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LAND COVER CHARACTERIZATION USING MULTITEMPORAL RED, 
NEAR-IR, AND THERMAL-IR DATA FROM NOAA/AVHRR

R a m a k r i s h n a  N e m a n i  a n d  S t e v e  R u n n i n g  

School o f  Forestry, University o f  Montana, Missoula, M ontana 59812 USA

A bstract. A sim ple land cover classification schem e is proposed based on energy 
absorption and exchange properties o f  various land cover types, observable from remote 
sensing. Seasonal trajectories o f  the Normalized D ifference Vegetation Index (N DV I) and 
surface temperature {Tf), routinely available from NOAA/AVHRR (National Oceanic and 
Atmospheric Administration/Advanced Very High Resolution Radiometer), are used to 
characterize different land cover types into four groups: water limited (shrub, grass), energy 
limited (wetlands, boreal forests, snow, ice, and water), atmospherically coupled (aero- 
dynamically rough canopies, forests), and atm ospherically decoupled (aerodynamically  
smooth canopies, crops). Further separation is achieved using grow ing-season average 
NDVI for shrub and grass, seasonal N DV I amplitude for deciduous vs. evergreen, and near- 
infrared (NIR) reflectance for broadleaf vs. needleleaf vegetation.

The m ethodology using threshold-based rules is com pletely remote sensing based; c las­
sification rules are sim ple and easily modifiable. A first test o f this logic over the continental 
United States, when compared with existing maps, showed that the m ethodology adequately 
captures the spatial distribution o f various land cover types. The logic is also useful for 
monitoring seasonal dynamics o f land cover, evapotranspiration, and disturbances due to 
fire, floods, insects/disease, and other anthropogenic processes. Future improvements needed 
to deal with mixed landscapes and global im plementation details are discussed.

Key words: canopy structure; land cover; remote sensing; surface temperature; vegetation index.

I n t r o d u c t i o n

Accurate parameterization o f  the structure and func­
tion o f various land cover types is important for global 
carbon and climate models. Present global land cover 
maps have been derived using a w ide variety o f meth­
odologies and data sources (M atthews 1983, Olson et 
al. 1983, Prentice et al. 1992). A detailed discussion  
on problems o f  these global land cover maps is found 
in Running et al. (1994a) and Townshend et al. (1991). 
The consensus from the above studies is that only re­
motely sensed data can provide accurate and repeatable 
means o f global land cover classification and m oni­
toring, in the advent o f rapidly changing global land 
cover from anthropogenic processes. Consequently, 
providing reliable inventory o f earth’s land cover is 
one o f the primary goals o f  N ASA ’s (National Aero­
nautics and Space Administration) Earth Observing 
System  (EOS) (Running et al. \99Ab).

Rem ote sensing data have been used in a number of 
classification schem es at local, regional, and continen­
tal scales (Townshend et al. 1991). Many o f  these at­
tempts were based on (1) similarity o f  reflected radi-

M anuscript received 14 Novem ber 1994; revised and ac­
cepted 10 January 1996; final version received 23 February 
1996. For reprints o f the Invited Feature, see footnote 1,
p. 1 .

ation spectra o f various land cover types in relation to 
specific training sites, or (2) temporal evolution of re­
flected radiation and its association to various phono­
logical attributes o f vegetation (Justice et al. 1985, 
Tucker et al. 1985, Loveland et al. 1991). Both ap­
proaches depend on statistical sim ilarities to a prede­
fined set o f conditions based on observations or exist­
ing maps. But the generality o f  the predefined condi­
tions is a cause for much confusion in classifications 
that requires enormous amounts o f  ancillary informa­
tion to resolve (Loveland et al. 1991). Present classi­
fication schem es suffer from this ambiguity o f what is 
needed vs. what is possible from remote sensing data 
alone (Running et al. 1994a).

Current continental to global scale classification  
schem es rely m ostly on the magnitude and temporal 
evolution o f  spectral vegetation indices (SVI), i.e., 
combinations o f  RED and NIR reflectances such as 
NDVI (Justice et al. 1985, Tucker et al. 1985, Loveland  
et al. 1991). With a few  exceptions, very little use has 
been made o f  the thermal infrared (TIR) observations 
collected sim ultaneously with those o f  RED and NIR 
(Achard and B lasco 1990). Recent studies have shown 
the potential o f the combined analysis o f spectral veg­
etation indices with surface temperature observations 
for studying surface energy exchange processes (C o­
ward et al. 1985, 1994, Hope et al. 1986, Nemani and
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Fig. 1. Global Ecosystem  Sim ulation System (GESSys): illustration of the integration o f sim ulation models, CLIMSIM 
(Clim ate Sim ulation m odel) and BIOM E-BGC (BioGeoChem ical cycles) with clim ate, soils, and vegetation data to compute 
and map various carbon (PSN = net photosynthesis, kg C h a - ' d ', NPP = net prim ary production, kg C h a - ' d ', NEP = 
net ecosytem  production, kg C-ha ' ‘d ‘ ', ~  autotrophic respiration, kg C-ha 'd  ', /?h “  heterotrophic respiration, kg
C h a - ' d '), w ater (ET = evapotranspiration, cm/d), and nitrogen (N„;„ =  nitrogen m ineralization, kg N h a - ' yr ') fluxes.

