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� 2011 by the Ecological Society of America

Generalized functional responses for species distributions
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Abstract. Researchers employing resource selection functions (RSFs) and other related
methods aim to detect correlates of space-use and mitigate against detrimental environmental
change. However, an empirical model fit to data from one place or time is unlikely to capture
species responses under different conditions because organisms respond nonlinearly to
changes in habitat availability. This phenomenon, known as a functional response in resource
selection, has been debated extensively in the RSF literature but continues to be ignored by
practitioners for lack of a practical treatment. We therefore extend the RSF approach to
enable it to estimate generalized functional responses (GFRs) from spatial data. GFRs employ
data from several sampling instances characterized by diverse profiles of habitat availability.
By modeling the regression coefficients of the underlying RSF as functions of availability,
GFRs can account for environmental change and thus predict population distributions in new
environments. We formulate the approach as a mixed-effects model so that it is estimable by
readily available statistical software. We illustrate its application using (1) simulation and (2)
wolf home-range telemetry. Our results indicate that GFRs can offer considerable
improvements in estimation speed and predictive ability over existing mixed-effects
approaches.

Key words: Canis lupis; climate change; generalized linear mixed model; habitat preference; home
range; predictive models; simulation study; space-use; spatial ecology; species distributions; utilization
distribution; wolf.

INTRODUCTION

Empirical models of space use by individuals,

populations and species, aim to bolster their predictions

with environmental covariates. This works well for

spatial interpolation and, also, spatial extrapolation

when the availability of habitat types remains approx-

imately the same (Mladenoff et al. 1999, Aarts et al.

2008). Nevertheless, in most scenarios of extrapolation,

habitat availabilities will also change, implying that

models estimated from single or pooled instances of data

collection may fail to capture the response of species to

changing environments. This phenomenon, known as a

functional response in resource selection (Mysterud and

Ims 1998), is particularly influential when the study

organisms respond nonlinearly to changes in the

availability of different environments. Fig. 1 illustrates

the problem using a simulated experiment: An animal

whose priorities alternate between feeding and hiding is

observed in a particular environment (Fig. 1a and b). A

generalized linear model (GLM) provides a good fit to

these data (compare Fig. 1c and d). The same animal is

then placed in a new environment (Fig. 1e and f ) but the

previously fitted model yields poor predictions of space

use (compare Fig. 1g and h).

The problem was discussed by Boyce and McDonald

(1999), Mysterud and Ims (1999), and Boyce et al. (1999)

and partially tackled for a few discrete habitats (Arthur

et al. 1996, Mauritzen et al. 2003). Recent studies have

adopted mixed-effects models to detect functional

responses (Gillies et al. 2006, Hebblewhite and Merrill

2008, Godvik et al. 2009, Duchesne et al. 2010) and

extract the commonalities between animals exposed to

different environments. Notably, Duchesne et al. (2010)

have used a discrete choice modeling framework with

random coefficients, because this framework allows the

relative probabilities of selection to depend on the set of

choices available to the animal. Here, we show how

mixed-effects models can naturally arise by explicitly
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modeling the dependence of RSF coefficients on the

availability of environmental resources.

We distinguish between environmental and geograph-

ical space (Hirzel and LeLay 2008, Elith and Leathwick

2009). The dimensions of environmental space are

resources or environmental conditions (e.g., Fig. 1b, f ).

A point x¼ (x1, . . . , xI) in I-dimensional environmental

space completely specifies a particular environment. A

point s in geographical space is completely defined in

terms of dimensions such as latitude, longitude, and

altitude/depth (e.g., Fig. 1a, e). We consider arbitrarily

small cells (lengths, areas, volumes, or hypervolumes),

dx and ds in environmental and geographical space

respectively. A cell dx comprises the environmental

neighborhood of the center point x and a cell ds

comprises the geographical neighborhood of the center

point s.

Terminology for the units (dx) of environmental space

is loaded with historical debate. An I-dimensional

hypervolume in environmental space is similar to

Hutchinson’s (1959) definition of a species’ niche.

