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Counterintuitive effects of large-scale predator removal
on a midlatitude rodent community

JOHN L. MARON,1,4 DEAN E. PEARSON,2 AND ROBERT J. FLETCHER, JR.3

1Division of Biological Sciences, University of Montana, Missoula, Montana 59812 USA
2Rocky Mountain Research Station, U.S. Forest Service, Missoula, Montana 59812 USA

3Department of Wildlife Ecology and Conservation, P.O. Box 110430, University of Florida, Gainesville, Florida 32611 USA

Abstract. Historically, small mammals have been focal organisms for studying predator–
prey dynamics, principally because of interest in explaining the drivers of the cyclical dynamics
exhibited by northern vole, lemming, and hare populations. However, many small-mammal
species occur at relatively low and fairly stable densities at temperate latitudes, and our
understanding of how complex predator assemblages influence the abundance and dynamics
of these species is surprisingly limited. In an intact grassland ecosystem in western Montana,
USA, we examined the abundance and dynamics of Columbian ground squirrels
(Spermophilus columbianus), deer mice (Peromyscus maniculatus), and montane voles
(Microtus montanus) on 1-ha plots where we excluded mammalian and avian predators and
ungulates, excluded ungulates alone, or allowed predators and ungulates full access. Our goal
was to determine whether the relatively low population abundance and moderate population
fluctuations of these rodents were due to population suppression by predators. Our predator-
exclusion treatment was divided into two phases: a phase where we excluded all predators
except weasels (Mustela spp.; 2002–2005), and a phase where all predators including weasels
were excluded (2006–2009). Across the entire duration of the experiment, predator and/or
ungulate exclusion had no effect on the abundance or overall dynamics of ground squirrels
and deer mice. Ground squirrel survival (the only species abundant enough to accurately
estimate survival) was also unaffected by our experimental treatments. Prior to weasel
exclusion, predators also had no impacts on montane vole abundance or dynamics. However,
after weasel exclusion, vole populations reached greater population peaks, and there was
greater recruitment of young animals on predator-exclusion plots compared to plots open to
predators during peak years. These results suggest that the impacts of predators cannot be
generalized across all rodents in an assemblage. Furthermore, they suggest that specialist
predators can play an important role in suppressing vole abundance even in lower-latitude
vole populations that occur at relatively low densities.

Key words: Columbian ground squirrel; deer mouse; Microtus montanus; montane vole; Peromyscus
maniculatus; population fluctuations; predation; predator-exclusion experiment; predator–prey dynamics;
Spermophilus columbianus.

INTRODUCTION

Understanding the role of top predators in driving the

abundance and dynamics of animal populations has had

a long and venerable history in ecology (Elton 1924,

Lack 1954, Hairston et al. 1960, Errington 1967).

Elegant laboratory and field experiments as well as

theoretical models have elucidated how various behav-

ioral and ecological factors can generate interesting and

complex dynamics between predators and their prey

(Gause 1934, Huffaker 1958, Holling 1959). Yet in

nature, determining how collections of predators influ-

ence the abundance of multispecies prey assemblages is

logistically challenging. Nowhere has this challenge been

better illustrated than on studies of small-mammal

dynamics. On the one hand, small mammals have been

model organisms for the study of population dynamics.

Many small-mammal species have short generation

times with volatile dynamics that have been well

characterized by long-term time series (e.g., MacLulich

1937, Keith 1990, Stenseth and Ims 1993, Boonstra et al.

1998). Such data have provided ample substrate on

which to decompose the behavioral and ecological

factors that might influence large and rhythmic changes

in population abundance through time. On the other

hand, research on small-mammal dynamics has gener-

ated a fair amount of controversy, as diverse research

groups using different methodology and studying

different species have often come to very disparate

conclusions about the importance of various drivers of

small-mammal dynamics.

