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Beginning in the late 1980s herpetologists began to realize that amphibians around the 
world had undergone, and were continuing to undergo, declines, extirpations, and 
extinctions.  In most cases, detections of declines and determinations of the underlying 
causes has been hampered by a lack of available baseline information on distribution and 
status. 

This project was a cooperative effort to address these data deficiencies for amphibians 
and reptiles in Montana.  Watersheds with greater than 30 percent federal or state land 
ownership were randomly selected for survey in each of 11 geographic strata.  Visual 
encounter and dipnet surveys of all standing water bodies on public lands within these 
watersheds yielded watershed and site occupancy estimates as a measure of status.  
Occupancy estimates from this first-ever state-wide base level assessment can be more 
validly used for future comparisons with future status assessment, provided additional 
support for declines in Western Toad (Bufo boreas) and Northern Leopard Frog (Rana 
pipiens) populations in western Montana, and identified a variety of conservation issues 
of concern that can be addressed through management actions (e.g., clear evidence for 
negative impacts of fish and importance of maintaining natural disturbance regimes such 
as flooding, beaver, and fire). 

The information gathered during field inventories was combined with other existing 
information and used in maximum entropy modeling to predict state-wide distribution 
and habitat suitability for all of Montana’s amphibians and reptiles.  These models out 
performed GAP analysis models by simultaneously reducing the area predicted and 
omission error rates.  Among other things, models identified scale dependent responses to 
environmental variables, potentially isolated populations in need of conservation efforts, 
and areas that are critical for maintaining landscape connectivity. 

In conjunction with field inventories, a state-wide assessment of the distribution of the 
pathogenic chytrid fungus (Batrachochytrium dendrobatidis) (Bd) was undertaken using 
PCR-based detection in skin swabs or tissue samples.  Bd was found across Montana in 6 
of the 9 species tested at a variety of elevations, habitats, and distances from human 
activities.  The widespread presence of Bd highlights the need for additional studies and 
measures to prevent the spread of Bd and other novel pathogens. 



DEDICATION 
 
 

Many wildlife professionals and the general public owe their first real connections to the 

natural world to an experience with amphibians and reptiles.  Watching amphibian 

embryos develop through clear jelly layers, tadpoles sprout limbs while undergoing a 

radical rearrangement of body parts during metamorphosis, the margins of a wetland in 

motion with tens of thousands of newly metamorphosed amphibians, gartersnakes 

capture and eat frogs, or lizards move at seemingly impossible speeds across hot rocks to 

evade capture are all powerful experiences and… there is no going back.  I dedicate this 

dissertation to the amphibians and reptiles of Montana and all individuals that have added 

to our understanding of them or worked for their protection. 
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CHAPTER 1 

 

INTRODUCTION AND OVERVIEW: 

ASSESSING THE STATUS OF LENTIC BREEDING AMPHIBIANS AND AQUATIC 

REPTILES TO PROVIDE TOOLS FOR NATURAL RESOURCE MANAGERS 

 

Importance of Amphibians 

Amphibians play important ecological roles in shaping terrestrial and aquatic 

communities (Seale 1980, Wilbur 1980, 1997).  As ectotherms with complex life 

histories they are up to 50 times more efficient than mammals or birds at processing prey 

into biomass and can, therefore, play key roles in transferring energy up the food chain 

and between aquatic and terrestrial communities (Burton and Likens 1975a, 1975b, 

Pough 1980, Wilbur 1980).  Amphibians also contribute a great deal to human welfare.  

They are an important source of protein in many impoverished societies and have been 

key study organisms for vertebrate anatomy, neurology, physiology, embryology, 

developmental biology, genetics, evolutionary biology, animal behavior, and community 

ecology (Stebbins and Cohen 1995; Pough et al. 1998).  Eggs, larvae, and adults have 

been extensively used in toxicology studies of chemical contaminants that may impact 

human health (Harfenist et al. 1989, Hayes et al. 2003).  Skin secretions of some species 

show promise as antibiotics and as nonaddictive pain killers that are 200 times more 

powerful than morphine (Stebbins and Cohen 1995).  Finally, some species are valuable 

bioindicators of the health of certain environments because they have complex life cycles 

with both aquatic and terrestrial life history stages that are philopatric to specific 

breeding, foraging, and overwintering sites connected by habitats suitable for migration 

(Dole 1965, Ewert 1969, Duellman and Trueb 1986, Sinsch 1990, Patla 1997, Welsh and 

Ollivier 1998). 

 

Amphibian Declines 

At the First World Congress of Herpetology in 1989 herpetologists began to suspect that 

amphibians around the world were undergoing declines, extirpations, and extinctions 

(Blaustein and Wake 1990, Stebbins and Cohen 1995).  Hypothesized causative agents of 
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declines included: loss, deterioration, and fragmentation of aquatic and terrestrial habitats 

(Van Rooy and Stumpel 1995, Lind et al. 1996, Beebee 1997), introduction of 

nonindigenous species (Bradford 1989, Bradford et al. 1993, Fisher and Schaffer 1996, 

Gamradt and Kats 1996, Hecnar and M'Closkey 1997), environmental pollutants (Lewis 

et al. 1985, Dunson et al. 1992, Sparling et al. 2001, Hayes et al. 2003), increased 

ambient UV-B radiation (Blaustein et al. 1994, 1995), climate change (Pounds and 

Crump 1994, Stewart 1995, Pounds et al. 1999), pathogens (Carey 1993, Berger et al. 

1998, Carey et al. 1999, Daszak et al. 1999, Lips 1999), human commerce (Jennings and 

Hayes 1985, Pough et al. 1998), and synergistic interactions between causative agents 

(Carey and Bryant 1995, Kiesecker and Blaustein 1995, Pounds et al. 2006).  With the 

possible exception of increased ambient UV-B radiation (Adams et al. 2005), there has 

been growing support for these agents of decline over the past 20 years and there is a 

consensus that declines have occurred at a global scale and that amphibians are far more 

threatened than either birds or mammals (Houlahan et al. 2000, Wake 2003, Stuart et al. 

2004, Lannoo 2005).  A recent Global Amphibian Assessment (GAA) determined that 

43% of amphibian species are experiencing some form of declines, 33% are threatened 

with extinction, and at least 427 species (7%) are critically endangered with extinction 

(Stuart et al. 2004). 

 

The GAA also determined that 23% of amphibian species were so poorly understood that 

their status was unable to be ranked with even simplistic criteria; a far higher percentage 

than birds (1.8%) and mammals (3.8%).  The lack of information available for amphibian 

species may be one of the greatest threats faced by the group because 30% of the 6,485 

known species have been described in the last 17 years, after amphibian declines were 

first suspected (Köhler et al. 2005, AmphibiaWeb 2009).  This raises the very real 

possibility that hundreds, perhaps thousands, of recently extant amphibian species may 

go extinct without ever having been formally described.  While many of the newly 

described species are from the tropics, there is also a lack of information for most 

temperate amphibian species.  Indeed, throughout much of the 1990s there was debate as 

to whether observed declines and losses were just a normal part of the natural variability 

of populations (Pechmann et al. 1991, Blaustein 1994, Pechmann and Wilbur 1994). 
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In Montana, almost 60% of the amphibians and over 40% of the aquatic reptiles are state 

Species of Concern and a lack of baseline surveys has severely hampered our ability to 

understand the status of populations (Maxell et al. 2003, Werner et al. 2004, Maxell et al. 

2009, MNHP and MFWP 2009).  Furthermore, as in much of western North America, 

relatively little is known about the demography and life history of most of these species 

because most have only been studied in detail at a handful of locations at best.  Thus, for 

most of these species there is currently no way to place the results of experimental studies 

of suspected mechanisms of decline in a population level context or the context of the 

results of regional monitoring programs in order to thoroughly understand the causes of 

decline (Biek et al. 2002). 

 

A Multi-tiered Strategy to Assess Status of Amphibians and Aquatic Reptiles in Montana 

A meaningful sampling unit is the necessary core of a multi-tiered strategy for 

monitoring lentic breeding amphibians and aquatic reptiles.  Local watersheds are an 

ideal sampling unit not only because they encompass networks of habitat patches and 

local breeding populations (e.g., Funk et al. 2005), but because they encompass natural 

disturbance regimes (e.g., flooding and beaver) which create new habitat patches and are 

commonly used as management units by federal and state agencies and tribal 

governments so often encompass anthropogenic disturbance regimes as well.  The U.S. 

Geological Survey (USGS) has defined an integrated series of watersheds for much of the 

U.S. (Seaber et al. 1984) and the smallest watershed unit they have defined, a 6th code or 

12-digit hydrologic unit code (HUC), represents a relatively uniform naturally defined 

portion of the environment. 

 

A multi-tiered strategy to assess the status of lentic breeding amphibians and aquatic 

reptiles in Montana that is based on a 12-digit HUC watershed would: (1) carry out base-

level inventories of watershed and lentic site breeding rates as a measure of regional and 

local watershed status; (2) initiate long-term programs for monitoring status and trends in 

watershed and lentic site occupancy rates; (3) initiate long-term intensive monitoring of 

population dynamics and vital rates of individual species in a few sampling units 

representative of the range of latitudes and elevations occupied by each species; (4) 
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conduct experimental research at the scale of sampling units used for inventory and 

monitoring in order to understand underlying causes of the patterns of site occupancy and 

demography observed; and (5) use the data gathered to create easily interpretable models 

that can be used by natural resource managers to prioritize conservation efforts at 

multiple spatial scales across Montana.  This strategy is compatible with that recently 

articulated by the U.S. Geological Survey’s Amphibian Research and Monitoring 

Initiative (ARMI) (Hall and Langtimm 2001, Corn et al. 2005a-c, Muths et al. 2005) 

 

Tools for Natural Resource Managers 

The ultimate goal of fish and wildlife research is to provide management tools that will 

allow natural resource managers to conserve and protect fish and wildlife populations and 

their habitats for current and future generations.  During the course of my graduate 

research, I have summarized existing information on amphibians and reptiles in books 

and reports readily accessible to resource managers and the general public (Maxell and 

Hokit 1999, Maxell 2000, Maxell et al. 2003, 2009, Werner et al. 2004), used a variety of 

modeling techniques to evaluate the status of fish, amphibian, and reptile populations 

(Maxell 1998, Hart et al. 1998, Maxell 1999, Biek et al. 2002), conducted my own 

research on the distribution, status, and natural history of Montana’s amphibian and 

aquatic reptile species (Maxell 2002a-b, Maxell et al. 2002, Maxell 2004a-e, Maxell 

2005a-b, Maxell 2006) and mentored undergraduate projects on the reproductive ecology, 

prey, and gartersnake predators of the Columbia Spotted Frog (Rana luteiventris) (Easley 

2002, Wilson 2003, Thayer 2004, Thompson 2004).  In this dissertation, I extended these 

efforts toward fulfillment of a multi-tiered strategy for assessing the status of Montana’s 

amphibians and aquatic reptiles. 

 

The main goals of my dissertation were to: 

1. assess the statewide distribution and status of 10 lentic breeding amphibians and 4 

aquatic reptile species using a probability-based sampling scheme centered on 12-

digit HUC watersheds in order to make inference to regional watershed and site 

breeding and occupancy rates as a baseline measure of status 
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2. use detection data from our surveys to assess the suitability of local environmental 

variables for 10 lentic breeding amphibian and 4 aquatic reptile species in 

classification tree diagrams that are easily interpretable in a variety of ecological 

settings across Montana 

3. use positive data from our surveys and other data sources to create models 

predicting the regional and landscape-level suitability of habitats for 31 individual 

species beyond areas that have been inventoried 

4. assess the distribution of the amphibian pathogen Batrachochytrium 

dendrobatidis (Bd) in Montana amphibians 

5. initiate long-term intensive monitoring of population dynamics and vital rates of 

the Columbia Spotted Frog (Rana luteiventris) in three 12-digit HUC watersheds 

in western Montana 

6. make all inventory information and predictive models readily available to natural 

resource managers via web applications 

 

Throughout my dissertation I use common and scientific names in the 5th edition of 

Scientific and Standard English Names of the Amphibians and Reptiles of North America 

North of Mexico (Crother 2000, Crother et al. 2001, 2003).  I have chosen to use these in 

preference to those in the 6th edition (Crother 2008) because they currently have more of 

a consensus among herpetologists and because changes in the 6th edition have been 

questioned by several authors as not adequately reflecting a consensus among 

herpetologists and unnecessary to reflect evolutionary history (e.g., Smith and Chiszar 

2006, Hillis 2007, Wiens 2007) (Table 1.1). 

 

In chapter 2, I summarize the site and watershed occupancy rates from surveys of 6,741 

lentic sites within 429 randomly selected watersheds between 2000 and 2008.  Surveys 

provided additional evidence for declines in Western Toad (Bufo boreas) and Northern 

Leopard Frog (Rana pipiens) populations; R. pipiens was only detected at 1 site in 

western Montana and B. boreas was not detected in portions of the eastern edge of its 

former range and was detected breeding in only 17% of watersheds and 2% of sites.  

However, classification trees for B. boreas showed indications that the species 
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preferentially uses disturbed landscapes; breeding at 29% of permanent sites associated 

with recent forest fires and 6% of ephemeral sites associated with recent timber harvest.  

Seven of the 10 amphibian species and the Common Gartersnake (Thamnophis sirtalis) 

were detected at significantly fewer sites when fish were detected.  The presence of 

emergent vegetation was positively associated with breeding or occupancy rates for all 

but one of the species examined and appeared to partially mitigate the effects of fish.  

Classification trees indicate that resource managers could enhance habitats for wetland 

herpetofauna by (1) creating new lentic sites on the landscape either directly or through 

protection or reestablishment of natural disturbances such as beaver, floods, and bison, 

(2) creating emergent vegetation at portions of existing sites that currently lack it via 

rotational fencing to temporarily exclude grazing, and (3) eliminating introduced fish 

populations. 

 

In chapter 3, I used presence-only data in conjunction with pseudo-absences in program 

Maxent to model distribution and habitat suitability for 31 species of amphibians and 

reptiles in Montana to inform management and conservation efforts.  My primary goals 

were to: (1) identify variables that limit species’ distributions; (2) identify areas in need 

of field surveys; (3) create lists of predicted species within administrative boundaries at 

the regional (>10,000 km2), landscape (township or 100 km2), and large local habitat 

patch (>16 Ha) scales; and (4) identify marginal, suitable, and optimal habitat classes for 

species at various spatial scales.  Models identified scale dependent responses to 

environmental variables, opportunities to extend the known ranges of species, areas that 

support potentially isolated populations in need of conservation efforts, areas that are 

critical for maintaining landscape connectivity, areas that may provide the best habitat for 

reintroduction of species that have declined, and areas where exotic and nonindigenous 

species are most likely to become established.  When compared to predictions from the 

deductively based models produced by the Montana Gap Analysis Project, continuous 

Maxent models offered more realistic depictions of amphibian and reptile species 

distributions when survey data was available for a region and in most cases reduced 

predicted area while simultaneously increasing predictive accuracy.  However, deductive 

models like those produced by GAP are still important for representing some species 
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distributions in areas lacking survey effort. 

 

In chapter 4, I evaluate the distribution of the chytrid fungus, (Bd), which is pathogenic to 

many amphibians and has been linked to declines and extinctions in a number of species 

around the globe.  Tissue samples and swabs of ventral surfaces were analyzed for the 

presence of Bd using PCR primers for the internal transcribed spacer region of rDNA.  

Bd was detected in 218 samples taken at 68 sites between 1998 and 2008 for 6 of the 9 

species tested; A. tigrinum, B. boreas, B. woodhousii, P. maculata, R. luteiventris, and R. 

pipiens.  Bd was found in samples taken throughout the active season of the species, is 

widespread across Montana, and was found at a variety of elevations, habitats, and 

distances from, and intensities of, human activity.  In light of its association with other 

amphibian declines, Bd should be regarded as an ongoing threat to Montana amphibians. 

 

My dissertation demonstrates how national efforts such as the U.S. Geological Survey’s 

Amphibian Research and Monitoring Initiative can expand research and monitoring 

efforts beyond national park and wildlife refuge boundaries to develop a research and 

monitoring program that has broader spatial inference on the status of lentic breeding 

amphibians and aquatic reptiles.  Natural resources managers now have a state-wide 

assessment of watershed and site occupancy rates that can be used as a current measure 

of status and as a baseline for future evaluations within various geographic and 

administrative strata.  In areas where watershed surveys have been performed, resource 

managers can use detections and habitat evaluations to make preliminary decisions 

regarding a variety of land management actions.  A website at the Montana Natural 

Heritage Program allows resource managers to access these survey results, including 

digital photographs of sites surveyed, in the context of a variety of map layers.  In 

watersheds that have not been surveyed, resource managers can use predicted distribution 

models in combination with classification trees to determine the likely suitability of the 

landscape and site, respectively, for individual species as well as evaluate potential 

habitat enhancements for a site or local set of sites.  While results from the intensive 

monitoring of population dynamics and vital rates of R. luteiventris in three 12-digit HUC 

watersheds in western Montana are not summarized in my dissertation due to limited 
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time and funding, these efforts are continuing and will eventually be summarized 

consistent with the original goal of the integrated multi-tiered monitoring strategy 

articulated above. 
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Table 1.1.  Common and scientific names of amphibians and reptiles of Montana.  Names in the 5th edition (Crother 2000, Crother et al. 2001, 
2003) and 6th edition (Crother 2008) of Scientific and Standard English Names of the Amphibians and Reptiles of North America North of 
Mexico are shown on the left and right, respectively, with changes in the 6th edition in bold.  Common and scientific names in the 5th edition are 
used throughout my dissertation because changes in the 6th edition are under debate (e.g., Smith and Chiszar 2006, Hillis 2007, Wiens 2007). 
 

Scientific and Standard English Names 5th Edition Scientific and Standard English Names 6th Edition 
Amphibians 

Long-toed Salamander Ambystoma macrodactylum Long-toed Salamander Ambystoma macrodactylum 
Tiger Salamander Ambystoma tigrinum Barred Tiger Salamander Ambystoma mavortium 
Idaho Giant Salamander Dicamptodon aterrimus Idaho Giant Salamander Dicamptodon aterrimus 
Coeur d’Alene Salamander Plethodon idahoensis Coeur d’Alene Salamander Plethodon idahoensis 
Rocky Mountain Tailed Frog Ascaphus montanus Rocky Mountain Tailed Frog Ascaphus montanus 
Plains Spadefoot Spea bombifrons Plains Spadefoot Spea bombifrons 
Western Toad Bufo boreas Western Toad Anaxyrus boreas 
Great Plains Toad Bufo cognatus Great Plains Toad Anaxyrus cognatus 
Woodhouse’s Toad Bufo woodhousii Woodhouse’s Toad Anaxyrus woodhousii 
Boreal Chorus Frog Pseudacris maculata Boreal Chorus Frog Pseudacris maculata 
Pacific Treefrog Pseudacris regilla Northern Pacific Treefrog Pseudacris regilla 
American Bullfrog Rana catesbeiana American Bullfrog Lithobates catesbeianus 
Northern Leopard Frog Rana pipiens Northern Leopard Frog Lithobates pipiens 
Columbia Spotted Frog Rana luteiventris Columbia Spotted Frog Rana luteiventris 

Reptiles 
Snapping Turtle Chelydra serpentina Snapping Turtle Chelydra serpentina 
Painted Turtle Chrysemys picta Painted Turtle Chrysemys picta 
Spiny Softshell Apalone spinifera Spiny Softshell Apalone spinifera 
Northern Alligator Lizard Elgaria coerulea Northern Alligator Lizard Elgaria coerulea 
Greater Short-horned Lizard Phrynosoma hernandesi Greater Short-horned Lizard Phrynosoma hernandesi 
Common Sagebrush Lizard Sceloporus graciosus Common Sagebrush Lizard Sceloporus graciosus 
Western Skink Eumeces skiltonianus Western Skink Plestiodon skiltonianus 
Rubber Boa Charina bottae Northern Rubber Boa Charina bottae 
Eastern Racer Coluber constrictor North American Racer Coluber constrictor 
Western Hog-nosed Snake Heterodon nasicus Plains Hog-nosed Snake Heterodon nasicus 
Smooth Greensnake Opheodrys vernalis Smooth Greensnake Opheodrys vernalis 
Milksnake Lampropeltis triangulum Milksnake Lampropeltis triangulum 
Gophersnake Pituophis catenifer Gophersnake Pituophis catenifer 
Terrestrial Gartersnake Thamnophis elegans Terrestrial Gartersnake Thamnophis elegans 
Plains Gartersnake Thamnophis radix Plains Gartersnake Thamnophis radix 
Common Gartersnake Thamnophis sirtalis Common Gartersnake Thamnophis sirtalis 
Prairie Rattlesnake Crotalus viridis Prairie Rattlesnake Crotalus viridis 
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CHAPTER 2 
 

STATUS OF LENTIC BREEDING AMPHIBIANS AND AQUATIC REPTILES IN 

MONTANA: A BASE-LEVEL ASSESSMENT UNDER THE U.S. GEOLOGICAL 

SURVEY’S AMPHIBIAN RESEARCH AND MONITORING INITIATIVE 

 
Abstract 

We developed a state-wide inventory and monitoring scheme for 10 lentic breeding 

amphibians and 4 aquatic reptiles in Montana and conducted surveys at 6,741 potential 

lentic sites within 429 randomly selected watersheds between 2000 and 2008.  We used 

classification trees to examine patterns in rates resulting from major habitat features able 

to be affected by management actions. Watershed and site detection rates for breeding 

added additional evidence for declines in the Western Toad (Bufo boreas) and Northern 

Leopard Frog (Rana pipiens).  R. pipiens was only detected at 1 site in western Montana.  

B. boreas was not detected in portions of the eastern edge of its range and was detected 

breeding in only 17% of watersheds and 2% of sites.  However, B. boreas bred at 29% of 

permanent sites associated with recent forest fires and 6% of ephemeral sites associated 

with recent timber harvest.  Seven of the 10 amphibian species and the Common 

Gartersnake (Thamnophis sirtalis) were detected at significantly fewer sites when fish 

were detected.  The presence of emergent vegetation was positively associated with 

breeding or occupancy rates for all but one of the species examined and appeared to 

partially mitigate fish impacts.  Resource managers could enhance habitats for wetland 

herpetofauna by (1) creating new lentic sites on the landscape either directly or through 

protection or reestablishment of natural disturbances such as beaver, floods, and bison, 

(2) creating emergent vegetation at portions of existing sites that currently lack it via 

rotational fencing to temporarily exclude grazing, and (3) eliminating introduced fish 

populations.  This collaborative study demonstrates how national efforts such as the U.S. 

Geological Survey’s Amphibian Research and Monitoring Initiative can expand research 

and monitoring efforts beyond national park and wildlife refuge boundaries to develop a 

research and monitoring program that has broader inference on the status of lentic 

breeding amphibians and aquatic reptiles. 
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Introduction 

 

Responding to Amphibian Declines 

At the First World Congress of Herpetology in 1989 herpetologists began to realize that 

amphibian declines were a global phenomenon (Blaustein and Wake 1990, Stebbins and 

Cohen 1995, Gibbons 2003).  There is now consensus that declines have occurred and 

hundreds of species are on the brink of extinction (Houlahan et al. 2000, Wake 2003, 

Stuart et al. 2004, Lannoo 2005), but there was initial debate as to whether declines really 

had occurred or whether they were just part of the natural variability of populations 

(Pechmann et al. 1991, Blaustein 1994, Pechmann and Wilbur 1994).  Documenting 

declines and their underlying causes was, and continues to be, hampered by a lack of 

regional, national, and international integration of broad-scale inventory data with more 

intensive local studies of natural history and population dynamics and experimental 

research on causal mechanisms; in part due to competing resources for metrics that 

balance scope of inference against spatial inference (Table 2.1, Figure 2.1). 

 

The U.S. Geological Survey’s Amphibian Research and Monitoring Initiative (ARMI) 

has articulated a multi-tiered program to address this issue in the United States (Hall and 

Langtimm 2001, Corn et al. 2005a-c, Muths et al. 2005).  The program is organized as a 

hierarchical pyramid, consisting of: (1) base-level periodic regional assessments of 

distribution and status from probabilistic sampling schemes to determine site occupancy 

rates across a variety of public and private lands; (2) mid-level regular monitoring of site 

occupancy rates on non-random focal portions of Department of Interior lands (e.g., 

national parks and national wildlife refuges); and (3) apex-level intensive population 

studies to document demographic responses to relevant covariates and conduct 

experimental cause-effect research on putative causes of declines.  Modeling efforts 

would then integrate information gathered under each of these levels.  Of the three levels 

of this pyramid, the base-level regional assessments may offer the greatest challenge to 

implement because they are logistically difficult and necessarily involve multiple federal, 

state, tribal, non-governmental organizations, and private partners with potentially 

conflicting information needs, mandates, and fiscal limitations. 
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Characteristics of a Successful Assessment Program 

These challenges to implementing an effective base-level regional assessment require 

investigators to keep characteristics of a successful assessment program clearly in mind at 

all stages of the project (Table 2.2, Thompson et al. 1998).  Involvement of all relevant 

stakeholders is important to ensure that the project is adequately funded, that goals are 

clearly defined and limitations are clearly stated, that sampling units are meaningful, and 

that target populations to which inferences will be drawn will meet everyone’s needs.  

Sampling units should be randomly selected to ensure proper inference to the target 

population and are ideally naturally defined uniform portions of the environment that 

contain the response variables of primary interest as well as meaningful covariates (e.g., 

standing water bodies, springs, seeps, stream reaches).  Stratification of sampling units 

into strata and substrata based on bioregion and land ownership may be necessary to 

define smaller target populations and sampling frames where response variables are 

likely to have higher precision (Thompson et al. 1998).  Investigators should also 

consider the potential degree of bias of estimates.  Ideally a response variable will have 

both high precision and low bias.  Stakeholders should define biologically meaningful 

effect sizes that will trigger management actions before the project begins, and as the 

project proceeds periodically evaluate these effect sizes in the context of the precision 

with which variables are able to be measured (Steidl et al. 1997, Thompson et al. 1998, 

Johnson 1999).  The better coordinated (locally, regionally, and nationally) and more 

flexible an assessment program is, the more likely it is to be successful over the long run.  

Much of the flexibility required revolves around the program’s goals and the ability to 

meet those goals in the face of periodic funding shortfalls.  Given that periodic shortfalls 

in funding are likely, regional assessment program objectives are probably best kept to 

periodic assessments of status for a given target population based on a fresh random 

sample on each sampling occasion rather than an unreasonable commitment to monitor 

trends in a population of the same sampling units on an annual or other regular interval 

(Skalski 1990).  This has the added benefit of continually adding to the number of sites 

for which there is some baseline information.  The ideal situation is to simultaneously 

add new baseline information, assess the status of the target population, and evaluate 
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trends in previously sampled sites through some type of rotational sampling scheme with 

replacement (Skalski 1990, Urquhart et al. 1998). 

 

Assessment Goals for Montana 

Where possible, we applied these characteristics to the problem of a state-wide base-level 

assessment of the status of lentic breeding amphibians and aquatic reptiles across 

Montana, where almost 60% of the amphibians and over 40% of the aquatic reptiles are 

state Species of Concern and where very few standardized baseline surveys had been 

undertaken (Maxell et al. 2003, Werner et al. 2004, Maxell et al. 2009, MNHP and 

MFWP 2009).  In collaboration with federal, state, tribal, and private stakeholders we 

established the following mutual goals: (1) develop a common state-wide inventory and 

monitoring scheme for periodically assessing the status and distribution of amphibians 

and aquatic reptiles; (2) establish standard survey protocols and a state-wide database that 

can be used by all partners to assess changes in site and watershed rates of breeding 

(amphibians) and occupancy (aquatic reptiles) over time with reference to a variety of 

local and landscape variables; (3) conduct baseline surveys using watersheds as the basic 

sampling unit, focusing on watersheds dominated by public lands as an initial assessment 

goal; (4) evaluate survey methodology to assess the precision with which habitat 

variables are measured and the degree to which detection rates for various life history 

stages vary by habitat; and (5) make survey information easily available to biologists and 

resource managers so that it can be easily used for management decisions on individual 

sites as well as for planning at the level of administrative units. 

 

In this paper we describe the state-wide inventory and monitoring scheme we have 

developed for Montana to assess distribution and status of lentic breeding amphibians and 

aquatic reptiles and present results for our surveys of watersheds on public lands, and 

discuss implications for future surveys and management actions.  This effort 

complemented mid and apex-level efforts of ARMI in Glacier, Theodore Roosevelt, and 

Yellowstone National Parks and a number of U.S. Fish and Wildlife Refuges in the 

Northern Rocky Mountains (e.g., Adams et al. 2005, Brooks et al. 2005, Hossack et al. 

2005, Muths et al. 2005, Guscio et al. 2008, Hossack and Corn 2007, 2008). 
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Methods 

 

Sampling Scheme 

We stratified Montana into 11 geographic strata (Figure 2.1) defined by level 3 

ecoregions (Nesser et al. 1997) and 8-digit hydrologic unit code (HUC) watersheds 

(Seaber et al. 1984).  We then sub-stratified geographic strata by 12-digit watersheds that 

differed by land ownership makeup (> 40% public, >40% tribal, and <40% public or 

tribal).  This created 28 different target populations and sampling frames for which 

results of site occupancy rate surveys can be more meaningfully inferred and interpreted 

into management actions (Table 2.3).  Within each of these target populations and 

sampling frames we randomly selected 12-digit HUC watersheds in numbers 

approximately proportional to the total area and number of watersheds in the sampling 

frame (Table 2.3, Figure 2.1).  This established a random selection of up to one third of 

the watersheds within the >40% public and >40% tribal land ownership strata and 

approximately 10% of the watersheds within the <40% public or tribal land ownership 

stratum. 

 

Field Inventory 

Prior to field work, we mapped all potential standing water bodies identified on the most 

recent 7.5-minute (1:24,000 scale) U.S. Geological Survey quadrangle maps or aerial 

photographs within each of the randomly selected watersheds; aerial photographs were 

not used to detect potential lentic sites in the drier non-mountainous portions of eastern 

Montana where standing waters capable of supporting amphibian reproduction are more 

reliably mapped.  When we did not detect lentic sites in a watershed on topographic maps 

or aerial photographs, we briefly ground truthed the watershed by driving roads or hiking 

major trails to examine areas of low topographic relief or backwaters of streams that 

might provide lentic breeding habitat.  Unless sites were inaccessible (e.g., some required 

crossing unsafe terrain or private lands where access was not granted), field crews 

navigated to all mapped potential lentic sites on public lands in each watershed and used 

timed visual encounter and dipnet surveys in all portions of the water bodies that were 

less than 50 cm in depth (Heyer et al. 1994, Olson et al. 1997).  In addition, field crews 
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surveyed standing water bodies that were encountered incidentally while navigating to 

mapped sites and areas within a 200 m radius of mapped sites were searched for 

additional water bodies potentially lumped under a single map feature by cartographers.  

Digital photographs of each site were taken and species and habitat information was 

recorded on a standardized datasheet (Appendix A, Table 2.4a). 

 

Field surveys were conducted each year between 2000 and 2008 between the time when 

oviposition had been completed at most sites and when large numbers of 

metamorphosing animals were observed.  Surveys were conducted typically between late 

May and early July in eastern Montana and between late May and the end of August in 

western Montana where crews could survey at progressively higher elevations as the 

summer proceeded.  Presence/non-detection data may underestimate occupancy if sites 

are surveyed only once because probability of detection is often less than 1 (MacKenzie 

et al. 2002, 2006).  Unfortunately, multiple visits to sites were not feasible in this study 

due to the goal of assessing species’ distributions in regions that, for the most part, lacked 

any baseline information.  However, sites in a small number of nonrandomly selected 

watersheds were surveyed by multiple crew members as part of training or evaluation 

sessions (Appendix B) and multiple site surveys were performed within Glacier and 

Yellowstone National Parks for mid-level monitoring efforts (Corn et al. 2005b, Muths et 

al. 2005, Hossack and Corn 2007).  These sessions were used to examine detection 

probabilities for some species to identify potential biases resulting from surveys in 

different habitats and to inform future monitoring efforts (Appendix B).  Presence/non-

detection data may also be biased when species are misidentified (MacKenzie et al. 2002, 

2006).  We believe that misidentification of species was not a problem for the vast 

majority of our observations because eggs, larvae, juveniles, and adults of most species 

are easily distinguishable (see keys in Maxell et al. 2003 and Werner et al. 2004).  

However, larval Great Plains Toads (Bufo cognatus) and Woodhouse’s Toads (Bufo 

woodhousii) are very similar in appearance to one another; small differences in arch of 

the tail fin, ventral coloration of tail musculature, and widths of labial tooth rows are the 

only distinguishing features and their use in species identification can be problematic in 

smaller larvae (Maxell et al. 2003, Werner et al. 2004).  We, therefore, tried to rely on 

15



 

additional information when making a species designation for bufonid larvae on the 

plains of eastern Montana.  This included the presence of adults, eggs, or newly 

metamorphosed juveniles, major habitat type (B. woodhousii was more broadly 

distributed on the landscape and used a wider variety of habitat types while B. cognatus 

was limited to breeding in ephemeral sites in grasslands or riparian flood plains).  At sites 

where species identification was uncertain in the field, we preserved several larvae in 

10% neutral buffered formalin and examined their tail fin arch, basal tail musculature 

pigmentation, and relative width of labial tooth rows under a dissecting microscope 

(Maxell et al. 2003, Werner et al. 2004). 

 

To prevent the spread of fungal and viral pathogens, field equipment and clothing that 

contacted water or mud was washed and then decontaminated with 10% bleach between 

each watershed surveyed (Johnson et al. 2003, Johnson and Speare 2003, Johnson and 

Speare 2005).  Voucher specimens were collected for each amphibian or reptile species 

encountered in each watershed and we intend to deposit the majority of these in the U.S. 

National Museum at the Smithsonian. 

 

Data Analysis 

We only used lentic sites that contained water at the time of the survey and were deemed 

capable of holding water long enough to support amphibian reproduction in analyses of 

the percent of watersheds or sites occupied (reptiles) or with breeding (amphibians).  

Similarly, we only used watersheds containing lentic sites in these analyses.  We 

calculated confidence intervals for watershed rates using a standard error formula with a 

finite population correction factor given that the number of public dominated watersheds 

in each target population was known (Krebs 1999).  However, for confidence intervals of 

site occupancy rates we used a standard error formula without a finite population 

correction factor given that we do not know the total number of lentic sites in each target 

population.  To allow all stake holders to readily access survey information we created a 

dynamic internet mapping application housed at the Montana Natural Heritage Program 

that uses ASP.net, C#, and AJAX coding to display tabular data from surveys stored in a 

SQL Server database and mapped using ArcIMS. 
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We used classification trees in both S-PLUS 6.2 and CART 6.0 to group independent 

environmental variables associated with lentic habitats and identify patterns associated 

with detection of breeding by amphibians or the presence of aquatic reptiles (Table 2.4a-

b).  Classification and regression tree (CART) models are a non-parametric method that 

partitions a dataset recursively into binary subsets that are increasingly homogeneous.  

The result is a tree model that classifies different combinations of environmental 

variables as more or less suitable as habitat while simultaneously providing a 

dichotomous classification tree.  CART has advantages over traditional linear models 

because independent variables can appear on multiple branches of a tree (e.g., emergent 

vegetation at ephemeral water bodies versus emergent vegetation at permanent water 

bodies with or without fish) and, therefore, may more realistically represent ecological 

rules determining a species presence (Breiman et al. 1984, Iverson and Prasad 1998, 

De’ath and Fabricius 2000, Urban 2002, Cutler et al. 2007). 

 

Our main criteria for selection of independent variables for our CART analysis were that 

they were biologically relevant to the species and could be easily interpretable by 

resource managers in a variety of ecological settings across Montana.  Thus, 

environmental variables were chosen from those available to have representation across 

the species’ range and address major habitat features that could be affected by 

management actions (Table 2.4a).  Continuous independent variables were converted to 

categorical present or absent values to simplify resulting trees.  Analysis was limited to 

lentic sites randomly selected for survey within the known range of each species in 

Montana.  Models were constructed using a splitting rule that minimizes deviance (node 

heterogeneity) in S-Plus 6.2 and using the Gini index in CART 6.0 (Breiman et al. 1984; 

De’ath and Fabricius 2000; Urban 2002); terminal node size was limited to a minimum of 

10 observations.  This yielded classification trees where the vertical depth of each split is 

proportional to the amount of variation explained by a given independent variable or 

group of variables.  We used a 10-fold cross validation of the data in CART 6.0 to 

estimate the relative prediction error associated with trees of different sizes and typically 

pruned trees back to the number of terminal nodes resulting in the minimum relative error 

rate (Breiman et al. 1984; De’ath and Fabricius 2000).  However, trees were sometimes 
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pruned to smaller, more parsimonious, sizes than those resulting in the minimum relative 

error rate when the difference in error rate was minor (much less than 1 SE of the 

minimum tree) and the resulting nodes at the minimum relative error rate could not be 

meaningfully interpreted.  We used S-Plus to create trees for display. 

 

 

Results 

 

Watershed and Site Characteristics 

Of the 455 12-digit HUC watersheds randomly selected for survey in the 10 target 

populations containing greater than or equal to 40% public land ownership, 429 (94%) 

have been surveyed through the 2008 field season (Table 2.3, Figure 2.2).  Of the 26 

watersheds in this target population that have not been surveyed, 13 have been the focus 

of intensive assessments by ARMI in Glacier National Park (e.g., Corn et al. 2005b, 

Muths et al. 2005, Hossack and Corn 2007) and are not worth additional survey.  We still 

intend to survey the remaining 13 (1 each in strata 1, 7, and 11 and 5 each in strata 2 and 

10), but naïve site occupancy rate estimates in these strata are unlikely to be altered 

significantly as a result. 

 

Of the 429 watersheds surveyed, we failed to detect any lentic sites on topographic maps, 

aerial photos, or with ground truthing in 22 and although 26 others had lentic sites 

detected on private or tribal lands within the watershed, we did not find any water bodies 

on public lands.  Thus, 381 (84%) of the randomly selected watersheds had some form of 

a lentic site on public lands.  Within these watersheds there was an average of 25.0 (SD = 

28.7, range = 1 – 211) lentic sites detected on both public and private lands.  However, on 

the public lands we surveyed, there was an average of 18.5 lentic sites (SD = 23.4, range 

= 1 – 211) per watershed. 

 

We surveyed 6,741 potential lentic sites and 1,398 of these were evaluated as not capable 

of supporting amphibian reproduction or worth future survey because they were 

misidentified as a potential lentic site (e.g., a shadow on an aerial photograph or dry well 
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on a 1: 24,000 quadrangle map), were lotic, or were lentic, but judged incapable of 

holding water long enough to support amphibian reproduction.  Of the sites surveyed, 

5,640 (84%) were detected on quadrangle maps, 679 (10%) were detected on aerial 

photographs, and 422 (6%) were detected incidentally while in the field. 

 

Seventy-nine percent (5,343) of sites were evaluated as capable of supporting amphibian 

reproduction and worth future survey.  Sites identified on aerial photographs had the 

highest error rate of a priori site identification for supporting amphibian reproduction; 

64% (438) as compared to 80% (4,502) of those detected on quadrangle maps.  Ninety-

five percent (403) of sites detected incidentally while in the field were identified as 

capable of supporting reproduction. 

 

Of the 5,343 sites deemed capable of supporting amphibian reproduction and worth 

future survey, 405 (8%) were dry at the time of survey, 2,726 (51%), were evaluated as 

ephemeral, and 2,206 (41%) were evaluated as permanent.  Watersheds that had any sites 

evaluated as capable of supporting amphibian reproduction on public lands averaged 1.1 

(SD = 2.5) dry sites, 7.6 (SD = 10.3) ephemeral sites with water, 4.3 (SD = 5.5) 

permanent sites with emergent vegetation, and 1.9 (SD = 7.4) permanent sites without 

emergent vegetation. 

 

Most sites in strata 1-7 were on lands administered by the U.S. Forest Service, while in 

strata 10-12, the majority of sites are administered by the Bureau of Land Management 

(Figure 2.3a).  Lands administered by the state of Montana typically made up a small 

portion of the sites surveyed, but they composed a relatively higher percentage of the 

sites in eastern Montana.  Other administrators of sites surveyed include Plum Creek 

Timber Company and The Nature Conservancy in western Montana and the U.S. Fish 

and Wildlife Service in both western and eastern Montana.  Elevations of sites surveyed 

are mostly normally distributed across strata 1-6 with the exceptions of modal classes 

from 1,400-1,600 m in stratum 3, 1,000-1,200 m in stratum 4, and 1,800-2,200 m in 

stratum 5 (Figure 2.3b).  Sites were predominantly in the 2,400-2,800 m elevation classes 

in stratum 7, while sites in strata 10-12 were mostly below 1,000 m. 
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Lentic sites in strata 1-7 were most often formed in natural depressions, but beaver 

created 10-15% of sites in most strata and in stratum 3 they created 42% of sites (Figures 

2.3c-d).  In strata 10-12 more than 70% of sites surveyed were human made reservoirs for 

livestock watering with fewer than 20% of sites of a depressional nature and beaver 

created less than 2% of sites.  Lentic oxbow or spring habitats created by hydraulic action 

composed 7-20% of sites across all strata.  Lake, pond, and wetland habitats in stratum 7 

and wetland habitats in stratum 10 were predominately created through the action of 

glaciers (Alt and Hyndman 1995).  The relative proportion of ephemeral sites, permanent 

sites with emergent vegetation, and permanent sites without emergent vegetation was 

fairly consistent across all strata with ephemeral sites dominating other categories (Figure 

2.3e). 

 

Fish were detected in 13-25% of lentic sites in strata 1-7 and 6-9% of sites in strata 10-12 

(Figure 2.3f).  Fish were detected in approximately the same proportion of permanent 

sites with emergent vegetation as permanent sites without emergent vegetation in most 

strata, but a higher proportion of permanent sites with emergent vegetation had fish in 

strata 5 and 11 (Figure 2.3f).  Fish were detected in a small proportion of sites classified 

as ephemeral because these sites were ephemerally connected to permanent waters 

supporting fish (Figure 2.3f).  Structural impacts to shorelines, shoreline vegetation, and 

water quality from grazing were absent or light throughout most of the sites in strata 1-7 

(Figure 2.3g).  One exception to this was some of the nonforested areas in strata 6 south 

of Butte where a number of sites had received heavy structural or water quality impacts 

from cattle grazing.  Heavy structural or water quality impacts from grazing were also 

present in strata 10-12, with an especially high percentage of sites impacted in strata 11 

and 12 (68 and 51%, respectively).  Waters were dammed (mostly earthen dams of 

drainages) or diverted (often capping and piping of springs to watering tanks) in 1-16% 

of sites in strata 1-7 and in 72-84% of sites in strata 10-12 (Figure 2.3h). 
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Species Distributions 

Surveys and associated incidental observations during the course of this project resulted 

in 11,423 species observation records across Montana.  The 9,499 amphibian observation 

records and 1,924 reptile observation records are respectively equivalent to 52 and 25% 

of all observations that have been gathered for these vertebrate classes in Montana since 

the time of the Lewis and Clark expedition (Maxell et al. 2003).  The surveys and 

associated incidental observations filled in many gaps in the known distribution of these 

species and resulted in numerous extensions of the known range and elevation limits of 

species (Figures 2.4a-n).  Most notably, these include: a 28 km southwest extension into 

the upper reaches of the West Fork of the Bitterroot River, a 32 km southeast extension to 

the Big Hole Divide, and a 20 km southeast extension in the Elkhorn Mountains for A. 

macrodactylum (Figure 2.4a); a 28 km extension into the upper reaches of the Blacktail 

Deer Creek drainage in southeastern Beaverhead County for A. tigrinum (Figure 2.4b); 53 

observations on 11 different streams within 10 km of the first record of Idaho Giant 

Salamander (Dicamptodon aterrimus) in Montana in Mineral County; an extension 45 

km south and 60 km east to southern Ravalli County for P. idahoensis (Maxell 2002a); a 

40 km westward extension into north central Stillwater County and a 35 km northwest 

extension into Golden Valley County for B. cognatus (Figure 2.4e); a 16 km southward 

extension in Ravalli County for Pacific Treefrog (Pseudacris regilla) (Figure 2.4h); a 185 

km eastward extension within Montana and a 56 km extension northward from Wyoming 

to the headwaters of Rosebud Creek in southeastern Bighorn County for Rubber Boa 

(Charina bottae); a 64 km eastward extension into west central Custer County for 

Terrestrial Gartersnake (Thamnophis elegans) (Figure 2.4l); and a 55 km westward 

extension into Stillwater County for Plains Gartersnake (Thamnophis radix) (Figure 

2.4m). 

 

Known elevation limits were extended during the course of these surveys up to or beyond 

those reported in Maxell et al. (2003) and Werner et al. (2004) for A. macrodactylum 

(2,774 m) near Homer Youngs Peak in Beaverhead County, D. atterimus (1,737 m) near 

the headwaters of the West Fork of Big Creek in Mineral County, P. idahoensis (1,585 

m) along Little Rock Creek just south of Lake Como in Ravalli County, B. cognatus 
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(1,300 m) southeast of Wallop Butte in southwest Powder River County, P. maculata 

(2,841 m) just east southeast of Black Butte in southern Madison County, and P. regilla 

(1,810 m) between Lydia Mountain and Sutton Mountain in northeast Lincoln County. 

