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Mason, Sherri A. Ph.D., September 2001 Chemistry

Modeling the Impact o f  the Direct Emission o f Oxygenated Organic Species on Biomass 
Combustion Smoke Plume Photochemistry

Director: Richard J. Field $

Oxygenated volatile organic species (oxygenates), including: HCOOH, H2CO, CH3OH, 
HOCH2CHO (hydroxyacetaldehyde), CH3COOH, and C6H5OH, have recently been identified 
by FTIR measurements as a significant component o f  the direct emissions from biomass 
combustion. These oxygenates have not generally been included in the hydrocarbon-based 
initial emission profiles used in previous photochemical simulations o f biomass combustion 
smoke plumes. We explore the effects o f  oxygenates on this photochemistry by using an 
established initial-emission hydrocarbon profile and comparing simulation results obtained 
both with and without addition o f  the above six oxygenates.

Simulations are conducted using a model developed to account for the horizontal expansion 
o f  a Lagrangian smoke plume. These simulations start at noon and are carried out for 30 
hours. After an initial transient period during which [NOJ foils rapidly, conditions within the 
oxygenated smoke plume are found to be strongly NOx-sensitive, and the simulated final 
species profile is thus strongly dependent upon the A[NO]/A[CO] initial-emission profile. 
Oxygenate addition results in very significant and complex effects on net 0 3 production, as 
well as on the relative amounts o f  long-lived HOx and NOx reservoir species (H20 2, organic 
hydroperoxides, H N 03, and PANs) that are mixed into the surrounding atmosphere. 
Oxygenates may either increase or decrease net 0 3 production (depending upon the initial 
A[NO]/A[CO]). However, they always increase H20 2 and organic hydroperoxide production 
as a result o f  increased rates o f  radical + radical reactions. These effects spring largely from 
accelerated removal o f NOx from the smoke plume due to increased radical concentrations 
resulting both from photolysis o f  oxygenates (mainly CH20 )  and from their relatively high 
reactivity.

Urban environments represent a primary source o f tropospheric NO, and could, therefore, 
replenish NOx resources within a smoke plume under the circumstance that the plume is 
advected into an urban airshed. Using the Montana fires o f2000 and the Missoula valley as 
a representative example, we investigate the effects o f the mixing o f  an advected smoke plume 
with an urban environment. The production o f  0 3 is found to increase both within the urban 
airshed and within the biomass combustion smoke plume due to their mixing. This has 
important implications for regional and global tropospheric chemistry as the increase in 0 3 
production within an urban region can impact vegetative and human health, while the increase 
in the oxidizing capacity within the smoke plume leads to an increase in the production o f 
global NOx and HOx reservoir species.
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Chapter 1

Introduction

Biomass combustion has long been known to inject significant quantities o f  carbon 

dioxide (C 02), carbon monoxide (CO), methane (CH4), nitrogen oxides (NOx = NO + NO,), 

nonmethane hydrocarbons (NMHCs), and particulates into the atmosphere [Crutzen and 

Andreae, 1990; Crutzen and Carmichael, 1993]. However, recent ground-based and 

airborne Fourier transform infrared (FTIR) spectroscopic measurements have identified 

oxygenated organic compounds as being important additional components o f  biomass 

combustion smoke, at levels comparable to NMHCs [Griffith et al., 1991; Yokelson et al., 

1996a, 1996b, 1997, 1999a; Goode et al., 1999, 2000]. Other studies have confirmed the 

original FTIR results [McKenzie et al., 1995; Worden et al., 1997; Holzinger et al., 1999]. 

The primary members o f these oxygenated species [formaldehyde (CH20 ), methanol 

(CH3OH), acetic acid (CH3COOH), formic acid (HCOOH), hydroxyacetaldehyde 

(HOCH2CHO), and phenol (C6H5OH)] have not generally been included as substantial initial 

components in previous smoke modeling efforts [Chatfield and Delany, 1990; Richardson 

et al., 1991; Keller et al., 1991; Jacob et al., 1992; Crutzen and Carmichael, 1993; Jacob 

etal., 1996; Thompsonetal., 1996; Chatfield etal., 1996;Koppmannetal., \991\Mauzerall 

et al., 1998; Lee et al., 1998], particularly at the levels observed in the FTIR measurements,

1
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largely because they are not easily measured by traditional analytical methods. Thus we have 

conducted a series o f  simulations designed to elucidate the impact o f  directly emitted 

oxygenated organic compounds on the early photochemistry within a biomass combustion 

smoke plume. The results o f  these simulations lead us to further investigate the effect o f a 

biomass combustion smoke plume mixing with an urban environment. Hence, we present 

here background, model development, and results for both o f these primary simulation 

investigations.