Most of the research on small-mammal population

dynamics has focused on high-latitude cyclic species,

particularly voles, lemmings, and hares (Klemola et al.
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2003, Korpimäki et al. 2004, Sundell 2006). Here, a real

emphasis has been to understand the role of specialist

and generalist predators in driving population cycles

(Gilg et al. 2003). Two broad approaches have primarily

been used. The first approach has been to fit mechanistic

models to underlying data, in order to determine the

factors that may drive population change over various

phases of population abundance (Hanski et al. 2001,

Gilg et al. 2003, Turchin 2003). The second approach

has involved manipulative experiments where predator

abundance is reduced either through trapping or by

physically excluding predators from plots and examining

how this manipulation influences subsequent rodent

dynamics (reviewed by Sundell 2006). Together these

approaches have provided evidence that specialist

predators can invoke time lags that cause cyclical

fluctuations in numbers in northern vole populations

(Norrdahl 1995, Korpimäki and Krebs 1996, Korpimäki

and Norrdahl 1998, Hanski et al. 2001, Korpimäki et al.

2002, Norrdahl and Korpimäki 2002, Korpimäki et al.

2004, Korpimäki et al. 2005; but see Graham and

Lambin 2002).

Yet, this body of work is also not without controver-

sy. Correlative approaches to determining how extrinsic

factors influence prey dynamics are problematic (Roya-

ma 1996). In particular, modeling results have been

criticized because, even if data generated by a mecha-

nistic model generally match empirically derived data,

one can never be certain that the processes that are being

modeled are the true determinants of patterns seen in

complex field environments (Krebs 1995). Manipulative

experiments have had their own problems, which have

centered on (1) no or low replication; (2) small spatial

scale; (3) confounding effects of exclosure fencing; or (4)

the fact that in some cases only a subset of the predator

assemblage is experimentally excluded, thereby leaving

the possibility open for strong compensatory responses

by predators not excluded (summarized by Sundell

2006). Beyond methodological concerns, research has

been so heavily focused on understanding the determi-

nants of dynamics of cyclic high-latitude small-mammal

populations that other equally important questions have

been relatively unaddressed.

Most rodent species occur at mid- or lower latitudes

and exhibit relatively low and stable numbers or

fluctuate but do not cycle. What role might predators

play in limiting the abundance of these species? Several

authors have suggested that, at least for some noncyclic

vole populations, their low levels of abundance might

result from predation by generalists (Erlinge 1987,

Hanski et al. 1991, Korpimäki et al. 2005). Nonetheless,

data to support this claim are limited, as few studies

have experimentally determined the general importance

of predators or evaluated the influence of predator

identity in limiting the abundance of noncyclic species

that occur at midlatitudes (but see Reid et al. 1995,

Meserve et al. 1996, 2003). In some ways, this state of

affairs is unsurprising. In many temperate systems, the

predator assemblage has been so dramatically altered

that it is no longer possible to determine how predators
may have affected their prey. For example, in much of

North America, carnivore declines and disappearances
from systems have been substantial (Soulé et al. 2003).

This has prompted some to argue that the lack of a clear
signal for strong top-down forcing noted in a variety of
studies is in part due to anthropogenic-driven reductions

of vertebrate predators in many ecosystems (Duffy
2002). Additionally, not only are predator assemblages

disrupted in many systems, but so too are the plant
communities as a result of domestic grazing or through

exotic plant invasion. Gross changes in plant-commu-
nity composition and productivity can alter rodent

populations (Rosenstock 1996, Keesing 1998, Steen et
al. 2005); subsidized prey populations can also poten-

tially alter predator impacts on prey dynamics (Leroux
and Loreau 2008). Finally, the logistical challenges

associated with experimentally determining how species-
rich predator assemblages influence the population

dynamics of co-occurring rodent species are not
inconsequential (Sundell 2006).

Here we report how a diverse predator assemblage
influenced the abundance and dynamics of three co-

occurring small mammals that inhabit native grasslands
of western Montana, USA. We experimentally excluded
avian and mammalian predators and ungulates, ungu-

lates alone, or none of these animals from 1-ha plots in
order to examine impacts on ground squirrel (Spermo-

philus columbianus), deer mouse (Peromyscus manicula-
tus), and montane vole (Microtus montanus) abundance.

The exclusion of predators was performed in two
phases. During the first phase, we excluded all mamma-

lian and avian predators (mostly generalist predators)
except weasels (vole specialists); thereafter we excluded

all predators. This allowed us to evaluate the influence
of weasels (Mustela spp.), which have been documented

to be particularly important specialist predators at
higher latitudes, relative to the overall predator guild.

