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Granivory of invasive, naturalized, and native plants in communities
differentially susceptible to invasion

B. M. CONNOLLY,1,3 D. E. PEARSON,2 AND R. N. MACK
1

1School of Biological Sciences, Washington State University, Pullman, Washington 99164 USA
2Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana 59801 USA and Division of Biological Sciences,

University of Montana, Missoula, Montana 59812 USA

Abstract. Seed predation is an important biotic filter that can influence abundance and
spatial distributions of native species through differential effects on recruitment. This filter
may also influence the relative abundance of nonnative plants within habitats and the
communities’ susceptibility to invasion via differences in granivore identity, abundance, and
food preference. We evaluated the effect of postdispersal seed predators on the establishment
of invasive, naturalized, and native species within and between adjacent forest and steppe
communities of eastern Washington, USA that differ in severity of plant invasion. Seed
removal from trays placed within guild-specific exclosures revealed that small mammals were
the dominant seed predators in both forest and steppe. Seeds of invasive species (Bromus
tectorum, Cirsium arvense) were removed significantly less than the seeds of native
(Pseudoroegneria spicata, Balsamorhiza sagittata) and naturalized (Secale cereale, Centaurea
cyanus) species. Seed predation limited seedling emergence and establishment in both
communities in the absence of competition in a pattern reflecting natural plant abundance: S.
cereale was most suppressed, B. tectorum was least suppressed, and P. spicata was suppressed
at an intermediate level. Furthermore, seed predation reduced the residual seed bank for all
species. Seed mass correlated with seed removal rates in the forest and their subsequent effects
on plant recruitment; larger seeds were removed at higher rates than smaller seeds. Our
vegetation surveys indicate higher densities and canopy cover of nonnative species occur in the
steppe compared with the forest understory, suggesting the steppe may be more susceptible to
invasion. Seed predation alone, however, did not result in significant differences in
establishment for any species between these communities, presumably due to similar total
small-mammal abundance between communities. Consequently, preferential seed predation
by small mammals predicts plant establishment for our test species within these communities
but not between them. Accumulating evidence suggests that seed predation can be an
important biotic filter affecting plant establishment via differences in consumer preferences
and abundance with important ramifications for plant invasions and in situ community
assembly.

Key words: biotic resistance; eastern Washington, USA; exclosure; forest plant communities;
invasibility; invasiveness; recruitment; seed addition; seed bank; seed predation; steppe plant communities.

INTRODUCTION

The fate of plant immigrants can depend on the extent

to which they escape specialist natural enemies, as

proposed by the enemy release hypothesis (Keane and

Crawley 2002), encounter lethal hazards from the

resident biota, as proffered by the biotic resistance

hypothesis (Elton 1958), or both. Support for these

hypotheses highlights the importance of biotic interac-

tions in determining the fate of plant introductions

(Agrawal and Kotanen 2003, Levine et al. 2004, Mitchell

et al. 2006, Parker et al. 2006). Most investigations of

biotic barriers to plant invasion have focused on

competition, parasitism, or grazing (Levine et al. 2004,

Parker et al. 2006, Fridley et al. 2007). Recent studies,

however, suggest that postdispersal seed predation may

also strongly influence the establishment of introduced

plants (Reader 1993, Nuñez et al. 2008, Pearson et al.

2011, 2012, 2013, Maron et al. 2012, Allington et al.

2013). Seed predation may have particularly strong

effects on introduced plants because many immigrant

terrestrial plant populations require seeds for establish-

ment and persistence (Pearson et al. 2013).

In community assembly theory, species that overcome

dispersal barriers and abiotic constraints are confronted

inevitably by biotic interactions (Weiher and Keddy

1999). Seed predation is an important in situ biotic filter.

Within native plant communities seed predators may

voraciously consume seeds (Blaney and Kotanen 2001,

Mattos et al. 2013), which can suppress plant recruit-

ment (Ostfeld et al. 1997, Bricker and Maron 2012),
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reduce adult plant population densities (Louda 1982,

Maron and Kauffman 2006), and drive community

composition and species abundance (Brown and Heske

1990). Native generalist seed predators may also

influence nonnative species recruitment (Maron et al.,

2014) and adult population densities (Pearson et al.

2012, 2013, Allington et al. 2013). Furthermore, post-

dispersal seed predators may have differential effects on

native and nonnative species that could influence

invasion outcomes (Maron et al., 2014). For example,

seed predators can suppress densities of some exotic

plants potentially minimizing their effects on native

plants (Allington et al. 2013), whereas other invasive

species may gain advantage over natives and naturalized

species in part by evading seed predators (Pearson et al.

