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Review

Correlation and studies of habitat selection:
problem, red herring or opportunity?
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1Biometrics Unit, Minnesota Department of Natural Resources, 5463-C W. Broadway,
Forest Lake, MN 55434, USA
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With the advent of new technologies, animal locations are being collected at ever finer spatio-
temporal scales. We review analytical methods for dealing with correlated data in the context of
resource selection, including post hoc variance inflation techniques, ‘two-stage’ approaches based
on models fit to each individual, generalized estimating equations and hierarchical mixed-effects
models. These methods are applicable to a wide range of correlated data problems, but can be dif-
ficult to apply and remain especially challenging for use–availability sampling designs because the
correlation structure for combinations of used and available points are not likely to follow common
parametric forms. We also review emerging approaches to studying habitat selection that use fine-
scale temporal data to arrive at biologically based definitions of available habitat, while naturally
accounting for autocorrelation by modelling animal movement between telemetry locations.
Sophisticated analyses that explicitly model correlation rather than consider it a nuisance, like
mixed effects and state-space models, offer potentially novel insights into the process of resource
selection, but additional work is needed to make them more generally applicable to large datasets
based on the use–availability designs. Until then, variance inflation techniques and two-stage
approaches should offer pragmatic and flexible approaches to modelling correlated data.

Keywords: generalized estimating equation; generalized linear mixed model; hierarchical model;
resource-selection function; telemetry; use–availability

1. INTRODUCTION
Wildlife telemetry data often are positively correlated
in space and time. Correlation patterns may be
simple, decreasing monotonically with temporal
interval or Euclidean distance, or more complex, fluc-
tuating with time interval or some non-Euclidean
metric of distance. The causes of correlation in teleme-
try studies are varied and may be linked to physical
and physiological limitations (e.g. constraints on
the speed of the animal; Fancy & White 1987;
Verwaijen & Van Damme 2008), within animal behav-
ioural processes (e.g. periodic feeding patterns or
migration schedules; Cushman et al. 2005; Fryxell
et al. 2008), between animal behavioural processes
(e.g. sociality; Haydon et al. 2008) or extrinsic forces
(e.g. seasonality in temperature or resource availability,
landscape heterogeneity, precipitation or prey

abundance; Johnson et al. 2002; Wittemyer et al.
2008). Further, repeated observations on the same
individuals, as is the case with radio-telemetry
locations, are often assumed to give rise to constant
within-group (or ‘exchangeable’) correlation struc-
tures. For example, analysts may assume a constant
correlation between any two observations from the
same individual (with independence among obser-
vations taken on different individuals). These
assumptions easily generalize to hierarchically struc-
tured populations (e.g. one may assume a constant
correlation among observations from the same
individual, correlation to a lesser degree among obser-
vations from animals in the same herd and
independence among observations from animals in
different herds). We will commonly use the term ‘cor-
relation’ to allow for these more general correlation
structures, while reserving the term ‘autocorrelation’
to refer specifically to non-exchangeable within-
animal correlation patterns (e.g. correlations that
change as a function of temporal or spatial distance
between observations).

* Author for correspondence (john.fieberg@state.mn.us).
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Until recently, ecologists viewed correlation as a
nuisance because it violates the assumption of inde-
pendence in traditional statistical inference, hence
producing deceptively low estimates of uncertainty,
overfit models and spurious conclusions. The impor-
tance given to obtaining reliable measures of
statistical significance, often at the expense of learning
from biologically relevant patterns in the data
(Johnson 1999), has led some authors to dub auto-
correlation a ‘red herring’ (Diniz-Filho et al. (2003)
and Fieberg (2007a) in the context of species richness
and home-range studies, respectively). Autocorrela-
tion has been shown to impact inferences from
habitat-selection models (Nielsen et al. 2002), and
the ability to collect fine-scale temporal data with
global positioning system (GPS) radiotelemetry,
combined with the ongoing challenges of scaling
up individual-level differences to population-level
inferences, suggests that correlation has the potential
to divert attention away from studying biologically
meaningful patterns in habitat-selection studies too.
Ideally, methods need to be developed that exploit
fine-scale temporal information without sacrificing
the ability to make reliable inferences.

Several approaches have been suggested for model-
ling correlated data in the context of resource-selection
studies, and we use that body of literature to frame this
review. Recommended solutions span a range of tech-
niques with broad applicability, but studies of resource
selection also present unique challenges because they
compare animal space-use to habitat availability (by
various definitions; Manly et al. 2002). Data are
often modelled by a binomial process, rather than a
normal distribution of errors and correlation patterns
of used and available points are unlikely to fit
common parametric forms. As such, resource-
selection studies provide an illuminating frame of
reference for considering correlation issues and
contemporary solutions.

There have been three main avenues for addressing
correlation in the literature: (i) data censoring: collect
data a priori (or rarify through subsampling) in a
manner that attempts to satisfy the assumption of
independence, (ii) variance inflation: a post hoc
approach to adjust (inflate) standard errors after par-
ameter estimation, or (iii) explicit modelling of
correlation: change the statistical framework used for
inference to explicitly account for correlation in the
process. Early efforts to address serial correlation in
telemetry studies used the concept of ‘time to indepen-
dence’ (Swihart & Slade 1985; Rooney et al. 1998;
Salvatori et al. 1999), defined either as the time lag
beyond which autocorrelation drops below a critical
value, or, alternatively, a time interval sufficient for
the study animal to move anywhere in its home
range. Researchers using very high frequency (VHF)
radiotelemetry often temporally separated telemetry
locations a priori by design (Laird 1987), or by sub-
sampling (Hansteen et al. 1997). Not surprisingly,
these approaches often led to unacceptable data
losses. For example, McNay & Bunnell (1994) deleted
approximately 90 per cent of their locations on
Columbian black-tailed deer (Odocoileus hemionus) to
achieve statistical independence. In the case of GPS

collars, this would be counterproductive because
their great strength lies in finer characterization of
animal behaviour in space and time. Although it is
nearly always the case that estimator precision will
increase with increasing sample size, gains in precision
usually plateau at some level of sampling. Thus, when
designing telemetry studies, costs associated with col-
lecting higher frequency data (e.g. monitoring costs
associated with additional VHF sampling or decreased
battery life of GPS collars) should be considered rela-
tive to the benefits of collecting these additional data.
However, once collected, it will be beneficial to use
all available data and deal with the effects of corre-
lation on statistical inference through variance
inflation or explicit likelihood models (approaches
(ii) and (iii) above). We therefore focus our review
on these two broad approaches.

In this review, we first revisit the importance of
obtaining a representative sample of locations and
individuals (§2), and briefly discuss approaches that
set the foundation of using the animal, rather than
the telemetry location, as the unit of replication (§3)
(Cagnacci et al. 2010; Hebblewhite & Haydon
2010). These sections set the conceptual stage for
the more complicated, but flexible, regression
approaches that we consider in depth in §4. We start
by reviewing methods for first estimating models
under the assumption of independence between
locations, but then inflating variances using robust
standard errors to account for the presence of corre-
lation (Nielsen et al. 2002; Clark & Strevens 2008;
Craiu et al. 2008). Next, we discuss extensions based
on generalized estimating equations (GEEs) that,
assuming non-independence, allow the use of other
correlation structures during the estimation process
in conjunction with robust standard errors for infer-
ence (Zeger et al. 1988; Fieberg et al. 2009; Koper &
Manseau 2009). We then review two methods that
explicitly model among-animal variability in their
selection patterns: first, a two-stage approach that fits
models separately to individual animals and then
averages regression parameters across individuals to
estimate population-level selection patterns (Glenn
et al. 2004; Sawyer et al. 2006); and second, general-
ized linear mixed-effects models (GLMMs) that
include random effects for individual animals as well
as other social grouping structures (Gillies et al.
2006; Aarts et al. 2008; Hebblewhite & Merrill
2008). The latter are often referred to as multi-level
or hierarchical models. Throughout, we highlight the
challenges particular to the use–availability sampling
design, which arise because the probability of use in
the sample is dependent on sampling rates of used
and available points and because common correlation
structures (e.g. a first-order autoregressive model
AR1) are unlikely to adequately describe clusters of
used and available points (Park & Kim 2004; Craiu
et al. 2008; Koper & Manseau 2009). Finally in (§5),
we discuss recent developments that take advantage
of autocorrelated data by integrating models of
animal movement into the process of resource selec-
tion. These approaches are attractive because they
provide biologically based definitions of available habi-
tat, and have the potential to circumvent the problem
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of autocorrelation by modelling transitions between
locations. There are advantages and disadvantages
associated with each method, which we take care to
summarize so that analysts can make informed choices
as to their modelling approach (table 1).

2. IMPORTANCE OF REPRESENTATIVE
SAMPLES
GPS-based locations yield unbiased representations of
habitat use and movements provided that missing fixes
are rare or occur randomly in time and space (Fieberg
2007a). Assuming further that location data have been
collected over a fixed and biologically meaningful

study period (e.g. fixed start and end dates defining
a typical breeding season), then design-based inferen-
tial techniques developed for analysing survey data can
provide useful estimates of animal-specific parameters
and their uncertainty (Thompson 2002). For example,
population-level parameters and their uncertainty can
be estimated by treating the data as if they arise from a
two-stage cluster sample (individuals serve as clusters,
and telemetry points as within-cluster observations) as
long as individuals marked with GPS devices are
representative of the larger population (Clark &
Strevens 2008).

In reality, many telemetry studies track non-random
samples of individuals for varying lengths of time.