However, a unit of environmental space need not

coincide with the niche of any one species and several

species may use the same unit to different extents. Some

authors (Arthur et al. 1996, Mauritzen et al. 2003, Aarts

et al. 2008) use the term ‘‘habitat’’ for dx but this suffers

from conflicting definitions (Hall et al. 1997). Being

pragmatic, and to avoid confusion, we will call dx an

‘‘environmental unit.’’

For free-ranging animals with equal access to the

entire study region, the availability of an environmental

unit is the proportion of area occupied by that unit

within the region. More generally, in the case of

unequal accessibility, availability can be defined as the

proportion of time that animals would spend in an

environmental unit, in the absence of preference

(Matthiopoulos 2003, Mauritzen et al. 2003).

As defined by Johnson (1980), ‘‘preference’’ w(x) is the

ratio of the usage g(x) over the availability f(x) of an

environmental unit dx centered at x. Typically, w(x),

known as a resource selection function (RSF), is

estimated as a generalized linear model (Manly et al.

2002). The exact approach depends on how availability

is measured and whether environmental space is

discretized. For example, if the variables in environ-

mental space are continuous, then the data are either 1

(presence) or 0 (absence) and can be modeled as a

Bernoulli process (Aarts et al. 2008). Alternatively, a

discretization of environmental space may allow several

occurrences within each environmental unit. The result-

ing counts are often modeled as a Poisson process. In

either case, the expectation E(Y j x) of the response

variable Y is a linear function, s(x), of covariates, x, and
regression parameters, b, on a transformed scale:

EðY j xÞ ¼ sðxÞ ¼ h�1 b0 þ
XI

i¼1

bixi

 !
: ð1Þ

The link function, h, is typically the log transformation

(for count data) or logit transformation (for binary

data). The modeling objective is to estimate the

coefficients b and draw inferences about the importance

and direction of the relationship between preference and

environmental variables. When modeling count data

arising from a regular discretization of space, it is often

reasonable to assume w(x)¼ exp(Rbixi ). Estimating w(x)

from binary response models is more complicated,

because the interpretation of s(x) depends on the

sampling design (Keating and Cherry 2004, Aarts et

al. 2008). However, in logistic regression exp(Rbixi ) can

approximate w(x) well (Johnson et al. 2006).

Although widely used, the term ‘‘resource selection’’ is

perhaps inappropriate since the dimensions of environ-

mental space can be nondepletable conditions (e.g.,

temperature) as well as resources (e.g., forage) and

because organisms select combinations of values of

environmental variables rather than single resources or

conditions (e.g., it makes little sense to say that a

particular species selects temperature. It is more likely

that it selects a particular range of temperatures

combined with types of vegetation, and ranges of

moisture, slope, etc.).

RSFs are usually fit in environmental space and then

used for geographical predictions (e.g., Fig. 1). Under-

lying this process, is the implicit (and incorrect)

assumption that if an empirical model of preference is

not anchored to particular geographical locations, then

it will automatically capture the essence of the behavior

of the animals and will therefore be portable across

space or time. This fallacious assumption has been made

by several mainstream approaches to niche modeling,

despite the fact that many studies (Johnson 1980, Boyce

and McDonald 1999, Mysterud and Ims 1999, Mau-

ritzen et al. 2003, Osko et al. 2004, Aarts et al. 2008,

Godvik et al. 2009, Beyer et al. 2010) have emphasized

that parameter estimates of species distribution models

are conditional on the availability of all environmental

units to the study animals. Therefore, predictions of

these models are valid only for the spatiotemporal frame

of the data on which they were fit (Hirzel and LeLay

2008) and are furthermore completely reliant on the ad

hoc definition of availability imposed by the data

collection or analysis protocols (Beyer et al. 2010).

Generalized functional responses

A solution to this problem, alluded to by Boyce et al.

(1999), is to write the coefficients bi of Eq. 1 as linear

functions of the availability of all environmental units

and then estimate the parameters of these new functions

from a wide a range of environmental scenarios. We call

this approach a generalized functional response (GFR).

