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Mildrexler, David J. M.S., May 2005 Forestry and Conservation, Remote Sensing

Developing a Disturbance Index and Extreme Land Surface Temperature in the Western 
United States

Chairperson: Steven W. Running

Land surface temperature (LST) is one o f the key parameters in the physics o f land 
surface processes, combining surface-atmosphere interactions and the energy fluxes 
between the atmosphere and the ground. Increases in LST could produce profound 
changes in the forests at high and temperate latitudes, and result in increased carbon 
dioxide emissions from terrestrial disturbance events such as drought and wildfire. The 
timing, location and magnitude of major disturbance events is currently a major 
uncertainty in the global carbon cycle. The Aqua sensor, aboard the Terra Spacecraft, 
was launched in 2002 and has yet to be tested for its full capacity as a land surface remote 
sensor. The MODIS/Aqua 11 LST product provides global estimates o f radiometric LST 
with continuous spatial coverage. We analyze the sensitivity o f the LST estimates at the 
fine scale by comparing the maximum LST o f a poplar tree plantation in the desert of 
eastern Oregon to the adjacent natural land cover types. At the coarse scale, a strong 
negative correlation was observed between the mean-maximum LST and the mean- 
maximum enhanced vegetation index (EVI) over all biomes in the western United States. 
Based on this relationship we develop a disturbance index using LST and the EVI. Our 
results indicate that the LST/EVI interannual disturbance index is capable o f detecting 
relatively large disturbances with good accuracy, such as wildfire, and the impacts of 
interannual weather variability on vegetation. LST maps highlighting physiologically 
defined potentially lethal LST were created and compared to biome distribution. The 
extreme temperature maps provide a fresh look into the spatial distribution and 
interannual variability o f these temperatures.
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Introduction

Landscape-level spatial data o f disturbance location and intensity on the Earth 

surface is important for tracking responses o f the biosphere to climate change, for global 

carbon budget modeling, and for improved resource management. An ecological 

disturbance is an event that results in a sustained disruption o f ecosystem structure and 

function (Picket and White, 1985; Tilman, 1985). Many o f these events alter ecosystem 

productivity and resource availability (light and nutrients) for organisms on large spatial 

and temporal scales (Potter et al., 2003). Ecosystem scientists have yet to develop a 

proven methodology to monitor and understand major disturbance events and their 

historical regimes at a global scale (Potter et al., 2003). The ability to monitor 

disturbance and track the recovery of disturbed areas is critical to understanding the 

response o f the biosphere to a constantly changing climate.

In the past, vegetation has responded to warming and temperatures that were 

higher than are current temperatures. However, the novelty o f the expected changes in 

the 21®* century is the rate o f increase in temperature (Flenley, 1998). A range o f credible 

scenarios o f greenhouse gas emissions could increase radiative forcing, leading to a 3- 

6°C increase in mean near-surface air temperature at high and temperate latitudes during 

this century (Houghton et al., 1996; Kattenburg et al., 1996). Such increases could result 

in profound changes in the forests o f North America (Shriner and Street, 1998) as the 

geographical ranges of many tree species are predicted to shift northward (Davis and 

Zabinski, 1992; Dyer, 1995; Iverson et al,, 1999). Insect herbivores o f tree species will 

also shift ranges to follow their hosts (Williams and Liebhold, 1997). Early results have 

suggested that rates o f change exceeding the ability o f ecosystems to migrate would be



particularly damaging (McCarthy et al., 2001). As climate change accelerates, 

disturbance processes could play an increasingly important role in land cover change. 

Shifts in land cover distribution could greatly alter our natural resource dependent socio­

economic opportunities, influence the suitability o f large areas for agricultural use, alter 

our development patterns, and have drastic effects on native plant and animal species.

Increases in temperature will be inextricably linked to increases in carbon dioxide 

(CO2), vapor pressure deficit (VPD), drought, and in some regions, fire frequency (Saxe 

et al., 2001). Because major ‘pulses’ o f CO2 from terrestrial biomass loss can be emitted 

to the atmosphere during large disturbance events, the timing, location, and magnitude of 

vegetation disturbance is presently a major uncertainty in understanding the global 

carbon cycle (Canadell et al., 2000). Elevated biogenic sources o f CO2 have global 

implications for climatic change, which can in turn affect a vast number o f species on 

Earth and the functioning o f virtually all ecosystems (Potter et al., 2003). An improved 

and automated disturbance metric for continental change detection is urgently needed and 

if  the effects o f those disturbances could be quantified, could serve as a key input into 

carbon budget models.

The responses o f plants to the severity o f their environment have occupied the 

attention o f man long before the beginnings o f the science o f biology (Levitt, 1941). The 

dependence o f humans on vegetation for oxygenation o f the atmosphere, food, fiber, and 

medicine has driven both a curiosity and a need to explore the limits and tolerances o f 

plant communities. The physiological consequences o f extreme temperature exposure on 

plant growth, reproduction, and survival have been thoroughly examined (Larcher, 2003; 

Levitt, 1980; Turner and Kramer, 1980). However, accurately mapping the occurrence of



extreme or potentially lethal temperatures instantaneously and continuously across the 

land surface has, until now, not been feasible. Maps o f potentially lethal land surface 

temperature based on spatially contiguous remotely sensed data offer new opportunities 

to explore stress physiology concepts that have been heretofore limited to laboratory and 

small plot-based experiments, at a landscape level. This, in turn, could lead to a greater 

ability o f researchers to communicate findings with land managers. Physiologically 

defined potentially lethal temperature maps could be used to assess human health hazards 

such as the potential for the spread o f pathogens and viruses, the suitability of areas as 

wildlife habitat based on seasonal extreme temperatures, or the influence o f agricultural 

development on lethal temperature patterns.

Aqua/MODIS Land Surface Temperature

Land surface temperature (LST) is one o f the key parameters in the physics o f 

land surface processes on regional and global scales (Wan et al. 2004), combining 

surface-atmosphere interactions and the energy fluxes between the atmosphere and the 

ground (Mannstein, 1987; Sellers et al., 1988). Interactions between the land surface and 

the atmosphere and the resulting exchanges of energy and water have a large impact on 

climate (Shukla and Mintz, 1982). LST is an important factor in modeling large-scale 

hydrological systems, global primary production, the effect o f greenhouse gases, and in a 

wide variety o f ecological and biogeochemical studies (Running et al., 1994). The 

MODIS LST products are key inputs to many o f the higher-level MODIS products and 

provide data for global temperature mapping and change observation.