Table 1. Comparison of the advantages and disadvantages of correlated data regression modelling approaches to studying

habitat selection.

estimator advantages disadvantages citations & examples

variance inflation

techniques, generalized
estimating equations
(GEEs) with working
independence correlation
structure

simple to apply treats correlation as a nuisance;

is not informative with
respect to animal-specific
response patterns (and their
variation in the population)

Newey & West (1987),

Nielsen et al. (2002),
Clark & Strevens (2008)
and Craiu et al. (2008)

GEEs with other working
correlation structures

in theory, could be used to
increase precision of
parameter estimators
compared to models using a

working assumption of
independence

leads to biased estimators when
used with case–control or
use–availability sampling
designs (Park & Kim 2004;

Craiu et al. 2008)

Koper & Manseau (2009);
but see Craiu et al. (2008)
for potential concerns

two-stage sampling allows subject-specific
inferences and variance
decomposition between and

within groups and can
accommodate variable habitat
selection responses among
individuals. Computationally
and statistically simple (with

fewer assumptions than
GLMMs). Individual model
log-likelihoods additive
making model selection at
population-level possible

requires enough data from each
individual for separate model
fits. May overestimate error in

the population-level
responses if uncertainty in
individual-level estimates are
not used when estimating
population-level parameters.

Difficult to adapt to
complicated (e.g. non-
nested) variance structures.
Problematic when covariates
are not present in an

individual

Davidian & Giltinan (1995),
Glenn et al. (2004),
Sawyer et al. (2006) and

Murtaugh (2007)

generalized linear mixed-
models (GLMMs)

allows subject-specific
inferences and variance
decomposition between and
within groups with a single

model fit. Accommodates
hierarchical correlation
structures

computationally demanding.
Requires more assumptions
than two-stage methods (e.g.
specification of a parametric

distribution for animal-
specific selection coefficients
and within-individual
correlation structure).

Specification of correlation
structure problematic with
use–availability designs

Skrondal & Rabe-Hesketh
(2004), Gillies et al.
(2006), Thomas et al.
(2006), Aarts et al. (2008)

and Hebblewhite &
Merrill (2008)

movement-based models of
availability

may account for autocorrelation
by modelling independent

transition probabilities
(between locations). Uses a
biologically based definition
of availability. Integrates
easily into a matched-case

control logistic regression
design

may not fully account for all
correlation (but can be

applied with robust s.e.s).
Not appropriate for resource
selection at larger spatial
scales. More computationally
demanding (but can be

implemented with matched
case–control logistic
regression software with
distance as a covariate)

Hjermann (2000); Rhodes
et al. (2005), Johnson

et al. (2008), Christ et al.
(2008), Barnett &
Moorcroft (2008),
Moorcroft & Barnett
(2008), Forester et al.
(2009) and Nielson et al.
(2009)
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Moreover, GPS-based locations themselves may be
habitat-biased owing to canopy or terrain interference
with satellite signals (Frair et al. 2010). If fix rates are
not high, and the probability of a successful fix
depends on environmental covariates, then a model
for the probability of detection (i.e. acquiring a GPS
fix) can be used to fill in missing locations or statisti-
cally correct for sampling biases (Frair et al. 2004;
Horne et al. 2007; Nielson et al. 2009). One approach,
sample weighting, also may be used to correct for sys-
tematic deviations in sampling intensity during the
course of a study (Fieberg 2007b). In some cases, it
may be possible to adjust for sampling-related effects
by including covariates that capture differences in
animal-specific sampling regimes (e.g. Börger et al.
(2006a,b) in the context of modelling the relationship
between habitat metrics and the home-range size). In
other cases, it may be necessary to assess the impact
of non-representative sampling on parameter estimates
and also recognize a more limited scope of inference
(e.g. Fieberg et al. (2008) for a consideration of how
non-representative individuals may influence estimates
of migration probabilities from telemetry data). Wher-
ever possible, the implications of non-representative
sampling, or variation in sampling intensities and
durations, should be addressed.

3. THE ANIMAL AS SAMPLE UNIT:
FOUNDATIONS
Statistical tests of non-uniform use of resources at the
population level usually should treat individual ani-
mals as the sampling units (Aebischer et al. 1993;
Otis & White 1999). White & Garrott (1990) and
Dasgupta & Alldredge (1998) formulated hypothesis
tests of selection at the population level for categori-
cally defined habitats based on the sum of and
maximal animal-specific x2 statistics (comparing used
and available proportions), respectively. Aebischer
et al. (1993) suggested a MANOVA-based procedure
(compositional analysis) involving ratios of pro-
portions associated with used and available habitat
types where individual animals were considered as
the sample unit. These population-level tests focus
on mean selection patterns (averaged across animals),
but variability in selection among animals is usually of
interest too. For categorically defined habitat types,
Calenge & Dufour (2006) offer a multi-variate analysis
approach to analysing habitat-selection ratios with this
latter aim in mind. All of these methods solve pro-
blems associated with unbalanced sampling among
individuals, and within-individual correlation, by
focusing on animal-level summaries (i.e. proportions
of used and available habitat types; Kneib et al.
2007). More commonly, habitat-selection studies aim
to understand the importance of both continuous
and categorical predictors (associated with gradients,
linear features like edges or habitat patches), which
require more flexible regression approaches. Neverthe-
less, these earlier studies clearly established the logic
of considering variation among individual animals,
rather than among telemetry points, when making
population-level inferences.

4. REGRESSION APPROACHES TO STUDYING
RESOURCE SELECTION
Habitat-selection analyses investigating both continu-
ous and categorical predictors typically infer selection
of resources or habitats by comparing measured
characteristics (e.g. elevation, dominant vegetation)
of ‘used points’, represented by telemetry locations,
to those of random points that represent ‘available’
habitats (Johnson et al. 2006; Lele & Keim 2006;
Aarts et al. 2008; Lele 2009). The random points
might be chosen locally (e.g. within a buffer surround-
ing each observed location), within an animal’s home
range, or over a larger landscape (study area), with
the interpretation of regression parameters being
dependent upon the scale of availability chosen for
inference (Johnson 1980; Boyce 2006; Beyer et al.
2010). Statistical methods developed for analysing
binary data, e.g. logistic regression (Manly et al.
2002), are frequently used to analyse the combined
used-available sample data; however, a multi-nomial
or conditional-logit likelihood can also be used
(Cooper & Millspaugh 1999; Compton et al. 2002;
Thomas et al. 2006; Craiu et al. 2008). We do not
review the nuances of different habitat-selection designs
here, but refer readers to Keating & Cherry (2004),
Johnson et al. (2006), Lele & Keim (2006), Thomas &
Taylor (2006) and Beyer et al. (2010).

(a) Variance inflation and GEEs

When marked animals are representative of a larger
population, and sample sizes associated with these
animals are essentially random with respect to the
response of interest (i.e. the number of observed
telemetry locations is not influenced by individual
animal movements or their resource preferences),
then unbiased estimators of population parameters
often can be formulated by treating all (within- and
between-subject) data as though they are independent.
Although regression parameter estimators will be
unbiased, associated estimates of uncertainty will
be optimistic when data are assumed to be indepen-
dent. Thus, robust standard errors that quantify
variation among independent units, typically
individuals, should be used for statistical inference
(Williams 2000; Clark & Strevens 2008). This
approach of combining a working assumption of
independence for point estimates with robust (cluster
level) standard errors can be generalized to allow for
more complicated data dependencies. For example,
robust variance estimators exist to deal with within-
individual serial correlation (Newey & West 1987;
Nielsen et al. 2002).

Rather than inflating the variances in a post hoc
manner, the assumed correlation structure can be
included in the regression model under a GEEs frame-
work (Zeger et al. 1988). GEEs extend generalized
linear models (e.g. logistic regression, Poisson
regression) and quasi-likelihood estimators to corre-
lated data problems, and require a model for the
response mean (E[Yi j Xi]—typically assumed to be a
linear function of covariates, X, and regression par-
ameters, b, on a transformed scale), and for the
response variance (var[Yi j Xi]—most often assumed
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to be a function of the mean, similar to generalized
linear models). For example, for binary data, we
have the following:

log
E YijXi½ �

1� E YijXi½ �

� �
¼ Xib ð4:1aÞ

and

var Yi½ � ¼ s2E YijXi½ � 1� E YijXi½ �ð Þ; ð4:1bÞ

where s2 is a scale factor that allows for overdispersion
(or increased variance) relative to a standard Bernoulli
random variable. In addition, one specifies a ‘working
correlation structure’ that describes the dependence
among observations within mutually independent
clusters of observations. The clusters can consist of
successive observations in time, a group of obser-
vations close in space or all observations within one
individual. Common working correlation assumptions
include independence, exchangeability (equal corre-
lation among all observations from the same cluster)
or autoregressive (AR1); multiple working correlations
also may be compared as a sort of sensitivity analysis.
Estimators of regression parameters will be asymptoti-
cally unbiased (i.e. as the number of clusters goes to
infinity) if the model for E[YijXi] is correct, even if
the correlation structure is mis-specified (Diggle
et al. 1994), however, estimator precision will improve
if the working correlation structure captures salient
characteristics in the data. Outcome-dependent
sampling designs (e.g. case–control and use–availability
designs in which the probability [Yij ¼ 1] depends on
how the sample was drawn) require special care
because the model for E[YijXi] must account for the
sampling design (Park & Kim 2004; Craiu et al.
2008; Forester et al. 2009). In particular, outcome-
dependent sampling designs for binary data, when
analysed with working correlations other than inde-
pendence, often result in biased regression parameter
estimators (Park & Kim 2004; Craiu et al. 2008).
Thus, applications of GEEs to habitat-selection
problems should typically assume an independent
correlation structure. In any case, confidence intervals
and hypothesis tests are formed using robust
sandwich standard errors (Zeger et al. 1988; Williams
2000), which depend on the a priori specification
of mutually independent clusters. Alternatively,
Pan (2001) developed a quasi-likelihood-based
information selection criterion that can be used for
model selection.