We define the availability function, f, which takes

values x from I-dimensional environmental space and

satisfies the requirement
R

RI f(x) dx¼ 1. For an arbitrary

discretization of environmental space comprising N

environmental units, f(xn) gives the relative availability
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of the nth environmental unit centered at the point xn.

The ith coefficient of Eq. 1 may be written as an

empirical function of all these availabilities:

bi ¼ ci;0 þ
XN

n¼1

ci;n f ðxnÞ þ ei ði ¼ 0; . . . ; IÞ: ð2Þ

Here, ei ; N(0, r2
i ) and the identity link function

relating bi to its linear predictor is the default choice,

given that the regression coefficients (b) are uncon-

strained. The b’s are assumed uncorrelated and are

therefore modeled independently of each other. The

intercept ci,0 is the part of bi that does not depend on

changes in availability ( f ). Therefore, Eq. 2 describes

how changes in the availability of any environmental

unit will make the slope (bi ) of the animals’ response to

the ith environmental variable deviate from the baseline

value ci,0. Note that, because f integrates to 1, changes in

the availability of one environmental unit, have an

impact on the availability of all units (i.e., within a given

area, one environmental unit is made more abundant at

the expense of others).

Eq. 2 is over-specified because it requires one c
coefficient for each environmental unit. Neighboring

environmental units are likely to have similar effects on

bi so, considerable economies in the number of

parameters can be achieved by replacing the individual

c’s by an interpolating function in environmental space

(ci: RI ! R)

bi ¼ ci;0 þ
XN

n¼1

ciðxnÞf ðxnÞ þ ei: ð3Þ

Such economies are crucial for cases where it is difficult or

undesirable to artificially discretize environmental space.

For a continuous environmental space, Eq. 3 is written

bi ¼ ci;0 þ
Z

RI

ciðxÞf ðxÞ dxþ ei: ð4Þ

The case of an environmental space comprising both

discrete and continuous dimensions can be treated by

specifying the bi as a nested combination of summation

(Eq. 3) and integration (Eq. 4). Without loss of generality

and to simplify notation we focus on Eq. 4. To retain

some of the original flexibility of Eq. 2, the functional

form of c(x) must be allowed to be arbitrarily elastic. This

may be achieved by using a polynomial of order Mj for

each covariate:

ciðxÞ ¼
XI

j¼1

XMj

m¼0

dðmÞi; j xm
j ð5Þ

where dðmÞi; j is the coefficient used for the mth power of the

jth environmental covariate. The intercepts are generated

by allowing m to start from 0.

FIG. 1. Models that have been fit to data from one type of environment may predict usage poorly in new situations, as can be
demonstrated by this simulated example (details on the simulation are provided in Appendix A and Supplement 1). The two rows of
this composite plot represent two different environmental scenarios. The results in the top row (a–d) are based on equal overall
availability of two resources. The bottom row (e–h) was produced by assuming a 1:9 split between the two resources. The first
column (a, e) shows geographical space, so local densities of the two resources are represented by the intensity of the two colors (red
and green). The second column (b, f ) shows the environmental spaces corresponding to panels (a) and (e). The colors in these plots,
going from green (low) to white (high), represent the prevalence of a particular combination of values for the two resources. When
using data on the observed usage (c) and its covariates (a) to estimate a GLM, the fit is quite good (d). The same animal responds to
the new regime with a new distribution of usage (g). Using the model as estimated from the previous scenario to predict the new
distribution of usage (h), gives particularly poor results [compare panel (h) with the true usage in panel (g)].
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We now consider K sampling instances, each charac-

terized by a different availability scenario (e.g., sampling

the distribution of the same population in different years

or sampling geographically distinct subpopulations).