Running 1989a, Price 1989, Carlson et al. 1990, N e­
mani et al. 1993). The com bination o f such multispec- 
tral data over time allow s simultaneous observations 
o f both radiation absorption and exchange properties, 
and may help in better surface characterization.

In this report, w e present a new land cover classi­
fication method that uses multitemporal observations 
o f Red, NIR, and surface temperature computed from  
TIR data. Our objective is to present a m ethodology in 
which the rules for classification are based on known 
energy exchange properties rather than statistical as­
sociations. The rules are designed to be sim ple and 
general enough to be im plem ented globally. Finally, 
the classification logic relies only on routinely co l­
lected satellite data and deals w ith both vegetation and 
nonvegetation. In this report, however, w e concentrate 
our efforts on classification o f  global vegetation.

T h e o r e t i c a l  B a s i s  f o r  C l a s s i f i c a t i o n  

E cology

Fig. 1 show s a schem atic representation o f infor­
mation required on vegetation, so ils and climate, data 
sources, and sim ulation m odels for computing and 
mapping global carbon, water, and nutrient flux pro­
cesses. The primary ecosystem  m odel, BIOME-BGC  
(Running and Hunt 1993), was designed to capture the 
essential physiom orphological adaptations that regu­
late energy exchange properties o f  vegetation. Running 
et al. (1994a) presented the ecological foundations for 
sim plifying global vegetation into six  c lasses, based on 
a combination o f  three primary attributes o f  plant can­
opy structure. Briefly these are (1) permanence of

aboveground biomass; This attribute separates vege­
tation with permanent respiring biom ass (forests and 
woody shrubs) from annual crops and grasses and is a 
major determinant o f  seasonal clim ate and carbon cy ­
cles. (2) Leaf longevity: The evergreen vs. deciduous 
nature o f  canopies is an extrem ely important variable 
for carbon and energy exchange processes through 
changes in albedo, carbon partitioning, and litterfall. 
(3) L eaf type or shape: This, i.e., broadleaf, needleleaf, 
and grass, is an important variable determining radi­
ation absorption and gas-exchange characteristics. 
Combinations o f these three attributes produce the six 
fo llow ing classes: (1) evergreen needleleaf, (2) ever­
green broadleaf, (3) deciduous needleleaf, (4) decid­
uous broadleaf, (5) broadleaf annual, and (6) grasses. 
Only broadleaf crops are identified separately. Since 
cereal crops behave similarly to grasses they were in­
cluded in grasses.

This schem e differs from earlier classification efforts 
in the fo llow ing ways. (1) Only plant attributes are used 
and clim ate is excluded from defining various classes. 
(2) It is tailored to the information content o f remotely 
sensed observations. Though the number o f  classes will 
not meet all land-cover-related studies (changes in spe­
c ies com position due to changing clim ate etc.), it pro­
vides a stable and unambiguous starting point for fur­
ther enhancements. This logic is also compatible with 
recent m odels o f  global vegetation distribution (Lee- 
mans and Cramer 1990, Prentice et al. 1992, N ielson  
1994). We adopted this classification logic as the basis 
for our rem ote-sensing-derived implementation with 
minor modifications. We identified shrub as a special
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F ig .  2 . Dynam ics o f 7's-NDVI for various 
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tion over time. Domains o f  m ixed landscapes 
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1.0

class that includes both broadleaf and needleleaf veg­
etation, but w ith sm all permanent biom ass.

H ydrom eteorology and p la n t canopy structure

Plant com m unities adapt and grow by optimizing use 
o f resources such as water, nutrients, and solar radia­
tion. The adaptations take various forms through 
changes in roughness (tall vs. short), leaf type (need­
leleaf vs. broadleaf), lea f longevity (deciduous vs. ev ­
ergreen), and density (sparse vs. dense). These phys­
iom orphological changes are fundamental mechanisms 
o f optim izing the energy absorption and dissipation  
processes with water availability constraints (W ood­
ward 1987). As water availability increases, plant can­
opy density increases. Increase in canopy density gen­
erally results in increase in plant height, therefore can­
opy roughness.

