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ABSTRACT

Palacios, Maria Gabriela, M.S., Spring 2003 Organismal Biology and Ecology

Life history strategies: evolution o f developmental periods in birds.

Advisor: Thomas E. Martin

Developmental periods are an integral component o f life history strategies that vary 
enormously among organisms and can have important fitness consequences. However, 
the ultimate causes and proximate mechanisms underlying their variation are poorly 
understood. Avian incubation provides an ideal model to study variation in 
developmental periods, and several selective factors and mechanisms may underlie the 
broad variation in incubation period among species. Here we focused on the intriguing 
hypothesis that links selection pressure from parasites with incubation duration through 
an intrinsic mechanism: development o f immunocompetence (the ability o f an individual 
to defend itself from parasites and disease). In particular, we tested the predictions that 
species with longer incubation periods should have better immunocompetence, and that 
species subject to greater exposure to parasites should invest more in 
immunocompetence. We performed a comparative field study among 8 coexisting 
passerine bird species, and assessed immunocompetenee by measuring two different 
components o f the immune system. We found no support for the idea that a longer period 
inside the egg allows the development o f a better immune system to cope with parasites 
and diseases. Instead, species with relatively longer incubation period mounted weaker 
cellular immune responses and no relationship was found between incubation period and 
strength o f the humoral immune response. On the other hand, we found a positive 
relationship between blood parasite prevalence and cellular immune response, providing 
some support that species facing greater selection pressure from parasites invest more in 
immunocompetence. In accordance with theoretical expectations and previous empirical 
studies, we found that nest predation rate might be an important influence on life history 
evolution. Species facing higher rates o f nest predation showed relatively shorter 
incubation periods, and high nest predation might also favor reduced immunocompetence 
o f the offspring, as suggested by the negative relationship between cellular immune 
response and nest predation rate. The mechanisms through which nest predation could be 
influencing these life history traits are not known and we discuss several potential lines 
for future research.
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PREFACE

Life history strategies vary enormously among organisms and understanding the 

ultimate causes and proximate mechanisms underlying this variation is a central question 

in evolutionary biology (Partridge and Harvey 1988, Roff 1992, 2002, Steams 1992, 

Martin 1995, 1996, 2002). Life history traits do not vary independently o f each other, but 

are organized into syndromes with species distributed along a slow-fast continuum o f life 

history strategies (Ricklefs 2000). At the slow extreme o f this continuum we find 

organisms having slow development, delayed sexual maturation, small clutch or litter 

size, high adult survival, and long lifespan; while organisms showing the opposite 

combination o f traits are found at the fast extreme (e.g. Promislow and Harvey 1990, 

Ricklefs 2000). These syndromes arise because trade-offs among traits, which represent 

the fitness costs paid when a beneficial change in one trait is linked to a detrimental 

change in another trait (Steams 1989), limit the possible combinations o f life history 

characteristics (Roff 1992, Steams 1992). Many ecological factors have been recognized 

as potential influences on life history evolution, however the relative importance o f each 

factor and the proximate mechanisms mediating trade-offs among life history traits are 

not fully understood.

One longstanding question regarding life history evolution is why organisms vary 

so dramatically in the time required for developing. Particularly intriguing are slow 

developmental rates (Boersma 1982, Ricklefs 1984, 1992, 1993). Slow development 

comes at the cost o f increased risk o f time-dependent mortality to the young, and 

therefore we would expect selection to favor rapid development in order to decrease this 

mortality factor. Indeed, most environmental pressures seem to select for fast

IV
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development and, hence, short developmental periods (Ricklefs 1993, Ricklefs and 

Starck 1998, Martin 2002, Remes and Martin 2002, Lloyd and Martin 2003). However, 

the vast variation in developmental periods observed among organisms suggests that slow 

development might provide some advantages under certain environmental conditions 

(Ricklefs 1993, Ricklefs and Starck 1998, Martin 2002). Understanding these conditions 

and the mechanisms underlying variation in developmental rates were the general 

questions that inspired the present study.

Variation in developmental period among species is associated with variation in a 

whole suite o f life history traits, such as time o f first reproduction, clutch or litter size, 

survival, and lifespan. Therefore, understanding the evolution o f developmental periods 

can potentially provide new and important insights into the evolution o f life history 

strategies in general.

V
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INTRODUCTION

Understanding why organisms vary so dramatically in their life history strategies 

is a major question in life history theory (Partridge and Harvey 1988, Roff 1992, 2002, 

Steams 1992, Martin 1995, 1996, 2002). Developmental rates are an important 

component o f life history strategies that vary enormously among organisms and can have 

significant fitness consequences (Promislow and Harvey 1990, Roff 1992, 2002, Ricklefs 

1993, Benrey and Denno 1997, Gebhart-Heinrich and Richner 1998); yet we do not fully 

understand the proximate and ultimate causes underlying the observed variation. 