2011). These studies suggest that seed predation can be

an important in situ filter in explaining the relative

abundance of nonnative plants. Understanding the role

of the seed-predation filter in plant invasions requires

examination of seed-predator identity, abundance, and

preference in relation to the establishment and abun-

dance of introduced plant species within and between

communities.

Different species or guilds of consumers display

distinct seed preferences (Kelrick et al. 1986, Reader

1993, Carrillo-Gavilán et al. 2010) that influence plant

recruitment. Granivore preference is often related to

seed size (Price 1983), although seed size may be a

surrogate for more deterministic factors, such as soluble

carbohydrate content (Kelrick et al. 1986); seed defense

attributes may, however, create exceptions to this

pattern (Pearson et al. 2011). Small mammals generally

target seeds .0.50 mg (Reader 1993, Garb et al. 2000,

Maron et al. 2012), whereas insects (predominantly

ants) often forage for seeds ,0.50 mg (Crist and

MacMahon 1992). Birds may display no selectivity

based on seed size in some communities (Garb et al.

2000), although grassland birds preferentially consume

large seeds in tallgrass prairies (Howe and Brown 1999).

Selectivity among seed-predator guilds may create

community-specific filters.

Nonnative plant abundance and diversity vary across

introduced ranges (Rejmanek et al. 2005). Grazing and

seed predation can influence native plant distributions

across local and broad geographic and environmental

gradients (Louda 1982, Maron and Crone 2006, Orrock

et al. 2006) and may similarly affect invasive plants

(Lambrinos 2006). Seed removal rates can vary radically

among plant communities and along environmental

gradients (Christianini and Galetti 2007, Pearson et al.

2013) due to differences in the granivore communities,

their abundance, or seed preferences. Consumer abun-

dance, in particular, often differs among habitats, and

granivore abundance frequently determines seed remov-

al rates (Ostfeld et al. 1997, Zwolak et al. 2010, Mattos

et al. 2013).

Steppe and adjacent coniferous forests in eastern

Washington differ strikingly in the abundance of

introduced plants. The forests harbor few naturalized

or invasive plant species (Daubenmire and Daubenmire
1968, Parks et al. 2005), whereas nonnative grasses and

forbs dominate all but a few small remnants of the
adjacent native steppe (Daubenmire 1970, Mack 1986).

We examined how seed-predator identity, preference,
and abundance influence the establishment of natural-

ized, invasive, and common native species within and
between forest and steppe in this region. We predicted
that if seed predation were an important filter for plant

establishment, it should be inversely related to plant
abundance. Consequently, uncommon naturalized spe-

cies should experience high seed predation and effects on
recruitment, followed by intermediate levels of preda-

tion on common native species and low levels of
predation on invasive species. Furthermore, seed preda-

tion should have more detrimental effects on nonnative
plant establishment in the less invaded forest compared

to the adjacent steppe.

METHODS

Study sites

Four sites (1.26-ha each) were established in mature
stands of mesic steppe (Festuca idahoensis–Sympho-

ricarpos albus habitat type, sensu Daubenmire 1970);
another four sites (1.26-ha each) were established in

mature stands of xerophytic coniferous forest (Pinus
ponderosa–Symphoricarpos albus habitat type, sensu

Daubenmire and Daubenmire 1968). Sites averaged
40.9 6 6.1 km apart (mean 6 SE; UTM site locations,

Appendix A). Frequency and percent canopy coverage
of nonnative plants were quantified in each stand in the

forest understory and the steppe following Daubenmire
(1959). Vegetation was sampled in April and May 2011

at each site to account for species differences in
phenology.

Field methods

Identification of postdispersal seed-predator guilds.—
Seed removal by different granivore guilds was com-

pared in 2011 by evaluating seed removal from trays in
four taxa-specific predator exclosures. Each exclosure
contained seeds in the bottom of an open plastic petri

dish (15 cm diameter) that had been buried to ground
level. The complete exclosure treatment excluded birds

and small mammals with a hardware cloth exclosure
(four sides plus top, 30 3 30 3 30 cm, 1-cm gauge wire)

embedded 5 cm into the mineral soil; insect access was
blocked by a ;2.5-cm wide circle of Tanglefoot

(Tanglefoot Company, Grand Rapids, Michigan,
USA) around the inside rim of the plastic seed tray

(Hughes and Westoby 1990). The insect access treatment
excluded birds and mammals but allowed insects by

installing the complete exclosure without Tanglefoot.
The bird/small-mammal access treatment consisted of

the complete exclosure with openings (15 3 12 cm) in
each of the four sides of each exclosure to permit small

mammal and bird entry but exclude insects. The small-
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mammal access treatment excluded birds with a cap (50

3 50 cm) of hardware cloth suspended over the seed tray

with metal corner posts 4 cm above the soil surface;

insects were excluded with Tanglefoot by the same

method as the bird/small-mammal access treatment.