W hile plants growing in water-limiting conditions 
reduce the energy absorption with low er LAIs (Leaf 
Area Index) and canopy cover, plants with adequate 
water capture more energy but dissipate it efficiently 
to the atmosphere. The nature o f  coupling to the at­
mosphere has strong impact on the energy exchange 
processes o f  these canopies and the resulting canopy 
temperatures (Szeicz and Endrodi 1969, Jarvis and Mc- 
Naughton 1986). Aerodynam ically rough canopies 
such as forests dissipate energy efficiently and maintain 
canopy temperatures within 2°-3°C  o f  air temperatures 
(Denmead 1969). Sim ilarly, needleleaf canopies have 
lower aerodynamic resistances, and therefore are 
strongly coupled to the atmosphere. Canopy tempera­
tures in short, sm ooth canopies such as crops and grass­
es can be significantly higher than air temperatures 
(Denmead 1969). Therefore, changes in vegetation  
structure and function in response to resource avail­
ability should be useful for identifying various types 
o f vegetation. If w e can capture such differences in 
energy interactions through remote sensing, w e w ill be

able to classify vegetation based on fundamental prin­
cip les rather than on statistical aggregations.

Rem ote sensing

Spectral vegetation indices and surface temperature 
observations from NOAA/AVHRR have been found to 
be useful for quantifying the energy absorption and 
exchange processes (Goward et al. 1994). Theoretical 
and experimental evidence suggests that SVIs are 
strongly related to the fraction o f intercepted photo- 
synthetically active radiation (FPAR), biomass, leaf 
area index, and canopy cover (M yneni et al. 1990, Baret 
and Guyot 1991, Asrar et al. 1992, Sellers et al. 1992, 
Goward et al. 1994). On the other hand, satellite-de­
rived land surface temperatures are a function o f energy 
exchange processes that are controlled by the fractions 
o f so il and vegetation in the pixel, surface wetness, and 
synoptic weather conditions (Goward et al. 1985, N e­
mani et al. 1993). D ifferences in plant canopy struc­
tures produced as a result o f clim ate and soil strongly 
influence the fractions o f  soil and vegetation in a pixel, 
and thus surface temperatures. Under dry surface con­
ditions, surface temperatures are linearly related to can­
opy densities across different vegetation types (Nemani 
et al. 1993). Over wet surfaces the relation between  
and canopy density is poorly defined (Nemani et al.
1993). However, the maximum-value com positing pro­
cedures follow ed in satellite data archives (Eidenshink  
1992) tend to favor dry surface conditions (Nemani et 
al. 1993).

C o m b i n e d  C l a s s i f i c a t i o n  L o g i c

Fig. 2 illustrates idealized trajectories follow ed by 
various land cover types in the Ts-NDVI space during 
a growing season. The Ts-NDVI space is divided into 
four groups with thresholds for NDV I (0.4) and 7 , (35), 
chosen to represent the relations between NDVI and 
FPAR, and reported surface temperatures for relatively



closed canopies with adequate water supply (Gay 1972, 
Priestley and Taylor 1972, Sader 1986, Nemani and 
Running 1989a, Asrar et al. 1992, Goward et al. 1994). 
The theoretical basis for these thresholds w ill be d is­
cussed in detail later. We can characterize these groups 
in the fo llow ing manner.

G roup 1: w a ter lim ited.— The hydrologic equilibri­
um theory states that plants regulate their lea f area 
index (i.e ., energy absorption and exchange) in re­
sponse to water availability determined by clim ate and 
soil properties (Woodward 1987, Nemani and Running 
1989fe, N ielson  1994). Plant comm unities such as grass 
and shrubs grow in drier clim ates or poor soil condi­
tions with generally shorter growing seasons; they at­
tain low  density and shorter stature resulting in low  
canopy cover and energy absorption (low  N DV I, thus 
low  FPAR). Inadequate supply o f water for evapotrans­
piration and plant growth and higher fractions o f ex ­
posed soil also result in higher surface temperatures.

G roup 2: energy lim ited.— Vegetation in high lati­
tudes and altitudes generally has shorter growing sea­
sons either due to low  air temperatures or shorter day 
lengths, resulting in low levels o f energy absorption. 
Boreal and alpine forests, snow- and ice-dom inated  
landscapes, and open water and wetlands fall into this 
category. With adequate water for evapotranspiration 
these land cover types always have low Bowen ratios 
(the B ow en ratio is the ratio o f sensible heat flux to 
latent heat flux and indicates how the energy absorbed 
at the earth’s surface is dissipated, either in the form  
o f evapotranspiration or as sensible heat) and low  sur­
face temperatures.

W hen energy and water conditions are nonlim iting  
for plant growth, energy dissipation processes becom e 
more important for distinguishing between land cover 
types. W hile albedo and canopy structure determine 
canopy net radiation, latent and sensible heat transfer 
are primary mechanisms for dissipating absorbed en­
ergy. The partitioning o f energy is regulated by surface 
(stomatal control, leaf area index) and aerodynamic 
(roughness, w indspeed) factors (Szeicz and Endrodi 
1969).