We begin by presenting an overview o f  biomass combustion (chapter 2) and the 

troposphere (chapter 3). We then delve into the more specific areas o f  photochemical kinetics 

(chapter 5) and atmospheric modeling (chapter 4), including the presentation of the 

fundamental modeling approximations and differential equations that must be solved in each 

o f the modeling scenarios (i.e., the smoke plume and the urban environment). In chapter 6 

we present an overview o f the particular atmospheric model used in the work reported here, 

including a description o f  required modifications. Finally, we present the results o f our 

modeling work in chapters 7 and 8 ; chapter 7 focusing on our fundamental modeling 

objective, that o f  simulating the impact of the direct emission o f oxygenated organic species 

upon biomass combustion smoke plume photochemistry, while chapter 8 describes our 

secondary modeling inquiry o f the effect o f the mixing o f a smoke plume with an urban 

environment.

2
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Chapter 2

Biomass Combustion

2.A. Introduction

Fire and life form a necessary kind o f  symbiosis. Fire has been used by humans as a 

tool to manipulate the environment for over one million years. Today, fire is an integral part 

ofincreasingly common agricultural practices, such as conversion of forest to pasture, shifting 

cultivation, removal o f dry savanna vegetation, weed control, domestic cooking and heating, 

and waste-burning methods [Crutzen and Carmichael, 1993]. Fire is also the main natural 

disturbance factor o f  nearly every ecosystem. Many ecosystems and some flora and fauna 

species have adapted so as to seize upon the properties o f  combustion; some species o f trees, 

for example, have serotinous cones that open to release seeds only after violent heating [Pyne, 

1982]. Fire breaks down the matter that organisms have assembled using captured sunlight, 

nutrients and water; its natural function is to recycle nutrients and thus it plays a significant 

role in the dynamic equilibrium between the production and decomposition o f biomass. The 

burning o f  biomass is currently particularly prominent in the tropics and subtropics during the 

dry season (i.e., July to October in the southern hemisphere and January to April in the 

northern hemisphere) [Crutzen and Carmichael, 1993], but, nevertheless, every day biomass 

in some part o f  the world is on fire.

3
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We will begin our overview o f  biomass combustion by describing the process o f 

combustion including a basic description o f  the temporal evolution o f  combustion emissions. 

The exact emission profiles are essentially determined by the available fuels (i.e., their 

characteristics and properties), which will be the second topic o f  discussion. Finally we 

conclude with a review o f biomass combustion measurements including quantitative values, 

which will later be used for comparison to our own modeling results.

2.B. The Process of Combustion 

2.B.I. Heat Transfer

Fire involves the process o f  combustion, that is, the rapid oxidation o f a fuel 

accompanied by the production ofheat and light. Combustion is a chain o f  chemical reactions 

and, in order to sustain it, more heat must be generated than is absorbed [Pyne, 1982]. The 

transfer o f  heat within the combustion process can occur in several ways [Fuller, 1991; 

Gaylor, 1974]. Radiation transmits heat through space by means o f  infrared rays emanating 

from a heat source. Convection is the circulating upward movement o f a heated gas (or 

liquid) resulting from a decrease in density. Convection forms a vertically buoyant column 

o f hot molecules that spread heat in any direction, depending upon the movement o f the 

surrounding fluid. Biomass combustion smoke plumes often form these convection columns, 

due to the intense heating within the flaming front, causing a  noticeable in-draft of 

surrounding air to replace the buoyant fire emissions. This draft accounts for the ‘roar’ 

associated with large, fast-burning fires [Gaylor, 1974]. Finally, conduction moves heat from 

one molecule to another by direct contact. In the case o f  wildland fires, this method ofheat 

transfer is least effective due to wood being a poor conductor ofheat.