Seeds of two grass species (native Pseudoroegneria

spicata [3.60 mg/seed] and naturalized Phalaris cana-

riensis [7.2 mg/seed]) were offered separately in each

exclosure treatment to evaluate the influence of seed

type on removal rates by plant community (steppe vs.

forest) and granivore guild. At each site, six of each

exclosure treatments were randomly assigned to differ-

ent locations in a 3 3 8 grid (30-m spacing between

points). Each exclosure contained 20 g of one seed type;

three replicates of each exclosure treatment were

assigned to P. spicata or P. canariensis. Each seed

removal trial was conducted for two consecutive day

and night display periods; seeds were collected, air-dried

(;258C, 72 h), and weighed after each display period.

This protocol was repeated twice each month in June

and September 2011 to correspond with seasonal

dehiscence and fluctuations in small-mammal abun-

dance and bird migration.

Quantification of small-mammal seed predators.—

Small-mammal species composition and abundance

were estimated with an annual trapping session at each

forest and steppe site in late July to early August from

2010 to 2012. Each trapping grid consisted of 24 pairs

(48 total) of Sherman live traps (H. B. Sherman Traps,

Tallahassee, Florida, USA) placed 30 m apart in a 33 8

grid (sampling area, 1.26 ha). Polypropylene batting

served for bedding; traps were covered with a 23 3 30

cm, 2 mm thick foam sheet (Foamies, Darice, Strongs-

ville, Ohio, USA) for insulation. Traps were baited with

a rolled oats and peanut butter mixture. Each trapping

session consisted of four consecutive nights with traps

examined twice each day (before 09:00 and after 17:30

hours). Each trapped mammal was identified, ear-tagged

with uniquely numbered tags (Stamped Ear Tags

[product #INS1005-1], Kent Scientific Corporation,

Torrington, Connecticut, USA), and released at the

capture station. The Washington State University

Animal Care and Use Committee approved all handling

protocols (IACUC #03959).

In situ preference for native and nonnative seeds.—Seed

preference experiments were conducted in 2012 using

three native and three nonnative species. Seed trials were

conducted in late August corresponding with cessation

of seed antithesis for all test species; trials were

conducted immediately following the small-mammal

trapping sessions (procedure followed Zwolak et al.

2010). We installed 24 seed stations at each site. Each

station consisted of the bottom of a single plastic petri

dish (15 cm diameter) with 20 seeds of one species mixed

with 100 mL of sand. Dishes were placed at the same

grid locations used for trapping. Dishes were randomly

assigned seeds of either a native (P. spicata [3.60 mg/

seed] or Balsamorhiza sagittata [10.37 mg/seed]), natu-

ralized (Secale cereale [22.62 mg/seed] or Centaurea

cyanus [3.32 mg/seed]), or invasive plant (Bromus

tectorum [2.67 mg/seed] or Cirsium arvense [1.07 mg/

seed]). Mature individuals of native species and invasive

B. tectorum occurred at all sites; adults of the other

nonnative test species occurred at some but not all test

sites (Appendix B). Appendix C summarizes test-seed

source and storage conditions. Seeds were presented for

two consecutive days and nights and were examined

twice daily (before 07:30 and after 18:00) to differentiate

between removal by diurnal (chipmunks, Tamias spp.,

birds, ants) and nocturnal (deer mice, Peromyscus

maniculatus) granivores. Tray contents were collected,

counted, and replaced with new sand and seeds during

each examination period.

Effects on seedling emergence, establishment, and seed

accumulation in the seed bank.—To examine seed

predation’s influence on plant emergence, establishment,

and the subsequent seed bank, we conducted seed

addition experiments from 2010 to 2013 by sowing

seeds in hardware cloth exclosures (as described in Field

methods: Identification of postdispersal seed-predator

guilds) that allowed or precluded seed predator access.

Twenty-four exclosures were installed at each site in a 3

3 8 grid (30-m spacing between exclosures). Half the

exclosures prevented seed-predator access; the other half

allowed access through an opening (153 12 cm) in each

side of the exclosure. All living and dead vegetation

,1.5 m tall was removed in and around each exclosure

(0.5-m buffer zone) before seeds were sown to eliminate

competition as a confounding factor. Eight exclosures

were assigned to each species (P. spicata, S. cereale, B.

tectorum) per site, four with seed predator access and

four without. Seeds (100) were sown in each exclosure in

early August each year. Emergent seedlings were

counted in November. We counted surviving plants

the following May to estimate establishment. This

experiment was repeated each August by removing live

plants and sowing 100 new seeds into the exclosures. All

plots were treated with glyphosate herbicide (Roundup,

Monsanto, Creve Coeur, Missouri, USA) at the

cessation of the study and were monitored through

autumn 2013 to ensure no remaining seeds germinated.