G roup 3: atm ospherically decoupled.— Crops are a 
unique vegetation type, an exception to the ecological 
optimality, managed through irrigation and fertilization  
for harvesting solar energy. As a result crops have high­
er energy absorption (high N DV I). But crops also show  
higher surface temperatures for two reasons: (1) under 
low-to-m oderate w indspeeds crops are aerodynamical­
ly sm ooth compared to forests, therefore the high aero­
dynamic resistances suppress sensible heat transfer, re­
sulting in higher (Denmead 1969), (2) incom plete 
canopies through much o f  the growing season allow  
more radiation to penetrate and heat the underlying soil, 
thus contributing to higher surface temperatures.

G roup 4: atm ospherically coupled.— As clim ate/soil 
conditions becom e more favorable plant densities in­

crease, leading to woodland/forest type vegetation with 
higher energy absorption (high N DV I and FPAR). For­
ests with their deep root system s tend to dissipate more 
energy by transpiration through much o f the growing 
season, and therefore maintain canopy temperatures 
close to air temperatures (Denmead 1969). However, 
under adverse conditions they can also exert strong 
stomatal control on water losses (Jarvis and McNaugh- 
ton 1986). B ecause forests are aerodynamically rough 
they can dissipate energy efficiently as sensible heat, 
and as a result maintain low  T̂ . Further, forests gen­
erally have higher canopy covers and low fractions of 
exposed soils, again contributing to low radiometric 
temperatures.

I m p l e m e n t a t i o n  L o g i c

C hoice o f the thresholds for NDVI and is critical 
to the successful im plementation o f this logic. Theo­
retical as w ell as experimental evidence suggest that 
at an N DV I o f  0.4, many vegetation types absorb >75%  
o f incident photosynthetically active radiation (Myneni 
et al. 1990, Baret and Guyot 1991, Asrar et al. 1992). 
We understand that several factors, i.e ., background, 
leaf optical properties, leaf angle distributions, and at­
mospheric conditions, strongly influence such a rela­
tion. A dvances in sensor technology, better algorithms 
for atmospheric corrections, and proposed modifica­
tions for SVIs may allow  a more robust choice for an 
N DV I threshold in the future (Huete et al. 1994, Run­
ning et al. 19941)).

Surface temperatures o f  w ell-watered closed cano­
pies do not exceed 32°C under a w ide range o f  net 
radiation conditions (Gay 1972, Priestley and Taylor 
1972). The low Bowen ratios, in areas that support 
dense vegetation such as forests, help to maintain tem ­
peratures in equilibrium with energy availability. Fur­
ther w e assume that forest canopy temperatures (closed  
canopies with efficient energy dissipation) in spite o f 
short-term water shortages do not exceed the 32°C limit 
by more than 2°-3°C  (Denmead 1969, Jarvis and Mc- 
Naughton 1986, Luvall and Holbo 1991). Radiometric 
temperatures from satellite sensors are a com plex func­
tion o f view ing geom etry and solar illumination along 
with other factors discussed earlier (Choudhury 1991). 
Nevertheless we chose to extend the theoretical tem ­
perature limits to pixel-w ide surface temperatures.

Fig. 3 shows our classification schem e with the re­
quired variables and thresholds. Initial separation into 
four groups shown in Fig. 2 requires maximum values 
o f NDVI, Tj, and a seasonal trajectory. The maximum  
values o f  NDVI and that a pixel achieves during a 
growing season quickly establishes the nature o f veg­
etation growing in the pixel (i.e., forests vs. nonforest 
etc.). The seasonal trajectory is used to alleviate the 
confusion caused by the maximum values, particularly 
in mixed landscapes. U sing maximum values alone, a 
forest pixel with an NDVI o f  0.5 and value o f  36°C
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in only one com posite period could be grouped with 
crops. The seasonal trajectories capture the differences 
in phenology, and growth rates between crops and for­
ests produce distinct absorption/em ission patterns. 
When temperatures becom e optimum for growth, 
broadleaf forests tend to leaf-out and achieve maximum  
canopy covers within a few  w eeks and maintain rela­
tively low  Ts (Schwartz and Karl 1990), whereas crops 
take longer time to achieve full canopy cover, and 
maintain higher values for much o f  the growing sea­
son. Therefore, the length o f time (in this case the 
number o f  com posite periods) a pixel stays in a par­
ticular group other than group 1 (denoted as Ts/NDVI) 
is also an important factor. M ost vegetation types start 
their growth cycle  in group 1 in temperate clim ates, 
whereas in the tropics it may be in group 1 or 2 (Fig. 
2 ).