4
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2.B.2. Stages of Combustion

In the classic model for combust ion, the process advances by three stages: a 

preheating phase, a period o f  flaming combustion, and a state o f smoldering combustion 

[Fuller, 1991; Pyne, 1982; Gaylor, 1974]. During preheating, the fuel is being brought to 

its ignition point, which is roughly between260°C and 430°C for most wildfire fuels [Gaylor, 

1974]. The time required to reach the ignition temperature will depend on the characteristics 

o f the fuel, i.e., its size, moisture content and curing stage [Gaylor, 1974], Two things 

happen during preheating: first, the fuel is dried, via the distillation o f volatile substances, such 

as water; and second, the heat causes a thermal ‘cracking’ (pyrolysis) o f  the molecular bonds 

within the biomass (fuel), releasing gaseous pyrolysis compounds [YokeIson et al., 1996a; 

Pyne, 1982]. With the ignition o f these distillation and pyrolysis gases, the period o f  flaming 

combustion begins [Pyne, 1982]. Hence, flaming results from the burning o f volatile gases, 

not from the direct combustion o f the fuel itself. The emissions from flaming combustion tend 

to be highly-, if not completely- [i.e., C 02), oxidized.

Flaming combustion is an ephemeral state, varying with the fuel properties and the 

local fire environment. It advances as a wave front, and its energy release is the greatest o f 

any stage in the combustion process [Pyne, 1982]. This second stage propagates the heat flux 

needed to sustain pyrolysis in advance o f the flame front. What limits the duration o f the 

flaming state is primarily the slowness o f conduction through large diameter wood, which can 

slow the production o f  gases when the smaller, more-easily burned fuels are gone [Pyne, 

1982]. Wood surfaces may be heated by radiation and convection and hence are readily 

pyrolized, but the interior o f the larger diameter forest fuel can only be broken down by the

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



relatively ineffective transfer ofheat by conduction. By the time conduction has allowed 

pyrolysis o f  the biomass interior, the flaming front has already passed and with it the energy 

needed to sustain flaming combustion. The retarding effect o f  conduction accounts for the 

large quantities o f charred debris left after a  major fire and serves as a reminder that not all 

fuel is available for combustion [Pyne, 1982].

Once the flaming front has passed, the remainder o f combustion reverts to a 

smoldering state. Smoldering combustion involves two non-flaming processes: pyrolysis (as 

previously defined) and gasification (or glowing combustion). Gasification refers to the 

oxidation that occurs on the surface o f the charcoal residue left from the flaming phase; the 

carbon burns but as a solid rather than as a gas [Fuller, 1991]. The chemisorption o f 0 2 onto 

the char is exothermic, supplying the energy to drive glowing combustion and the heat needed 

to pyrolyze adjacent fuel, leading to the formation o f  even more char. Nevertheless, 

smoldering combustion produces much lower temperatures than flaming, leading to the 

emission o f less-oxidized (i.e., CO) and even reduced (e.g., CH4 and NH3) pyrolytic products. 

In the case o f forest fires, the smoldering phase may be protracted but, regardless, the 

combustion o f forest fuels is rarely total [Pyne, 1982].

2.B.3. Temporal Behavior of Fires and their Emissions

Free-burning fires are generally more complex than this simple model of combustion 

suggests. Specifically the concept o f fire stages separated in time is less useful than a more 

general concept o f fire processes which may coexist in time [Yokelson et al., 1996a]. That 

is, within a burning area there are an infinite number o f points, all of which will not be 

temporally in-phase with one another. Pyrolysis and glowing combustion occur in all stages

6
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and, hence, pyrolytic and glowing emissions may be detected throughout the duration o f  a fire 

with a high degree o f  variability [Yokelson et al., 1996a]. The large am ount ofheat released 

during flaming combustion may pyrolyze more fuel than during smoldering combustion, 

accounting for the peak often measured in pyrolysis products either before, during or 

immediately after the peak in flaming products [Yokelson et al., 1996a]. However, the 

majority o f pyrolysis products would normally be oxidized in the presence o f  vigorous 

flaming, and hence they have a higher probability o f escaping the fire (to be detected in the 

smoke) during smoldering combustion. Thus, the quantity o f pyrolysis products detected per 

unit fuel consumption is generally higher during times dominated by smoldering combustion 

[Yokelson et al., 1996a].