The Aqua/MODIS LST product is provided as global, pixel-wise estimates o f 

radiometric land surface temperature at 1-km^, 5-km^ and .05° resolutions. Radiometric 

temperature measures the radiation that is emitted by a body from some distance, in this 

case by satellite. LST is defined as the radiation emitted by the top o f the land surface 

observed by MODIS at instantaneous viewing angles. “Land surface” refers to canopy in 

vegetated areas or soil surface in bare areas (Wan et al., 2004).

The Aqua/MODIS instrument

As part o f the Earth Observing System, the second of two MODIS instruments 

was launched on May 4***, 2002. The MODIS instrument on-board the Aqua platform is 

used to measure LST, vegetation dynamics, and land cover and land use change as well 

as other ecological parameters. The first full year o f data collected from the 

MODIS/Aqua sensor was 2003. The strengths o f the MODIS instrument include its 

global coverage, high radiometric resolution and dynamic ranges, and accurate 

calibration in the visible, near-infrared and thermal infrared (TIR) bands (Wan et al., 

2004). The MODIS instrument has 36 bands with bands 1-19 and band 26 in the visible 

and near infrared range, and the remainder o f the bands in the thermal range from 3 to 15 

pm (Wan, 1999). The LST o f clear-sky pixels in MODIS scenes is retrieved from 

brightness temperatures in bands 31 and 32 with the generalized split-window algorithm 

(Wan and Dozier, 1996). The MODIS LST bands based on TIR data are only available 

under clear sky conditions because clouds inhibit satellite observations in the visible and 

TIR spectral ranges. Cloud contamination limits availability o f good quality TIR based



LST data with a temporal and spatial bias due to the effects o f seasonality and 

topography on cloud formation.

The Aqua/MODIS sensor was chosen for this study because o f its afternoon 

equatorial crossing time. Terra's orbit around the Earth is timed so that it passes from 

north to south across the equator around 10:30 am, while Aqua passes south to north over 

the equator around 1:30 pm (Wan et al., 2004). Because o f the Aqua overpass time 

around 1:30 pm, the afternoon LSTs retrieved from the Aqua/MODIS data will be closer 

to the peak o f diurnal fluctuation and to the maximum temperature of the land surface.

As a result, it is more suitable for regional and global change studies (Wan et al., 2004). 

The partitioning o f sensible and latent heat at the vegetated land surface is critical for 

determining both photosynthetic activity and LST. Morning measurements will typically 

be lower than afternoon measurements due to the potential for morning dew, higher vapor 

pressure and less solar radiation loading. As the daytime temperature and VPD rise, the 

amount o f energy partitioned as sensible heat flux increases at the vegetated surface 

resulting in higher surface temperatures. Measurements close to the peak o f diurnal 

fluctuation will better reflect the thermal response o f rising leaf temperatures due to 

decreased latent heat flux as stomata close to minimize water loss by transpiration, and 

the occurrence o f potentially lethal temperatures.

LST Algorithm Theoretical Basis

One o f the major difficulties in development o f LST algorithms is the 

considerable spectral variation in emissivities for different land-surface materials. 

Emissivity may also vary with the satellite viewing angle (Dozier and Warren, 1982;



Labed and Stoll, 1991 ; Rees and James, 1992), an effect that is more important over land 

than water because the combination o f surface slope and MODIS scan angle routinely 

results in local viewing angles greater than 60° and pixel distortion. It is essential to 

measure spectral emissivities o f natural cover types for the development o f LST 

algorithms. Strategy for development o f the MODIS LST algorithms consisted of: 1) the 

establishment o f a comprehensive land surface emissivity and BRDF (Bidirectional 

Reflectance Distribution Function) knowledge-base in a joint effort with the EOS 

ASTER Science Team so that the development o f the MODIS LST algorithms has a solid 

basis and so that it is possible to measure LST with an accuracy better than 1 K for 

ground-based validation o f the product; 2) the use of accurate radiative transfer models 

that incorporate new theoretical and experimental advances in atmospheric absorption 

into simulations; and 3) the establishment o f a database from accurate radiative transfer 

simulations and development o f a look-up table and interpolation scheme so that efficient 

and accurate physics-based LST algorithms for retrieving surface emissivity and 

temperature could be used in operational production (Wan, 1999).

Quality control

Automatic quality control is performed on a routine basis at the Distributed 

Active Archive Center (DAAC). Quality flags are provided for each LST pixel so that a 

quality control image corresponds to a LST image. The quality flag is an 8-bit code 

indicating the confidence in LST processing. More details can be found in the MODIS 

Land-Surface Temperature Algorithm Theoretical Basis Document, Version 3.3 (Wan, 

1999).



Assumptions

The MODIS LST algorithm, as well as most existing LST algorithms, is based on 

the simple assumption that a land surface pixel can be described by different spectral 

emissivities and a single effective radiometric temperature in all TIR bands. But this may 

not be true for pixels containing sub-pixel fires. Snow-surface temperature retrieval is 

very difficult, if  not impossible, because snow emissivity varies with depth, density, and 

grain size. Land surfaces with large areas o f water present, such as lakes and flooded 

soils, also present problems because o f the integrated influence o f the much lower 

brightness temperatures and higher polarization differences for water (McFarland et al., 

1990). When linking pixel values to fixed coordinates on the Earth’s surface, the MODIS 

LST, as well as all other land products, will have troubles with complicated mixed pixels 

along land cover boundaries in terms of their quantitative definitions, quality assessments 

and applications (Wan, 1999).

Algorithm validation and uncertainties

Prelaunch validation is a comparison between temperatures retrieved firom in-situ 

measurements and those retrieved fi’om airborne and satellite TIR data. The LST product 

is considered valid when the measurements and error analysis indicate an absolute 

accuracy o f the aerial or satellite measurements o f better than 1 K standard deviation 

(Wan, 1999). The uncertainty in LST retrieved by the generalized split-window LST 

algorithm for uniform land surfaces with known spectral emissivity characteristics could 

be equal to or smaller than 0.5 K (Li and Becker, 1993; Wan and Dozier, 1989). 

Uncertainty is more difficult to assess for pixels at the maximum scanning angle (+ or -



55°), for which local viewing zenith angle is approximately 65° resulting in pixel 

distortion. This difficulty has been overcome through the following improvements; 1) 

viewing angle is considered in the algorithm; and 2) the LST algorithm is optimized over 

atmospheric column water vapor and temperature ranges (Wan, 1999).

Dimensions o f  LST variability

Over land surfaces, temperatures derived from satellite data are a complex 

function of:

1) surface properties (canopy cover and density, emissivity, fractions of sunlit and 

shaded areas in the pixel, moisture status);

2) atmospheric conditions (solar radiation, vapor pressure, wind speed, 

advection); and,

3) viewing geometry o f the sensor.