Various approaches have been used to define clus-
ters in resource-selection analyses. Clark & Strevens
(2008) used a single set of available points sampled
from a larger study area and treated used points from
individuals as unique clusters while assigning each
available point to its own cluster. Thus, available
points were assumed to be mutually independent and
also independent from used points, whereas used
points were assumed to be correlated within individ-
uals. In contrast, Fortin et al. (2005), Craiu et al.
(2008) and Forester et al. (2009) matched each
observed location to a separate set of randomly
sampled available locations (to serve as ‘controls’),
with availability defined by potential movement

trajectories from the last known location (see §5 for
more details). To define independent clusters, Fortin
et al. (2005) estimated animal-specific autocorrelation
functions for observed step lengths (the Euclidean dis-
tance between paired locations). Their analysis
indicated that animals moved independently from
one another, and that steps of the same animal more
than 14 lags apart (in this case 70 h) exhibited little
correlation. Thus, Fortin et al. (2005) discarded sets
of 15 observations, to yield a set of mutually indepen-
dent clusters of observations. Forester et al. (2009)
applied a similar approach but modelled the autocor-
relation function of summed deviance residuals
(summing residuals associated with both used and
available points within each matched set) to determine
independent clusters. They split their data into two
sets of mutually independent clusters based on a
time lag of 10 observations (or 50 h). Rather than dis-
card one of these sets of observations, Forester et al.
(2009) estimated regression parameters using the full
dataset, and estimated standard errors as the average
of robust sandwich standard errors applied separately
to the two mutually independent datasets. Lastly,
Craiu et al. (2008) analysed GPS data collected from
plains bison (Bison bison), in which clusters of 48
hourly locations, themselves separated by 120 h, were
collected for each animal. Similar to Fortin et al.
(2005) and Forester et al. (2009), they assumed that
these clusters of observations (within each animal),
as well as observations from different animals, were
mutually independent. They also tested their approach
using simulated data, and found that sandwich stan-
dard errors performed well, whereas naive variance
estimates that assumed independence were an order
of magnitude too small.

(b) Two-stage methods for estimating

population-level effects

As one of the simplest and most intuitive approaches
to dealing with autocorrelation, regression models
may be fit to data from individual animals and then
averaged to determine population-level responses
(e.g. Nielsen et al. 2002; Glenn et al. 2004; Sawyer
et al. 2006). This two-stage approach provides an
alternative to fitting random-effect models (§5) when
sufficient data have been collected to allow efficient
estimation of individual-specific regression par-
ameters, bi, where i indexes unique individuals
(Davidian & Giltinan 1995). Typically, sample means
and variances are used in the second stage, e.g. to
characterize population means and variances in
animal-specific selection coefficients (e.g. Sawyer
et al. 2006); however, variance estimators will be
biased high unless the sampling uncertainty associated
with the b̂i’s is accounted for in the estimation process
(Davidian & Giltinan 1995). More complicated popu-
lation models also can be fit to explore relationships
between individual-level covariates (e.g. gender) and
variation in the bi’s (Davidian & Giltinan 1995).
Although less sophisticated than mixed models (see
§4c), the two-stage approach has several practical
advantages (table 1). For example, it is not necessary
to assume a distribution for the random effects, and
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within-individual correlation patterns do not need
to be correctly specified when estimating mean
animal-specific parameters, �b ¼ EðbiÞ, provided that
the animal-specific parameter estimators are them-
selves unbiased (Murtaugh 2007). Thus, two-stage
approaches will produce unbiased estimators of �b
assuming individuals are independent.

Model selection may, at first, appear problematic
for two-stage approaches. However, the log likelihoods
for individual animal models will be additive if animals
can be treated as independent (Davidian & Giltinan
1995). Thus, likelihood ratio tests may be used if
sample sizes for each individual are large enough for
the x2 approximation to the likelihood ratio statistic
to be valid (e.g. Molenberghs & Verbeke 2005, p. 354).
If the goal is to characterize typical selection patterns
and their variability among animals, model selection
performed at the population level makes more sense
than determining different covariate structures for
each individual (i.e. the coefficient pertaining to a par-
ticular variable may be approximately 0 for some
animals, but not all). A potential drawback of the
two-stage approach is that sufficient data must exist
for fitting individual-level models (Davidian &
Giltinan 1995). Dropping individuals that are followed
for only a short period of time could make the sampled
data less representative of the study population if, for
example, sampling duration was biased by the type
of individual. Estimation of population parameters
also might become problematic if some individuals
are never exposed to certain types of habitat. For
example, animal-specific parameters associated with
a factor (say, dominant vegetation type) will not be
estimable unless each individual is exposed to all
levels of the factor (i.e. all categories of dominant veg-
etation). However, lumping of similar categories (or
lumping little used categories into the reference cat-
egory) provides a reasonable, if not altogether
satisfying, solution. On the other hand, focusing the
analysis on individual unit-level summaries can help
to clarify the amount of information in the data
(Murtaugh 2007). For example, if only a single
animal is exposed to a specific habitat type, then a
two-stage approach will fail (i.e. regression parameters
associated with this habitat type will not be estimable
except for this animal), making it clear that all infor-
mation regarding that type is derived from a single
animal. It is unclear how mixed-effects models would
perform in this situation (i.e. an extreme case of
individually varying availability as opposed to
variability in strength of selection).

(c) Mixed-effects models

Mixed-effects models offer a powerful approach to
modelling correlated data under the assumption that
latent or unmeasured characteristics associated with
individuals (i.e. random effects) might induce corre-
lation among repeated measurements on these
individuals. Mixed-effects models have been growing
in popularity among ecologists in recent decades
(Bennington & Thayne 1994; Bolker et al. 2009), natu-
rally leading to their consideration in habitat-selection

studies (Gillies et al. 2006; Thomas et al. 2006;
Aarts et al. 2008; Fortin et al. 2009; Godvik et al.
2009). Gillies et al. (2006) suggested adding random
intercepts to logistic regression models to account for
correlation and unequal sample sizes in telemetry
studies with use–availability sampling designs. They
defined ‘individuals’ as combinations of used and
available points with separate samples of available
points drawn from within each individual animal’s
home range. The application of mixed models in this
case differs from most binary repeated-measures
designs in that the response (Y ¼ 1 for a used point,
0 for an available point) is not a true, repeatedly
observed random variable, but rather a combination
of data (used points) and some randomization process
(generating available points). Whereas random inter-
cepts in typical repeated binary measures studies
provide a natural way to model individual hetero-
geneity in the propensity to have an event, with
use–availability designs, the propensity of having an
event is equivalent to the probability of a point being
used (rather than random), something under control
of the investigator.

Similar to challenges encountered when applying
GEEs to outcome-dependent sampling designs,
mixed models assume the likelihood of the observed
data has been correctly specified, necessitating con-
sideration of the sampling design (e.g. Neuhaus &
Jewell 1990). To understand this challenge, consider
that the correlation structure of the observed data
will depend on how random points are generated
(i.e. if they are selected in a buffer around each teleme-
try location, within individual animal home ranges, or
within a larger study area; Clark & Strevens 2008).
Although telemetry locations are themselves likely to
be serially correlated, the correlation among pairs of
used points is likely to differ from the correlation
among used–available points. Thus, common corre-
lation structures (exchangeability, serial AR1
correlation) are unlikely to adequately describe clus-
ters of used and available points. As such, traditional
GLMMs are likely to mis-specify the correlation struc-
ture, leading to biased estimators of regression
parameters and their sampling variance (Litiere et al.
2008). For example, Koper & Manseau (2009)
found that model-based estimates of uncertainty
from mixed-effects models fitted to use–availability
data were much smaller than robust sandwich
estimates based on variance-inflation techniques
in which the underlying parametric assumptions
were relaxed.

Although random intercepts are commonly used to
account for correlation (assuming an exchangeable
within-animal correlation structure), more biologically
meaningful models may be constructed by allowing
the selection of various habitat features to vary by
individual via random coefficients (Gillies et al. 2006),
such as assumed when fitting separate regression
models to individual animals in the two-stage
approach. Random coefficient models have been
applied using both a logistic regression framework
(Gillies et al. 2006; Aarts et al. 2008; Hebblewhite &
Merrill 2008; Godvik et al. 2009) and a multinomial
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(discrete choice) likelihood framework (Thomas et al.
2006; Kneib et al. 2007; Fortin et al. 2009). Similar
to two-stage approaches, random coefficients allow
selection parameters to vary by individual (bi), while
also providing a framework to estimate average selec-
tion parameters (i.e. �b ¼ EðbiÞ). Most importantly,
random coefficients from either individual animal fits
or mixed models offer the potential to examine func-
tional responses in resource selection (Mysterud &
Ims 1998; Beyer et al. 2010). Following estimation,
random (individual specific) coefficients might be
plotted against overall availability of that resource
(e.g. at the home range level) to observe how
individual responses varied with individual exposure
to levels of the resource. Hebblewhite & Merrill
(2008) used this approach to show that wolf (Canis
lupus) avoidance of human activity centres varied
directly (but nonlinearly) with the overall level of
human activity in wolf home ranges. More recently,
Godvik et al. (2009) found that selection of pastures
by red deer (Cervus elaphus) decreased with increasing
availability.