By quantifying predator impacts over relatively large
spatial (1 ha) and temporal (seven years) scales, our

intent was to circumvent some of the perceived
limitations with previous experiments on predator–
small-mammal dynamics (Sundell 2006). Our overall

goal was to determine the role of predation and predator
identity in affecting the abundance of midlatitude small

mammals that occur at relatively modest densities.

METHODS

Study system

Research took place in semiarid grasslands within the

Blackfoot Valley in western Montana (47801013.1100 N,
113807059.2100 W). Precipitation averages 32 cm/yr, and

mean summer (June–August) monthly temperature
ranges are 12–158C. Due to its proximity to the Bob
Marshall Wilderness and conservation-oriented man-

agement of public and private lands, the Blackfoot
Valley supports one of the few remaining native
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grassland ecosystems in North America containing all

the mammalian and avian predators that have histori-

cally occurred there (Appendix A). The plant commu-

nity is dominated by the native bunchgrasses Festuca

scabrella and F. idahoensis and a diversity of native

forbs. Threetip sagebrush (Artemesia tridentata) is the

dominant woody shrub, although its abundance varies

greatly across our sites. Four species of native ungulates

occur in our system: elk (Cervus elaphus), white-tailed

deer (Odocoileus virginianus), mule deer (O. hemionus),

and moose (Alces alces). Although up to 1400 elk winter

in the Blackfoot Valley, in summer most elk and mule

deer move to higher elevations. Small-mammal consum-

ers include deer mice, montane voles, Columbian

ground squirrels, yellow-pine chipmunks (Tamias amoe-

nus), mountain cottontails (Sylvilagus nuttallii ), mon-

tane shrews (Sorex monticolus), and northern pocket

gophers (Thomomys talpoides). We focused on deer

mice, montane voles, and Columbian ground squirrels

since these species were the only ones that were

consistently trapped at each of our sites. Other species

only occurred sporadically (and we saw no evidence of

predator impacts on the abundance of these uncommon

species).

Experimental design: predator and/or ungulate exclusion

We established our experiment at four replicate sites

across the Blackfoot Valley (average distance between

sites . 23 km, minimum distance¼ 7.5 km). Three sites

were established in September 2002 and a fourth was

added in September 2005. At each site, we identified

three 100 3 100 m plots that had similar vegetation

characteristics and were separated from each other by at

least 100 m. We randomly assigned each of the following

three treatments to plots at each site: predator and

ungulate exclosure (hereafter predator exclosure), un-

gulate exclosure, and control. Although the primary

objective of the study was to examine predator effects on

small mammals, large predators could not be excluded

without also excluding ungulates, so this necessitated a

treatment to separate ungulate from predator effects.

Predator-exclosure plots were surrounded by game

fencing (Bekaert Industries, Kortrijk, Belgium) topped

with two strands of high-tension wire (total fence height

¼ 2.6 m). Raptors were excluded by overhead parallel

strands of 0.025 mm diameter stainless steel wire, strung

tight and spaced 20 cm apart. From September 2002–

August 2005, we excluded all predators except weasels

from predator-exclusion plots. In September 2005 we

retrofitted predator-exclusion fences to exclude both

short- and long-tailed weasels (Mustela erminea and

Mustela frenata, respectively; hereafter ‘‘weasels’’ for

simplicity; see Appendix B for details of fence construc-

tion). Ungulate exclosures consisted of a 2.4 m tall 10-

stranded barbed-wire fence (strand spacing ¼ 0.24 m)

with no overhead wires. This fencing excluded ungulates

but allowed predators (except bears) to pass freely.

Control plots were unfenced but had 2 m tall fence posts

approximately every 20 m along the perimeter to control

for raptor perch sites created by fence posts around the

other plots.

Small-mammal population sampling

We trapped small mammals in spring (mid-May

through the first week in June), midsummer (mid-July),

and late summer (mid-August) on 10 3 10 m perma-

nently marked grids (10-m spacing) located in the center

of each 1-ha plot. We placed one Sherman live trap (7.6

3 8.9 3 22.9 cm; H. B. Sherman Traps, Tallahassee,

Florida, USA) at each station (100 traps total) to target

Peromyscus maniculatus and Microtus montanus and set

a Tomahawk trap (17.8 3 17.8 3 50.8 cm; model 605,

Tomahawk Live Trap, Tomahawk, Wisconsin, USA) at

each of 16 stations across the grid (20-m spacing) to

target Spermophilus columbianus (see Appendix C for

details of trapping methodology).