For a given fire there may be an initial, transient period in which the emissions profile 

is dominated by the products o f flaming combustion, such as COz and NOx (emitted primarily 

as NO), but glowing and pyrolysis emissions will also be evident Eventually, the products 

o f pyrolysis and glowing combustion, such as CO and NH3, will be the most prevalent within 

the emission profile. However, at any point between these two extremes there is generally 

a transition period as the area behind the (initial) flaming front shifts towards intermittent 

pockets o f smaller flames mixed with smoldering combustion. Hence throughout the lifetime 

o f  a given fire, the emissions will tend to be mixtures o f products from both flaming and 

smoldering combustion, as well as unmodified pyrolysis compounds.

The oxidative efficiency o f  combustion decreases as the fire proceeds in time and can 

be monitored via the combustion efficiency (CE), or the percent o f fuel carbon (FC) that is 

released as C 02. Often the CE is approximated by the modified combustion efficiency (MCE)

7
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given as ACCy (ACOz + ACO), where the A refers to the difference between the smoke- 

plume and the background concentrations (i.e., the ‘excess’ concentration). Figure 2.1 

illustrates the temporal behavior o f  MCE for two laboratory fires conducted by Yokelson et 

al. [1996a]. Under conditions dominated by flaming combustion, the fire burns with high 

(typically MCE ~ 99%) efficiency (see Figure 2.1a- first 10 min; Figure 2.1b- first 5 min). 

After the flames have completely died-out, the combustion efficiency decreases and is 

observed to range between 80 and 88  % until the fire ceases to burn, as illustrated at the end 

o f both fires in Figure 2.1.

I 30

£ i■i
<0 Hr* 2 MCE Mi 71m

aa

«9 IS 30 S  » B0 4010
Tim* Sines Ignition (min)

Figure 2.1 Modified combustion efficiency 
versus time for two laboratory fires, illustrating 
the concept of (coexisting) fire processes, (a) 
broadcast fire and (b) pine needle fire. [From 
Yokelson et al., 1996a]

The midsection o f Figure 2.1a depicts the transition period in which there exist areas o f both 

flaming and smoldering combustion and during which the emissions will contain products 

from all three combustion processes (flaming, smoldering and pyrolysis). This transition

8
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period between purely flaming and purely smoldering combustion represents an important 

deviation from the simple, temporally-separated phases o f combustion typically employed in 

biomass burning analysis [e.g., Lobert et al., 1991].

In order to gain some insight into the temporal emissions from biomass burning it is 

helpful to understand how the constituents o f biomass decom pose upon Hea tin g  in the 

absence o f  flames. Vegetative material is composed o f cellulose, hemicellulose, lignin, 

protein, nucleic acids, amino acids, and volatile substances [Koppmcmn etal., 1997]. Hence, 

the elemental constituents o f biomass are mostly carbon, hydrogen, oxygen, and nitrogen. 

Initial heating o f  biomass releases volatile distillation products, such as terpenes, and 

oxygenated pyrolysis products, such as methanol and acetic acid [DeGroot et al., 1988]. Due 

to the emission o f  these oxygenated compounds the weight percent o f carbon within the 

residual biomass increases, and leads to the formation o f  low temperature char, which is rich 

in aliphatic components [Yokelson et al., 1996a]. Continued heating at increased 

temperatures releases light-weight hydrocarbons, such as methane, forming high temperature 

char, which is predominantly composed o f  aromatic components [Lephardt and Fenner, 

1980]. The high temperature char participates in gasification, which supplies the necessary 

energy for the concurrent glowing combustion processes, producing, for example, CO and 

CO, [Yokelson et al., 1996a]. CO and C 0 2 are major products throughout all o f these 

processes, initially due to simple pyrolysis, but later due also to gasification o f char [Lephardt 

and Fenner, 1980]. These processes create the time variation o f  emissions due to pyrolysis 

and glowing combustion and also create the fuel that drives the turbulent, diffusion flames, 

which act to (further) oxidize these emission products.

9
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2.C. Fuels

For any flame, fuel, oxygen, and heat must come together in the right mixture. 

Collectively, these make up the fire environment and their interrelationship is called the fire 

triangle [Fuller, \9 9 \, Gaylor, 1974]. Eliminate any one o f  the three, and the flame goes out. 

For confined fire, these elements can be closely regulated and the properties o f the fire rigidly 

prescribed. Free-burning, natural fire is vastly more complex. It responds to an ensemble of 

grossly arranged fuel complexes, it is propagated by a variety o f  erratic and turbulent thermal 

mechanisms, it must follow broad topographic configurations, and it must deal with traveling 

air masses superimposed over microclimates [Fuller, 1991]. Complete understanding and 

prediction o f  wildland fire behavior involves quantification and modeling o f each o f  these 

components within the natural fire environment. However, investigation o f the nature and 

fete o f  fire emissions requires only the characterization o f  the fuels.