Extensive variation in developmental periods has been documented for numerous groups 

o f vertebrate as well as invertebrate taxa (e.g. Werner 1986, Fukui 1989, Promislow and 

Harvey 1990, Ricklefs 1993, Mishashita 1999). For example, among placental mammals, 

gestation length can vary from 18 to 660 days (Promislow and Harvey 1990), and broad 

variation remains even after controlling for the allometric effect o f body mass. 

Understanding which environmental pressures and mechanisms (i.e. physiological, 

behavioral, etc.) determine the rates at which organisms develop is an important end goal, 

but can also potentially provide important new insights into understanding the evolution 

o f hroad life history strategies, where development is one o f many correlated characters.

Birds constitute an excellent group in which to study variation in developmental 

rates because developmental rates vary strongly among species (Ricklefs and Starck 

1998), and they are relatively easy to measure. The latter is particularly true for the length 

o f embryonic development, which is manifested as the length o f the incubation period. 

Incubation duration varies widely among bird species, from 9 to about 80 days, and can 

vary over a threefold range even among species o f similar body size and developmental
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State o f the neonate (i.e. altricial-precocial spectrum) (Rahn and Ar 1974). Several factors 

may influence the evolution o f incubation periods in birds, including nest predation (Lack 

1968, Bosque and Bosque 1995, Martin 1995, 2002), sibling competition (Ricklefs 1993, 

Lloyd and Martin 2003), adult mortality (Ricklefs 1993, Martin 2002), and parasitism 

(Ricklefs 1992). However, the relative importance o f these selection pressures and the 

proximate mechanisms through which they cause variation in incubation periods are not 

fully understood.

Mechanisms underlying variation in incubation period can be broadly divided into 

those extrinsic or intrinsic to the eggs. Extrinsic mechanisms, such as nest attentiveness 

(percent o f time the parent is on the nest), seem to explain some variation in incubation 

periods among species; however, considerable residual variation remains unexplained 

(Martin 2002). Intrinsic mechanisms, such as modification o f certain developmental 

processes in the embryo (Ricklefs 1992, 1993, Ricklefs and Starck 1998), might therefore 

be important in accounting for this residual variation. A particularly interesting 

possibility is the potential link between embryonic growth period and development o f 

immunocompetence (the ability o f an individual to defend itself from parasites and 

disease) (Ricklefs 1992).

Ricklefs (1992) found a negative relationship between blood parasite prevalence 

and incubation period among families o f nonraptorial, altricial landbirds; and this pattern 

led him to propose a direct functional relationship between embryonic growth period and 

immunocompetence. He suggested that a longer period within the egg could allow the 

development o f a better immune system for fighting parasites and diseases (Ricklefs 

1992, 1993). This intriguing hypothesis associating selection pressure from parasites with
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incubation period through immunocompetence has not been fully tested and is the focus 

o f this study.

Here we examine the potential relationship between incubation period and 

immunocompetence, through a comparative field study across coexisting passerine bird 

species. Specifically, we test the following predictions: 1) species with longer incubation 

periods should have better immunocompetence (i.e. mount stronger immune responses to 

novel antigens) than species with shorter incubation periods, and 2) species subjected to 

greater exposure to parasites (i.e. higher prevalence) should show greater investment in 

immunocompetence (Moller 1997, 1998; Moller and Erritzoe 1996, 1998; Martin et al.

2001). We also explore potential causes o f interspecific variation in immune responses 

and examine whether variation in parasite prevalence among species is related to 

ecological variables.

METHODS

Study site and study species

Field work was conducted in snowmelt drainages o f a high elevation (2600m) 

mixed deciduous-conifer forest on the Mogollon Rim in central Arizona. Canopy trees 

were Quaking Aspen (Populus tremuloides), Douglas Fir {Pseudotsuga menziesii). White 

Fir {Abies concolor), Ponderosa Pine (Pinus ponderosa). White Pine {Pinus 

strobiformis), and Gambel Oak (Quercus gambellii), and the understory included 

Bigtooth Maple {Acer grandidentatum), New-Mexican Locust {Robinia neomexicana). 

Golden Pea {Thermopsis pinetorum) and various grasses (see Martin 1998 for a more 

detailed description o f the area).
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We performed a comparative analysis across 8 passerine bird species that are 

common breeders in the study site: Red-faced warbler (Cardelina rubrifrons; Parulidae), 

Orange-crowned warbler (Vermivora celata\ Parulidae), Virginia’s warbler (Vermivora 

virginiae; Parulidae), Grey-headed junco {Junco hyemalis] Emberizidae), Green-tailed 

towhee (Pipilo chlorurus; Emberizidae), Hermit thrush {Catharus guttatus; Turdidae), 

Cordilleran flycatcher (Empidonax difficilis; Tyrannidae), and House wren {Troglodytes 

aedon; Troglodytidae). We searched for nests from the beginning o f May to the end o f 

July during the 2001 and 2002 breeding seasons. We located nests based on parental 

behavior (see Martin and Geupel 1993), and checked them every 2-4 days to record 

activity and status. Nests found during building or egg laying were monitored more 

frequently close to hatching events in order to determine exact incubation periods. 