Snow tracking

We snow-tracked plots in winter to verify that

treatments were effective and to quantify mammal

activity. Snow tracking occurred two to four days

following snow events whenever conditions allowed.

All plots within a site were tracked on the same day. Ten

10 m wide permanent parallel belt transects were run

across each plot and divided into 10 10-m segments (10

103 10 m cells per belt transect, 100 cells total per plot).

The presence and identity of fresh tracks were scored for

all cells.

Analyses

We estimated species abundance and associated

variance for each five-day trapping interval for each

plot by considering the population closed within each

season (Otis et al. 1978) using Program MARK (White

and Burnham 1999). Population abundance was esti-

mated using a two-point mixture model (Pledger 2000),

which incorporates heterogeneity into capture probabil-

ities. For these models, we also considered additive

effects of year, treatment, and season on capture

probabilities, selecting the most parsimonious model

structure using Akaike’s Information Criterion, adjusted

for sample size (AICc).

With these estimates, we analyzed variation in

abundance and survival using generalized linear mixed

models for count data (abundance estimates), by

assuming a Poisson error distribution and a log link

function. We considered treatment (control, generalist

predator exclosure [predator-exclusion plots from 2002–

2005], generalist predatorsþweasel exclosure [predator-

exclusion plots from 2006–2009], and ungulate exclo-

sure) as fixed, site as a random blocking effect, and time

as a repeated measure using PROC GLIMMIX (SAS

2008). Because the two types of predator exclosures only

occurred in either 2002–2005 or 2006–2009, we initially

tested whether abundance differed on controls and

ungulate exclosures between the 2002–2005 and 2006–

December 2010 3721PREDATOR IMPACTS ON RODENT ABUNDANCE



2009 time periods, but found no evidence for temporal

differences for any species (P � 0.11 in all cases). In

August 2009, immediately after we finished rodent

trapping, we detected definitive evidence (weasel tracks

on track plates placed inside of the predator-exclosure

plot) that a weasel had breached the predator-exclusion

fence at one of our sites. This coincided with a dramatic

drop in vole abundance (from 21 individuals/ha in May

to 3 individuals/ha in August) on this plot. Since we had

unambiguous evidence for weasel entry during this one

trapping period at this one site, we coded data from this

plot and trapping period as ‘‘generalist predator

exclosure’’ rather than ‘‘generalist predator þ weasel

exclosure.’’ We initially contrasted different models of

the variance–covariance matrix describing the repeated

measure and chose descriptions that minimized over-

dispersion in the models. Degrees of freedom were

adjusted using the Kenward-Rogers method, which is

recommended for repeated-measures analyses (Littell et

al. 2006:188). Importantly, we decomposed the treat-

ment effects into three orthogonal contrasts for inter-

preting the effects of predator removals on prey. First,

we contrasted estimates on controls and ungulate

exclosures. If there was no evidence for differences

between these control and ungulate exclosures, we then

contrasted the estimates from generalist predator

exclosures and generalist predator þ weasel exclosures

to the average of ungulate exclosures and controls.

We also estimated apparent monthly survival rates for

S. columbianus using a multistate, robust design model.

We did not model apparent survival for the other species

because recaptures for P. maniculatus and M. montanus

were too limited for reliable estimates (only 2.6% and

0.3% of individuals, respectively, were recaptured more

than once across seasons). Because there was a small

portion of S. columbianus that moved among treatment

plots, we used a multistate formulation where treatments

were different potential states that individuals could

occupy. To obtain estimates, we used a step-down

approach, where we first modeled capture probability,

and then modeled apparent survival, given the most

parsimonious model for capture probability (Lebreton

et al. 1992). For capture probability and survival, we

began with a fully specified, time 3 treatment parame-

terization and contrasted this with all reduced combi-

nations using AICc. For movement, we only considered

a constant parameterization, because movement events

were very infrequent.