 

The distribution of elevations used for breeding by Montana’s amphibians and aquatic 

reptiles has received little attention in the past because most previous survey efforts have 

been focused on valley bottoms.  Our recent efforts have been focused on public lands 

with a broader distribution of elevations.  Given that temperatures and, therefore activity 

periods for ectotherms, are dependent on elevation a summary of breeding and occupancy 

rates by elevation class may prove useful to managers (Figures 2.4a-n).  A. 

macrodactylum were detected breeding in 22-49% of sites below elevations of 2,600 m, 

but breeding rates dropped off quickly above this elevation (Figure 2.4a).  A. tigrinum 

had a bimodal breeding distribution with peaks of higher detection between 1,000 and 

1,600 m corresponding to sites in eastern Montana and between 2,000 and 2,400 m 

corresponding to sites in southwest Montana (Figure 2.4b).  Plains Spadefoot (Spea 

bombifrons), B. cognatus, B. woodhousii and R. pipiens were all limited to breeding at 

sites below 1,228 m corresponding to non mountainous areas across eastern Montana, but 

B. cognatus was restricted to sites below 942 m, essentially corresponding to major river 

valleys and adjacent uplands (Figures 2.4c, 2.4e, 2.4f, and 2.4j).  B. boreas had low (less 

than or equal to 2%) breeding rates across a wide range of elevations, but breeding rates 

were significantly higher (4-10%) at mid elevation mountainous areas between 1,600 and 

2,000 m (Figure 2.4d).  P. maculata was documented breeding in alpine meadows of 

southwestern Montana at elevations of just above 2,800 m.  However, breeding rates 

were much lower (less than 11% of sites) at elevations above 1,400 m as compared to 

elevations below 1,200 m (greater than 42% of sites) (Figure 2.4g).  Breeding rates were 

highest for P. regilla at elevations below 800 m and steadily decreased up to their 

maximum documented elevation of 1,810 m (Figure 2.4h).  R. luteiventris bred at 17-

32% of sites below 2,800 m, corresponding roughly to tree line across their range, with 

breeding rates dropping off drastically above this (Figure 2.4j).  Painted Turtle 

(Chrysemys picta) was detected at 12% of sites below 800 m with rates of detection 

dropping off steadily above this to 2% of sites below 1,400 m (Figure 2.4k).  T. elegans 

22



 

had a bimodal distribution of site occupancy with relatively high rates of detection 

(greater than 5%) below 800 m and rates of 6-9% between 1,400 and 2,200 m (Figure 

2.4l).  T. radix was detected at 10-19% of sites below 1,157 m, but was not detected at 

higher elevations (Figure 2.4m).  Common Gartersnake (Thamnophis sirtalis) was 

detected at 1-10% of sites below 2,600 m, with a modal elevation class at 1,200-1,400 m 

(Figure 2.4n). 

 

Naïve Site Breeding and Occupancy Rates and Habitat Associations 

A. macrodactylum was detected breeding in 66-77% of watersheds west of the 

Continental Divide (strata 1, 2, and 4) and 24-58% of watersheds east of the Continental 

Divide (strata 3, 5, and 6) within its known range (Table 2.5).  Similarly, it was detected 

breeding in 31-44% of lentic sites in strata west of the Continental Divide as compared to 

only 10-18% of sites east of the Continental Divide.  With the exception of strata 3 and 5 

which had broad confidence intervals for both watershed and site breeding rate estimates 

due to small sample sizes, all confidence intervals were reasonably precise.  Overall, A. 

macrodactylum was detected breeding in 34% of the 2,119 sites that were surveyed 

across all strata within the species’ known range (Table 2.4, Figure 2.5a).  The species 

bred at a lower percentage of sites where fish were detected (15%) than where fish were 

not detected (38%).  When fish were present, the percentage of sites with breeding 

detected was over 4 times greater when emergent vegetation was present (18%) 

compared to when emergent vegetation was not present (4%).  A. macrodactylum still 

favored breeding in sites with emergent vegetation even when fish were not present (42% 

versus 24%). 

 

A. tigrinum was not detected breeding at any lentic sites in the randomly selected 

watersheds within their limited range west of the Continental Divide (Table 2.5, Figure 

2.4b).  However, it was detected breeding in 30% and 50% of watersheds and 3% and 

20% of sites in strata 7 and 6, respectively, in southwest Montana.  In strata 10, 11, and 

12 on the Great Plains, A. tigrinum watershed breeding rates were consistently high at 73-

79%, but site breeding rates ranged from 11-40%.  Confidence intervals were reasonably 

precise for both watershed and site estimates.  Overall, A. tigrinum was detected breeding 
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in 14% of the 2,536 sites that were surveyed across all strata within the species’ known 

range (Table 2.4, Figure 2.5b).  The species was twice as likely to be detected breeding at 

sites with emergent vegetation (16%) than sites without emergent vegetation (8%) and A. 

tigrinum was not detected breeding at any sites when fish were present and emergent 

vegetation was absent.  In the presence of emergent vegetation, the percentage of sites 

where A. tigrinum was detected breeding was 143% higher when no fish were detected 

(17%) as compared to when fish were detected (7%).  When fish were not detected, the 

percentage of sites where A. tigrinum was detected breeding was almost halved when no 

emergent vegetation was present (9%) as compared to when it was present (17%). 

 

S. bombifrons was detected breeding in 14-24% of watersheds and only 2-4% of sites 

across strata 10, 11, and 12.  Confidence intervals were reasonably precise for site 

breeding rates, but were fairly broad for watershed breeding rates (Table 2.5).  Only a 

simple two forked classification tree was supported by the S. bombifrons breeding 

detection data (Table 2.4, Figure 2.5c).  The species was detected breeding in only 3% of 

the 1,578 lentic sites that were surveyed across all strata within its known range (Table 

2.4, Figure 2.5c).  However, they were 5 times more likely to breed in ephemeral sites 

(5% of sites) than permanent sites (1% of sites). 

 

B. boreas was not detected breeding within the western margins of strata 10, 11, and 12 

that lie within its known geographic range and was also not detected breeding in 

randomly selected watersheds within strata 7 which is well within its known range (Table 

2.5, Figure 2.4d, Maxell et al. 2003).  Outside of these strata, watershed and site breeding 

rates did not appear to differ across the Continental Divide for B. boreas with watershed 

breeding rates ranging from 11-50% and site breeding rates ranging from 1-5% across 

strata 1-6.  Confidence intervals for watersheds were broad with the interval for stratum 5 

overlapping zero.  Most of the confidence intervals for site breeding rates were also 

broad, given the small point estimates, and intervals for strata 2, 3 and 5 all overlapped 

zero.  Overall, B. boreas was detected breeding at 2% of the 3,357 sites that were 

surveyed across all strata within the species’ known range (Table 2.4, Figure 2.5d).  The 

species was more likely to breed at sites with emergent vegetation than those without 
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emergent vegetation (3% versus 0.5%) and they were more likely to breed in permanent 

than ephemeral waters (4% versus 2%).  At ephemeral sites B. boreas was more likely to 

breed at sites that had recently been logged (6% versus 1%) and at permanent sites they 

were more likely to breed at sites that had recently been burned (29% versus 4%). 

 

B. cognatus was detected breeding in 3-22% of watersheds, but only 1-3% of sites across 

strata 10, 11, and 12.  Confidence intervals were imprecise for both watershed and site 

breeding rates and overlapped zero in several cases (Table 2.5).  Overall, B. cognatus was 

detected breeding at 2% of the 1,552 sites that were surveyed across all strata within the 

species’ known range (Table 2.4, Figure 2.5e).  The species was not detected breeding at 

any sites with fish and at sites without fish it bred at 2% of sites with emergent vegetation 

as compared to only 1% of sites without emergent vegetation.  At fishless sites with 

emergent vegetation it bred at 2% of sites that were ephemeral as compared to only 1% of 

sites that were permanent. 

 

B. woodhousii was detected breeding in 42% of watersheds in stratum 12, but only 19% 

of watersheds in strata 10 and 11 which are more on the northern margin of its range 

(Table 2.5, Figure 2.4f, Stebbins 2003).  Similarly, it was detected at 16 and 26% of sites 

in strata 12 and 11, respectively, but only at 2% of sites in strata 10 on the margin of its 

range.  Confidence intervals for both watershed and site breeding rates were reasonably 

precise.  Overall, B. woodhousii was detected breeding at 8% of the 1,543 sites that were 

surveyed across all strata within the species’ known range (Table 2.4, Figure 2.5f).  The 

species was over twice as likely to breed in fishless sites (9%) than sites with fish (4%).  

At fishless sites they bred in a higher percentage of sites with emergent vegetation (9%) 

than without emergent vegetation (6%). 

 

P. maculata was only detected breeding at 40% of sites within 1 watershed at the margin 

of its range in strata 3 and was not detected in strata 5 and 7 where it has only been 

sparsely reported in a few valley bottoms dominated by private lands that were not 

surveyed (Table 2.5, Figure 2.4g, Maxell et al. 2003).  The species was detected breeding 

in 36% of watersheds and 13% of sites in stratum 6 which is on the margins of its range 
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and elevation limits (Figure 2.4g, Stebbins 2003).  In the non-glaciated areas of strata 11 

and 12 breeding was detected in 61 and 59% of watersheds, respectively, and in the 

glaciated stratum 10, breeding was detected in 97% of watersheds (Table 2.5, Alt and 

Hyndman 1995).  Breeding was detected in 35-49% of sites in strata 10, 11, and 12.  

With the exception of stratum 3, confidence intervals were reasonably precise for all 

estimates of watershed and site breeding rates.  Overall, P. maculata was detected 

breeding at 26% of the 2,667 sites that were surveyed across all strata within the species’ 

known range (Table 2.4, Figure 2.5g).  The species was detected breeding at very few 

sites without emergent vegetation (3%) as compared to sites with emergent vegetation 

(35%).  At sites with emergent vegetation, it was detected at a higher percentage of 

fishless sites (36%) as compared to sites with fish (24%) and it seemed to only 

marginally favor permanent sites (39%) over ephemeral sites (34%) at fishless sites with 

emergent vegetation. 

 

P. regilla was detected breeding in 43% of the watersheds and 18% of the lentic sites 

surveyed within its core range in stratum 1 (Table 2.5, Figure 2.4h).  However, in strata 2 

and 4, at the margins of its range, it was detected breeding in only 4% of watersheds and 

0.2-5% of sites.  Confidence intervals for watershed breeding rate estimates in strata 2 

and 4 overlapped zero, but confidence intervals for the stratum 1 watershed rate estimate 

and all site rate estimates were reasonably precise.  Overall, P. regilla was detected 

breeding at 4% of the 1,370 sites that were surveyed across all strata within the species’ 

known range (Table 2.4, Figure 2.5h).  The species was detected breeding in very few 

sites without emergent vegetation (0.3%) as compared to sites with emergent vegetation 

(5%).  At sites with emergent vegetation, it was detected breeding at a higher percentage 

of fishless sites (6%) as compared to sites with fish (1%). 

 

R. luteiventris was not detected within any of the watersheds within its potential range in 

stratum 11 and was only detected in one watershed (33%) within its range in stratum 12 

and 2 watersheds (50%) within its range in stratum 3 (Table 2.5, Figure 2.4j).  Thus, 

confidence intervals for watershed and site breeding rate estimates in both strata 3 and 12 

are very broad.  In all other strata, watershed breeding rate estimates varied from 50-77% 
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and site breeding rate estimates varied from 13-45% with reasonably precise confidence 

intervals for all.  Overall, R. luteiventris was detected breeding at 29% of the 2,781 sites 

that were surveyed across all strata within the species’ known range (Table 2.4, Figure 

2.5j).  The species was detected breeding in very few sites without emergent vegetation 

(2%) as compared to sites with emergent vegetation (43%).  At sites with emergent 

vegetation, it was detected breeding at a higher percentage of permanent sites (52%) as 

compared to ephemeral sites (36%).  At permanent sites with emergent vegetation it was 

detected breeding at a marginally higher percentage of fishless sites (54%) as compared 

to sites with fish (46%). 

 

R. pipiens was only detected at one randomly selected lentic site in western Montana and 

was detected breeding in only 25% of watersheds and 6% of sites in strata 11 between the 

Missouri and Yellowstone Rivers.  However, the species was detected breeding in 62% 

and 82% of watersheds, and 14% and 18% of sites, in strata 10 and 12, respectively.  

Confidence intervals were reasonably precise for all watershed and site breeding rate 

estimates in strata 10, 11, and 12 (Table 2.5, Figure 2.4i).  Overall, R. pipiens was 

detected breeding at 14% of the 1,435 sites that were surveyed across all strata within the 

species’ known range (Table 2.4, Figure 2.5i).  We detected breeding at a rate 3 times 

higher in permanent sites (25%) as compared to ephemeral sites (8%). At permanent sites 

R. pipiens was detected breeding in only sites with emergent vegetation (28%) and in 

these sites it was detected breeding at a higher percentage of sites when fish were present 

(45%) as compared to fishless sites (25%).  Similarly at ephemeral sites the species was 

detected breeding at a higher percentage of sites that were connected to waters with fish 

(44%) as compared to ephemeral sites not connected to waters with fish (7%). 

 

C. picta was not detected in any of the randomly selected watersheds in strata 5, 6, and 7 

and was only detected in 2-25% of watersheds and 0.1-2% of sites in strata 1-4 in western 

Montana and stratum 11 in eastern Montana where confidence intervals were too 

imprecise to make estimates valuable for future comparisons (Table 2.5, Figure 2.4k).  In 

strata 10 and 12 C. picta was detected in 53-55% of watersheds and 9% of sites, with 

reasonably precise confidence intervals for all estimates.  Overall, C. picta was detected 
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at 3% of the 4,961 sites that were surveyed across all strata within the species’ known 

range (Table 2.4, Figure 2.5k).  The species was less likely to be detected at ephemeral 

sites (1%) than permanent sites (5%).  At permanent sites, they were more often detected 

at sites with emergent vegetation (6%) than sites without emergent vegetation (2%). 

 

T. elegans was detected in 19-42% of watersheds and 2-8% of sites in strata 1-7 in 

western Montana.  With the exception of stratum 4 where confidence intervals 

overlapped zero, confidence intervals were reasonably precise (Table 2.5, Figure 2.4l).  T. 

elegans was not detected in stratum 10 in eastern Montana and was only detected in 4% 

and 6% of watersheds and 1% and 0.4% of sites in strata 11 and 12, respectively.  

Confidence intervals for watershed and site occupancy rates overlapped zero in both 

strata 11 and 12 and would be of little use for future comparison.  Overall, T. elegans was 

detected at 3% of the 4,182 sites that were surveyed across all strata within the species’ 

known range (Table 2.4, Figure 2.5l).  The species was twice as likely to be detected at 

sites where juvenile or adult amphibians were detected (6%) than sites where juvenile or 

adult amphibians were not detected (3%).  At sites where juvenile or adult amphibians 

were detected, T. elegans was detected at a higher percentage of sites where fish were 

detected (14%) than where fish were not detected (5%).  At sites where juvenile or adult 

amphibians were not detected, T. elegans was detected at a higher percentage of sites 

with emergent vegetation (4%) as compared to sites without emergent vegetation (1%) 

and at these sites, the species was detected at a higher percentage of sites that are 

permanent (5%) than ephemeral (3%). 

 

T. radix was detected in 42-86% of watersheds and 11-18% of sites in strata 10, 11, and 

12 and all confidence intervals were reasonably precise (Table 2.5, Figure 2.4m).  

Overall, the species was detected at 16% of the 1,522 sites that were surveyed across all 

strata within the species’ known range (Table 2.4, Figure 2.5m).  It was more than twice 

as likely to be detected at permanent sites (24%) than ephemeral sites (11%).  At 

permanent sites it was more likely to be detected at sites where juvenile or adult 

amphibians were detected (31%) than sites where juvenile or adult amphibians were not 

detected (21%) and at the sites were juvenile or adult amphibians were not detected, it 
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was twice as likely to be detected at sites with emergent vegetation (22%) than sites 

without emergent vegetation (11%).  At ephemeral sites T. radix was more likely to be 

detected at sites where fish were detected (26%) than sites where fish were not detected 

(11%) and at the sites were fish were not detected, it was more likely to be detected at 

sites where larval amphibians were detected (13%) than where larval amphibians were 

not detected (8%). 

 

T. sirtalis was not detected in any of the randomly selected watersheds in strata 5, 7, 10, 

or 11 (Table 2.5, Figure 2.4n).  In the mountainous portion of western Montana in strata 

1-4 and 6, detection rates in watersheds ranged from 8-32% and detection rates at sites 

ranged from 1-8%.  On the plains of southeast Montana in stratum 12, the species was 

detected in 6% of watersheds and 1% of sites.  Confidence intervals overlapped zero in 

strata 3, 6, and 12 and will be of little use for future status comparisons.  Overall, T. 

sirtalis was detected at 3% of the 3,993 sites that were surveyed across all strata within 

the species’ known range (Table 2.4, Figure 2.5n).  It was three times more likely to be 

detected at sites where juvenile or adult amphibians were detected (6%) than sites where 

juvenile or adult amphibians were not detected (2%).  At sites where juvenile and adult 

amphibians were detected, T. sirtalis was most likely to be detected at sites where neither 

larval amphibians or fish were detected and emergent vegetation was present (15%) 

(Figure 2.5n).  At sites were juvenile or adult amphibians were not detected, T. sirtalis 

was most likely to be detected at sites with emergent vegetation, where larval amphibians 

were detected, and where waters were ephemeral (5%). 

 

 

Discussion 

 

Watersheds as Sampling Units 

Similar to many areas in the western United States outside of National Parks and other 

protected areas, surveys assessing the status of amphibians and aquatic reptiles in a 

systematic manner across the vast majority of Montana were rare prior to this effort 

(Corn 1994, Maxell et al. 2003; see Werner et al. 1998 for a rare exception in Montana).  
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Data available prior to these surveys were mostly limited to positive findings (i.e., 

negative data were not published or recorded in a central database) and non-random so 

that inferences could not be properly drawn to a variety of administrative boundaries.  

Furthermore, existing data failed to consider animals detected at individual water bodies 

in the context of how the spatial structure and composition of the surrounding landscape 

might provide critical seasonal resources or govern source-sink population dynamics 

(Pulliam 1988, Dunning et al. 1992).  Periodic assessments of the status of species, and 

the habitats on which they depend, to assess changes in status over time is essential for 

government agencies and nongovernmental organizations alike in the fulfillment of their 

mandates to ensure the continued persistence of healthy amphibian and reptile 

populations (Koch and Peterson 2005). 

 

Our cooperative assessment attempted to bring characteristics of a successful assessment 

program (Table 2.2) to bear on this problem.  One of our first hurdles was to define a 

biologically meaningful sampling unit.  A meaningful sampling unit is important to 

integrating different levels of a multi-tiered strategy for assessment of, and research on, 

lentic breeding amphibians (Corn et al. 2005a, b, Figure 2.1).  We believe local 

watersheds are an ideal sampling unit not only because they encompass networks of 

habitat patches and local breeding populations that may function as metapopulations 

(e.g., Gill 1978, Berven and Grudzien 1990, Sinsch 1992, Sjögren-Gulve 1994), but 

because they encompass natural disturbance regimes such as flooding and beaver which 

create new habitat patches (Sousa 1984, Pickett and White 1985, Johnston and Naiman 

1990, Lind et al. 1996, Wright et al. 2002).  Watersheds are also commonly used as 

management units by federal and state agencies and tribal governments so often 

encompass anthropogenic disturbance regimes as well.  The boundaries of watersheds 

may be particularly useful in areas of high topographic relief where they are likely to act 

as barriers to dispersal (e.g., Funk et al. 2005).  The U.S. Geological Survey has defined 

an integrated series of watersheds for much of the United States (Seaber et al. 1984) and 

the smallest watershed unit defined, a 12-digit HUC watershed, represents a relatively 

uniform naturally bounded portion of the environment.  Because these watersheds have 

been defined for large areas of the western U.S. they can be used to define target 
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populations and sampling frames.  Furthermore, because they are available as GIS layers, 

stratification of sampling by bioregion, major hydrologic unit, and degree of public 

ownership can be easily accomplished to define smaller, more meaningful, target 

populations and sampling frames to make surveying and application of results more 

straightforward while increasing the precision of response variables (Peterson et al. 

2005). 

 

We defined 28 target populations for Montana using 12-digit HUC watersheds as the 

basic sampling unit and have nearly completed surveys in the 10 target populations 

dominated by public lands (Table 2.3, Figure 2.2).  Overall, we feel that simultaneous 

assessment of site and watershed breeding and occupancy rates was a success and offers 

great advantages over single site assessments because it is more informative to managers 

at the scale at which they plan and undertake management actions, allows for assessment 

of the status of occupancy or breeding rates at different scales, and allows for integration 

of broad scale assessments with research on local population dynamics and landscape 

processes.  However, because we limited surveys to only public lands within these 

watersheds and private lands fragment public lands in many watersheds, our surveys 

were effectively carried out on partial watersheds in many cases.  While fiscal and 

logistical constraints precluded us from carrying out surveys on adjacent private lands 

within these watersheds in this initial effort, we suggest this be undertaken where 

landowner permissions are granted under future assessments because of the advantages of 

having baseline information for entire watersheds as noted above. 

 

Need for Multiple Site Surveys 

Our second major suggestion for improving future assessments is to survey individual 

lentic sites on multiple occasions to estimate true occupancy rates by correcting for 

incomplete detectability (MacKenzie et al. 2002, 2006).  Multiple visits to sites were not 

feasible in this study due to budgetary and logistical constraints associated with the large 

number of sites selected to meet the objective of assessing species’ distributions in 

regions that, for the most part, lacked any baseline information.  Multiple surveys 

conducted while training field crews and as evaluation sessions to determine the precision 
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with which habitat and species abundances were recorded (Appendix B) were relatively 

limited and estimates of probability are suspect.  To date, detection probability estimates 

for various species and survey efforts in Glacier and Yellowstone National Parks have 

ranged from 0.51 to 0.94 and models that best fit the data have supported either constant 

detection probabilities across habitat types or detection probabilities that are dependent 

on the amount of emergent vegetation (Corn et al. 2005b, Muths et al. 2005, Hossack and 

Corn 2007).  However, multiple site surveys conducted in Glacier and Yellowstone 

National Parks in 2006 resulted in detection probabilities for A. macrodactylum, B. 

boreas, P. maculata, and R. luteiventris that ranged from 0.84-0.93 and true estimates of 

occupancy rates differed very little from naïve estimates (Corn et al. 2008).  Given these 

relatively high detection probabilities, small differences between naïve and true 

occupancy rate estimates, and some evidence that detection probabilities are only 

significantly reduced in complex habitats such as beaver dam complexes (pers. obs.), 

biases of naïve occupancy estimates reported here are probably not large in magnitude.  

However, we have no way of assessing the degree to which they are biased low.  We 

intend to use our naïve occupancy estimates in conjunction with detection probability 

estimates from ARMI surveys in Glacier and Yellowstone National Parks in the 

simulation module of Program PRESENCE (MacKenzie and Royle 2005, MacKenzie et 

al. 2006) to plan future sample sizes and numbers of surveys per site needed to estimate 

occupancy rates with a high degree of precision. 

 

Species Status 

Classification tree models have been used in a broad variety of ecological and non-

ecological applications involving complex categorical and continuous data, nonlinear 

relationships, and higher order interactions to yield results that are easily interpretable by 

both researchers and non-experts (Breiman et al. 1984, Iverson and Prasad 1998, De’ath 

and Fabricius 2000, Urban 2002, Cutler et al. 2007).  Our classification tree analyses 

helped place naïve site breeding and occupancy rates for various geographic strata in the 

context of major habitat characteristics capable of being effected through management 

actions (Tables 2.5-2.6, Figures 2.5a-n).  Below we discuss the status of individual 
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species relative to naïve occupancy estimates in the various sampling strata and for the 

overall classification tree analysis. 

 

A. macrodactylum is widespread at the watershed scale and occupies a high percentage of 

sites west of the Continental Divide, but the species occupies a smaller percentage of 

watersheds and lentic sites east of the Continental Divide (Table 2.5, Figure 2.4a).  This 

likely results from a combination of reduced precipitation, forest cover, and forest litter 

east of the Continental Divide due to the rain shadow formed by adiabatic cooling of 

Pacific air masses.  This interpretation of the drivers of regional patterns in occupancy is 

supported by observations at the scale of a local forest stand in western Montana where 

areas subject to timber harvest had less ground cover, higher soil temperatures and 75% 

fewer salamanders than control plots (McGraw 1997).  Confidence intervals for the 

species in strata 3 and 5 east of the Continental Divide are too broad to be very useful for 

future comparisons of watershed or site occupancy rates as a result of small sample sizes 

and managers may want to consider boosting sample sizes in these regions to allow 

meaningful comparisons in the future (Table 2.5).  The negative impacts of the presence 

of fish on site breeding rates in A. macrodactylum is dramatic with a 153% decrease at 

sites with fish regardless of other habitat characteristics, a 133% decrease when 

comparing sites with emergent vegetation, and a 500% decrease when comparing sites 

without emergent vegetation cover (Figure 2.5a).  These findings agree with a number of 

studies showing strong negative impacts of fish across the species’ range (Tyler 1996, 

Tyler et al. 1998, Funk and Dunlap 1999, Monello and Wright 1999, 2001). 

 

A. tigrinum was not detected breeding at any of the randomly selected sites in northwest 

Montana (Table 2.5, Figure 2.4b).  However, populations isolated on the Tobacco Plains 

between Rexford and Fortine are regularly reported and surveys on private lands between 

Eureka and the port of Roosville will likely identify additional populations.  Watershed 

and site breeding rates were lower in strata 7 of southwestern Montana likely as a result 

of the high elevations dominating this region (Table 2.5, Figure 2.4b).  Elsewhere the 

species bred in a fairly high percentage of watersheds (50-79%), but not always a high 

percentage of sites (11-40%).  Confidence intervals in all strata throughout the species’ 
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main range are all precise enough to allow for comparisons of watershed or site 

occupancy rates (Table 2.5).  The negative effects of the presence of fish on site breeding 

rates in A. tigrinum are dramatic.  The species was never detected with fish when 

emergent vegetation was absent and suffered a 143% decrease at sites with fish when 

comparing sites with emergent vegetation (Figure 2.5b).  These findings are consistent 

with a number of studies reporting almost complete exclusion of A. tigrinum from waters 

where predatory fishes have been introduced (Carpenter 1953, USFWS 1964-1982; 

Collins et al. 1988, Corn et al. 1997). 

 

S. bombifrons had fairly consistent watershed (14-24%) and site (2-4%) breeding 

detection rates across Montana’s eastern plains (Table 2.5).  We believe these naïve 

estimates are essentially the correct magnitude and indicate the species is widespread, but 

limited in numbers across much of its range on public lands in eastern Montana.  

Nocturnal calling surveys from roads after spring rain events suggest that S. bombifrons 

is more common than these estimates in or near riparian areas which are dominated by 

private lands that were not the focus of our lentic site survey efforts.  The majority of 

locality records we gathered for this species came from these roadside nocturnal calling 

surveys which were often in or near riparian areas (evident in distribution patterns in 

Figure 2.4c).  We most commonly detected S. bombifrons on sandy soils in or near 

riparian areas, but also detected them on other soil types great distances from riparian 

areas.  Only a simple two forked classification tree was supported by the S. bombifrons 

breeding detection data which showed a 400% increase in site breeding rates for this 

species at ephemeral sites as compared to permanent sites (Figure 2.5c).  The associations 

we noted with ephemeral breeding sites and sandy soils is consistent with other reports of 

habitat use by this species on the Great Plains (Klassen 1998, Lauzon and Balagus 1998) 

and fits its life history which is highly adapted to rapid egg and larval development 

(Bragg 1937, 1940, 1964, 1966, Pfenning 1990).  Given that many riparian areas are the 

focus of agricultural activities we encourage research on the status of habitats used by S. 

bombifrons for breeding on private lands. 
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B. boreas was not detected within the western margins of strata 10, 11, and 12 or within 

any of the randomly selected watersheds within strata 7 within the species’ historic range 

(Table 2.5, Figure 2.4d).  In all of our survey work throughout the Highwood, Beartooth, 

and Absaroka Mountain ranges, we detected only a single road killed adult on 15 August 

2005, 8.1 km northwest of Cooke City in the Beartooth Mountains of Park County 

(Figure 2.4d).  The only other recent observation from this region was an B. boreas adult 

reported 17.8 km west northwest of Cooke City in the Beartooth Mountains of Park 

County on 28 July 2001.  There are only 4 other observations of B. boreas from the 

Absaroka or Beartooth Mountains and they are all over 41 years old (Montana Natural 

Heritage Program Point Observation Database, Helena, MT).  The only reported 

observations of B. boreas in the Highwood Mountains that we are aware of are voucher 

specimens of an adult, tadpoles, and eggs collected 24 June 1962 on upper Highwood 

Creek near the pass to Arrow Creek (Montana State University, Bozeman catalogue 

numbers 4431, 4436, 4440, and 4444; species identification confirmed by BAM).  

Without more historic observations it is difficult to assess what the lack of current 

observations in these regions means, but it is suggestive of declines or near extirpations 

on the southeast and northeast edges of its historic range.  B. boreas is still widespread 

throughout the rest of its historic range in western Montana, but breeding seems to be 

clustered in groups with distances between groups being greater (often >20 km) in the 

south and east and becoming progressively smaller toward the north and west (Figure 

2.4d).  Overall watershed and site breeding rates (17% and 2%, respectively) across strata 

1-6 approach the lowest of any lentic breeding amphibian we assessed with 95% 

confidence intervals for site occupancy overlapping 0 in 3 of 6 strata (Table 2.5, Figure 

2.4d).  Historic information on the distribution and status of B. boreas is limited mostly to 

anecdotal qualitative accounts that note them as “common throughout western Montana” 

(Black and Timken 1976), “a very common and obvious amphibian that is found almost 

everywhere” in southwest Montana (Timken, no date, but from the 1970s), “the most 

widespread amphibian in the Jackson Hole region” (Carpenter 1953), “commonly found 

throughout” Yellowstone National Park “in humid situations” (Turner 1951), “very 

common” around the lakes and streams of the Front Range just east of Glacier National 

Park (Coues and Yarrow 1878), “common” west of the Continental Divide and in the 
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central mountain ranges (Black 1970), have as an extensive a range as A. macrodactylum 

(Brunson and Demaree 1951, see Table 2.5 and Figure 2.4a for current distribution and 

status of A. macrodactylum), “abundant in the forested areas especially near lakes and 

ponds” of Flathead County (Franz 1971), and “common” in the Bitterroot Valley 

(Rodgers and Jellison 1942).  Cooper (1869) reported B. boreas as “not very common” 

along the Clark Fork and Bitterroot Rivers.  Breeding populations appear to be relatively 

stable over the last decade, but populations have likely declined from historic levels.  

Small breeding populations (<10 females) at most current breeding sites and the large 

distances between local groups of breeding sites are cause for concern, especially in light 

of declines in other portions of the species’ range (Muths and Nanjappa 2005). 

 

B. cognatus larvae are very similar in appearance to larval B. woodhousii, so there was a 

potential for errors in identification.  We attempted to minimize these errors, but a study 

that examines species’ determinations made from external morphological features as 

compared to assignment via genetic methods would be useful.  The naïve estimates for 

watershed (3-22%) and site (1-3%) breeding detection rates for B. cognatus (Table 2.5) 

are consistent with our experience with the species being more broadly distributed in 

grasslands on the glaciated plains and along major riparian floodplains (Figure 2.4e).  As 

with S. bombifrons, our nocturnal calling survey experiences make us believe that B. 

cognatus is more common than these estimates in or near riparian areas which are 

dominated by private lands that were not the focus of our lentic site survey efforts.  The 

majority of locality records we gathered for this species came from these roadside 

nocturnal calling surveys which were often in or near riparian areas (evident in 

distribution patterns in Figure 2.4e).  We most commonly detected B. cognatus on sandier 

soils in or near major riparian floodplain areas, but also detected them on other soil types 

in upland grasslands quite distant from riparian areas.  The classification tree shows 

preferred breeding habitat to be fishless, ephemeral, and with emergent vegetation 

(Figure 2.5e).  This is consistent with the temporary rain-filled buffalo wallow sites that 

Bragg (1937) described as B. cognatus breeding habitat in high prairie areas around 

Norman, Oklahoma.  Confidence intervals for site breeding rate estimates overlapped 

zero in two of the three strata examined and watershed breeding rate estimates 
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overlapped zero in one stratum as well (Table 2.5).  It may therefore be more appropriate 

to monitor the status of this species through nocturnal calling surveys given our past 

successes under appropriate weather conditions and its widespread use of private lands. 

 

B. woodhousii is rarer and more patchily distributed on the glaciated plains north of the 

Missouri River than in the area between the Missouri and Yellowstone Rivers or in the 

Tongue and Powder River basins south of the Yellowstone River where they were 

commonly encountered on the landscape (Table 2.5, Figures 2.2 and 2.4f).  Confidence 

intervals for both watershed and site breeding rates in all 3 of the strata in the species’ 

range are precise enough to allow for meaningful future comparisons (Table 2.5).  The 

classification tree (Figure 2.5f) certainly supports our field experience that the species 

breeds in a wide variety of lentic sites across the landscape, including sites with fish, 

even though breeding rates at sites with fish are 125% lower than those at sites without 

fish (Kruse and Stone 1984). 

 

P. maculata is widespread across the plains of eastern Montana and occupies a high 

percentage of watersheds and sites across this region (Table 2.5, Figure 2.4g).  The 

species is also distributed across southwest Montana with another center of distribution in 

southern Beaverhead, Madison, and Park Counties.  However, in this area, it occupies a 

smaller percentage of watersheds and sites.  There are a few scattered records between 

the species’ centers of distribution, but they do not seem to fully connect these two 

regions.  With the exception of strata 3 where the species was only detected in a single 

watershed, confidence intervals for both watershed and site breeding rates are precise 

enough to allow for meaningful future comparisons (Table 2.5).  Site breeding rates for 

the species were most dependent on the presence of emergent vegetation, but fish did 

have a small negative impact (Figure 2.5g).  Corn et al. (1997) noted that occurrence of 

P. maculata was unrelated to the presence or absence of introduced or native trout in 

Rocky Mountain National Park because the species’ tadpoles, as herbivorous filter 

feeders, inhabit heavily vegetated shallow waters where they are unlikely to be exposed 

to predation risk.  We feel that these foraging strategies are also responsible for the small 

impact we observed for fish at sites with emergent vegetation in Montana. 
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P. regilla bred in 43% of watersheds and 18% of sites within its core range in stratum 1 

and confidence intervals for both watershed and site breeding rates are precise enough to 

allow for meaningful future comparisons (Table 2.5, Figure 2.4h).  Outside of this core 

range, P. regilla occupied a very small percentage of watersheds (4%) and sites (<5%) 

and many confidence intervals overlapped zero.  In these strata we have likely 

documented most of the breeding populations present on the landscape and these 

relatively isolated populations may benefit from special management consideration.  

Similar to P. maculata, P. regilla also showed a very strong preference for breeding sites 

with emergent vegetation (Figure 2.5h).  However, P. regilla showed a 500% decrease in 

site breeding rate when fish were present.  This finding is consistent with other studies in 

the Pacific Northwest and the Sierra Nevada showing strong negative impacts of fish on 

P. regilla (Licht 1969, Yoon 1977, Bradford 1989, Monello and Wright 1999). 

 

R. pipiens declines west of the Continental Divide in western Montana were reviewed by 

Werner (2003).  The causes of declines are unknown, but only 3 populations are known 

to be extant west of the Continental Divide (Montana Natural Heritage Program Point 

Observation Database, Helena, MT).  R. pipiens has been reported in the intermountain 

valleys of the upper Missouri watershed in southwestern Montana since the mid 1990s 

(Maxell et al. 2003), but there have been no formal surveys in this region which is 

dominated by private lands.  R. pipiens is still widespread and relatively common in 

eastern Montana and confidence intervals for both watershed and site breeding rates are 

suitable for comparison with future assessments (Table 2.5, Figure 2.4i).  In this region, 

watershed and site breeding rates appear to be positively correlated with availability of 

surface waters; higher rates in stratum 10 the glaciated plains north of the Missouri River, 

and stratum 12 south of the Yellowstone River that receives relatively higher amounts of 

rainfall and the lowest rates in stratum 11 which is dominated by a relatively dry upland 

landscape with low rainfall.  This interpretation is supported by the classification tree 

which indicates a 213% increase in site breeding rates in permanent over ephemeral 

waters (Figure 2.5i).  The classification tree also indicates that breeding is dependent on 

emergent vegetation, but that the species breeds at sites with and without fish. 
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R. luteiventris is widespread and relatively common across most of its range in the 

mountainous portion of western Montana with high watershed and site breeding rates 

throughout most of this area (Table 2.5, Figures 2.2 and 2.4i).  However, we failed to 

detect the species in our randomly selected watersheds in the Highwood Mountains.  We 

detected the species in adjacent sections of the Little Belt Mountains approximately 40 

km to the south, but the last time they were reported in the Highwood Mountains was in 

1970 (Black 1970).  Systematic surveys of all lentic sites in this mountain range are 

probably warranted given its heavy use for livestock grazing (pers. obs.), relative 

isolation, and declines that have been reported for the species in arid range lands in the 

southern portions of its range as a result of livestock grazing and watering and changes in 

hydrology (Cuellar 1994, Reaser 1996, 1997, 2000, Hovingh 1997).  The species was 

also not detected breeding in any of the high elevation watersheds on the eastern edge of 

the Beartooth Plateau in stratum 11.  This is likely a result of the short growing season on 

these northerly aspect watersheds which are mostly above tree line and lack emergent 

vegetation in the majority of the water bodies they contain.  Short growing season and 

relatively little emergent vegetation in the large number of sites above tree line is also the 

likely driver behind the relatively low site breeding rates observed in stratum 7 (Table 

2.5).  As is indicated by the classification tree for breeding site characteristics, the species 

is dependent on emergent vegetation for oviposition and larval rearing (Figure 2.5j).  The 

classification tree also indicates that R. luteiventris was equally likely to breed at, or in 

satellite pools adjacent to, sites with and without fish (46% with fish versus 54% without 

fish) as long as emergent vegetation was also present.  The majority of sites that we 

sampled with fish contained salmonid fishes and the co-occurrence pattern we observed 

is consistent with other studies that have reported co-occurrence with salmonid fishes 

(Marnell 1997, Bull and Hayes 2000, Pilliod et al. 2002, Dunham et al. 2004).  However, 

these studies also warned of the potential for longer term negative effects of fish and fish 

stocking that are too subtle to be observed by simple patterns of co-occurrence from 

single visit surveys or even short-term monitoring.  In contrast, Monello and Wright 

(1999) found that R. luteiventris never bred at sites with warm water fishes in the Palouse 

region of northern Idaho. 

39



 

C. picta is restricted to lower elevation permanent water sites that, more often than not, 

have emergent vegetation (Figures 2.4k and 2.5k).  This complicates interpretation of 

watershed and site occupancy rates within regions where watersheds include higher 

elevations.  This is mostly a problem for western Montana where the primary low 

elevation habitats of the species are dominated by private lands that have not yet been 

systematically evaluated.  Still, the relatively low watershed and site occupancy rates 

rates for strata 1-7 (Table 2.5) are an accurate representation of the species distribution 

and status on public lands within this region.  The species generally had high watershed 

and site occupancy rates on the plains of eastern Montana.  However, similar to the 

pattern observed for R. pipiens, another species dependent on permanent waters, C. picta 

occupied a much lower percentage of watersheds and sites in stratum 11 which is 

dominated by dry upland landscapes with low rainfall.  We note that C. picta is much 

more broadly distributed on arid landscapes across Montana than it was likely to have 

been prior to the widespread development of reservoirs and stock ponds with permanent 

surface waters starting in the later half of the 19th century (Figures 2.3c, d, e, g, and h). 

 

T. elegans, T. radix, and T. sirtalis all had relatively low site occupancy rates as measured 

by our single visit surveys and with the exception of T. radix many of the 95% 

confidence intervals for site occupancy approached or overlapped zero (Table 2.5).  We 

have not yet analyzed detection probability estimates for any of these species from 

multiple surveys of sites, but a mark recapture study we conducted in the Bitterroot 

Mountains for T. elegans and T. sirtalis resulted in very low capture probabilities 

(unpublished data) and we believe this is indicative of low detectability for all three of 

these species during site surveys.  For these species, and others with low detection 

probabilities or low occupancy rates (e.g. B. boreas), it may be more appropriate to use 

watershed breeding or occupancy rates as a metric for tracking status.  The three 

gartersnake species had site occupancy rates that were 50-200% higher when juvenile or 

adult amphibians or amphibian larvae were present as compared to when they were 

absent (Figures 2.5l-n).  Of the three species, it is clear that T. radix is more common at 

both the watershed and site scales within its range and there is evidence that T. sirtalis is 

more patchily distributed than T. elegans (i.e., relatively lower watershed occupancy rates 
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at the same overall site occupancy rate) across their largely overlapping geographic 

ranges (Table 2.5).  This patchy distribution for T. sirtalis may be due to its greater 

dependency on amphibians as prey items as compared to T. elegans and T. radix which 

make use of a wide variety of non-amphibian prey items (Gregory 1978, Kephart and 

Arnold 1982, Rossman et al. 1996) and not only preferentially associate with amphibians, 

but also preferentially associate with sites with fish (Figures 2.5l-m). 

 

Implications for Lentic Site Management 

Several patterns are evident in our survey data that have important implications for 

management of lentic wetlands.  There has been a large overall shift in the distribution of 

habitats available in prairie landscapes away from naturally created ephemeral 

depressional wetlands disturbed intensely, but infrequently, by bison (Knapp et al. 1999) 

toward human made reservoirs with permanent hydroperiods disturbed intensely and 

frequently by cattle (Figures 2.3c-h).  Waters were dammed or diverted at 72-84% of 

potential lentic sites surveyed in strata 10-12 in eastern Montana (Figures 2.2 and 2.3h).  

This has been coupled with a dramatic loss of ephemeral wetland habitats in this region 

through draining of wetlands for agriculture (Dahl 1990, Samson and Knopf 1996).  Loss 

of ephemeral breeding sites such as bison wallows and shallow glacial pothole wetlands 

has likely negatively impacted local populations of species like S. bombifrons and B. 

cognatus that are highly adapted to, and dependent on, ephemeral habitats (Figures 2.5c 

and 2.5e) (Bragg 1937, 1940, 1966, Gerlanc and Kaufman 2003).  Other species like A. 

tigrinum, B. woodhousii and P. maculata have likely been negatively impacted by the 

loss of ephemeral wetlands in some areas, but have been able to more than make up for 

those losses by widespread use of reservoirs and stock ponds (Figures 2.5b, 2.5f, and 

2.5g).  Species like R. pipiens, C. picta, and T. radix that are either dependent on 

permanent hydroperiods, or the prey items at these sites (Figures 2.5i, 2.5k, and 2.5m), 

have likely benefited a great deal by this shift in hydroperiods and are almost certainly 

more widespread on prairie landscapes as a result.  These patterns and other studies on 

hydroperiods (e.g., Skelly 1996) highlight the need for managers to consider the 

availability of the full range of hydroperiods on local portions of the landscape when 

creating new lentic sites.  In many cases, the full spectrum of hydroperiods can be created 
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at a single site by constructing portions of the site to maintain deep water habitats and 

portions of the site with shallow sloped benches as an attached or semi-attached arm 

(particularly useful if fish predators are present in the main site). 

 

Dam building by beaver (Castor canadensis) and the hydraulic actions of water are the 

two natural disturbances that are still creating large amounts of potential lentic breeding 

habitat across Montana.  Beaver created wetlands have been shown to be used by a 

variety of amphibian and reptile species in eastern North America (Russell et al. 1999, 

Metts et al. 2001).  Beaver created 2-42% of lentic sites and lentic oxbow or spring 

habitats created by hydraulic action composed 7-20% of sites within the various strata 

(Figures 2.3c-d).  Where fur trapping has eliminated beaver from some mountain ranges 

in the central portion of the state many water bodies are approaching their final 

successional stages as they fill in with sediments (pers. obs.).  In southwestern Montana, 

lentic sites engineered by beaver increased the number of R. luteiventris breeding 

populations and improved connectivity among breeding sites at the scale of a 12-digit 

HUC watershed (Amish 2006).  Management actions that protect and restore natural 

hydrological regimes, flood pulses, and beaver populations are likely to benefit 

amphibian populations (Zedler 2000, Smith and Tyers 2008, Moore 2006). 

 

Emergent vegetation plays a valuable role in providing places of attachment for egg 

masses, cover from predators, and foraging habitat for larvae and post metamorphic 

animals (Werner et al. 2004; Maxell et al. 2009).  Thirteen of the 14 species we examined 

showed increases in naïve estimates of site occupancy ranging from 100-2,050% when 

emergent vegetation was present as compared to when it was absent (Figures 2.5a-n and 

2.6).  One land use that stands out as a potential threat to wetland vegetation structure and 

water quality at lentic sites across western North America is grazing (Fleischner 1994, 

Belsky et al. 1999).  We noted heavy structural impacts to wetland vegetation or water 

quality from livestock grazing at a notable percentage of sites in strata 6, 10, 11, and 12, 

but an especially high percentage (51-68%) of sites were heavily impacted in strata 11 

and 12 on the non-glaciated plains of central and southeastern Montana (Figures 2.2 and 

2.3g).  Wetlands and riparian areas in these landscapes were historically disturbed 
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intensely, but infrequently, by bison and likely benefit from some level of disturbance 

through nutrient inputs and maintenance of open waters (Knapp et al. 1999).  However, 

disturbances of wetland vegetation by cattle are now both intense and frequent and may 

be leading to continued deterioration of these habitats (Belsky et al. 1999).  We 

encourage evaluation of the effects of grazing on type and amount of emergent vegetation 

present at wetlands and its value to the population dynamics of individual species along 

the lines of Adams et al. (2009).  In the meantime, our data indicate that resource 

managers may benefit a number of amphibian and aquatic reptile species by establishing 

emergent vegetation at sites were it currently is not present (Figures 2.5a-n and 2.6).  

Thousands of recently created reservoirs across eastern Montana currently lack emergent 

vegetation and managers could facilitate the establishment of emergent vegetation at 

these sites through selected plantings and temporarily fencing out cattle from portions a 

site. 

 

Strong negative responses to the presence of fish were evident in classification trees for 7 

of the 14 species we examined, with B. cognatus and T. sirtalis never being found with 

fish and A. tigrinum, P. maculata and P. regilla only being found with fish when 

emergent vegetation was present (Figures 2.5a-n and 2.6).  Of the 7 species negatively 

affected by fish, there was evidence that emergent vegetation at least partially mitigated 

these impacts for 2 species.  Occupancy rates of A. macrodactylum at sites with fish were 

350% higher when emergent vegetation was present while occupancy rates at sites 

without fish were only 150% higher when emergent vegetation was present (Figure 2.5a).  