The availability of environmental units in the kth
sampling instance is fully described by an instance-

specific function fk(x). Although the parameters b
(describing the response to environmental variables)

are expected to differ in different sampling instances, the

parameters c (describing the response to changing

availability) will not. Eqs. 4 and 5 give the following

model for the b’s:

bi;k ¼ ci;0 þ
Z
RI

XI

j¼1

XMj

m¼0

dðmÞi; j xm
j

( )
fkðxÞ dxþ ei;k

¼ ci;0 þ
XI

j¼1

XMj

m¼0

dðmÞi; j

Z
RI

xm
j fkðxÞdxþ ei;k

¼ ci;0 þ
XI

j¼1

XMj

m¼0

dðmÞi; j E½Xm
j �k þ ei;k ð6Þ

where E½Xm
j �k is the mth moment of the jth environmen-

tal variable calculated for the conditions prevailing in

the kth sampling instance. Therefore, the coefficient of
the ith covariate on the kth sampling instance can be

expressed in terms of the moments of the availabilities of

all environmental covariates on that sampling instance,

i.e., the moments of the marginals of fk(x) are used as

cluster-level predictors, that remain constant for all

observations within a sampling instance.

The full model from Eq. 1 can now be expanded with

the aid of Eq. 6:

sðxÞ ¼ h�1 ðc0;0 þ e0;kÞ þ
XI

j¼1

XMj

m¼0

dðmÞ0; j E½Xm
j �k

(

þ
XI

i¼1

ðci;0 þ ei;kÞxi þ xi

XI

j¼1

XMj

m¼0

dðmÞi; j E½Xm
j �k

 !)

ð7Þ

where x refers to the environmental conditions associ-
ated with a particular observation made in the kth

sampling instance. The linear predictor therefore com-

prises (1) a random intercept of the form (c þ e), (2)
mixed-effects terms of the form (cþ e)X, (3) fixed effects

involving the expectations dE [Xm] of each environmen-

tal variable in each sampling instance, and (4) all

pairwise interactions dXE [Xm] between environmental
variables and their moments.

More complicated formulations for the linear predictor

In accordance with the general methodology of

GLMs, the formulation of the RSF in Eq. 1 can be

extended by including nonlinear terms such as interac-
tions between environmental variables (e.g., bxixj) or

powers of single environmental variables (e.g., bx2
i ).

These additions can be readily accommodated by the

GFR framework: the nonlinear terms (bxixj, bx2
i ) enter

Eq. 7 as additional variables but the expectation terms
E½Xm

i �krefer only to the nonlinear terms of the model.

Mixed-effects implementation

Recent years have seen an increase in the use of mixed-
effects models to take account of individual/group
variation (Gillies et al. 2006, Aarts et al. 2008, Hebble-

white and Merrill 2008). Hebblewhite and Merrill (2008)
suggested the use of mixed-effects models to capture

variations due to differences in resource availability. The
mixed-effects estimation framework is suitable for the
model in Eq. 7 because it caters for random coefficients

and quantifies the variance in each sampling instance.
We therefore generalize on the approach of Hebblewhite

and Merrill (2008) in the following sense: Like that
paper, we detect the existence of a functional response
and estimate a mixed model that refers to each and all of

the sampling instances in the data. This is achieved by
the terms of type 1 and 2 in Eq. 7. In addition, we

introduce the terms of type 3 and 4, which help predict
usage in any new scenario of availability.

Application to simulated data on home range use

We constructed a simple individual-based model of

the trade-off between food (u) and cover (v, the converse
of predation risk). A similar real-life scenario with

mutually exclusive resources was considered by Maur-
itzen et al. (2003) but in our simulation, the two
resources were independently distributed. For simula-

tion details, see Appendix A and Supplement 1.
To generate different availabilities for most environ-

mental units, we randomly manipulated the overall
amount of food (u) and cover (v), within a range of 1–
100 arbitrary units. We obtained space use data from 10

such ‘‘training’’ scenarios and combined them in the
fitting data set. We fit log-linear GLMs to the rate of

occurrence of observations per grid cell and standardized
the spatial predictions to sum to 1. We used four linear
predictors corresponding to different approaches: (1)

random coefficients (RE), (2) random intercept with
interactions involving first-order expectations (O1), (3)

random intercept with interactions involving second-
order expectations (O2), and (4) random coefficients, with
interactions involving first-order expectations (REO1):