In mountainous terrain, topography plays a dominant role influencing LST through 

changes in solar radiation loading (south-facing versus north-facing slopes), and 

atmospheric lapse rates (Nemani et al., 1993). Seasonality is also a significant source of 

LST variability.

Each land cover type has distinct interactions with the atmosphere that can result 

in different local meteorological conditions. This reciprocal influence of vegetation on 

the microclimate o f the particular area results from vegetation properties such as 

aerodynamic roughness, leaf seasonality, leaf area index, and partitioning o f sensible and 

latent heat fluxes at the vegetation or ground surface. Goward et al. (1985) suggest the 

possibility o f using the rate of change in surface temperature with the amount of

8



vegetation to describe surface characteristics. The underlying principle for such a 

technique is that surface temperature decreases with an increase in vegetation density 

through latent heat transfer, though the decrease in surface temperature is modulated by 

the synoptic state o f the atmosphere as well as the aerodynamic and canopy resistances 

operating at the surface (Nemani and Running, 1988). Nemani and Running (Figure 1; 

1997) developed a conceptual diagram that illustrates the dynamics of the surface 

temperature (Tg)-Normalized Difference Vegetation Index (NDVI) relationship for 

various vegetation types. The Tg-NDVI space is divided into four simple groups chosen 

to represent energy absorption and exchange characteristics o f various land cover types.
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Figure 1. Dynamics of Ts-NDVI for various vegetation types where seasonal trajectories 
indicate phonological evolution of vegetation and the disturbance trajectory is useful for 
change detection over time (Nemani and Running, 1997).

When land covers are stratified within the Ts-NDVI space, an energy balance results, 

where decreasing LST is coupled with increasing vegetation density. Disturbance causes 

shifts in the energy balance relationship and movement along the disturbance trajectory.



Goetz ( 1997) reported that the negative correlation between LST and NDVI, observed at 

several scales (25 to 1.2 km^), was largely due to changes in vegetation cover and soil 

moisture, and indicated that the surface temperature can rise rapidly with water stress. 

Keeping in mind that from a remote sensor, the land surface for closed canopy forests 

would be the top surface of the canopy, we expect that for dry conditions, areas with high 

vegetation density will show a stronger resistance to a change in surface temperature due 

to greater partitioning o f energy as latent heat. Patches with low vegetation density 

should show little resistance to surface temperature changes due to greater partitioning of 

solar radiation as sensible heat. Disturbance resulting in decreased vegetation density 

should see an increase in LST as sensible heat flux increases.

Monitoring LST may amplify our ability to track disturbance and recovery on the 

land surface. Leafy vegetation cover is likely the most fragile and therefore perhaps the 

single most vulnerable biotic component o f terrestrial ecosystems to detectable alteration 

during disturbance events (Potter et al., 2003). Disturbances such as wildfire, urban 

development, and irrigation result in conditions that alter vegetation and, therefore, the 

energy balance o f a site. Tracking interannual (pre and post-disturbance) LST may 

provide a method for quantifying disturbance at the landscape level and can be used to 

improve models and methods for evaluating land-surface energy balance (Crag et al., 

1995; Diak and Whipple, 1993). The magnitude o f the LST response to disturbance 

should in part be dependent on the pre-disturbance vegetation density and on the 

disturbance intensity as related to alteration of the vegetation.

10



Stress physiology

It has long been known that temperature is one o f the critical environmental 

stresses to which an organism may be subjected. Defining critical temperature thresholds 

quantitatively is very difficult due to the variation in stress tolerance and stress resistance 

strategies among species. Evergreen needle leaf forest has adapted to freezing surface 

temperatures but seldom reaches lethally high LST. By contrast, ability to cope with high 

temperature is an important factor in determining the success and distribution of plants in 

hot, arid habitats (Turner and Kramer, 1980). As climate change increases LST, the 

ability o f biomes to cope and adapt to extreme high temperature could become an 

increasingly important factor for land cover distribution.

Plants regulate their temperature by dissipating part o f the energy they absorb and 

thus preventing injury or death due to excessively high temperature. O f the three major 

mechanisms (reradiation, transpiration, and convection), reradiation dissipates one-half of 

the energy that plants absorb (Gates, 1980). Transpirational cooling accounts for an 

additional heat loss when energy is expended changing water into water vapor. In 

addition, convection across the thin air zone that surrounds all surfaces in still air (i.e., the 

boundary layer) acts to transfer heat from the leaf to cooler air.

High temperature

Plant processes function across a broad range o f tissue temperatures, generally 

0°C to 50®C, as long as living cells and their proteins are stable and enzymatically active 

(Barnes et al., 1998). As temperature increases, plant activities increase up to an 

optimum temperature and then decrease until, at very high temperatures, enzymes and

11



structural proteins are inactivated or denatured, and death occurs. As temperature rises, 

the conformational entropy favoring the denatured state increases more rapidly than the 

increase in strength o f the hydrophobic bonds, and a temperature is finally reached at 

which unfolding o f proteins begins (Levitt, 1980). The heat-killing temperature for some 

thirty-nine species o f plants from August to September on the coast o f Spain ranged from 

44°C to 55°C (Lange and Lange, 1963). Temperate zone evergreen conifers have a 

temperature threshold for heat injury during the growth season o f 44°C to 52°C (Larcher, 

2003) and a number o f studies with various tree species (Baker, 1929; Barnes et al., 1998; 

Lorenz, 1939) seem to indicate that the lethal point occurs at about 55°C.

In contrast to the relatively minor role o f exposure time in the case of freezing, the 

time subjected to high temperatures is o f fundamental importance. This is true not only 

o f vegetative plants but also o f seeds, which can be killed within seconds to minutes by 

heat shocks o f 60*^0 to 120“C (Levitt, 1980). Not only does the heat-killing temperature 

vary inversely with the exposure time, but the relationship to time is actually exponential.

The greatest danger o f heat injury occurs when the soil is exposed to insolation, 

reaching temperatures as high as 55°C to 75°C (Lundegardh, 1949). One o f the most 

serious seedling “diseases,” according to Munch (1913) is the killing of a narrow strip of 

bark around the stem o f young woody plants at soil level when soil temperatures exceed 

46°C. Since temperatures above 50°C are largely confined to the exposed ground-air 

boundary in forests, direct heat injury to forest trees is most significant in its effect on 

small seedlings, which have relatively unprotected live tissues in this critical zone (Baker, 

1929; Barnes et al., 1998). Surface soil temperatures of 54°C to 71°C have been detected 

in temperate climates and injury may begin at as low as 49°C (Baker, 1929).
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Project goal and objectives

The goals o f this study are to develop and test a disturbance index that exploits 

the ability o f the Aqua/MODIS LST data to track land surface disturbance based on 

changes in energy partitioning and to identify where physiologically defined extreme 

land surface temperatures occur in the western United States. The main objectives are to:

1. Generate extreme land surface temperature maps of the western United States 

and interpret the major bioclimatic patterns.