A. tigrinum was not present at sites with fish when emergent vegetation was absent, but 

was present at 7% of sites with fish when emergent vegetation was present (Figure 2.5b).  

These dominant negative impacts of fish on 6 of the 10 amphibian species assessed have 

implications for the three gartersnake species we examined because all three of these 

species had site occupancy rates that were 50-200% higher when juvenile or adult 

amphibians or amphibian larvae were present as compared to when they were absent 

(Figures 2.5l-n).  All of these patterns are consistent with the findings of other research 

on the interaction of fish, amphibians, and their gartersnake predators in the western 

United States where nonindigenous fishes have been widely introduced (Bradford 1989, 

43



 

Liss and Larson 1991, Bahls 1992, Bradford et al. 1993, Kiesecker and Blaustein 1998, 

Tyler et al. 1998, Fuller et al. 1999, Knapp et al. 2001, Matthews et al. 2001, 2002).  The 

implications for resource managers are clear.  Fisheries management actions have the 

potential to negatively impact native amphibian populations and their predators and 

should be carefully considered at both the scale of individual sites as well as the scale of 

local watersheds which are often composed of complementary seasonal habitat patches 

(Pilliod et al. 2002).  Restrictions in stocking or eradication of nonnative populations 

(Knapp and Matthews 1998) should be considered as management actions in some 

watersheds in order to balance recreational opportunities with other ecosystem values 

(Dunham et al. 2004). 

 

Some amphibian species benefit from forest disturbance by wildfire (see reviews by 

Pilliod et al. 2003, Bury 2004).  In Glacier National Park, Montana, B. boreas adults have 

been documented using severely burned forested habitats much more extensively than 

partially burned or unburned forested habitats (Guscio et al. 2008).  Furthermore, adults 

bred in a large number of forested wetlands that were unoccupied prior to the fire 

(Hossack and Corn 2007).  B. boreas have been documented responding positively to 

disturbances varying from wetland creation to catastrophic volcanic eruptions that have 

reset entire landscapes to early successional states (Crisafulli et al. 2005, Pearl and 

Bowerman 2006).  Our inclusion of recent timber harvest and fire disturbance variables 

in the CART analysis for B. boreas adds additional evidence for the species as a 

disturbance associate (Figure 2.5d).  B. boreas had a breeding occupancy rate at recently 

burned permanent lentic sites that was 625% higher than it was at unburned permanent 

lentic sites.  Similarly, it had a breeding occupancy rate at ephemeral sites where timber 

had recently been harvested that was 500% greater than at ephemeral sites where forest 

canopy was left intact.  Better knowledge of the effects of wildfire and other factors 

potentially affecting the population dynamics of B. boreas is needed (Bury 2004), 

particularly in light of the low rates of watershed and site breeding occupancies (Table 

2.5, Figure 2.4d).  Future increases in the size of forest disturbances due to beetle kill 

(Gibson et al. 2008) and continued climate warming and subsequent increases in forest 

fires (Westerling et al. 2006) or salvage logging have the potential to benefit B. boreas if 
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the breeding occupancy patterns we observed hold.  We encourage resurveys of lentic 

sites with baseline information from this survey if they are disturbed by future fires and 

encourage managers to consider B. boreas in management plans as yet another species 

that utilizes patches of disturbed forest. 

 

Availability of Survey Information 

One of the most critical features of any inventory, monitoring, or research program is to 

ensure that resource managers can easily access the information gathered to inform on-

the-ground management decisions in a timely manner.  To provide all partners ready 

access to survey information we created a dynamic internet based mapping application 

housed at the Montana Natural Heritage Program.  Agency partners can use a password 

protected version of this website to display locations of over 9,900 surveys of standing 

water bodies, locations for over 26,000 observation records, and digital photographs of 

all sites surveyed in the context of a variety of map layers, including high resolution 

aerial photographs, land ownership, public land survey sections, and topographic maps.  

For the public version of the application, we protect exact locations of species by limiting 

display of distribution information to grid cells covering one quarter of a degree of 

latitude by one quarter of a degree of longitude.  In addition to displaying information, 

the application also allows users to add their own observations to the master database to 

engage all partners and the general public in adding baseline and monitoring data.  

Records added in this manner remain marked as pending final acceptance until they are 

evaluated by a species expert to ensure they are within the known range of the species, 

known date ranges of the species’ active season, and are associated with appropriate 

habitats.  In its first 18 months, this site has received over 5,000 hours of use by agency 

biologists and natural resource managers and over 6,100 additional hours of use by the 

general public. 
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Summary Recommendations 

 

This study is a good example of how the needs of a diverse group of stakeholders can be 

met under the common goal of assessing the status of lentic breeding amphibians and 

aquatic reptiles at a state-wide level and in a manner complementary to national efforts 

such as the U.S. Geological Survey’s ARMI program.  Major recommendations from this 

study follow below. 

 

We encourage state-wide or regional inventory and monitoring schemes for lentic 

breeding amphibians and aquatic reptiles in other areas through diverse partnerships of 

stakeholders.  Baseline inventories that can be used for assessing future changes in 

distribution and status are still lacking for large portions of the United States and the 

methods used in this study are applicable to most of western North America.  In tandem 

with ARMI, these efforts could result in a research and monitoring program that truly has 

national inference. 

 

Where topography potentially creates dispersal barriers between watersheds (e.g., Funk et 

al. 2005) we advocate a watershed-based approach to sampling with an attempt to survey 

all water bodies in each randomly selected watershed regardless of ownership.  This 

approach has the advantages of: (a) assessing occupancy rates at both the site and 

watershed scales; (b) assessing occupancy rates for local clusters of populations that 

likely act as metapopulations; (c) explicitly mapping the distribution of breeding, 

foraging, and aquatic overwintering habitats on the landscape to inform management 

decisions in the watersheds surveyed; (d) providing insights into processes that create, 

destroy, and modify water bodies species are dependent on; (e) reducing costs of 

fieldwork by accessing clusters of local sites instead of random sites spread out across a 

landscape; and (f) allowing results of studies with narrower spatial scopes of inference, 

but greater inference strength (e.g., annual monitoring and demographic and experimental 

studies at the mid- and apex-level of the ARMI program), to be more easily integrated.   
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This first probabilistic state-wide baseline inventory on public lands in Montana has 

greatly expanded our understanding of the general distributions and site occupancy rates 

of species.  However, the next periodic assessment should take a more solid statistical 

approach by surveying all sites on multiple occasions, or with multiple surveyors on a 

single occasion, to estimate true occupancy rates in the context of various local and 

landscape covariates while accounting for changes in detectability across different 

habitats (MacKenzie et al. 2002, 2006).  This will increase expense and reduce the 

number of sites that can be surveyed to provide managers with baseline information to 

make on-the-ground planning decisions, but it is much more defensible for assessing 

changes in status as assessed by site breeding or occupancy rates.  An approach that both 

randomly selects watersheds from those previously surveyed and those not previously 

surveyed is likely to provide the strongest inference about changes in status (Skalski 

1990, Urquhart et al. 1998). 

 

It required 8 years to complete surveys for the target population on public lands due to 

the number of sites and watersheds involved and the degree of interest by resource 

managers in surveys of non-randomly selected watersheds to inform on-the-ground 

management decisions regarding issues such as fish stocking and restoration.  An 

analysis of confidence intervals and biologically meaningful effect sizes for changes in 

site occupancy rates is needed to determine sample sizes required for future monitoring 

efforts (MacKenzie et al. 2006).  In addition, surveys are still needed for private and 

tribal target populations, which probably contain the primary habitats for a number of 

species that are more rarely encountered on public lands (e.g., S. bombifrons, B. 

cognatus, and C. picta).  Finally, between periodic assessments of lentic and watershed 

occupancy rates, we encourage establishment of annual systematic roadside calling 

surveys similar to those promoted by the North American Amphibian Monitoring 

Program (Weir and Mossman 2005) to better understand the status of species in riparian 

areas dominated by private lands. 

 

This study supports earlier findings (Werner 2003) that R. pipiens populations in western 

Montana have been nearly extirpated.  Reintroduction efforts have already been initiated 
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by the Confederated Salish and Kootenai Tribes on the Flathead Indian Reservation 

(Janene Lichtenberg, Confederated Salish and Kootenai Tribal Wildlife Management 

Program, pers. comm.).  Given that populations in eastern Montana are still widespread, 

relatively abundant, and appear to be reasonable source populations from a genetic 

standpoint (Hoffman and Blouin 2004), we recommend additional reintroduction efforts 

across the historic range of R. pipiens in western Montana.  Furthermore, potentially 

isolated populations in the intermountain valleys of the upper Missouri River should be 

documented and conservation measures implemented where appropriate (Chapter 3). 

 

This study adds to earlier evidence (Werner et al. 1998, Maxell 2000, Maxell et al. 2003) 

that B. boreas has undergone declines in western Montana.  The failure to detect any 

reproductive effort in the Beartooth and Absaroka Mountain Ranges is of particular 

concern.  We recommend annual monitoring of all known B. boreas breeding populations 

in western Montana to better document their annual reproductive effort and more quickly 

detect any future declines or causative agents of declines.  Our findings corroborate other 

studies that have found B. boreas to be associated with disturbances to forest canopies.  

We recommend additional research on the correlation between B. boreas breeding sites 

and forest disturbances using the baseline data from this study in conjunction with newly 

burned or harvested forest stands. 

 

Patterns in occupancy rates of the species we assessed relative to site origin, habitat type, 

and habitat threats identified a number of recurring recommendations for resource 

managers.  These include: 

(1) Promote natural disturbance regimes such as beaver, floods, and bison wallows in 

order to maintain networks of lentic habitat patches at the watershed scale. 

(2) When creating new lentic sites, consider the full spectrum of hydroperiods species are 

dependent on and incorporate all hydroperiods into the design of the site.  Consider 

site characteristics in a landscape context to maintain or improve connectivity of 

seasonal habitats at local patch and landscape scales. 

(3) Consider fisheries management actions at both the scale of individual sites as well as 

the scale of local watersheds which are often composed of complementary seasonal 
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habitat patches for amphibians.  Restrictions in stocking or eradication of nonnative 

populations should be considered as management actions in some watersheds in order 

to balance recreational opportunities with other ecosystem values. 

(4) Protect emergent vegetation which provides important breeding, hiding, and foraging 

habitats for aquatic herpetofauna and potentially mitigates some of the impacts of fish 

populations.  Temporary fencing on impaired sites or newer stock ponds can be used 

to establish or reestablish emergent vegetation and still allow for periodic disturbance 

through rotation of the excluded area. 

 

Finally, one of the most critical features of any inventory, monitoring, or research 

program is to ensure that resource managers can easily access the resulting information to 

inform on-the-ground management decisions in a timely manner.  We encourage resource 

managers to use our dynamic internet based mapping application housed at the Montana 

Natural Heritage Program to access survey information and report observations and we 

recommend creation of similar applications in other regions. 
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 Table 2.1. Tradeoffs between strength of inference and spatial extent of inference in 
methods for monitoring wildlife populations (see Figure 2.1). 
 

Monitoring Approach 
Cost Per 
Species 

Strength of 
Inference 

Spatial 
Inference 

Area of Suitable Habitat Low Low High 
Disturbance Regimes Low Low High 
Apparent and True Patch Occupancy Rates Low Low High 
Estimates of True Numbers or Densities High High Low 
Indices of Relative Abundance or Density Low Low High 
Survival Rates High High Low 
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Table 2.2.  Characteristics of a successful base-level assessment program 
 

 

•  Well coordinated (locally, regionally, nationally) 
•  Involvement of all stakeholders throughout program 
•  Program goals clearly defined and limitations clearly stated 
•  Well defined and biologically meaningful sampling unit 
•  Well defined target population(s) 
•  Sampling frames stratified by bioregion and land ownership 
•  Estimates of response variable have low bias and high precision 
•  High statistical power of detecting change in response variable 
•  Biologically meaningful management thresholds and responses determined a priori 
•  Flexible and inexpensive 
•  Response variables informative about status at any one time and trends over time 
•  Meaningful even in the face of periodic funding losses and shortfalls 
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Table 2.3. Summary of watershed sampling and surveys for monitoring lentic breeding 
amphibians in Montana through 2008. 

 
 

Geographic 
Strata 

 
Ownership 
Substrata 

 
No. 

Watersheds

No. 
Watersheds 
Randomly 
Selected 

Percent of 
Watersheds 
Randomly 
Selected 

No. Watersheds 
Surveyed through 
2008 (Random / 
Non Random) 

Percent 
Random 
Surveyed 

through 2008
 ≥ 40% Public 188 61 32 60 / 5 98 

1 ≥ 40% Tribal 36 13 36 0 / 0 0 
 ≤ 40% Public 76 7 9 0 / 8 0 
 Total 300 81 27 60 / 13 74 
 ≥ 40% Public 137 54 39 39 / 6 72 

2 ≥ 40% Tribal 2 1 50 0 / 0 0 
 ≤ 40% Public 1 1 100 0 / 0 0 
 Total 140 56 40 39 / 6 70 
 ≥ 40% Public 62 10 16  7 / 0 70 

3 ≥ 40% Tribal 9 3 33 0 / 0 0 
 ≤ 40% Public 7 3 43 0 / 0 0 
 Total 78 16 21 7 / 0 44 
 ≥ 40% Public 268 78 29 78 / 4 100 

4 ≥ 40% Tribal 0 - - - - 
 ≤ 40% Public 106 14 13 0 / 0 0 
 Total 374 92 25 78 / 4 85 
 ≥ 40% Public 101 30 30 30 / 5 100 

5 ≥ 40% Tribal 0 - - - - 
 ≤ 40% Public 121 12 10 0 / 0 0 
 Total 222 42 19 30 / 5 71 
 ≥ 40% Public 273 63 23 63 / 12 100 

6 ≥ 40% Tribal 0 - - - - 
 ≤ 40% Public 80 8 10 0 / 2 0 
 Total 353 71 20 63 / 14 89 
 ≥ 40% Public 111 37 33 36 / 4 97 

7 ≥ 40% Tribal 0 - - - - 
 ≤ 40% Public 75 8 11 0 / 14 0 
 Total 186 45 24 36 / 18 80 
 ≥ 40% Public 177 44 25 39 / 4 89 

10 ≥ 40% Tribal 103 31 30 0 / 0 0 
 ≤ 40% Public 527 53 10 0 / 8 0 
 Total 807 128 16 39 / 12 30 
 ≥ 40% Public 174 39 22 38 / 0 97 

11 ≥ 40% Tribal 2 1 50 0 / 0 0 
 ≤ 40% Public 767 77 10 0 / 1 0 
 Total 943 117 12 38 / 1 32 
 ≥ 40% Public 141 39 28 39 / 18 100 

12 ≥ 40% Tribal 128 36 28 0 / 0 0 
 ≤ 40% Public 480 48 10 0 / 38 0 
 Total 749 123 16 39 / 56 32 
 ≥ 40% Public 0 - - - - 

13 ≥ 40% Tribal 10 4 40 0 / 0 0 
 ≤ 40% Public 66 7 11 0 / 0 0 
 Total 76 11 14 0 / 0 0 

Total ≥ 40% Public 1632 455 28 429 / 58 94 
Total ≥ 40% Tribal 290 89 31 0 / 0 0 
Total ≤ 40% Public 2306 238 10 0 / 71 0 

Overall Total 4228 780 18 429 / 129 55 
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Table 2.4. Categorical variable descriptions (a) and independent variables used (b) in 
classification trees. 

 
 

(a) 
Independent Variable Variable Description 

Permanent/Ephemeral Water permanent (1) or ephemeral (0) 
Eveg/No Eveg Emergent vegetation present (1) or absent (0) 
Fish/No Fish Fish detected (1) or not (0)  
Timber Harvest/No Timber Harvest Trees around site recently harvested (1) or not (0) 
Burned/Not Burned Forest around site recently burned (1) or not (0) 
J or A Amphibians Juvenile or adult amphibians detected (1) or not (0) 
L Amphibians Larval amphibians detected (1) or not (0) 

 
 

 (b) 
Species Independent Variables Used in Model 

Ambystoma macrodactylum Permanence + Eveg + Fish 
Ambystoma tigrinum Permanence + Eveg + Fish 
Spea bombifrons Permanence + Eveg + Fish 
Bufo boreas Permanence + Eveg + Fish + Burned + Timber Harvest 
Bufo cognatus Permanence + Eveg + Fish 
Bufo woodhousii Permanence + Eveg + Fish 
Rana pipiens Permanence + Eveg + Fish 
Rana luteiventris Permanence + Eveg + Fish 
Chrysemys picta Permanence + Eveg + Fish 
Thamnophis elegans Permanence + Eveg + Fish + J or A Amphibians + L Amphibians 
Thamnophis radix Permanence + Eveg + Fish + J or A Amphibians + L Amphibians 
Thamnophis sirtalis Permanence + Eveg + Fish + J or A Amphibians + L Amphibians 
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Table 2.5. Naïve watershed and lentic site occupancy rates for breeding by amphibians 
and occupancy by aquatic reptiles.  Rates are rounded to the nearest percent.  
Only watersheds and sites within the known range of the species in each strata 
were used for calculations (Figures 2.2-2.3). 

 

 
Strata 

Total Number 
Watersheds / Sites 

Percent 
Watershed Occupancy  

(95% CIa) 

Percent 
Site Occupancy 

(95% CIb) 
Ambystoma macrodactylum 

1 53 / 286 66 (55–77) 44 (39 – 50) 
2 36 / 638 75 (63–87) 31 (28 – 35) 
3 4 / 43 24 (2–98) 12 (2 – 21) 
4 65 / 803 77 (68–86) 44 (41 – 48) 
5 3 / 11 33 (0–87) 18 (0 – 41) 
6 24 / 338 58 (39–78) 10 (7 – 13) 

Overall 185 / 2119 70 (64–76) 34 (32 – 36) 
Ambystoma tigrinum 

1 2 / 17 0 ( - ) 0 ( - ) 
6 14 / 222 50 (13–24) 20 (14–25) 
7 27 / 749 30 (14–45) 3 (2–4) 

10 37 / 922 73 (60–86) 11 (9–13) 
11 26 / 139 77 (62–92) 40 (31–48) 
12 34 / 487 79 (67–91) 28 (24–32) 

Overall 140 / 2536 64 (56–71) 14 (13–15) 
Spea bombifrons 

10 37 / 848 14 (4–24) 2 (1–3) 
11 29 / 1084 21 (7–34) 3 (2–4) 
12 34 / 491 24 (11–36) 4 (2–6) 

Overall 100 / 1578 19 (12–26) 3 (3–4) 
Bufo boreas 

1 52 / 283 17 (8–26) 3 (1–5) 
2 36 / 626 17 (6–27) 1 (0–2) 
3 4 / 43 50 (2–98) 5 (0–11) 
4 64 / 788 23 (14–33) 4 (3–5) 
5 19 / 82 11 (0–23) 2 (0–6) 
6 53 / 729 23 (12–33) 3 (2–4) 
7 29 / 768 0 ( - ) 0 ( - ) 

10 1 / 1 0 ( - ) 0 ( - ) 
11 7 / 30 0 ( - ) 0 ( - ) 
12 1 / 7 0 ( - ) 0 ( - ) 

Overall 266 / 3357 17 (13–22) 2 (2–3) 
Bufo cognatus 

10 37 / 929 22 (10–34) 2 (1–3) 
11 26 / 139 15 (2–28) 3 (0–6) 
12 33 / 484 3 (0–8) 1 (0–1) 

Overall 96 / 1552 14 (7–20) 1 (1–2) 
Bufo woodhousii 

10 37 / 928 19 (7–30) 2 (1–2) 
11 63 / 137 19 (11–27) 26 (18–33) 
12 33 / 478 42 (27–57) 16 (13–19) 

Overall 133 / 1543 25 (18–31) 8 (7–9) 
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Pseudacris maculata 
3 1 / 10 1 ( - ) 40 (9–71) 
5 16 / 74 0 ( - ) 0 ( - ) 
6 22 / 327 36 (17–56) 13 (9–17) 
7 29 / 769 0 ( - ) 0 ( - ) 

10 37 / 855 97 (92–100) 47 (44–51) 
11 29 / 160 59 (42–75) 49 (41–57) 
12 33 / 472 61 (46–75) 35 (31–39) 

Overall 167 / 2667 49 (42–56) 26 (24–28) 
Pseudacris regilla 

1 53 / 282 43 (32–55) 18 (14–23) 
2 24 / 539 4 (0–12) 0.2 (0–1) 
4 55 / 2191 4 (0–8) 5 (4–6) 

Overall 132 / 1370 20 (14–25) 4 (3–5) 
Rana pipiens 

10 37 / 853 62 (48–76) 14 (11–16) 
11 24 / 126 25 (9–41) 6 (2–11) 
12 33 / 434 82 (70–94) 18 (14–22) 

Overall 94 / 1435 60 (50–69) 14 (12–16) 
Rana luteiventris 

1 49 / 233 61 (49–73) 30 (24–36) 
2 34 / 521 67 (54–82) 22 (18–26) 
3 4 / 29 50 (2–98) 7 (0–16) 
4 61 / 611 77 (68–87) 45 (41–49) 
5 18 / 69 56 (34–77) 32 (21–43) 
6 51 / 571 73 (61–84) 40 (36–44) 
7 28 / 708 57 (41–73) 13 (11–16) 

11 7 / 28 0 ( - ) 0 ( - ) 
12 3 / 10 33 (0–87) 50 (18–82) 

Overall 256 / 2781 65 (59–70) 29 (27–31) 
Chrysemys picta 

1 53 / 287 6 (0–11) 1 (0–3) 
2 36 / 639 11 (2–20) 1 (0–1) 
3 4 / 43 25 (0–67) 2 (0–7) 
4 65 / 803 2 (0–4) 0.1 (0–0.3) 
5 19 / 86 0 ( - ) 0 ( - ) 
6 53 / 752 0 ( - ) 0 ( - ) 
7 29 / 769 0 ( - ) 0 ( - ) 

10 38 / 930 55 (41–70) 9 (8–11) 
11 23 / 161 13 (0–26) 2 (0–5) 
12 34 / 491 53 (38–68) 9 (6–11) 

Overall 354 / 4961 14 (11–17) 3 (2–3) 
Thamnophis elegans 

1 53 / 287 19 (10–28) 4 (2–6) 
2 36 / 639 31 (17–44) 3 (2–4) 
3 4 / 43 25 (0–67) 2 (0–7) 
4 65 / 803 26 (17–36) 5 (3–6) 
5 19 / 86 26 (8–45) 8 (2–14) 
6 53 / 752 42 (29–54) 7 (5–8) 
7 29 / 769 28 (13–42)  2 (1–3) 

10 12 / 183 0 ( - ) 0 ( - ) 
11 24 / 135 4 (0–12) 1 (0–2) 
12 32 / 485 6 (0–14) 0.4 (0–1) 

Overall 327 / 4182 24 (19–28) 3 (3–4) 
 

55



 

Thamnophis radix 
10 37 / 929 86 (76–96) 18 (15–20) 
11 24 / 133 42 (23–60) 20 (13–26) 
12 25 / 460 52 (34–70) 11 (8–14) 

Overall 86 / 1522 64 (54–73) 16 (14–18) 
Thamnophis sirtalis 

1 53 / 287 13 (5–21) 3 (1–5) 
2 36 / 639 22 (10–34) 5 (4–7) 
3 4 / 43 25 (0–67) 5 (0–11) 
4 65 / 803 32 (22–42) 8 (6–10) 
5 19 / 86 0 ( - ) 0 ( - ) 
6 53 / 752 8 (1–14) 1 (0–1) 
7 29 / 769 0 ( - ) 0 ( - ) 

10 1 / 1 0 ( - ) 0 ( - ) 
11 21 / 122 0 ( - ) 0 ( - ) 
12 34 / 491 6 (0–13) 1 (0–2) 

Overall 315 / 3993 14 (10–17) 3 (2–4) 
a  Calculated using a standard error formula with a finite population correction factor since we know the number of public 

dominated watersheds in each target population.  SE = (((occupancy rate * (1 – occupancy rate)) / n) * (1 – n / N)) ^ (1/2). 
b  Calculated using a standard error formula without a finite population correction factor since we do not know the total 

number of lentic sites in each target population.  SE = ((occupancy rate * (1 – occupancy rate)) / n) ^ (1/2). 
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Table 2.6. Summary of responses to fish, emergent vegetation, and preferred 
hydroperiod in classification tree analyses.  Positive (+), negative (-), neutral 
(●), (P = permanent, E = ephemeral).  See Figures 2.5a-n for magnitude of 
responses. 

 

Species Fish 
Presence 

Emergent 
Vegetation 

Preferred 
Hydroperiod 

Ambystoma macrodacytlum -  +1 P / E 
Ambystoma tigrinum - +1 P / E 
Spea bombifrons ● ● E 
Bufo boreas ● + P / E 
Bufo cognatus - + E 
Bufo woodhousii - + P / E 
Pseudacris maculata - + P / E 
Pseudacris regilla - + P / E 
Rana pipiens + + P 
Rana luteiventris ● + P 
Chrysemys picta ● + P 
Thamnophis elegans + + P / E 
Thamnophis radix + + P 
Thamnophis sirtalis - + P / E 

1 Partial mitigation of negative response to fish when emergent vegetation present (Figures 2.5a-b). 
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Figure Legends 

 

Figure 2.1.  Tradeoff between spatial inference and inference strength of an estimator.  

This results from sample size limitations as a function of cost.  The area shaded in gray 

represents combinations of spatial inference and inference strength where an estimator 

would not yield any useful information for the management of a species.  Two or more 

estimators that individually either have broad spatial inference, but low strength of 

inference (A), or strong inference, but only over a small spatial scale (B), are needed in 

combination to maximize overall inference about the status of a species. 

 

Figure 2.2.  Sampling scheme for assessing status and trends in lentic breeding 

amphibians in Montana.  Eleven geographic strata (dark lines) corresponding to those in 

Table 2.3 are based on a combination of level 3 ecoregions and 8-digit hydrologic unit 

code (HUC) watersheds.  Within strata, 12-digit HUC watersheds containing >40% 

public lands were randomly selected in numbers proportional to the total area and number 

of watersheds.  Within each watershed all lentic sites on public lands were surveyed to 

assess the proportion of sites and watersheds with breeding.  As of the 2008 field season, 

watersheds completed and uncompleted are shown in black and outline, respectively; 

note that most of the uncompleted watersheds at the northern portions of strata 2 and 3 

have received intensive surveys under the U.S. Geological Survey’s Amphibian Research 

and Monitoring Initiative (ARMI).  A number of additional watersheds were surveyed to 

address specific management questions (gray).  Watersheds dominated by private and 

tribal lands were also randomly selected for survey (not shown, but summarized in Table 

2.3) to define a total of 28 target populations.  There are currently no geographic strata 

numbered 8 or 9 because these strata were part of an earlier sampling scheme to ensure 

that island mountain ranges in central Montana would be sampled; these are now 

combined with strata 10 and 11. 

 

Figure 2.3. Characteristics of randomly selected sites surveyed across sample strata. (a) 

ownership, (b) elevation in meters, (c) site origin, (d) habitat type, (e) water permanence 

and emergent vegetation, (f) fish presence, (g) grazing, (h) water dammed or diverted. 
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Figure 2.4. Spatial and elevation distributions of lentic breeding amphibians and aquatic 

reptiles.  Black circles are observations of any life history stage from this project.  Black 

crosses are other observations in the Montana Natural Heritage Program’s database as of 

the fall of 2008.  Elevation summaries are for detection of breeding (amphibians) or 

presence (reptiles) at lentic sites surveyed during this project within the known range of 

the species in Montana.  Elevation numbers are lower margins of each elevation class. 

 

Figure 2.5. Classification trees for detection of breeding by amphibians or occupancy of 

reptiles.  Trees were constructed using CART 6.0 employing a splitting rule that uses the 

Gini index with a minimum of 10 observations per node and tested with a 10-fold cross 

validation of the same data.  Vertical depth of each split is proportional to the amount of 

variation explained.  Nodes indicate the percent of sites occupied (SE), and number of 

sites with those characteristics.  Trees were generally pruned back to the number of 

terminal nodes resulting in a minimum relative error rate.  However, when there was no 

clear minimum error rate the number of nodes within 1 SE of the optimal tree was 

minimized to reduce complexity and ensure interpretability of models.  See Table 2.4 for 

variables used and variable descriptions.
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CHAPTER 3 

 

PREDICTED DISTRIBUTION AND HABITAT SUITABILITY MODELS 

FOR AMPHIBIANS AND REPTILES IN MONTANA 

 

Abstract 

Models predicting spatial distribution and habitat suitability are critical for natural 

resource managers who often need to make decisions that impact species for which there 

is limited information.  I used presence-only data in conjunction with pseudo-absences in 

program Maxent to model distribution and habitat suitability for 31 species of amphibians 

and reptiles in Montana to inform management and conservation efforts.  My primary 

goals were to: (1) identify variables that limit species’ distributions; (2) identify areas in 

need of field surveys; (3) create lists of predicted species within administrative 

boundaries at the regional (>10,000 km2), landscape (township or 100 km2), and large 

local habitat patch (>16 Ha) scales; and (4) identify marginal, suitable, and optimal 

habitat classes for species at various spatial scales.  Models identified scale dependent 

responses to environmental variables, opportunities to extend the known ranges of 

species, areas that support potentially isolated populations in need of conservation efforts, 

areas that are critical for maintaining landscape connectivity, areas that may provide the 

best habitat for reintroduction of species that have declined, and areas where exotic and 

nonindigenous species are most likely to become established.  Continuous models 

performed well as evaluated by the area under the receiver operating characteristic plot 

(0.858-0.940).  Binary outputs using a threshold that balances the predicted area against 

omission and commission error rates performed well as evaluated by absolute validation 

index (AVI) or percentage of presences above the threshold (0.89-0.98).  When compared 

to predictions from the deductively based models produced by the Montana Gap Analysis 

Project, continuous Maxent models offered more realistic depictions of amphibian and 

reptile species distributions when survey data was available for a region and in most 

cases reduced predicted area while simultaneously increasing predictive accuracy.  

However, deductive models like those produced by GAP are still important for 

representing some species distributions in areas lacking survey effort. 
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Introduction 

 

Increasing threats to biological diversity have stimulated efforts to model geographic 

distribution and habitat suitability for a variety of species in the last two decades.  These 

efforts have been made possible by advances in computer processing speeds, availability 

and ease of use of geographic information systems (GIS), including regional 

environmental data, and software employing a variety of modeling algorithms (Turner et 

al. 2001, Scott et al. 2002).  Most efforts use a variety of statistical and nonstatistical 

models to attempt to identify and represent Hutchinson’s realized n-dimensional niche 

under the implicit assumption that environmental features in the locations where species 

are recorded represent suitable conditions in all environmental dimensions examined and 

that at least some environmental features are limiting to the species at locations where 

they are not detected (Andrewartha and Birch 1954, Hutchinson 1957, Heglund 2002).  

Thus, many standard approaches to modeling (e.g., general linear models, ordination, 

logistic regression) require presence and absence data for training and testing models.  

However, true absence data are very rarely available because even most formal surveys 

following a structured set of protocols fail to assess and correct for imperfect detectability 

(Kéry 2002, MacKenzie et al. 2002, MacKenzie et al. 2006).  Ideally data used to 

construct predicted distribution and habitat suitability models would involve surveys of 

local habitat patches on multiple occasions to directly incorporate detectability into the 

model (MacKenzie 2006).  Future surveys should strive to gather data in this manner, but 

in the mean time, methods that can make use of the large volumes of presence-only data 

available from past studies and aggregated in central data centers (e.g., zoological 

museums or Natural Heritage Programs) can be used to inform management decisions 

and identify and test hypotheses regarding species’ distributions and habitat suitability at 

various spatial scales. 

 

Montana’s amphibian and reptile species (Table 3.1) are good candidates for a modeling 

effort because many of their distributions are poorly understood, many areas of the state 

lack occurrence records, and a high percentage are classified as Species of Concern 

(Maxell et al. 2003; Werner et al. 2004; MNHP and MFWP 2009).  In Montana, the only 
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models of predicted habitat available for amphibians and reptiles are deductively based 

models with simple rules for associations to mapped habitat created through expert 

opinion by the Montana Gap Analysis Project (GAP) (Scott et al. 1993, Hart et al. 1998, 

Redmond et al. 1998).  These models are general and only appropriately applied at larger 

scales (e.g., > 100 km2) so are best applied to regional level planning efforts.  Thus, there 

is a need for inductive models based on presence-only data that are applicable at 

landscape (100 km2) and larger habitat patch (>16 Ha) scales. 

 

A number of recently-developed modeling approaches are capable of making use of 

presence-only data either by itself or in conjunction with background sampling of the 

environmental variables, also termed pseudo-absences.  These include, but are not limited 

to, envelope models (e.g., BIOCLIM), ecological niche factor analysis (e.g., 

BIOMAPPER), rule sets derived with genetic algorithms (e.g., GARP), multivariate 

distances (e.g., DOMAIN and LIVES), and maximum entropy (e.g., Maxent) (see review 

by Elith et al. 2006).  Many of these new methods are capable of fitting more complex 

models from smaller datasets, by using explicit mechanisms to prevent model complexity 

from increasing beyond what is supported by the data.  The maximum entropy algorithm 

applied in the software package Maxent has recently been evaluated as equivalent or 

superior to other recently developed presence-only or presence/absence methods and 

superior to older presence/absence methods at predicting several hundred species 

distributions in many regions of the world (Phillips et al. 2004, 2006, Elith et al. 2006, 

Hernandez et al. 2008, Phillips and Dudik 2008).  Maxent readily accepts ASCII grid 

layers exported from a GIS and presence records in comma-separated value format to 

produce predicted distribution grids easily imported into a GIS as well as a variety of 

outputs that allow for interpretation of the predictive performance of models and 

importance of individual environmental variables to explaining a species distribution 

(Phillips et al. 2004, Phillips and Dudik 2008). 

 

I used the maximum entropy algorithm in Maxent version 3.2.19 (Phillips et al. 2004, 

2006, Phillips and Dudik 2008) to create predicted distribution and relative habitat 

suitability models at the state-wide and range-wide scale for 14 amphibian and 17 reptile 
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species known to occur in Montana (Table 3.1).  My primary goals were to produce: (1) 

continuous state-wide maps depicting relative habitat suitability to identify variables that 

limit species’ distributions and areas both within and outside of the known ranges of 

species that should be targeted for field survey; (2) conservative binary maps depicting 

suitable and non suitable habitat with low omission error rates that can be used to create 

checklists of predicted species within administrative boundaries at the regional (>10,000 

km2), landscape (township or 100 km2), and large local habitat patch (Public Land Survey 

System (PLSS) section or smaller (e.g., >16 Ha)) scales; and (3) where possible, map 

outputs depicting unsuitable, marginal, suitable, and optimal habitat classes at various 

spatial scales to inform field surveys and management decisions. 

 

 

Methods 

 

Environmental Variables 

Environmental input layers consisted of 10 continuous and 5 categorical variables I felt 

were biologically relevant to determining the distribution of species and for which I could 

obtain or develop state-wide 90 x 90 m grid cell coverages for Montana (Table 3.2).  

Metadata for each environmental layer is provided in Appendix C.  Additional variables 

may be important in predicting distribution and habitat suitability (e.g., distribution of 

competitors or predators, Connell 1961), but I limited variables to state-wide input layers 

that could be easily obtained or developed for all species.  Environmental input values are 

generally easily interpretable.  However, the STATSGO soils layer (Table 3.2, Appendix 

C) consists of soil map units (≥ 625 ha) that are only individually interpretable as having 

similar general characteristics relative to surrounding areas.  That is, due to the 

underlying complexities of the data associated with these map units, I was not able to 

make simple state-wide layers of soil characteristics (e.g., dominant soil type, depth, 

texture).  Despite my inability to easily interpret responses to this layer, I chose to use it 

because: (1) many of Montana’s amphibians and reptiles are either fossorial or depend on 

the water holding capacities of different soil types; (2) preliminary modeling indicated 

that inclusion of the layer resulted in better representations of species’ distributions at the 
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PLSS section scale or smaller; and (3) I wanted to examine model output for patterns of 

the underlying soil characteristics species are associated with to inform development of 

state-wide soils layers for future modeling. 

 

I created two sets of environmental layers to model each species’ distribution and habitat 

suitability at two spatial extents: (1) statewide to identify variables that limit species’ 

distributions and areas that should be targeted for field survey and (2) the known current 

range of each species to identify scale dependent factors limiting the species’ range and 

examine and avoid potential biases in measures evaluating model performance (Lobo et 

al. 2008, Phillips and Dudik 2008).  

 

 

Species Occurrences 

I obtained 25,873 records housed in the Montana Natural Heritage Program’s state-wide 

Point Observation Database for Montana’s 14 amphibian and 17 reptile species (Table 

3.3).  These records came from a variety of sources, including voucher specimens in 

museums across the country, observations and voucher specimens from state-wide 

inventory and monitoring programs, observation and voucher specimen records found in 

the scientific literature, and records gathered by agency biologists and the general public 

(e.g., Chapter 2, Maxell et al. 2003).  The vast majority of these records were gathered in 

the last 10 years, but some records date to the time of the Lewis and Clark expedition in 

1805 (Maxell et al. 2003, Moulton 1983).  I limited records used in training and testing 

the models to those within the known range of the species (Werner et al. 2004) and only 

used records with a spatial precision of less than 400 m to match the grain of records and 

environmental grid cells as closely as possible while not overly restricting the number of 

records available for modeling.  I further limited the number of records by eliminating 

duplicate records for individual 90 x 90 m grid cells.  These restrictions resulted in a 50 

percent reduction in the total number of records available for training and testing models 

(Table 3.3).  Because the number of records available for many species was limited, I 

used all occurrences irrespective of their date.  Thus, there is some potential for 

introduction of noise from records gathered in time periods before those encompassed by 
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the environmental data layers, some of which have undergone rapid change in recent 

decades (e.g., land cover types (Redmond et al. 1998)).  However, I feel that this is a 

minor issue because there were relatively few older records (Maxell et al. 2003) and the 

majority were eliminated due to poor spatial precision. 

 

Model Building 

For species with >125 occurrence records, I selected a spatially balanced random subset 

of approximately 25% of the occurrences and set it aside to test model output (Table 3.3).  

For these species, the remaining 75% of the occurrences were used to train models.  For 

species with <125 occurrences (Table 3.3), all occurrences were used to train models and 

model output was not evaluated with test data. 

 

I used the maximum entropy algorithm employed in Maxent version 3.2.19 to create 

predicted distribution models (Phillips and Dudik 2008).  Maxent first generates 

empirical distributions for all environmental variables over all pixels that are associated 

with species occurrences.  These environmental “features” are then used to constrain the 

estimated distributions computed over the background pixels (pseudo-absences) of the 

environmental data layers so that estimated distributions match characteristics of the 

empirical distributions while otherwise maintaining the maximum entropy (most uniform 

distributions) possible (Jaynes 1957, Phillips et al. 2004, 2006, Phillips and Dudik 2008).  

To do this, Maxent makes use of the Gibbs distribution, which maximizes the product of 

the probabilities of the sample locations and takes the form: 

 

P(x) = exp(c1 * f1(x) + c2 * f2(x) + c3 * f3(x)…) / Z 

 

where c1, c2, c3, … are weighted constants, f1, f2, f3, … are the environmental features 

constrained to the characteristics of the empirical distributions, and Z is a scaling constant 

that ensures that P sums to 1 over all grid cells (Phillips et al. 2004, 2006).  The manner 

in which the estimated distributions are constrained typically depends on the number of 

species occurrences available.  Estimated environmental distributions can be constrained 

to match the empirical average (linear feature), average and variance (quadratic feature), 
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covariance (product feature), proportional occurrence (threshold feature), or average 

below and constant above a certain point (hinge feature) (Phillips and Dudik 2008).  I 

used default settings for features so that all were employed when there were at least 80 

training samples, linear, quadratic and hinge features were employed when there were 15 

to 79 samples, linear and quadratic features were used when there were 10 to 14 samples, 

and only linear features were used when there were fewer than 10 samples.  Categorical 

environmental variables have a discrete feature for every possible value of the variable so 

that the estimated distributions have the same proportional representation of each 

categorical value.  In practice Maxent avoids overfitting of models to the training data by 

“regularizing” or relaxing the features so that estimated distributions only have to be 

close to the empirical distributions rather than exactly equal to them.  If there is evidence 

that a model is overfit, a regularization parameter can be adjusted in Maxent to delineate 

just how close a fit is needed between empirical features and estimated distributions.  I 

used the default regularization value of 1 for all model runs. 

 

Maxent is a machine learning based approach that begins with a uniform Gibbs 

distribution (the distribution with maximum entropy) and successively modifies each 

weighted constant on each iteration until either the change in the “gain” (the log of the 

number of grid cells minus the average of the negative log probabilities of the sample 

locations) falls below a set threshold or a set maximum number of iterations are 

performed.  The gain value at the end of a model run indicates the likelihood of 

suitability of the presence samples relative to the likelihood for random background 

points (Maxent 2008).  For example, a gain of 3 indicates the average likelihood of the 

presence samples is e3 = 20 times higher than that of a random background point and the 

model will be relatively concentrated around the occurrence locations.  The overall gain 

associated with individual environmental variables can be used as a measure of the 

importance of each variable.  The Maxent algorithm is guaranteed to converge to values 

of c1, c2, c3, … that give the unique optimum estimated distribution P, and, therefore, the 

outputs are deterministic (Phillips et al. 2004, 2006, Phillips and Dudik 2008).  Maxent 

can use every grid cell that has values for all the environmental variables to calculate the 

estimated distribution.  However, because there are a large number of 90-meter grid cells 
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for Montana (10,204 columns and 5,892 rows), and the modeling performance of Maxent 

does not improve significantly with very large numbers of pixels (Phillips and Dudik 

2008), 0.1 percent of background pixels (equivalent to 60,000 pixels for state-wide 

models and proportionally smaller numbers for range-wide models) were used in 

estimated distributions to represent the variety of environmental conditions present in the 

data. 

 

Maxent produces three grid cell based primary map outputs from the exponential 

function: (1) a raw probability value that is scale dependent and sums to 1 across all grid 

cells; (2) a scale independent cumulative output that ranges from 0 to 1, indicates the 

percentage of the distribution with raw values less than the cell being considered, and 

represents the omission rate at that threshold; and (3) a logistic output ranging from 0 to 1 

for individual grid cells that results from placing the raw output values into an 

exponential function along with the maximum entropy probability function (Phillips and 

Dudik 2008).  The logistic output has been shown to slightly out perform the raw and 

cumulative outputs and under some sampling effort restrictions the logistic output 

theoretically indicates the probability of the species presence in a grid cell (Phillips and 

Dudik 2008).  However, because most presence-only data is gathered under a variety of 

levels of sampling effort, it is probably best to interpret this as relative suitability of 

habitat.  I converted ASCII logistic grid outputs into raster grids in ArcMap 9.2 and 

symbolized outputs in 3 ways (Appendix D).  First, I used a stretched color ramp of 

continuous state-wide output with warm colors (reds) indicating areas with more suitable 

habitat and cooler areas (blues) indicating areas with less suitable habitat.  Second, for the 

continuous range-wide models I used a low cutoff threshold identified by Maxent as 

balancing training omissions against the fraction of predicted area and the cumulative 

threshold value to create a binary map of predicted suitable and unsuitable habitat 

(Maxent 2008).  To this map I added training and test occurrences to visually examine 

model fit.  Third, for species that had test data available (Table 3.3), I coded the 

continuous range-wide logistic output into habitat suitability classes representing not 

suitable, low suitability, moderate suitability, and optimal suitability.  To create these 

habitat suitability classes I classified the logistic values into 10 equal-interval classes in 
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ArcMap 9.2 and plotted the proportion of the test observations in each class over the 

proportion of the total grid cells in each class.  Changes in the slope of the resulting curve 

and comparison with a curve from a random model allowed me to identify threshold 

values defining these habitat suitability classes; the low binary cutoff threshold was again 

used to delineate the boundary between suitable and unsuitable habitat (Table 3.4, Figure 

3.1, Hirzel et al. 2006). 

 

Model Evaluation 

I used receiver operating characteristic (ROC) curves to evaluate performance of both 

state-wide and range-wide continuous models.  ROC curves are an extension of the 

confusion matrix used to evaluate binary models (e.g., Figure 3.2).  They plot sensitivity 

(or the true positive rate) against 1 - specificity (the false positive rate) across all 

thresholds of a continuous model.  Because they provide information across thresholds, 

they avoid the subjectivity of choosing a single threshold and the total area under the 

ROC curve (AUC) provides a single measure of the overall performance of the model, 

namely the probability that the model will correctly order any randomly chosen pair of 

positive and negative values at any given threshold (Hirzel et al 2006).  AUC values vary 

from 0 to 1 with a random model performing at a value of 0.5.  However, in instances 

such as this analysis where random background points are used as pseudo-absences, AUC 

should be interpreted as the probability that a randomly chosen presence site is ranked 

above a randomly chosen background site (Phillips and Dudik 2008).  Part of my reason 

for creating state-wide and range-wide models was to examine potential biases in AUC 

resulting from models applied inappropriately at the extents of administrative or regional 

boundaries rather than the boundaries of species’ known ranges.  If the extent of the 

modeled area is significantly larger than the species’ range, AUC would be expected to 

be biased high because many background points will fall outside the known range of the 

species (Fielding and Bell 1997, Chefaoui and Lobo 2008).  Thus, I examined AUC 

values for training data and test data when available (Table 3.3) on both state-wide and 

range-wide continuous models. 
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I evaluated low binary cutoff thresholds of range-wide continuous models (Table 3.4) and 

Montana Gap Analysis Project (GAP) models (Hart et al. 1998) with test occurrences 

using the absolute validation index (AVI) or the proportion of presence evaluation points 

falling above the threshold or within the GAP predicted distribution (Hirzel et al. 2006).  

I also evaluated these binary outputs with the point biserial correlation calculated as 

Pearson’s correlation coefficient (COR) and average deviance (Phillips and Dudik 2008).  