RE a0 þ a1uþ a3v

O1 a0 þ d1uþ d3vþ d4ūþ d5�vþ d6uūþ d7v�vþ d8vū

þ d9u�v

O2 a0 þ d1uþ d3vþ d4ūþ d5�vþ d6
�u2 þ d7

�v2 þ d8uū

þ d9v�vþ d10vūþ d11u�vþ d12u �u2 þ d13v �v2

þ d14v �u2 þ d15u �v2

REO1 a0 þ a1uþ a3vþ d4ūþ d5�vþ d6uūþ d7v�vþ d8vū

þ d9u�v ð8Þ
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where ū, �v, �u2 , �v2 are the first- and second-order

expectations of food and cover in each environmental

scenario, the a’s are random coefficients of the form a¼
c þ e whose random components (e) are grouped by

scenario and the d’s are fixed effects throughout. The

values of u, v in these models vary by observation but the

values of ū, �v, �u2 , �v2 vary only by sampling instance. Of

these four models, RE corresponds to the approach of

Hebblewhite and Merrill (2008) and the others are GFRs

as in Eq. 7.

We asked each model to extrapolate usage in three

new scenarios of availability. Scenario 1 (u¼ 50, v¼ 50),

was in the middle of the ranges (0 to 100) used for the 10

training scenarios. Scenario 2 (u¼ 80, v¼ 60) was away

from the middle but still within the ranges used for

fitting. Scenario 3 (u ¼ 120, v ¼ 120) was outside the

range of the availabilities used for fitting. Predictions for

each scenario were made from the fixed effects of each

model, based on the two environmental layers.

To evaluate the models, a GLM was fit to the usage

data from each of the three prediction scenarios. These

fitted responses represented a smooth surface approxi-

mating the animal’s true usage and were used to

calculate the precision of the predictions from the four

models: R(GLM � predicted)2.

Under scenario 1, all models performed equally well

giving predictions that captured the unknown underly-

ing distribution (Appendix B: Fig. B1). This result

indicated that the interaction terms of models O1 and

O2 were able to perform the same role as the random

coefficients of model RE. Under scenario 2, the GFR

models (O1, O2, REO1), performed considerably better

than RE, giving better spatial predictions (Appendix B:

Fig. B2) and considerably higher precision (Fig. 2). By

comparison, all models performed poorly under scenar-

io 3. Models RE and O1 mis-predicted many of the

spatial features of the underlying distribution (Appendix

B: Fig. B3). However, models O2 and REO1 were more

robust to such environmental extrapolation.

Application to wolf telemetry data

To illustrate the GFR model alongside the mixed

modeling approach of Hebblewhite and Merrill (2008),

we used the same data as that paper. The authors found

that nesting the data by pack and individual improved

model fit, but most of the variance in the data was

explained at the level of the individual. We used

summertime data for 11 wolves with the same explan-

atory variables selected by Hebblewhite and Merrill

(2008). To simplify this illustration, we only clustered

FIG. 2. Quality of extrapolation for simulated scenario 2. Each plate refers to one of the four models (RE, O1, O2, and REO1)
and compares that model’s predictions (on the y-axis) with the best possible estimate obtainable by a GLM fit directly to the new
data (on the x-axis). The scatter plot is smoothed to indicate high concentrations of points (in dark blue), but the 200 most extreme
points are also shown as black dots. The 458 line is shown for easier reference.
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the data by individual. We followed a use-availability

design, in which the response data took the value 1

(telemetry point) or 0 (point randomly selected from the

home range of each wolf ). We used one random point

for each telemetry observation and calculated covariate

expectations for each wolf from the random points.

We compared two models. The first, (RE) was similar

to the model of Hebblewhite andMerril (2008) containing

random coefficients for continuous variables (e.g., human

activity) and fixed coefficients for factor levels (e.g.,

vegetation type). The second model (O1), had a random

intercept, interaction terms using 1st order expectations

for the continuous variables and fixed coefficients for

factor levels. Given that the 11 wolves belonged to only

five packs, there was not sufficient diversity in the

environmental scenarios to support more complex models

(like O2 or REO1 examined in the simulation study).

The performance of these two models was evaluated

as follows. Models RE and O1 were fit to the data from

10 wolves and their estimated fixed effects were used to

generate predictions for the 11th. These predictions were

compared to the best estimates generated from a GLM

that was fit to the data from the missing wolf. We

compared the predictive precision of RE and O1

repeatedly by omitting all 11 wolves in turn.