The use of mixed-effects models in ecology is
increasing, and they are appealing because they often
match the way in which ecological data are structured
(e.g. individuals sampled within different population
segments). Mixed models have a number of advan-
tages compared with two-stage approaches, but also
some serious disadvantages (table 1). Mixed models
can effectively use data from individuals having few
data points, eliminating the problem of sampling
inequities among individuals. Mixed models also sim-
ultaneously fit both individual- and population-level
models, efficiently pooling information across individ-
uals to estimate common parameters (e.g. fixed-effects
parameters or common-variance parameters). Mixed-
model regression parameter estimators should be
more precise than GEEs or two-stage approaches if
parametric assumptions regarding the random effects
and within individual correlation structures are met.
However, again, correctly specifying the correlation
structure remains challenging with use–availability
sampling designs that require grouping used and avail-
able points into independent clusters (Koper &
Manseau 2009). Nonlinear mixed-effects models,
including GLMMs, also can be computationally chal-
lenging to fit, requiring approximate likelihood
techniques, numerical integration or alternatively
Bayesian implementations using Markov chain
Monte Carlo methods (Pinheiro & Bates 2000;
Bolker et al. 2009). Although most current statistical
software packages can fit these models, parameter esti-
mates can be sensitive to the choice of method (e.g.
numerical integration or approximation leading to
penalized quasi-likelihood; Molenberghs & Verbeke
2005). For GLMMs using a logit link, Gaussian adap-
tive quadrature is advised, which is a computationally
intensive and sophisticated numerical integration
approach that sometimes can fail to converge (Rabe-
Hesketh et al. 2005; Gillies et al. 2006). In general,
mixed-effects models promise interesting ecological
insights, but clearly require sophisticated technical
skills or help from a statistician for proper application,
especially given a use–available sampling design.

5. USING MOVEMENT MODELS TO DETERMINE
LOCAL AVAILABILITY
So far, we have discussed statistical methods designed
to alleviate the negative effects of correlation. Now, we
turn our attention to the opportunities that arise from
the collection of fine-scale spatio-temporal (i.e. auto-
correlated) data. In particular, high-frequency
telemetry data should facilitate more realistic models
of animal movement (Cagnacci et al. 2010), including
the ability to link movement rates (and directions) to
fine-scale habitat features, memory and perception
and individual behavioural states (see review by
Patterson et al. 2008). Several papers have suggested
the use of models of animal movement to constrain
what is considered available to an individual when
studying resource selection (Hjermann 2000;
Matthiopoulos 2003; Rhodes et al. 2005; Johnson
et al. 2008; Moorcroft & Barnett 2008). To demon-
strate, following the notation of Johnson et al.
(2008), let st represent the location of an animal at
time t, Ht21 ¼ fs1,. . ., st21} be the history of locations
prior to time t, gu(stjHt21) be the conditional prob-
ability density for the realized location at time t
(conditional on its past location history), w(stjHt21)
represent the resource-selection function describing
habitat preferences at time t (conditional on Ht21)
and ga(stjHt21) be a model for movement in the
absence of habitat selection (also conditional on
Ht21). This last function is used to describe an
availability surface from which non-random selection
of resources can be inferred, via the following model:

guðstjHt�1Þ ¼ K�1
t wðstjHt�1ÞgaðstjHt�1Þ; ð5:1Þ

with Kt ¼
Ð

wðujHt�1ÞgaðujHt�1Þdu. The approach is
conceptually similar to that of Lele & Keim (2006),
based on weighted-distribution theory, with the distri-
bution of available resources determined by
constraints on animal movement (Johnson et al.
2008). By modelling transitions that are assumed to
be conditionally independent (i.e. moves are indepen-
dent after conditioning on past locations), this
approach also has the potential to directly account
for autocorrelation in the data.

Several recent applications have studied resource
selection using a movement model framework to
define availability, although inference regarding w
(the resource-selection function) has been approached
in different ways. The simplest approach is to assume
ga is known, in which case parameters in w(.) can be
estimated by generating available points (using ga)
for comparison to known telemetry observations in a
conditional logistic regression framework (Compton
et al. 2002; Forester et al. 2009). Simulations in
Forester et al. (2009) suggest one can guard against
mis-specification of ga to some extent by allowing w
to be a nonlinear function of distance (e.g. modelled
using regression splines; see also Aarts et al. 2008).
This approach was first used with circular buffers
around observed locations to determine availability
(e.g. Arthur et al. 1996), which implies a rather strange
model for ga in which the probability of an observed
step length increases with distance until one reaches
the radius of the buffer, before dropping to 0 (outside
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the buffer) (Rhodes et al. 2005). Rather than assume
ga to be known, Hjermann (2000) estimated ga using
observed step lengths (r) and a model for log(r2) as a
linear function of the log(time between observations)
and environmental variables (with w subsequently
estimated using ĝa and the MANOVA approach of
Aebischer et al. 1993). Fortin et al. (2005) used the
empirical distribution of step lengths and turning
angles to define ga for use with conditional logistic
regression. These last two approaches assume ga can
be directly observed. However, if the model given by
equation (5.1) is correct, the observed distribution of
step lengths (gu) will depend on both ga and w. Thus,
parameters associated with the resource-independent
movement (in ga) should be estimated simultaneously
with selection parameters (in w), e.g. using maximum
likelihood. Rhodes et al. (2005) used a full likelihood
approach with observations regularly spaced in time,
assuming that step lengths were exponentially distribu-
ted; Johnson et al. (2008) extended the approach
to non-regularly sampled observations by assuming
(continuous) movement according to a bivariate
Ornstein–Uhlenbeck process (Dunn & Gibson 1977).
Nielson et al. (2009) showed how a full likelihood
approach could be extended also to allow for missed
GPS fixes, by adding a model of the probability of
detection as a function of covariates (conditional on a
site being used) to the likelihood in equation (5.1).

A potential problem with all of these approaches is
that the conditioning is done with respect to the (rela-
tively arbitrary) sampling time interval. The time
between two successive observations is informative
about which other locations the animals might have
visited, but did not. However, the range of accessibility
implied by animal speed and the time intervening
between observations is not necessarily the same as
the range of perception that the animals have of their
environment. More than likely, animals perceive their
environment at multiple scales, particularly if
memory and intention are included in our definition
of perception and thus equation (5.1) is likely to be a
gross oversimplification of animal movement behav-
iour. In an attempt to overcome these limitations,
Dalziel et al. (2008) used neural networks to fit a
more flexible model (than implied by equation (5.1))
in which each used location was determined using a
nonlinear function of the distance from the previous
used location, a memory function (reflecting locations
where the animal had previously been located), and
habitat covariates, as well as interactions among
these three components. In addition, movement
models in which animals switch between different be-
havioural modes (e.g. short- and long-range
movements) may better explain autocorrelation pat-
terns in location data (Morales et al. 2004), and their
incorporation into habitat-selection models may lead
to more informative, temporally varying, measures of
habitat selection (e.g. Forester et al. 2009).

Regardless of the approach taken, the inclusion of
movement to resource-selection models adds a non-
trivial level of complexity. Estimating parameters
associated with movement and habitat selection simul-
taneously by full maximum likelihood can be
computationally demanding. Although the process

can be sped up using the fast Fourier transform with
a radially symmetric resource-independent movement
model (Barnett & Moorcroft 2008), these approaches
generally require approximating the study area on a
relatively coarse two-dimensional grid (Hjermann
2000; Rhodes et al. 2005; Dalziel et al. 2008; Johnson
et al. 2008; Forester et al. 2009). Whereas a full likeli-
hood approach can be difficult to extend to multiple
individuals in a mixed effect or GEE framework, a
two-stage approach could be used for population-
level inference (Nielson et al. 2009). Alternatively,
the conditional logistic regression approach (with dis-
tance as a covariate to guard against mis-specification
of ga) can be applied with robust variance estimators
(e.g. ‘sandwich’ standard errors) to guard against
residual within-subject correlation, while estimating
population patterns related to resource selection
(e.g. Fortin et al. 2005; Craiu et al. 2008; Forester
et al. 2009).

6. DISCUSSION
Data collected using GPS telemetry are clearly at odds
with the traditional notion that telemetry studies
should be designed to collect independent obser-
vations (Swihart & Slade 1985). Users of GPS
telemetry data must embrace the complexities of cor-
related data and meet the challenge of analysing the
additional information available from frequently col-
lected locations without sacrificing robust statistical
inference. On the basis of our review, we suggest two
relatively simple approaches as being most generally
accessible and satisfying for data analysts, GEEs
with a working independence assumption and two-
stage approaches involving models fit to individual
animals. Other correlated data methods, including
GEEs with more complicated correlation structures
and GLMMs deserve further exploration, but
require more sophisticated analytical skills to reliably
return unbiased estimators with use–availability
sampling designs.