2. Assess the accuracy and sensitivity o f the disturbance index based on 

independent data sources.
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Methods 

Study area

This study domain for this project is the western United States extending from the 

Pacific Coast to east o f the Rocky Mountains (Figure 2). A broad range o f bioclimatic 

regions are encompassed by the study area, from rainforest in the Pacific Northwest to 

vast deserts in the Southwest. The north part o f the study area transitions from rainforest 

to high desert across a relatively short west-east distance due to the steep climatic 

gradient resulting from orographic lifting o f warm Pacific air over the Cascade 

Mountains.

:

%

Land C over Class
^  water (w ater)
i n  evergreen needleleaf forest (enf) 
r~n evergreen broadleaf forest (ebf)
I I deciduous needleleaf forest (dnf) 

deciduous broadleaf forest (dbf) 
mixed forests (mf) 

m  closed shrubland (cs) 
m  open shrubland (os) 
n i  woody savannas (wsav)
[~n savannas (sav)
I I grasslands (g) 
m  permanent wetlands (pwet)
I I croplands (crop)

urban and built-up (urb)
H  cropland/natural vegetation mosaic (crop/nat 

snow and ice (snow/ice)
I I barren or sparsely vegetated  (barren)

Figure 2. The western United States study area extends from the U.S. - Canada Border to 
the U.S.- Mexico Border and from the Pacific Coast to east of the Rocky Mountains 
(MODIS tiles h08v04, h08v05, h09v04, h09v05, and hl0v04).
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MODIS data acquisition and processing

The 8-day composite, 1-km Aqua/MODIS daytime LST (MYDl 1A2)

Hierarchical Data Format-Earth Observing System (HDF-EOS) blocks for 2003 and 2004 

were acquired for the western United States. The 16-day composite, 1-km MODIS 

Enhanced Vegetation Index (EVI; MOD13A2) HDF-EOS blocks for 2003 and 2004 were 

acquired for the western United States. The western United States is covered by MODIS 

tiles h08v04, h08v05, h09v04, h09v05, and hl0v04 (Figure 2). The MODIS Land Cover 

data (MOD12Q1) were acquired for the year 2003. These data can be ordered from the 

Distributed Active Archive Center at http://edcimswww.cr.usgs.gov/pub/imswelcome/. 

MODIS quality control was applied to the LST and EVI data. The MODIS cloud mask 

for the MODI lA l Daily LST Product Quality Assurance field was applied to the LST 

data (MODIS Science Team: LST-Group, 2003). The MODIS cloud mask for the 

MOD13A2 Daily EVI Product Quality Assurance field was applied to the EVI data 

(MODIS Science Team: TBRS Lab, 2003). Pixels that were contaminated by 

unfavorable conditions such as cloud cover for less than 30% of the eight-day images 

during a one-year period were filled based on temporal linear interpolation. Pixels with 

greater than 30% contamination were discarded. All HDF-EOS data were converted to 

floating point files and then to raster images.

The MODIS Land Cover_Type_ 1 (IGBP) was used to assign pixels to a land 

cover type. This provided an accurate grouping method so that analyzing complicated 

mixed pixels along land cover boundaries was greatly simplified. Grouping pixels based 

on land cover provided the means to statistically compare disturbance index results and

15

http://edcimswww.cr.usgs.gov/pub/imswelcome/


lethal temperature results based on land cover type and to explore energy balance 

relationships across the study area.

This study supplements the first order topographic information in the LST 

algorithm with a high quality digital elevation model (DEM) at 1 km resolution 

(http://edcdaac.usgs.gov/order.asp). The DEM was useful for exploring the effects of 

elevation on lethal temperature patterns and for interpreting the disturbance index results.

Potentially lethal temperature maps

The potentially lethal temperature for this study is defined as any pixel that 

reaches 50®C or higher. The highest temperature recorded at every pixel during any 

eight-day period over an annual period (2003 and 2004) was extracted and combined into 

one image. Pixels with LST o f 50°C or higher were highlighted and grouped by 2.5 

degree increments. Pixels with LST less than 50°C were mapped on a blue scale and 

grouped by 5.0 degree increments (Figure 3). A biogeographical approach was taken to 

analyze the extreme high LST maps where patterns are contrasted with the IGBP land 

cover map in order to highlight land cover driven extreme temperature variation.

Poplar farm  maximum LST sensitivity analysis

The sensitivity o f the maximum LST estimates is explored by analyzing the LST 

o f a poplar tree farm in eastern Oregon (45.8° N and 119.5° W) as compared to the 

natural vegetation adjacent to the tree farm. ASTER imagery at 15 m resolution was used 

to confirm the location o f the tree farm and to compare with the MODIS land cover 

classification product. Three five-pixel transects were established within the poplar tree
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farm, classified as deciduous broadleaf forest, and within the adjacent native plant 

communities, classified as open shrublands and grasslands. The maximum LST during 

2003 and 2004 was extracted for all five pixels at each transect totaling fifteen pixels.

The pixels were averaged and the means were compared to test for significant differences 

in LST among the three groups using three paired two-sided t-tests. A Bonferroni 

correction was applied, and data were considered statistically significant when p <0.03.

Mean-maximum LST and mean-maximum EVI relationship

Mean-maximum LST is calculated as the sum of the highest temperature at each 

pixel during an annual period within a given land cover type divided by the number of 

pixels within that land cover type. The mean-maximum value is calculated for each land 

cover type. The mean-maximum EVI is computed in a similar manner. The land cover 

stratified mean-maximum LST and the mean-maximum EVI data were tested for 

normality. Pearson’s correlation analysis (r) was used when the data were normal, and 

the confidence limits (CL) surrounding r were calculated as

where n is the number o f samples used in the analysis and t is the Student t-statistic.