While AUC is rank based, COR measures how well calibrated the prediction values are 

to the translated predicted presence or absence (1 or 0, respectively).  COR varies from -1 

to 1 with 0 representing a random model.  Like COR, deviance measures how well 

calibrated prediction values are, but in addition, it penalizes errors in scaling of prediction 

values.  For positive occurrences deviance is calculated as minus 2 times the natural log 

of the associated logistic output value (Phillips and Dudik 2008).  Deviance varies from 

0, when presence samples are associated with a logistic value of 1, to around 13.8, when 

logistic values approach 0.001. 

 

For lentic breeding amphibian and aquatic reptile species recently evaluated with a state-

wide inventory of lentic water bodies (Chapter 2), I used the presence and non-detection 

data to evaluate range-wide low binary cutoff thresholds and GAP predicted distributions 

with commission error rates, omission error rates, map accuracy, and Kappa calculated 

from the classic 2 x 2 confusion matrix (Fielding and Bell 1997, Hirzel et al. 2006).  I 

also used COR and deviance to evaluate these models with the presence and non-

detection data.  To do this I calculated COR as described above.  I calculated deviance as 

described above for positive occurrences and for sites where species were not detected, I 

calculated it as minus 2 times 1 minus the natural log of the associated logistic output 

value (Phillips and Dudik 2008).  Deviance varies from 0, when non-detection samples 

are associated with a logistic value 0 to around 13.8, when logistic values approach 

0.999. 

 

AUC, AVI, COR, deviance, Kappa, and other evaluation measures are not informative 

with regard to the spatial patterns of performance of models in terms of the degree of 

deviance of individual observations from their expected values of 1 in areas where they 
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are predicted to be present and 0 where they are predicted to be absent.  For example, one 

might expect deviance to be higher at the edge of a species’ range where they are limited 

by one or more environment factors.  Similarly, deviance is expected to be higher in areas 

predicted to be of lower suitability.  To more thoroughly evaluate spatial patterns of 

predictions, I plotted all test occurrences and on top of range-wide binary and habitat 

suitability class maps with symbols sized relative to the magnitude of the deviance value 

(e.g., Figure 3.3) (Lobo et al. 2008, Phillips and Dudik 2008).  I then examined patterns 

of deviance at the scale of the range-wide binary model produced by the low cutoff 

threshold to see if areas of high deviance were concentrated on the margins or particular 

portions of a species’ range.  These patterns could potentially indicate that the species is 

limited by different factors in different portions of its range to the extent that separate 

modeling efforts for these regions are warranted.  I also examined habitat suitability class 

predictions with the map of test occurrence deviances to evaluate whether low, moderate, 

and optimal habitat suitability classes matched my field experience with individual 

species. 

 

In addition to ROC plots, Maxent produces a number of other outputs that I used to 

evaluate models (Maxent 2008).  First, the increase in regularized gain resulting from 

individual environmental variables is summarized as a percent gain or contribution to the 

model and is used to rank the relative importance of variables.  I summarized these ranks 

for state-wide and range-wide continuous models to identify scale dependent responses 

(Table 3.5).  Second, jackknife charts show changes in regularized training gain, test 

gain, and AUC when individual environmental variables are included in the model on 

their own and when individual variables were removed from the model with the full 

compliment of environmental variables (e.g., Figure 3.4).  Third, response curves for 

individual environmental variables showing how the logistic prediction changes as each 

variable is varied across its range when only that variable is included and while all other 

environmental variables are held constant at their average sample value (e.g., Figure 3.5). 
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Results and Discussion 

 

Detailed discussions of model output for individual species including maps of continuous 

state-wide logistic output, binary predicted suitable habitat within species’ known ranges, 

and, where possible, predicted low, moderate, and optimal habitat suitability classes are 

in Appendix D. 

 

Responses to Environmental Variables 

The STATSGO soils and geology categorical variables were ranked as the environmental 

variables of greatest and second greatest average importance, respectively (Table 3.7).  

Despite my inability to easily interpret species responses to these variables because of 

their large number of nominal categories, their inclusion significantly improved the 

predictive capability of the models as measured by levels of training and test gain and 

AUC, jackknife plots of training and test gain and AUC, and overall fit of the models 

with my field experiences on the distribution of these species.  I feel that their inclusion is 

appropriate because geology and soils are essential to determining local habitat 

complexity through rates of erosion and potential plant communities and habitat 

complexity is of central importance to determining species diversity through niche 

separation (MacArthur 1958). 

  

After STATSGO soils and geology, environmental variables of progressively less 

importance to models on average were land cover, elevation, soil temperature and 

moisture regime, Euclidian distance from major streams, slope, relative effective annual 

precipitation, average maximum July temperature, average minimum January 

temperature, ruggedness, aspect, and the solar radiation indices (Table 3.5).  Solar 

radiation indices often made models worse when they were included and do not seem 

worthy of inclusion in future modeling efforts in their present form.  However, 

examination of other forms of solar indices is probably warranted for future modeling 

efforts given that the biology of these species is largely dependent on maintaining 

optimal body temperatures (Huey 1991).  For other variables, there was considerable 

variation as to which mattered most for individual species.  For example, although terrain 
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ruggedness was of low importance on average, 3 of Montana’s 4 lizard species seem to 

respond to some level of terrain ruggedness because it apparently does a good job of 

identifying the rock outcrop habitats the species are associated with.  Not surprisingly, 

many of Montana’s amphibian and reptile species showed strong responses to elevation, 

minimum January temperature, soil temperature and moisture regimes, and slope (Table 

3.7, Appendix D).  The 1992 National Land Cover Data layer was ranked third in overall 

average importance of the environmental variables and the majority of land cover types 

species were associated with made good biological sense.  However, there were some 

sampling artifacts associated with this layer.  For example, a number of species were 

associated with altered land cover types such as roads and residential areas where animals 

are more likely to be seen and reported.  Similarly, some riparian species were associated 

with cropland cover types due to the large agricultural presence in riparian areas, 

especially along major rivers.  Models did not seem to be negatively impacted by these 

sampling artifacts in terms of over predicting the presence of species on roads or 

residential areas.  It should be noted that the interpretability of marginal responses to 

environmental variables (i.e., when all other variables were held at their average value in 

a model) was usually compromised when they had an importance rank below 5 or 6. 

 

In most cases importance ranks for environmental variables for state-wide and range-

wide models matched one another fairly closely (Table 3.7).  However, a scale dependent 

response to environmental variables was evident for a number of species (Appendix D).  

Average minimum January temperature ranked as important in determining the 

distributions of P. idahoensis (> -11 °C), P. regilla (> -15 °C), E. coerulea, (> -9 to -12 

°C), E.  skiltonianus (> -15 to -16 °C), and O. vernalis (< -17 °C) in models at the state-

wide extent, but was essentially of no importance in models limited to the extent of each 

species’ range.  Similarly, soil temperature and moisture regime (moist soils) ranked as 

important in determining the distributions of P. idahoensis, P. regilla, and E. coerulea, in 

state-wide models, but was not important in models limited to the extent of each species’ 

range.  For C. serpentina average maximum July temperature (>29 °C) was important in 

the state-wide model, but not the range-wide model.  For E. coerulea, elevation was 

ranked as more important within the species’ range (less than 1,200 m) than it was at the 
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state-wide scale.  Finally, for T. radix elevations below 1,000 m were important at the 

state-wide scale, but were much less important within the extent of the species’ range. 

 

Model Evaluations with Presence-only Data 

AUC, the probability that a randomly chosen occurrence site will have a higher logistic 

score than a randomly chosen pseudo-absence background site, was lower for both 

training and test data in models run at the range-wide extent as compared to the state-

wide extent (Table 3.6, state-wide data not shown).  The AUC values in the state-wide 

models are inflated because background pseudo-absence points are randomly chosen 

across the state-wide extent while occurrences are limited to what is assumed to be 

suitable habitat within the extent of the species’ range.  This disconnect between the 

sampling extent for occurrences and pseudo-absences in the state-wide models is 

essentially a problem of how to define available habitat and biases the AUC for test 

occurrences high by a value that is an inverse function of the size of the range of the 

species; the smaller the species range, the greater the bias in test AUC (Figure 3.6) 

(Fielding and Bell 1997, Chefaoui and Lobo 2008, Lobo et al. 2008, Phillips and Dudik 

2008).  Thus, while running models at an extent that is greater than the known range of a 

species can serve valuable heuristic purposes (e.g., identifying possible extensions in the 

known range of a species), it is inappropriate to use the resulting AUC values in a 

comparative manner for models of the same species run at different extents (Lobo et al. 

2008).  I therefore only present evaluations of models run at species’ range extents and, 

for similar reasons, I adjusted the number of background points for each species so that 

they always represented 0.1 percent of the total pixels within the species’ range.  This 

does not completely solve the issue of potential biases resulting from differences in 

sampling for occurrence data and background pseudo-absences.  For example, consider a 

species that has a broad distribution with highly clustered occurrences within that 

distribution.  A uniform random sampling of the species’ range will still result in a 

disconnect between the sample occurrences and the background samples and AUC would 

be expected to be biased high as a result.  On the other hand, AUC may be biased low in 

some situations because background pseudo-absences are expected to sometimes come 

from areas of suitable habitat not documented with an occurrence.  When this is the case, 
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it can be shown that the maximum achievable AUC value is 1 – a / 2 where a represents 

the fraction of pixels covered by the species’ distribution (Phillips et al. 2006).  To 

counter all these potential sources of bias when using background points as pseudo-

absences, I would ideally have targeted sampling of background points so that they match 

the sampling distribution of the occurrence data (Lobo et al. 2008, Phillips and Dudik 

2008).  Until this can be easily implemented in predictive distribution modeling software, 

potential biases in AUC can be identified by visually examining the spatial distributions 

of occurrence data relative to modeling extents. 

 

AVI, the percentage of occurrences predicted by the binary low cutoff threshold model, 

was high for all training (0.87 – 1.0) and test (0.89 – 0.98) occurrences and on average 

the AVI was 0.21 higher for the low cutoff threshold models than the AVI for GAP 

models (mean = 0.68, range 0.20 – 0.98) (Table 3.6).  The only low cutoff threshold 

models that had a lower AVI than the GAP models were those for A. tigrinum, S. 

bombifrons, and C. viridis (0.05, 0.01, and 0.02 lower, respectively).  Thus, the low 

cutoff threshold models essentially performed equal to, or far better than, the GAP 

models as measured by AVI.  The best performing predictive models are limited to the 

smallest area of suitable habitat possible while simultaneously keeping omission rates 

(the inverse of AVI) for test occurrences to a minimum.  In addition to outperforming the 

GAP models for AVI metrics, the low cutoff threshold models simultaneously reduced 

the overall area predicted for each species’ distribution by an average of 47,157 km2.  

The predicted areas are smaller than those predicted by GAP for 21 species (mean (SD) = 

82,412 (50,653) km2) and larger than those predicted by GAP for 9 species, all of which 

were modeled in GAP as on streams or within buffers around streams (mean (SD) = 

39,020 (37,520) km2) (Table 3.7, Hart et al. 1998). 

 

The overall higher performance of the maximum entropy models for AVI is somewhat 

expected given the relative simplicity of the GAP models.  GAP models are deductive or 

rule-based and generally involve a combination of turning on appropriate habitats, 

filtering by appropriate elevations, and buffering around critical habitat features such as 

streams (Hart et al. 1998).  These deductive models are important because they 
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encapsulate expert opinion in a straightforward and interpretable manner.  However, they 

suffer from being overly simplistic because they did not make use of available occurrence 

data.  For example, many of the GAP models with the lowest AVI values (0.2 – 0.3) were 

those for stream species such as P. idahoensis and A. montanus which only predicted 

streams within suitable habitat cover types or those for A. macrodactylum, C. picta, and 

O. vernalis which buffered streams by a certain distance (Table 3.6, Appendix D).  

Expert reviewers agreed that the rules for describing these species’ distributions are 

essentially correct (Hart et al. 1998), but evaluation with occurrence data shows that they 

are too restrictive and that larger buffers would have been more appropriate to do a better 

job of encompassing occurrences under the same general approach.  Essentially, this is 

what the low cutoff threshold models did in their simultaneous improvement of AVI 

values and increase in predicted areas for these 9 species (Tables 3.7 and 3.8, Appendix 

D). 

 

Evaluations of low cutoff threshold models with point biserial correlations (COR) for 

presence-only test data show that significant (P < 0.001 for all species) positive 

correlations (range = 0.36 – 0.59) exist between higher predicted logistic values and the 

species presence (Table 3.6).  In addition, deviance of test occurrences from their 

expected logistic value of 1 were relatively small (range 1.01 – 2.47) indicating that the 

models were well fit to the occurrence data on average.  However, just because the 

models are well fit on average does not mean that they are well fit across the entire extent 

of the area modeled.  Visual inspections of deviance values associated with each test 

occurrence revealed no patterns in deviance values at either the range-wide extent or 

local-landscape scales.  Visual inspections also indicated that models usually did a good 

job of appropriately representing suitable habitat for species for which I have field 

experience.  Furthermore, low, moderate, and optimal habitat suitability class thresholds 

were easily defined and appeared to be appropriate for all species at the scale of the 

species’ range as well as the level of a PLSS section in most areas (Figure 3.1, Appendix 

D).  However, models for A. tigrinum, C. picta, C. bottae, C. constrictor, H. nasicus, L. 

triangulum, P. catenifer, T. radix, and C. viridis appeared to under predict habitat in 

regions of eastern Montana were occurrence data was not available.  This may indicate 
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that the models for these species are overfit in these areas, but it is also possible that they 

are performing appropriately and those areas such as the drier region between the 

Yellowstone and Missouri Rivers truly do not have suitable habitat for some of these 

species.  Until these areas dominated by private and tribal lands have received more 

survey effort, there are three approaches to dealing with potential overfitting of models in 

these regions.  First, with the exception of H. nasicus, L. triangulum, and T. radix, all of 

these species have distributions that cross the Continental Divide.  Modeling distributions 

and habitat suitability for these species with two separate models on either side of the 

Continental Divide may improve model performance in both regions of these species’ 

known range.  Second, the continuous model outputs could be used in conjunction with 

GAP or other deductive models to err on the side of caution for predictions of these 

species’ distributions until survey data is available for these regions.  Third, the 

regularization factor that Maxent uses to constrain model estimated distributions to the 

characteristics of environmental features could be increased to effectively increase the 

entropy and predicted area of the model. 

 

Model Evaluations with Lentic Site Survey Data  

Evaluation of low cutoff threshold, optimal cutoff threshold, and GAP models with 

presence and nondetection data from the state-wide lentic breeding amphibian and 

aquatic reptile survey (Chapter 2) showed patterns of low omission error rates, high 

commission error rates, low levels of overall map accuracy, and low Kappa values for 

both the low cutoff threshold and GAP models across all species (Table 3.8).  High 

commission errors, low map accuracies, and low Kappa values for both the Maxent and 

GAP models is, in part, a result of the fact that none of the environmental data layers 

have a grain appropriate for use at the site level.  Although a general area may be suitable 

habitat for a species, for many species, presence at a site is dependent on site-level 

variables such as emergent vegetation, water permanence, and presence of fish.  

Furthermore, even though these surveys followed a structured set of protocols, they were 

conducted with single site visits, which fail to assess and correct for imperfect 

detectability (Kéry 2002, MacKenzie et al. 2002, 2006) so species present at a site may 

have gone undetected.  Ideally sampling for constructing predicted distribution and 
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habitat suitability models would involve surveying local habitat patches on multiple 

occasions to directly incorporate detectability into the model (MacKenzie 2006).  This is 

certainly the most powerful approach to training and testing models and future surveys 

should strive to gather data in this manner. 

 

Using the optimal habitat suitability cutoff threshold still resulted in high commission 

error rates, slightly higher omission error rates than the low cutoff threshold, but much 

higher overall map accuracy and higher Kappa values (Table 3.8).  This is a result of the 

large number of sites where species were not detected.  Increasing the cutoff threshold 

only reduces the commission error rate by a small percentage, but this represents a large 

number of sites so that overall map accuracy is raised significantly.  Because avoiding 

omission error rates is of much more practical importance than avoiding commission 

errors or raising map accuracy, the only real importance of this information is that the 

optimal habitat suitability class is associated with a higher probability of detection.  Thus, 

potential impacts to areas identified as optimally suitable habitat should be of special 

significance to landscape and project level planning. 

 

Evaluations of low cutoff threshold models with point biserial correlations (COR) of the 

presence nondetection data show that significant (P < 0.001 for all species) positive 

correlations (range = 0.39 – 0.74) exist between predicted logistic values and the species’ 

presence or nondetection (Table 3.6).   Point biserial correlation values were similar to 

those for the presence-only test data, but were generally higher, probably as a result of 

the large number of non-detections in habitat with low logistic values.  Similarly, average 

deviances from the presence (expected logistic value = 1) nondetection (expected logistic 

value = 0) sites were lower (range 0.55 – 1.88) than for the presence-only test 

occurrences.  Thus, overall, large differences in logistic values seem to correlate well 

with species occurrences and this seems to be fairly well calibrated on average indicating 

that the models were well fit to the presence nondetection data on average (Phillips and 

Dudik 2008).   
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Implications for Information Needs and Conservation 

Despite the overall good performance of models, large regions in Montana lack 

occurrence data for amphibians and reptiles and this probably resulted in poor model fit 

in these regions.  Targeting these areas with inventory efforts would be beneficial for 

understanding the status and distribution of species and would improve future models.  

These areas include the Blackfeet, Crow, Northern Cheyenne, and Fort Peck Indian 

Reservations and a large section of northeast Montana that is dominated by private land 

with tilled agriculture. 

 

State-wide continuous models indicated a number of opportunities to extend or fill in 

large gaps in known ranges of most species modeled (Appendix D).  In most cases, 

potential range extensions suggested by the state-wide continuous models are on the scale 

of 20-60 km.  However, several potential range extensions suggested by the state-wide 

models are on the order of 200 km.  In many cases, these potential extensions of known 

range seem likely to be documented with adequate survey effort because populations 

have been documented in adjacent areas and there are seemingly suitable habitat 

connections.  In other cases, these regions are not currently occupied or were never 

colonized.  One species for which this seems likely is P. regilla with predicted extensions 

of known distribution into the Seeley and Swan Valleys, portions of the lower North and 

South Forks of the Flathead River drainage, the lower portions of Rock Creek, portions of 

the lower Clark Fork River drainage between Missoula and Superior, and portions of the 

Garnet Range (Figures D-11a-c).  These areas all seem to have reasonable habitat, but 

recent calling and lentic site surveys have failed to detect them (pers. obs.).  Populations 

isolated on the margins of their known range in the southern portion of the Bitterroot 

Valley and along the lower Blackfoot and Clark Fork Rivers just east of Missoula 

(Maxell et al. 2003) clearly deserve special management consideration to ensure their 

viability.  Similarly, the predicted distribution of D. aterrimus is much broader than that 

documented by recent electrofishing surveys along the Idaho border (Figures D-3a-b, 

unpublished data).  Given their extremely limited distribution, special conservation 

measures are clearly warranted for documented populations of this species and within the 
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area of their predicted distribution additional surveys should be undertaken if timber 

harvest, road construction, or other activities altering habitat cover types are under 

consideration. 

 

One of the longer potential range extensions suggested by the state-wide models is the 

extension of C. bottae from the main Northern Rocky Mountains into island ranges 

including the Little Rocky, Big Snowy, Pryor, and Wolf Mountains.  All of these are 

isolated by grassland steppe habitats, but may remain somewhat connected by a network 

of riparian areas, which the species utilizes (Stewart 1977, St. John 2002).  Presence in all 

of these areas seems possible because the species is highly cryptic these areas have 

relatively little human activity.  In June of 2008, an adult C. bottae was found and 

photographed under a rock on a forested slope on the east side of the Wolf Mountains 

near Kirby in southeastern Bighorn County (Lisa Wilson and David Stagliano, Montana 

Natural Heritage Program, pers. comm.).  This represents a 185 km extension in the 

known range of the species in Montana (Maxell et al. 2003, Werner et al. 2004) and is a 

56 km extension from the nearest reported locality in Wyoming (Baxter and Stone 1985).  

The observation was made in an area that was predicted as suitable habitat by the low 

cutoff threshold of both the state-wide and range-wide models despite the fact that the 

closest training point was 185 km away (Figure D-11a-b).  This affirms that the 

environmental variables used in the Maxent algorithm have the ability to predict species’ 

distributions quite distant from occurrences used for training, and strengthens the 

intriguing hypothesis that the range of C. bottae extends into each of the other areas 

mentioned above (Figure D-11a).  Visual encounter surveys with the aid of artificial 

cover objects (Hoyer and Stewart 2000) seem likely to yield additional exciting 

observations that will further our understanding of the distribution, status, and habitat use 

of this species. 

 

The state-wide continuous model predicts large extensions in the known range of R. 

luteiventris into the Big Snowy Mountains in central Montana and the Bighorn 

Mountains on the Crow Indian Reservation (Figure D-13a).  It is possible that the species 

has gone undetected and unreported in both areas because the most suitable habitat in 

113



these regions is on private and tribal lands that have not been surveyed.  Of the two areas, 

presence in the Bighorn Mountains may be more likely given that isolated populations 

most genetically similar to Northern Rocky Mountains populations have been 

documented in adjacent portions of this mountain range in Wyoming (Dunlap 1977, Funk 

et al. 2008).  Isolated populations of R. sylvatica have also been documented in this 

region of Wyoming (Dunlap 1977, Baxter and Stone 1985). 

 
A relatively continuous corridor of suitable habitat extending into the intermountain 

valleys along the upper Missouri River and its tributaries as far as the Beaverhead, Ruby, 

and Madison Valleys is supported by the state-wide models for several Montana Species 

of Concern that are primarily distributed on the plains of eastern Montana; S. bombifrons, 

B. cognatus, P. hernandesi, S. graciosus, H. nasicus, and L. triangulum (MNHP and 

MFWP 2009, Appendix D).  Intermountain valleys on the upper Missouri River have not 

received much survey attention because they are dominated by private lands.  However, 

occurrence records for some species back up the distributions predicted by the models 

and indicate a critical need for inventory and conservation efforts.  P. hernandesi has 

been collected around the Three Forks area on three occasions between 1888 and 1953, 

but all of the collection localities have poor spatial precision (Maxell et al. 2003).  The 

state-wide models constructed without these records predict suitable habitat in several 

areas in the vicinity of Three Forks as well as a few other areas in the upper Missouri 

drainage that can be targeted for survey (Figures D-19a-b).  Similarly, L. triangulum has 

been reported as having been collected near Three Forks in the late 1940s (Nelson 1950) 

and a more recent observation was reported by personnel at Lewis and Clark Caverns 

State Park (Grant Hokit, Carroll College, pers. comm.).  Both of these areas are predicted 

by the Maxent models and have rock outcrop habitats that are similar to areas in eastern 

Montana where the species has been detected (pers. obs.).  Prior to 2003, S. bombifrons 

had only been reported at four locations upstream of the Gates of the Mountains (Maxell 

et al. 2003).  However, calling surveys since 2003 have added 8 additional localities that 

indicate a more continuous distribution between Townsend and Dillon and a recent 

observation above Hebgen Lake (Clint Sestrich, Gallatin National Forest, pers. comm.) 

suggests that a continuous distribution up the Madison River Valley is possible (Figure 
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D-6b).  While B. cognatus, S. graciosus, and H. nasicus have not been reported in the 

area, the combination of model predictions and their presence near the Gates of the 

Mountains (B. cognatus and H. nasicus) or near Yellowstone Park (S. graciosus) 

indicates that an upper Missouri River distribution is possible for them as well (Appendix 

D, Maxell et al. 2003, Rawson and Pils 2005).  With the possible exception of S. 

graciosus, which has an overall more southwestern distribution, populations of most of 

these species inhabiting the intermountain valleys of the upper Missouri River watershed 

would likely have been somewhat isolated by the canyons near the Gates of the 

Mountains, which had limited riparian habitat (Moulton 1983).  Beginning in the 1890s, a 

series of dams were constructed and eventually flooded approximately 110 km of riparian 

areas and surrounding cliff and rock outcrop habitats these species would have depended 

on to depths of up to 50 m (Wright 1958).  Thus, any populations of these low elevation 

riparian and rock outcrop dependent species that remain in the upper Missouri River 

headwaters above the Gates of the Mountains today have likely been isolated from their 

main range on the Great Plains for over 100 years.  Furthermore, habitats in this region 

are becoming more and more fragmented by agriculture and subdivisions.  This 

highlights the urgency for surveys guided by model outputs and implementation of 

conservation measures where necessary. 

 

State-wide models indicate critical habitat corridors for maintaining the connectivity of 

populations of R. pipiens, C. picta, C. constrictor, P. catenifer, and C. viridis which range 

across eastern Montana into the intermountain valleys of the upper Missouri River and 

the larger intermountain valleys west of the Continental Divide (Appendix D, Maxell et 

al. 2003).  Models for all of these species indicate a clear separation in habitat between 

areas east and west of the Continental Divide, but stringers of habitat of varying quality 

extend up the Big Hole River to Divide Creek and over Deer Lodge Pass to Sand Creek, 

Silver Bow Creek, and the upper Clark Fork River.  C. constrictor, P. catenifer, and C. 

viridis would clearly have no trouble traversing the sagebrush steppe and grassland 

habitats in this corridor and may only be limited by availability of hibernacula (e.g., Imler 

1945, Hirth et al 1969).  R. pipiens juveniles are known to disperse up to 8.0 km from 

their natal ponds to their adult seasonal territories (Dole 1971, Seburn et al. 1997) and C. 
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picta have been observed 2.8 km straight line distance from the nearest surface water in 

eastern Montana (pers. obs.).  Thus, it seems well within the dispersal capabilities of 

these species to cross the approximately 800 m distance and 24 m of elevation change 

between Divide Creek and Sand Creek with suitable aquatic overwintering areas only 

separated by several km.  As compared with all other passes on the Continental Divide in 

Montana, Deer Lodge Pass seems to be the most likely corridor to provide connectivity 

for species limited to intermountain valley sagebrush steppe and grassland habitats.  In 

the case of C. picta, which has low genetic variation across its range, indicating a recent 

range expansion across the Great Plains sometime in the last 14,000 years (Starkey et al. 

2003), it seems likely that this same route is the most probable path by which the species 

colonized the Pacific Northwest (see range overview in Stebbins 2003).  Similarly, 

although other routes are possible, it seems most likely that C. viridis colonized western 

Montana from the Great Plains via this route sometime after the last Glacial Lake 

Missoula flood around 13,500 years ago (Alt and Hyndman 1995, Pook et al. 2000, 

Ashton and de Queiroz 2001).  Populations of C. viridis west of the Continental Divide 

are likely becoming more and more isolated from eastern populations as a result of 

human encroachment and subsequent persecution and will probably require conservation 

measures in coming years.  Habitat suitability models may be of some use in 

translocating snakes from areas of recent human development. 

 

In a pattern converse to the intermountain valley dependent species, the predicted 

distribution models for A. macrodactylum, B. boreas and R. luteiventris indicate that 

grassland and shrub-steppe habitats in the intermountain valleys of southwestern 

Montana may act as barriers to these species (Figures D-7a and D-13a).  These species 

are known to use flood plain habitats, but typically do not use arid grassland habitats 

(Werner et al. 2004).  This pattern is especially evident east of the Continental Divide for 

B. boreas and R. luteiventris.  In the case of these species, critical dispersal corridors 

include: (1) the area around the Gates of the Mountains which connects the main 

Northern Rocky Mountain chain to the Big Belt Mountains; (2) the area around Maudlow 

which connects the Bridger and Big Belt Mountains; (3) Homestake, Deerlodge, and Elk 

Park passes near Butte which connect the Boulder and Highland Mountains; (4) the area 

116



just west of Virginia City which connects the Greenhorn and Gravelly ranges to the 

Tobacco Root Mountains; (5) the area around the Smith River Canyon which connects 

the Big Belt Mountains to the Little Belt Mountains; (6) and the Lake Sutherland and 

Martinsdale Cutoff areas which connect the Little Belt Mountains to the Castle and Crazy 

Mountains, respectively. 

 

Model outputs have important implications for the conservation and restoration of R. 

pipiens in western Montana where populations have nearly been extirpated (Maxell et al. 

2003, Werner 2003).  The state-wide continuous model supports an historic distribution 

in western Montana prior to declines that was restricted to major valley bottoms and 

interestingly, despite several records in the lower Flathead Valley that were used to train 

the model, predicts more suitable habitat extending from just north of Flathead Lake up 

to the Canadian border near Eureka where the last historic populations still exist (Figure 

D-14a).  This region may be the best area to attempt to reintroduce populations.  No test 

occurrences were available to examine patterns of deviance in western Montana and it is 

possible that deviance in western Montana was high as a result of the influence of the 

large number of eastern Montana occurrences used to train the state-wide model.  It may 

therefore, be worth creating a model to guide future reintroduction efforts that is based 

solely on records from the intermountain valleys of western Montana.  In the mean time, 

the existing state-wide and range-wide models identify several areas along the upper 

Missouri River above the Gates of the Mountains that should be targeted for surveys to 

potentially locate and protect remaining breeding populations (Figure D-14a-c).   

 

There is a great need to identify areas of potential spread for R. catesbeiana, because this 

exotic species represents a major threat to native vertebrate and invertebrate populations 

(Bury and Whelan 1984, Maxell 2000, Maxell et al. 2003, Werner et al. 2004). Only a 

state-wide continuous model was run because they have been found in a number of new 

localities in recent years and the extent of their range is uncertain.  The model (Figures 

D-12a-b) indicates that a number of additional areas are capable of supporting 

populations, including: (1) the Flathead Valley; (2) a number of major drainages in 

northwest Montana including the Bull, Fisher, and Thompson Rivers; (3) the Missouri 
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River around Helena; (4) the Paradise Valley; (5) areas south of Billings around Bighorn 

Lake; and (6) streams around Lewistown.  Average minimum January temperatures 

greater than -12 °C, and ideally greater than -9 °C, were an important environmental 

variable in the model indicating that documented ongoing increases in winter 

temperatures from climate change (Mote 2003) are likely to expand the areas where this 

species is capable of surviving beyond those shown by this model.  The growing area that 

seems likely to be available for colonization in the future and the large impacts this 

species is likely to have on native vertebrate and invertebrate populations highlights the 

importance of undertaking control measures on currently established populations and 

educating the public to reduce or eliminate future spread.  Models that include predicted 

state-wide average minimum January temperatures, maximum July temperatures, and 

precipitation under a variety of likely future climate scenarios may be helpful for 

prioritizing control efforts. 

 

Alternative Map Outputs 

I want to briefly discuss two additional map outputs that can be used for regional and 

landscape-level planning.  First, the continuous 90 x 90 m grid cell logistic output can be 

summarized with zonal statistics to create maps or lists of predicted species within 

various administrative boundaries.  Appropriate thresholds for this conversion are 

dependent on species, administrative boundaries, and questions of interest.  For example, 

at the level of a PLSS section, applying the same low cutoff threshold used for the binary 

map to the average grid cell value within each section seems to reasonably represent 

species’ distributions when the species is not limited to small landscape features such as 

narrow riparian corridors (e.g., Figure 3.7).  Second, in the same way that GAP was 

designed to examine gaps in protection of biodiversity (Scott et al. 1993), the continuous 

or binary low cutoff threshold maps can be easily combined to summarize overall habitat 

suitability for various groups of species to identify core habitats, critical corridors, and 

gaps in stewardship protection (e.g., Figure 3.8).  The overall better performance and 

continuous logistic output of the inductive Maxent models seem to offer advantages over 

the more simplistic deductive GAP models for regional and landscape level planning; 

most notably they seem to be applicable at finer spatial scales. 
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Conclusions and Recommendations 

 

Model Performance 

Maxent is one of several newer modeling approaches that have the ability to use limited 

amounts of presence-only data to model the predicted distribution and habitat suitability 

of species (Phillips et al. 2004, 2006, Phillips and Dudik 2008).  These newer approaches 

are preferable to traditional modeling approaches that may not be applicable without 

absence data, limit the ways in which variables can interact to forms that are probably 

unrealistic, and do not have the flexibility to easily scale the complexity of models 

according to sample size (O’Connor 2002; Elith et al. 2006).  The maximum entropy 

algorithm performed well in predicting the distribution and habitat suitability of 

Montana’s 31 amphibian and reptile species and this modeling effort identified several 

ways to improve future models. 

 

While state-wide models resulted in AUC values that were likely biased high relative to 

range-wide models as a result of a disconnect between the sampling distributions for 

occurrences and randomly chosen background points, there is obvious value in 

developing models at both scales.  This helps identify scale dependent variables that 

likely limit species’ distributions.  State-wide models clearly provide a useful heuristic 

tool to identify areas where native species’ known ranges are most likely to be expanded 

and were exotic species are most likely to become established to better target survey and 

control efforts.  Range-wide binary models based on a low cutoff threshold are 

appropriate for regional and local-landscape planning efforts and can be used to populate 

species lists associated with a variety of administrative boundaries.  Delineation of 

several habitat suitability classes using the ratios of the percent of observations in a class 

to the percent of the overall map area represented by that logistic class appeared to be 

appropriate for all species it was applied to and is likely to provide useful insights to 

biologists and natural resource managers in planning and conservation efforts.  Simple or 

weighted addition of logistic outputs for complexes of different species based on status, 

taxonomic group, foraging guild, or other criteria may also be useful for conservation 

planning efforts.  When compared to predictions from the deductively based models 
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produced by the Montana Gap Analysis Project, continuous Maxent models offered more 

realistic depictions of amphibian and reptile species distributions when survey data was 

available for a region and in most cases reduced predicted area while simultaneously 

increasing predictive accuracy.  However, deductive models like those produced by GAP 

are still important for representing some species distributions in areas lacking survey 

effort where the Maxent models may have under predicted distributions. 

 

Suggestions for Future Modeling Efforts 

(1) Models benefited greatly from the presence of STATSGO soils and surficial geology 

layers even though these nominal map units are not readily interpretable.  Detailed 

analysis of the soil characteristics associated with patterns of the soil map units 

occupied should be conducted to inform development of state-wide layers 

summarizing soil characteristics such as soil depth, soil texture, and percent sand, silt, 

or clay, which can all be included as more interpretable continuous variables in future 

models. 

(2) Solar radiation indices were not of value in their present form.  However, 

examination of other forms of solar indices is probably warranted for future modeling 

efforts given that the biology of these species is largely dependent on their ability to 

behaviorally maintain optimal body temperatures. 

(3) A 30-meter resolution ecological systems map is currently being developed for 

Montana and should be used in future modeling efforts because it promises to more 

accurately represent many ecological communities across Montana. 

(4) Predicted temperature and precipitation regimes under likely future climate scenarios 

should be used in future modeling efforts in parallel with models run with current 

moisture and temperature regimes to provide insights into how species are likely to be 

impacted solely from these changes.  Identifying likely future shifts in vegetation 

communities is also clearly of importance and would be a valuable addition to 

predicted distribution models under climate change.  However, examining only the 

response to likely temperature and precipitation changes, the variables likely to be 

best predicted (Mote 2003), is likely to be useful in the identification of species most 
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likely to be impacted if vegetation communities are not able to respond quickly 

enough to support shifts in species’ ranges. 

(5) A sensitivity analysis should be performed to assess the value of increasing the 

regularization factor that Maxent uses to constrain estimated distributions to the 

characteristics of environment variables associated with occurrences.  This would 

assist with the potential problem of models that appeared to under predict the 

distributions of some species in areas where occurrence data is lacking. 

(6) Ideally future sampling for occurrence data used to construct predicted distribution 

and habitat suitability models would involve surveying local habitat patches on 

multiple occasions as part of a state-wide sampling scheme to directly incorporate 

detectability into the model (MacKenzie et al. 2003, 2006, MacKenzie 2006).  This is 

certainly the most powerful approach to training and testing models and future 

surveys should strive to gather data in this manner. 

 

Inventory and Conservation Needs 

(1) Large regions of Montana lack occurrence data for amphibians and reptiles and this 

probably resulted in poor model fit in these regions.  Targeting these areas with 

inventory efforts would be beneficial for understanding the status and distribution of 

species and would improve future models.  These areas include the Blackfeet, Crow, 

Northern Cheyenne, and Fort Peck Indian Reservations and a large section of 

northeast Montana that is dominated by private land with tilled agriculture. 

(2) Stream species such as A. montanus, C. serpentina, and A. spinifera still have 

relatively little data despite the fact that fisheries biologists work in these habitats 

across the state on a regular basis.  Documentation of these species in the course of 

other fisheries surveys would greatly benefit our understanding of their distribution 

and status. 

(3) Numerous extensions to the known ranges of species are supported by the models.  In 

particular, significant extensions seem likely for E.  skiltonianus, S. graciosus, C. 

bottae, and L. triangulum.  This highlights the need for systematic inventories for 

reptile species across Montana and the need to conduct focal surveys for a number of 

amphibian and reptile species using the model output to guide survey efforts. 
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(4) A number of species with ranges primarily on the plains of eastern Montana have 

populations in the intermountain valleys of the upper Missouri watershed that are 

likely isolated above large hydrologic developments.  Models can guide inventory 

efforts for these populations to identify conservation measures that can be taken for 

isolated populations of S. bombifrons, R. pipiens, P. hernandesi, S. graciosus, C. 

viridis, and possibly L. triangulum and H. nasicus. 

(5) Model output highlights potential corridors that may be critical for maintaining 

connectivity of intermountain valley species such as C. picta, C. constrictor, P. 

catenifer, and C. viridis across the Continental Divide.  An inverse pattern of 

potential corridors between mountain ranges is highlighted in western Montana for R. 

luteiventris and B. boreas whose distributions are primarily limited to mountainous 

areas and major river valleys. 

(6) Models highlight the need to conserve isolated populations of D. atterimus, P. regilla 

and C. viridis west of the Continental Divide where pressures from human activities 

are increasing rapidly. 

(7) Reintroduction efforts in western Montana for R. pipiens might best be focused on the 

northern portions of the Flathead Valley, but models using data from only west of the 

Continental Divide should be constructed to see if this pattern holds without 

occurrences from eastern Montana.  In the mean time, the existing state-wide and 

current range-wide models identify several areas along the upper Missouri River 

above the Gates of the Mountains that should be targeted for survey to locate and 

protect any remaining breeding populations in western Montana.   

(8) Models indicate that R. catesbeiana populations are capable of becoming established 

in a much broader region than they are currently limited to.  This highlights the need 

to undertake control efforts on existing populations, targeting those most likely to 

spread first. 
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 Table 3.1.  Environmental variables used in models.  Metadata for each environmental 

layer is provided in Appendix C. 

 
Variable Type Description 
Aspect categorical Dominant degrees of aspect grouped into 9 categories 

including flat 
Elevation continuous Elevation in meters from the National Elevation Dataset 

(NED) 
Geology categorical 931 categories of surficial geology 

 
Land Cover categorical 1992 National Land Cover Data (NLCD) – 21 classes 

 
Max Temp continuous Estimated average maximum daily July temperature in 

degrees Fahrenheit for 1971-2000 
Min Temp continuous Estimated average minimum daily January temperature 

in degrees Fahrenheit for 1971-2000 
Precip continuous Relative Effective Annual Precipitation (REAP) in 1 cm 

intervals as an indicator of available soil moisture 
Ruggedness continuous Vector ruggedness measure (VRM) of local terrain 

 
Slope continuous Degrees of slope 

 
Soils categorical 694 soil mapping units from the state soil geographic 

data (STATSGO) on general soil associations developed 
by the National Cooperative Soil Survey 

Soil TM categorical Soil temperature and moisture regime – 12 categories 
 

Solar E continuous Solar radiation index (SRI) at each tenth degree of 
latitude at the equinox 

Solar SS continuous Solar radiation index (SRI) at each tenth degree of 
latitude at the summer solstice 

Solar WS continuous Solar radiation index (SRI) at each tenth degree of 
latitude at the winter solstice 

Stream ED continuous Euclidian distance from major streams in 1 meter 
intervals 
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Table 3.2.  Observation records in the Montana Natural Heritage Program’s state-wide 

database, number with suitable spatial precision, and number of spatially 

unique records available for training and testing models. 

 
 

Species 
Total No. 
Records 

No. Records  
<400 m uncertainty 

No. Training 
Records 

No. Test 
Records 

A. macrodactylum 2174 1798 1122 387 
A. tigrinum 1146 937 587 202 
D. atterimus 55 52 45 - 
P. idahoensis 159 142 65 - 
A. montanus 972 398 214 73 
S. bombifrons 455 369 263 88 
B. boreas 1599 1336 789 288 
B. cognatus 294 225 164 55 
B. woodhousii 1017 840 599 205 
P. maculata 3169 2864 2013 682 
P. regilla 387 298 176 59 
R. catesbeiana 61 45 37 - 
R. luteiventris 5150 4140 2431 854 
R. pipiens 1475 1192 788 / 766 a 270 / 265 a 
C. serpentina 92 59 43 - 
C. picta 1188 939 608 215 
A. spinifera 176 147 85 - 
E. coerulea 86 48 48 - 
P. hernandesi 187 83 78 - 
S. graciosus 197 120 102 - 
E. skiltonianus 55 21 18 - 
C. bottae 175 65 63 - 
C. constrictor 571 367 260 88 
H. nasicus 129 70 66 - 
O. vernalis 40 32 22 - 
L. triangulum 57 22 22 - 
P. catenifer 744 513 371 126 
T. elegans 1566 977 609 212 
T. radix 721 589 424 145 
T. sirtalis 950 635 377 132 
C. viridis 826 474 338 115 

 

a  Number of records used for state-wide historic range model / number of records used 
for current range model. 
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Table 3.3.  Habitat suitability class cutoffs resulting from plots of the ratio of the percent 

of observations to percent of pixels in each habitat suitability class.  Species 

without cutoff values for moderate and optimal habitat suitability classes did 

not have test data available to define these classes. 