We sampled the residual seed bank in each exclosure

to determine the remaining density of viable seeds

following May plant counts in 2012 and 2013. A soil

core (6 3 5 cm, 141 cm3 soil) was taken at the center of

each exclosure. Soil core samples were processed

through a 2-mm soil sieve; seeds were counted and

characterized as viable (i.e., firm, intact endosperm),

nonviable, or not filled.

Analysis.—To identify the seed-removing guilds, the

percentage seed mass removed from guild-specific seed

predator exclosures was averaged for each tray among

all trials within site and month. Percentage seed mass

removed was then transformed to fit a beta distribution

and analyzed using generalized linear mixed models

(Proc GLIMMIX; SAS 9.3) where exclosure type,
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community type (steppe or forest), month, seed type,

and all interaction combinations were fixed factors; site
and tray location within site were random factors.

Small-mammal relative abundance was indexed for
each site using the Minimum Number Known Alive

(MNKA; Krebs 1966). We calculated total seed
predator abundance (TSPA) per site by summing tallies

of the three most prevalent granivorous species per
community type. We determined if TSPA differed
between plant communities using general linear models

(Proc GLM, SAS 9.3) including community type as a
fixed factor and year as a repeated measure. Seed-

removal trays and small-mammal trapping sites were
positioned at the same stations within each site to

estimate the relationship between small-mammal abun-
dance and seed removal. Using data collected in 2012,

we used linear regression (Proc REG, SAS 9.3) to test,
by community type, for a relationship between seed-

predator abundance at each tray and the number of
seeds removed from seed displays.

Seed removal (SR), seedling emergence (EMG),
seedling establishment (EST), and viable seed density

(VSD) were partitioned by study season (SR, 2012;
EMG and EST, 2010–2011, 2011–2012, 2012–2013;

VSD, 2011–2012, 2012–2013) and then analyzed with
generalized linear mixed models with species class

(naturalized, invasive, native), community type, small-
mammal access (EMG, EST, VSD only), and all

possible interactions between factors as fixed factors.
Site and experimental unit location within site were
included in this model as random factors. Total seed

predator abundance (TSPA) per site was initially
included as a potential covariate, but TSPA was never

a significant factor (all P . 0.10) and was excluded from
final analyses. We also examined the effect of seed mass

on seed preference by treating it as a covariate in SR
analysis. The relationship between individual seed mass

and the number of seeds removed from seed display
trays was determined by linear regression. Finally, we

evaluated the strength of seed predation on seedling
recruitment using the average difference between pred-

ator access and exclosures for EMG, EST, and VSD to
estimate release from seed predation (Pearson et al.

2011) by site in each year. Release from seed predation
was compared using a generalized linear mixed model

with species and plant community as fixed factors and
site as a random factor.

RESULTS

Plant community patterns

Species richness of nonnative plants was greater in the

steppe than in the forest understory; nonnative species
comprised approximately 24% (7.00 6 1.00 species;

mean 6 SE) of total species richness in the steppe but
only 12% (3.75 6 0.25 species) in the forest (Appendix

B). Nonnative species present in both plant communities
often had lower frequency and canopy cover in the

forest. For example, Bromus tectorum frequency and

canopy coverage were 86.0% 6 5.7% (mean 6 SE) and

12.9% 6 3.4% in the steppe, respectively, versus 19.4%
6 9.7% and 1.5% 6 0.8%, respectively, in the forest. In

the complete exclosures, seedling establishment did not

differ between the steppe and forest for P. spicata (t ¼
0.64, df¼ 84, P¼ 0.522), S. cereale (t¼ 0.62, df¼ 84, P¼
0.540), or B. tectorum (t ¼ 0.69, df ¼ 84, P ¼ 0.495),

suggesting differences in abiotic conditions between

plant communities did not influence seedling establish-

ment for any species.