Incubation period was defined as the interval between laying and hatching o f the last laid 

egg (Nice 1954). Nests constituted the sampling units such that the average 

measurements across all sampled nests provided the mean measurement for each species. 

Assessment of Immunocompetence

The avian immune system is complex and includes different components that 

interact to defend the organism against parasites and disease (Toivanen and Toivanen 

1987). Two main arms are recognized: innate (natural) immunity and acquired (adaptive) 

immunity. The latter arm can be further subdivided into a humoral and a cell-mediated 

component (Roitt et al. 1998). A broad scale estimate o f these different components o f 

immunocompetence would require performing many different immunological tests, and 

would likely conflict with practical and ethical considerations (Gonzales et al. 1999, 

Norris and Evans 2000). This would be particularly true for studies performed on wild
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animals. Since the proposed mechanism linking length o f the incubation period and 

immunocompetence involves B- and/or T-lymphocyte proliferation (Ricklefs 1992, 

Apanius 1998), we focused on the two most relevant components o f the immune system; 

humoral and cell-mediated immunity. We performed two standard immune challenges 

that have been widely used in birds in the field (e.g. Saino et al. 1997a,b, Christe et al. 

1998, Gonzales et al. 1999, Horak et al. 1999, Moller et al. 2001) (described below). 

Cell-mediated immunity

W e assessed cell-mediated immunity o f nestlings using the in vivo immune 

response to the inocuous mitogen phytohaemagglutinin (PHA). We followed the 

simplified version o f this standard test described by Smits et al. (1999). First, we 

measured the thickness o f the wing-web (scapular apterium) using a pressure-sensitive 

micrometer (Mitutoyo, Japan). Next, we challenged the individual with a subcutaneous 

injection o f 0.2 mg PHA (Sigma L-8754) in 0.04 ml o f phosphate buffered saline (PBS). 

Approximately 24 hours (± 20 min) later we measured the swelling o f the wing-web at 

the site o f injection. This swelling represents the immune response to PHA and normally 

resolves after 48 hours. The immune response (PHA response) was estimated as the 

difference between the initial and the final measurements o f wing-web thickness. We 

performed this test on nestlings at a similar developmental stage (i.e. when primary 

feathers break their sheaths) to standardize for interspecific comparisons. Sample sizes 

ranged from 1 to 14 nests per species with a median o f 6 . These sample sizes provided a 

representative mean response for each species, given that variation among conspecifics 

was very small compared to variation among species (ANOVA: F7.42 = 18.04, P < 

0 .0001).
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Humoral Immunity

We assessed the in vivo humoral immune response by immunizing adult females 

with sheep erythrocytes and quantifying antibody production 7 days after the challenge. 

This test was not performed on nestlings because at an early age nestlings tend to respond 

weakly or not at all (Apanius 1998, Moller et al. 2001). Females were captured at their 

nests during the incubation period using mist nets, banded, and a first blood sample (30- 

60 /il) was drawn from their brachial vein into microcapillary tubes. Birds were next 

injected intraperitoneally with a 5% solution o f sheep red blood cells (SRBC) in PBS (5 

/il/per gram o f body mass), and then released. One week later birds were recaptured at 

their nests and a second blood sample was drawn. All microcapillary tubes were 

centrifuged, and plasma was isolated and stored at -2 0  “C until later analysis. Antibody 

titers were obtained using a microhemagglutination assay (Wegmann and Smithies 1966, 

Hay and Hudson 1989): serial two-fold dilutions o f heat inactivated plasma (56 °C for 30 

min.) in PBS were placed into individual wells o f a 96-well microtiter plate and mixed 

with an equal volume o f  a 2% SRBC solution. Plates were incubated at 37 “C for 1 hour. 

Antibody titers (SRBC response) were expressed as the logz o f the reciprocal o f the 

highest dilution o f  plasma that showed hemagglutination. Pre- and post- immunization 

plasma samples, as well as negative and positive controls, were assessed in each 

microtiter plate. None o f  the pre-immunization plasma samples showed agglutination of 

SRBC. Post-immunization plasma samples from a few individuals showed no antibody 

response (i.e. no agglutination), even at the lowest dilution, and were therefore 

necessarily excluded from the calculations o f mean titers (Casto et al. 2001). After the 

exclusion, sample sizes for calculation o f mean titers ranged from 2 to 7 individuals per
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species with a median o f 4. No data on titers were obtained for the House wren. Variation 

in titer among conspecifics was small compared to variation among species (ANOVA: 

Fe.is = 4.032, P = 0.01) and, therefore, even the small samples sizes obtained seemed an 

adequate representative o f the mean response for each species.

Assessment of Parasitism

Birds are host to an incredible variety o f parasites (Clayton and Moore 1997). We 

sampled three main groups o f avian parasites in each o f  the study species: blood 

parasites, ectoparasites, and intestinal parasites.