Further separation in each group is achieved using  
growing-season average N D V I (NDVIgs), grow ing-sea­
son average NIR reflectance (NIRgJ, and grow ing-sea­
son NDVI amplitude (NDVI^^^p). The definition o f  
growing season is important for the onset o f  photo­
synthetic activity as w ell as for accurate analysis o f  
satellite data. B ecause interpretation o f  satellite obser­
vations during the nongrowing season is com plicated  
by low  sun angles and snow  cover, NDVI^^^p, NIRg^,

and NDVIgs are calculated for com posite periods with 
Tj >  5°C, to represent a temperature-defined growing  
season.

W ater lim ited  (group 1): barren, shrub, and grass

It is very rare to see continuous canopies in shrubs 
and grass, because o f  the nature o f climate and soil 
conditions on which they grow. Frequently, various 
fractions o f  grass, shrub, and bare soil are seen in nat­
ural landscapes. In a growing season, grasses tend to 
have higher canopy covers (although for shorter peri­
ods) than shrubs, resulting in slightly higher NDVI and 
higher FPAR. We used average growing-season NDVI 
(NDVIgs) to separate these three cover types (Fig. 3).

Energy lim ited  (group 2): snow, ice, water, and  
w etlands

Landscapes dominated by snow, ice, and water usu­
ally stay within this group with N DV I values close to 
zero. Wetlands, on the other hand, have higher NDVI 
values because o f  the presence o f vegetation. Boreal 
forests that have a significant fraction o f surface water 
also fall in this group. We did not attempt further sep­
aration in this group for this study. We do plan to use 
satellite data collected as a part o f the BOREAS (Boreal 
E cosystem  Atmosphere Study) experiment to further



explore this group. S ince group 3 (atmospherically de­
coupled) includes only broadleaf crops, no further sep­
aration is required.

A tm ospherically  coupled  (group 4): fo res ts

Since energy exchange properties o f  various forests 
are similar during a growing season, the reflectance 
dynamics and their magnitudes at different w ave­
lengths are more important in further separation o f  for­
ests into deciduous vs. evergreen and needle- vs. broad­
leaf forests.

D eciduous vs. evergreen .— Seasonal change in can­
opy cover is an important attribute for differentiating 
deciduous and evergreen vegetation. By definition ev ­
ergreen vegetation-retains much o f  its canopy through­
out the year, w hile deciduous canopies shed their leaves 
with canopy covers approaching zero. Such changes in 
canopy cover are captured by the seasonal N DV I pro­
files. However, extraneous factors such as snow cover 
and low  illum ination angles significantly reduce NDVI 
values that are not directly due to changes in canopy 
cover (Spanner et al. 1990). Presence o f  snow cover 
or low  illum ination angles also result in low  surface 
temperatures. Therefore, a T^-defined growing season 
significantly alleviates this problem. We chose an 
NDVI^mp o f  0.3 to differentiate evergreen vs. deciduous 
canopies. We assumed an evergreen forest canopy with  
a maximum N D V I o f  0 .6  and maximum leaf turnover 
o f 50% to arrive at an NDVI^^^p threshold o f  0.3 (Span­
ner et al. 1990, Loveland et al. 1991, Reed et al. 1994).

N eed le lea f vs. broadleaf.— Canopies with broad 
leaves are spectrally brighter than those with needle 
leaves because o f  the canopy geom etry and leaf angle 
distributions (Hall et al. 1992). For exam ple, conifer 
canopies with spherical leaf angle distribution coupled  
with low  specific lea f areas (leaf area per unit dry mass) 
tend to reflect very little radiation (Spanner et al. 1991). 
Though reflectances o f individual needles are not sig­
nificantly different from broad leaves, canopy reflec­
tances were found to be quite smaller in needleleaf 
canopies. In contrast broadleaf vegetation with plan- 
ophile canopies and higher specific lea f area tend to 
reflect more radiation. The differences in reflectance 
are particularly evident at near-infrared wavelengths 
(Hall et al. 1992). From satellite- and ground-based 
observations reported in various studies, w e chose a 
cut-off o f 20% average grow ing-season NIR reflectance 
to distinguish betw een needleleaf (<20% ) and broad­
leaf canopies (> 20% ) (Hall et al. 1992).

M e t h o d s  

D ata  se t

We used 1-km NOAA/AVHRR data (channels 
1-RED, 2-NIR, TIR-4, and TIR-5) collected and com ­
posited b iw eekly (once every 2 wk) during 1991 for 
the conterm inous U .S. by the EROS Data Center. This 
data set is w idely distributed and is similar to 1990

data set used for various land cover studies (Loveland  
et al. 1991, Eidenshink 1992). For each com posite pe­
riod, we computed NDVI as (NIR — RED)/(NIR 4- 
RED) and land surface brightness temperature as, =  
7,4 +  3 .3 (7 ,4  -  7 ,5) (Price 1984), where 7,4 and 7,5 
are brightness temperatures derived from TIR channels 
4 and 5. The fo llow ing attributes were created for a 
2889 X 4608 pixel database: seasonal maximum values 
o f 7 , (7 ,„„) and N DV I (N D V I„,,), 7,/N D VI, N D V U p , 
NDVIg,, and NIR^,.