Identification of postdispersal seed predator guilds

Small mammals comprised the dominant seed-remov-

ing guild (Fig. 1). The mass of seeds removed from insect

access treatments never differed from complete exclo-

sures (all P . 0.10). Seed removal from small mammal

and bird/small-mammal treatments was greater than

seed removal from complete exclosures in both plant

communities (all P , 0.05). The extent of seed removal

from small-mammal and bird/small-mammal treatments

was similar within each treatment in each month in the

steppe (June, t¼1.40, df¼176, P¼0.163; September, t¼
1.55, df ¼ 176, P ¼ 0.122), although more seeds were

removed from these treatments during autumn than

summer (bird/small-mammal treatment in June vs.

September, t¼ 3.27, df¼ 173, P¼ 0.001; small-mammal

treatment in June vs. September, t¼ 3.65, df¼ 173, P ,

0.001). Seed removal did not differ between bird/small-

mammal treatments and small-mammal treatments in

the forest during summer (bird/small mammal vs. small

mammal, t¼ 1.25, df¼ 176, P¼ 0.213). More seeds were

removed, however, from bird/small-mammal treatments

than small-mammal treatments in the forest during

autumn (bird/small mammal vs. small mammal, t¼2.21,

df¼ 176, P¼ 0.028). Average seed removal was greater

in the forest than the steppe; this difference, however,

was not significant (F1,6¼ 4.72, P¼ 0.073, Appendix D).

P. canariensis seeds were much preferred over P.

spicata seeds, but seed removal varied across exclosures,

seasons, and plant communities (Fig. 1; Appendix D).

Removal of P. canariensis seeds from small-mammal and

bird/small-mammal treatments was always greater than

removal of P. canariensis seeds from complete exclosures

(all P , 0.001). Removal of P. spicata from small-

mammal and bird/small-mammal treatments was greater,

however, than its removal from complete exclosures only

in the forest and during summer (all P , 0.001).

Quantification of small-mammal seed predators

Yellow-pine chipmunks (Tamias amoenus), deer mice

(Peromyscus maniculatus), and voles (Microtus spp.)

were the most abundant granivores in the forest,

representing 66.1%, 33.1%, and 0.4% of total captures,

respectively. Deer mice, voles, and western harvest mice

(Reithrodonomys megalotis) were captured most fre-

quently in the steppe, representing 76.4%, 13.8%, and

9.2% of the total captures, respectively. Other small

mammals captured included Sorex sp. (n¼ 1) and Zapus

B. M. CONNOLLY ET AL.1762 Ecology, Vol. 95, No. 7



princeps (n ¼ 4); we excluded these incidental species

from TSPA analysis. Annual forest TSPA combined T.

amoenus, P. maniculatus, and Microtus spp. estimates;

steppe TSPA combined P. maniculatus, Microtus spp.,

and R. megalotis estimates. Repeated-measures analysis

indicated no significant difference in TSPA by plant

community (F1,6 ¼ 0.37, P ¼ 0.567) but indicated

significant variation by year (F2,12 ¼ 6.58, P ¼ 0.012).

TSPA was similar in 2010 and 2012 (F1,6 ¼ 0.04, P ¼
0.851) but was lower in 2011 than in either 2010 (F1,6¼
29.28, P ¼ 0.002) or 2012 (F1,6 ¼ 8.63, P ¼ 0.026;

Appendix E).

Effects on seed availability, seedling emergence

and establishment, and seed bank size

Seed removal differed by seed class (F2, 118¼ 7.23, P¼
0.001); fewer seeds of invasive species were removed

than seeds of either naturalized or native species (all P ,

0.001). The number of seeds of native and naturalized

species removed did not differ (t ¼ 0.88, df ¼ 159, P ¼
0.381). Seedling emergence and establishment were

greater for all species in every year when small mammals

were excluded (Fig. 2; Appendix F). The influence of

predator release on seedling emergence and establish-

ment differed by species (emergence, F2,59 ¼ 4.31, P ¼
0.018; establishment, F2,58 ¼ 5.14, P ¼ 0.009), although

the magnitude of release was similar among species.

Seedling establishment in all years and seedling emer-

gence in 2012–2013 were affected by interactions

between species and small-mammal access (Appendix

F). Naturalized S. cereale was most strongly released

from predation by the exclosures; predator release for S.

cereale seedling emergence and establishment were

greater than occurred for B. tectorum (emergence, t ¼

FIG. 1. Proportion of seeds removed (mean 6 SE) for Pseudoroegneria spicata and Phalaris canariensis by predator guilds in
eastern Washington steppe and adjacent ponderosa pine forest in (A) June 2011 and (B) September 2011. Four replicated (n¼ 12)
exclosure types (complete exclosure, insect access, small-mammal access, and bird/small-mammal access) are averaged for seeds by
community type and month.
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2.73, df¼ 59, P¼ 0.008; establishment, t¼ 3.56, df¼ 60,

P , 0.001) and P. spicata (emergence, t¼2.25, df¼59, P

¼0.028; establishment, t¼2.15, df¼60, P¼0.036) when

compared across all years. P. spicata emergence and

establishment tended to be more affected by predator

release than invasive B. tectorum, but these differences

were not significant (emergence, t ¼ 1.50, df ¼ 59, P ¼
0.606; establishment, t¼ 1.34, df ¼ 60, P ¼ 0.183).