A linear regression between the calculated mean-maximum LST and mean- 

maximum EVI for each land cover type was performed to test the significance o f the 

relationship between EVI and LST.
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Disturbance Index development

An algorithm was developed to identify significant interannual changes in the 

annual LST/EVI ratio in order to detect land surface disturbance. The maximum day 

LST at each pixel during an annual period was divided by the maximum EVI value for 

each pixel during the same year resulting in an LST/EVI ratio. Prior to this division, all 

EVI values less than 0.025 were reclassified as no data in the 2003 and 2004 maximum 

EVI images. These values were mainly associated with water bodies and snow/ice and 

indicate areas with no vegetation. Extremely low EVI values cause problems in 

calculation of the index because maximum EVI is the denominator for the annual 

calculation (Eqn. 2) and order o f magnitude differences exist between maximum EVI 

values on an interannual basis for a given pixel. For example, a pixel within the study 

area had a maximum EVI value of 0.0491 in 2003 and -0.0002 in 2004, Pixels that have 

good quality data for only one o f the two years are classified as no data. The 2004 

LST/EVI ratio was divided by the 2003 LST/EVI ratio on a pixel-by-pixel basis as 

follows:

Max LST  2004

LST / EVI disturbance index = — —  (2)Max LST  2003
Max EVI 2003

This results in a ratio o f interannual variability computed at each pixel in the 

study area. The logic used here is that disturbance will result in change to the LST and/or 

EVI. If  no change occurs at a given pixel, the interannual ratio will be near unity. If the 

land surface has been disturbed, the disturbance index results in a value different than 1.
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Areas that are recovering from disturbance, as defined by increasing EVI or a decreasing 

LST, will have values less than 1.

The success o f this index depends on two factors; (1) does disturbance generate a 

large enough LST/EVI signal to detect and (2) is the signal bigger than the natural 

variability. With only two years o f data on an annual basis, a long-term analysis of 

biome-stratified histograms to determine the threshold that defines disturbance is not 

possible. Therefore, the mean and standard deviation disturbance index value for the 

western U.S. was calculated and used as the disturbance threshold for the region. 

However, disturbance index results were stratified by land cover class and the mean and 

standard deviation were used to create a biome-stratified scatter-plot. The disturbance 

index results were verified visually using two fire detection data sets and precipitation 

anomaly maps. Fire detection data sets include the 2002 and 2003 MODIS active fire 

detections data (http://activefiremaps.fs.fed.us/fireptdata.phpL the Northern Rockies 

Coordination Group Fire Perimeters for the 2003 fire season

(http://www.fs.fed.us/rl/firegis/2003web/dataindex.htmL and the Booth and Bear (B&B) 

Fire Perimeter Map (http://www.fs.fed.us/r6/centraloregon/fires/2Q03/b-b/index.shtmlL 

Precipitation anomaly maps for 2003 and 2004 are from the Spatial Climate Analysis 

Service Prism data collection (http://www.ocs.oregonstate.edu/index.htmlL Precipitation 

anomaly maps show precipitation as a percentage o f the normal precipitation between 

1971 and 2000 at 4 km resolution.
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Results

Potentially lethal temperature maps

The lethal temperature maps show the spatial distribution of 50°C and higher 

temperatures in the western United States for 2003 and 2004 (Figure 3). Mountains 

generally have maximum LST below 50®C, as seen in the Cascades, Rockies, and Sierra 

Nevada Mountain Ranges. These mountain ranges are predominantly forested, and 

forests maintain LST below the lethal temperature threshold. Coastal areas west of the 

Cascades in Oregon and Washington have maximum LST below 50°C. The maximum 

LST o f the southern Sacramento Valley exceeds 50®C. Interior arid and semi-arid 

environments (e.g., Great Basin, Mojave and Sonoran deserts) have LST’s greater than 

50‘̂ C for 2003 and 2004.

Degrees C 
| 2 . 0 -  10.0 
g  10.0-20,0
H  2 0 .0 -  30.0 
g  30.0  - 40.0 
g  40.0  - 50.0 
I  [5 0 .0 -5 5 .0  
1 5 5 .0 -6 0 .0  
g  6 0 .0 -  65.0 
■  6 5 .0 -7 0 .0

¥

on aFigure 3. Potentially lethal LST maps for 2003 (a) and 2004 (b) at 1km 
digital elevation model o f the western United States.

resolution

Lethal temperatures increase in areal extent along a north to south gradient in the western 

U.S. Interannual variability is high as extreme LST in 2003 has greater areal coverage 

than extreme LST in 2004. For example, large portions o f the northeastern part o f the
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study area reach the lethal threshold in 2003 and do not in 2004. The central part o f the 

study area shows the same decline in lethal temperature patterns from 2003 to 2004.

In western Montana, non-forested valleys, such as the Bitterroot Valley (Figure 

4b), within an otherwise forested landscape, reach the lethal temperature threshold of 

50®C in 2003 and appear as a thin line o f pixels (Figure 4a). Grasslands, like those found 

west o f Poison and east o f  the Rocky Mountain Front, had LSTs between 50°C and 60°C.

Degrees C
g Z . O '  10.0
g  10.0- 20.0
| 2 0 . G - 30.0
■  30.0- 40.0
■  40.0- 50.0
□  so.o- 55.0
■  55.0- 60.0
■  60.0- 65.0
■  65.0- 70.0

KalispcQ 

Flathead Lake

/Land Cover Class
- Henf 

s ' : ) # . ,  'gdb,

wsav

crop/nat
I I snow/ice

’ ‘ J LJ barren

Missoula 

itterroot Vallgr

Figure 4. Western Montana 50°C or greater temperatures (a) in the valleys and east of 
the Rocky Mountain Front coincide with grasslands (b) and other non-forested land cover 
types (2003).

Croplands (Figure 5a) tend to stay below the lethal temperature threshold (Figure 5b) but 

are often surrounded by land cover types (e.g., shrub, savannah, grasslands) that reach or 

exceed 50®C.
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Figure 5. Croplands (highlighted in pink) in Idaho’s Snake River Valley (a) have LST 
below the lethal temperature threshold and are surrounded by land cover types that 
reached 50°C or greater (b) during 2003.

The timing o f acquisition for the maximum daytime LST values for 2003 and 

2004 were predominantly between the eight-day periods 153 and 233 (Figure 6), June 

through August. The frequency o f acquisition for 2004 was spread over a broader range 

o f eight-day periods (153 -  233) than it was for 2003 (177 -  233) with 15% of 2004 

acquisitions from the consecutive eight-day periods spanning day 153 to 169.
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Figure 6. Nearly 100% o f maximum LST acquisitions occurred between 8-day periods 
153 and 233, approximately June through August for both 2003 and 2004.
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Poplar farm maximum LST sensitivity analysis

The poplar tree farm, located in Northeast Oregon, can be seen in the center o f the 

15m  resolution ASTER image as the dark red blocks that sharply contrast with the 

surrounding landscape (Figure 7). The Columbia River bisects the top o f the image and 

various agricultural lands, as well as undeveloped areas, surround the poplar tree farm.