A s the thresholds for this classification logic were 
not derived from training sam ples, w e wanted to test 
the generality o f  our thresholds and assumptions. We 
chose a sm all sample o f  pixels to test the thresholds 
before applying the logic at continental scales.

F irst test o f  the logic

U sing the Loveland et al. (1991) map, we chose 15, 
2 X 2  pixel areas in each class, representing barren, 
brush, grass, broadleaf crops, conifer forests, and de­
ciduous broadleaf forests in different climatic regimes 
(Fig. 4). A  summary o f important attributes used in 
our classification logic, obtained over different land 
cover classes, is given in Table 1.

Continental application

Each o f the 2889 X  4608 pixels o f the conterminous 
U .S. data was classified based on the logic shown in 
Fig. 3. The results from this approach were compared 
to the six classes reported in Running et al. (1994a), 
which were derived by merging Loveland et a l.’s 73 
classes. S ince Loveland et al.’s (1991) original c las­
sification used an extensive amount o f  ancillary infor­
mation and training data sets, we assumed this data set 
would provide a useful “ ground truth” for our logic. 
We used every 50th pixel (= 3 0 0 0 , excluding water, 
snow, and ice) in the database for further comparative 
analysis (Table 2).

R e s u l t s  a n d  D i s c u s s i o n  

F irst test o f  the logic

The thresholds for NDVI (0.4) and 7, (35) appear to 
be adequate across the entire domain o f the continental 
U .S. Mean values o f  and NDVI„j„ for the test sites 
shown in Table 1 support our choice o f these thresh­
olds. A  clear separation is observed from maximum  
values o f N DV I and 7, between vegetation growing 
under energy or water-limiting (groups 1 and 2) and 
nonlimiting (groups 3 and 4) conditions (Table 1, Fig. 
5a).

Seasonal trajectories o f 7,-N D V I (7,/N D V I) contrib­
uted substantially to the group separation. The 7,/N D V I 
alone could be used successfully to assign each pixel 
into one o f  the four groups (Fig. 5b). However, the vari­
ation between groups assigned by 7,„„ and NDVI,,, ,̂  ̂and 
by 7 /N D V I could provide valuable information about 
mixed landscapes.



Barren 
Shrub 
Grass 
Crops
Evg. Ndlf. forest 
Decid. Brdlf. forest

F ig . 4. Locations o f sam ple sites for various land cover types across the continental U.S used in the initial testing of 
our classification logic.

Separating forests into deciduous and evergreen was 
reasonably accom plished through the N DV I^p thresh­
old (Table 1). However, corrections for solar angle as 
w ell as elim inating snow periods through values 
must be performed prior to computing NDVI^^p values. 
Som e confusion still existed over high latitude forests 
where patchy snow and residual effects o f  sun-sensor 
geom etry contributed to high NDVIa„,p values over ev ­
ergreen forests. On the average needleleaf canopies had 
20-50%  low er NIR reflectance compared to broadleaf 
canopies, confirming earlier reports.

Maximum values alone could not clearly separate 
between crops and forests (Fig. 5a). Many p ixels were 
found to fall in the m ixed-canopy zone identified in 
Fig. 2. However, smoothed profiles o f  7's-NDVI (Fig. 
5b) show that at a given NDVI crops have considerably  
higher than forests, confirming the differences in 
canopy structure and energy exchange processes dis­
cussed earlier.

C ontinental application  

The geographic distributions o f  various land cover 
types across continental U .S are w ell represented by

T a b l e  1. M ean values o f rem otely sensed land surface characteristics used in the present 
classification system. Tj/NDVI values represent the num ber o f composite periods (total o f 
19) in which a pixel belonged to a group other tfian group 3 in Fig. 2.

TJ  . 
NDVI

NDVIg, ND VI„,, NDVI,„,, NIR,,
« Land cover X SD X SD X SD X SD X  SD

Barren 18 0.06 0.0 60 1 0.09 O.OI 0.07 O.OI 23 2
Shrub 8 0.08 0.03 53 5 0.16 0.06 0.21 0.20 20 6
Grass 9 0.20 0.03 48 5 0.35 0.05 0.27 0.04 18 3* Crops
Deciduous

broadleaf

6 0.44 0.04 41 5 0.64 0.06 0.59 0.15 23 I

forest
Evergreen

needleleaf

10 0.44 0.04 32 3 0.62 0.05 0.50 0.07 26 2

forest 9 0.42 0.06 32 5 0.56 0.05 0.35 O.IO 16 3

Notes: T, = surface tem perature; NDVI =  Norm alized Difference Vegetation Index; NDVI^, 
=  growing-season average NDVI; NDVIa„,p =  growing-season NDVI amplitude; N IR ^ =  grow ­
ing-season average near-infrared reflectance; T,„ '



T a b l e  2. Com parison with Running et al. (1994a) classification. Num bers in parentheses are 
percentages o f total pixels in each class.