Predator access resulted in fewer viable seeds in

residual seed banks vs. the residual seed bank in

exclosures (Fig. 2; Appendix F). The density of viable

seeds remaining within the seed bank varied by species

(Appendix F); fewer S. cereale seeds remained than the

seeds of B. tectorum or P. spicata (all P , 0.001). Fewer

B. tectorum seeds remained vs. seeds of P. spicata in

2012 (t¼ 4.09, df¼ 174, P , 0.001) but not in 2013 (t¼
1.04, df ¼ 174, P ¼ 0.299). We found significant

interaction between species and predator access in both

years (Appendix F), suggesting that predation had a

greater effect on the seed bank of some species than

others.

Seed mass explained much of the variation attribut-

able to seed removal. In the forest, the number of seeds

removed was strongly, positively correlated with larger

individual seed mass (Fig. 3A; b¼ 0.258, F1,6¼ 10.70, r2

¼ 0.728, P ¼ 0.032). In the steppe, seed removal tended

to increase with seed mass, but the relationship was not

significant (Fig. 3B; b¼0.164, F1,6¼1.87, r2¼0.318, P¼
0.244).

FIG. 2. Effect of seed predator exclosure on the (A–C) emergence, (D, F) establishment, and (G, H) viable seed bank for
Pseudoroegneria spicata, Secale cereale, and B. tectorum in steppe and forest, 2010–2011, 2011–2012, and 2012–2013. Multiple
comparison tests were conducted with the Tukey HSD method; different uppercase letters indicate significant differences at a Type
I error ¼ 0.05.
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The effect of seed predation on plant community

susceptibility to plant invasion

Small-mammal abundance in 2012 correlated with

seed removal rates in the steppe (Appendix G; b¼ 0.809,

F1,7¼ 13.02, P¼ 0.011) but not in the forest (b¼�0.055,
F1,8 ¼ 0.01, P ¼ 0.959). However, variability in seed

predator abundance was low in the forest (Appendix E).

Seed removal rates did not differ by plant community

(F1,5 ¼ 2.96, P ¼ 0.144); the community type by species

interaction was marginally significant (F2, 119¼ 3.01, P¼
0.053). Low seed removal rates for B. tectorum and C.

arvense in the forest drove this pattern; fewer seeds were

removed from this community type and species combi-

nation than from any other treatment. Community type

had no effect on the interaction between species and

small-mammal access for emergence, but establishment

during the 2010–2011 growing season correlated with

community type (Appendix F). During 2010–2011, both

B. tectorum and P. spicata had lower establishment in

predator access treatments than exclosures; B. tectorum

establishment was lower in the steppe, whereas P.

spicata establishment was lower in the forest (Appendix

F). Predator release on seedling emergence and estab-

lishment, however, did not vary between community

types (emergence, F1,6 ¼ 0.61, P ¼ 0.466; establishment,

F2,59 ¼ 0.96, P ¼ 0.391) or in seed type by community

type interactions (emergence, F1,6 ¼ 0.61, P ¼ 0.466;

establishment, F2,58 ¼ 0.48, P ¼ 0.624) across all years.

More viable seeds remained in the steppe seed bank than

in the forest seed bank in 2012 but not in 2013

(Appendix F). A significant three-way interaction

between seed type, community type, and small-mammal

access in 2013 for viable-seed density (Appendix F) was

primarily a consequence of more B. tectorum seeds being

removed from seed banks in the forest than in the steppe

(Fig. 2H; t ¼ 1.76, df ¼ 12, P ¼ 0.105). The extent of

predator release on the density of viable seeds in the seed

FIG. 3. Relationship between individual seed mass and number of seeds removed from display trays in (A) forest and (B) steppe
in autumn 2012. The solid line indicates the predicted linear regression fit; inset values report model fit (r2) value and linear
regression model fit probability.
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bank was not dependent on community type (F1,6¼0.02,

P ¼ 0.893) or species by community type interactions

(F1,6¼ 0.61, P ¼ 0.466).