Blood Parasites

A broad range o f blood parasites infect avian species (Janovy 1997). Among the 

most common types are flagellated protozoans (i.e. Trypanosoma), haematozoan 

protozoans (i.e. Haemoproteus, Leucocytozoon, and Plasmodium), and juveniles o f 

filarial nematodes (microfilariae) (Janovy 1997). A droplet o f blood from adult birds was 

used to prepare thin smears using glass microscope slides. Smears were air dried, fixed 

with absolute methanol, and stained with Giemsa stain. Using a light microscope, we 

screened each smear under 400x for the presence o f Trypanosoma spp., Leucocytozoon 

spp., and microfilariae. Whereas Plasmodium  spp. and Haemoproteus spp. were screened 

using lOOOx magnification. The prevalence, mean intensity, and median intensity of 

blood parasites were quantified for each o f the study species. Prevalence was defined as 

the percentage o f infected host individuals in a sample and mean intensity refers to the 

mean number of individuals o f a particular parasite species per infected host individual in 

a sample (Margolis et al. 1982). Given that parasites usually show an aggregated 

frequency distribution among hosts (i.e. most hosts having few or no parasites, and few
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hosts having many parasites), the median intensity was also calculated to provide the 

typical level o f infection o f the hosts in a sample (Rozsa et al. 2000). Intensities were 

recorded as the total number o f parasites per 100 microscope fields and quantification 

was performed following recommendations by Godfrey et al. (1987).

Ectoparasites

Birds can be parasitized by a vast array o f arthropod parasites (Janovy 1997). The 

main groups of avian ectoparasites are ticks and mites (Acarina), lice (Phthiraptera), true 

bugs (Hemiptera), fleas (Siphonaptera), and flies and mosquitoes (Diptera) (Janovy 

1997). We used a Kilner jar apparatus (Fowler and Cohen 1983) to examine adults birds 

for ectoparasites. This collection technique has been widely used to delouse live birds 

(Wheeler and Threlfall 1986, Moller 1990, Poiani 1992,1993, Saino et al. 1998), and is 

less prone to error and yields a higher fraction o f the parasite population than visual 

examination (Clayton and Walther 1997). The apparatus consisted of a 1 liter jar with a 

rubber collar placed on the jar opening. The collar had a central hole with a diameter that 

could be varied according to the size o f the bird being treated. A filter paper disk was 

fitted to the bottom o f the jar and a few drops o f ethyl acetate were added to the paper. 

The bird was placed inside the jar with its head held outside by the rubber collar. The 

body was then exposed for 10 minutes to the ethyl acetate vapor. The head and neck were 

manually searched for parasites by deflecting the feathers. Anesthetized ectoparasites 

were then removed from the jar and preserved in 70% ethanol.

Intestinal parasites

The main groups o f intestinal parasites found in birds are coccidian protozoans 

and helminths (worms) (Janovy 1997). Avian intestinal helminths include tapeworms
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(Cestoda), roundworms (Nematoda), flukes (Trematoda), and thomy-headed worms 

(Acanthocephala) (Janovy 1997). Prevalence o f intestinal parasites was assessed by 

analyses o f fecal samples. On 2002 we collected fecal samples dropped by birds during 

their manipulation and preserved them in formalin until later analyses. In the laboratory, 

we used a standard sedimentation concentration procedure (Garcia and Bruckner 1993) to 

isolate helminth eggs and protozoan oocysts from the rest o f the fecal material. This 

procedure is easy to perform, allows recovery o f the broadest range o f organisms, and is 

least subject to technical error (Garcia and Bruckner 1993). The isolated fraction was 

stained with Lugol solution and used for preparation o f permanent fecal smears. We used 

a compound microscope to scan the whole fecal smear for the presence o f helminth eggs 

and protozoan oocysts.

Statistical Analyses

We performed multiple regression analyses to test for correlations among the 

variables o f interest (incubation period, immune responses, and parasite prevalence). 

Selection o f variables to be included in the models was performed manually, and 

confirmed using the standard options (forward selection and backward elimination). 

Body mass was first forced into the analyses to control for its positive effect on immune 

responses across species (Moller et al. 2001, Martin et al. 2001, Telia et al. 2001). We 

used as covariates other variables that may influence incubation period (i.e. nest 

predation, nest attentiveness, and clutch size), to allow examination o f the ability o f 

immunocompetence and parasites to explain primary or residual variation. Given the low 

sample size in this comparative study (n = 8 bird species) the results from multiple 

regression analyses should be interpreted with caution since the low ratio o f data points to
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explanatory variables in the models might lead to decreased precision o f parameter 

estimates. Associations between parasite prevalence and preferred feeding stratum 

(ground vs. above ground), and nest stratum (ground vs. above ground) were assessed by 

Mann-Whitney U tests. All statistical analyses were performed with SPSS 11.5.0 (SPSS 

Inc. 2002).