We found that O1 gave better predictions than RE for

8 out of 11 wolves. Graphical comparisons between the

two models for all wolves can be found in Appendix C.

The R code used for the analysis is listed in Supplement 2.

DISCUSSION

Processes such as climate change and habitat frag-

mentation are occurring at increasing rates on a global

scale, implying that most species will need to adapt to

rapidly changing environmental conditions. Since miti-

gation often happens through spatially explicit conser-

vation measures, it is important to anticipate change in

spatial distributions. This is easier said than done

because observed large-scale population distributions

arise from complex interactions between physiological,

demographic and behavioral responses at the level of the

individual (Guisan and Thuiller 2005).

We have presented an addition to the RSF and species

distribution literature that increases the predictive reach

of these widely used models. The main advantages of the

method are: (1) It removes the bias imposed on the fixed

effects by unbalanced sampling effort across different

environmental scenarios. It therefore decouples the

quality of the predictions from the vagaries of the

sampling regime. (2) It potentially replaces random

coefficients by interaction terms hence speeding up fitting

and allowing the estimation of models with more

covariates. (3) It can help make better use of a fixed

amount of sampling effort. For example, if data are

collected from the extremes of a species’ range, GFRs

may be used to predict species distribution in its interior.

(4) It is easy to implement with available software. We

used the lme4 library in R (Bates andMaechler 2010). (5)

It has intuitive appeal. Interactions terms are frequently

employed in empirical models to capture changes in the

response to one covariate brought about by another.

Here, they describe changes in an organism’s response to

environmental attributes as a nonadditive function of the

statistical characteristics of its entire environment.

The components of the method could be further

extended. For example, the linear formulation for the bi
in Eq. 2 may be reconsidered in the light of more

mechanistic arguments, involving animal behavior and

life history priorities (Buckley et al. 2010). It is likely

that this will further increase the model’s predictive

power. The flexibility of the method might also be

increased by exploring other possibilities for the

function ci(x) such as kernel and spline smoothers.

We illustrated the method using both simulated and

real data. In both cases, use of a GFR brought

improvements in predictive ability but these were more

pronounced for the simulation. There are several

reasons why the wolf data might have proved more

challenging. (1) The simulation assumed that the animal

was observed until convergence of the home range had

been achieved but this cannot be guaranteed for any of

the wolves in the sample. (2) The simulation used two

covariates and 10 environmental scenarios. The wolf

analysis used three continuous covariates, several factor

levels for habitat, and individuals from five environ-

mental scenarios (wolves in the same pack experience

similar conditions, even if they do not respond in the

same way). (3) Unlike the simulation that assumed

exactly the same rules of behavior, real animals are likely

to behave intrinsically differently from each other, even

when exposed to the same environments. (4) The wolf

territories were neighboring, so it could be argued that

even the limited number of five scenarios were not too

dissimilar from each other. If the above explanations are

valid, they suggest that the GFR model passed a rather

strenuous validation test by extracting a predictive trend

in the coefficients of the RSF based only on five

contiguous environmental scenarios.

The difficult problem of predicting use in new

environments will nearly always require extrapolation

of some form. Spatial and temporal extrapolation are

unavoidable for every applied objective. Environmental

extrapolation will also be required whenever the

multivariate distribution of environmental variables does

not fall within the range of conditions experienced in the

data set used to fit the model. Here, we have accepted

this challenge and suggested a possible way through it.

Our solution works well in cases of spatiotemporal

extrapolation and may also prove more robust than

other empirical models for environmental extrapolation.
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APPENDIX A

Details of simulation used to generate the validation data (Ecological Archives E092-051-A1).

APPENDIX B

Spatial output from simulated study (Ecological Archives E092-051-A2).

APPENDIX C

Model comparisons for individual wolves (Ecological Archives E092-051-A3).

SUPPLEMENT 1

R code used for simulation (Ecological Archives E092-051-S1).

SUPPLEMENT 2

R code used for wolf analysis (Ecological Archives E092-051-S2).
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