Since montane voles were the only species that

responded to predator exclusion, we used the same

linear model structure used to test for treatment effects

on vole abundance to examine how our experimental

treatments influenced vole sex ratios, juvenile recruit-

ment, reproductive activity in females, and body mass.

We calculated sex ratios as the proportion of adult and

subadult males, such that values . 0.5 indicated a

greater ratio of males to females captured. The analysis

for sex ratios assumed a binomial error distribution for

this variable. Juvenile recruitment was defined as the

ratio of juveniles to adult and subadult females. Female

reproductive activity was defined as the proportion of

breeding (defined as having enlarged mammae) adult

and subadult females over all adult and subadult

females. Body mass was evaluated only for adult males

using mass at first capture (Pearson et al. 2003). Female

body mass can be quite variable due to pregnancy that

often cannot be determined visually.

We analyzed snow-tracking data by comparing the

number of cells in each survey with tracks of weasels,

large predators (primarily coyotes and badgers), ungu-

lates, and small mammals (primarily deer mice) across

treatments. We considered treatment as a fixed effect,

site as a random blocking effect, and multiple track

surveys as a repeated measure using PROC MIXED

(SAS 2008). For weasel tracks, this analysis was

conducted separately before and after weasel exclusion.

All analyses were followed with post hoc Tukey-Kramer

tests.

To test for a fence effect (sensu Ostfeld 1994), we

compared the distribution of vole mass between

predator-exclusion and predator-open plots (i.e., con-

trols and ungulate exclosures). A fence effect would be

characterized by a greater number of heavier animals

being present on predator-exclusion plots compared to

plots open to predators, since predator-exclusion plots

do not allow emigration of animals .22 g. We used an

independent samples Kolmogorov-Smirnov test to

compare mass distributions between treatments for the

two peak years 2006 and 2009 when voles responded to

the predator treatment. The ungulate and control

treatments were combined, and data were pooled for

2006 and 2009, since distributions between peak years

were similar.

RESULTS

Ungulate-exclusion fences were generally effective; we

only had two instances of animals breaching fences.

These break-ins occurred in winter and were discovered

quickly, and the fences were immediately repaired.

Exclusion efficacy was reflected in snow-tracking data

showing that ungulate activity was lower on exclusion

plots compared to controls (pooled ungulate exclusion¼
0.8 6 3.2, predator exclusion¼ 1.6 6 3.2, control¼ 16.9

6 3.2 [mean 6 SE]; F2,73 ¼ 27.64, P , 0.001). Large

predators were entirely excluded from the generalist

predator- and generalist predator þ weasel-exclusion

plots (F2,85¼ 9.09, P , 0.001). There was a trend toward

reduced predator activity on the ungulate-exclusion

plots relative to controls, but this was not significant

(Tukey-Kramer t85 ¼ 1.70, P ¼ 0.21). Before we

retrofitted predator-exclusion plots to keep out weasels,

weasel tracks did not differ between generalist predator-

exclusion and other plots (F2,21¼ 0.34, P¼ 0.71). Across

all years we had signs of weasel activity at all sites,

although from snow tracking, there were some years

where some sites had no weasel tracks on particular
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plots. After plots were retrofitted to remove weasels,

weasel activity was greatly suppressed on predator-

exclusion plots. Although we did detect weasel activity

in winter on two predator-exclusion plots after retrofit-

ting exclosures, they were isolated instances that

occurred soon after fences were retrofitted (generalist

predator þ weasel ¼ 0.8 6 0.9, control ¼ 2.0 6 0.9,

ungulate ¼ 3.8 6 0.9 [mean 6 SE]; F2,66 ¼ 3.42, P ¼
0.039). After these break-ins, we identified and fortified

sections of the predator-exclusion fence where weasels

had entered. Small-mammal tracks, which were mostly

deer mice, did not differ across any treatments (F2,62 ¼
0.27; P ¼ 0.76).

Overall, we captured 928 Peromyscus maniculatus and

636 Microtus montanus from 2002–2009, and 646

Spermophilus columbianus from 2004–2009. All plots

were occupied by all species on several occasions

throughout the experiment, with the pooled percentage

of occupancy of plots per time period being 86.5% for P.

maniculatus, 87.6% for S. columbianus, and 52.8% forM.

montanus. We found no substantive effects of treatments

on the abundance of either S. columbianus or P.

maniculatus across the duration of the experiment (Figs.