Figure 7. ASTER image o f poplar tree farm in NE Oregon. The dark red squares in the 
center o f  the image are the poplar farm and the Columbia River bisects the top o f the 
image.

MODIS land cover classifies the poplar tree farm as a deciduous broadleaf forest 

(Figure 8a) and the MODIS EVI product (Figure 8b) clearly shows the dense vegetation 

o f the poplar farm study area (EVI = 0.66 - 0.99) relative to the surrounding land cover 

types (EVI = 0.15 - 0.32). The value of every pixel for 2003 and 2004 in each o f the 

three transects is given in Appendix A.
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Figure 8. Three transects overlaid on the MODIS Land Cover image (a) and MODIS 
EVI (b) show the poplar tree farm classified as deciduous broadleaf forest, and with a 
high EVI compared with the adjacent land cover (open shrubland and grassland).

The poplar tree farm mean-maximum LST for 2003 and 2004 is 33.0°C and 

36.0°C and is significantly different from the open shrubland (59.8°C and 57.2°C 

respectively) and grassland (60.4°C and 59.4°C respectively) land covers with 97% 

confidence (p = <0.001) (Figure 9). There is no significant difference in mean-maximum 

LST between the open shrubland and grassland transects.
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Figure 9. The mean-maximum LST o f the poplar tree farm transect (DBF) is 
significantly different from mean-maximum LST o f the open shrubland (OS) and 
grassland (GR) transects for 2003 and 2004 (p = <0.001).

Biome stratified mean-maximum LST

The mean-maximum LST with one standard deviation for each land cover type 

during 2003 and 2004 is shown in Figure 10. Land covers highlighted in red indicate that 

the mean-maximum LST with one standard deviation is at or above 50°C. Barren land 

cover has a mean-maximum LST of 54.3°C and 52.3°C in 2003 and 2004 respectively, 

the highest o f any land cover type. Open shrubland and closed shrubland covers have a 

mean-maximum LST o f 52.6®C and 50.9°C respectively in 2003. With one standard 

deviation, savanna, grass, and urban land covers reach the 50°C LST threshold in both 

years. Forests and permanent wetland cover classes have mean-maximum LSTs below 

40^C and are well below 50°C with one standard deviation.
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Figure 10. Mean-maximum LST o f land cover types in the western U.S. Bars in red 
represent land cover types with LST and one standard deviation that reach 50°C.

Mean-maximum LST and mean-maximum EVI relationship

The mean-maximum LST and EVI values for each land cover class are given in 

Appendix B. The land cover class stratified mean-maximum EVI and mean-maximum 

LST over the entire western United States are strongly negatively correlated (r = -0.83 ± 

.33) with 95% confidence (p = < 0.001) (Table 1). Figure 11 shows the regression 

between the mean-maximum LST and the mean-maximum EVI with snow and water 

land cover classes removed for 2003 (a; = 0.69) and 2004 (b; = 0.69). -
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Figure 11. Relationship between mean-max LST and mean-max EVI for all biomes 
excluding water and snow/ice for the entire study area for 2003 (a) and 2004 (b).

There is a strong negative relationship between the mean-maximum LST and mean- 

maximum EVI whereby land cover types with low mean-maximum EVI have high mean- 

maximum LST near or above the 50°C threshold (barren, shrublands and grasslands). On
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the opposite end o f the energy balance spectrum are land cover types that have high 

mean-maximum EVI and low mean-maximum LST (forests and permanent wetlands).

Disturbance Index analysis

The disturbance index results for the western United States study area are shown 

in Figure 12. The mean o f the entire study area (0.9919) has been rounded to 1.0. The 

scale extends from 0.2 to 4.0, and values that are within one standard deviation (0.32) of 

the mean are mapped as no color. Values greater than 1.0 mapped in orange and red 

indicate that the disturbance index results are 1.0 standard deviation or greater above the 

mean. Values less than 1.0 mapped in light blue and dark blue indicate that the 

disturbance index results are 1.0 standard deviation or greater below the mean value.
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Figure 12. Disturbance index using 1.0 standard deviation (0.32) from the mean (1.0) as 
the threshold to indicate disturbance for the western United States.
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The scatter-plot illustrates the land cover class stratified mean and standard 

deviation disturbance index values (Figure 13) and includes the west U.S. average (16). 

Mean values range between 0.94 and 1.06 for all land cover classes with the exception of 

permanent wetlands mean value of 1.17. Land cover classes with denser vegetation, such 

as forests, have lower standard deviations.
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Figure 13. Land cover class stratified mean and standard deviation disturbance index 
values, including the west U.S. average.

Fire analysis

The disturbance index clearly shows positive values that correspond with the 

2003 MODIS fire detection data (shown as black dots) in Montana, Washington, and 

Oregon (Figure 14).
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Figure 14. Comparison of disturbance index results with 2003 MODIS fire detection data 
(black dots) in Montana (a, b), Washington (c, d) and Oregon (e, f).
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The disturbance index results near Missoula, Montana show strong similarities with the 

fire perimeter maps for the 2003 wildfires (Figure 15).
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Figure 15. Disturbance index results with fire perimeter maps overlaid outlining the 2003 
fires in western Montana.

The same result is seen between the disturbance index results and the B&B Complex fire 

perimeter map (Figure 16). Furthermore, the disturbance index results more accurately 

match the B&B fire perimeter map than does the MODIS fire detection data.
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Figure 16. Disturbance index results more closely match the B&B fire perimeter map 
(black outline) than does the MODIS fire detection data (black dots).

Interior Northwest region

A  large disturbed area seen in orange and red (Figure 17a) extends throughout 

Southeast Montana, Northeast Wyoming, Southwest North Dakota and West South 

Dakota. This area has disturbance index values greater than 1.0 standard deviation above 

the mean indicating that the 2004 LST/EVI ratio was greater than the 2003 ratio. A max- 

EVI ratio map (2004 max EVI/2003 max EVI) was created that shows whether EVI went 

up or down over the two-year study period. The max-EVI ratio map shows that the 

interior northwest (NW) region o f the study area had a decrease in EVI from 2003 to 

2004 and that these patterns are similar to the disturbance index results (Figure 17b).