 
Species Low Moderate Optimal 

A. macrodactylum 0.123 0.25 0.55 
A. tigrinum 0.093 0.45 0.65 
D. atterimus 0.174 - - 
P. idahoensis 0.008 - - 
A. montanus 0.107 0.35 0.75 
S. bombifrons 0.044 0.15 0.65 
B. boreas 0.073 0.35 0.65 
B. cognatus 0.046 0.2 0.55 
B. woodhousii 0.072 0.25 0.65 
P. maculata 0.099 0.35 0.65 
P. regilla 0.060 0.15 0.55 
R. catesbeiana 0.006 - - 
R. luteiventris 0.094 0.35 0.55 
R. pipiens 0.077 0.2 0.65 
C. serpentina 0.031 - - 
C. picta 0.052 0.15 0.55 
A. spinifera 0.008 - - 
E. coerulea 0.048 - - 
P. hernandesi 0.047 - - 
S. graciosus 0.024 - - 
E. skiltonianus 0.041 - - 
C. bottae 0.032 - - 
C. constrictor 0.058 0.15 0.55 
H. nasicus 0.056 - - 
O. vernalis 0.065 - - 
L. triangulum 0.025 - - 
P. catenifer 0.052 0.15 0.45 
T. elegans 0.075 0.25 0.65 
T. radix 0.049 0.3 0.65 
T. sirtalis 0.035 0.15 0.65 
C. viridis 0.099 0.35 0.65 
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Table 3.4.  Variable importance rankings (state-wide model / range-wide model) with overall averages ordered left to right. 
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A. macrodactylum 5 / 3 4 / 5 6 / 6 8 / 7 2 / 4 12 / 11 3 / 1 1 / 2 10 / 10 7 / 8 9 / 9 11 / 12 14 / 15 15 / 14 13 / 13
A. tigrinum 1 / 1 2 / 2 4 / 3 9 / 6 8 / 5 14 / 12 3 / 4 6 / 7 10 / 14 5 / 8 7 / 11 15 / 10 11 / 9 12 / 13 13 / 15
D. atterimus 4 / 5 1 / 11 5 / 14 6 / 8 8 / 6 12 / 13 7 / 7 2 / 3 15 / 10 9 / 2 3 / 1 10 / 4 13 / 9 14 / 12 11 / 15
P. idahoensis 5 / 4 7 / 6 8 / 9 4 / 3 1 / 14 2 / 1 9 / 5 11 / 12 12 / 8 6 / 15 3 / 2 10 / 7 15 / 10 14 / 13 13 / 11
A. montanus 3 / 2 2 / 1 6 / 8 8 / 10 7 / 9 9 / 6 4 / 3 1 / 5 10 / 11 11 / 13 5 / 4 12 / 7 13 / 14 14 / 15 15 / 12
S. bombifrons 1 / 1 3 / 2 4 / 4 7 / 6 5 / 5 11 / 10 6 / 8 8 / 9 2 / 3 12 / 7 9 / 13 10 / 14 13 / 11 14 / 12 15 / 15
B. boreas 4 / 2 6 / 5 7 / 8 10 / 9 3 / 7 5 / 4 2 / 1 1 / 3 8 / 11 14 / 6 9 / 10 12 / 13 11 / 12 15 / 15 13 / 14
B. cognatus 1 / 1 2 / 2 7 / 7 4 / 4 5 / 6 9 / 9 6 / 5 15 / 13 3 / 3 13 / 11 8 / 15 10 / 8 14 / 10 12 / 12 11 / 14
B. woodhousii 2 / 1 3 / 2 9 / 8 5 / 5 14 / 14 4 / 4 8 / 9 10 / 11 1 / 3 6 / 6 7 / 7 11 / 10 13 / 12 12 / 13 15 / 15
P. maculata 1 / 1 3 / 2 5 / 4 8 / 11 4 / 5 9 / 6 2 / 3 7 / 7 15 / 15 6 / 9 11 / 14 14 / 8 12 / 12 10 / 13 13 / 10
P. regilla 5 / 2 3 / 4 8 / 7 4 / 1 2 / 9 11 / 14 7 / 3 6 / 8 9 / 6 1 / 11 10 / 5 15 / 13 12 / 12 14 / 10 13 / 15
R. catesbeiana 1 / - 4 / - 7 / - 10 / - 8 / - 3 / - 5 / - 14 / - 13 / - 2 / - 12 / - 9 / - 15 / - 11 / - 6 / -
R. luteiventris 5 / 3 6 / 4 7 / 5 8 / 8 3 / 6 10 / 10 2 / 1 1 / 2 4 / 7 11 / 12 9 / 9 12 / 11 13 / 14 14 / 15 15 / 13
R. pipiens 1 / 1 2 / 2 4 / 5 3 / 4 7 / 7 6 / 3 5 / 6 14 / 12 13 / 14 8 / 8 9 / 11 10 / 9 15 / 15 11 / 10 12 / 13
C. serpentina 1 / 3 3 / 1 6 / 6 5 / 4 13 / 9 2 / 2 10 / 11 14 / 13 4 / 15 9 / 12 7 / 14 8 / 5 11 / 8 15 / 7 12 / 10
C. picta 1 / 1 4 / 3 2 / 2 3 / 4 7 / 7 6 / 6 5 / 5 8 / 9 10 / 12 9 / 8 11 / 11 15 / 10 12 / 13 14 / 14 13 / 15
A. spinifera 3 / 4 2 / 2 4 / 5 6 / 3 9 / 6 1 / 1 12 / 12 5 / 9 7 / 13 14 / 14 8 / 7 11 / 10 13 / 8 10 / 11 15 / 15
E. coerulea 6 / 4 3 / 3 10 / 8 5 / 1 4 / 14 13 / 13 12 / 7 9 / 10 8 / 5 2 / 15 1 / 2 7 / 6 11 / 9 15 / 12 14 / 11
P. hernandesi 1 / 1 3 / 2 2 / 3 14 / 13 4 / 5 10 / 8 9 / 10 13 / 14 6 / 11 15 / 15 5 / 4 7 / 9 8 / 12 12 / 7 11 / 6
S. graciosus 1 / 3 7 / 6 6 / 7 4 / 1 2 / 4 10 / 8 15 / 11 3 / 2 9 / 13 11 / 10 5 / 5 8 / 9 13 / 12 14 / 15 12 / 14
E. skiltonianus 2 / 1 3 / 2 5 / 4 10 / 7 4 / 9 9 / 6 8 / 10 11 / 11 12 / 13 1 / 5 13 / 12 6 / 3 15 / 14 7 / 8 14 / 15
C. bottae 1 / 1 2 / 2 7 / 9 8 / 3 5 / 7 4 / 4 11 / 8 13 / 12 10 / 13 6 / 14 3 / 5 9 / 6 12 / 10 15 / 15 14 / 11
C. constrictor 1 / 1 2 / 2 7 / 6 4 / 4 15 / 15 6 / 5 11 / 12 5 / 7 3 / 3 13 / 14 9 / 11 12 / 10 8 / 8 10 / 9 14 / 13
H. nasicus 1 / 1 3 / 3 6 / 4 7 / 6 4 / 2 5 / 5 11 / 13 15 / 14 2 / 7 8 / 10 14 / 15 9 / 8 10 / 9 13 / 11 12 / 12
O. vernalis 4 / 3 3 / 1 5 / 5 1 / 2 6 / 4 7 / 6 12 / 10 14 / 14 13 / 13 2 / 8 8 / 12 9 / 7 10 / 11 15 / 15 11 / 9
L. triangulum 1 / 1 3 / 2 4 / 3 15 / 15 13 / 12 7 / 5 5 / 11 14 / 14 2 / 4 11 / 10 8 / 8 6 / 6 9 / 7 10 / 13 12 / 9
P. catenifer 1 / 1 3 / 3 6 / 6 5 / 5 8 / 8 4 / 4 11 / 9 7 / 7 2 / 2 14 / 14 15 / 15 10 / 11 9 / 10 12 / 12 13 / 13
T. elegans 1 / 1 4 / 3 9 / 7 11 / 10 6 / 5 3 / 2 5 / 6 2 / 4 7 / 9 8 / 8 10 / 11 12 / 12 13 / 13 14 / 14 15 / 15
T. radix 5 / 2 7 / 5 4 / 3 1 / 8 3 / 4 10 / 7 6 / 6 9 / 10 8 / 9 2 / 1 11 / 13 13 / 11 12 / 12 15 / 5 14 / 14
T. sirtalis 2 / 2 1 / 1 7 / 5 9 / 8 5 / 6 8 / 9 4 / 4 6 / 7 13 / 12 3 / 3 10 / 10 12 / 14 14 / 13 15 / 15 11 / 11
C. viridis 1 / 1 2 / 2 6 / 6 7 / 7 8 / 8 3 / 3 14 / 15 4 / 5 5 / 4 12 / 12 13 / 14 9 / 9 10 / 10 11 / 11 15 / 13
Average Rank 2.3 / 1.9 3.3 / 3 5.9 / 5.9 6.7 / 6.1 6.2 / 7.4 7.3 / 6.6 7.4 / 7.2 8 / 8.5 7.9 / 9.1 8.1 / 9.6 8.5 / 9.3 10.5 / 9.1 12.1 / 11.1 12.9 / 12 12.9 / 12.7
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Table 3.5. Evaluations of range-wide continuous models with area under the receiver operating characteristic plot (AUC) and a low cutoff threshold of these 
models with absolute validation index (AVI), point biserial correlations (COR), and deviance.  COR and deviance were also used to evaluate models for species 
with presence / non-detection (PND) data from a recent state-wide inventory of lentic water bodies.  Other evaluations are for training and test presence only data 
as indicated; test data was not available for some species (Table 3.2).  In addition, all training and test presence only data was used to evaluate Gap Analysis 
Project (GAP) models (Hart et al. 1998) with AVI.  See text for descriptions of metrics.  All COR values were statistically significant (P < 0.0001). 

 
Species 

AUC 
Training 

AUC (SD) 
Test 

AVI 
Training  

AVI 
Test  

GAP 
AVI 

COR 
Test 

COR 
PND  

Deviance (SD) 
Test 

Deviance (SD) 
PND 

A. macrodactylum 0.932 0.909 (0.008) 0.98 0.96 0.20 0.47 0.15 1.14 (1.16) 1.88 (1.46) 
A. tigrinum 0.918 0.878 (0.013) 0.98 0.93 0.98 0.50 0.31 1.53 (1.63) 1.39 (1.321) 
D. atterimus 0.992 - 1.00 - 0.92 - - - - 
P. idahoensis 0.982 - 1.00 - 0.30 - - - - 
A. montanus 0.940 0.889 (0.024) 0.99 0.92 0.32 0.59 - 1.42 (2.01) - 
S. bombifrons 0.951 0.895 (0.015) 1.00 0.95 0.96 0.36 0.27 2.05 (1.87) 0.55 (0.83) 
B. boreas 0.937 0.888 (0.011) 0.99 0.95 0.83 0.48 0.15 1.40 (1.62) 1.48 (1.24) 
B. cognatus 0.966 0.877 (0.021) 0.98 0.89 0.77 0.47 0.18 2.47 (2.24) 0.58 (0.82) 
B. woodhousii 0.954 0.940 (0.008) 0.98 0.98 0.92 0.38 0.54 1.32 (1.45) 0.56 (1.03) 
P. maculata 0.886 0.884 (0.006) 0.98 0.97 0.93 0.39 0.45 1.29 (1.18) 1.14 (1.10) 
P. regilla 0.956 0.933 (0.015) 0.99 0.97 0.84 0.49 0.38 1.15 (1.30) 0.69 (0.85) 
R. catesbeiana - - 1.00 - 0.03 - - - - 
R. luteiventris 0.942 0.936 (0.004) 0.99 0.98 0.53 0.38 0.21 1.01 (1.07) 1.66 (1.38) 
R. pipiens 0.945 0.923 (0.008) 0.99 0.96 0.53 0.43 0.28 1.47 (1.46) 1.44 (1.26) 
C. serpentina 0.993 - 1.00 - 0.44 - - - - 
C. picta 0.959 0.929 (0.009) 0.99 0.97 0.22 0.38 0.23 1.50 (1.75) 0.88 (1.33) 
A. spinifera 0.999 - 1.00 - 0.28 - - - - 
E. coerulea 0.982 - 0.98 - 0.67 - - - - 
P. hernandesi 0.972 - 1.00 - 0.87 - - - - 
S. graciosus 0.992 - 0.99 - 0.94 - - - - 
E. skiltonianus 0.998 - 1.00 - 0.79 - - - - 
C. bottae 0.994 - 1.00 - 0.92 - - - - 
C. constrictor 0.953 0.858 (0.020) 0.99 0.91 0.91 0.44 - 2.38 (2.35) - 
H. nasicus 0.973 - 1.00 - 0.76 - - - - 
O. vernalis 0.981 - 0.87 - 0.22 - - - - 
L. triangulum 0.994 - 1.00 - 0.68 - - - - 
P. catenifer 0.956 0.897 (0.013) 0.99 0.96 0.89 0.35 - 1.92 (2.00) - 
T. elegans 0.960 0.909 (0.011) 0.99 0.95 0.94 0.42 0.20 1.54 (1.74) 1.26 (1.33) 
T. radix 0.928 0.908 (0.011) 0.99 0.98 0.85 0.35 0.18 1.56 (1.55) 1.65 (1.33) 
T. sirtalis 0.981 0.935 (0.012) 1.00 0.91 0.80 0.58 0.28 1.77 (2.48) 0.83 (1.45) 
C. viridis 0.948 0.875 (0.017) 0.99 0.90 0.92 0.54 - 1.84 (1.88) - 
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Table 3.6.  Area and percent of Montana with predicted suitable habitat for range-wide low cutoff threshold and Gap analysis models. 
Species Low Cutoff Area 

(km2) 
GAP Area 

(km2) 
Difference in Area 
Estimates (km2) a 

Percent change in 
estimated area b 

Low Cutoff 
Percent of Montana 

GAP Percent 
of Montana 

A. macrodactylum 42455 10590 31,865 301 11.2 2.8 
A. tigrinum 147503 286959 -139,456 -49 38.8 75.4 
D. atterimus 364 3213 -2,850 -89 0.1 0.8 
P. idahoensis 5891 876 5,015 572 1.6 0.2 
A. montanus 33844 4918 28,927 588 8.9 1.3 
S. bombifrons 136949 265254 -128,305 -48 36 69.7 
B. boreas 85053 143761 -58,708 -41 22.4 37.8 
B. cognatus 91507 175550 -84,043 -48 24.1 46.1 
B. woodhousii 71792 167403 -95,611 -57 18.9 44 
P. maculata 190628 282931 -92,303 -33 50.2 74.3 
P. regilla 22360 27461 -5,101 -19 5.9 7.2 
R. catesbeiana c 34734 61 34,673 56,841 9.1 0 
R. luteiventris 82215 32183 50,032 155 21.6 8.5 
R. pipiens c 119646 51884 67,762 131 31.5 13.6 
C. serpentina 12686 12694 -8 0 3.3 3.3 
C. picta 154087 32782 121,305 370 40.6 8.6 
A. spinifera 8380 454 7,926 1,746 2.2 0.1 
E. coerulea 11646 17025 -5,379 -32 3.1 4.5 
P. hernandesi 79179 179586 -100,407 -56 20.8 47.2 
S. graciosus 31386 124344 -92,958 -75 8.3 32.7 
E. skiltonianus 8775 13724 -4,949 -36 2.3 3.6 
C. bottae 39279 101288 -62,009 -61 10.3 26.6 
C. constrictor 158427 259260 -100,832 -39 41.7 68.1 
H. nasicus 73027 198272 -125,245 -63 19.2 52.1 
O. vernalis 6052 2373 3,679 155 1.6 0.6 
L. triangulum 36033 131857 -95,824 -73 9.5 34.6 
P. catenifer 172658 283036 -110,378 -39 45.4 74.4 
T. elegans 123959 302854 -178,895 -59 32.6 79.6 
T. radix 116086 199169 -83,083 -42 30.6 52.3 
T. sirtalis 83416 205875 -122,459 -59 22 54.1 
C. viridis 144149 268409 -12,4260 -46 37.9 70.5 
a Differences are low cutoff range model estimates minus GAP estimates. 
b (Area difference / area estimated by GAP) x 100. 
c State-wide model was used for R. catesbeiana because of potential to spread.  Areas where R. pipiens has declined or been extirpated were excluded. 
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Table 3.7.  Commissiona, omissionb, map accuracyc, and Kappa Indexd assessments of GAP analysis models and low and optimal 
habitat class binary cutoff thresholds for range-wide models using lentic site survey data from the Montana Amphibian 
Inventory Project. 
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A. macrodactylum 0.647 0.619 0.719 0.112 0.246 0.358 0.375 0.488 0.569 0.030 0.097 -0.061 2123 
A. tigrinum 0.832 0.710 0.831 0.003 0.087 0.017 0.272 0.728 0.282 0.047 0.237 0.048 2556 
S. bombifrons 0.953 0.807 0.963 0.000 0.024 0.000 0.264 0.922 0.072 0.022 0.216 0.003 1581 
B. boreas 0.959 0.922 0.958 0.008 0.022 0.022 0.109 0.713 0.205 0.005 0.075 0.007 3418 
B. cognatus 0.980 0.923 0.983 0.000 0.009 0.006 0.258 0.914 0.231 0.010 0.108 0.005 1552 
B. woodhousii 0.794 0.513 0.866 0.003 0.043 0.012 0.668 0.910 0.457 0.229 0.471 0.096 1552 
P. maculata 0.662 0.476 0.695 0.002 0.182 0.187 0.440 0.728 0.385 0.135 0.348 0.049 2764 
P. regilla 0.936 0.745 0.904 0.002 0.014 0.015 0.382 0.898 0.681 0.043 0.333 0.102 1375 
R. luteiventris 0.568 0.508 0.503 0.128 0.260 0.362 0.443 0.564 0.573 0.026 0.180 0.136 3422 
R. pipiens 0.782 0.672 0.787 0.000 0.134 0.200 0.268 0.671 0.596 0.034 0.214 0.015 1546 
C. picta 0.938 0.869 0.936 0.000 0.002 0.027 0.555 0.814 0.907 0.065 0.187 0.051 4961 
T. elegans 0.960 0.892 0.966 0.004 0.015 0.033 0.211 0.802 0.115 0.013 0.135 0.000 4182 
T. radix 0.828 0.776 0.840 0.009 0.119 0.157 0.232 0.627 0.212 0.028 0.119 0.001 1522 
T. sirtalis 0.946 0.866 0.955 0.002 0.009 0.016 0.488 0.846 0.528 0.048 0.186 0.030 3993 
a  Number of lentic site surveys where species was predicted to be present, but was not detected. 
b  Number of lentic site surveys where species was predicted to be absent, but was detected. 
c  Sum of the number of lentic site surveys where species was predicted present and was detected and predicted absent and not detected divided by the total 

number of sites surveyed. 
d  ((Total number of sites surveyed * (sum of the number of lentic site surveys where species was predicted present and was detected plus predicted absent and 

not detected)) – ((total number of detections * total number of predicted presences) + (total number of non detections * total number of predicted absences))) / 
(total number of sites surveyed squared – ((total number of detections * total number of predicted presences) + (total number of non detections * total number 
of predicted absences))). 
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Figure Legends 

 

Figure 3.1. Example ratio of percentage of observations to percent of pixels curve for 

determining habitat suitability classes for B. boreas.  Low habitat suitability classes have 

a small proportion of the total number of occurrences relative to the pixel area 

represented by that logistic output class.  Higher habitat suitability classes have larger 

proportions of the total number of occurrences relative to the pixel area represented by 

each logistic output class.  The dashed line at a ratio of 1 represents a completely random 

model.  Cutoff values assigned for this species were non-habitat  <0.073, low habitat 

suitability = 0.073-0.35, moderate habitat suitability = 0.35-0.65, and optimal habitat 

suitability = > 0.65. 

 

Figure 3.2. Example receiver operating characteristic (ROC) curve for the B. boreas 

range-wide continuous model.  Training data is shown in red.  Test data is shown in dark 

blue.  Performance of a random model is shown in light blue.  The curve plots sensitivity, 

also known as the true positive rate or 1 minus the omission rate, against 1 – specificity, 

also known as the false positive rate, across all thresholds of the continuous model.  

Because the ROC plot provides information across thresholds, it avoids the subjectivity 

of choosing a single threshold and the total area under the curve (AUC) provides a single 

measure of the overall performance of the model.  For B. boreas, AUC = 0.888, 

indicating that for any given threshold the model will correctly evaluate a random 

selection from the occurrence data as having a higher score than a paired random 

selection from the background pseudo-absences 89 percent of the time.  AUC values vary 

from 0 to 1 with a random model performing at a value of 0.5. 

 

Figure 3.3.   Example habitat suitability class evaluation at the landscape scale using 

deviances of test occurrences.  Test occurrence deviances for R. luteiventris are mapped 

with black circles sized relative to the magnitude of deviance of the underlying predicted 

logistic value from that predicted by the occurrence (i.e., a logistic value of 1).  The 

region shown is centered on Glacier National Park with areas classified as unsuitable 

habitat showing as an aerial photograph for perspective, and habitats classified as low, 
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moderate, and optimal suitability in yellow, orange, and red, respectively.  Habitat 

suitability classifications perform well, with the magnitude of test occurrence deviances 

inversely correlated with predicted habitat suitability across the landscape.  The two test 

occurrences with large deviances and white centers fell below the binary low cutoff 

threshold for suitable habitat (i.e. these represent omission errors in the low cutoff 

threshold binary model). 

 

Figure 3.4. Example jackknife charts for B. boreas showing the importance of 

environmental variables as a function of the change in training gain (a), test gain (b), and 

AUC on test data (c) resulting from sole inclusion (dark blue bars) or sole exclusion 

(light blue bars) of the environmental variable in the model.  The red bar indicates the 

maximum gain or test AUC achieved with inclusion of all variables.  Geology, 

STATSGO soils, slope, and Euclidean distance from streams are the most important 

variables on their own and removal of slope from the model resulted in the greatest 

reduction in gain or AUC.  The solar radiation indices (srie, sris, and sriw) are all 

unimportant on their own and the solar radiation index at the summer solstice (sris) 

actually resulted in a negative test gain indicating a model with this variable alone is 

worse than a null model. 

 

Figure 3.5. Example response curves for B. boreas to individual environmental 

variables showing how the logistic prediction changes as each environmental variable is 

varied while all other environmental variables are held constant at their average sample 

values.  Maxent also provides response curves for the individual environmental variables 

on their own.  Note that if any of the environmental variables are correlated, the marginal 

response curves can be misleading (e.g., two highly correlated variables with opposite 

response curves could counter act one another). 

 

Figure 3.6.   Reduction in AUC values as a function of range area for 30 amphibian and 

reptile species showing the importance of training and evaluating models within the range 

of a species rather than an arbitrary administrative boundary (e.g., a state).  Difference in 

AUC between state-wide and range-wide models is inversely related to the size of the 
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species’ range relative to that administrative boundary.  Training data (non significant 

slope, p = 0.35, r2 = 0.03) is represented by diamonds and a dashed line.  Test data 

(significant slope, p = 0.0002, r2 = 0.058) is represented by triangles and a solid line. 

 

Figure 3.7. Example of using continuous logistic output at the scale of 90 x 90 m grid 

cells to represent predicted occupancy at the scale of Public Land Survey System (PLSS) 

sections for R. luteiventris.  The upper portion of the image is centered on the Tobacco 

Root Mountains in southwestern Montana with areas classified as unsuitable habitat 

showing as an aerial photograph to provide perspective, and habitats classified as low, 

moderate, and optimal suitability in yellow, orange, and red, respectively.  PLSS sections 

are shown as predicted to contain suitable habitat when the average logistic value for the 

approximately 320 grid cells contained by each section is greater than the low binary 

cutoff threshold for the continuous model.  While this appears to be appropriate for 

protecting the species core habitats, it clearly misses narrow riparian corridors in valley 

bottoms that are critical for maintaining connectivity between core areas.  Thus, 

appropriate thresholds are dependent on the species, administrative boundaries, and 

questions of interest. 

 

Figure 3.8. Example of overall predicted habitat suitability and species diversity for 

amphibians and reptiles in Glacier National Park.  A National Agriculture Imagery 

Program (NAIP) color image (a) is included for reference to cumulative logistic output 

predicting areas of highest amphibian diversity (b), reptile diversity (c), and overall 

herpetofauna diversity (d).  Warmer colors (reds) represent higher and cooler colors 

(blues) represent lower overall predicted habitat suitability. 

132



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

10

20

30

40

50

60

70

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Habitat Suitability Index Class

R
at

io
 o

f P
er

ce
nt

 o
f O

bs
er

va
tio

ns
 to

 P
er

ce
nt

 o
f P

ix
el

s 
in

 C
la

ss

Lo
w

 S
ui

ta
bi

lit
y 

M
od

er
at

e 
Su

ita
bi

lit
y 

O
pt

im
al

 S
ui

ta
bi

lit
y 

N
on

-s
ui

ta
bl

e 

133



 
 
 
 
 
 
 

134



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

135



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)

(b)

(c)

136



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

137



0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

0 50000 100000 150000 200000 250000 300000 350000 400000

Range Area (km2)

D
iff

er
en

ce
 in

 A
U

C
 (S

ta
te

w
id

e 
M

in
us

 R
an

ge
w

id
e)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

138



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

139



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)

(c) (d)

140



CHAPTER 4 

 

THE PATHOGENIC AMPHIBIAN CHYTRID FUNGUS, 

BATRACHOCHYTRIUM DENDROBATIDIS, IN MONTANA, USA 

 

 

Introduction 

 

Emerging infectious diseases are one of the greatest threats to global biodiversity and the 

health of human populations (Daszak et al. 2000, Jones et al. 2008).  The chytrid fungus, 

Batrachochytrium dendrobatidis (hereafter Bd), has emerged as one of the greatest 

threats to amphibian species (Longcore et al. 1999).  Bd has been associated with die-offs 

in Australia (Berger et al. 1998), Central America (Lips 1999, Lips et al. 2006), South 

America (Carnaval et al. 2006), Europe (Bosch et al. 2001, Garner et al. 2005), and 

western North America (Green and Kagarise Sherman 2001, Muths et al. 2003) and 

threatens hundreds of species with extinction (Stuart et al. 2004).  However, Bd has also 

been reported as widespread in a number of regions not associated with amphibian 

declines such as Africa and the northeastern United States (Weldon et al. 2004, Longcore 

et al. 2007).  In Montana, almost 60 percent of amphibians are state Species of Concern 

(MNHP and MFWP 2009) and evidence indicates that both the Western Toad (Bufo 

boreas) and Northern Leopard Frog (Rana pipiens) underwent declines in western 

Montana in the early to mid 1980s (Maxell et al. 2003, Werner 2003, Werner et al. 2004, 

Maxell et al. 2009). 

 

 

Methods 

 

In order to examine the potential timeline of arrival of Bd in Montana, we took tissue 

samples (toes from forelimbs or 5 x 5 mm ventral pelvic dermal patches) from 104 post-

metamorphic museum voucher specimens at the Phil L. Wright Zoological Museum at 

the University of Montana and the zoology collection at Montana State University.  
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Voucher specimens were chosen in order to complement our recent sampling (Figure 

4.1), encompass a broad date range (1899 to 1983), and included 25 B. boreas, 5 

Woodhouse’s Toad (Bufo woodhousii), 38 Columbia Spotted Frog (Rana luteiventris), 

and 36 R. pipiens. 

 

In order to begin to understand the current distribution of Bd in Montana we collected 

swabs of ventral tissues and toes opportunistically in association with a variety of 

fieldwork assessing the distribution, status, and ecology of Montana’s amphibians 

between 1998 and 2008 (e.g., Chapter 2, Werner 2003, Muths et al. 2008, Maxell et al. 

2009).  We collected swabs of ventral tissues from 465 live post-metamorphic 

individuals, clipped toes from 96 post metamorphic individuals found live, and clipped 

toes from 16 post metamorphic individuals found dead (only 4 of these were associated 

with mass mortality events).  Samples were collected between 6 April and 23 September 

from 1998 to 2008 with 58 percent of samples collected in 2004, 17 percent in 2008, 11 

percent in 2005 and 1 to 4 percent in other years.  We targeted B. boreas and R. 

luteiventris most frequently for Bd sampling because of concerns over the status of B. 

boreas and the relatively high frequency with which post-metamorphic R. luteiventris 

were encountered (Table 4.1).   In order to prevent the spread of Bd and other fungal and 

viral pathogens, field equipment and clothing that contacted water or mud was washed 

and then decontaminated with 10 percent bleach or Sparquat® between each watershed 

where samples were taken (Johnson et al. 2003, Johnson and Speare 2003, 2005).  All 

tissues and swabs were stored at room temperature in microcentrifuge tubes filled with 95 

percent ethanol.  We typically worked and collected samples at lower elevations earlier in 

the year and progressively worked at higher elevations as the field season progressed, but 

we sampled the full range of elevations present in Montana in both June and July during 

the study.  Swabs and toes from older museum specimens, live animals, and toes from 

recently collected voucher specimens were all collected using sterile procedures and were 

analyzed by Pisces Molecular (J. Wood, Boulder, Colorado, USA) for the presence of Bd 

using PCR (Annis et al. 2004).  We also collected the following animals and shipped 

them to the National Wildlife Health Center for histopathology by DEG using the 

methods described in Green and Kagarise Sherman (2001): 5 healthy post-metamorphic 
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B. boreas on 5 July 2000 and 8 healthy post-metamorphic R. luteiventris on 2 July 2001 

in Glacier National Park, 6 recently metamorphosed B. boreas from a mass mortality 

event at Schoolmarm Lake in southern Ravalli County on 2 August 2001 (pers. obs.), 7 

R. luteiventris adults from a mass mortality event in the upper portions of the North Fork 

of Sweeney Creek in Ravalli County on 8 June 2001 (pers. obs.), and 2 larval R. 

luteiventris from a mass mortality event in Gallatin County near Yellowstone National 

Park on 11 July 2001 (Eric Atkinson, Marmot’s Edge Conservation, pers. comm.). 

 

To examine the potential correlation of human travel corridors used by humans or 

wildlife with the presence of Bd, we measured Euclidean distances from sample locations 

to nearest roads in ArcMap 9.2 using the 2000 census topologically integrated geographic 

encoding and referencing system (TIGER) roads data.  We classified habitats and levels 

of human activity at sample locations based on field notes of the observer and high-

resolution aerial photographs for 2005 from the National Agricultural Imagery Program 

(NAIP).  We classified habitats into upland terrestrial sites, ephemeral lentic sites, 

permanent lentic sites with vegetation, permanent lentic sites without emergent 

vegetation, and lotic sites.  We classified sites as high, moderate, or low human activity 

based on proximity to areas of human activity.  For example, a site within a residential 

area or a commonly used county road or interstate highway was classified as high human 

activity.  A site adjacent to a U.S. Forest Service road receiving regular vehicle traffic 

was classified as moderate human activity.  A site 20 km from the nearest road within a 

large wilderness complex, but still associated with regular human activity because of its 

proximity to a commonly used pack trail was also classified as moderate human activity.  

However, a site 5 km from a road without any trail access was classified as low human 

activity.  We recorded all elevations from digital 1:24,000-scale U.S. Geological Survey 

quadrangle maps. 

 

We used one-tailed z-ratio tests to evaluate the statistical significance of differences 

between independent proportions of samples testing positive for Bd in our opportunistic 

samples.  Pearson’s r was used to estimate correlations of the proportion of samples 

testing positive for Bd between two species sampled at the same sites. 
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Results 

 

Approximately 70 percent of the 104 museum voucher specimen tissues collected 

between 1899 and 1983 failed to fully digest and PCR failed to detect Bd in those that did 

digest; likely as a result of fixation in formalin at the time of preservation (Hyatt et al. 

2007).  Similarly, only 2 (10 percent) of the samples collected between 1998 and 2008 

from voucher specimens that had been fixed or stored in formalin tested positive with 

PCR as compared to 36 percent of toe or ventral tissues and 38 percent of tissue swabs 

stored immediately in ethanol and tested with PCR.  Histology detected Bd in 46 percent 

of the 13 live post-metamorphic animals from Glacier National Park.  However, histology 

did not detect Bd in any of the animals collected at mass mortality events in Ravalli and 

Gallatin Counties.  Both the mass mortality of B. boreas juveniles at Schoolmarm Lake in 

southern Ravalli County and the mass mortality of R. luteiventris in Gallatin County near 

Yellowstone National Park were due to ranavirus (David E. Greene, National Wildlife 

Health Center, pers. comm.).  The die-off of B. boreas juveniles represents the first case 

of a die-off of a bufonid due to ranavirus to be diagnosed by the National Wildlife Health 

Center.  No pathogens were detected in the tissues of the R. luteiventris adults found at 

the mass mortality event in the North Fork of Sweeney Creek in Ravalli County and we 

presume these mortalities are the result of winter kill. 

 

Bd was detected in 6 of the 9 species for which samples were collected between 1998 and 

2008 and analyzed with either PCR or histology (Table 4.1).  Those species that did not 

have any samples test positive for Bd all had small sample sizes, making it likely that we 

failed to detect Bd in these species by chance alone.  Samples testing positive for Bd 

were widespread across Montana and at elevations up to 2,524 m (Figures 4.1).  There 

was broad overlap in the point estimates and 95% confidence intervals for both the 

proportions of samples and sites testing positive for Bd across all elevation classes 

sampled.  The proportions of samples and sites that tested positive for Bd in April, May, 

and June, a wetter and cooler period of the active season (0.43 for samples and 0.56 for 

sites), were both significantly higher than they were in July, August, and September, a 

drier and warmer period of the active season (0.34 for samples and 0.32 for sites) (z ≥ 
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1.99, p ≤ 0.023).  The proportion of samples and sites testing positive for Bd within 1 km 

of a road (0.40 for samples and 0.50 for sites), were both significantly higher than they 

were at distances greater than 1 km from roads (0.26 for samples and 0.27 for sites) (z ≥ 

2.94, p ≤ 0.002).  However, Bd was still broadly distributed in areas with lower road 

densities and one sample from Glacier National Park that was 17.5 km from the nearest 

road tested positive.  There was no correlation between human activity, as classified from 

our field notes and NAIP imagery, and the proportion of sites testing positive for Bd (37 

percent of high activity sites, 38 percent of moderate activity sites, and 31 percent of low 

activity sites) (z ≤ 0.211, p ≥ 0.17).  Permanent lentic sites with emergent vegetation 

tested positive for Bd at a significantly higher rate (0.42) than ephemeral lentic sites 

(0.33) (z = 1.65, p ≤ 0.049).  Other major habitat types all had much lower proportions of 

sites test positive for Bd (permanent lentic sites without emergent vegetation = 0.14, lotic 

sites = 0.17, and terrestrial habitats = 0.14). 

 

At 12 sites where we sampled 2 species, Bd detection rates between species were 

moderately positively correlated (Pearson’s r = 0.32) for the 1 to 20 individuals that were 

sampled for each species (Table 4.2).  Nine of these sites are permanent sites with 

emergent vegetation that may serve as aquatic overwintering sites for amphibians as well 

as a permanent reservoir for Bd.  The mean proportion of samples testing positive at these 

9 permanent sites was 0.58 as compared to 0.40 at the 3 ephemeral sites where multiple 

species were sampled.  B. boreas was sampled for Bd at 5 permanent and 3 ephemeral 

lentic sites where other species where present (7 with R. luteiventris and 1 with Long-

toed Salamander (Ambystoma macrodactylum)) (Table 4.2).  At these sites, Bd detection 

rates in B. boreas were significantly higher (0.71) as compared to all other permanent and 

ephemeral lentic sites where B. boreas were sampled (0.38) (z = 3.67, P = 0.0001).  In 

contrast, R. luteiventris was sampled for Bd at 6 permanent and 2 ephemeral lentic sites 

where other species were present (7 with B. boreas and 1 with R. pipiens) (Table 4.2).  At 

these sites, Bd detection rates in R. luteiventris were significantly lower (0.20) as 

compared to all other permanent and ephemeral lentic sites where R. luteiventris were 

sampled (0.46) (z = 3.45, P = 0.003). 
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Discussion 

 

The widespread occurrence of Bd in samples collected in 6 species across Montana in the 

past decade at a variety of elevations, habitat types, and at sites quite distant from human 

activity clearly indicates that Bd has been present in Montana for a significant period of 

time.  However, our data do not provide any direct evidence for Bd as the cause of 

declines in B. boreas and R. pipiens populations in western Montana in the 1980s 

(Chapter 2, Maxell et al. 2003, Werner 2003).  If Bd was the cause of declines in B. 

boreas, it is possible that the stability we have observed in breeding populations over the 

last 10-15 years (Maxell et al. 2009, BAM, BRH, JKW, PSC, unpublished data) is a 

result of selection for populations with greater resistance.  Severe declines accompanying 

the outbreak of Bd have been followed by slow increases to pre-decline numbers in at 

least one species in the rainforests of eastern Australia (McDonald et al. 2005).  In the 

case of R. pipiens, declines in populations in western Montana have resulted in the near 

extirpation of the species while populations in eastern Montana remain widespread and 

relatively common (Werner 2003, Chapter 2).  Eight antimicrobial peptides have been 

isolated from the skin of R. pipiens that may confer resistance to Bd (Rollins-Smith et al. 

2002), but populations in western Montana may have produced a different cocktail or 

volume of these peptides that afforded less resistance.  It is also possible that unknown 

natural or anthropogenic stressors on populations in western Montana led to a weakened 

immune response to Bd (e.g., Maniero and Carey 1997, Simmaco 1997).   

 

It is interesting that while we detected Bd in or on the skins of animals showing no signs 

of morbidity, we did not detect Bd in association with any of the mass mortality events 

where we were able to collect specimens.  With the exception of Tiger Salamanders 

(Ambystoma tigrinum), which have had mortality events reported at 29 sites across the 

species’ known range in Montana between 2002 and 2008 (Figure 4.2), mass mortality 

events have rarely been reported for Montana amphibians and populations of most 

species are believed to be stable (Chapter 2, Maxell et al. 2009).  None of these mortality 

events was able to be screened for pathogens with histopathology or PCR, but they were 

associated with skin lesions similar in appearance to those associated with Bd infections 
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in another ambystomatid (Brodman and Briggler 2008).  A. tigrinum has shown resilience 

to Bd infection elsewhere (Davidson 2003, Berger et al. 2005) so we believe these 

mortality events are most likely due to Ambystoma tigrinum virus (ATV), which has 

caused mass mortalities in A. tigrinum populations in surrounding states and provinces 

(Bollinger et al. 1999, Jancovich et al. 2005, Schock et al. 2008). 

 

Because we collected tissue samples opportunistically in association with a variety of 

fieldwork, patterns in our data should only be regarded as hypotheses to be tested with 

more rigorous sampling schemes.  However, our findings are generally consistent with 

other literature on Bd in temperate North America (Longcore et al. 2007, Pearl et al. 

2007, Muths et al. 2008).  Habitats with longer hydroperiods and cooler portions of the 

active season that would better support the transmission and growth of Bd were 

associated with higher rates of detection.  However, there was no trend evident in the 

proportion of sites or samples testing positive for Bd at various elevations that might be 

associated with temperature as reported by Muths et al. (2008) for the Rocky Mountains 

from Montana to Colorado.  An association between Bd and human travel corridors has 

not been reported before to our knowledge, but there is evidence for this in our finding of 

significantly higher detection rates for Bd within 1 km of a road.  Since our data do not 

support a direct connection between levels of human activity and Bd detection rates, this 

may indicate that human travel corridors facilitate non human transmission of Bd.  A 

variety of wildlife make extensive use of human trails, closed roads, and minor roads and 

Bd would more easily survive between water crossings if travel costs and times were 

reduced for these species. 

 

The patterns of higher Bd detection rates in B. boreas at sites where they co-occurred 

with other species relative to all other lentic habitats where they were sampled (Table 

4.2) may indicate a pattern of cross infection between species that has important 

implications for conservation.  R. luteiventris may be an important reservoir and vector 

for Bd in Montana because the species is highly aquatic and breeds in 65 percent of 

watersheds and 29 percent of lentic sites across western Montana (Chapter 2, Werner et 

al. 2004, Maxell et al. 2009).  R. luteiventris has been found to produce two skin peptides 
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ranatuerin-2La and esculentin-2L that have strong fungicidal impacts on Bd, potentially 

allowing them to carry the pathogen without succumbing to it (Rollins-Smith et al. 2002).  

B. boreas also produces skin peptides that have been shown to be highly potent at 

inhibiting Bd, but they produce very small quantities of these peptides and, as a result, 

their overall resistance to Bd is poor (Muths et al. 2003, Carey et al. 2006).  Bufonids are 

experiencing the highest rate of disease related decline of any amphibian family (Stuart et 

al. 2004).  Their weak defense against Bd is potentially a result of their thick keratin rich 

epidermal skin layer and the less complex cocktail of skin peptides the family produces 

(Woodhams et al. 2006). 

 

The widespread nature of Bd in Montana amphibians indicates the need for studies of the 

population level demographic impacts of Bd as a function of intra and interspecific 

densities, phenology, thermoregulatory behaviors, environmental conditions, factors that 

provide differential resistance to pathogens such as the production of skin peptides, and a 

variety of natural and anthropogenic stressors (e.g., Woodhams et al. 2003, 2007a, 

2007b).  All of these topics have important implications for efforts to maintain existing 

populations and reintroduce species such as R. pipiens into regions where they have been 

extirpated.  The known presence of Bd, the continued specter of other novel pathogens, 

the regular occurrence and unknown causes of mass mortality events in A. tigrinum, and 

the potential role of humans in transmission of Bd, all raise the importance of educating a 

variety of personnel on the importance of following washing and decontamination 

protocols (Johnson et al. 2003, Johnson and Speare 2003, 2005).  Sale of live amphibians 

from the pet trade may represent a significant threat to native amphibian populations 

through the potential introduction of novel pathogens so we recommend establishment of 

procedures to ensure that animals in pet stores are pathogen free.  Montana state law bans 

the unauthorized introduction of exotic species (Montana Code Annotated 87-5-705), but 

additional efforts should be made to educate the public about potential consequences.  

Finally, exotic American Bullfrogs (Rana catesbeiana) continue to be introduced and are 

expanding their range in Montana (Maxell et al. 2003, 2009).  R. catesbeiana are a 

known reservoir and vector for the spread of Bd (Weldon et al. 2004, Garner et al. 2006) 

so we encourage control measures in areas with established populations. 
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Table 4.1.  Proportion of sites and samples testing positive for Bd and mean positive rate 

across sites for 9 amphibian species at 164 locations across Montana between 

1998 and 2008. 

 

Species N 
Sites/Samples 

 Proportion 
(95% CI) 

Sites  
Positive 

Proportion 
(95% CI)  
Samples 
Positive 

Mean (SE) 
Positive Rate 
Across Sites 

Long-toed Salamander 
(Ambystoma macrodactylum) 2 / 7 0 

(-) 
0 
(-) 

0 
(-) 

Tiger Salamander 
(Ambystoma tigrinum) 3 / 7 0.33 

(0.0 – 1.0) 
0.14 

(0.0 – 0.49) 
0.33 

(0.33) 

Coeur d’Alene Salamander 
(Plethodon idahoensis) 3 / 5 0 

(-) 
0 
(-) 

0 
(-) 

Western Toad 
(Bufo boreas) 85 / 235 0.45  

(0.35 – 0.56) 
0.40 

(0.34 – 0.46) 
0.35 

(0.05) 

Great Plains Toad 
(Bufo cognatus)1 2 / 2 0 

(-) 
0 
(-) 

0 
(-) 

Woodhouse’s Toad 
(Bufo woodhousii) 13 / 33 0.23 

(0.03 – 0.51) 
0.09 

(0.01 – 0.20) 
0.05 

(0.03) 

Boreal Chorus Frog 
(Pseudacris maculata) 8 / 8 0.38 

(0.08 – 0.80) 
0.38 

(0.08 – 0.80) 
0.38 

(0.18) 

Columbia Spotted Frog 
(Rana luteiventris) 45 / 259 0.49 

(0.35 – 0.65) 
0.41 

(0.35 – 0.47) 
0.34 

(0.06) 

Northern Leopard Frog 
(Rana pipiens) 15 / 34 0.47 

(0.24 – 0.76) 
0.29 

(0.15 – 0.46) 
0.34 

(0.11) 
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Table 4.2. Proportion of animals testing positive at sites with samples taken from 

multiple species during a single survey date.  A maximum of two species was sampled 

per site.  Overall Pearson’s correlation r = 0.32 and covariance = 0.04 regardless of 

species.  R. luteiventris positive test rates were lower than B. boreas positive test rates at 

all but one site where both were sampled, potentially indicating that R. luteiventris is 

better able to avoid or clear Bd infections. 

 
 

Site ID 
 

Species 1 
Proportion 

Positive (N) 
 

Species 2 
Proportion 

Positive (N) 
38 B. boreas 0.4 (5) R. luteiventris 0.4 (5) 
41 B. boreas 0.86 (14) R. luteiventris 0.0 (3) 
55 B. boreas 0.2 (5) R. luteiventris 0.0 (1) 
76 B. boreas 1.0 (1) R. luteiventris 0.5 (4) 
77 B. boreas 1.0 (1) R. luteiventris 0.22 (9) 
82 B. boreas 1.0 (5) R. luteiventris 0.4 (5) 
86 B. boreas 1.0 (3) R. luteiventris 0.5 (4) 

102 B. boreas 0.0 (1) A. macrodactylum 0.0 (6) 
199 B. woodhousii 0.0 (1) A. tigrinum 1.0 (1) 
23 P. maculata 1.0 (1) R. pipiens 1.0 (1) 

201 P. maculata 0.0 (1) R. pipiens 0.0 (2) 
190 R. luteiventris 0.0 (20) R. pipiens 0.0 (10) 
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Figure Legends 

 

Figure 4.1. Spatial distribution of samples collected across Montana.  Samples from 

museum specimens collected between 1899 and 1983 all tested negative for Bd via PCR 

(open circles).  Samples collected between 1998 and 2008 that tested positive and 

negative for Bd are represented by black stars and solid black circles, respectively. 

 

Figure 4.2. Lentic sites with mass mortalities of A. tigrinum (black stars) detected 

between 2002 and 2008. 
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APPENDIX A 

Site Data Form for Lentic Breeding Amphibian and Aquatic Reptile Surveys 
Locality Information 

Date Observer(s) Owner Site Detection: 
Aerial Photo    Topo Map    NWI Map    Incidental 

GPS
EPE

Strata
Number 

HUC
Number 

Site
Number State County 

Map 
Name 

Locality T R S
Section 
Description 

Map                                    
Elevation                    FT 

UTM 
Zone:

UTM 
North 

UTM 
East

Survey Type 
0     1     2     3     4     5     6     7     8

Habitat Information 
Begin 
Time 

End
Time 

Total Person 
Minutes of Search 

Camera and Photo Number(s)/Description(s) 

Site Dry:
Y        N

Site
Origin:       Beaver       Water       Depressional       Manmade       Other______________

Support Reproduction? 
Y        N 

GIS Mapping 
0     1     2     3     4     5     6     7 

Habitat       Lake/         Wetland/          Bog/         Backwater/         Spring/            Active                 Inactive                     Site                  Ditch/           Reservoir/           Well/
Type:          Pond            Marsh             Fen             Oxbow              Seep          Beaver Pond         Beaver Pond          Multipooled          Puddle          Stockpond            Tank

Weather: 
Clear      Partly Cloudy      Overcast      Rain      Snow

Wind: 
Calm      Light      Strong

Air                           
Temp                   C

Water                     
Temp                C

Water
pH

Color:
Clear     Stained

Turbidity:
Clear     Cloudy

Water Connectedness:
Permanent     Temporary     Isolated

Water Permanence:
Permanent     Temporary

Max Depth:
< 1 M     1-2 M     >2 M

Percent of Site > 2 M 
0    1-25    26-50    51-75    76-100 

Site
Length: 

Site
Width: 

Percentage of Site Searched: 
1-25     26-50     51-75     76-100 

Percent of Site at < 50 cm Depth: 
0     1-25     26-50     51-75     76-100 

~ Emergent Veg Area (M2)

Percent of Site with Emergent Veg:
0       1-25       26-50       51-75       76-100

Percent of Site with Larval Activity: 
0       1-25       26-50       51-75       76-100 

Rank Emergent Vegetation Species in Order of Abundance:
Sedges___Grasses__Cattails___Rushes___Water Lily___Shrubs___Other_____

Primary Substrate of Shallows:
Silt/Mud    Sand    Gravel    Cobble    Boulder/Bedrock

North Shoreline Characteristics: 
Shallows Present:    Y     N         Emergent Veg Present:    Y     N 

Distance (M) to 
Forest Edge: 

Grazing Impact 
None     Light     Heavy Structure     Heavy Structure and Water     Heavy Water 

Water Dammed/Diverted 
Y          N 

Timber Harvest in Area 
Y          N

Mining Activity 
Y          N

Other Human Impacts 
Or Modifications: 

Fish Detected?
Y       N

Time at First 
Detection: 

Fish Species 
If Identified: 

Fish Spawning Habitat Present?
Y           N           U

Inlet 
Width: 

Inlet 
Depth: 

Inlet 
Substrate

Outlet 
Width 

Outlet 
Depth 

Outlet 
Substrate

Species Information 
Amphibian 

Species
Time at first 

detection
E     L     M     J     A No. Egg 

Masses  5-20mm larvae 10     100     1000 
10K        >10K 

20-50mm 
larvae

10       100        1000 
10K        >10K 

>50mm 
larvae

10       100      1000
10K        >10K 

Number 
Juveniles

Number 
Adults

Tissue
Number 

Voucher 
Number 

Breeding
with Fish? Y          N 

If breeding with fish 
is cover present? Y          N 

Amphibian 
Species

Time at first 
detection

E     L     M     J     A No. Egg 
Masses  5-20mm larvae 10     100    1000

10K        >10K 
20-50mm 

larvae
10       100        1000 

10K        >10K 
>50mm 
larvae

10        100     1000
10K        >10K 

Number 
Juveniles

Number 
Adults

Tissue
Number 

Voucher 
Number 

Breeding
with Fish? Y           N 

If breeding with fish 
is cover present? Y          N 

Amphibian 
Species

Time at first 
detection

E     L     M     J     A No. Egg 
Masses  5-20mm larvae 10    100      1000 

10K        >10K 
20-50mm 

larvae
10       100        1000 

10K        >10K 
>50mm 
larvae

10        100     1000
10K        >10K 

Number 
Juveniles

Number 
Adults

Tissue
Number 

Voucher 
Number 

Breeding
with Fish? Y          N 

If breeding with fish 
is cover present? Y          N 

Amphibian 
Species

Time at first 
detection

E     L     M     J     A No. Egg 
Masses  5-20mm larvae 10    100      1000 

10K        >10K 
20-50mm 

larvae
10       100        1000 

10K        >10K 
>50mm 
larvae

10        100     1000
10K        >10K 

Number 
Juveniles

Number 
Adults

Tissue
Number 

Voucher 
Number 

Breeding
with Fish? Y          N 

If breeding with fish 
is cover present? Y          N 

Reptile 
Species

Time at first 
detection

E     J     A Number 
Individuals 

SVL
in CM 

Tissue
Number 

Voucher 
Number 

Reptile 
Species

Time at first 
detection

E     J     A Number 
Individuals 

SVL
in CM 

Tissue
Number 

Voucher 
Number 

Reptile 
Species

Time at first 
detection

E     J     A Number 
Individuals 

SVL
in CM 

Tissue
Number 

Voucher 
Number 
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Site Map For Lentic Breeding Amphibian and Aquatic Reptile Surveys 
Grid Scale: 
                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

* Indicate the following locations on the map: T = temperature, G = GPS reading, C = clinometer reading, and P  = 
photo locations and directions of photos.  Indicate area with emergent vegetation with cross-hatching and indicate a 
2-meter depth contour with a dashed line. 