2.C .I. Types o f Fuels and Fires

Fuels are comprised o f any organic matter (i.e., any o f the various components o f 

vegetation), either live or dead, that occur on a site. Fuels are classified by location into 

ground, surface, and aerial fuels. Ground fuels include the decayed organic matter, called 

duff or humus, on the forest floor below the surface litter, in addition to buried debris [Fuller,

1991]. Fuels lying on top o f the duff up to about 4 to 6  feet are classified as surface fuels 

[Fuller, 1991 ]. These include the surface litter, e.g., dead needles, leaves, twigs, bark, cones, 

and small branches, as well as dead logs, stumps, large branches, herbaceous plants, shrubs 

and small trees. Aerial fuels consist of material in the tree or shrub canopy higher than 4 to 

6  feet above ground [Fuller, 1991]. They are physically separated from the earth and from
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each other, and air can circulate around the fuel particles [Gaylor, 1974]. Aerial fuels include 

snags, mosses, conifer needles, lichens, and tree branches and leaves.

Fires which bum through aerial fuels are known as crown fires [Fuller, 1991]. Fine 

fuels within the aerial category carry the fire, but crown fires are generally sustained by a 

surface fire  that erupts into the canopies o f  forest fuels, often with violent and discontinuous 

surges [Pyne, 1982]. Surface fires are those which spread through surface fuels via a flaming 

front, followed by an area subject to smoldering combustion [Fuller, 1991]. Fires which 

propagate largely through creeping, burning ground fuels and surface litter, and sustained by 

glowing combustion are termed ground fires [Fuller, 1991 ]. Ground fires can be problematic 

in that they can go largely undetected, traveling via buried materials, to start a surface fire 

yards away from their source, and also because they can be difficult to extinguish, as ground 

fuels tend to repel water as they dry out [Fuller, 1991].

Within the ground, surface, and aerial categories, fuels are evaluated for their 

arrangement, size, compactness, continuity, and moisture content, i.e., their properties. It is 

the properties o f the fuel that will largely determine the profile o f  biomass combustion 

emissions [Lobert et al., 1991].

2.C.2. Fuel Properties

The moisture content o f a fuel is an important factor in determining its burning 

capability [Lobert et al., 1991; Fuller, 1991; Gaylor, 1974]. The fu e l moisture is calculated 

as the amount o f water a fuel contains as a percentage o f  its oven-dry weight; hence, it can 

take on a value greater than 100 % [Hojfa et al., 1999; Fuller, 1991]. The time required for 

a fuel to gain or lose 63 % o f  its moisture is known as the time-lag period [Fuller, 1991;

11
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Anderson, 1982]. Temperature, humidity, precipitation, wind, season, solar flux, and 

topography all have a direct or indirect influence on the moisture content and time-lag period 

o f a fuel at a given time [Gaylor, 1974]. Since small fuels (with a greater surface area to 

volume ratio) absorb moisture and dry out faster than larger fuels, moisture response rqn align 

be ascribed according to theirfu e l size {i.e., fuel diameter). Fuels o f  less than a quarter o f  an 

inch in diameter (a.k.afine fuels') are characterized by a 1 -hour time-lag, while those between 

a quarter o f  an inch and 1-inch diameter are called ‘10-hour fuels’ [Fuller, 1991; Anderson, 

1982]. Mosses, lichens, and dry grasses, herbs and needles are examples o f  fuels belong to 

the former classification, with dead twigs and small branches exemplifying the second 

category. Larger dead branches between 1 and 3 inches in diameter are classified as 100-hour 

fuels, with fuels greater than 3 inches in diameter being characterized by a 1000-hour time-lag 

[Fuller, 1991; Anderson, 1982]. The degree to which a particular fuel will undergo complete 

combustion is also attributed to fuel size; smaller, fine fuels, such as dry grass, will tend to 

bum completely while larger fuels, such as logs, tend to leave unbumed remains [Wardet al.,

1992]. This is due to small fuels having a larger surface area which pyrolyze easier, is in 

contact with the air allowing them to dry out quicker (i.e., shorter time-lag, as mentioned 

above), and which is also available to carry the fire.