Comparative Method

Since we were testing for potential evolutionary relationships among species, and 

species cannot be considered independent data points in statistical analyses, we used 

phylogenetically independent constrasts (PICs, Purvis and Rambaut 1995) to correct for 

possible phylogenetic effects. Relationships among independent contrasts o f the different 

variables were estimated using regressions through the origin (Purvis and Rambaut 1995, 

Harvey and Pagel 1991). The phylogenetic hypothesis used in this study was taken from 

Martin and Clobert (1996).

RESULTS 

Parasites 

Blood parasites

Parasites o f the genera Haemoproteus, Plasmodium, Trypanosoma, and 

Leucocytozoon, and microfilariae were detected in blood smears. Individuals belonging to 

7 o f the 8 study species were infected with at least one species o f blood parasite; 

however, the types o f parasites found varied considerably across species (Fig. 1). 

Haemoproteus spp. were the most commonly detected parasites, while the remaining 

parasite types were found in low prevalence (Fig. 1). Total prevalence o f blood parasites
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(i.e. percentage o f individuals infected with at least one parasite type) was greater for 

species that feed on the ground than for species feeding above the ground (i.e. canopy) 

(Fig. 2a); while no difference was found between species that nest on the ground and 

above ground (Fig. 2b). The intensity o f Haemoproteus infection varied greatly within 

species (Table 1), and statistical comparison among species was precluded by the low 

number o f infected individuals for most o f the species. Intensities of infection by the 

other blood parasites was very low (range = 1-14).'

Ectoparasites

All probable ectoparasites were sampled, but only mites were collected from adult 

birds using the Kilner ja r apparatus (Table 2). Prevalence o f ectoparasitism seems to be 

very low in our study site; however, the low sample sizes might not allow a precise 

estimate at present. Intensity o f mites (i.e. number o f individuals recovered in the jar) in 

infected birds was very low, indeed only one mite was collected from each o f the infected 

birds (Table 2). No ectoparasites were found in the heads and necks o f birds through 

visual examination; however, magnifying lenses might have been necessary for detecting 

some microscopic parasites (Clayton and Walther 1997). Given the low sample sizes and 

the lack o f data for three o f the study species, these data will not be discussed any further. 

Intestinal parasites

Helminth eggs and protozoan oocysts were not detected in any of the fecal smears 

analyzed. This lack o f detection could be due to: 1) absence o f infection by these types of 

parasites in the sampled populations, or 2) low probability o f detecting low prevalences 

with the reduced samples sizes (range = 1 to 6 individuals per species). At present we
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cannot discern between the two possible reasons for lack o f detection and therefore these 

data will not be discussed any further.

Incubation Period

The length o f the incubation period varied from 11.17 days in Virginia’s warbler 

to 15 days in the Cordilleran flycatcher. Although multiple regression analysis showed 

that incubation period tended to increase with body mass and to decrease with nest 

predation rate and with PHA response, these trends were not statistically significant 

(body mass: rp = 0.546, P = 0.263; nest predation: rp = -0.442, P = 0.380; PHA response: 

rp = -0.576, P = 0.231). However, one o f the study species (Green-tailed towhee) was an 

outlier in the above relationships. Most importantly, it was a strong and sole outlier in its 

PHA response relative to its body mass (Fig 3). Because PHA is expected and known to 

be related to body mass across species (Moller et al. 2001, Martin et al. 2001, Telia et al.

2002) we considered it appropriate to re-examine the relationships with the outlier 

excluded. When the outlier was excluded from the analysis, all the mentioned 

relationships became highly significant (Fig. 4). Moreover, these relationships remained 

significant after potential phylogenetic effects were controlled using independent 

contrasts (body mass: rp = 0.934, P == 0.02; nest predation: rp = -0.874, P = 0.053; PHA 

response: rp = -0.957, P = 0.011). No other variable explained significant variation in 

incubation period among species.

Humoral Immunity

Response to the injection o f sheep red blood cells (i.e. SRBC response) increased 

with body mass across species (Fig. 5). No relationships were found between SRBC 

response and incubation period or haematozoa prevalence.
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Cell-mediated Immunity

To gain insight into the possible causes o f variation in PHA response, we 

conducted multiple regression analyses with it as the dependent variable. Total 

haematozoa prevalence was the only variable that explained significant variation in PHA 

response (corrected for body mass) when the 8 study species were included in the 

analysis (rp = 0.748, P = 0.053). However, when we removed the outlier (Green-tailed 

towhee, see above) two different models explained significant variation in PHA response 

across the remaining study species. The first model (Model 1), obtained by forward 

selection o f variables, showed that PHA response was positively associated with body 

mass (rp = 0.975, P = 0.005) and with haematozoa prevalence (Fig. 6), and negatively 

associated with incubation period (rp = -0.914, P = 0.03). The second model (Model 2), 

obtained by backward elimination o f variables, showed that PHA response was positively 

related to body mass (rp = 0.995, P < 0.0001), and negatively related to nest predation rate 

