L1917 splice more efficiently in
vivo, thereby negating the deleterious effects of the �G-to-A
mutation (7). Another possibility is that an intron with de-
creased splicing rate was fixed in C. burnetii due to genetic
drift.

The genomes of host-associated bacteria tend to be A�T
rich. Even though the mechanisms underlying this GC-to-AT
shift are not well understood, it is thought to be due to a
variety of factors like mutational bias, loss of DNA repair
genes, or metabolic cost (11, 16). The Coxiella chromosome
and Cbu.L1917 both have low G�C ratios (42.5% and 36.8%,
respectively). The terminal guanine might have mutated to an
adenine as part of the GC-to-AT conversion that occurred
during the evolution of C. burnetii from a free-living bacterium
to an obligate intracellular pathogen (14, 18).

Obligate intracellular bacteria are susceptible to genetic
drift due to constant availability of nutrients, low effective
population size, and bottlenecks during transmission, resulting
in stochastic loss of some beneficial genes and accumulation of
some slightly deleterious mutations (Muller’s ratchet) (11, 12).
This process has resulted in the accumulation of slightly dele-
terious mutations in such vital genes as groEL and 16S rRNA
in the obligate endosymbiotic bacterium Buchnera aphidicola
(5, 6) and gene decay and pseudogene formation in the facul-
tative intracellular pathogen Francisella tularensis (17). Simi-
larly, it is possible that the �G-to-�A mutation in Cbu.L1917
that occurred during the evolution of C. burnetii was fixed in
the population in spite of the slightly deleterious loss in splic-
ing rate.

We thank Patty McIntire (UM Murdock Sequencing Facility) for
sequence analyses.

This work was supported by the NIH Rocky Mountain Regional
Center of Excellence for Biodefense and Emerging Infectious Disease
grant U54 AI065357-040023 to M.F.M.

REFERENCES

1. Beare, P. A., N. Unsworth, M. Andoh, D. E. Voth, A. Omsland, S. D. Gilk,
K. P. Williams, B. W. Sobral, J. J. Kupko III, S. F. Porcella, J. E. Samuel,
and R. A. Heinzen. 2009. Comparative genomics reveal extensive transpo-
son-mediated genomic plasticity and diversity among potential effector pro-
teins within the genus Coxiella. Infect. Immun. 77:642–656.

2. Been, M. D., and A. T. Perrotta. 1991. Group I intron self-splicing with
adenosine: evidence for a single nucleoside-binding site. Science 252:434–
437.

3. Cutler, S. J., M. Bouzid, and R. R. Cutler. 2007. Q fever. J. Infect. 54:313–
318.

4. Guo, F., A. R. Gooding, and T. R. Cech. 2004. Structure of the Tetrahymena
ribozyme: base triple sandwich and metal ion at the active site. Mol. Cell
16:351–362.

5. Herbeck, J. T., D. J. Funk, P. H. Degnan, and J. J. Wernegreen. 2003. A
conservative test of genetic drift in the endosymbiotic bacterium Buchnera:
slightly deleterious mutations in the chaperonin groEL. Genetics 165:1651–
1660.

6. Lambert, J. D., and N. A. Moran. 1998. Deleterious mutations destabilize
ribosomal RNA in endosymbiotic bacteria. Proc. Natl. Acad. Sci. USA 95:
4458–4462.

7. Lambowitz, A. M., and P. S. Perlman. 1990. Involvement of aminoacyl-
tRNA synthetases and other proteins in group I and group II intron splicing.
Trends Biochem. Sci. 15:440–444.

8. Lin, C. W., M. Hanna, and J. W. Szostak. 1994. Evidence that the guanosine
substrate of the Tetrahymena ribozyme is bound in the anti conformation and
that N7 contributes to binding. Biochemistry 33:2703–2707.

9. Maurin, M., and D. Raoult. 1999. Q fever. Clin. Microbiol. Rev. 12:518–553.
10. Michel, F., M. Hanna, R. Green, D. P. Bartel, and J. W. Szostak. 1989. The

guanosine binding site of the Tetrahymena ribozyme. Nature 342:391–395.
11. Moran, N. A. 1996. Accelerated evolution and Muller’s ratchet in endosym-

biotic bacteria. Proc. Natl. Acad. Sci. USA 93:2873–2878.
12. Moran, N. A. 2002. Microbial minimalism: genome reduction in bacterial

pathogens. Cell 108:583–586.
13. Price, J. V., and T. R. Cech. 1988. Determinants of the 3� splice site for

self-splicing of the Tetrahymena pre-rRNA. Genes Dev. 2:1439–1447.
14. Raghavan, R., L. D. Hicks, and M. F. Minnick. 2008. Toxic introns and

parasitic intein in Coxiella burnetii: legacies of a promiscuous past. J. Bacte-
riol. 190:5934–5943.

15. Raghavan, R., S. R. Miller, L. D. Hicks, and M. F. Minnick. 2007. The
unusual 23S rRNA gene of Coxiella burnetii: two self-splicing group I introns
flank a 34-base-pair exon, and one element lacks the canonical �G. J.
Bacteriol. 189:6572–6579.

16. Rocha, E. P., and A. Danchin. 2002. Base composition bias might result from
competition for metabolic resources. Trends Genet. 18:291–294.

17. Rohmer, L., C. Fong, S. Abmayr, M. Wasnick, T. J. L. Freeman, M. Radey,
T. Guina, K. Svensson, H. S. Hayden, M. Jacobs, L. A. Gallagher, C. Manoil,
R. K. Ernst, B. Drees, D. Buckley, E. Haugen, D. Bovee, Y. Zhou, J. Chang,
R. Levy, R. Lim, W. Gillett, D. Guenthener, A. Kang, S. A. Shaffer, G. Taylor,
J. Chen, B. Gallis, D. A. D’Argenio, M. Forsman, M. V. Olson, D. R.
Goodlett, R. Kaul, S. I. Miller, and M. J. Brittnacher. 2007. Comparison of
Francisella tularensis genomes reveals evolutionary events associated with the
emergence of human pathogenic strains. Genome Biol. 8:R102.

18. Seshadri, R., I. T. Paulsen, J. A. Eisen, T. D. Read, K. E. Nelson, W. C.
Nelson, N. L. Ward, H. Tettelin, T. M. Davidsen, M. J. Beanan, R. T. Deboy,
S. C. Daugherty, L. M. Brinkac, R. Madupu, R. J. Dodson, H. M. Khouri,
K. H. Lee, H. A. Carty, D. Scanlan, R. A. Heinzen, H. A. Thompson, J. E.
Samuel, C. M. Fraser, and J. F. Heidelberg. 2003. Complete genome se-
quence of the Q-fever pathogen Coxiella burnetii. Proc. Natl. Acad. Sci. USA
100:5455–5460.

19. Vicens, Q., and T. R. Cech. 2006. Atomic level architecture of group I introns
revealed. Trends Biochem. Sci. 31:41–51.

20. Voth, D. E., and R. A. Heinzen. 2007. Lounging in a lysosome: the intracel-
lular lifestyle of Coxiella burnetii. Cell. Microbiol. 9:829–840.

21. Woodson, S. A. 2005. Structure and assembly of group I introns. Curr. Opin.
Struct. Biol. 15:324–330.

4046 NOTES J. BACTERIOL.


	A Unique Group I Intron in Coxiella Burnetii is a Natural Splice Mutant
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1381516980.pdf.GU0Ec