While fuel moisture influences flammability, the amount o f available fine fuel is a key 

factor in determining how vigorously a fire will bum [Fuller, 1991], The oven-dry weight 

o f all the fuel in an area defines the fu e l load [Fuller, 1991]. Often the fuel load for an area 

is sub-classified according to time-lag fuels in order to account for the fuel sizes and moisture 

contents which comprise the total load [Anderson, 1982]. Intricately connected to fuel load
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Is the fuel-bed depth, the height o f the fuel load above the forest floor. Grass and brush fuels 

rapidly increase in fuel-bed depth with increasing loading, while timber litter and logging 

only slowly increase in depth as the load is increased [Anderson, 1982]. Taken together, the 

fuel load and fuel-bed depth describe the total amount o f fuel available.

Other very important properties o f  fuels that affect fire behavior are fu e l spacing and 

fu e l continuity [Fuller, 1991; Gaylor, 1974]. These both attempt to describe the distribution 

o f  fuels over an area, however fuel spacing does so on a more microscopic level than fuel 

continuity. The proximity of fuel particles to one another, i.e., the fuel spacing, determines 

how well air circulates within the fuel and whether particles are close enough to ignite each 

other readily [Fuller, 1991]. Fuel continuity deals with fuel distribution on a more 

macroscopic level, that is, any break in accessible fuels tend to stop a fire and, hence, 

horizontal and vertical continuity o f  the fuels within an area are important to fire spread 

[Fuller, 1991]. Rock outcrops, bare areas, streams, and lakes interrupt the horizontal 

continuity o f a fuel, while the vertical continuity is disrupted by regions without ladder fuels 

such as shrubs, saplings, or lower branches, limiting fires to the surface or ground.

Fuel geometry, moisture, size, bed depth, and load, as well as the percentage o f  dead 

material, are the primary characteristics o f fuels within a given area which determine fire 

behavior and, hence, the combustion emissions [see e.g., Hoffa et al., 1999; Trollope et al., 

1996; Stocks et al., 1996; Fearnside et al., 1993; Ward et al., 1992]. Fuel moisture and size 

can be further combined by classifying fuels according to their time-lag periods [Anderson, 

1982]. One of the main missions facing forest managers and fire scientists is describing and 

quantifying the spatially and temporally varying fuel types and properties for a  given area.
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2.C.3. Fuel Inventories

There are an infinite number o f combinations o f fuel type, amount, size, shape, 

position, arrangement and moisture content. Since it is not possible to classify, i.e., cut- 

down, separate, dry and weigh, all o f  the fuels throughout a given forest, more or less 

throughout the world, the characterization o f fuel properties involves conducting fuel 

inventories which rely heavily upon statistically justified sampling procedures. These 

procedures include: destructive sampling; the use o f volumetric equations and measured or 

tabulated vegetative densities, with subsampling for fuel moisture; and comparison o f 

photographs to well-characterized areas. Within these procedures quantification o f  the fuels 

can occur via pre- and post-bum analysis, burned versus unburned, or approxim ation  o f total 

biomass using a ‘typical* combustion factor.

Typically [see e.g., Hoffa et al., 1999; Trollope et al., 1996; Stocks et al., 1996; 

Fearnside et al., 1993; Ward et al., 1992] large areas {i.e., National Forests or Parks), which 

are subject to natural or prescribed burning and available for scientific investigation, are 

broken-down into smaller plots, generally based upon uniform vegetation and natural 

boundaries. Transect lines are made through each plot to be studied and small, equivalent 

quadrats along the transect are marked. Usually, a fraction o f the quadrats are used for pre

bum analysis, with the remaining employed for post-bum  analysis. For each quadrat, fuel-bed 

depths are recorded and, in destructive sampling procedures, all the above-ground (unburned) 

vegetation (including saplings, but excluding tree-trunks) is cut and collected. Standing fuels 

{i.e., trees) are counted and their diameters measured. In post-bum subplots, ash o f  known 

volume and weight is also collected. Collected biomass is separated according to various
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categories, dried and weighed to determine fuel moisture content and fuel loading. By 

comparing sampling pre- and post-burning, the total fuel consumption for the plot as a  whole 

can be estimated. The total fuel consumption, fuel loading by category, and fuel moisture 

content are fundamental properties in understanding biomass combustion emissions, as well 

as extrapolating emission measurements on individual fires to global emissions estimates 

[Yokelson et al., 1999; Crutzen and Carmichael, 1993; Lobert et al., 1991].