The appeal of the mixed-models approach, and the
largely parallel two-stage approach, is the ability to
make both subject-specific and population-level infer-
ences (Skrondal & Rabe-Hesketh 2004). Multi-level
(hierarchical) mixed-effects models also might allow
explicit tests of variance structure between and
within groups of animals (Skrondal & Rabe-Hesketh
2004; Hebblewhite & Merrill 2008). These kinds of
insights into the underlying variation driving resource
selection are not possible using GEEs or variance
inflation techniques that treat correlation as a nui-
sance. And it is exactly this kind of approach,
striving to understand the contribution of individual
variation in habitat selection to fitness, that ecologists
are being urged to explore (Chesson 1978; Bolnick
et al. 2007; Gaillard et al. 2010). Yet, the detailed
data available from GPS telemetry often are acquired
from a small set of animals, such that variance
estimates might be derived from a few replicates only.

Although mixed-effects models allow the estimation
of population-level parameters, it is important to clar-
ify that these parameters are not equivalent to, and
thus not directly comparable to, population-level
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measures of selection obtained using GEEs or tra-
ditional logistic regression models under an
independence assumption (Neuhaus et al. 1991;
Molenberghs & Verbeke 2005, §16.3; Fieberg et al.
2009). Specifically, parameters estimated in typical
generalized linear and nonlinear mixed-effects
models reflect subject-specific mean response patterns
as a function of covariates, whereas parameters in stan-
dard GEEs and traditional logistic regression
approaches reflect changes in the population mean
response pattern as a function of covariates. For
example, regression parameters in a random-intercept
logistic model applied to use–non-use data describe
changes in the probability of use for a particular sub-
ject as one changes that subject’s covariate values,
and mean regression coefficients describe response
profiles for a ‘typical’ subject (i.e. a subject with a
random effect ¼0). In contrast, regression parameters
estimated in the GEE framework given by equations
(4.1a) and (4.1b) reflect changes in the average prob-
ability of use in the population as a function of
changes in covariates. With logistic-response models,
the population response pattern estimated by a GEE
will be attenuated relative to the average individual
response pattern estimated by random-effects
models, with the degree of attenuation dependent
upon the amount of between-subject variability
(Zeger et al. 1988; Molenberghs & Verbeke 2005,
§16.3; Fieberg et al. 2009). Thus, it is commonly
recommended that the choice of method (GEE or
mixed-effect model) should be predicated upon the
desired parameter interpretation (i.e. if one wants to
characterize subject-specific or population-averaged
response patterns; Davidian & Giltinan 1995; Heagerty
1999; Fieberg et al. 2009). On the other hand, popu-
lation mean response patterns comparable to the GEE
can be recovered post hoc from fitted mixed effects
regression models by integrating over the random-
effects distribution numerically or by using simulation
(Molenberghs & Verbeke 2005, §16.3; Aarts et al.
2008; Fieberg et al. 2009), yet this is rarely done.

Ecologists frequently think of correlation as proble-
matic. However, much can be learned by studying the
causes and consequences of correlation in ecological
datasets (Boyce et al. 2010). For example, patterns of
correlation in raw data or model residuals, summar-
ized using autocorrelation or partial autocorrelation
functions, can suggest important behavioural mechan-
isms responsible for generating movements and hence
habitat selection, and comparisons of these patterns
across space, time or different species can provide
additional insight into these mechanisms (e.g.
Wittemyer et al. 2008; Boyce et al. 2010). This is
particularly important for long-term, periodic patterns
that could be, but are currently not, accommodated by
existing autoregressive structures (e.g. AR1). The abil-
ity to collect fine-scale temporal data with GPS
telemetry also opens the door to new ways to study
habitat selection, e.g. by using an autocorrelated
movement process to identify available habitats. By
specifying an appropriate model likelihood for the
observed locations in terms of conditionally indepen-
dent transitions, it is possible to estimate parameters
that describe movement, habitat selection and

detection processes from a single model (Nielson
et al. 2009). The main drawback to this approach is
that computation difficulties may impose a relatively
coarse grid for analysis (e.g. modelling movement
between centroids of the grid squares). A simpler
and less computationally expensive alternative is to
sample available points using an assumed movement
model and then analyse the data using conditional
logistic regression (Craiu et al. 2008; Forester et al.
2009). This latter approach will result in biased
estimators if the assumed movement model is mis-
specified, but one can guard against mis-specification
by including distance as a predictor in the selection
model, especially if the effect of distance is modelled
using a flexible approach (e.g. regression splines;
Aarts et al. 2008; Forester et al. 2009). A further
benefit of using a movement model to define available
habitats is that this approach naturally accounts for
autocorrelation if transitions between locations are
independent (e.g. Diggle et al. 1994 for a review of
the use of transition models with correlated data).

We do not claim to have covered all approaches
suggested for addressing correlation in the analysis of
habitat selection or animal movements. For example,
some authors have suggested using a fixed-intercept
for each individual animal in a habitat-selection
model with use–availability designs (Manly et al.
2002). Practically, this approach would require includ-
ing a large number of parameters, one for each animal
as well as a large number of interaction parameters
(between individuals and habitat covariates), to allow
selection for a particular resource to vary among indi-
viduals. Critically, this approach restricts the scope of
inference to the specific study animals rather than to
the population from which they were sampled, and
we have not seen this approach in widespread use.
Thus, we chose to focus on what we considered the
most general and flexible approaches here.

We conclude that correlation in general, and auto-
correlation in particular, offers both challenges and
opportunities for data analysts, particularly for GPS
telemetry data and resource-selection studies. Our
review indicates that further research into the use of
GLMMs, and GEEs with non-independence working
correlation structures is needed to clarify outstanding
issues. The primary challenge with the use–available
design remains that correlation patterns among used
locations will depend on biology, whereas correlation
among available locations depends more on the spatial
variance of the covariates in question (e.g. Boyce et al.
2002). Depending on how sensitive GLMM models
and GEEs are to mis-specification of correlation struc-
ture, this problem could be anything from trivial to
severe, demanding additional research attention and
sophisticated analytical skills. Nevertheless, consider-
ation of hierarchical correlation structures using
these approaches seems a particularly promising area
of enquiry. Integration of animal movement and
resource-selection models promises novel ecological
insights, but remains computationally intensive and
requires strong analytical skills, restricting these
approaches at present to more theoretical rather than
applied research problems. Given the complexity of
the task, and uncertainty in the process of specifying
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correlation structures, we suggest adopting a
conservative approach, with biological guidance and
cross-validation playing key roles in determining the
importance of various predictors in habitat-based
regression models (Boyce et al. 2002). The more gen-
erally accessible and transparent approaches—variance
inflation factors and two-stage approaches—thus offer
a pragmatic approach to accounting for correlation in
habitat-selection studies. Regardless of the approach,
we would be remiss not to recommend thorough vali-
dation of final habitat-selection models, because, in
applied conservation, an assessment of the validity of
predictions often is the most important consideration.
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thank D. Haydon, J. Morales, D. Thomas and an
anonymous reviewer for their criticical reviews and G. Aarts,
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Bolnick, D. I., Svanbäck, R., Araujo, M. S. & Persson, L.
2007 Comparative support for the niche variation

hypothesis that more generalized populations also
are more heterogeneous. Proc. Natl Acad. Sci. USA 104,
10 075–10 079. (doi:10.1073/pnas.0703743104)

Börger, L., Franconi, N., De Michele, G., Gantz, A.,
Meschi, F., Manica, A., Lovari, S. & Coulson, T. 2006a
Effects of sampling regime on the mean and variance of
home range estimates. J. Anim. Ecol 75, 1393–1405.
(doi:10.1111/j.1365-2656.2006.01164.x)

Börger, L., Franconi, N., Ferretti, N., Meschi, F., De
Michele, G., Gantz, A. & Coulson, T. 2006b An inte-

grated approach to identify spatio-temporal and
individual-level determinants of animal home range size.
Am. Nat. 168, 471–485. (doi:10.1086/507883)

Boyce, M. S. 2006 Scale and resource selection functions.

Divers. Distrib. 12, 269–276. (doi:10.1111/j.1366-9516.
2006.00243.x)

Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow,
F. K. A. 2002 Evaluating resource selection functions.
Ecol. Model. 157, 281–300. (doi:10.1016/S0304-

3800(02)00200-4)
Boyce, M. S., Pitt, J., Northrup, J. M., Morehouse, A. T.,

Knopff, K. H., Cristescu, B. & Stenhouse, G. B. 2010
Temporal autocorrelation functions for movement rates
from global positioning system radiotelemetry data. Phil.
Trans. R. Soc. B 365, 2213–2219. (doi:10.1098/rstb.
2010.0080)

Cagnacci, F., Boitani, L., Powell, R. A. & Boyce, M. S. 2010
Animal ecology meets GPS-based radiotelemetry: a

perfect storm of opportunities and challenges. Phil.
Trans. R. Soc. B 365, 2157–2162. (doi:10.1098/rstb.
2010.0107)

Calenge, C. & Dufour, A. B. 2006 Eigenanalysis of
selection ratios from animal radio-tracking data.

Ecology 87, 2349–2355. (doi:10.1890/0012-9658(2006)
87[2349:EOSRFA]2.0.CO;2)

Chesson, J. 1978 Measuring preference in selective
predation. Ecology 59, 211–215. (doi:10.2307/1936364)

Christ, A., Ver Hoef, J. & Zimmermon, D. L. 2008 An

animal movement model incorporating home range and
habitat selection. Environ. Ecol. Stat. 15, 27–38.
(doi:10.1007/S10651-007-0036-x)

Clark, R. G. & Strevens, T. C. 2008 Design and analysis of
clustered, unmatched resource selection studies.