DISCUSSION

In examining the effects of postdispersal seed preda-

tion on invasive, naturalized, and native plants in a

Pacific Northwest forest and steppe, we found that small

mammals were the primary seed predators in both

communities. Small-mammal seed removal for our six

test species was much stronger for naturalized and

native species than for invasive species, with seed mass

strongly predicting seed removal. Seed addition exper-

iments with three of these species indicated that seed

predation reduced emergence, establishment, and seed

bank size for each species; establishment of the

naturalized S. cereale was most strongly suppressed

and invasive B. tectorum was least suppressed in both

plant communities. Our vegetation surveys confirmed

that patterns of seed predator impacts were consistent

with relative abundances of the test species in these

communities. Vegetation surveys also verified that the

steppe had higher richness and percent cover of

nonnative plants than adjacent forests. Seed addition

experiments, however, indicated that recruitment of test

species was similar between habitats with and without

seed predator access to seeds. Consequently, the patterns

of seed predation and seed predator effects on plant

recruitment that we observed support a hypothesis that

seed predation can influence plant invasion via consum-

er preference. But the differences in apparent suscepti-

bility of the two plant communities to invasion cannot

be explained by seed predation, a result likely attribut-

able to overall similarity in seed predator preference and

abundance between these communities.

Different seed predator guilds can have distinctly

different effects on plant recruitment (Brown and Heske

1990). Our results indicated that small mammals were

the primary seed predators in these communities;

granivorous birds contribute somewhat to seed removal

in the forest. Small mammals may be more abundant,

less seasonally limited, or more efficient seed predators

than granivorous birds and ants in these communities.

We did not compare relative abundance among grani-

vore guilds, but invertebrates and birds in temperate

ecosystems have only seasonal access to seeds because

invertebrates become inactive and many species of seed-

eating birds migrate to lower latitudes during cooler

months. In contrast, most granivorous small mammals

in this region remain active year-round (Pyke 1986).

Additionally, small mammals may forage more inten-

sively due to high energetic demands (Parmenter et al.

1984) or may forage more efficiently (Garb et al. 2000).

Seed removal by invertebrates was not apparent,

suggesting invertebrate seed predators were not abun-

dant. Birds removed seeds only in the forest during

autumn, suggesting that the food preferences of some

birds may shift seasonally toward seeds or that

migratory birds may contribute to seed removal.

Seed removal rates and their effects in reducing plant

establishment were strongest for naturalized and native

species and weakest for invasive species. Although

rodent seed predators can disperse seeds through

caching (Vander Wall et al. 2005), we saw no evidence

of seed caches germinating over the three years of the

study. Additionally, our seed removal results correlate

strongly with plant recruitment results from seed-

addition experiments and our surveys of natural plant

abundance, suggesting seed removal largely equates to

seed destruction. Naturalized S. cereale was extirpated

in 41% of small-mammal access treatments, with low

survival in the remaining predator access treatments

(Fig. 2). Consistent with this result, field surveys indicate

S. cereale was rare within the steppe and absent in the

forest (Appendix B), despite its frequent occurrence in

nearby cultivated fields (Gaines and Swan 1972). In

contrast, seed predation had weak effects on the

establishment of invasive B. tectorum (Fig. 2), the most

abundant nonnative plant in the steppe and forest

(Appendix B). Seeds of native P. spicata experienced an

intermediate rate of removal (Fig. 3) and recruitment

limitation (Fig. 2) but developed the largest seed bank of

the three species. The high density of P. spicata seeds in

the seed bank may compensate for seed loss due to

predation.

Seed mass was strongly correlated with seed removal

rates and their effects on plant recruitment (Fig. 3A, B),

a result consistent with expectations for small-mammal

seed predators (Reader 1993, Pearson et al. 2011, Maron

et al. 2012, but see Carrillo-Galiván et al. 2010). This

result suggests that seed mass or other seed traits

indicative of consumer seed preference might help

predict invasion outcomes where seed predation is an

important biotic filter. Although we selected our species

to be representative of different invasion classes without

regard to seed mass, seed mass was completely

correlated with invasion class, preventing us from

discerning the role of seed mass in affecting invader

status. Nonetheless, the few long-term studies examining

seed removal effects on nonnative species establishment

and adult-plant abundance show that small-mammal

seed predators are capable of suppressing some large-

seeded species below their potential to become invasive

(Pearson et al. 2012, Allington et al. 2013), whereas

many invasive species with small or defended seeds may

evade this important filter (Pearson et al. 2011, Maron et

al. 2012). Plants with larger seeds are often superior

competitors during early life stages (Reader 1993,

Turnbull et al. 1999, Maron et al. 2012), consequently,

large-seeded species with chemical or physical defenses

may gain a distinct advantage in establishment by

obviating the tradeoffs between competition and preda-

tion (Pearson et al. 2011, Maron et al. 2012). Addition-

ally, native species may be more constrained by seed

size–seed number trade-offs than are nonnative species
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(Mason et al. 2008), suggesting seed predators favoring

large seeds may have greater impacts on native than

nonnative species.