(Fig. 7) and incubation period (rp = -0.982, P = 0.003). Therefore, both models suggested 

a positive relationship between PHA response and body mass, and a negative relationship 

between PHA response and incubation period; while they differed in the third 

explanatory variable (i.e. haematozoa prevalence or nest predation rate). The latter 

relationships remained significant when potential phylogenetic effects were controlled 

using independent contrasts (haematozoa prevalence: tp = 0.792, P = 0.034; nest 

predation: rp = -0.899, P = 0.038). Given the low sample size we cannot at present decide 

the relative importance o f these two alternative models.
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DISCUSSION  

Incubation period and immunocompetence

The extensive variation in embryonic developmental rates observed among birds 

is intriguing given that most selection pressures (e.g. nest predation, harsh weather, 

sibling competition) seem to favor rapid development and, therefore, short incubation 

periods (Ricklefs 1993, Martin 2002, Lloyd and Martin 2003). This variation suggests 

that prolonged incubation might confer some advantages under certain environmental 

conditions (Ricklefs 1992, 1993, Ricklefs and Starck 1998, Martin 2002). Ricklefs (1992) 

suggested that a longer period within the egg could allow for the development o f a better 

immune system for fighting parasites and diseases. However, we found no support for 

enhanced immunocompetence with longer incubation periods. Instead, we found that 

species with a relatively longer incubation period mounted weaker cellular immune 

responses (PHA test), and no relationship was found between incubation period and 

strength o f the humoral immune response (SRBC test).

Using data compiled from the literature, Telia et al. (2002) found no relationship 

between cell-mediated immune response to PHA and incubation period across species, 

whereas we found a negative relationship between these variables. This difference could 

be due to the different set o f species studied or to the nature o f the data used. The dataset 

gathered from the literature by Telia et al. (2002), included PHA measurements made by 

different investigators using different protocols (e.g. concentration o f PHA solution, 

volume o f PHA solution injected, age/stage at challenge, etc.) and in different 

environments. All o f these variables might introduce “noise” and therefore preclude the 

detection o f existing relationships. Another potential concern with the study by Telia et
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al. (2002) is that it included species in zoos that are subjected to artificial feeding and 

health care, both o f which could affect the immune responses. Moreover, data from a 

field study across 20 coexisting passerine bird species in South Africa also show a strong 

negative relationship between incubation period and PHA response (P. Lloyd and T. E. 

Martin, unpublished data), suggesting that the pattern observed here may be robust.

The reason for the negative relationship between the length of the incubation 

period and immunocompetence is unclear. One possible explanation is that both variables 

might be indirectly correlated by their response to selection from adult mortality. For 

instance, high adult mortality favors increased parental investment, and two ways in 

which parents might invest in their young could be a reduction in the length o f the 

incubation period, which reduces the risk o f time-dependent mortality, and increased 

immunocompetence, which reduces the negative effects from parasites and disease. 

Therefore, species having high adult mortality might show both increased 

immunocompetence o f their offspring and short incubation period. Variation in adult 

mortality among our study species does not support this explanation, and this result is in 

accordance with the finding that adult mortality explains variation in incubation period 

mainly among latitudes (i.e subtropical versus temperate bird species), but not within 

latitudes (Martin 2002). Nevertheless, independently from the significance o f the 

negative relationship between incubation period and PHA response, our results suggest 

that a longer time inside the egg does not result in better immunocompetence.

Incubation period and nest predation

Variation in life history traits within latitudes appears to be strongly influenced by 

juvenile mortality in the form o f nest predation (Martin 2002). Here, using a subset o f the
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species included in Martin’s (2002) work, we found that species enduring high nest 

predation have shorter incubation periods (Fig. 4), as found by others (Bosque and 

Bosque 1995, Martin 1995, 2002). However, the mechanism through which nest 

predation could lead to fast growth rates is not understood. Among the possible 

alternatives, nest predation could be causing fast growth through mechanisms intrinsic to 

the egg. An interesting possibility is the potential role o f hormones of maternal origin 

influencing embryo growth rates. Females o f egg laying vertebrates deposit hormones in 

their eggs that may influence several embryonic processes, such as growth rates (e.g. 

Feist et al. 1990, Schwabl 1993, 1996, McNabb et al. 1997, Janzen et al. 1998, 

McCormick 1999, Lipar and Ketterson 2000, Birkhead et al. 2000, Eising et al. 2001). 

Experimentally increased levels o f two androgens (testosterone and androstenedione) in 

gull eggs caused eggs to hatch half a day earlier than chicks from control eggs (Eising et 

al. 2001). Preliminary analyses using data from the literature also show that the level o f 

androstenedione in eggs is negatively correlated with incubation period across passerine 

birds (H. Schwabl and T. E. Martin unpublished data). This seems a fruitful avenue for 

future research regarding the mechanisms underlying variation in developmental rates 

among species. During the duration o f this study, we collected freshly laid eggs from all 

our study species and will determine their hormone contents to test whether they explain 

variation in incubation period in our system.