1, 2; Appendix D). However, M. montanus exhibited

increases in abundance on predator-exclosure plots, but

only following weasel exclusion from 2006–2009 (F1,35.49

¼ 13.12, P ¼ 0.0009; Figs. 1, 2; Appendix D). For M.

montanus, we did not include estimates from 2002

because estimated capture probabilities in this year were

extremely low (capture probability ¼ 0.03), limiting

inference in variation in abundance for 2002 (but

including these estimates into general linear mixed

models did not change conclusions).

The best model to explain apparent survival rates of

S. columbianus included an additive effect of treatment

and time (Appendix E). Based on estimates from this

model and a model that only included a treatment effect,

the treatment effect was driven by differences between

controls and ungulate exclosures, rather than generalist

predator or general predator þ weasel exclosures

(Appendix E). The time effect suggested that monthly

survival was higher from midsummer to spring than

from spring to midsummer. We note, however, that the

time between midsummer to spring included, on average

10.5 months, whereas the time between spring to

midsummer included approximately 1.6 months. Con-

sequently, the differences in absolute survival rates (S )

across these seasons were less extreme than those shown

in Appendix E, with overall survival rates being lower

from midsummer to spring (S ¼ 0.58) than spring to

midsummer (S¼ 0.65).

Mass distributions for M. montanus differed between

predator and nonpredator treatments (ungulate exclu-

sion þ control vs. predator exclusion for pooled plots;

Kolmogorov-Smirnov test: D¼1.38, P¼0.045), but this

was due to proportionally more young animals (,22 g)

on the predator-exclusion plots compared to plots open

to predators. Since young animals were not restricted by

the fence, we retested the distributions using data only

from animals .22 g, which were those potentially

restricted by the weasel fence. This analysis revealed no

difference in mass distributions among treatments

(Kolmogorov-Smirnov test: D¼ 0.35, P ¼ 1.000).

Across all trapping periods there was no effect of

treatments on the mass of adult male voles (F3,40.8 ¼
0.05, P¼ 0.98; Fig. 3) or vole sex ratios (F3,58.2¼ 0.33, P

¼ 0.81; Fig. 3). However, juvenile recruitment into the

population and female reproductive activity were

significantly greater on plots from which predators were

excluded compared to controls, but only after weasels

FIG. 1. Abundance estimates (individuals/ha; mean 6 SE)
from a two-point mixture model over time for Spermophilus
columbianus, Microtus montanus, and Peromyscus maniculatus
in controls, predator exclosures, and ungulate exclosures during
2002–2009 in an intact grassland ecosystem in western
Montana, USA. Arrows denote when the predator-exclusion
plots were retrofitted to exclude weasels.
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were excluded (contrast for recruitment: F1,39¼ 10.77, P

¼ 0.002; reproductive activity: F1,81 ¼ 7.16, P ¼ 0.009;

Fig. 3).

DISCUSSION

Our seven-year predator-exclusion experiment re-

vealed that a diverse group of vertebrate predators have

remarkably little influence on ground squirrel and deer

mouse abundance and dynamics. However, specialist

weasels had strong but temporally varying impacts on

montane vole populations. Exclusion of all avian and

mammalian predators except weasels (from 2002–2005)

had minimal effects on vole numbers or dynamics. But

after excluding weasels along with all other predators

(from 2006 onward), voles attained greater population

peaks and higher juvenile recruitment rates during peak

years compared to voles on plots that were exposed to

predators.

Anecdotal observations support these results. In

spring 2009 during a peak in vole numbers, there were

21 animals/ha on one of our predator-exclusion plots

compared to 2 animals/ha on the paired control. This

predator-exclusion effect grew even stronger over the

season at other sites, but on this plot the population

declined from 21 to 3 animals. In August, track plates

inside the predator-exclosure plot at this one site

revealed a weasel had entered (although we accounted

for this in analysis of treatment effects). Heavy weasel

predation has been reported in other montane vole

populations (Fitzgerald 1977).