Seed size largely explained patterns of seed removal

and plant recruitment, but did not fully explain the

substantial seed predator avoidance of B. tectorum. C.

arvense has the smallest seed mass of our test species,

potentially explaining its low seed removal. B. tectorum,

however, was removed significantly less (;50%) than C.

arvense in both plant communities, despite its seed mass

being much greater than the seeds of C. arvense (Fig.

3A, B). Invasive plants may have novel seed defenses

(e.g., secondary chemicals, mechanical defense) or lower

nutritional value that deter seed predators, resulting in

their seeds’ lower rates of removal compared to the seeds

of co-occurring natives and naturalized plants (Kelrick

et al. 1986, Pearson et al. 2011). The long, persistent awn

on the B. tectorum caryopsis could increase seed-

handling time, thereby reducing its value to seed

predators. Additionally, the relatively low caloric and

high structural carbohydrate content of these seeds may

further reduce their food value (Kelrick et al. 1986).

Seed removal is a short-term evaluation of seed

predator influence, especially as granivores’ effects on

plant abundance may be delayed (Guo et al. 1995).

Long-term effects of seed predation, however, may be

compounded or moderated depending on how they

affect the seed bank (Maron and Gardner 2000, Maron

and Kauffman 2006). Although predator removal

similarly affected the density of viable seeds within the

seed bank among the three test species, B. tectorum and

S. cereale had smaller residual seed banks. Consequent-

ly, a greater proportion of the nonnative seed bank was

affected by seed predation compared with the P. spicata

seed bank. Seed predation resulted in 77% and 42%
fewer viable S. cereale and B. tectorum seeds remaining

in the seed bank, respectively, whereas P. spicata seed

banks were 33% lower in predator access treatments

compared to exclosures. Persistent seed banks may

facilitate recruitment among nonnative plants (Richard-

son and Kluge 2008), but postdispersal seed predation

can alter long-term plant abundance by reducing the

input to these seed banks (Maron and Kauffman 2006).

Removal of nonnative seeds from the seed bank may

generate seed limitation and limit seedling recruitment.

At the community level, our surveys confirmed that

nonnative species were more prominent in the steppe

compared to the forest understory, a long-term consis-

tent pattern (Daubenmire and Daubenmire 1968,

Daubenmire 1970). We found that the establishment

counts of B. tectorum and S. cereale were similar

between forest and the steppe when propagule pressure

was held constant and plant competitors and seed

predators were excluded, suggesting that abiotic factors

were not responsible for these differences. We quantified

greater removal of nonnative P. canariensis in the forest

than in the steppe. Predator effects were also greater for

the seed banks of invasive B. tectorum in forest than in

steppe, suggesting that seed predation on nonnative

species may be somewhat greater in the forest. Overall

seed predation did not, however, produce differences in

nonnative plant establishment between forest and

steppe. The lack of differences between plant commu-

nities in the effects of seed predation on recruitment was

likely due to the lack of difference in total granivore

abundance between these community types (Appendix

E). Seed removal was strongly correlated with small-

mammal abundance in the steppe, where it explained

63% of the variance in seed removal (variation in small-

mammal abundance was too small to determine any

relationship in the forest). Although the composition of

the small-mammal granivore guild are somewhat differ-

ent between forest and steppe, these differences did not

change overall seed preferences between community

types. Differences in propagule pressure or other aspects

of biotic resistance may explain instead the observed

difference in susceptibility of these plant communities to

invasion. For example, B. tectorum has higher seedling

emergence and percent survivorship following distur-

bance of the Pinus ponderosa understory compared to

undisturbed controls (Pierson and Mack 1990), indicat-

ing competition is a barrier to its establishment.

Accumulating evidence suggests that seed predation

can substantially affect nonnative plant establishment

and abundance (Reader 1993, Nuñez et al. 2008,

Pearson et al. 2011, 2012, 2013, Maron et al. 2012,

Allington et al. 2013). Our results provide detailed,

experimentally derived evidence that differential seed

predation contributes to the varying fates of some

introduced plants within and possibly between systems.

Moreover, evaluating seed traits (e.g., seed mass) in the

context of consumer preferences may help to predict

such outcomes (Pearson et al. 2011). Further manipu-

lative field experimentation of seed predation across a

broad spectrum of communities will clarify the role of

this important in situ filter in both terrestrial plant

invasions and community assembly.
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