Immunocompetence and nest predation

Further support for the importance o f nest predation pressure on life history 

variation within latitudes might come from our finding that offspring from species 

suffering from higher nest predation rates mounted weaker cellular immune responses
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(Fig. 7). This result should be viewed with caution as the inclusion o f nest predation as an 

explanatory variable depended on the method used for selection of variables in the 

statistical analysis (see results). Nevertheless, this is a novel and potentially interesting 

result that suggests that high juvenile mortality might favor, or come at the cost of, 

reduced immunocompetence o f the young. There are two possible explanations for the 

latter. The first is that high nest predation selects for fast nestling growth (Lack 1968, 

Bosque and Bosque 1995, Remes and Martin 2002), which could come at the cost o f 

reduced immunocompetence. Within-species studies have found a trade-off between 

nestling growth rate and immune response (Merino et al. 2000, Soler et al. 2003, but see 

Horak et al. 1998), and resolution o f this trade-off is likely to differ among species 

depending on the levels o f parasitism and predation pressures suffered by nestlings (Soler 

et al. 2003). To our knowledge, the negative relationship between nest predation rate and 

PHA response found in this study is the first to provide empirical support for this 

hypothesis. Egg testosterone could be a potential mediator o f the trade-off between 

nestling growth and immunocompetence as it enhances nestling growth rate (Schwabl 

1996, Eising 2001) but also has immunosupressive effects (Grossman 1985, Duffy et al. 

2000, Casto et al. 2001). Therefore, higher levels o f egg testosterone could be favored in 

species with high nest predation rate in order to speed up nestling growth leading to 

decreased immune responses. The second possible explanation is that high nest predation 

selects for reduced maternal investment in offspring immunocompetence. Mothers 

deposit in their eggs components that are directly related to immune function, such as 

immunoglobulins (reviewed in Apanius 1998, Saino et al. 2002a), carotenoids (Royle et 

al. 1999, 2000), and lysozyme (Saino et al. 2002b and references therein). Therefore, an
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interesting possibility is that mothers might differentially allocate these immune-related 

resources to eggs according to the reproductive value o f their young, in such a way that 

investment might be reduced in species enduring high juvenile mortality due to nest 

predation. However, further studies assessing this hypothesis are needed. 

Immunocompetence and parasite prevalence

The immune system is one o f the main defenses organisms have evolved to cope 

with parasites and disease and, therefore, we would expect species facing greater 

selection pressure from parasites to have evolved greater investment in immune defenses 

(Moller 1997, 1998, Moller and Erritzoe 1996, 1998, Moller et al. 2001, Martin et al. 

2001, Telia et al. 2002). In accordance with this expectation, species having higher 

exposme to parasites have larger immune organs (e.g. bursa o f Fabricius and spleen) and 

mount stronger immune responses (Moller 1997, 1998, Moller and Erritzoe 1996, 1998, 

Moller et al. 2001). Here, we found that species having a higher prevalence o f blood 

parasites mount stronger immune responses than species with lower prevalences (Fig. 6), 

but again this model should be viewed with caution as mentioned above for nest 

predation rate.

An association between prevalence o f blood parasites and an immune response 

was only true for the cell-mediated immune response to PHA, while the humoral immune 

response to SRBC was not related to blood parasite prevalence. Such differential 

response may reflect the relative importance o f the different immune components. 

Although several components participate in defense from blood parasites (Roitt et al. 

1998), some evidence suggests that the cellular immune response might be more 

important than the humoral in fighting infections to haematozoans (i.e. Haemoproteus
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spp., Plasmodium  spp., and Leucocytozoon spp.)- For instance, defense against 

apicomplexan diseases in poultry depends primarily on the cell-mediated immune system 

(Lillehoj 1991), and experimental studies have shown an association between blood 

parasite infection and cellular immune response, but not with humoral immune response 

(Gonzales et al. 1999, Soler et al. 2003). Evolutionarily, we would then expect that 

species facing greater pressure from blood parasites invest more in their cellular immune 

responses, and our results support this prediction.

Telia et al. (2002) did not find a relationship between prevalence o f blood 

parasites and PHA response, but as discussed above, they used data from the literature 

that might have masked actual relationships. In addition to the potential noise in the PHA 

data (see above), the data on blood parasite prevalence used in this study is also likely to 

be very noisy. Prevalence o f blood parasites can vary considerably among different 

populations o f a given species and across study years for a given population (Bennet et al. 