The lower amplitude population fluctuations and/or

lower population abundance of small mammals charac-

teristic of lower latitude populations are often attributed

to the impacts of generalist predators (Erlinge 1987,

Korpimäki et al. 2005; but see Boonstra and Krebs

2006). For instance, in southern Fennoscandia, gener-

alist predators are thought to stabilize volatile small-

mammal population dynamics, whereas specialists in the

north are thought to drive unstable cyclical dynamics

(Norrdahl 1995, Korpimäki and Krebs 1996, Korpimäki

and Norrdahl 1998, Klemola et al. 2000, Hanski et al.

2001, Norrdahl et al. 2002, Korpimäki et al. 2004).

However, few studies have experimentally examined the

relative role of specialist vs. generalist predators at the

same midlatitude sites. Our results are counterintuitive

in that they suggest that specialists suppress population

cycles as opposed to driving them, and that generalists

have few impacts. Prior to weasel exclosure, when only

generalist vole predators were manipulated, voles

showed only low population densities and no peaks for

four years (Fig. 1). After specialist weasels were

excluded, we observed two peaks in vole abundance.

The first was not reflected at all on the predator-access

plots. During the second peak, increases occurred on the

predator-access plots, but were weaker than on plots

where predators were excluded. We speculate that the

rise in vole abundance on plots open to predators during

the summer of 2009 may have been due to the fact that

this was an extremely productive year for grasses at our

sites. Associated increases in invertebrates and seed

production could explain why deer mouse populations

also increased during summer 2009.

The difference in vole abundance on predator-free vs.

predator-access plots appears to be caused in part by a

difference in the reproductive output of females on these

different plots. We observed higher juvenile recruitment

rates per female and a greater proportion of reproduc-

tively active female voles on predator-free plots com-

pared to plots open to predators. Korpimäki et al.

(1994) proposed that high predation risk during the low

phase of vole cycles in Fennoscandia causes bank voles

FIG. 2. Contrasts (beta estimates with 95% CI) taken from
general linear mixed models for abundance estimates of
Spermophilus columbianus, Microtus montanus, and Peromyscus
maniculatus for (a) differences between controls and ungulate
exclosures, (b) generalist predator exclosures (pre-2006) com-
pared with the average of controls and ungulate exclosures, and
(c) generalist predator and weasel exclosures (post-2006)
compared with the average of controls and ungulate exclosures.
Confidence intervals that do not overlap with zero denote
significant contrasts.
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to reduce their reproduction. This suggests weasels could

impact voles not only through direct mortality, but also

through nonconsumptive behavioral effects or a ‘‘fear

factor’’ that alters their growth rates (Preisser et al.

2005). Our data are particularly interesting in this regard

in that during the first population peak (2006), no

females showed signs of reproductive activity on

predator-access plots, while a substantial percentage of

females (39%) bred on predator-free plots. In contrast,

during the second peak (2009), differences in reproduc-

tive activity between female voles in plots with and

without predator access diminished (35% vs. 41%,

respectively). This suggests that weasels had both strong

density and behavioral impacts on voles during the first

peak, but only density effects during the second peak.

Such an outcome could result from differences in

resource availability interacting with predator effects

(e.g., Denno et al. 2003). This interpretation is bolstered

by the fact that vegetation biomass in our system was

extraordinarily high during the second peak year in

2009. High resource levels during this year may have

overridden the negative nonconsumptive predator ef-

fects on vole reproduction on predator-access plots.

Experimentally excluding weasels required using a

mesh size of fencing that limits the passage of voles . 22

g through the fence (J. Maron and D. Pearson,

unpublished data). This creates the possibility that

increases in voles on predator-free plots could have

been caused by a ‘‘fence effect’’ as opposed to predator

suppression. However, if the buildup in vole numbers on

predator-exclusion plots was due to a fence effect,

during population peaks we would expect that these

plots would contain a greater fraction of heavier animals

(those .22 g) compared to plots without predator-

exclusion fencing. This was not the case.

In contrast to our results for voles, specialist

predators had little impact on deer mouse and ground

squirrel populations. Previous work has suggested that

badgers specialize on preying on ground-nesting sciurids

(Murie 1992, Michener 2004), and badgers were

certainly active at our sites. We recorded badger tracks

on plots open to predators in winter, and we frequently

saw badgers in summer and even saw evidence of badger

predation on ground squirrels. However, their exclusion

(along with all other avian and mammalian predators)

had insubstantial impacts on ground squirrel numbers

or survival. Generalist predators such as coyotes are

common, and generalist hawks and owls are certainly

present (Appendix A), although not at high densities.