J. R. Stat. Soc. Ser. C 57, 535–551. (doi:10.1111/j.
1467-9876.2008.00629.x)

Compton, B. W., Rhymer, J. M. & McCollough, M. 2002
Habitat selection by wood turtles (Clemmys
insculpta): an application of paired logistic regression.
Ecology 83, 833–843. (doi:10.1890/0012-
9658(2002)083[0833:HSBWTC]2.0.CO;2)

Cooper, A. B. & Millspaugh, J. J. 1999 The application of
discrete choice models to wildlife resource selection

studies. Ecology 80, 566–575. (doi:10.1890/0012-
9658(1999)080[0566:TAODCM]2.0.CO;2)

Craiu, R. V., Duchesne, T. & Fortin, D. 2008 Inference
methods for the conditional logistic regression model
with longitudinal data. Biometr. J. 50, 97–109. (doi:10.

1002/bimj.200610379)
Cushman, S. A., Chase, M. & Griffin, C. 2005 Elephants in

space and time. Oikos 109, 331–341. (doi:10.1111/j.
0030-1299.2005.13538.x)

Dalziel, B. D., Morales, J. M. & Fryxell, J. M. 2008 Fitting

probability distributions to animal movement trajectories:
using artificial neural networks to link distance, resources,
and memory. Am. Nat. 172, 248–258. (doi:10.1086/
589448)

Dasgupta, N. & Alldredge, J. R. 1998 A multivariate
chi-square analysis of resource selection data.
J. Agric. Biol. Environ. Stat. 3, 323–334. (doi:10.2307/
1400586)

Davidian, M. & Giltinan, D. M. 1995 Nonlinear models for
repeated measurement data. New York, NY: Chapman
and Hall.

Diggle, P. J., Liang, K. Y. & Zeger, S. L. 1994
Analysis of longitudinal data. London, UK: Oxford Univer-
sity Press.

Diniz-Filho, J. A. F., Bini, L. M. & Hawkins, B. A. 2003
Spatial autocorrelation and red herrings in geographical
ecology. Glob. Ecol. Biogeogr. 12, 53–64. (doi:10.1046/j.
1466-822X.2003.00322.x)

Dunn, J. & Gibson, P. 1977 Analysis of radio-telemetry data

in studies of home range. Biometrics 33, 85–101. (doi:10.
2307/2529305)

Fancy, S. G. & White, R. G. 1987 Energy expenditures for
location by barren-ground caribou. Can. J. Zool. 65,
122–128. (doi:10.1139/z87-018)

2242 J. Fieberg et al. Review. Correlated data and habitat selection

Phil. Trans. R. Soc. B (2010)

 on July 15, 2010rstb.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1111/j.2007.0906-7590.05236.x
http://dx.doi.org/doi:10.1111/j.2007.0906-7590.05236.x
http://dx.doi.org/doi:10.2307/1940062
http://dx.doi.org/doi:10.2307/1940062
http://dx.doi.org/doi:10.2307/2265671
http://dx.doi.org/doi:10.1007/s00285-007-0149-8
http://dx.doi.org/doi:10.1007/s00285-007-0149-8
http://dx.doi.org/doi:10.2307/1941729
http://dx.doi.org/doi:10.1098/rstb.2010.0083
http://dx.doi.org/doi:10.1016/j.tree.2008.10.008
http://dx.doi.org/doi:10.1073/pnas.0703743104
http://dx.doi.org/doi:10.1111/j.1365-2656.2006.01164.x
http://dx.doi.org/doi:10.1086/507883
http://dx.doi.org/doi:10.1111/j.1366-9516.2006.00243.x
http://dx.doi.org/doi:10.1111/j.1366-9516.2006.00243.x
http://dx.doi.org/doi:10.1016/S0304-3800(02)00200-4
http://dx.doi.org/doi:10.1016/S0304-3800(02)00200-4
http://dx.doi.org/doi:10.1098/rstb.2010.0080
http://dx.doi.org/doi:10.1098/rstb.2010.0080
http://dx.doi.org/doi:10.1098/rstb.2010.0107
http://dx.doi.org/doi:10.1098/rstb.2010.0107
http://dx.doi.org/doi:10.1890/0012-9658(2006)87[2349:EOSRFA]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9658(2006)87[2349:EOSRFA]2.0.CO;2
http://dx.doi.org/doi:10.2307/1936364
doi:10.1007/S10651-007-0036-x
http://dx.doi.org/doi:10.1111/j.1467-9876.2008.00629.x
http://dx.doi.org/doi:10.1111/j.1467-9876.2008.00629.x
http://dx.doi.org/doi:10.1890/0012-9658(2002)083[0833:HSBWTC]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9658(2002)083[0833:HSBWTC]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9658(1999)080[0566:TAODCM]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9658(1999)080[0566:TAODCM]2.0.CO;2
http://dx.doi.org/doi:10.1002/bimj.200610379
http://dx.doi.org/doi:10.1002/bimj.200610379
http://dx.doi.org/doi:10.1111/j.0030-1299.2005.13538.x
http://dx.doi.org/doi:10.1111/j.0030-1299.2005.13538.x
http://dx.doi.org/doi:10.1086/589448
http://dx.doi.org/doi:10.1086/589448
http://dx.doi.org/doi:10.2307/1400586
http://dx.doi.org/doi:10.2307/1400586
http://dx.doi.org/doi:10.1046/j.1466-822X.2003.00322.x
http://dx.doi.org/doi:10.1046/j.1466-822X.2003.00322.x
http://dx.doi.org/doi:10.2307/2529305
http://dx.doi.org/doi:10.2307/2529305
http://dx.doi.org/doi:10.1139/z87-018
http://rstb.royalsocietypublishing.org/


Fieberg, J. 2007a Kernel density estimators of home range:
smoothing and the autocorrelation red herring. Ecology
88, 1059–1066. (doi:10.1890/06-0930)

Fieberg, J. 2007b Utilization distribution estimation with
weighted kernel density estimators. J. Wildl. Manage.
71, 1669–1675. (doi:10.2193/2006-370)

Fieberg, J., Kuehn, D. W. & DelGiudice, G. D. 2008 Under-
standing variations in autumn migration of northern

white-tailed deer by long-term study. J. Mammal. 89,
1529–1539. (doi:10.1644/07-MAMM-A-277.1)

Fieberg, J., Rieger, R. H., Zicus, M. C. & Schildcrout, J. S.
2009 Regression modelling of correlated data in ecology:

subject-specific and population averaged response pat-
terns. J. Appl. Ecol. 46, 1018–1025. (doi:10.1111/j.
1365-2664.2009.01692.x)

Forester, J. D., Im, H. K. & Rathouz, P. J. 2009 Accounting
for animal movement in estimation of resource selection

functions: sampling and data analysis. Ecology 90,
3554–3565. (doi:10.1890/08-0874.1)

Fortin, D., Beyer, H. L., Boyce, M. S., Smith, D. W.,
Duchesne, T. & Mao, J. S. 2005 Wolves influence
elk movements: behavior shapes a trophic cascade in

Yellowstone National Park. Ecology 86, 1320–1330.
(doi:10.1890/04-0953)

Fortin, D., Fortin, M.-E., Beyer, H. L., Duchesne, T. &
Courant, S. 2009 Group-size-mediated habitat selection
and group fusion-fission dynamics of bison under preda-

tion risk. Ecology 90, 2480–2490. (doi:10.1890/08-0345.1)
Frair, J. L., Nielsen, S. E., Merrill, E. H., Lele, S. R., Boyce,

M. S., Munro, R. H. M., Stenhouse, G. B. & Beyer, H. L.
2004 Removing GPS collar bias in habitat selection

studies. J. Appl. Ecol. 41, 201–212. (doi:10.1111/j.
0021-8901.2004.00902.x)

Frair, J. L., Fieberg, J., Hebblewhite, M., Cagnacci, F.,
DeCesare, N. J. & Pedrotti, L. 2010 Resolving issues of
imprecise and habitat-biased locations in ecological ana-

lyses using GPS telemetry data. Phil. Trans. R. Soc. B
365, 2187–2200. (doi:10.1098/rstb.2010.0084)

Fryxell, J. M., Hazell, M., Börger, L., Dalziel, B. D.,
Haydon, D. T., Morales, J. M., McIntosh, T. & Rosatte,
R. C. 2008 Multiple movement modes by large herbivores

at multiple spatiotemporal scales. Proc. Natl Acad. Sci. USA
105, 19 114–19 119. (doi:10.1073/pnas.0801737105)

Gaillard, J.-M., Hebblewhite, M., Loison, A., Fuller, M.,
Powell, R., Basille, M. & Van Moorter, B. 2010 Habi-
tat-performance relationships: finding the right metric at

a given spatial scale. Phil. Trans. R. Soc. B 365, 2255–
2265. (doi:10.1098/rstb.2010.0085)

Gillies, C. S., Hebblewhite, M., Nielsen, S. E., Krawchuk,
M. A., Aldridge, C. L., Frair, J. L., Saher, J., Stevens,

C. E. & Jerde, C. L. 2006 Application of random effects
to the study of resource selection by animals. J. Anim.
Ecol. 75, 887–898. (doi:10.1111/j.1365-2656.2006.
01106.x)

Glenn, E. M., Hansen, M. C. & Anthony, R. G. 2004

Spotted owl home range and habitat use in
young forests of western Oregon. J. Wildl. Manage. 68,
33–50. (doi:10.2193/0022-541X(2004)068[0033:SOH
AHU]2.0.CO;2)

Godvik, I. M. R., Low, L. E., Vik, J. O., Veiberg, V.,

Langvatn, R. & Mysterud, A. 2009 Temporal scales,
trade-offs, and functional responses in red deer habitat
selection. Ecology 90, 699–710. (doi:10.1890/08-0576.1)

Hansteen, T. L., Andreassen, H. P. & Ims, R. A. 1997
Effects of spatiotemporal scale on autocorrelation and

home range estimators. J. Wildl. Manage. 61, 280–290.
(doi:10.2307/3802583)

Haydon, D. T., Morales, J. M., Yott, A., Jenkins, D. A.,
Rosatte, R. & Fryxell, J. M. 2008 Socially informed
random walks: incorporating group dynamics into

models of population spread and growth. Proc. R. Soc.
B 275, 1101–1109. (doi:10.1098/rspb.2007.1688)

Heagerty, P. J. 1999 Marginally specified logistic-normal

models for longitudinal binary data. Biometrics 55, 688–
698. (doi:10.1111/j.0006-341X.1999.00688.x)

Hebblewhite, M. & Haydon, D. T. 2010 Distinguishing tech-
nology from biology: a critical review of the use of GPS
telemetry data in ecology. Phil. Trans. R. Soc. B 365,

2303–2312. (doi:10.1098/rstb.2010.0087)
Hebblewhite, M. & Merrill, E. H. 2008 Modelling wildlife-

human relationships for social species with mixed-effects
resource selection models. J. Appl. Ecol. 45, 834–844.