1995, Yezerinac and Weatherhead 1995, Bauchau 1998), and therefore pooling data from 

disparate studies might confound analyses o f interspecific variation (Yezerinac and 

Weatherhead 1995). In particular, the study from Greiner et al. (1975), used as a source 

by Telia et al. (2002), is a compilation o f parasite surveys conducted throughout North 

America over a period o f 37 years and, for this reason, its use has been specifically 

avoided by other researchers conducting comparative studies (Yezerinac and 

Weatherhead 1995). This suggests that extra caution has to be exercised when choosing 

data from the literature for comparative studies o f parasite levels and highlights the value 

o f performing comparative field studies in which all the variables are measured in the 

study populations by the same researchers.
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Summary

Through a comparative field study among 8 coexisting passerine bird species and 

using two different measures o f immune response we found no support for Ricklefs 

(1992) hypothesis suggesting that longer incubation periods allow the development o f a 

better immune system. On the other hand, and in accordance with theoretical expectations 

and previous empirical studies, we found that species facing higher rates o f nest predation 

have relatively shorter incubation periods. Particularly interesting would be to determine 

the mechanisms through which nest predation pressure leads to fast embryonic 

development, and we suggest that a fruitful avenue o f research in this respect is the levels 

o f hormones mothers deposit in their eggs. High nest predation might also be favoring 

reduced immunocompetence o f the offspring, as suggested by the negative relationship 

between PHA response and nest predation rate. This interesting possibility deserves 

further study and we propose two potential mechanisms through which nest predation 

might be linked to nestling immunocompetence. Evolutionarily we would expect species 

facing greater selection pressure from parasites to invest more in immune defense. In this 

study, we show for the first time, that species having higher prevalence of blood parasites 

mount stronger cellular immune responses, thus providing some support for the above 

mentioned expectation. An increase in the number o f study species would be important 

for determining the relative importance o f nest predation and prevalence o f blood 

parasites in explaining variation in cellular immune response, and for increasing the 

statistical power o f  the analyses. Nevertheless, this study provided interesting results and 

suggests several potentially fruitful lines for future research.
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Table 1. Intensity (parasites/100 fields) o f Haemoproteus spp. in the study species.

Species (n) Range Median Mean 95% Cl of mean

Grey-headed junco (8) (2-2980) 124 500.13 [37.5-1183.25]

Orange-crowned warbler (1) NA 5 5 NA

Cordilleran flycatcher (1) NA 26 26 NA

House wren (1) NA 42 42 NA

Green-tailed towhee (4) (3-85) 26 35 [5-64.5]

Hermit thrush (3) (16-634) 81 243.67 [16-449.67]

Explanation of abbreviations: n = number o f individuals infected, NA = not applicable (refers to 

range and confidence interval in species in which only one individual was infected).
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Table 2. Prevalence and intensity o f mites in the study species.

3 0

Species (n) # of infected 

individuals

Prevalence

(%)

Mean intensity 

(SE)

Grey-headed junco (5) 2 20 1(0)

Orange-crowned warbler (1) 0 0 -

Red-faced warbler (I) 0 0 -

Cordilleran flycatcher (7) 0 0 -

Hermit thrush (8) 1 12.5 1

Note; Individuals o f three species. House wren, Green-tailed towhee, and Virginia’s warbler, were not 

sampled for ectoparasites.

Explanation o f abbreviations: n = number o f individuals examined, SE = standard error o f the mean.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3 1

FIGURE LEGENDS

Figure 1. Prevalence of blood parasites in the eight study species. Total refers to the 

percentage o f individuals infected with at least one parasite type. Sample sizes are shown 

for each species: GHJU = Grey-headed junco, OCWA = Orange-crowned warbler, 

VIWA = Virginia’s warbler, RFWA = Red-faced warbler, COFL = Cordilleran 

flycatcher, HOWR = House wren, GTTO = Green-tailed towhee, and HETH = Hermit 

thrush.

Figure 2. Total prevalence o f blood parasites and ecological variables. Median, 25 and 

75 % quartiles are presented, a). Total prevalence is higher in ground feeding species than 

in above ground feeding species (Mann-Whitney U Test: z = - 1.95, P = 0.05). The star 

shows an extreme value (House wren) and the circle an outlier (Red-faced warbler), b) 

Total prevalence does not differ between ground nesting species and species that nest 

above ground (Mann-Whitney U Test: z = - 0.726, P = 0.468).

Figure 3. Partial regression plot o f PHA response relative to body mass across the eight 

study species (rp = 0.792, P = 0.06). The outlier species is indicated by GTTO (Green­

tailed towhee).

Figure 4. Partial regression plots o f incubation period relative to body mass, nest 

predation, and PHA response across seven bird species (Green-tailed towhee was 

excluded from the analysis, see text), a) Incubation period increases with body mass (rp =
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0.981, P = 0.003). b) Incubation period decreases with increased nest predation rate (rp -  

-0.953, P = 0.012). c) Species having longer incubation periods mounted weaker PHA 

responses (rp = -0.982, P = 0.003).

Figure 5. Regression plot o f SRBC response relative to body mass across the study 

species (r = 0.867, P = 0.002).

Figure 6. PHA response increases with blood parasite prevalence (rp = -0.912, P = 

0.028), when the effects o f body mass and incubation period are controlled (Model 1).

Figure 7. PHA response decreases with nest predation rate (rp = -0.959, P = 0.01), when 

the effects o f body mass and incubation period are controlled (Model 2).
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