Rather than conducting on-the-ground inventories, fire managers, scientists and 

modelers may instead use photographs representing various typical or important fuel 

complexes [Fuller, 1991]. Inventory crews gather fuel data, such as the sizes o f downed 

woody fuels and the depth o f  the duff, along transects from each photo point in order to 

characterize the exemplary fuel complexes [e.g., Fischer, 1981]. These so-called ‘Photo 

projects’ are not expected to have the same precision as an actually ground inventory, 

however they are much less labor-intensive and adequately specify fuel properties within the 

precision o f most fuel models [Fuller, 1991; Anderson, 1982]. Land managers match the fire 

site to the closest photo rather than conducting full-scaling sampling procedures.

2.D. Biomass Combustion Smoke Plume M easurem ents

Trace gas emissions from biomass burning make substantial contributions to 

atmospheric C 02, CO, CH4, NO„ NMHCs, oxygenated organics, and particulates [Crutzen 

andAndreae, 1990]. Available evidence increasingly indicates that these emissions from 

biomass burning, in its various forms, represents a major perturbation o f atmospheric 

chemistry [Crutzen and Andreae, 1990]. For example, biomass fires may be responsible for 

up to 20% o f the recent atmospheric build-up o f C 0 2 and CH4, both o f which taken together
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account for 80-95% o f the fuel carbon (FC) and are greenhouse gases [Crutzen and 

Carmichael, 1993]. In addition, the photochemical oxidation o f CO (~ 5-10% FC), HCs (~ 

2% FC), and oxygenated organics (~ 1% FC), in the presence o f NO, (~ 0.5-2% o f the fuel 

mass), produces ozone (0 3) (to be described in more detail in chapter 3). Tropospheric 0 3 

has both detrimental and advantageous effects. It is an oxidant which is damaging to 

vegetation and human health, and in the upper troposphere it is an important greenhouse gas 

However, it is also the key precursor o f the hydroxyl radical (*OH), which is the primary 

oxidant in the troposphere, responsible for the removal o f reactive pollutants released into the 

atmosphere by anthropogenic and natural processes. Particulate matter emitted from fires (~ 

1% FC) are highly effective catalytic pollutants, as well as condensation nuclei [Seinfeld and 

Pandis, 1998]. Additionally, they both absorb and scatter light, with the latter effect likely 

dominating and thus contributing to cooling o f the atmosphere, possibly temporarily masking 

the effects o f greenhouse gas buildup [Penner et al., 1992].

Due to the importance o f the above-mentioned trace gases on the chemistry within the 

troposphere, it is necessary to quantify and elucidate the speciation within biomass 

combustion emissions in order to understand and, ideally, predict their influence upon local, 

regional, and global atmospheres. The analysis o f representative emissions from fires is 

difficult due to the temporal variation o f fire behavior, the high temperatures within smoke 

plumes, the reactive nature o f many o f the smoke constituents, and the extensive range of 

emitted species concentrations. Owing to the difficulty inherent in analyzing fire emissions 

a number of different instrumental techniques and sampling platforms have been employed.
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2.D.I. Sampling Procedures

Aircraft probe large areas o f potentially well-mixed integrated emissions, and ran 

investigate secondary chemistry and transport [Goode et al., 2000]. However, it is difficult 

to monitor a single fire continuously from beginning to end using airborne sam pling., and 

specific knowledge o f the fuels and fire types are difficult to correlate with measurements 

[Yokelson et al., 1996a]. Ground-based measurements provide the opportunity for more 

detailed analysis o f the fire and fuels [Delmas et al., 1991], but may tend to incorrectly 

estimate the emissions in the convective column above the fire [Andreae et al., 1988]. In 

order to monitor a more representative sampling o f near-ground emissions, tower-based 

measurements have been employed [W ardet al., 1992]. In addition to these field methods, 

there are a  number o f advantages to studying biomass fires in the laboratory. In situ studies 

allow burning under controlled conditions, where the chemical and physical properties o f the 

fuel and environment may be known in detail, and the ability to monitor all o f the smoke for 

the entire course o f the fire so that emission factors for measurable species can be accurately 

determined [Yokelson et al., 1996a]. Each o f these above procedures intrinsically contain 

certain assets and liabilities, thus it is important to perform studies using each o f these 

sam p ling  platforms and intercompare results in order to obtain a more complete 

representation o f actual fire emissions.