Other Notes:

Compass
Bearing 70° 90° 110° 130° 150° 170° 190° 210° 

Inclination
(degrees) 
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Definitions of Variables on Lentic Breeding Amphibian Survey Data Sheet 

Locality Information
Date:  Use MM-DD-YY format (e.g. 5/12/00 for May 12 of 2000). 
Observers:  List names or initials of individuals involved with survey of this site and circle the name of the recorder. 
Owner:  Use abbreviation of the government agency responsible for managing the land you surveyed. (e.g. USFS, BLM).  If private land was 
surveyed list the owner’s full name to indicate that you did not trespass. 
Site Detection:  Was site detected on aerial photo, topographic map, NWI map, or was it observed incidentally while in the field. 
GPS EPE:  The estimated positional error reported by the GPS receiver in meters. 
Strata Number:  The sample strata in which the 6th level HUC watershed lies (one of nine defined in western Montana). 
HUC Number:  The sample number of the 6th level HUC in one of the nine sample strata defined for western Montana. 
Site Number:  The number pre-assigned to the water body within each 6th level HUC.  If the water body was not pre-assigned a number 
because it was not on topographic maps or aerial photos then assign it a sequential number and draw it on the topo map. 
State:  Use the two-letter abbreviation. 
County:  Use the full county name. 
Map Name:  List the name of the USGS 7.5-minute (1:24,000 scale) topographic quadrangle map. 
Locality: Describe the specific geographic location of the site so that the type of site is described and the straight-line air distance from one or 
more permanent features on a 7.5-minute (1:24,000 scale) topographic map records the position of the site (e.g., Beaver pond, 1.5 miles south 
of Elephant Peak and 1.3 miles east of Engle Peak). 
T:  Record the Township number and whether it is north or south. 
R:  Record the Range number and whether it is east or west. 
S:  Record the Section number. 
Section Description:  Describe the location of the site at the ¼ of ¼ section level (e.g., SENE indicates SE corner of NE corner). 
Map Elevation:  The elevation of the site as indicated by the topographic map in feet (avoid using elevations from a GPS) 
UTM Zone:  Universal Transverse Mercator zone recorded on the topographic map.  Use NAD 27 as the map and GPS datum. 
UTM North:  Universal Transverse Mercator northing coordinate in meters as recorded on the topographic map or GPS receiver.  Be sure to 
note any major differences between UTM coordinates on the map and those on the GPS receiver. 
UTM East:  Universal Transverse Mercator easting coordinate in meters as recorded on the topographic map or GPS receiver.  Be sure to note
any major differences between UTM coordinates on the map and those on the GPS receiver. 
Survey Type:  Circle the appropriate number defined as follows: 0 = private land so site was not surveyed; 1 = site not surveyed due to 
logistics; 2 = site is a lotic spring/seep not worth future survey; 3 = lentic site that is worth future survey; 4 = misidentified as a potential lentic 
site on the aerial photograph or on the topographic map (e.g., a shadow from a tree or a talus slope) and not worth future survey; 5 = inactive 
beaver dam that now only has lotic habitat and is not worth future survey; 6 = only lotic habitat is present and the site is not worth future 
survey, but it appears possible that the meadow was an historic beaver dam complex; 7 = a lentic site because it would hold water for at least a 
short time period during wetter conditions, but it is not worth future survey because it would never hold enough water long enough to support 
amphibian reproduction; 8 = site is not worth future survey for some reason other than those listed above. 

Habitat Information
Begin Time:  List the time the survey began in 24-hour format. 
End Time:  List the time the survey ended in 24-hour format. 
Total Person Minutes of Search:  Record the total person minutes the site was searched (e.g. if one person surveys for 15 minutes and another 
surveys for 30 minutes, but takes 5 minutes to measure a specimen the total person minutes is 40 minutes). 
Camera and Photo Number(s) / Description (s):  Identify the camera and the number of the photo as viewed on the camera’s view screen and 
a description of the contents of the photograph (e.g., 13 = 1 x ASMO larvae and 14 = 1 x habitat).  Take photos of all portions of the site and 
anything else that may be of interest (e.g., areas with fish versus areas with amphibians). 
Site Dry:  Circle whether the site was dry or not at the time of the survey. 
Site Origin:  Circle whether the site origin is glacial, beaver, water (i.e., flooding or spring), depressional, manmade, or describe other origin. 
Support Reproduction:  Is site capable of supporting reproduction so it is worth resurveying (e.g. in wetter years if now dry)? 
GIS Mapping:  Circle the appropriate number defined as follows: 0 = site not surveyed; 1 = a 4 in the survey type and site is not worth future 
survey; 2 = a 2, 5, 6, or 8 in survey type and site is not worth future survey; 3 = 7 in survey type and site is not worth future survey; 4 = a 3 in 
the survey type and site is dry, but is worth future survey; 5 = a 3 in the survey type and site has ephemeral water and is worth future survey 
(including high elevation sites that freeze solid); 6 = a 3 in the survey type, site is worth future survey, has emergent vegetation, and has 
permanent water that lasts all summer long and does not freeze solid in the winter so that it is likely to support aquatic overwintering; 7 = a 3 in 
the survey type, site is worth future survey, does not have functional amounts of emergent vegetation, and has permanent water that lasts all 
summer long and does not freeze solid in the winter so that it is likely to support aquatic overwintering. 
Habitat Type:  Circle the appropriate habitat type of the site being surveyed.  If site is multi-pooled water information does not need to be
gathered for every pool, but you may wish to record this information on the map.  If breeding activity is limited to one pool at a multi-pooled 
site water information should be recorded for this pool and this should be noted in the comments. 
Weather:  Circle weather condition during survey. 
Wind:  Circle wind condition during survey (> 20 mph winds should be classified as strong). 
Air Temp:  Record air temperature at chest height in the shade.  Record temperature in Celsius.  C = ( F – 32)/1.8 
Water Temp:  Record water temperature where larvae or egg masses are observed or at 2 cm depth 1 meter from the margin of the water body. 
Record temperature in Celsius.  C = ( F – 32)/1.8 
Water pH:  Record water pH at the same location water temperature was recorded. 
Color:  Circle whether the water is clear or stained a tea or rust color from organic acids. 
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Turbidity:  Circle whether water is clear or cloudy. 
Water Connectedness:  Circle if water body has permanent connection to flowing water (Permanent), is connected to flowing water for a 
temporary period each year (Temporary), or is never connected to flowing waters or other water bodies (Isolated). 
Water Permanence:  Circle whether the site contains water throughout the entire year (Permanent), or contains water for only a portion of the 
year (Temporary). 
Max Depth:  Circle the category corresponding to the maximum depth of the water body. 
Percent of Site > 2 M:  Circle the percentage of the site with water depth greater than 2 meters deep. 
Site Length:  The length of the longest dimension of the standing water body. 
Site Width:  The width of the second longest dimension of the standing water body. 
Percentage of Site Searched:  Circle the percentage of the site surveyed. 
Percentage of the Site at < 50 cm Depth:  Circle the appropriate percentage. 
Approximate Area with Emergent Veg (M2):  The approximate area of the site that contains emergent vegetation. 
Percentage of Site with Emergent Veg:  Circle the percentage of the entire site with emergent vegetation. 
Percentage of Site with Larval Activity:  Circle the percentage of the site where amphibian larvae were observed. 
Rank Emergent Veg Species in Order of Abundance:  Record the rank order of abundance in front of the 3 most prevalent emergent 
vegetation species.  If the vegetation present is “other” indicate what it is. 
Primary Substrate:  Circle the substrate that covers the majority of the bottom of the site. 
North Shoreline Characteristics:  Circle whether shallows and emergent vegetation are present or absent on the north shoreline. 
Distance (M) to Forest Edge:  Record the closest distance between the water’s edge and the forest margin in meters. 
Grazing Impact:  Circle the appropriate grazing category defined as follows: no grazing in vicinity of the site; grazing noted in the vicinity of 
the site, but no major impacts to wetland structure or water quality; heavy structural impacts to site (e.g.,vegetation destroyed creating bare 
ground, hummocks, pugging, or altered hydroregime); heavy structural impacts and water quality impacted due to animal waste; and water 
quality impacted due to animal waste. 
Water Dammed/Diverted:  Circle whether or not water has been dammed or diverted at the site (including blow outs or pits). 
Timber Harvest:  Circle whether or not timber has been harvested within 200 meters of the site. 
Mining Activity:  Circle whether or not there is evidence of mining activity within 200 meters of the site. 
Other Human Impacts or Modifications:  Briefly describe if, how, and when the site has been altered by human activities.  If the site has not 
been altered record none for not altered.  If multiple anthropogenic impacts exist document all of these using the back of the data sheet if 
necessary and qualify approximate timing of impact (e.g., recent versus historic). 
Fish Detected?:  Circle whether or not fish were detected. 
Time at First Detection:  If fish were detected, indicate the time in total person minutes of survey when they were first detected. 
Fish Species if Identified:  List the fish species identified. 
Fish Spawning Habitat Present?:  Are shallow waters with adequate gravels/cobbles present that would allow salmonid fishes to spawn?  An 
active search for fry is also a good idea. 
Inlet Width:  What is the average width of the inlet stream in meters? 
Inlet Depth:  What is the average depth of the inlet stream in centimeters? 
Inlet Substrate:  What is the primary substrate at the inlet stream (Silt/Mud, Sand, Gravel, Cobble, or Boulder/Bedrock)? 
Outlet Width:  What is the average width of the outlet stream in meters? 
Outlet Depth:  What is the average depth of the outlet stream in centimeters? 
Outlet Substrate:  What is the primary substrate at the outlet stream (Silt/Mud, Sand, Gravel, Cobble, or Boulder/Bedrock)? 

Species Information
For each species record the first two letters of the scientific genus and species names for all amphibian and reptile species found at the site (e.g., 
BUBO for Bufo boreas).  Record the total number of person minutes of survey required before each life history stage of each species was 
encountered beside the E (egg), L (larvae), M (metamorph), J (juvenile), or A (adult).  Record the number or category of number of each of the 
specified life history and/or size classes.  For amphibians indicate whether they have bred in the same water body where fish are present, and if 
they have, indicate whether there is protective cover (e.g., extensive shallows with emergent vegetation, a log barrier, talus).  Record the tissue 
number or range of tissue numbers for tissue samples collected (see tissue collection protocols).  If the animal was swabbed in preparation for 
testing the animal for chytrid infection indicate the chytrid sample number in the Tissue Number field.  Record the preliminary museum 
voucher specimen number for voucher specimens collected (see voucher specimen collection protocols). 

Site Map for Lentic Breeding Amphibian and Aquatic Reptile Surveys
General:  Include a rough sketch of the site including the shape of the site and the shape and spatial relations of surrounding biotic and abiotic 
features.  Indicate the area covered with emergent vegetation with cross-hatching.  Indicate a 2-meter depth contour for the water body with a 
dashed line.  Indicate the location where the water temperature was taken, the location where the GPS position was taken, the location where 
clinometer readings for southern exposure were taken, and the location of any photographs with an arrow indicating the direction in which the 
photo(s) were taken.  Make sure that the orientation of the sketch (i.e. the north arrow) corresponds to the orientation of the site. 
Grid Scale:  Indicate the approximate scale of the grid lines relative to the site sketched in meters. 
Other Notes:  Include any other notes of interest in this space.  Examples: (1) areas of highest larval density; (2) thoughts on why a species
may not have been detected at a site; (3) problems associated with the survey of the site (e.g., dangerous boggy conditions); (4) If a site was dry 
would it support reproduction during wetter years. 
Southern Exposure:  From a site on along the northern shoreline that would most likely to be used as an oviposition or larval rearing area 
(e.g., shallow waters with emergent vegetation in the NW corner of the water body) record the degree inclination from your position to the 
skyline (e.g., mountain or solid tree line) at each of the eight compass bearings listed.  Note that the compass bearings are true north so you will 
need to adjust your compass according to the map being used to correct for the deviation from magnetic north (15 to 19.5 degrees in western 
Montana). 
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APPENDIX B 

 

 

EVALUATION OF MONTANA’S LENTIC BREEDING AMPHIBIAN 

AND AQUATIC REPTILE SURVEY METHODOLOGY 

 

In this appendix I: (1) evaluate levels of precision associated with the documentation of 

local, landscape, and species variables; (2) evaluate times to first detection of amphibian 

and gartersnake species; (3) make recommendations for collection and analysis of data in 

the future. 

 

Levels of Precision Associated with Local, Landscape, and Species Variables 

Between 1998 and 2004, 250 sites in western Montana were surveyed between 2 and 22 

times each (Table B-1; Figure B-1B) using the standardized data form and definitions 

provided in Appendix A.  Of the 250 sites with multiple surveys, 44 had multiple surveys 

conducted each year over 1 to 3 years (Table A1; Figure 1B).  This history of multiple 

surveys allows the precision associated with documentation of habitat covariates to be 

evaluated using coefficients of agreement for categorical variables and coefficients of 

variation for continuous variables (Portney and Watkins 1993).  Coefficients of 

agreement (CA) are calculated as the number of exact agreements in a categorical 

response divided by the total number of responses.  Values for CA range from 1 to 0 

indicating complete agreement or a complete lack of agreement amongst responders, 

respectively, and can be thought of as ranging from 0 to 100 percent agreement in 

response.  Coefficients of variation (CV) are calculated as the standard deviation (SD) 

divided by the mean (X) of a continuous response variable.  Thus, a CV = 1 indicates the 

standard deviation of the responses to a particular continuous variable was equivalent in 

magnitude to the mean value of the responses to that variable.  Because both CAs and 

CVs are standardized by dividing by the mean, in the case of CV, or total number, in the 

case of CA, categorical or continuous variables can readily be compared to other 

categorical or continuous variables, respectively, and ranked as to the level of precision 

associated with the variable. 
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Tables B-2-4 summarize levels of precision associated with categorical and continuous 

variables defined on the standardized data form in Appendix A for sites highlighted in 

gray in Table B-1.  Variables within these tables are sorted so that variables with the 

highest levels of precision are at the tops of the tables and variables with the lowest levels 

of precision are at the bottoms of the tables. 

 

Table B-2 summarizes the degree of variation in responses of field personnel to habitat 

and species variables that should not vary between years.  Because these variables are 

unlikely to vary between years all responses for these variables were pooled across all 

surveys and years.  All of the categorical variables had high precision across responses 

with CA values ranging from 0.92 to 0.996, levels of precision that are unlikely to 

improve, but should be maintained.  The level of precision associated with Distance to 

Forest was also fairly good (CV = 0.47) given that field estimates of distance tend to vary 

greatly between field crew members during the training period at the beginning of the 

field season.  Regularly pacing out distances as a check on visual estimates throughout 

the summer seems to provide the best means of ensuring consistency of estimates of 

distance across observers. 

 

Tables B-3 and B-4 summarize variation in responses to categorical and continuous 

variables that are likely to vary between years as a result of changes in weather, habitat, 

or species over time.  Each of the variables summarized in these tables has three different 

measures associated with it depending on whether the measure of precision was 

calculated only from multiple surveys of the same site within a year (MSSWY), multiple 

surveys of the same site across years when multiple surveys were conducted each year 

(MSSAY), or from all surveys conducted at the site across all years (ASAY).  These 

three levels of metrics were calculated in order to evaluate how precision of responses 

differed within a year versus between years.  In general the MSSWY level metrics would 

be expected to have the highest level of precision since they were only calculated from 

surveys performed during the same year when habitats or species were most likely to be 

the same.  For this reason, variables are sorted based on the precision of the MSSWY 

level of each variable in comparison to the MSSWY level of all other variables.   
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Most of the categorical variables in Table B-3a had high levels of precision with 

responses agreeing 74 to 99 percent of the time.  Those variables that were associated 

with lower levels of precision were typically associated with estimates of percentages or 

estimates of distance.  Most of the continuous variables in Table B-3b also had high 

levels of precision.  It is not surprising that Fish Detection Time was variable because this 

would depend upon when each individual happened to first encounter fish.  The fact that 

Area of Emergent vegetation had lower levels of precision is consistent with lower levels 

of precision being associated with variables involving estimates of distance.  While 

several categorical variables associated with amphibian species in Table B-4a had high 

levels of precision (CA > 0.9), a few only agreed an average of 60-70 percent of the time.  

I would speculate that this is a result of variation in detection of different numbers of 

animals between observers at sites with large amounts of emergent vegetation.  Because 

animals are often hidden from the direct view of field personnel at sites with large 

amounts of emergent vegetation, it is more likely that different number classes would be 

reported as a result of different levels of dipnetting effort.  If true, this does raise the need 

to emphasize a consistent systematic approach toward dipnetting wetlands with large 

amounts of emergent vegetation.  Most of the continuous variables in Table B-4b were 

fairly precise with SD less than the mean in virtually all cases.  Variables with 

comparatively lower levels of precision were often associated with detection time which, 

for example, might depend on the direction a particular surveyor first approached the site.  

Other variables in Table B-4b that were associated with comparatively lower levels of 

precision were species numbers which, as stated earlier, may vary as a result of level of 

effort in areas where more active searching is necessary such as wetlands with dense 

emergent vegetation. 
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Time to First Detection for Amphibian and Gartersnake Species 

 

Histograms of times at first detection for amphibians detected during field surveys 

(Figure B-1) show that larvae and juveniles or adults are detected within the first 10 

minutes of survey approximately 80 percent of the time.  This percentage and the general 

shape of the distribution of detection times remain remarkably consistent across most 

amphibian species for these life history stages.  Larvae and juveniles or adults are almost 

always detected within 40 to 50 minutes of search time.  Frequency distributions for 

times at first detection for eggs of these species are not as consistent, but eggs are 

detected within the first 10 minutes of survey 50 percent of the time for most species.  

Exceptions to this include egg strings of the western toad which may be cryptically 

wrapped around vegetation in larger wetlands and eggs of boreal chorus frogs which are 

very small and can be difficult to detect.  Eggs are almost always detected within 60 

minutes of search.  Histograms of times at first detection for terrestrial and common 

gartersnakes are very similar with detection within the first 10 minutes approximately 55 

percent of the time and with almost all detections occurring within 60 minutes of search. 

 

The frequency distribution of total search times at sites where no species were detected 

(Figure B-2a) is similar in shape to distributions of times at first detection.  This may 

indicate that sites where no species are detected are searched, on average, about the same 

amount of time as sites where species are detected.  However, this does not mean that all 

sites are searched long enough to detect species present in complex habitats that may 

conceal them (e.g., Figure B-2b) and in no way ensures that species are detected if 

present. 
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Recommendations for Future 

 

Most categorical and continuous variables that are currently being recorded as part of the 

Montana amphibian inventory program were associated with high levels of precision and 

do not appear to currently represent a threat to our ability to detect changes in these 

variables over time.  In part this may be a result of the extensive review process all data is 

currently subjected to, with each site photo and map reviewed against the data for 

discrepancies as well as internal inconsistencies.  However, there is always room for 

improvement.  Variables with lower levels of precision were usually associated with 

estimates of distances, percentages, or areas.  Regularly pacing out distances as a check 

on visual estimates throughout the summer seems to provide the best means of ensuring 

consistency of estimates of distance and area across observers.  Increasing levels of 

precision on estimates of percentages might be achieved through office trainings on 

example site photos. 

 

Recommendations for the amphibian inventory program include: (1) Regularly pacing 

out distances as a check on visual estimates; (2) hold two day spring training sessions 

using existing site photos and data sheets to expose field workers to a variety of issues in 

a common setting where everyone’s questions can be addressed; (3) pair new hires with 

returning personnel; (4) rotate field crew partners on a regular basis throughout the 

summer in order to ensure that the entire crew retains a collective standard approach; (5) 

restandardize everyone in the middle of the field season by having them all survey a set 

of sites to determine detection probabilities and compare responses; (6) work more 

closely with agency biologists on ways they can use the data. 

162



 

Table B-1. Summary of numbers of site surveys conducted each year between 1998 and 
2004 for lentic sites surveyed more than once during this time period.  
Shaded Site IDs indicate sites with multiple surveys during at least one year 
which makes them suitable for assessment of variation in site evaluations 
and calculation of detection probabilities (Mean and SD = average and 
standard deviation of number of surveys for each site across years). 

 
 Number of Surveys For Each Lentic Site By Year  

Site ID 1998 1999 2000 2001 2002 2003 2004 Total Mean SD 
1013006    1   1 2 1.0 0.0 
3003002    2 3 4  9 3.0 1.0 
3008001   1 1 1   3 1.0 0.0 
3008002   1 1 1   3 1.0 0.0 
3008003   1 1    2 1.0 0.0 
3008004    1 1   2 1.0 0.0 
3008005    1 1   2 1.0 0.0 
3008006    1 1   2 1.0 0.0 
3008007    1 1   2 1.0 0.0 
3008008    1 1   2 1.0 0.0 
3008009    1 1   2 1.0 0.0 
4001001   1   1  2 1.0 0.0 
4001002    1  1 1 3 1.0 0.0 
4027006   1 1 1 1 1 5 1.0 0.0 
4027007   1  1 1 1 4 1.0 0.0 
4027024    1  1 1 3 1.0 0.0 
4027025    1 1 1 1 4 1.0 0.0 
4034001    1 1  1 3 1.0 0.0 
4038001   1 1    2 1.0 0.0 
4044001   1 1 1 6 9 18 3.6 3.7 
4044002   1 1 4 4 8 18 3.6 2.9 
4044003   1 1 6 3 9 20 4.0 3.5 
4044004   1 1 4 6 8 20 4.0 3.1 
4044099   1 1 6 6 8 22 4.4 3.2 
4044100    2 6 6 8 22 5.5 2.5 
4044101      4 8 12 6.0 2.8 
4044102      4 8 12 6.0 2.8 
4049023     1  1 2 1.0 0.0 
4056001   1  1   2 1.0 0.0 
4056002   1  1   2 1.0 0.0 
4056003   1  1   2 1.0 0.0 
4056004   1  1   2 1.0 0.0 
4056005   1  1   2 1.0 0.0 
4056006   1  1   2 1.0 0.0 
4056007   1  1   2 1.0 0.0 
4056008   1  1   2 1.0 0.0 
4056009   1  1   2 1.0 0.0 
4056010   1  1   2 1.0 0.0 
4056011   1  1   2 1.0 0.0 
4056012   1  1   2 1.0 0.0 
4056013   1  1   2 1.0 0.0 
4056014   1  1   2 1.0 0.0 
4056015   1  1   2 1.0 0.0 
4056016   1  1   2 1.0 0.0 
4056017   1  1   2 1.0 0.0 
4056018   1  1   2 1.0 0.0 
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Table B-1 Continued 
 

SITE_ID 1998 1999 2000 2001 2002 2003 2004 Total Mean SD 
4056019   1  1   2 1.0 0.0 
4056020   1  1   2 1.0 0.0 
4056021   1  1   2 1.0 0.0 
4056022   1  1   2 1.0 0.0 
4056023   1  1   2 1.0 0.0 
4056024   1  1   2 1.0 0.0 
4056026   1  1   2 1.0 0.0 
4057011      1 1 2 1.0 0.0 
4057020      1 1 2 1.0 0.0 
4058001   1 1 6 1  9 2.3 2.5 
4058002   1 1 6 1  9 2.3 2.5 
4058003   1 1 6 1  9 2.3 2.5 
4058004   1 1 6 1  9 2.3 2.5 
4058005   1 1 6 1  9 2.3 2.5 
4058006   1 1 6 1  9 2.3 2.5 
4058007   1 1 6 1  9 2.3 2.5 
4058008   1 1 6 1  9 2.3 2.5 
4058009   1 1 6 1  9 2.3 2.5 
4058010   1 1 6 1  9 2.3 2.5 
4058011   1 1 6 1  9 2.3 2.5 
4058012   1 1 6 1  9 2.3 2.5 
4058013   1 1 6 1  9 2.3 2.5 
4058014   1 1 6 1  9 2.3 2.5 
4058015   1 1 6 1  9 2.3 2.5 
4058066   1 1 1 1  4 1.0 0.0 
4058067   1 1 1 1  4 1.0 0.0 
4058068   1 1 1 1  4 1.0 0.0 
4058069   1 1 1 1  4 1.0 0.0 
4058070   1 1 1 1  4 1.0 0.0 
4058071   1 1 1 1  4 1.0 0.0 
4058072   1 1 1 1  4 1.0 0.0 
4058073    1 1 1  3 1.0 0.0 
4058074    1 1 1  3 1.0 0.0 
4058075    1 1 1  3 1.0 0.0 
4058076    1 1 1  3 1.0 0.0 
4058077   1 1 1 1  4 1.0 0.0 
4058078   1 1 1 1  4 1.0 0.0 
4058079   1 1 1 1  4 1.0 0.0 
4058080    1 1 1  3 1.0 0.0 
4058081   1 1 1 1  4 1.0 0.0 
4058082   1 1 1 1  4 1.0 0.0 
4058083   1 1 1 1  4 1.0 0.0 
4058084   1 1 1 1  4 1.0 0.0 
4060006      1 1 2 1.0 0.0 
4060009      1 1 2 1.0 0.0 
4063001   1 2 2   5 1.7 0.6 
4064090    1 1  1 3 1.0 0.0 
4072006    1 1   2 1.0 0.0 
4078001      1 1 2 1.0 0.0 
4993001   1 1 1  7 10 2.5 3.0 
4995001   1 1 1 1  4 1.0 0.0 
4995002   1 1 1 1  4 1.0 0.0 
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Table B-1  Continued 
 

SITE_ID 1998 1999 2000 2001 2002 2003 2004 Total Mean SD 
4995003   1 1 1 1  4 1.0 0.0 
4995004   1 1 1 1  4 1.0 0.0 
4995005   1 1 1 1  4 1.0 0.0 
4995006   1 1 1 1  4 1.0 0.0 
4995007   1 1 1 1  4 1.0 0.0 
4995008   1 1 1 1  4 1.0 0.0 
4995009   1 1 1 1  4 1.0 0.0 
4995010   1 1 1 1  4 1.0 0.0 
4995011   1 1 1 1  4 1.0 0.0 
4995012    1 1 1  3 1.0 0.0 
4995013   1 1 1 1  4 1.0 0.0 
4995014   1 1 1 1  4 1.0 0.0 
4995015   1 1 1 1  4 1.0 0.0 
4995016   1 1 1 1  4 1.0 0.0 
4995017   1 1 1 1  4 1.0 0.0 
4995018   1 1 1 1  4 1.0 0.0 
4995019   1 1 1 1  4 1.0 0.0 
4995020   1 1 1 1  4 1.0 0.0 
4995021   1 1 1 1  4 1.0 0.0 
5006001    1  1 1 3 1.0 0.0 
5012002      1 1 2 1.0 0.0 
5014001   1 1 1 1 1 5 1.0 0.0 
5014002    1 1 1  3 1.0 0.0 
5014003    1 1 1  3 1.0 0.0 
5014004    1 1   2 1.0 0.0 
5014005    1 1   2 1.0 0.0 
5014006    1 1   2 1.0 0.0 
5014010    1 1   2 1.0 0.0 
5014011    1 1   2 1.0 0.0 
5014012    1 1   2 1.0 0.0 
5014013    1 1   2 1.0 0.0 
5014014    1 1   2 1.0 0.0 
5014015    1 1   2 1.0 0.0 
5014016    1 1   2 1.0 0.0 
5014017    1 1   2 1.0 0.0 
5014018    1 1   2 1.0 0.0 
5014019    1 1   2 1.0 0.0 
5014020    1 1   2 1.0 0.0 
5014021    1 1   2 1.0 0.0 
5014022    1 1 1  3 1.0 0.0 
5014023    1 1 1  3 1.0 0.0 
5014024    1 1 1  3 1.0 0.0 
5014025    1 1 1  3 1.0 0.0 
5014026    1 1 1  3 1.0 0.0 
5014027    1 1 1  3 1.0 0.0 
5014028    1 1 1  3 1.0 0.0 
5014029    1 1 1  3 1.0 0.0 
5014030    1 1   2 1.0 0.0 
5017001     1 1  2 1.0 0.0 
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Table B-1 Continued 
 

SITE_ID 1998 1999 2000 2001 2002 2003 2004 Total Mean SD 
5017002     1 1  2 1.0 0.0 
5026001    1 1   2 1.0 0.0 
5026002    1 1   2 1.0 0.0 
5026003    1 1   2 1.0 0.0 
5026004    1 1   2 1.0 0.0 
5026005    1 1   2 1.0 0.0 
5999001 1    1 1  3 1.0 0.0 
5999008 1      1 2 1.0 0.0 
5999010 1    1 1 1 4 1.0 0.0 
5999011 1     1  2 1.0 0.0 
5999013  1   1 1  3 1.0 0.0 
6002008      1 1 2 1.0 0.0 
6015009      1 1 2 1.0 0.0 
6015010      1 1 2 1.0 0.0 
6021011     2   2 2.0 - 
6024010      1 1 2 1.0 0.0 
6025001     6 6 8 20 6.7 1.2 
6025002    1 1 6 8 16 4.0 3.6 
6025003    1 5 6 9 21 5.3 3.3 
6025004    1 6 6 8 21 5.3 3.0 
6025005    1 5 6 8 20 5.0 2.9 
6025006    1 1 6 8 16 4.0 3.6 
6025007    1 6 6 8 21 5.3 3.0 
6025008    1 1 6 8 16 4.0 3.6 
6025009    1 1  8 10 3.3 4.0 
6025010    1 1   2 1.0 0.0 
6025011    1 6 6 8 21 5.3 3.0 
6025096       4 4 4.0 - 
6025097       4 4 4.0 - 
6025098       7 7 7.0 - 
6025099     5 6 8 19 6.3 1.5 
6025100    1 1 6 8 16 4.0 3.6 
6025108      6 8 14 7.0 1.4 
6025109     6 6 8 20 6.7 1.2 
6025110     6 6 8 20 6.7 1.2 
6028073      1 1 2 1.0 0.0 
6043001      1 1 2 1.0 0.0 
6043002      1 1 2 1.0 0.0 
6046007    1   1 2 1.0 0.0 
6046016    1   1 2 1.0 0.0 
6046017    1   1 2 1.0 0.0 
6046020    1   1 2 1.0 0.0 
6046021    1   1 2 1.0 0.0 
6046099      1 1 2 1.0 0.0 
6047001      1 1 2 1.0 0.0 
6047005      1 1 2 1.0 0.0 
6049001     2   2 2.0 - 
6049021     3   3 3.0 - 
6049022     2   2 2.0 - 
6049023     2   2 2.0 - 
6052002      1 1 2 1.0 0.0 
6057007      1 1 2 1.0 0.0 
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Table B-1  Continued 

SITE_ID 1998 1999 2000 2001 2002 2003 2004 Total Mean SD 
8001001   1  1   2 1.0 0.0 
8001002   1  1   2 1.0 0.0 
8001003   1  1   2 1.0 0.0 
9004001   1  1   2 1.0 0.0 

12014015     1  1 2 1.0 0.0 
15301001    1 1   2 1.0 0.0 
15301002    1 1 2 1 5 1.3 0.5 
15303001    1 2 2  5 1.7 0.6 
15304001    2 1 2  5 1.7 0.6 
15305004     1 1  2 1.0 0.0 
15400002    2 1 1 1 5 1.3 0.5 
15400006      1 1 2 1.0 0.0 
15407001  1  1 1 1 1 5 1.0 0.0 
15407002  1  1 1 1 1 5 1.0 0.0 
15407003  1    1 1 3 1.0 0.0 
15407004    1  1 1 3 1.0 0.0 
15408003    1 1   2 1.0 0.0 
15410001    1 1 1 1 4 1.0 0.0 
15413001    1 1 1 1 4 1.0 0.0 
15414001     1  1 2 1.0 0.0 
15414002     1  1 2 1.0 0.0 
15418001    1   1 2 1.0 0.0 
15419001    1 1 1 1 4 1.0 0.0 
15420001    1 1 1 1 4 1.0 0.0 
15424001     1 1  2 1.0 0.0 
15428001      1 1 2 1.0 0.0 
15428002      1 1 2 1.0 0.0 
15428003      1 1 2 1.0 0.0 
15504001    1  1  2 1.0 0.0 
15505001    1  1  2 1.0 0.0 
15506001    1 1 1 1 4 1.0 0.0 
15509001     1 1 1 3 1.0 0.0 
15510001     1 1 1 3 1.0 0.0 
15510002     1 2  3 1.5 0.7 
15510003     1 1  2 1.0 0.0 
15510004     1 1  2 1.0 0.0 
15510005     1 1  2 1.0 0.0 
15607002     1 1 1 3 1.0 0.0 
15609001     1  1 2 1.0 0.0 
15609005     1  1 2 1.0 0.0 
15611001    1 1 1  3 1.0 0.0 
15612001      1 1 2 1.0 0.0 
15612002     1 1 1 3 1.0 0.0 
15612004     1 1 1 3 1.0 0.0 
15612005     1 1  2 1.0 0.0 
15613001     1 1 1 3 1.0 0.0 
15613002     1 1 1 3 1.0 0.0 
15613003      1 1 2 1.0 0.0 
15613004     1 1 1 3 1.0 0.0 
15613005     1 1  2 1.0 0.0 
15621001    1  1  2 1.0 0.0 
Totals 4 4 93 155 348 267 277 1148 164 137.6 
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Table B-2  Levels of precision associated with documentation of habitat and species 
variables that should not vary between years using coefficients of agreement 
(CA) and coefficients of variation (CV) to assess variation in responses to 
categorical and continuous variables, respectively. 

 
Habitat 

Variable1 
Method of 
Evaluation2 

 
N3 

 
X4 

 
SD4 

 
Min4 

 
Max4 

       
Mining Activity CA 233 0.996 0.04 0.5 1 
Water Dammed CA 234 0.99 0.05 0.5 1 

Support Reproduction CA 249 0.99 0.06 0.5 1 
Shallows Present on N CA 229 0.98 0.07 0.5 1 

Site Origin CA 249 0.97 0.1 0.36 1 
Timber Harvest CA 245 0.97 0.1 0.5 1 

Primary Substrate CA 237 0.97 0.11 0.33 1 
Fish Detected CA 232 0.97 0.12 0.5 1 

Water Permanence CA 247 0.96 0.11 0.5 1 
Habitat Type CA 249 0.96 0.12 0.5 1 

Fish Spawning Habitat CA 191 0.96 0.12 0.5 1 
Water Connectedness CA 244 0.95 0.13 0.43 1 

Emergent Veg Present N CA 228 0.95 0.13 0.5 1 
Inlet Substrate CA 56 0.93 0.15 0.5 1 

Outlet Substrate CA 52 0.92 0.18 0.4 1 
Fish Species CA Too many unidentified trout for evaluation 

Distance to Forest CV 238 0.47 0.53 0 2.3 
       

 
1  Variables are sorted first by method of evaluation and then in descending order from those with higher 

levels of precision to those with lower levels of precision. 
2  CA values of 1 and 0 indicate complete agreement and a complete lack of agreement, respectively, of 

values recorded for the variable across all surveys.  CV values simply represent the standard deviation 
divided by the mean.  Thus, a CV = 1 indicates the standard deviation of the responses was equivalent in 
magnitude to the mean value of the responses. 

3 N indicates numbers of sites for which CA or CV could be calculated because of multiple surveys 
evaluating the variable. 

4 X, SD, Min, and Max are the overall mean, standard deviation, minimum, and maximum values for CA 
and CV values calculated for sites with multiple surveys where the variable was documented.   
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Table B-3a Levels of precision associated with documentation of habitat variables that 
are likely to vary between years using coefficients of agreement (CA) to 
assess variation in responses to categorical variables. 
Habitat 

Variable1 
Method of 
Evaluation2 

 
N3 

 
X4 

 
SD4 

 
Min4 

 
Max4 

       
Site Dry - MSSWY CA 80 0.99 0.05 0.67 1 
Site Dry - MSSAY CA 44 0.94 0.12 0.5 1 
Site Dry - ASAY CA 249 0.98 0.09 0.5 1 

       
Grazing Impact – MSSWY CA 80 0.94 0.15 0.38 1 
Grazing Impact – MSSAY CA 44 0.88 0.18 0.42 1 
Grazing Impact - ASAY CA 233 0.94 0.15 0.42 1 

       
Water Turbidity - MSSWY CA 76 0.93 0.12 0.63 1 
Water Turbidity - MSSAY CA 43 0.9 0.15 0.5 1 
Water Turbidity - ASAY CA 228 0.94 0.15 0.5 1 

       
Maximum Depth - MSSWY CA 75 0.87 0.16 0.33 1 
Maximum Depth - MSSAY CA 42 0.86 0.18 0.5 1 
Maximum Depth - ASAY CA 231 0.91 0.17 0.33 1 

       
Water Color -  MSSWY CA 75 0.87 0.15 0.5 1 
Water Color -  MSSAY CA 43 0.87 0.16 0.5 1 
Water Color -  ASAY CA 228 0.93 0.15 0.5 1 

       
Dominant Emergent Veg - MSSWY CA 74 0.81 0.2 0.33 1 
Dominant Emergent Veg - MSSAY CA 42 0.83 0.18 0.38 1 
Dominant Emergent Veg - ASAY CA 204 0.91 0.17 0.25 1 

       
Percent Larval Activity - MSSWY CA 75 0.78 0.21 0.25 1 
Percent Larval Activity - MSSAY CA 42 0.73 0.21 0.25 1 
Percent Larval Activity - ASAY CA 202 0.79 0.23 0.25 1 

       
Percent Emergent Veg - MSSWY CA 73 0.75 0.2 0.33 1 
Percent Emergent Veg – MSSAY CA 42 0.73 0.21 0.35 1 
Percent Emergent Veg – ASAY CA 230 0.85 0.22 0.33 1 

       
Percent < 50 cm - MSSWY CA 75 0.74 0.23 0.33 1 
Percent < 50 cm - MSSAY CA 43 0.74 0.24 0.3 1 
Percent < 50 cm - ASAY CA 226 0.86 0.21 0.3 1 

1  Variables are sorted in descending order from those with higher of levels of precision to those with lower 
levels of precision on the MSSWY method of calculation.  MSSWY indicates values were calculated only 
from multiple surveys of a site conducted within a single year.  MSSAY indicates values were calculated from 
all surveys at sites with multiple surveys conducted within at least one of the years of sampling (corresponds to 
shaded Site IDs in Table 1).  ASAY indicates values were calculated from all surveys conducted across all 
years (i.e. sites were surveyed multiple times either within years, between years, or both corresponding to all 
Site IDs listed in Table 1). 

2  CA values of 1 and 0 indicate complete agreement and a complete lack of agreement, respectively, of values 
recorded for the variable across all surveys.   

3 N indicates numbers of sites for which CA could be calculated because of multiple surveys evaluating the 
variable. 

4 X, SD, Min, and Max are the overall mean, standard deviation, minimum, and maximum values for CA values 
calculated for sites with multiple surveys where the variable was documented. 
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Table B-3b  Levels of precision associated with documentation of habitat variables that 
are likely to vary between years using coefficients of variation (CV) to 
assess variation in responses to continuous variables. 

 
Habitat 

Variable1 
Method of 
Evaluation2 

 
N3 

 
X4 

 
SD4 

 
Min4 

 
Max4 

       
Water pH – MSSWY CV 106 0.05 0.03 0 0.13 
Water pH – MSSAY CV 26 0.06 0.04 0 0.16 
Water pH – ASAY CV 136 0.07 0.08 0 0.4 

       
Inlet Width - MSSWY CV 25 0.37 0.23 0 0.87 
Inlet Width - MSSAY CV 15 0.38 0.25 0 0.82 
Inlet Width - ASAY CV 56 0.29 0.28 0 1.05 

       
Outlet Width - MSSWY CV 25 0.4 0.28 0 1.11 
Outlet Width - MSSAY CV 15 0.44 0.21 0.13 0.81 
Outlet Width - ASAY CV 53 0.27 0.3 0 1.18 

       
Inlet Depth - MSSWY CV 26 0.54 0.36 0.12 1.86 
Inlet Depth - MSSAY CV 14 0.51 0.21 0.12 0.84 
Inlet Depth - ASAY CV 56 0.4 0.39 0 1.4 

       
Outlet Depth – MSSWY CV 36 0.57 0.33 0 1.86 
Outlet Depth – MSSAY CV 15 0.56 0.22 0.24 1.02 
Outlet Depth – ASAY CV 52 0.41 0.35 0 1.16 

       
Emergent Vegetation Area - MSSWY CV 73 0.84 0.44 0.13 2.15 
Emergent Vegetation Area - MSSAY CV 42 0.94 0.6 0.13 2.89 
Emergent Vegetation Area - ASAY CV 213 0.45 0.54 0 2.89 

       
Fish Detection Time - MSSWY CV 4 0.89 0.45 0.3 1.38 
Fish Detection Time - MSSAY CV 3 1.09 0.28 0.89 1.41 
Fish Detection Time - ASAY CV 24 0.73 0.43 0 1.41 

       
 
1  Variables are sorted in descending order from those with higher of levels of precision to those with lower 

levels of precision on the MSSWY method of calculation.  MSSWY indicates values were calculated 
only from multiple surveys of a site conducted within a single year.  MSSAY indicates values were 
calculated from all surveys at sites with multiple surveys conducted within at least one of the years of 
sampling (corresponds to shaded Site IDs in Table 1).  ASAY indicates values were calculated from all 
surveys conducted across all years (i.e. sites were surveyed multiple times either within years, between 
years, or both corresponding to all Site IDs listed in Table 1). 

2  CV values simply represent the standard deviation divided by the mean.  Thus, a CV = 1 indicates the 
standard deviation of the responses was equivalent in magnitude to the mean value of the responses. 

3 N indicates numbers of sites for which CV could be calculated because of multiple surveys evaluating 
the variable. 

4 X, SD, Min, and Max are the overall mean, standard deviation, minimum, and maximum values for CV 
values calculated for sites with multiple surveys where the variable was documented. 
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Table B-4a Levels of precision associated with documentation of species variables that 
are likely to vary between years using coefficients of agreement (CA) to 
assess variation in responses to categorical variables. 

 
Species 

Variable1 
Method of 
Evaluation2 

 
N3 

 
X4 

 
SD4 

 
Min4 

 
Max4 

       
RALU Cover from Fish - MSSWY CA 2 1 - 1 1 
RALU Cover from Fish - MSSAY CA 2 1 - 1 1 
RALU Cover from Fish - ASAY CA 13 0.96 0.14 0.5 1 

       
PSMA Breeding with Fish - MSSWY CA 22 1 0 1 1 
PSMA Breeding with Fish - MSSAY CA 12 1 0 1 1 
PSMA Breeding with Fish - ASAY CA 16 0.97 0.13 0.5 1 

       
RALU Breeding with Fish - MSSWY CA 63 0.99 0.05 0.63 1 
RALU Breeding with Fish - MSSAY CA 36 0.99 0.04 0.75 1 
RALU Breeding with Fish - ASAY CA 133 0.95 0.13 0.5 1 

       
AMTI Breeding with Fish - MSSWY CA 19 0.98 0.08 0.67 1 
AMTI Breeding with Fish - MSSAY CA 11 0.98 0.08 0.75 1 
AMTI Breeding with Fish - ASAY CA 12 0.94 0.16 0.5 1 

       
BUBO Breeding with Fish - MSSWY CA 8 0.94 0.18 0.5 1 
BUBO Breeding with Fish - MSSAY CA 4 0.88 0.25 0.5 1 
BUBO Breeding with Fish - ASAY CA 48 0.94 0.15 0.5 1 

       
AMMA Breeding with Fish - MSSWY CA 8 0.94 0.18 0.5 1 
AMMA Breeding with Fish - MSSAY CA 10 0.97 0.11 0.67 1 
AMMA Breeding with Fish - ASAY CA 41 0.98 0.09 0.5 1 

       
RALU Larvae Number Class - MSSWY CA 38 0.71 0.18 0.33 1 
RALU Larvae Number Class - MSSAY CA 22 0.64 0.2 0.33 1 
RALU Larvae Number Class - ASAY CA 51 0.55 0.18 0.25 1 

       
AMMA Larvae Number Class -  MSSWY CA 8 0.7 0.16 0.5 1 
AMMA Larvae Number Class - MSSAY CA 10 0.69 0.28 0.33 1 
AMMA Larvae Number Class - ASAY CA 35 0.78 0.24 0.33 1 

       
BUBO Larvae Number Class - MSSWY CA 5 0.69 0.21 0.5 1 
BUBO Larvae Number Class - MSSAY CA 3 0.53 0.13 0.41 0.67 
BUBO Larvae Number Class - ASAY CA 25 0.65 0.22 0.33 1 

       
AMTI Larvae Number Class - MSSWY CA 11 0.69 0.2 0.33 1 
AMTI Larvae Number Class - MSSAY CA 6 0.56 0.13 0.38 0.71 
AMTI Larvae Number Class - ASAY CA 7 0.55 0.12 0.38 0.71 

       
PSMA Larvae Number Class - MSSWY CA 19 0.59 0.21 0.25 1 
PSMA Larvae Number Class - MSSAY CA 12 0.52 0.12 0.33 0.67 
PSMA Larvae Number Class - ASAY CA 15 0.55 0.17 0.33 1 
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Table B-4a Continued 
 

Species 
Variable1 

Method of 
Evaluation2 

 
N3 

 
X4 

 
SD4 

 
Min4 

 
Max4 

       
AMMA Cover from Fish - MSSWY CA 0 - - - - 
AMMA Cover from Fish - MSSAY CA 2 1 0 1 1 
AMMA Cover from Fish - ASAY CA 5 1 0 1 1 

       
AMTI Cover from Fish - MSSWY CA 0 - - - - 
AMTI Cover from Fish - MSSAY CA 0 - - - - 
AMTI Cover from Fish - ASAY CA 0 - - - - 

       
BUBO Cover from Fish - MSSWY CA 0 - - - - 
BUBO Cover from Fish - MSSAY CA 1 1 - 1 1 
BUBO Cover from Fish - ASAY CA 11 0.95 0.1 0.75 1 

       
PSMA Cover from Fish - MSSWY CA 0 - - - - 
PSMA Cover from Fish - MSSAY CA 0 - - - - 
PSMA Cover from Fish - ASAY CA 0 - - - - 

       
 
1  Variables are sorted in descending order from those with higher of levels of precision to those with lower 

levels of precision on the MSSWY method of calculation.  MSSWY indicates values were calculated 
only from multiple surveys of a site conducted within a single year.  MSSAY indicates values were 
calculated from all surveys at sites with multiple surveys conducted within at least one of the years of 
sampling (corresponds to shaded Site IDs in Table 1).  ASAY indicates values were calculated from all 
surveys conducted across all years (i.e. sites were surveyed multiple times either within years, between 
years, or both corresponding to all Site IDs listed in Table 1).  AMMA = Long-toed Salamander 
(Ambystoma macrodactylum), AMTI = Tiger Salamander (Ambystoma tigrinum), BUBO = Western 
Toad (Bufo boreas), PSMA = Boreal Chorus Frog (Pseudacris maculata), RALU = Columbia Spotted 
Frog (Rana luteiventris), Terrestrial Gartersnake (Thamnophis elegans), THSI = Common Gartersnake 
(Thamnophis sirtalis). 