This agrees with precipitation anomaly maps that show this region receiving average
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precipitation in 2003 (Figure 18a) followed by a decrease to 51-70% and 71-90% of 

normal precipitation over large areas in 2004 (Figure 18b).
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Figure 17. Index results (a) show disturbance patterns that are similar to the decline in 
EVI (b) in the interior NW of the study area.
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Figure 18. Precipitation anomaly maps for 2003 (a) and 2004 (b) for the western U.S.
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Interior Southwest region

Results from the interior southwest (SW) part o f the study area show a large 

disturbance extending throughout much o f New Mexico, Southern Colorado, and western 

Texas. The areas mapped in blue have values greater than 1.0 standard deviation below 

the mean (Figure 19a), indicating that the 2004 LST/EVI ratio was less than the 2003 

LST/EVI ratio. The max-EVI ratio map shows an increase in vegetation density in this 

region over the two-year study period (Figure 19b). The 2003 precipitation anomaly map 

shows widespread deficits in precipitation in the interior SW region, 31-50% and 51-70% 

of normal (Figure 18a). In 2004, the same area received as much as 171-200% of normal 

precipitation (Figure 18b).
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Figure 19. Index results (a) show disturbance patterns that are similar to the increase in 
EVI (b) in the interior SW portion o f the study area.

Southwest region

Disturbance index results for the southwest (SW) region consist of large wildfire 

scars mixed with index responses o f various trajectories (Figure 20a). The patterns are 

very similar to the max-EVI ratio map (Figure 21) with the exception of the 2003 wildfire 

scars (Figure 20c,d). A max-LST ratio map (2004 max LST/2003 max LST) was created
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that shows whether LST went up or down over the two-year study period. The max~LST 

ratio map for the SW part o f the study area draws out the 2003 wildfire patterns 

remarkably well (Figure 20b). These wildfires were in a mixture o f open shrubland, 

closed shrubland, woody savanna, savanna, grasslands and evergreen needleleaf forest. 

While wildfire patterns from other parts o f the study area do emerge in the max-LST ratio 

map^ none have as clear a signal as in this landscape.

Nevada

Figure 20. Southern California’s 2003 wildfires show up clearly with the disturbance 
index (a, c and d) and LST increased in the fire areas in 2004 (b).

The disturbance index results in the southern Sacramento Valley (Figure 21a) are 

mirrored by the decline in EVI from 2003 to 2004 (Figure 21b). The precipitation 

anomaly maps shows that precipitation deficit in the central Sacramento Valley during 

2003 (Figure 18a), moved southward in 2004 (Figure 18b). In south-central California, 

below normal precipitation in 2003 was followed by 131% to 170% of normal 

precipitation in 2004. The max-EVI ratio map shows that vegetation density increased in 

the same area in 2004 (Figure 21b). The patterns of increasing EVI con*espond with the 

disturbance index results (Figure 21a).
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Figure 21. Disturbance index results (a) match patterns of EVI interannual change (b) 
with the exception o f the wildfire scars, which resemble interannual LST variability.

Recovery

Disturbance index results for the 2002 Biscuit Fire area show recovery indicated 

by the blue disturbance index results (Figure 22). The EVI in 2004 increased and the 

LST decreased, lowering the LST/EVI ratio. The disturbance index threshold was 

adjusted to 0.75 standard deviations to evaluate recovery in this area. MODIS fire 

detection points are shown overlaid on the fire area. Recovery is found coinciding with 

the 2002 MODIS fire detection data throughout the western U.S.
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Figure 22. Recovery seen in blue indicates an increase in EVI and decrease in LST from 
2003 to 2004 in the 2002 Biscuit Fire Area in Southwest Oregon’s Siskiyou Mountains.
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Discussion

The goal o f this study was to develop a disturbance index that uses the 

Aqua/MODIS LST estimates and to identify where physiologically defined potentially 

lethal LST occurs in the western United States. The approach o f using the maximum 

LST that occurs at every pixel during an annual period has shown to be effective in 

capturing disturbance caused by wildfire and impacts on vegetation from interannual 

weather variability. This suggests that the disturbance index developed here may be able 

to track long-term incrementally developing trends associated with drought. The extreme 

LST maps provide a fresh look into how extreme temperatures are distributed throughout 

the western United States.

The first objective was to generate potentially lethal LST maps of the western 

United States (Figure 3) and interpret the major bioclimatic patterns. The main 

bioclimatic factors controlling lethal LST patterns are elevation, continentality, latitude, 

and land cover type. The maritime influence moderates temperature along the coast, and 

in the Pacific Northwest, where average annual rainfall is high and dense forest blankets 

much o f the region, latent heat flux plays an important role in keeping temperature well 

below the lethal threshold. Forests are very effective at moderating LST and generally 

stay below 40*^0 throughout the entire study area (Figure 10). The timing of acquisition 

for maximum LST (Figure 6) clearly illustrates that cloud cover is not causing temporally 

biased acquisitions that might confound interpretation o f the major bioclimatic patterns of 

extreme LST.

All land cover types (excluding water and snow/ice) in the interior western United 

States commonly reach 50°C with the exception of forests, permanent wetlands, and
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agricultural areas. However, interannual variability with regards to the spatial 

distribution o f potentially lethal LST can be high, as it was between 2003 and 2004 

(Figure 3). Irrigated agricultural areas allow for transpiration to stay high when it 

otherwise would decrease or shut down. This dissipates energy through latent heat flux 

and maintains low LST. The Sacramento Valley is a good example, as the agricultural 

areas o f the valley do not reach the potentially lethal threshold. The border between the 

forest and the agricultural lands is woody savanna, and tends to reach 50°C or greater. If 

it were not for the land cover conversion of the Sacramento Valley to agricultural lands, it 

is likely that the majority o f the valley would reach 50°C or greater. This large-scale 

manipulation o f extreme LST patterns may have implications for survival o f pests and 

diseases that otherwise could not complete their life cycle due to extreme temperature 

exposure.

The second objective o f this project was to assess the accuracy and sensitivity of 

the disturbance index using independent data sources. The maximum LST sensitivity 

analysis suggests that the Aqua/MODIS LST estimates are capable of detecting LST 

variation associated with vegetation density gradients at a fine-scale. The vegetation 

density gradient is very strong (Figure 8b) in the poplar tree farm LST sensitivity 

analysis. The significant difference between the maximum LST of the poplar tree 

plantation and the maximum LST o f the adjacent open shrubland and grassland cover 

types supports the principle that surface temperature decreases with an increase in 

vegetation density through latent heat transfer (Figure 9). This is further supported at the 

regional-scale by the strong and negative relationship between the mean-maximum LST
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and the mean-maximum EVI (R^ = .69; Figure 11) found throughout the study area. The 

logic o f the disturbance index is based on this relationship.