(doi:10.1111/j.1365-2664.2008.01466.x)
Hjermann, D. O. 2000 Analyzing habitat selection in

animals without well-defined home ranges. Ecology
81, 1462–1468. (doi:10.1890/0012-9658(2000)081
[1462:AHSIAW]2.0.CO;2)

Horne, J. S., Garton, E. O. & Sager-Fradkin, K. A. 2007
Correcting home-range models for observation bias.
J. Wildl. Manage. 71, 996–1001. (doi:10.2193/2005-678)

Johnson, D. H. 1980 The comparison of usage and avail-
ability measurements for evaluating resource preference.

Ecology 61, 65–71. (doi:10.2307/1937156)
Johnson, D. H. 1999 The insignificance of statistical signifi-

cance testing. J. Wildl. Manage. 63, 763–772. (doi:10.
2307/3802789)

Johnson, C. J., Parker, K. L., Heard, D. C. & Gillingham,

M. P. 2002 Movement parameters of ungulates and
scale-specific responses to the environment. J. Anim.
Ecol. 71, 225–235. (doi:10.1046/j.1365-2656.2002.
00595.x)

Johnson, C. J., Nielsen, S. E., Merrill, E. H., McDonald, T. L.
& Boyce, M. S. 2006 Resource selection functions based
on use-availability data: theoretical motivation and evalu-
ation methods. J. Wildl. Manage. 70, 347–357. (doi:10.
2193/0022-541X(2006)70[347:RSFBOU]2.0.CO;2)

Johnson, D. S., Thomas, D. L., Ver Hoef, J. M. & Christ, A.
2008 A general framework for the analysis of animal
resource selection from telemetry data. Biometrics 64,
968–976. (doi:10.1111/j.1541-0420.2007.00943.x)

Keating, K. A. & Cherry, S. 2004 Use and interpretation

of logistic regression in habitat selection studies.
J. Wildl. Manage. 68, 774–789. (doi:10.2193/0022-
541X(2004)068[0774:UAIOLR]2.0.CO;2)

Kneib, T., Knauer, F. & Kú́chenhoff, H. 2007 A general
approach for the analysis of habitat selection. Technical

Report Number 001 2007, Department of Statistics,
University of Munich, Germany. See http://epub.ub.uni-
muenchen.de/2052/.

Koper, N. & Manseau, M. L. 2009 Generalized estimating

equations and generalized linear mixed-effects models
for modeling resource selection. J. Appl. Ecol. 46,
590–599. (doi:10.1111/j.1365-2664.2009.01642.x)

Laird, H. 1987 Estimating the location of the focal center
in red squirrel home ranges. Ecology 68, 1092–1101.

(doi:10.2307/1938381)
Lele, S. R. 2009 A new method for estimation of resource

selection probability function. J. Wildl. Manage. 73,
122–127. (doi:10.2193/2007-535)

Lele, S. R. & Keim, J. L. 2006 Weighted distributions and

estimation of resource selection probability functions.
Ecology 87, 3021–3028. (doi:10.1890/0012-9658(2006)
87[3021:WDAEOR]2.0.CO;2)

Litiere, S., Alonso, A. & Molenberghs, G. 2008 The impact
of a misspecified random-effects distribution on the

estimation and the performance of inferential procedures
in generalized linear mixed models. Stat. Med. 27,
3125–3144. (doi:10.1002/sim.3157)

Manly, B. F. J., McDonald, L. L., Thomas, D., McDonald,
T. L. & Erickson, W. 2002 Resource selection by animals:

Review. Correlated data and habitat selection J. Fieberg et al. 2243

Phil. Trans. R. Soc. B (2010)

 on July 15, 2010rstb.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1890/06-0930
http://dx.doi.org/doi:10.2193/2006-370
http://dx.doi.org/doi:10.1644/07-MAMM-A-277.1
http://dx.doi.org/doi:10.1111/j.1365-2664.2009.01692.x
http://dx.doi.org/doi:10.1111/j.1365-2664.2009.01692.x
http://dx.doi.org/doi:10.1890/08-0874.1
http://dx.doi.org/doi:10.1890/04-0953
http://dx.doi.org/doi:10.1890/08-0345.1
http://dx.doi.org/doi:10.1111/j.0021-8901.2004.00902.x
http://dx.doi.org/doi:10.1111/j.0021-8901.2004.00902.x
http://dx.doi.org/doi:10.1098/rstb.2010.0084
http://dx.doi.org/doi:10.1073/pnas.0801737105
http://dx.doi.org/doi:10.1098/rstb.2010.0085
http://dx.doi.org/doi:10.1111/j.1365-2656.2006.01106.x
http://dx.doi.org/doi:10.1111/j.1365-2656.2006.01106.x
http://dx.doi.org/doi:10.2193/0022-541X(2004)068[0033:SOHAHU]2.0.CO;2
http://dx.doi.org/doi:10.2193/0022-541X(2004)068[0033:SOHAHU]2.0.CO;2
http://dx.doi.org/doi:10.1890/08-0576.1
http://dx.doi.org/doi:10.2307/3802583
http://dx.doi.org/doi:10.1098/rspb.2007.1688
http://dx.doi.org/doi:10.1111/j.0006-341X.1999.00688.x
http://dx.doi.org/doi:10.1098/rstb.2010.0087
http://dx.doi.org/doi:10.1111/j.1365-2664.2008.01466.x
http://dx.doi.org/doi:10.1890/0012-9658(2000)081[1462:AHSIAW]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9658(2000)081[1462:AHSIAW]2.0.CO;2
http://dx.doi.org/doi:10.2193/2005-678
http://dx.doi.org/doi:10.2307/1937156
http://dx.doi.org/doi:10.2307/3802789
http://dx.doi.org/doi:10.2307/3802789
http://dx.doi.org/doi:10.1046/j.1365-2656.2002.00595.x
http://dx.doi.org/doi:10.1046/j.1365-2656.2002.00595.x
http://dx.doi.org/doi:10.2193/0022-541X(2006)70[347:RSFBOU]2.0.CO;2
http://dx.doi.org/doi:10.2193/0022-541X(2006)70[347:RSFBOU]2.0.CO;2
http://dx.doi.org/doi:10.1111/j.1541-0420.2007.00943.x
http://dx.doi.org/doi:10.2193/0022-541X(2004)068[0774:UAIOLR]2.0.CO;2
http://dx.doi.org/doi:10.2193/0022-541X(2004)068[0774:UAIOLR]2.0.CO;2
http://epub.ub.uni-muenchen.de/2052/
http://epub.ub.uni-muenchen.de/2052/
http://epub.ub.uni-muenchen.de/2052/
http://dx.doi.org/doi:10.1111/j.1365-2664.2009.01642.x
http://dx.doi.org/doi:10.2307/1938381
http://dx.doi.org/doi:10.2193/2007-535
http://dx.doi.org/doi:10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2
http://dx.doi.org/doi:10.1002/sim.3157
http://rstb.royalsocietypublishing.org/


statistical design and analysis for field studies. Boston, MA:
Kluwer Academic Publishers.

Matthiopoulos, J. 2003 The use of space by animals as a

function of accessibility and preference. Ecol. Model.
159, 239–268. (doi:10.1016/S0304-3800(02)00293-4)

McNay, R. S. & Bunnell, F. L. 1994 Characterizing
independence of observations in movements of Colum-
bian black-tailed deer. J. Wildl. Manage. 58, 422–429.