Running et al. 
(1994a)

Our classification

Barren Shrub Grass Crops Evg.ndl.for.
Dec.bleaf.

for.

Evg.ndl.for. 0 0 41 (5) 6 676 (77) 148 (17)
Shrub 2 435 (77) 120 (21) 2 8 0
Dec.bleaf.for. 0 0 1 12 126 (24) 376 (73)
Crops 0 0 50(13) 168 (44) 88 (23) 7 4 (1 9 )
Grass 0 67 (1 1 ) 392 (63) 7 6 (1 2 ) 80(13) 7
Barren 23 (30) 51 (67) 2 0 0 0

Notes: Evg.ndl.for. =  evergreen needleleaf forest, dec.bleaf.for. =  deciduous broadleaf forest.
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F ig .  5. (a) Seasonal trajectories for different land cover types in the r -N D V I  space derived by sm oothing raw NDVI
and r ,  data. Crops and forests around Lake M ichigan, though sharing sim ilar NDVI profiles, have remarkably different T, 
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west region, (b) A r ,„ „ -N D V I„ „  scatterplot showing the distribution of pixels in different land cover classes from locations 
shown in Fig. 4.



m

I

Barren/sparse
vegetation
Shmb
evergreen broad/ 
needleleaf 
Grass including 
cereal crops
Crops
(broadleaf)
Evg. Ndlf. 
forest

Water

Decid. Brdlf. 
forest

Barren/sparse Shrubs 
vegetation

Grass/
cereal

Brdlf.
crops

Decid. Bidlf. 
forest

Evg, BidK. Evg. Ndlf. 
forest forest

scale: 8x8 km
satellite data from NOAA/AVHRR, 1989

P l a t e s  1-2. Plate 1 (top): A map showing various land cover classes for the conterminous U.S. derived using only 
remotely sensed data (RED, NIR, and TIR AVHRR data) and classification rules presented in Fig. 3. Plate 2 (bottom): Global 
land cover classes derived using the classification scheme presented in Fig. 3 with AVHRR/Pathfinder 8-km data for 1989.

our classification logic (Plate 1). Comparison o f  our 
results (Table 2) with those o f  Running et al. (1994a) 
show ed >90%  accuracy in separating forests from non­
forests. Accuracy decreased to 73 and 77%, respec­
tively, w hile separating evergreen needleleaf and de­
ciduous broadleaf forests. H ow ever in both cases the 
remaining pixels (17 and 24%) were assigned to a forest 
class only. Much o f  this confusion could be due to 
m ixed landscapes such as those in the southern U .S., 
where various fractions of broadleaf and needleleaf for­

ests co-exist. Examples o f  this are disturbed forests on 
the Oregon coast, in which broadleaf species (alder and 
aspen) dominate reflectance characteristics (Spanner et 
al. 1990). Our logic defined a number o f  pixels as de­
ciduous broadleaf, whereas Running et al. (1994a) re­
ported only needleleaf forests.

Shrubs were classified with an accuracy o f  77%, 
w hile 21% o f the shrub pixels were assigned to grass. 
The barren class had similar problems, with more pixels 
assigned to shrub class. It is very difficult to argue



what percentage o f  canopy cover differentiates shrubs 
from barren land and shrub from grass. There seem s 
to be much overlap in NDVIgs values among these three 
land cover types due to variations in climatic and sub­
strate conditions (Kremer and Running 1993). Open 
canopies w ith brighter substrates have been found to 
produce lower N DV I values compared to those with 
darker substrates (Asrar et al. 1992). Several new sat­
ellite indices have been proposed to account for such  
differences in background contribution (Huete et al.
1994).

Grass and crop classes have the low est classification  
accuracies (Table 2). Landscape m osaics consisting o f  
crops and grasses with forests are comm on over the 
continental U .S. A ssigning such mixtures from L ove­
land et al. (1991) to one o f  the six classes (Running et 
al. 1994a) could be a difficult task and may be partly 
responsible for the poor agreement.

W hile several land cover maps exist for the U .S. 
(M atthews 1983, Olson et al. 1983, W ilson and Hen- 
derson-Sellers 1985, D efries and Townshend 1994) a 
quantitative comparison o f  our results with the above 
is a difficult task because o f  the differences in labelling  
the classes and coarse spatial resolution. D efries and 
Townshend (1994) clearly illustrate this problem o f  
lack o f  correspondence among earlier maps by com ­
paring the areal extents o f  various classes. A  qualitative 
comparison o f  our results with earlier maps shows that 
major differences are usually in areas where cultivation 
has significantly altered the landscape. Currently no 
definitive data set o f  land cover exists against which  
results from various classification schem es can be test­
ed (Defries and Townshend 1994). Several national as 
w ell as international efforts are currently underway to 
system atically collect land cover data over several test 
sites representing various land cover classes (Running 
et al. 19941?).