2  CA values of 1 and 0 indicate complete agreement and a complete lack of agreement, respectively, of 
values recorded for the variable across all surveys. 

3 N indicates numbers of sites for which CA could be calculated because of multiple surveys evaluating 
the variable. 

4 X, SD, Min, and Max are the overall mean, standard deviation, minimum, and maximum values for CA 
values calculated for sites with multiple surveys where the variable was documented. 
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Table B-4b Levels of precision associated with documentation of species variables 
that are likely to vary between years using coefficients of variation (CV) 
to assess variation in responses to continuous variables. 

 
Species 

Variable1 
Method of 
Evaluation2 

 
N3 

 
X4 

 
SD4 

 
Min4 

 
Max4

       
AMTI  J & A Detection Time - MSSWY CV 1 0.18 - 0.18 0.18 
AMTI  J & A Detection Time - MSSAY CV 2 0.09 0.13 0 0.18 
AMTI  J & A Detection Time - ASAY CV 2 0.09 0.13 0 0.18 

       
PSMA J & A Detection Time - MSSWY CV 2 0.34 0.23 0.18 0.5 
PSMA J & A Detection Time - MSSAY CV 2 0.34 0.23 0.18 0.5 
PSMA J & A Detection Time - ASAY CV 2 0.34 0.23 0.18 0.5 

       
THEL Juv & Adult Numbers - MSSWY CV 24 0.34 0.25 0 0.75 
THEL Juv & Adult Numbers - MSSAY CV 23 0.3 0.25 0 0.74 
THEL Juv & Adult Numbers - ASAY CV 32 0.26 0.25 0 0.74 

       
THSI Juv & Adult Numbers - MSSWY CV 11 0.4 0.36 0 1.01 
THSI Juv & Adult Numbers - MSSAY CV 19 0.22 0.25 0 0.84 
THSI Juv & Adult Numbers - ASAY CV 27 0.23 0.31 0 1.1 

       
THSI J&A Detection Time - MSSWY CV 1 0.47 - 0.47 0.47 
THSI J&A Detection Time - MSSAY CV 1 0.47 - 0.47 0.47 
THSI J&A Detection Time - ASAY CV 1 0.47 - 0.47 0.47 

       
THEL J&A Detection Time - MSSWY CV 6 0.53 0.3 0.18 1.1 
THEL J&A Detection Time - MSSAY CV 5 0.62 0.16 0.47 0.81 
THEL J&A Detection Time - ASAY CV 5 0.62 0.16 0.47 0.81 

       
AMTI  Juv & Adult Numbers - MSSWY CV 16 0.55 0.3 0 1.16 
AMTI  Juv & Adult Numbers - MSSAY CV 11 0.65 0.32 0 1.16 
AMTI  Juv & Adult Numbers - ASAY CV 11 0.65 0.32 0 1.16 

       
BUBO Egg Numbers - MSSWY CV 1 0.56 - 0.56 0.56 
BUBO Egg Numbers - MSSAY CV 1 0.56 - 0.56 0.56 
BUBO Egg Numbers - ASAY CV 4 0.45 0.24 0.16 0.71 

       
RALU J & A Detection Time - MSSWY CV 35 0.62 0.44 0 1.69 
RALU J & A Detection Time - MSSAY CV 26 0.72 0.43 0 1.71 
RALU J & A Detection Time - ASAY CV 43 0.66 0.47 0 1.71 

       
PSMA Larvae Detection Time - MSSWY CV 19 0.66 0.39 0 1.36 
PSMA Larvae Detection Time - MSSAY CV 12 0.71 0.33 0 1.1 
PSMA Larvae Detection Time - ASAY CV 15 0.72 0.4 0 1.38 

       
RALU Larvae Detection Time - MSSWY CV 38 0.67 0.43 0 1.65 
RALU Larvae Detection Time - MSSAY CV 22 0.8 0.5 0 1.72 
RALU Larvae Detection Time - ASAY CV 41 0.73 0.46 0 1.72 
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Table B-4b Continued 
 

Species 
Variable1 

Method of 
Evaluation2 

 
N3 

 
X4 

 
SD4 

 
Min4 

 
Max4

       
BUBO Larvae Detection Time - MSSWY CV 5 0.74 0.43 0 1.04 
BUBO Larvae Detection Time - MSSAY CV 3 1.23 0.21 1.04 1.46 
BUBO Larvae Detection Time - ASAY CV 19 0.77 0.44 0 1.46 

       
AMMA Larvae Detection Time - MSSWY CV 8 0.74 0.43 0 1.38 
AMMA Larvae Detection Time - MSSAY CV 6 0.8 0.53 0 1.52 
AMMA Larvae Detection Time - ASAY CV 15 0.5 0.52 0 1.52 

       
BUBO Egg Detection Time - MSSWY CV 1 0.76 - 0.76 0.76 
BUBO Egg Detection Time - MSSAY CV 1 0.76 - 0.76 0.76 
BUBO Egg Detection Time - ASAY CV 3 0.54 0.47 0 0.85 

       
RALU Juv & Adult Numbers - MSSWY CV 61 0.77 0.42 0 1.71 
RALU Juv & Adult Numbers - MSSAY CV 41 0.8 0.55 0 2.88 
RALU Juv & Adult Numbers - ASAY CV 129 0.68 0.48 0 2.88 

       
AMTI Larvae Detection Time - MSSWY CV 11 0.78 0.29 0.38 1.33 
AMTI Larvae Detection Time - MSSAY CV 6 0.78 0.32 0.38 1.18 
AMTI Larvae Detection Time - ASAY CV 7 0.86 0.36 0.38 1.35 

       
PSMA Juv & Adult Numbers - MSSWY CV 21 0.83 0.55 0 2.37 
PSMA Juv & Adult Numbers - MSSAY CV 12 0.99 0.74 0 2.56 
PSMA Juv & Adult Numbers - ASAY CV 13 1.03 0.71 0 2.56 

       
AMMA Egg Detection Time - MSSWY CV 1 0.94 - 0.94 0.94 
AMMA Egg Detection Time - MSSAY CV 1 0.94 - 0.94 0.94 
AMMA Egg Detection Time - ASAY CV 0 - - - - 

       
BUBO Juvs & Adults - MSSWY CV 5 0.96 0.58 0 1.56 
BUBO Juvs & Adults - MSSAY CV 3 0.94 0.9 0 1.8 
BUBO Juvs & Adults - ASAY CV 35 0.87 0.62 0 1.95 

       
RALU Egg Numbers - MSSWY CV 0 - - - - 
RALU Egg Numbers - MSSAY CV 0 - - - - 
RALU Egg Numbers - ASAY CV 24 0.31 0.28 0 1.1 

       
AMMA Egg Numbers - MSSWY CV 0 - - - - 
AMMA Egg Numbers - MSSAY CV 0 - - - - 
AMMA Egg Numbers - ASAY CV 6 0.66 0.47 0.16 1.2 

       
BUBO J & A Detection Time - MSSWY CV 0 - - - - 
BUBO J & A Detection Time - MSSAY CV 0 - - - - 
BUBO J & A Detection Time - ASAY CV 1 1.25 - 1.25 1.25 

       
AMMA Juv & Adult Numbers - MSSWY CV 0 - - - - 
AMMA Juv & Adult Numbers - MSSAY CV 0 - - - - 
AMMA Juv & Adult Numbers - ASAY CV 0 - - - - 
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Table B-4b Continued 
 

Species 
Variable1 

Method of 
Evaluation2 

 
N3 

 
X4 

 
SD4 

 
Min4 

 
Max4 

       
AMMA J&A Detection Time -  MSSWY CV 0 - - - - 
AMMA J&A Detection Time - MSSAY CV 0 - - - - 
AMMA J&A Detection Time - ASAY CV 0 - - - - 

       
AMTI Egg Numbers - MSSWY CV 0 - - - - 
AMTI Egg Numbers - MSSAY CV 0 - - - - 
AMTI Egg Numbers - ASAY CV 0 - - - - 

       
AMTI Egg Detection Time - MSSWY CV 0 - - - - 
AMTI Egg Detection Time - MSSAY CV 0 - - - - 
AMTI Egg Detection Time - ASAY CV 0 - - - - 

       
PSMA Egg Numbers - MSSWY CV 0 - - - - 
PSMA Egg Numbers - MSSAY CV 0 - - - - 
PSMA Egg Numbers - ASAY CV 0 - - - - 

       
PSMA Egg Detection Time - MSSWY CV 0 - - - - 
PSMA Egg Detection Time - MSSAY CV 0 - - - - 
PSMA Egg Detection Time - ASAY CV 0 - - - - 

       
RALU Egg Detection Time - MSSWY CV 0 - - - - 
RALU Egg Detection Time - MSSAY CV 0 - - - - 
RALU Egg Detection Time - ASAY CV 0 - - - - 

       
 
1  Variables are sorted in descending order from those with higher of levels of precision to those with lower 

levels of precision on the MSSWY method of calculation.  MSSWY indicates values were calculated 
only from multiple surveys of a site conducted within a single year.  MSSAY indicates values were 
calculated from all surveys at sites with multiple surveys conducted within at least one of the years of 
sampling (corresponds to shaded Site IDs in Table 1).  ASAY indicates values were calculated from all 
surveys conducted across all years (i.e. sites were surveyed multiple times either within years, between 
years, or both corresponding to all Site IDs listed in Table 1).  AMMA = Long-toed Salamander 
(Ambystoma macrodactylum), AMTI = Tiger Salamander (Ambystoma tigrinum), BUBO = Western 
Toad (Bufo boreas), PSMA = Boreal Chorus Frog (Pseudacris maculata), RALU = Columbia Spotted 
Frog (Rana luteiventris), Terrestrial Gartersnake (Thamnophis elegans), THSI = Common Gartersnake 
(Thamnophis sirtalis). 

2  CV values simply represent the standard deviation divided by the mean.  Thus, a CV = 1 indicates the 
standard deviation of the responses was equivalent in magnitude to the mean value of the responses. 

3 N indicates numbers of sites for which CV could be calculated because of multiple surveys evaluating 
the variable. 

4 X, SD, Min, and Max are the overall mean, standard deviation, minimum, and maximum values for CV 
values calculated for sites with multiple surveys where the variable was documented. 
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Figure B-1. Histograms of times to first detection for eggs, larvae, and juveniles or 
adults of all amphibian and reptile species together and for individual 
species. 

 
a – All Species 

 
 
 
 
 
 
 
 
 
 
 
 

b – Long-toed Salamander (Ambystoma macrodactylum) 
 
 
 
 
 
 
 
 
 
 
 
 

c – Tiger Salamander (Ambystoma tigrinum) 
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d – Western Toad (Bufo boreas) 
 
 
 
 
 
 
 
 
 
 
 
 

e – Boreal Chorus Frog (Pseudacris maculata) 
 
 
 
 
 
 
 
 
 
 
 
 

f – Columbia Spotted Frog (Rana luteiventris) 
 
 
 
 
 
 
 
 
 
 
 

 
g – Terrestrial Gartersnake      h – Common Gartersnake 
        (Thamnophis elegans)            (Thamnophis sirtalis) 
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Figure B-2.  Survey times at (a) sites without species detected and at (b) all sites 
surveyed which had at least 1 square meter and less than 25,000 square 
meters of emergent vegetation and which were surveyed for less than 2 
hours. 
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APPENDIX C 

 

Descriptions of Environmental Input Layers Used in Maximum Entropy Models 

 

Input layers to models consist of 10 continuous (elevation, max temp, min temp, precip, 

ruggedness, slope, solar E, solar SS, solar WS, stream ED) and 5 categorical (aspect, 

geology, land cover, soil TM, soils) variables.  These layers were dissolved or tiled 

together, converted to raster floating-point format, and resampled with a bilinear 

algorithm to a state-wide 90-meter grid cell coverage.  Each source environmental layer 

is described below and, where appropriate, links to metadata are provided.  Internet links 

were all accessed on 18 November 2008.  The resulting state-wide grids all had 10,204 

columns and 892 rows projected to North American Datum 1983 in Montana State Plane 

with an extent of top = 548006.61515, left = 111866.109204, right = 1030226.1092, 

bottom = 17726.6151503.  In addition to a set of state-wide grids used to model all 

species at a state-wide scale, I created a set of environmental grids at the extent of each 

species’ known range.  All state-wide and range-wide raster grids were converted to 

ASCII grid format as required by Maxent. 

 

Aspect (categorical) 

Calculated using the Aspect tool in ArcMap 9.2 Spatial Analyst from the 10-meter 

National Elevation Dataset (NED) and resampled to 90-meter continuous floating-point 

grid cells using a bilinear algorithm.  Cell values are compass directions of the maximum 

downslope rate of change in elevation.  Continuous values were reclassified into 8 

categorical values: 0 = Flat; 1 = North (337.5-22.5), 2 = Northeast (22.5-67.5), 3 = East 

(67.5-112.5), 4 = Southeast (112.5-157.5), 5 = South (157.5-202.5), 6 = Southwest 

(202.5-247.5), 7 = West (247.5-292.5), 8 = Northwest (292.5-337.5).  For more 

information see the description of the elevation layer and the associated NED metadata 

link below. 
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Elevation (continuous) 

The National Elevation Dataset (NED) is a 1/3 arc-second (10-meter) raster grid of 

decimal meter values assembled by the U.S. Geological Survey.  The source layer was 

resampled to 90-meter continuous floating-point grid cells using a bilinear algorithm.  

Metadata on the 1/3 arc-second (10-meter) NED can be found at 

http://seamless.usgs.gov/products/3arc.php 

 

Geology (categorical) 

A polygonal coverage of 931 categories of surficial geology available in a mixture of 

1:100,000 and 1:250,000 scales from the Montana State Geologic Mapping Program at 

the Montana Bureau of Mines and Geology (http://www.mbmg.mtech.edu/gmr/gmr-

statemap.asp) and the Idaho Department of Water Resources 

(http://www.idwr.idaho.gov/gisdata/new%20data%20download/geology.htm).  

Individual source layers were appended and dissolved together using the Append and 

Dissolve tools in the ArcMap 9.2 Data Management Tools.  The polygonal coverage was 

converted to raster and resampled to 90-meter continuous floating-point grid cells using a 

bilinear algorithm.  A few grid cells in western Montana lacked values in areas were 

adjacent geology source data was not directly adjacent, but this did not present a problem 

for generating or interpreting predicted distribution models for species because these 

areas were small and only a handful of species observations overlapped these areas. 

 

National Landcover Data (categorical) 

The 1992 National Land Cover Data (NLCD) is based on 30-meter Landsat Thematic 

Mapper imagery.  This was resampled to a 90-meter continuous floating-point grid cell 

coverage using a bilinear algorithm.  A brief summary of raster cell value descriptions 

follows below.  Data and metadata can be found at: 

http://nris.mt.gov/nsdi/nris/nlcdgrid.html 

 11                 Open Water 

 12                 Perennial Ice/Snow 

 21                 Low Intensity Residential 

 22                 High Intensity Residential 
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 23                 Commercial/Industrial/Transportation 

 31                 Bare Rock/Sand/Clay 

 32                 Quarries/Strip Mines/Gravel Pits 

 33                 Transitional 

 41                 Deciduous Forest 

 42                 Evergreen Forest 

 43                 Mixed Forest 

 51                 Shrubland 

 61                 Orchards/Vineyards/Other 

 71                 Grasslands/Herbaceous 

 81                 Pasture/Hay 

 82                 Row Crops 

 83                 Small Grains 

 84                 Fallow 

 85                 Urban/Recreational Grasses 

 91                 Woody Wetlands 

 92                 Emergent Herbaceous Wetlands 

 

Max Temp (continuous) 

A polygonal coverage of estimated average maximum daily temperatures for July in 

degrees Fahrenheit, for the climatological period 1971-2000.  Estimates are based on 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) derived raster 

data which uses known point temperature data and a digital elevation model (DEM) to 

generate gridded estimates of annual, monthly and event-based climatic parameters.  

General information on the underlying PRISM data and the source data itself can be 

downloaded from the Oregon Climate Service website at: http://www.ocs.orst.edu/prism/.  

The Montana data reprojected to Montana State Plane and resampled to a resolution of 

600 meters representing 33 temperature ranges in degrees Fahrenheit is available at: 

http://nris.mt.gov/nsdi/nris/tmax71_00.html.  Source polygons were converted to raster 

and resampled to a 90-meter continuous floating-point grid cell coverage using a bilinear 

algorithm. 
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Min Temp (continuous) 

A polygonal coverage of estimated average minimum daily temperatures for January in 

degrees Fahrenheit, for the climatological period 1971-2000.  Estimates are based on 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) derived raster 

data which uses known point temperature data and a digital elevation model (DEM) to 

generate gridded estimates of annual, monthly and event-based climatic parameters.  

General information on the underlying PRISM data and the source data itself can be 

downloaded from the Oregon Climate Service website at: http://www.ocs.orst.edu/prism/.  

The Montana data reprojected to Montana State Plane and resampled to a resolution of 

600 meters representing 29 temperature ranges in degrees Fahrenheit is available at: 

http://nris.mt.gov/nsdi/nris/tmin71_00.html.  Source polygons were converted to raster 

and resampled to a 90-meter continuous floating-point grid cell coverage using a bilinear 

algorithm. 

 

Precip (continuous) 

Relative Effective Annual Precipitation (REAP) data indicates the average estimated 

amount of soil moisture available in 1 cm intervals for the period 1971-2000.  Estimates 

are based on 1 km DAYMET http://www.daymet.org/ precipitation estimates for 1980-

1997 from the University of Montana’s Numerical Terradynamics Simulation Group 

(NTSG) adjusted to the period 1971-2000 using Temperature and Precipitation Summary 

Tables (TAPS) developed by the National Water and Climate Center and then sensitized 

to the landscape according to slope, aspect, and soil properties.  REAP estimates were 

developed for each Montana county and edge-matched into a state-wide 30-meter raster 

coverage by the Montana State Office of the Natural Resources Conservation Service.  

The 30-meter source grid was resampled to a 90-meter continuous floating-point grid 

using a bilinear algorithm.  Data and metadata are available at:  

http://nris.mt.gov/gis/gisdatalib/gisDataList.aspx?datagroup=statewide-

regional&searchTerms=REAP. 
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Ruggedness (continuous) 

Calculated from the 30-meter National Elevation Dataset (NED) using the vector 

ruggedness measure of Sappington et al. (2005).  This is a 3-dimensional measure of the 

dispersion of vectors within a moving analysis window where vectors represent a 

trigonometric combination of slope and aspect in individual grid cells.  The greater the 

dispersion of the resulting vectors, the more rugged the landscape.  The 30-meter NED is 

a 1 arc-second raster grid of decimal meter values assembled by the U.S. Geological 

Survey.  Metadata on the 30-meter NED can be found at: 

http://seamless.usgs.gov/products/1arc.php.  The 30-meter coverage of vector ruggedness 

values was resampled to a 90-meter continuous floating-point grid cell coverage using a 

bilinear algorithm. 

 

Slope (continuous) 

The inclination of the slope in degrees calculated using the Slope function in ArcMap 9.2 

Spatial Analyst from the 10-meter National Elevation Dataset (NED) and resampled to a 

90-meter continuous floating-point grid cell coverage using a bilinear algorithm.  See 

description of the elevation layer and the associated NED metadata link above. 

 

Soils (categorical) 

State Soil Geographic data (STATSGO) is a polygonal coverage of general soil 

associations developed by the National Cooperative Soil Survey.  The soil maps for 

STATSGO are compiled by generalizing more detailed soil survey maps.  Map unit 

composition for a STATSGO map is determined by transecting or sampling areas and 

expanding the data statistically to characterize the whole map unit.  Therefore, soil map 

units depict the dominant soils making up the landscape and often contain dissimilar soil 

types.  The approximate minimum area delineated is 625 hectares (1,544 acres).  The 

polygonal coverage was converted to raster and resampled to 90-meter continuous 

floating-point grid cells using a bilinear algorithm. Background information and metadata 

is available at: http://dbwww.essc.psu.edu/doc/statsgo/statsgo_info.html and 

http://nris.mt.gov/nsdi/statsgo.pdf.  Definitions for the 694 map units used in the input 

can be downloaded as .dbf files along with a STATSGO shapefile for Montana at: 
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http://nris.mt.gov/gis/gisdatalib/gisDataList.aspx?datagroup=statewide-

regional&searchTerms=statsgo 

 

Soil TM (categorical) 

This is a generalized polygonal coverage of soil temperature and moisture regimes 

provided by the Natural Resources Conservation Service (USDA 1994).  The polygonal 

coverage was converted to raster and resampled to 90-meter continuous floating-point 

grid cells using a bilinear algorithm.  A brief summary of raster cell value descriptions for 

temperature / moisture follows below.  A glossary of relevant soil terminology can be 

found at: https://www.soils.org/sssagloss/.  Metadata on this layer can be found at: 

http://soils.usda.gov/use/worldsoils/mapindex/str.html   

 1  Cryic/Udic 

 2  Frigid/Udic 

 3  Frigid/Typic Ustic 

 4  Cryic/Typic Ustic 

 5  Frigid/Aridic Ustic 

 6  Frigid Aquic 

 7  Frigid/Typic Xeric 

8  Water 

 9  Cryic/Typic Xeric 

 10  Cryic/Aridic Ustic 

 11  Mesic/Ustic Aridic 

 12  Cryic/Udic Ustic 

 

Solar E, Solar SS, Solar WS (all continuous) 

This is an index proportional to the amount of extraterrestrial solar radiation striking an 

arbitrarily oriented surface during solar noon at the equinox (Solar E), summer solstice 

(Solar SS) and winter solstice (Solar WS).  The index was calculated at each tenth degree 

of latitude from the 30-meter National Elevation Dataset (NED) with ArcMap 9.2 Spatial 

Analyst using the formula presented in Keating et al. (2006).  Variables in this formula 

include solar hour angle (held constant at solar noon), distance of the earth from the sun, 
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declination of the earth, latitude, slope, and aspect.  The 30-meter NED is a 1 arc-second 

raster grid of decimal meter values assembled by the U.S. Geological Survey.  Metadata 

on the 30-meter NED can be found at: http://seamless.usgs.gov/products/1arc.php.  Each 

30-meter coverage of solar radiation index values was resampled to a 90-meter 

continuous floating-point grid cell coverage using a bilinear algorithm. 

 

Stream ED (continuous) 

Euclidian distances from major streams in meters were calculated using the Euclidean 

Distance tool in ArcMap 9.2 Spatial Analyst for 90-meter grid cells from the 1:100,000 

scale U.S. Census Bureau TIGER files.  Only streams that approximately matched the 

data shown in USGS 1:2,000,000 scale digital line graphics files were included.  Data 

and metadata for the major stream source layer can be found at: 

http://nris.mt.gov/nsdi/nris/HD43.html. 
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APPENDIX D 
 
 

Maximum Entropy Model Output for Montana’s Herpetofauna 
 
 

For each of Montana’s 14 amphibian and 17 reptile species (Table 3.1) we: (1) present 

state-wide continuous predicted habitat suitability maps showing areas of higher 

predicted suitability in warmer colors (reds) and lower predicted suitability in cooler 

colors (blues); (2) present binary maps of predicted suitable and unsuitable habitat using 

the low threshold cutoff on continuous models within the species’ range (Table 3.4) along 

with observations used to train (red squares) and, where possible, test (red stars) the 

models; (3) present maps of predicted low (yellow), moderate (orange) and high (red) 

habitat suitability class thresholds for species with test data available to make these 

determinations (Tables 3.3-3.4, Figure 3.1); (4) discuss the implications of state-wide 

continuous models for potential extensions to known range and areas within the range 

that currently lack records; (5) summarize characteristics of response curves for 

environmental variables ranked as important in predicting the species’ distribution (Table 

3.5); (6) summarize visual evaluations of the spatial arrangement and magnitude of test 

occurrence deviances in the context of how well we feel the low cutoff threshold 

represents overall distribution and habitat suitability classes represent our knowledge of 

marginal, moderate, and optimal habitat suitability; (7) compare output from Maxent 

models to output from the Montana Gap Analysis Project (Hart et al. 1998) in terms of 

portrayal of distribution and differences in the area of predicted suitable habitat; (8) 

discuss evaluations of continuous model output within each species’ range using the area 

under the curve (AUC) of receiver operating characteristic (ROC) plots (Table 3.6); (9) 

discuss evaluations of binary predictions of suitable versus unsuitable habitat for GAP 

using all data and low cutoff range models of species for which test data was available 

using the absolute validation index (AVI) (Tables 3.6-3.7); (10) discuss evaluations of the 

low cutoff range models and GAP models using lentic site survey data from the Montana 

Amphibian Inventory and Monitoring Project (Chapter 2) for commission error rates, 

omission error rates, overall map accuracy, and the Kappa Index; and (11) provide 

suggestions on limitations and appropriate uses of the models. 
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Long-toed Salamander (Amybstoma macrodactylum) 

 

The state-wide continuous habitat suitability model (Figure D-1a) indicates that the 

species’ known range may be extended on: (1) state and Helena National Forest lands 

near Rogers Pass and Flesher Pass; (2) the eastern edge of the Elkhorn Mountains; (3) the 

Beaverhead-Deerlodge National Forest in the area around Whitetail Reservoir and on 

Bull Mountain between the Boulder River and Whitehall Creek in Jefferson County; and 

(4) BLM and Beaverhead-Deerlodge National Forest lands south of Butte in the vicinity 

of the Humbug Spires.  Characteristics of environmental variables of importance (Table 

3.5) include annual precipitation greater than 50 cm, cool and moist soil types, and slopes 

of less than 25 degrees.  Solar radiation indices were the only variables that did not help 

improve models and they actually made them worse in the jackknife plots of test gain.  

Continuous range model AUC (0.909) and low cutoff threshold AVI (0.96) values for test 

data indicated high accuracy and AVI values were drastically better than GAP (0.20) 

(Table 3.6).  The low cutoff threshold of the continuous range model resulted in a 301 

percent (31,865 km2) increase in area of predicted habitat relative to GAP models 

because GAP had modeled them simply as a 500-m buffer around streams (Table 3.7, 

Figure D-1b, Hart et al. 1998).  Evaluation with the lentic site survey data yielded lower 

omission errors for the low cutoff threshold than GAP, but higher commission errors and 

lower overall map accuracy (Table 3.8).  Kappa was low for GAP and the low cutoff 

threshold.  High commission errors and low Kappa values likely resulted from the 

inability of models to identify local site variables of importance and the fact that single 

site visits fail to adequately assess true absence.  Visual inspection of test occurrence 

deviances at the range-wide and local-landscape scales revealed no large-scale patterns in 

the magnitude of deviance and, in general, the magnitude of deviances is inversely 

correlated with predicted habitat suitability, indicating that the habitat suitability 

classifications performed well at the landscape scale.  However, habitat in some valley 

bottoms may be under predicted as a result of a lack of surveys on private lands (Figure 

D-1c).  As a result of the probable under predictions on private lands in areas with few 

records it may be best to use the continuous output in tandem with a deductive model 

when considering this species in management plans for these areas.   
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Figure D-1a. Continuous state-wide habitat suitability index for A. macrodactylum. 
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Figure D-1b. Predicted suitable habitat and training (squares) and test (stars) observations 
for A. macrodactylum. 
 

 
 
 
 
Figure D-1c. Predicted low (yellow), moderate (orange) and high (red) habitat suitability 
classes for A. macrodactylum. 
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Tiger Salamander (Amybstoma tigrinum)  

 

The state-wide continuous habitat suitability model (Figure D-2a) indicates that the 

species’ known range may be extended westward on state, BLM and private lands in 

southwestern Montana east of the Red Rock and Jefferson Rivers (e.g., Blacktail 

Mountains, Sweetwater Basin, Three Forks to Townsend area, and Wilsall to White 

Sulfur Springs area).  Characteristics of environmental variables of importance include 

land cover features associated with wetlands, and slopes less than 20 degrees.  Solar 

radiation indices were the only variables that did not help improve models and they 

actually made them worse in the jackknife plots of test gain.  Continuous range model 

AUC (0.878) was good, but low relative to other species (Table 3.6).  AVI for the low 

cutoff was poorer than GAP (0.93 and 0.98, respectively) and the low cutoff threshold 

resulted in a 49 percent (139,456 km2) decrease in area of predicted habitat relative to 

GAP models (Table 3.7).  Omission and commission error rates, map accuracy, and 

Kappa were similar for the low cutoff and GAP models (Table 3.8).  Visual inspection of 

test occurrence deviances at the range-wide and local-landscape scales revealed no large-

scale patterns in the magnitude of deviance.  However, the low cutoff threshold for the 

range model appears to exclude some areas on private lands that lack surveys and are 

likely to support populations and the low, moderate, and optimal habitat suitability class 

thresholds appear to be an artifact of survey effort in some poorly surveyed areas 

dominated by private lands (Figures D-2b-c).  Thus, although the Maxent models appear 

to be an improvement over GAP in areas that have some baseline surveys (e.g., the area 

between the Tongue and Powder Rivers), they likely under represent the species’ 

distribution in areas that lack some baseline survey effort (e.g., large areas between the 

Missouri and Yellowstone Rivers).  Thus, until more observation data is available in 

regions that currently have few observations, it would probably be best to use a 

combination of a deductively based model and the continuous model outputs when 

considering this species in management plans.  Another potential approach is to increase 

the regularization on the Maxent model to extend the predicted area while maintaining 

representation for areas of higher suitability. 
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Figure D-2a. Continuous state-wide habitat suitability index for A. tigrinum. 
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Figure D-2b. Predicted suitable habitat and training (squares) and test (stars) observations 
for A. tigrinum. 
 

 
 
 
 
Figure D-2c. Predicted low (yellow), moderate (orange) and high (red) habitat suitability 
classes for A. tigrinum. 
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Idaho Giant Salamander (Dicamptodon atterimus) 

 

The state-wide continuous model indicates the species’ range may be extended along the 

Idaho border between Lookout and Lolo passes, a region that is parallel to the species’ 

known range in Idaho (Figures D-3a-b, Jones et al. 2005).  However, recent 

electrofishing surveys throughout this area failed to detect them outside of the area south 

of Saltese, Haugan, and De Borgia (pers. obs.).  The species’ known range in Montana is 

very limited and some environmental variables with high importance ranks such as 

terrain ruggedness may simply be an artifact of the few areas where they have been 

documented.  However, precipitation of greater than 110 cm and evergreen forest cover 

are clearly important to the species’ distribution and north, northeast, and easterly aspects 

are probably restrictive in terms of maintaining stream flows and high soil moisture.  The 

range-wide low cutoff threshold distribution appears to be a reasonable representation of 

potential distribution and suitable habitat in the region they have been documented.  GAP 

AVI was good (0.92), but the Maxent models probably more appropriately represent the 

distribution of the species than the more general 1 km hydrography buffer within suitable 

habitat cover types applied by GAP (Hart et al. 1998).  The limited distribution of the 

species in western Montana highlights the importance of implementing conservation 

measures for documented populations and surveying for additional populations in areas 

likely to be impacted by management actions such as timber harvest and road 

development within their predicted distribution. 
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Figure D-3a. Continuous state-wide habitat suitability index for D. atterimus. 
 

 
 
 
 
Figure D-3b. Predicted suitable habitat and training observations for D. atterimus. 
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Coeur d’Alene Salamander (Plethodon idahoensis) 

 

The state-wide continuous model indicates that the species’ known range may be 

extended a significant distance to the east (Figure D-4a).  Similarly, the models indicate 

the species is likely to be documented in a number of additional watersheds across their 

known range in Montana.  This seems likely given that only limited baseline surveys 

have been performed to-date and most of these date back to the late 1980s (Wilson 1993).  

Soil temperature and moisture regime (cool and moist soils) and average minimum 

January temperature (greater than -11 °C) were ranked as important variables in state-

wide models, but were ranked of low importance at the scale of the species’ range.  Close 

proximity to streams, slopes greater than 20 degrees, and elevations below 1,000 m were 

all associated with highest habitat suitability.  Similarly terrain ruggedness was ranked as 

an important variable by both state-wide and range-wide models, apparently as a result of 

being indicative of the rock fractures the species is dependent on (Wilson et al. 1997, 

Wilson et al. 1998).  GAP AVI was very poor (0.30), but in many cases areas predicted 

by GAP were only a few pixels away from observations.  The low cutoff threshold of the 

continuous range model resulted in a 572 percent (5,015 km2) increase in area of 

predicted suitable habitat relative to GAP models (Table 3.7).  Although these more 

expansive continuous and low cutoff threshold models could not be evaluated with test 

data visual inspection indicates a good fit with our field experience at both the regional 

and landscape scale and they seem to more appropriately represent the probable 

distribution of the species than the simple GAP model of streams within suitable habitat 

cover types (Figure D-4b, Hart et al. 1998). 
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Figure D-4a. Continuous state-wide habitat suitability index for P. idahoensis. 
 

 
 
 
 
Figure D-4b. Predicted suitable habitat and training observations for P. idahoensis. 
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Rocky Mountain Tailed Frog (Ascaphus montanus) 

 

The state-wide continuous model (Figure D-5a) indicates that the species’ known range 

may be extended to: (1) the east along the Beaverhead Mountains to Bloody Dick Creek; 

(2) the eastern edge of the East Pioneer Mountains; (3) the Flint Creek Range; (4) 

portions of the Front Range near the Sun River Wildlife Management Area; and (5) the 

area around Rogers Pass, Flesher Pass, and Stemple Pass.  Precipitation was ranked as 

more important in state-wide than range-wide models with suitability of habitat 

increasing between 50 and 200 cm per year (Table 3.5).  Wetland and evergreen forest 

cover types were associated with higher suitability and slope and terrain ruggedness were 

ranked as relatively important, probably as indicators of areas likely to support stream 

flow or provide shaded habitats.  The AUC and AVI for test data evaluating the 

continuous range-wide and low cutoff threshold models (0.889 and 0.92, respectively) 

indicated good model fit and much better fit than the AVI for GAP (0.32) (Figure D-5b, 

Table 3.6), but in many cases areas predicted by GAP were only a few pixels away from 

observations.  Thus, the GAP models do not appear to be as poor as indicated by the test 

data, but are clearly too restrictive as simply streams within suitable habitat cover types 

(Hart et al. 1998).  The low cutoff threshold of the continuous range model resulted in a 

588 percent (28,927 km2) increase in area of predicted suitable habitat relative to GAP 

models (Table 3.7).  Visual inspection of test occurrence deviances at the range-wide and 

local-landscape scales revealed no large-scale patterns in the magnitude of deviance and 

the magnitude of deviances is inversely correlated with predicted habitat suitability, 

indicating that the habitat suitability classifications performed well at the landscape scale.  

The low, moderate, and optimal cutoff thresholds match with our field observations and 

appear to be good approximation of relative habitat suitability for the species (Figure D-

5c). 
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Figure D-5a. Continuous state-wide habitat suitability index for A. montanus. 
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Figure D-5b. Predicted suitable habitat and training (squares) and test (stars) observations 
for A. montanus. 
 

 
 
 
 
Figure D-5c. Predicted low (yellow), moderate (orange) and high (red) habitat suitability 
classes for A. montanus. 
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Plains Spadefoot (Spea bombifrons) 

 

In addition to identifying numerous areas currently lacking documentation within the 

known range of the species as highly suitable habitat, the state-wide continuous model 

(Figure D-6a) indicates that the known range may be extended: (1) in the Madison River 

valley near Ennis; (2) the Ruby River valley to just above the Ruby River Reservoir; (3) 

Blacktail Deer Creek southeast of Dillon; (4) the Paradise Valley south of Livingston; 

and (5) on portions of the Blackfeet and Crow Indian Reservations.  Soil map units in the 

STATSGO soil layer are clearly valuable for predicting the distribution of the species, 

but extracting friable soils from this data is likely to improve the models since they seem 

to be much more common on these soil types (pers. obs.).  Characteristics of other 

environmental variables of importance (Table 3.5) included warmer drier soils, slopes 

less than 15 degrees, annual precipitation of 20-50 cm, covertypes associated with 

riparian areas, and average maximum July temperatures greater than 29 °C.  Solar 

radiation indices were the only variables that did not help improve models and they 

actually made them worse in the jackknife plots of test gain.  The AUC and AVI for test 

data evaluating the range-wide continuous and low cutoff threshold (0.895 and 0.95, 

respectively) indicated good model fit and there was a 48 percent (128,305 km2) 

reduction in predicted area from that predicted by GAP, which had a similar AVI (Tables 

3.6 and 3.7, Figure D-6b).  Evaluation with the lentic site survey data indicated low 

omission errors for both the low cutoff threshold and GAP models, but the low cutoff 

threshold performed slightly better for commission errors, overall map accuracy, and 

Kappa (Table 3.8).  High commission errors and low Kappa values likely resulted from 

the inability of models to identify local site variables of importance and the fact that 

single site visits fail to adequately assess true absence.  Visual inspection of test 

occurrence deviances at the range-wide and local-landscape scales revealed no large-

scale patterns in the magnitude of deviance and low, moderate, and optimal habitat 

suitability class thresholds generally appear to be appropriate at the scale of the species’ 

range as well as the level of a public land survey section (Figure D-6c). 
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Figure D-6a. Continuous state-wide habitat suitability index for S. bombifrons. 
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Figure D-6b. Predicted suitable habitat and training (squares) and test (stars) observations 
for S. bombifrons. 
 

 
 
 
 
Figure D-6c. Predicted low (yellow), moderate (orange) and high (red) habitat suitability 
classes for S. bombifrons. 
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Western Toad (Bufo boreas) 

 

The state-wide continuous model indicates that suitable habitat exists in the Bighorn 

Mountains on the Crow Indian Reservation and in the Big Snowy Mountains outside the 

current known range of the species (Figures D-7a-b).  While evidence for declines 

(Maxell et al. 2003) and failure to detect the species during recent surveys at the margins 

of their known range in these areas (pers. obs.) indicates this is unlikely, surveys focused 

on these areas are probably warranted.  Characteristics of environmental variables of 

importance (Table 3.5) include cooler moister soil types, annual precipitation ranges of 

50-100 cm, slopes of less than 30 degrees, and distances to major streams of under 1,000 

m.  Solar radiation indices were the only variables that did not help improve models and 

they actually made them worse in the jackknife plots of test gain.  The AUC and AVI for 

test data evaluating the range-wide continuous model and low cutoff threshold (0.888 and 

0.95, respectively) indicated good model fit and there was a 41 percent (58,708 km2) 

reduction in predicted area from that predicted by GAP, which had a lower AVI (0.83) 

(Tables 3.6 and 3.7).  Low, moderate, and optimal habitat suitability class thresholds 

appear to be appropriate at the scale of the species’ range as well as the level of a public 

land survey section (Figure D-7c).  Evaluation with the lentic site survey data indicated 

low omission errors for both low cutoff threshold and GAP, but the low cutoff threshold 

model had higher commission error rates and, as a result, overall lower map accuracy 

than GAP (Table 3.8).  High commission errors and low Kappa values likely resulted 

from the inability of models to identify local site variables of importance, the fact that 

single site visits fail to adequately assess true absence, and recent declines, which have 

left a number of apparently suitable breeding sites unoccupied.  Visual inspection of test 

occurrence deviances at the range-wide and local-landscape scales revealed no large-

scale patterns in the magnitude of deviance and the magnitude of deviances is inversely 

correlated with predicted habitat suitability, indicating that the habitat suitability 

classifications performed well at the landscape scale. 
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Figure D-7a. Continuous state-wide habitat suitability index for B. boreas. 
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Figure D-7b. Predicted suitable habitat and training (squares) and test (stars) observations 
for B. boreas. 
 

 
 
 
 
Figure D-7c. Predicted low (yellow), moderate (orange) and high (red) habitat suitability 
classes for B. boreas. 
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Great Plains Toad (Bufo cognatus) 

 

The state-wide continuous model indicates a number of areas within the known range of 

the species that currently lack observations and should be targeted with nocturnal calling 

surveys to fill in these data gaps (Figures D-8a-b).  In addition, the state-wide continuous 

model indicates that the species’ known range may be extended: (1) upstream along the 

Clark’s Fork of the Yellowstone River; (2) upstream along the Little Bighorn River; (3) 

areas within the Milk and Marias River watersheds; and (4) portions of the upper 

Missouri River between Great Falls and Three Forks.  Characteristics of environmental 

variables of importance include average maximum temperatures greater than 29 °C, 

elevations less than 1,250 m, warmer drier soils, and slopes less than 15 degrees.  Solar 

radiation indices were the only variables that did not help improve models and they 

actually made them worse in the jackknife plots of test gain.  Interestingly, while slope 

was valuable in training the models, it actually made them worse in the jackknife plots of 

test gain.  The AUC and AVI for test data evaluating the range-wide continuous and low 

cutoff threshold (0.877 and 0.89, respectively) indicated reasonable model fit and there 

was a 48 percent (84,043 km2) reduction in predicted area from that predicted by GAP, 

which had a lower AVI (0.77) (Figure D-8b, Tables 3.6 and 3.7).  Evaluation with the 

lentic site survey data indicated low omission error rates, high commission error rates, 

low map accuracy and low Kappa for both the low cutoff threshold and GAP models 

(Table 3.8).  High commission errors and low Kappa values likely resulted from the 

inability of models to identify local site variables of importance and the fact that single 

site visits fail to adequately assess true absence.  Visual inspection of test occurrence 

deviances at the range-wide and local-landscape scales revealed no large-scale patterns in 

the magnitude of deviance and the magnitude of deviances is inversely correlated with 

predicted habitat suitability.  This correlated well with our field experience and we 

believe the low, moderate, and optimal habitat suitability class thresholds appear to be 

appropriate at the scale of the species range as well as the level of a public land survey 

section in regions with adequate data (Figure D-8c).  However, models may under predict 

distribution in regions with few occurrences. 
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Figure D-8a. Continuous state-wide habitat suitability index for B. cognatus. 
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Figure D-8b. Predicted suitable habitat and training (squares) and test (stars) observations 
for B. cognatus. 
 

 
 
 
 
Figure D-8c. Predicted low (yellow), moderate (orange) and high (red) habitat suitability 
classes for B. cognatus. 
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Woodhouse’s Toad (Bufo woodhousii) 

 

The state-wide continuous model indicates a number of areas within the known range of 

the species that currently lack observations and should be targeted with nocturnal calling 

surveys to fill in these data gaps (Figures D-9a-b).  In addition, the state-wide continuous 

model indicates that the species’ known range may be extended: (1) northward to the 

border with Canada where the species has not yet been reported (Russell and Bauer 2000, 

Secoy and Vincent 1976) along major tributaries to the Milk, Missouri, and Marias 

Rivers; (2) up the Clark’s Fork of the Yellowstone River; and (3) up the Little Bighorn 

River.  Characteristics of environmental variables of importance (Table 3.5) include 

average maximum temperatures greater than 29 °C, areas close to major streams, and 

elevations less than 1,200 m.  Solar radiation indices and soil temperature and moisture 

regime did not help improve models and they actually made them worse in the jackknife 

plots of test gain.  The AUC and AVI for test data evaluating the range-wide continuous 

and low cutoff threshold models (0.94 and 0.98, respectively) indicated good model fit 

and there was a 57 percent (95,611 km2) reduction in predicted area from that predicted 

by GAP, which had a lower AVI (0.92) (Figure D-9b, Tables 3.6 and 3.7).  Evaluation 

with the lentic site survey data indicated low omission error rates, high commission error 

rates, moderate values for map accuracy and low Kappa for both the low cutoff threshold 

and GAP models, with low cutoff threshold models outperforming GAP in all situations 

(Table 3.8).  High commission errors and low Kappa values likely resulted from the 

inability of models to identify local site variables of importance and the fact that single 

site visits fail to adequately assess true absence.  Visual inspection of test occurrence 

deviances at the range-wide and local-landscape scales revealed no large-scale patterns in 

the magnitude of deviance and the magnitude of deviances is inversely correlated with 

predicted habitat suitability.  Thus, low, moderate, and optimal habitat suitability class 

thresholds appear to be appropriate at the scale of the species’ range as well as the level 

of a public land survey section in most areas.  However, the species’ distribution may be 

slightly under represented in the areas between the Missouri and Yellowstone Rivers that 

lack some baseline survey effort (Figure D-9b-c). 
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Figure D-9a. Continuous state-wide habitat suitability index for B. woodhousii. 
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Figure D-9b. Predicted suitable habitat and training (squares) and test (stars) observations 
for B. woodhousii. 
 