Yet these species also had little impact on squirrel and

deer mouse populations. In contrast, in one of the few

other long-term and larger-scale predator-exclusion

FIG. 3. Annual variation in (a) body mass, (b) the proportion male, (c) juvenile recruitment (ratio of juveniles to adult and
subadult females), and (d) reproductive activity (the proportion of breeding adult and subadult females to all adult and subadult
females) of Microtus montanus in controls, predator exclosures, and ungulate exclosures. Values are expressed as mean 6 SE. Note
that prior to 2006, predator exclosures did not exclude weasels.
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experiments where the entire predator assemblage was

manipulated, Meserve et al. (1996) found that generalist

predators reduced the survival and abundance of some

rodent species (although not others).

In systems that are strongly driven by pulses of

resources, bottom-up population limitation by food can

be more important than predators in driving rodent

abundance (Previtali et al. 2009). Grassland productivity

in western Montana does vary across years (2009 was,

for example, particularly productive) but there are not

the extreme resource pulses that characterize systems

with dominant masting species such as oaks (Wolff

1996, Clotfelter et al. 2007) or El Niño-driven pulses in

vegetation (Ernest et al. 2000, Previtali et al. 2009).

However, previous research indicates that ground

squirrel and deer mouse populations in grasslands of

the intermountain west may be resource limited. Dobson

and Oli (2001) found that experimental food addition

significantly increased the population growth rate of

Columbian ground squirrels in southern Canada. Other

ground squirrel species have also been shown to be at

least partially food limited (Hubbs and Boonstra 1997).

Deer mouse populations in western Montana similarly

appear to be food limited. Populations subsidized by

insect biocontrol agents in winter are two to three times

larger than populations not exposed to this subsidy

(Ortega et al. 2004, Pearson and Callaway 2006). While

food resources and predation might interact in impor-

tant ways to affect prey abundance (Krebs et al. 1995,

Byrom et al. 2000, Denno et al. 2003), our results for

ground squirrels and deer mice show that generalist or

specialist predators, in isolation, are not important

controlling influences on these species.

Perhaps the most intriguing result we found was that

by excluding specialist weasels, we could experimentally

induce volatile dynamics within montane vole popula-

tions that were limited or weak in the presence of this

predator. In other words, our results suggest that both

the abundance and dynamics of prey can be substan-

tially altered by a single predator species. This result is

interesting because it seems counter to what has been

found in Fennoscandia. For example, Korpimäki and

Norrdahl (1998) and Korpimäki et al. (2002) found that

predator exclusion both increased peak vole numbers

and reduced the magnitude of the crash phase.

Alternatively, others have found that vole populations

crash even when predators are removed, but that these

crashes are due to starvation of animals after popula-

tions reach extremely high numbers (Klemola et al.

2000). We did not see obvious signs of starvation in our

vole populations, nor did we see evidence that voles

dramatically outstripped their food resources. It seems

likely that the declines in population size we saw in the

absence of predators were due to intrinsic factors, such

as reductions in reproduction at high density, as have

been implicated in vole declines in other populations

(Krebs et al. 2007). Moreover, since we found that many

abundant generalist predators had virtually no impacts

on the abundance or dynamics of the rest of the small-

mammal community, it appears that predator impacts

cannot be easily generalized to the entire small-mammal

community. Our preliminary data suggest that consumer

impacts on plants similarly do not generalize to the

entire consumer community. That is, deer mice and

ground squirrels, those species not controlled by

predators, appear to have strong impacts on plant

abundance (Bricker et al. 2010; J. Maron and D.

Pearson, unpublished data), whereas vole populations,

even in the absence of predators, never reach densities

high enough to be highly damaging to vegetation (J.

Maron and D. Pearson, unpublished data). Thus we

predict very limited long-term indirect effects of

predators on plant productivity and abundance in our

system. It may be that our system is somewhat typical of

complex and species-rich communities, where no one

apex predator plays a keystone role.
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2002. Strong seasonality may attenuate trophic cascades:
vertebrate predator exclusion in boreal grassland. Oikos 99:
419–430.
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