The energy balance o f a given land cover is controlled by the partitioning of 

incoming solar radiation into latent and sensible heat fluxes. If water is available to 

transpire, as it is for much of the year in forests, then the maximum LST will not reach 

45°C (Figure 10). Disturbance alters vegetation, and therefore, the major mechanism 

through which latent heat transfer occurs. If vegetation is damaged or destroyed, 

incoming solar radiation is partitioned more towards sensible heat flux, and LST 

increases. In the case of the poplar tree farm, irrigation results in a positive disturbance 

where vegetation increases, and LST decreases. Because biomes have different strategies 

for recovering from disturbance such as wildfire, (e.g. Chaparral species can resprout 

from carbohydrate-rich root burls, whereas pine forests regenerate from seed) recovery 

time of ecosystems, in terms o f restoration o f the energy balance of a site, varies. The 

ratio o f maximum LST to maximum EVI takes into account both the major mechanism 

through which latent heat transfer occurs, the vegetation, and the energy partitioning 

itself, LST. This optimizes the ability o f the disturbance index to work over broad scales 

and various biomes as seen in this project. Potter et al. (2003) in a global evaluation of 

disturbance events using an 18-year Advanced Very High Resolution Radiometer dataset 

observed that vegetation classes with the highest frequency o f major disturbance are 

savannas, shrublands, and coniferous (boreal) forests. The clarity with which the 

maximum LST interannual variability clearly distinguishes the 2003 Califorma wildfires 

(Figure 20a) in a savanna and shrubland vegetation type suggest that the LST/EVI
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disturbance index is capable o f detecting disturbance in the Earth’s most frequently 

disturbed land cover types.

The two years encompassed by this study happen to have been a very dry year 

(2003) and a very wet year (2004). The index results capture disturbance patterns caused 

by interannual weather variability and this particular response o f the disturbance index 

appears to be primarily driven by the interannual variability in the EVI. Grasslands were 

particularly effected by interannual weather variability most likely due to their shallow 

root systems. Open shrublands and cropland/natural vegetation mosaic also tend to be 

more susceptible to interannual weather variability.

Disturbance index results show recovery associated with the 2002 fire areas 

identified by the MODIS fire detection. The recovery signal is weaker compared to 

disturbance as recovery is a longer and more incremental process than most disturbance 

processes. The disturbance index threshold was adjusted from 1.0 standard deviation 

from the mean, to 0.75, resulting in a more clear recovery pattern associated with the 

2002 MODIS fire detection data (Figure 22). However, more noise accompanied this 

threshold value change throughout the study area. It is important to point out that the 

disturbance index threshold for disturbance recovery may be different than the threshold 

for disturbance detection. The ability to assess the disturbance index recovery results is 

limited by the two years o f  data.
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Conclusions

Accelerating climate change makes the relationship between stress physiology, 

and LST as related to current and future distributions o f organisms an area o f critical 

importance. The potentially lethal LST maps provide a new tool for researching many of 

these critical questions. Clearly, if  the trend toward drier summers and higher LST 

continues, extreme LST will cover a greater areal extent and begin to have greater effects 

on species that have not adapted to such temperatures. Forests on ecotones with drier 

biomes such as grasslands and open shrublands could become more strongly affected by 

extreme LST. Post-disturbance recovery of forest ecosystems could become more 

problematic if  extreme LST causes mortality to seedlings due to soil insolation. Field 

studies exploring soil insolation caused mortality to tree seedlings in post-disturbance 

forest ecosystems would help to resolve this issue.

This study suggests that the disturbance index algorithm is flexible and effective 

at monitoring various types o f land surface disturbance throughout the diverse 

bioclimatic regions of the western U.S. The energy balance approach to disturbance 

monitoring likely holds the key to an improved disturbance metric for continental change 

detection. This study has affirmed that disturbance does generate a large enough 

LST/EVI signal for the disturbance index presented here to detect and that the signal is 

bigger than the natural variability. Disturbance due to wildfire and precipitation 

variability both generate large enough signals to detect in different regions across the 

study area. Natural variability appears to be generally less than 1.0 standard deviation 

from the mean disturbance index value. Given the need for a global disturbance
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monitoring tool, further investigation of the disturbance algorithm over longer time 

periods and at the global scale is warranted.
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List o f Tables

Table 1. Correlation results for land cover class stratified mean-maximum 
LST and mean-maximum EVI.
Correlation Results

n r p-value Sr t(alpha/2,df) CL
alpha = 0.05
LST/EVI 15 0.828 <0.001 0.156 2.145 0.334
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Appendix A

Maximum LST sensitivity analysis pixel data and averages for three transects during 
2003 and 2004

Transects

Open Shrubland Deciduous 

Broadleaf Forest

Grassland

2003 LST CC) 59 34 60

60 32 61

60 32 60

60 32 61

60 35 60

2003 Avg. CC) 59.8 33.0 60.4

2004 LST (°C) 57 34 57

57 32 60

57 34 60

57 42 61

48 38 59

2004 Avg. C*C) 57.2 36.0 59.4
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Appendix B

Biome stratified mean- 
deviation for 2003 and

maximum EVI and mean-maximum LST with 1.0 standard 
2004

2003 2004
Land Cover EVI max St dev LST max St dev EVI max St dev LST max St dev

ENF 0.415 0.116 33.436 5.509 0.406 0.107 31.056 5.27
EBP 0.585 0.138 32.706 6.048 0.559 0.132 31.908 5.148
DNF 0.488 0.081 34.899 4.325 0.479 0.084 31.983 4.285
DBF 0.544 0.111 36.264 5.728 0.534 0.11 34.735 5.678
MF 0.484 0.109 34.545 5.354 0.475 0.105 32.487 5.022
OS 0.211 0.091 50.922 6.85 0.203 0.084 48.753 6.793
OS 0.208 0.101 52.629 6.408 0.206 0.096 50.187 6.715

WSAV 0.361 0.123 42.835 6.703 0.343 0.114 40.731 6.882
SAV 0.5 0.123 44.18 7.398 0.469 0.117 43.12 7.885
GRS 0.269 0.109 49.379 5.63 0.26 0.106 46.408 5.919

PWET 0.428 0.184 33.155 9.433 0.393 0.188 32.717 8.813
CROP 0.518 0.129 43.597 4.824 0.502 0.131 41.569 5.446
URB 0.277 0.106 47.207 5.657 0.26 0.094 46.5 5.706

CP/NAT 0.414 0.104 45.029 3.806 0.375 0.113 40.883 4.674
BAR 0.13 0.085 54.291 7.46 0.129 0.086 52.23 7.714
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