 
 
 
 
Figure D-9c. Predicted low (yellow), moderate (orange) and high (red) habitat suitability 
classes for B. woodhousii. 
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Boreal Chorus Frog (Pseudacris maculata) 

 

The state-wide continuous model indicates a number of areas at the margins of the known 

range of the species that currently lack observations and should be targeted with 

nocturnal calling surveys to fill in these data gaps (Figure D-10a).  These include: (1) the 

Paradise Valley; (2) the Madison River Valley; (3) the Ruby Valley; (4) the Jefferson and 

Missouri Rivers between Helena and Dillon; and (5) the upper Smith River.  

Characteristics of environmental variables of importance include slopes less than 10 

degrees, wetland related land cover types, and areas within 1,000 m of major streams.  

Solar radiation indices were the only variables that did not help improve models and they 

actually made them worse in the jackknife plots of test gain.  The AUC and AVI for test 

data evaluating the range-wide continuous and low cutoff threshold model (0.884 and 

0.97, respectively) indicate good model fit and there was a 33 percent (92,303 km2) 

reduction in predicted area from that predicted by GAP, which had a lower AVI (0.93) 

(Figure D-10b, Tables 3.6 and 3.7).  Evaluation with the lentic site survey data indicated 

low omission error rates, high commission error rates, moderate values for map accuracy 

and low Kappa for both the low cutoff threshold and GAP models, with low cutoff 

threshold models outperforming GAP for omission errors (Table 3.8).  High commission 

errors and low Kappa values likely resulted from the inability of models to identify local 

site variables of importance and the fact that single site visits fail to adequately assess 

true absence.  Visual inspection of test occurrence deviances at the range-wide and local-

landscape scales revealed no large-scale patterns in the magnitude of deviance and low, 

moderate, and optimal habitat suitability class thresholds appear to be appropriate at the 

scale of the species’ range as well as the level of a public land survey section in most 

areas (Figure D-10b-c).  However, the species’ distribution may be slightly under 

represented in a few areas dominated by private agricultural land that lack some baseline 

survey effort in eastern Montana. 
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Figure D-10a. Continuous state-wide habitat suitability index for P. maculata. 
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Figure D-10b. Predicted suitable habitat and training (squares) and test (stars) 
observations for P. maculata. 
 

 
 
 
 
Figure D-10c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for P. maculata. 
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Pacific Treefrog (Pseudacris regilla) 

The state-wide continuous model (Figure D-11a) indicates that the species’ range may 

extend into: (1) the Seeley and Swan Valleys; (2) portions of the lower North and South 

Forks of the Flathead River drainage; (3) the lower portions of Rock Creek; (4) portions 

of the lower Clark Fork River drainage between Missoula and Superior; and (5) portions 

of the Garnet Range.  These areas all seem reasonable, but recent calling surveys in these 

areas have failed to detect them (Maxell et al. 2003, pers. obs.) and it seems likely that 

these areas have not been occupied in recent decades or were never colonized.  Minimum 

average January temperature (optimally greater than 15 °C) was ranked as the most 

important variable at the state-wide scale, but was not important in range-wide models.  

Similarly soil temperature and moisture regime (warmer moister soils) was important at 

the state-wide scale, but was not important in range-wide models.  Other characteristics 

of environmental variables of importance (Table 3.5) included elevations below 1,600 m, 

slopes usually less than 10 degrees, annual precipitation greater than 50 cm, and terrain 

with at least some level of ruggedness.  AUC and AVI for test data evaluating the range-

wide continuous and low cutoff threshold model (0.933 and 0.97, respectively) indicate 

good model fit (Figure D-11b, Table 3.6).  There was a 19 percent (5,101 km2) reduction 

in predicted area from that predicted by GAP, which had a lower AVI (0.84) (Tables 3.6 

and 3.7).  Evaluation with the lentic site survey data indicated low omission error rates 

and high commission error rates for both the low cutoff threshold and GAP models 

(Table 3.8).  Map accuracy and Kappa for GAP was superior to the low cutoff threshold 

model, probably as a result of the large number of sites represented by the slightly higher 

commission error rate for the lower cutoff threshold model (Table 3.5).  Visual inspection 

of test occurrence deviances at the range-wide and local-landscape scales revealed no 

large-scale patterns in the magnitude of deviance and low, moderate, and optimal habitat 

suitability class thresholds appear to be appropriate at the scale of the species’ range as 

well as the level of a public land survey section in most areas.  However, the species’ 

distribution is likely over predicted in a number of areas south of the Flathead Valley 

because populations in this region are disjunct and somewhat isolated (Figure D11b-c, 

Maxell et al. 2003).  Models may assist with the location of additional isolated 

populations in this region.
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Figure D-11a. Continuous state-wide habitat suitability index for P. regilla. 
 
 

 
 

216



Figure D-11b. Predicted suitable habitat and training (squares) and test (stars) 
observations for P. regilla. 
 

 
 
 
 
Figure D-11c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for P. regilla. 
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American Bullfrog (Rana catesbeiana) 

 

Only a state-wide continuous model was run for R. catesbeiana because this exotic 

species has been found in a number of new localities in recent years and while the extent 

of their range is uncertain, there is a great need to identify areas of potential spread 

because they represent a major threat to native vertebrate and invertebrate populations 

(Bury and Whelan 1984, Maxell 2000, Maxell et al. 2003, Werner et al. 2004).  The 

model (Figures D-12a-b) indicates that a number of additional areas are capable of 

supporting populations, including: (1) the Flathead Valley; (2) a number of major 

drainages in northwest Montana including the Bull, Fisher, and Thompson Rivers; (3) the 

Missouri River around Helena; (4) the Paradise Valley; (5) areas south of Billings around 

Bighorn Lake; and (6) streams around Lewistown.  Characteristics of environmental 

variables of importance (Table 3.5) included average minimum January temperatures 

greater than -12 °C (ideally greater than -9 °C), areas within 1,000 m of major streams, 

and flatter slopes.  No test data was available for evaluation of the model by AUC or 

AVI, but GAP AVI was very low (0.03) because GAP was limited to areas around major 

rivers and lakes resulting in a small predicted area (Table 3.6, Hart et al. 1998).  The low 

cutoff threshold probably greatly over predicts the distribution of the species right now; 

resulting in a 56,841 percent (34,673 km2) increase from the GAP prediction (Figure D-

12b, Table 3.7).  However, the fact that average minimum January temperature appears to 

be important for limiting the distribution of the species indicates that these areas may be 

an appropriate representation of potential spread under documented ongoing increases in 

winter temperatures from climate change (Mote 2003).  This highlights the importance of 

undertaking control measures on currently established populations and educating the 

public to reduce or eliminate future introductions. 
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Figure D-12a. Continuous state-wide habitat suitability index for R. catesbeiana. 
 

 
 
 
 
Figure D-12b. Predicted suitable habitat and training observations for R. catesbeiana. 
 

 
 
 

219



Columbia Spotted Frog (Rana luteiventris) 

 

The state-wide continuous model indicates that the known range of the species could 

potentially be extended eastward into: (1) the Bighorn Mountains on the Crow Indian 

Reservation; and (2) the Big Snowy Mountains (Figure D-13a).  It is possible that the 

species has gone undetected or unreported in both areas, but the Bighorn Mountains are 

more likely given the presence of populations of R. luteiventris in adjacent areas of this 

mountain range in Wyoming (Dunlap 1977, Funk et al. 2008).  Characteristics of 

environmental variables of importance (Table 3.5) include slopes less than 15 to 20 

degrees, annual precipitation ranges of 50-230 cm, cooler moister soil types, average 

maximum July temperatures less than 27 °C, and wetland, evergreen, or transitional land 

cover types.  Solar radiation indices were the only variables that were essentially of no 

help in improving models as indicated by jackknife plots of training and test gain and 

AUC.  The AUC and AVI for test data evaluating the range-wide continuous and low 

cutoff threshold models (0.936 and 0.98, respectively) indicated good model fit and the 

AVI was much better than the GAP model (0.53), which was probably unrealistic in that 

it simply turned on streams within appropriate habitat types (Table 3.6, Hart et al. 1998).  

As a result the low cutoff threshold predicted a 155% (50,032 km2) larger area than GAP 

(Table 3.7).  Evaluation with the lentic site survey data indicated relatively high omission 

errors for the low cutoff threshold (0.128) and even higher omission error rates for GAP 

(0.362) (Table 3.8).  However, moderate levels of commission errors for both the low 

cutoff and GAP resulted in relatively high overall map accuracy (Table 3.8).  High 

commission errors and low Kappa values likely resulted from the inability of models to 

identify local site variables of importance and the fact that single site visits fail to 

adequately assess true absence.  Visual inspection of test occurrence deviances at the 

range-wide and local-landscape scales revealed no large-scale patterns in the magnitude 

of deviance and low, moderate, and optimal habitat suitability class thresholds appear to 

be appropriate at the scale of the species’ range as well as the level of a public land 

survey section in most areas.  However, the low cutoff threshold probably under predicts 

suitable habitat in some valley bottoms east of the Continental Divide where few surveys 

have been performed (Figures D-13a-b).
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Figure D-13a. Continuous state-wide habitat suitability index for R. luteiventris. 
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Figure D-13b. Predicted suitable habitat and training (squares) and test (stars) 
observations for R. luteiventris. 
 

 
 
 
 
Figure D-13c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for R. luteiventris. 
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Northern Leopard Frog (Rana pipiens) 

 

The state-wide continuous model supports an historic distribution in western Montana 

prior to declines (Werner 2003, Werner et al. 2004) that was restricted to major valley 

bottoms and interestingly, despite a number of records in the lower Flathead Valley, 

predicts more suitable habitat extending from just north of Flathead Lake up to the 

Canadian border near Eureka where the last historic populations still exist (Figure D-

14a).  Characteristics of environmental variables of importance (Table 3.5) include 

elevations less than 1,500 m, areas within 500 m of major streams, and slopes less than 

10 degrees.  Solar radiation indices were the only variables that were essentially of no 

help in improving models as indicated by jackknife plots of training and test gain and 

AUC.  The AUC and AVI for test data evaluating the range-wide continuous and low 

cutoff models (0.923 and 0.96, respectively) indicated good model fit and much better fit 

than the AVI for GAP (0.53), which was based on streams within suitable cover types 

(Figure D-14b, Table 3.6, Hart et al. 1998).  The GAP models were essentially correct in 

focusing on stream habitats, but a 500-1,000 m or larger buffer around streams would 

have been required to raise the AVI to levels achieved by the low cutoff threshold model 

which predicted a 131 percent (67,762 km2) larger area than GAP (Table 3.7).  

Evaluation with the lentic site survey data indicated low omission errors for the low 

cutoff threshold, but GAP suffered from higher omission error rates (Table 3.8).  Both the 

low cutoff threshold and GAP models had high commission error rates and low Kappa 

values, but GAP had higher overall map accuracy.  High commission errors and low 

Kappa values for the low cutoff threshold likely resulted from the inability of models to 

identify local site variables of importance and the fact that single site visits fail to 

adequately assess true absence.  Visual inspection of test occurrence deviances at the 

range-wide and local-landscape scales revealed no large-scale patterns in the magnitude 

of deviance and low, moderate, and optimal habitat suitability classes seem to more 

realistically represent the distribution of the species than the simple GAP model of 

streams within suitable habitat cover types (Figure D-14c).  However, a few areas that 

lack surveys may be under predicted and a few areas that have received a lot of survey 

effort may be over predicted into drier areas that are unlikely to support populations. 
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Figure D-14a. Continuous state-wide habitat suitability index for R. pipiens. 
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Figure D-14b. Predicted suitable habitat and training (squares) and test (stars) 
observations for R. pipiens.  Only current range is shown. 
 

 
 
 
 
Figure D-14c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for R. pipiens.  Only current range is shown. 
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Snapping Turtle (Chelydra serpentina) 

 

The state-wide continuous model indicates the known range of the species may be 

extended: (1) into a number of northern tributaries to the Yellowstone River below 

Billings; (2) the Clark’s Fork of the Yellowstone River; and (3) upstream of current 

observations on the Little Bighorn River (Figure D-15a).  Interestingly, two known sites 

of introduction outside of the native range of the species (portions of the Flathead and 

Gallatin Valleys) are predicted as having small areas of suitable habitat by the state-wide 

continuous model (Maxell et al. 2003).  Characteristics of environmental variables of 

importance (Table 3.5) include average maximum July temperatures of greater than 29 

°C (state-wide models only) and areas within 200 m of major streams.  Solar radiation 

indices were the only variables that were essentially of no help in improving training gain 

on the model.  GAP AVI was very poor (0.44), but in many cases areas predicted by GAP 

were only a few pixels away from observations (Table 3.6).  The total area predicted by 

GAP and the low cutoff threshold models were within 8 km2 of each other (Table 3.7).  

Although the range-wide continuous and low cutoff threshold models could not be 

evaluated with test data, they seem to more appropriately represent the probable 

distribution of the species than the simple GAP model of streams within suitable habitat 

cover types (Hart et al. 1998) in most areas.  However, in a couple areas it appears that 

soil map units produce an artifact that creates blocks of predicted habitat too far from 

major streams and these areas inappropriately represent the species’ distribution at the 

local-landscape scale.  The species is one of the most poorly documented vertebrates in 

the state (Table 3.3, Figure D-15b) and we encourage surveys in areas indicated as 

suitable habitat by these models which currently lack observations. 

 

226



Figure D-15a. Continuous state-wide habitat suitability index for C. serpentina.  Only 
observations within their native range were used to train the model. 
 

 
 
 
 
Figure D-15b. Predicted suitable habitat and training observations for C. serpentina.  
Only native range is shown. 
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Painted Turtle (Chrysemys picta) 

The state-wide continuous model indicates suitable habitat in several areas across 

Montana, which currently lack observation records (Figures D-16a-b).  These include: (1) 

the Madison River Valley near Ennis; (2) the Paradise Valley near Livingston; (3) a large 

area of farmland and Blackfeet Tribal land extending north of Great Falls to the Canadian 

border; (4) a large region between the Yellowstone and Missouri Rivers east of the Big 

Snowy Mountains; and (5) lower elevation portions of the Crow Indian Reservation.  The 

state-wide models also indicate stringers of low to moderately suitable habitat that extend 

up the Clark Fork River to Butte and over Deer Lodge Pass to the Big Hole River that 

likely provide limited contemporary connectivity over the Continental Divide.  Because 

evidence indicates that the species recolonized the Great Plains after a period of intense 

aridity that reached its maximum 14,000 years ago (Starkey et al. 2003), it also seems 

likely that this same route is the most probable path by which the species colonized the 

Pacific Northwest (see overview of range in Stebbins 2003).  Characteristics of 

environmental variables of importance (Table 3.5) include wetland and deciduous forest 

cover types, elevations less than 1,400 m, slopes less than 20 degrees, and areas in close 

proximity to major streams.  The AUC and AVI for test data evaluating the range-wide 

continuous and low cutoff threshold models (0.929 and 0.97, respectively) indicated good 

model fit and the AVI was much better than the GAP model (0.22) (Table 3.6).  The GAP 

model was probably unrealistic in that it simply turned on streams within appropriate 

habitat types (Hart et al. 1998).  As a result the low cutoff threshold model predicted a 

370 percent (121,305 km2) larger area than GAP (Table 3.7).  Evaluation with the lentic 

site survey data indicated low omission error rates, high commission error rates, and low 

Kappa values for both the low cutoff threshold and GAP models (Table 3.8).  Visual 

inspection of test occurrence deviances at the range-wide and local-landscape scales 

revealed no large-scale patterns in the magnitude of deviance and low, moderate, and 

optimal habitat suitability class thresholds appear to be appropriate at the scale of the 

species’ range as well as the level of a public land survey section in western Montana and 

most areas of eastern Montana (Figure D-16c).  However, some areas east of the 

Continental Divide that lack surveys are probably under predicted by the low cutoff 

threshold.
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Figure D-16a. Continuous state-wide habitat suitability index for C. picta. 
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Figure D-16b. Predicted suitable habitat and training (squares) and test (stars) 
observations for C. picta. 
 

 
 
 
 
Figure D-16c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for C. picta. 
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Spiny Softshell (Apalone spinifera) 

 

The state-wide continuous model probably represents the likely historic range of the 

species prior to the establishment of Tiber Reservoir and Fort Peck Reservoir (Figure D-

17a).  That is, it seems likely that the species was previously distributed further upstream 

in the Marias River above Tiber Reservoir, portions of the Milk River, and in the area of 

the Missouri River now covered by Fort Peck Lake when these rivers were free-flowing.  

Characteristics of environmental variables of importance (Table 3.5) include areas within 

200 m of major streams, elevations below 1,100 m, and wetland and water cover types.  

GAP AVI was very poor (0.28) because the major river habitats predicted by GAP failed 

to encompass small backwater habitats and larger tributaries the species uses (Table 3.6, 

Hart et al. 1998).  As a result, the low cutoff threshold model predicted a 1,746 percent 

(7,926 km2) larger area than GAP (Table 3.7).  Although range-wide continuous and low 

cutoff threshold models could not be evaluated with test data, they seem to appropriately 

represent the distribution of the species and seem to be better than rule based GAP model 

of major streams (Figure D-17b). 
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Figure D-17a. Continuous state-wide habitat suitability index for A. spinifera. 
 

 
 
 
 
Figure D-17b. Predicted suitable habitat and training observations for A. spinifera. 
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Northern Alligator Lizard (Elgaria coerulea) 

 

The state-wide continuous model indicates the species’ known range may be extended 

into previously undocumented areas in: (1) the Sapphire Mountains; (2) the Garnet 

Mountains; (3) the Bitterroot Mountains between Missoula and Lookout Pass; (4) lower 

portions of the Swan River drainage; and (5) lower portions of the South Fork, Middle 

Fork, and North Fork of the Flathead River drainages (Figure D-18a).  Furthermore, a 

large area centered around the Fisher River drainage currently lacks observations, but is 

predicted to have suitable habitat (Figure D-18b).  Soil temperature and moisture regime 

(cool and moist soils) and average minimum January temperature (greater than -9 to -12 

°C) were ranked as important variables in state-wide models, but were ranked of low 

importance at the scale of the species’ range.  Elevation was ranked as more important 

within the species’ range model (less than 1,200 m) than it was in the state-wide model.  

Southeast, south, and southwest aspects were favored and high terrain ruggedness was 

ranked as the most and second most important variable at the state-wide and range-wide 

scales, respectively, apparently as a result of being indicative of the rocky slopes the 

species is associated with (Werner et al. 2004).  Solar radiation indices did not improve 

training gain and may not be of use in modeling the species’ distribution in their current 

form.  GAP AVI was poor (0.67), but in many cases areas predicted by GAP were only a 

few pixels away from observations and the GAP model seemed to be a reasonable 

approximation of the species distribution (Table 3.6).  Even though the range-wide 

continuous and low cutoff threshold models could not be evaluated with test data, they 

seem to more appropriately represent a likely continuous range of habitat suitability than 

the deductively based GAP model of buffering both sides of forest edges at elevations 

below 2,100 m (Hart et al. 1998).  The low cutoff threshold model predicted a 32 percent 

(5,379 km2) smaller area than the GAP model (Table 3.7). 
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Figure D-18a. Continuous state-wide habitat suitability index for E. coerulea. 
 

 
 
 
 
Figure D-18b. Predicted suitable habitat and training observations for E. coerulea. 
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Greater Short-horned Lizard (Phrynosoma hernandesi) 

 

The species is one of the most poorly documented vertebrates in the state and museum 

and observation records for large regions are very old or too spatially imprecise to be 

used for modeling (Table 3.3, Maxell et al. 2003).  The state-wide models may, therefore, 

be valuable in identifying local areas that should be targeted for surveys within regions 

where historic observations have poor spatial precision.  For example, P. hernandesi has 

been collected around the Three Forks area on three occasions between 1888 and 1953, 

but all of the collection localities have poor spatial precision.  The state-wide and range-

wide continuous models constructed without these records predict suitable habitat in 

several areas around Three Forks which should be targeted for survey to see if 

populations are still present in the area (Figures D-19a-b).  Furthermore, these models 

indicate suitable habitat in several areas along the Missouri River, supporting the 

hypothesis that populations of this and other primarily Great Plains distributed species 

reported in the Three Forks area colonized the area via the Missouri River corridor; an 

area which has now been greatly altered with hydrologic dams.  Other areas which the 

models predict as possible extensions of known range include: (1) areas around the lower 

Big Hole River; (2) Beartrap Canyon; (3) some of the bluffs along the west side of the 

Smith River Canyon; (4) and bluffs around Tiber Reservoir and the upper Marias River 

(Figures D-19a-b).  Characteristics of environmental variables of importance include 

barren, shrubland, and grassland cover types, low terrain ruggedness, cooler drier soils, 

average maximum July temperatures greater than 24 °C, and areas with high winter solar 

radiation index values.  GAP AVI was 0.87, but the GAP predicted area was 56 percent 

(100,407 km2) greater than the low cutoff threshold model because it simply turned on 

suitable cover types under 2,100 m elevation (Tables 3.6 and 3.7, Hart et al. 1998).  

Although range-wide continuous and low cutoff threshold models could not be evaluated 

with test data, they seem to more appropriately represent suitable habitat than the 

deductively based GAP models in most areas.  However, these models probably under 

predict the distribution of the species in a number of areas that lack observations. 
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Figure D-19a. Continuous state-wide habitat suitability index for P. hernandesi. 
 

 
 
 
 
Figure D-19b. Predicted suitable habitat and training observations for P. hernandesi. 
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Common Sagebrush Lizard (Sceloporus graciosus) 

 

The state-wide continuous model indicates the species’ known range may be extended 

into previously undocumented areas including: (1) the area along the Yellowstone River 

between Columbus and Gardiner; (2) the western edge of the Bull Mountains; (3) lower 

portions of the Musselshell River; and (4) lower portions of the Marias River (Figure D-

20a).  Characteristics of environmental variables of importance (Table 3.5) include 

annual precipitation of less than 40 cm, warmer and drier soils, and elevations below 

1,750 m.  GAP AVI was 0.94, but the GAP predicted area was 75 percent (92,958 km2) 

greater than the low cutoff threshold model because it simply turned on suitable cover 

types under 2,250 m elevation (Tables 3.6 and 3.7, Hart et al. 1998).  Although range-

wide continuous and low cutoff threshold models could not be evaluated with test data, 

they seem to more appropriately represent suitable habitat at regional and local-landscape 

scales than the deductively based GAP models in areas that have even a small number of 

observations.  In areas currently lacking observations, it seems likely that the continuous 

models under predict the distribution of the species.  This highlights the importance of 

conducting systematic surveys for the species (Figures D-20a-b). 
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Figure D-20a. Continuous state-wide habitat suitability index for S. graciosus. 
 

 
 
 
 
Figure D-20b. Predicted suitable habitat and training observations for S. graciosus. 
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Western Skink (Eumeces skiltonianus) 

 

The species is one of the most poorly documented vertebrates in the state and a number 

of observation records have spatial precisions that are too poor to be used for modeling 

(Table 3.3, Maxell et al. 2003).  Models may, therefore, be valuable in identifying local 

areas that should be targeted for survey with pitfall traps (Ortega and Pearson 2001).  The 

state-wide continuous model indicates the species’ known range may be extended into 

previously undocumented areas including: (1) lower portions of the Blackfoot River 

drainage; (2) portions of the upper Clark Fork between Missoula and Garrison; (3) 

western portions of the Flathead Indian Reservation; and (4) potentially lower portions of 

the South, Middle, and North Forks of the Flathead River (Figures D-21a-b).  Minimum 

average January temperature (greater than -15 to -16 °C) was ranked as the most 

important variable at a state-wide scale, but was significantly less important within the 

species’ range.  Other characteristics of environmental variables of importance (Table 

3.5) include a strong preference for southern aspects, habitat cover types that are 

grassland, shrubland, or transitional from these to open forest, and elevations below 2,000 

m.  GAP AVI was 0.79 and the GAP predicted area was 36 percent greater (4,949 km2) 

than the low cutoff threshold model because it simply turned on suitable cover types 

below 2,100 m elevation (Tables 3.6 and 3.7, Hart et al. 1998).  Although the continuous 

and low cutoff threshold models could not be evaluated with test data, they seem to more 

appropriately represent suitable habitat than the deductively based GAP models in areas 

that have even a small number of observations (Figure D-21b).  Indeed, observations with 

poor spatial precision not used for training the models almost always fell within areas 

predicted as suitable habitat by the low cutoff threshold model.  In areas currently lacking 

observations, it is either possible that the range-wide continuous models under predict the 

distribution of the species or that they are truly rare or absent. 
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Figure D-21a. Continuous state-wide habitat suitability index for E. skiltonianus. 
 

 
 
 
 
Figure D-21b. Predicted suitable habitat and training observations for E. skiltonianus. 
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Rubber Boa (Charina bottae) 

 

The state-wide continuous model indicates the species’ known range may be extended 

into previously undocumented areas including: (1) the eastern edge of the Beartooth 

Plateau; (2) the Pryor Mountains; (3) the Big Horn Mountains on the Crow Indian 

Reservation; (4) the Wolf Mountains on the Northern Cheyenne Indian Reservation; (5) 

the eastern edge of the Little Belt Mountains and the Big Snowy Mountains; (6) the 

Judith and Moccasin Mountains; portions of the Beaverhead and Centennial Mountains; 

and (7) portions of the East Front of the Rocky Mountains from the Canadian border 

southward to Wolf Creek (Figures D-22a-b).  Indeed, the state-wide model correctly 

predicted a recent 185 km range extension for the species that was not used in the 

modeling effort; an observation on a section of state land near the headwaters of Rosebud 

Creek in southeastern Bighorn County (Lisa Wilson and David Stagliano, Montana 

Natural Heritage Program, pers. comm.).  Characteristics of environmental variables of 

importance (Table 3.5) include terrain with at least some level of ruggedness, areas 

usually within 1,000 m of major streams, elevations less than 2,000 m (usually less than 

1,500 m), and evergreen forest, deciduous forest, or woody wetland habitat cover types.  

Solar radiation indices did not improve training gain and may not be of use in modeling 

the species’ distribution in their current form.  GAP AVI was 0.9 and the GAP predicted 

area was 61 percent (62,009 km2) greater than the low cutoff model because it turned on 

suitable cover types within a 500-m distance of all streams at elevations below 2,850 m 

(Tables 3.6 and 3.7, Hart et al. 1998).  Although continuous and low cutoff threshold 

models could not be evaluated with test data, they seem to appropriately represent 

suitable habitat in areas that have observation data.  Unfortunately, they probably under 

predict the distribution of the species in areas that lack data and because the species is 

very cryptic, many areas lack observation data (Werner et al. 2004).  Thus, within regions 

that currently have few observations, it would probably be best to use deductive models 

in tandem with these continuous inductive models when considering this species in 

management plans.  
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Figure D-22a. Continuous state-wide habitat suitability index for C. bottae. 
 

 
 
 
 
Figure D-22b. Predicted suitable habitat and training observations for C. bottae. 
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Eastern Racer (Coluber constrictor) 

 

The state-wide continuous models predict separation between eastern and western 

populations of the species based on availability of suitable habitat (Figures D-23a-c).  

However, there are faint stringers of habitat of low predicted suitability that extend up the 

Clark Fork River to Butte and over Deer Lodge Pass to the Big Hole River that may 

provide limited connectivity (Figure D-23a).  Surveys and collection of specimens in the 

Melrose, Dillon, and upper Clark Fork region would help improve predictive models and 

the understanding of potential levels of gene flow between populations east (currently 

speculated to be C. constrictor flaviventris) and west (currently speculated to be C. 

constrictor mormon) of the Continental Divide (Corn and Bury 1986, Maxell et al. 2003).  

Characteristics of environmental variables of importance (Table 3.5) include average 

maximum July temperatures greater than 27 °C, elevations less than 1,600 m, and annual 

precipitation less than 50 cm.  Ruggedness, aspect, and the solar radiation indices did not 

improve the models and the inclusion of these variables actually hurt the model as 

indicated by the jackknife plots of test gain.  The AUC and AVI for test data evaluating 

the range-wide continuous and low cutoff threshold models (0.858 and 0.91, respectively) 

indicated good model fit and the AVI was the same for the GAP model (0.22), which 

predicted a 39 percent (100,832 km2) larger area than the low cutoff threshold model 

(Tables 3.6 and 3.7).  Visual inspection of test occurrence deviances at the range-wide 

and local-landscape scales revealed no large-scale patterns in the magnitude of deviance.  

However, the average deviance of test occurrences was high relative to other species and 

a number of grassland habitats that would likely support the species in various portions of 

its range are not recognized as suitable habitat by the model.  Where they overlap, the 

low, moderate, and optimal habitat suitability class thresholds appear to be superior to 

GAP in that they more appropriately reflect the relative suitability of habitat.  However, 

the low cutoff threshold seems to under predict the overall area of suitable habitat in 

some portions of eastern and western Montana, usually in regions where there are no, or 

relatively few, observations (Figure D-23b).  Until more observations are available in 

these grassland habitats, it would probably be best to use deductively based models in 

tandem with the continuous model.
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Figure D-23a. Continuous state-wide habitat suitability index for C. constrictor. 
 
 

 

244



Figure D-23b. Predicted suitable habitat and training (squares) and test (stars) 
observations for C. constrictor. 
 

 
 
 
 
Figure D-23c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for C. constrictor. 
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Western Hog-nosed Snake (Heterodon nasicus) 

 

The state-wide continuous model indicates the known range of the species may be 

extended: (1) upstream on the Clark’s Fork of the Yellowstone River; (2) upstream on 

Big Otter Creek from the Missouri River to Stanford; and (3) up the Musselshell River to 

Ryegate (Figures D-24a-b).  Characteristics of environmental variables of importance 

(Table 3.5) include average maximum July temperatures greater than 29 °C, soils 

saturated with ground water or drier soils nearby, areas typically within 1,500 m of major 

streams, and elevations less than 1,500 m.  GAP AVI was 0.76 and the GAP predicted 

area was 63 percent (125,245 km2) greater than the low cutoff threshold model because it 

simply turned on suitable cover types at elevations below 1,650 m (Tables 3.6 and 3.7, 

Hart et al. 1998).  Although range-wide continuous and low cutoff threshold models 

could not be evaluated with test data, they seem to more appropriately represent suitable 

habitat than the simple deductively based GAP models in most areas.  However, they 

likely under represent the species distribution in areas that lack observations.  In some 

areas, soil map units produce what appears to be an unrealistically sharp delineation 

between suitable and non-suitable habitat.  However, it is possible that this could 

adequately represent the species’ distribution since they are highly adapted for digging in 

sandy or other friable soils (Platt 1969, 1983).  As with other species, this highlights the 

need for several state-wide layers summarizing a variety of soil characteristics.  More 

observations are also needed for this species and until data is available in regions that 

currently have few records, it would probably be best to rely on a combination of 

deductive and continuous model outputs when considering this species in management 

plans.  Riparian areas with friable soils (Platt 1969, 1983) in the range of the species 

should be surveyed prior to undertaking management actions that would alter habitat. 
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Figure D-24a. Continuous state-wide habitat suitability index for H. nasicus. 
 

 
 
 
 
Figure D-24b. Predicted suitable habitat and training observations for H. nasicus. 
 

 

247



Smooth Greensnake (Opheodrys vernalis) 

 

The species is one of the most poorly documented vertebrates in the state and several 

observation records have spatial precisions too poor to be used for modeling (Table 3.3, 

Maxell et al. 2003).  The state-wide continuous model indicates the species’ known 

distribution may be extended: (1) up the lower portion of the Yellowstone River from the 

state line; (2) along the lower portion of the Missouri River below Fort Peck Reservoir; 

(3) in the vicinity of the Poplar River; and (4) possibly the lower portion of the Milk 

River in Valley and Phillips Counties (Figures D-25a-b).  Surveys should be encouraged 

in each of these areas.  Characteristics of environmental variables of importance (Table 

3.5) include elevations less than 700 m, average minimum January temperatures less than 

-17 °C (important for the state-wide, but not the range-wide model), and soils saturated 

with groundwater.  GAP AVI was poor (0.22) because the species has been detected on a 

number of occasions outside the 500-m hydrography buffer applied within suitable 

habitats (Table 3.6, Hart et al. 1998).  The low cutoff threshold model predicted a 155 

percent (3,679 km2) larger area of suitable habitat (Table 3.7).  Although range-wide 

continuous and low cutoff threshold models could not be evaluated with test data, they 

seem to be very appropriate and probably do a much better job of representing suitable 

habitat than the simple deductively based GAP model. 
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Figure D-25a. Continuous state-wide habitat suitability index for O. vernalis. 
 

 
 
 
 
Figure D-25b. Predicted suitable habitat and training observations for O. vernalis. 
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Milksnake (Lampropeltis triangulum) 

 

The species is one of the most poorly documented vertebrates in the state and a large 

percentage of observation and museum records have spatial precisions too large to be 

used for modeling (Table 3.3, Maxell et al. 2003).  The state-wide continuous model 

indicates the species’ known distribution may be extended: (1) southeastward toward the 

Ekalaka Hills; (2) upstream on the Yellowstone River potentially into the Paradise 

Valley; (3) southeastern Fergus County; and (4) upstream on the Missouri River 

potentially as far as the area around Three Forks, an area where several questionable 

records exist (Figures D-26a-b, Maxell et al. 2003).  Characteristics of environmental 

variables of importance (Table 3.5) include average maximum July temperatures greater 

than 29 °C, and barren and shrubland cover types; other environmental variable response 

curves are uninterpretable.  GAP AVI was poor (0.68) because despite predicting a very 

high percentage of areas below 1,950 m within the species potential range, many 

observations still fell within small patches predicted to be unsuitable (Table 3.6, Figure 

D-26b).  Low cutoff threshold models predicted a 73 percent (95,824 km2) smaller area 

of suitable habitat than GAP (Table 3.7).  Although range-wide continuous and low 

cutoff threshold models could not be evaluated with test data, they appear to more 

appropriately represent suitable habitat in areas that have observations than the simple 

deductively based GAP models.  Unfortunately, they probably under predict the 

distribution of the species in areas that lack data and because the species is very cryptic, 

many areas lack observation data (Werner et al. 2004).  Thus, until more observation data 

is available, it would probably be best to use deductive and continuous model outputs in 

tandem when considering this species in management plans within regions that currently 

have few observations. 
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Figure D-26a. Continuous state-wide habitat suitability index for L. triangulum. 
 

 
 
 
 
Figure D-26b. Predicted suitable habitat and training observations for L. triangulum. 
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Gophersnake (Pituophis catenifer) 

 

The state-wide continuous model predicts suitable habitat for the species in several 

regions that currently lack observations (Figures D-27a-b).  These include: (1) the area 

between Great Falls and the Canadian border within the Blackfeet Indian Reservation; (2) 

scattered areas between the Yellowstone and Missouri Rivers; (3) the Bighorn Canyon 

National Recreation Area; and (4) regions of the Blackfoot, upper Clark Fork and Little 

Blackfoot Rivers.  Similar to C. constrictor, the continuous and low cutoff threshold 

models predict separation between eastern and western populations of the species based 

on availability of suitable habitat (Figures D-27a-c).  However, as compared to C. 

constrictor, there are larger areas of predicted suitable habitat that extend up the Clark 

Fork River to Butte and over Deer Lodge Pass to the Big Hole River that may provide 

limited connectivity.  Characteristics of environmental variables of importance (Table 

3.5) include average maximum July temperatures greater than 28 °C, areas within 2,500 

m of major streams, elevations less than 1,500 m, deciduous forest and shrubland cover 

types, and annual precipitation less than 50 cm.  Aspect and the solar radiation indices 

did not improve the models as indicated by the jackknife plots of training gain, test gain, 

and AUC.  The AUC and AVI for test data evaluating the range-wide continuous and low 

cutoff threshold models (0.897 and 0.96, respectively) indicated good model fit and the 

AVI was better than the GAP model (0.89) (Table 3.6).  GAP predicted a 39 percent 

(110,378 km2) larger area than the low cutoff (Table 3.7).  Visual inspection of test 

occurrence deviances at the range-wide and local-landscape scales revealed no large-

scale patterns in the magnitude of deviance.  However, the average deviance of test 

occurrences was high relative to many species and a number of grassland habitats that 

would likely support the species in various portions of its range are not recognized as 

suitable habitat by the model (Figures D27b-c).  Where they overlap, the low, moderate, 

and optimal habitat suitability class thresholds appear to be superior to GAP in that they 

more appropriately reflect the relative suitability of habitat.  Until more observations are 

available in these grassland habitats, it would probably be best to use deductively based 

models in tandem with the continuous model. 
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Figure D-27a. Continuous state-wide habitat suitability index for P. catenifer. 
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Figure D-27b. Predicted suitable habitat and training (squares) and test (stars) 
observations for P. catenifer. 
 

 
 
 
 
Figure D-27c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for P. catenifer. 
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Terrestrial Gartersnake (Thamnophis elegans) 

 

The state-wide continuous model seems to appropriately predict the distribution of the 

species across its known range, including broader distribution west of the Continental 

Divide as compared to the patchier and more stream dependent distribution east of the 

Continental Divide (Figures D-28a-b).  The extent of the species’ range is probably fairly 

well understood.  Characteristics of environmental variables of importance (Table 3.5) 

include areas within 500 m of major streams, annual precipitation of less than 180 cm, 

slopes less than 20 degrees, and average maximum July temperatures less than 27 °C.  

Aspect and the solar radiation indices did not improve the models as indicated by the 

jackknife plots of training gain, test gain, and AUC, and the solar radiation indices 

actually made the model worse in the jackknife plot of test gain.  The AUC and AVI for 

test data evaluating the range-wide continuous and low cutoff threshold models (0.897 

and 0.96, respectively) indicated good model fit and the AVI was better than the GAP 

model (0.89), which was based on the majority of cover types, except water, below 3,300 

m (Table 3.6, Hart et al. 1998).  As a result the low cutoff threshold model predicted a 59 

percent (178,895 km2) smaller area than GAP (Table 3.7, Figure D-28b).  Evaluation 

with the lentic site survey data indicated low omission error rates, high commission error 

rates, and low Kappa values for both the low cutoff threshold and GAP models (Table 

3.8).  The low cutoff threshold model outperformed GAP as evaluated by overall map 

accuracy and Kappa.  High commission errors and low Kappa values likely resulted from 

the inability of models to identify local site variables of importance and the fact that 

single site visits fail to adequately assess true absence.  Visual inspection of test 

occurrence deviances at the range-wide and local-landscape scales revealed no large-

scale patterns in the magnitude of deviance and low, moderate, and optimal habitat 

suitability class thresholds appeared to be appropriate at the scale of the species’ range as 

well as the level of a public land survey section in almost all areas examined (Figure D-

28c).   
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Figure D-28a. Continuous state-wide habitat suitability index for T. elegans. 
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Figure D-28b. Predicted suitable habitat and training (squares) and test (stars) 
observations for T. elegans. 
 

 
 
 
 
Figure D-28c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for T. elegans. 
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Plains Gartersnake (Thamnophis radix) 

 

The state-wide continuous model seems to appropriately predict the distribution of the 

species across its known range and indicates that the extent of that range is fairly well 

understood with the possible exceptions of Judith Basin County, southern Fergus County, 

and the Blackfeet Indian Reservation (Figures D-29a-b).  Characteristics of 

environmental variables of importance (Table 3.5) include elevations below 1,000 m at 

the state-wide scale (much less important within the species’ range), and average 

minimum January temperatures below -15 °C.  Other environmental variable response 

curves showed no clear trends or cutoffs, probably as a result of the species being 

widespread across a variety of habitats within its range.  The AUC and AVI for test data 

evaluating the range-wide continuous and low cutoff threshold models (0.908 and 0.98, 

respectively) indicated good model fit and the AVI was better than the GAP model 

(0.85), which was based on the majority of cover types, except water, below 2,100 m 

(Table 3.6, Hart et al. 1998).  As a result, the low cutoff model predicted a 42 percent 

(83,083 km2) smaller area than GAP (Table 3.7, Figure D-29b).  Evaluation with the 

lentic site survey data indicated low omission error rates, high commission error rates, 

low overall map accuracies, and low Kappa values for both the low cutoff threshold and 

GAP models, but the low cutoff threshold model outperformed GAP on each (Table 3.8).  

High commission errors and low Kappa values likely resulted from the inability of 

models to identify local site variables of importance and the fact that single site visits fail 

to adequately assess true absence.  Visual inspection of test occurrence deviances at the 

range-wide and local-landscape scales revealed no large-scale patterns in the magnitude 

of deviance.  Low, moderate, and optimal habitat suitability class thresholds appear to be 

appropriate at the scale of the species’ range as well as the level of a public land survey 

section in most areas (Figure D-29c).  However, the region in northeastern Montana with 

a relatively smaller predicted area may either be appropriate as a result of the different 

soil characteristics in this region, or it may be under predicting the species’ distribution as 

a result of the lack of observations.  Until there are more observations in this region, it 

may be best to use a combination of a deductive model and this inductively based 

continuous model. 
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Figure D-29a. Continuous state-wide habitat suitability index for T. radix. 
 
 

 
 

259



Figure D-29b. Predicted suitable habitat and training (squares) and test (stars) 
observations for T. radix. 
 

 
 
 
 
Figure D-29c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for T. radix. 
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Common Gartersnake (Thamnophis sirtalis) 

 

The state-wide continuous model seems to appropriately predict the distribution of the 

species across its known range, including broader distribution west of the Continental 

Divide as compared to the patchier and more stream dependent distribution east of the 

Continental Divide (Figure D-30a).  The extent of the species’ range is probably fairly 

well understood.  Characteristics of environmental variables of importance include 

average minimum January temperatures greater than -12 °C, and annual precipitation of 

usually greater than 50 cm.  Other environmental variable response curves showed no 

clear trends or cutoffs, probably as a result of the species being widespread across a 

variety of habitats within its range.  Aspect, ruggedness, and the solar radiation indices 

did not improve the models as indicated by the jackknife plots of training gain, test gain, 

and AUC.  The AUC and AVI for test data evaluating the range-wide continuous and low 

cutoff threshold models (0.935 and 0.91, respectively) indicated good model fit and the 

AVI was better than the GAP model (0.80), which was based on the majority of cover 

types within a 500-m stream buffer below 2,250 m (Table 3.6, Hart et al. 1998).  As a 

result the low cutoff model predicted a 59 percent (122,459 km2) smaller area than GAP 

(Table 3.7, Figure D-30b).  Evaluation with the lentic site survey data indicated low 

omission error rates, high commission error rates, moderate levels of overall map 

accuracy, and low Kappa values for both the low cutoff threshold and GAP models 

(Table 3.8).  High commission errors and low Kappa values likely resulted from the 

inability of models to identify local site variables of importance and the fact that single 

site visits fail to adequately assess true absence.  Visual inspection of test occurrence 

deviances at the range-wide and local-landscape scales revealed no large-scale patterns in 

the magnitude of deviance and low, moderate, and optimal habitat suitability class 

thresholds appeared to be appropriate at the scale of the species’ range as well as the level 

of a public land survey section in almost all areas examined (Figure D-30c).  However, 

some areas east of the Continental Divide are probably under predicted because the 

species is rarer in this region and, as a result, there are relatively few observations. 
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Figure D-30a. Continuous state-wide habitat suitability index for T. sirtalis. 
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Figure D-30b. Predicted suitable habitat and training (squares) and test (stars) 
observations for T. sirtalis. 
 

 
 
 
 
Figure D-30c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for T. sirtalis. 
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Prairie Rattlesnake (Crotalus viridis) 

The state-wide continuous model predicts suitable habitat for the species in several 

regions that currently lack observations (Figure D-31a).  These include: (1) a large 

portion of the area between Great Falls and the Canadian border within the Blackfeet 

Indian Reservation; (2) scattered areas between the Yellowstone and Missouri Rivers; (3) 

extreme northeast Montana; (4) portions of the Blackfoot, upper Clark Fork and Little 

Blackfoot Rivers; (5) lower portions of the Bitterroot and Clark Fork Rivers; and (6) low 

elevations adjacent to major drainages in northwest Montana.  Some of the areas in 

western Montana may represent historic habitat the species has been extirpated from.  

Similar to C. constrictor, and P. catenifer, the continuous models predict separation 

between eastern and western populations of the species based on availability of suitable 

habitat (Figures D-31a-c).  However, as compared to C. constrictor and P. catenifer, 

there are larger areas of predicted suitable habitat that extend up the Clark Fork River to 

Butte and over Deer Lodge Pass to the Big Hole River that may provide limited 

connectivity.  Characteristics of environmental variables of importance (Table 3.5) 

include areas within 1,500 m of major streams, average maximum July temperatures 

greater than 26 °C, annual precipitation usually less than 60 cm, woody wetland, 

grassland, and transitions between these two cover types, and elevations less than 1,700 

m.  Solar radiation indices actually hurt the models as indicated by the test jackknife plot.  

The AUC and AVI for test data evaluating the range-wide continuous and low cutoff 

threshold models (0.875 and 0.90, respectively) indicated good model fit and the AVI 

was approximately the same as the GAP model (0.92), which predicted a 46 percent 

(124,260 km2) larger area (Tables 3.6 and 3.7).  Visual inspection of test occurrence 

deviances at the range-wide and local-landscape scales revealed no large-scale patterns in 

the magnitude of deviance.  In areas were there are a number of observations, the habitat 

suitability class thresholds appear to be appropriate at the scale of the species’ range as 

well as the level of a public land survey section when there are occurrences in a region.  

However, the low cutoff threshold probably under predicts suitable habitat in large 

portions of eastern Montana where few observations have been reported (Figures D-31b-

c).  In these areas, it would probably be best to use deductive and continuous model 

outputs in tandem when considering this species in management plans. 
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Figure D-31a. Continuous state-wide habitat suitability index for C. viridis. 
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Figure D-31b. Predicted suitable habitat and training (squares) and test (stars) 
observations for C. viridis. 
 

 
 
 
 
Figure D-31c. Predicted low (yellow), moderate (orange) and high (red) habitat 
suitability classes for C. viridis. 
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