(doi:10.2307/3809312)
Molenberghs, G. & Verbeke, G. 2005 Models for discrete

longitudinal data. New York, NY: Springer.
Moorcroft, P. R. & Barnett, A. 2008 Mechanistic home

range models and resource selection analysis: a reconcilia-
tion and unification. Ecology 89, 1112–1119. (doi:10.
1890/06-1985.1)

Morales, J. M., Haydon, D. T., Frair, J., Holsiner, K. E. &
Fryxell, J. M. 2004 Extracting more out of relocation

data: building movement models as mixtures of random
walks. Ecology 85, 2436–2445. (doi:10.1890/03-0269)

Murtaugh, P. A. 2007 Simplicity and complexity in ecologi-
cal data analysis. Ecology 88, 56–62. (doi:10.1890/0012-
9658(2007)88[56:SACIED]2.0.CO;2)

Mysterud, A. & Ims, R. A. 1998 Functional responses in
habitat use: availability influences relative use in trade-
off situations. Ecology 79, 1435–1441. (doi:10.1890/
0012-9658(1998)079[1435:FRIHUA]2.0.CO;2)

Neuhaus, J. M. & Jewell, N. P. 1990 The effect of retrospec-

tive sampling on binary regression models for clustered
data. Biometrics 46, 977–990. (doi:10.2307/2532442)

Neuhaus, J. M., Kalbfleish, J. D. & Hauck, W. 1991 A com-
parison of cluster-specific and population-averaged

approaches for analyzing correlated data. Int. Stat. Rev.
59, 25–35. (doi:10.2307/1403572)

Newey, W. K. & West, K. D. 1987 A simple, positive semi-
definite, heteroskedasticity and autocorrelation consistent
covariance matrix. Econometrica 55, 703–708. (doi:10.

2307/1913610)
Nielsen, S. E., Boyce, M. S., Stenhouse, G. B. & Munro,

R. H. M. 2002 Modeling grizzly bear habitats in the Yel-
lowhead ecosystem of Alberta: taking autocorrelation
seriously. Ursus 13, 45–56.

Nielson, R. M., Manly, B. F. J., McDonald, L. L., Sawyer,
H. & McDonald, T. 2009 Estimating habitat selection
when GPS fix success is less than 100%. Ecology 77,
215–227. (doi:10.1890/08-1562.1)

Otis, D. L. & White, G. C. 1999 Autocorrelation of location

estimates and the analysis of radiotracking data. J. Wildl.
Manage. 63, 1039–1044. (doi:10.2307/3802819)

Pan, W. 2001 Akaike’s information criterion in generalized
estimating equations. Biometrics 57, 120–125. (doi:10.

1111/j.0006-341X.2001.00120.x)
Park, E. & Kim, Y. 2004 Analysis of longitudinal data in

case-control studies. Biometrika 91, 321–330. (doi:10.
1093/biomet/91.2.321)

Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O. &

Matthiopoulos, J. 2008 State-space models of individual
animal movement. Trends Ecol. Evol. 23, 87–94.
(doi:10.1016/j.tree.2007.10.009)

Pinheiro, J. C. & Bates, D. M. 2000 Mixed-effects models in S
and S-Plus. New York, NY: Springer.

Rabe-Hesketh, S., Skrondal, A. & Pickles, A. 2005 Maximum

likelihood estimation of limited and discrete dependent
variable models with nested random effects. J. Econ. 128,
301–323. (doi:10.1016/j.jeconom.2004.08.017)

Rhodes, J. R., McAlpine, C. A., Lunney, D. & Possingham,
H. P. 2005 A spatially explicit habitat selection model

incorporating home range behavior. Ecology 86, 1199–
1205. (doi:10.1890/04-0912)

Rooney, S. M., Wolfe, A. & Hayden, T. J. 1998 Autocorre-
lated data in telemetry studies: time to independence

and the problem of behavioural effects. Mammal Rev.
28, 89–98. (doi:10.1046/j.1365-2907.1998.00028.x)

Salvatori, V., Skidmore, A. K., Corsi, F. & van der Meer, F.
1999 Estimating temporal independence of radio-
telemetry data on animal activity. J. Theor. Biol. 198,

567–574. (doi:10.1006/jtbi.1999.0936)
Sawyer, H., Nielsen, R. M., Lindzey, F. & McDonald, L. L.

2006 Winter habitat selection of mule deer before and
during development of a natural gas field. J. Wildl.
Manage. 70, 396–403. (doi:10.2193/0022-541X(2006)

70[396:WHSOMD]2.0.CO;2)
Skrondal, A. & Rabe-Hesketh, S. 2004 Generalized latent

variable modeling: multilevel, longitudinal, and structural
equation models. New York, NY: Chapman and Hall.

Swihart, R. K. & Slade, N. 1985 Testing for independence

of observations in animal movements. Ecology 66,
1176–1184. (doi:10.2307/1939170)

Thomas, D. L. & Taylor, E. J. 2006 Study designs and
tests for comparing resource use and availability II.

J. Wildl. Manage. 70, 324–336. (doi:10.2193/0022-
541X(2006)70[324:SDATFC]2.0.CO;2)

Thomas, D. L., Johnson, D. & Griffith, B. 2006 A Bayesian
random effects discrete-choice model for resource
selection: population-level selection inference.

J. Wildl. Manage. 70, 404–412. (doi:10.2193/0022-
541X(2006)70[404:ABREDM]2.0.CO;2)

Thompson, S. K. 2002 Sampling, 2nd edn. New York, NY:
Wiley.

Verwaijen, D. & Van Damme, R. 2008 Foraging mode and

locomotor capacities in Lacertidae. Amphibia Reptilia
29, 197–206. (doi:10.1163/156853808784124965)

White, G. C. & Garrott, R. A. 1990 Analysis of wildlife radio-
tracking data. San Diego, CA: Academic Press.

Williams, R. L. 2000 A note on robust-variance estimation

for cluster-correlated data. Biometrics 56, 645–646.
(doi:10.1111/j.0006-341X.2000.00645.x)

Wittemyer, G., Polansky, L., Douglas-Hamilton, I. & Getz,
W. M. 2008 Disentangling the effects of forage, social

rank, and risk on movement autocorrelation of elephants
using Fourier and wavelet analyses. Proc. Natl Acad.
Sci. USA 105, 19 108–19 113. (doi:10.1073/pnas.
0801744105)

Zeger, S. L., Liang, K.-Y. & Albert, P. S. 1988 Models for

longitudinal data: a generalized estimating equation
approach. Biometrics 44, 1049–1060. (doi:10.2307/
2531734)

2244 J. Fieberg et al. Review. Correlated data and habitat selection

Phil. Trans. R. Soc. B (2010)

 on July 15, 2010rstb.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1016/S0304-3800(02)00293-4
http://dx.doi.org/doi:10.2307/3809312
http://dx.doi.org/doi:10.1890/06-1985.1
http://dx.doi.org/doi:10.1890/06-1985.1
http://dx.doi.org/doi:10.1890/03-0269
http://dx.doi.org/doi:10.1890/0012-9658(2007)88[56:SACIED]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9658(2007)88[56:SACIED]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9658(1998)079[1435:FRIHUA]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9658(1998)079[1435:FRIHUA]2.0.CO;2
http://dx.doi.org/doi:10.2307/2532442
http://dx.doi.org/doi:10.2307/1403572
http://dx.doi.org/doi:10.2307/1913610
http://dx.doi.org/doi:10.2307/1913610
http://dx.doi.org/doi:10.1890/08-1562.1
http://dx.doi.org/doi:10.2307/3802819
http://dx.doi.org/doi:10.1111/j.0006-341X.2001.00120.x
http://dx.doi.org/doi:10.1111/j.0006-341X.2001.00120.x
http://dx.doi.org/doi:10.1093/biomet/91.2.321
http://dx.doi.org/doi:10.1093/biomet/91.2.321
http://dx.doi.org/doi:10.1016/j.tree.2007.10.009
http://dx.doi.org/doi:10.1016/j.jeconom.2004.08.017
http://dx.doi.org/doi:10.1890/04-0912
http://dx.doi.org/doi:10.1046/j.1365-2907.1998.00028.x
http://dx.doi.org/doi:10.1006/jtbi.1999.0936
http://dx.doi.org/doi:10.2193/0022-541X(2006)70[396:WHSOMD]2.0.CO;2
http://dx.doi.org/doi:10.2193/0022-541X(2006)70[396:WHSOMD]2.0.CO;2
http://dx.doi.org/doi:10.2307/1939170
http://dx.doi.org/doi:10.2193/0022-541X(2006)70[324:SDATFC]2.0.CO;2
http://dx.doi.org/doi:10.2193/0022-541X(2006)70[324:SDATFC]2.0.CO;2
http://dx.doi.org/doi:10.2193/0022-541X(2006)70[404:ABREDM]2.0.CO;2
http://dx.doi.org/doi:10.2193/0022-541X(2006)70[404:ABREDM]2.0.CO;2
http://dx.doi.org/doi:10.1163/156853808784124965
http://dx.doi.org/doi:10.1111/j.0006-341X.2000.00645.x
http://dx.doi.org/doi:10.1073/pnas.0801744105
http://dx.doi.org/doi:10.1073/pnas.0801744105
http://dx.doi.org/doi:10.2307/2531734
http://dx.doi.org/doi:10.2307/2531734
http://rstb.royalsocietypublishing.org/

	Correlation and Studies of Habitat Selection: Problem, Red Herring or Opportunity?
	Let us know how access to this document benefits you.
	Recommended Citation

	Correlation and studies of habitat selection: problem, red herring or opportunity?
	Introduction
	Importance of representative samples
	The animal as sample unit: foundations
	Regression approaches to studying resource selection
	Variance inflation and GEEs
	Two-stage methods for estimating population-level effects
	Mixed-effects models

	Using movement models to determine local availability
	Discussion
	We thank the Edmund Mach Foundation for funding the GPS data analysis workshop in Trento, Italy, Fall 2008. We thank D. Haydon, J. Morales, D. Thomas and an anonymous reviewer for their criticical reviews and G. Aarts, T. Duschesne, for helpful comments on a previous draft.
	REFERENCES