Land surface characterization can be significantly 
improved with the com bined use o f  NDVI and surface 
temperatures. For exam ple, irrigated crops and broad­
leaf forests in the eastern U .S. produce almost similar 
N D V I patterns, and yet the profiles o f  these two 
surfaces would be different mainly because o f the rate 
at which they achieve com plete canopy closure. Con­
sequently surface temperatures during the beginning 
and end o f the growing season for crops are consid­
erably higher compared to forests. Similarly high e l­
evation forests in the Rocky mountains with departing 
snow cover and low  elevation crops share similar N DV I 
profiles but remarkably different T, profiles as a result 
o f differential energy partitioning. Therefore, only a 
com bined analysis o f  these tw o variables could capture 
the surface dynamics adequately.

In order to illustrate the robustness o f the proposed  
algorithm, w e used the AVHRR/Pathfinder data at 8-km  
resolution (James and Kalluri 1994) to map land cover 
at a global scale. Results o f  this analysis (Plate 2),

though promising, demonstrated som e key problems: 
(1) lack o f  mixtures like savana, (2) inability to identify 
deciduous needleleaf canopies. Currently, we are work­
ing on a number o f  improvements to the proposed 
method. Som e o f these are discussed below.

Future im provem ents
1. Thresholds fo r  NDVI and T,.— U sing a three-di­

mensional Radiative transfer model (Myneni et al. 
1990), w e are exploring the sensitivity o f canopy re­
flectance to various structural and optical properties o f 
vegetation. Such sensitivity analysis is likely to provide 
us with not only robust relations between canopy cover 
and NDVI, but also the possibility o f  using individual 
w avelength bands for detecting various types o f veg­
etation. Thresholds for are more difficult to gener­
alize, as T, is not an intrinsic property o f vegetation  
itself. However, using the pathfinder data for the past 
1 0 -1 2  yr, w e hope to derive geographically consistent 
thresholds for the surface temperature.

2. M ixed c lasses .—-Mixed landscapes present prob­
lem s mainly because o f the spatial resolution o f sat­
ellite data. The spatial resolution problem can only be 
solved with new satellite sensors such as MODIS 
(Moderate Resolution Imaging Spectroradiometer), 
MISR (M ulti-angle Imaging Spectroradiometer), and 
ASTER (Advanced Spaceborne Thermal Emission and 
Reflection Radiometer) on board EOS (Earth Observ­
ing System ) (Running et al. 1994/?). Although the meth­
odology presented here did not explicitly deal with 
mixed canopies, we identify the domains of mixed 
landscapes in the T j-N D V l space (Fig. 2). As discussed  
earlier, the discrepancy between groups assigned with

and N D V 1 „3,j and with seasonal trajectory points 
to mixed landscapes (forests with grass/crops or grass 
with crops). In many western conifer forests open can­
opies with grass or brush understory are common. By 
midsummer the understory vegetation starts to senesce 
due to soil moisture deficits, thereby changing surface 
energy partitioning. The resulting increase in may 
last only one or two com posite periods before irradi- 
ance and air temperatures start falling. Similar re­
sponses in Tj can be expected with crop/forest mixtures. 
A lso, appropriate modifications ( ± )  to the NDVl^^ and 
NlRgs thresholds would produce mixtures o f deciduous 
vs. evergreen and needleleaf vs. broadleaf vegetation.

Finally, the performance o f  a classification algorithm  
is primarily determined by the quality o f  input data. 
Many o f  the current AVHRR data sets suffer from prob­
lem s related to calibration, atmospheric influence, 
view ing geometry, and background effects. Planned al­
gorithms for the EOS/M ODIS products are designed  
to m inim ize the above effects, and would certainly help 
enhance the classification results (Running et al. 
1994b).

C o n c l u s i o n s

We provided evidence that land surface temperatures 
when used in combination with spectral vegetation in­



dices substantially im prove land cover characteriza­
tion. We realize the problems associated with satellite- 
derived surface temperatures, including atmospheric 
and em issivity corrections and synoptic weather con­
ditions. However, observed differences in surface tem ­
peratures between various land cover types are con­
sistent, and are also useful for defining the onset o f  
growing season, rate o f plant growth, and aridity con­
ditions. The logic com bining N D V I and is also useful 
for monitoring seasonal dynamics o f  land cover, evapo­
transpiration, and disturbances due to fire, floods, in­
sects/disease, and other anthropogenic processes. The 
ecological foundations for sim plifying global vegeta­
tion along with the com pletely rem ote-sensing-based  
im plementation schem e should be a useful start for 
global land cover studies.
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