2.D.2. Instrumental Techniques

In addition to the obstacles faced in trying to sample representative fire emissions, 

there is also the challenge o f choosing an appropriate measurement technique. The majority 

o f biomass combustion emissions have been characterized via ‘grab sampling' in which fire-
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integrated (samples taken over the lifetime o f the fire) emissions are drawn into canisters to 

be analyzed at a  later tune. Typically the analysis is conducted using gas chromatographic 

(GC) (possibly with flame ionization (FID) or electron capture (ECD) detection) and/or maw 

spectrometric (MS) techniques [see, for example, Lobert et al., 1991; Nance et al., 1993; 

Mckenzie et al., 1995; Hao et al., 1996; Koppmann et al., 1997; and Mauzerall et al., 1998]. 

Grab (point) sampling is open to emission profile misrepresentation due to temporal or spatial 

variations in species concentrations and, perhaps more importantly, due to the possible 

reaction o f emitted gases both during the sampling procedure and in storage. More recently 

Fourier-transform infeared (FTTR) spectroscopy has been shown to be well-suited for biomass 

combustion emission analysis [Griffith et al., 1991; Yokelson et al., 1996,1997,1999; Goode 

et al., 1999,2000]. Both open-path (OP-FTIR) and airborne (AFTIR) FTTR methods allow 

simultaneous measurements o f a wide variety o f species, whose concentrations vary 

considerably, to be made pseudo-continuously in real-time so there is no need to take samples 

and little possibility o f sampling- or storage-related artifacts, thus allowing reactive gases to 

be quantified. Additionally, measurements are integrated over the path length o f the 

instrument, thereby averaging over small-scale local variations and reducing the susceptibility 

o f recorded values to spatial variability.

The earliest work characterizing biomass burning emissions normally featured 

detection o f C 02, CO, and NOx [e.g., Ryan and McMahon, 1976]. The experimental 

laboratory fires o f Lobert et al. [1991] (using GC/FID) and Griffith et al. [1991] were the 

first to characterize a wide variety o f emission products o f particular importance to 

atmospheric chemistry, including C 0 2, CO, CH4, NMHCs, and a variety o f nitrogenous
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species. Unfortunately, one suite o f compounds not easily measured by the more traditional 

analytic methods, such as were used in these early works, are oxygenated organic compounds, 

such as aldehydes, alcohols, and acids. The pioneering work o f Griffith et al. [1991] and 

Yokelson et al. [1996,1997] (using the OP-FTTR technique) yielded results which compared 

well with measurements from more established analytic methods, but included the 

measurement o f oxygenated organics, particularly CH20 , CH3COOH, and CH3OH. In 

general, oxygenated compounds were found to be emitted at levels comparable to the much 

more heavily studied NMHCs.

The quantity and rate o f species emissions from biomass combustion will depend upon 

the fuel being burned, the fuel loading (or, more specifically, the total fuel consumption) and 

the relative weighting o f fire processes (i.e., flaming and smoldering, glowing and pyrolysis). 

Plotting emission factors versus MCE can represent how well emissions vary with fuel type 

or fire combustion characteristics [Yokelson et al., 1997]. Generally, a single, highly 

correlated, linear model fits the fire-integrated data for the emissions factors o f smoldering 

and pyrolysis compounds versus MCE [Yokelson et al., 1996,1997,1999; Goodeet al., 1999, 

2000]. (Since MCE is an index o f the relative amount o f flaming versus smoldering 

combustion, as the combustion efficiency decreases, the emission rate o f CO, and NOx 

decrease, while the emission rate o f more-reduced compounds increases). This trend is 

approximately the algebraic equivalent to the assumption that the compound is emitted at a 

constant ratio relative to CO, independent o f MCE [Yokelson e ta l., 1997]. Hence a compact 

ratio format is often used for reporting elevated concentrations within a smoke-plume. These 

fire-averaged emission (enhancement) ratios are expressed as AX/ACO, where AX is the
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excess concentration o f a compound either emitted directly by the fire or produced within the 

smoke-plume. An exception to this rule is the [N O J, which is usually reported as an excess 

ratio against C 02 since they are both “flaming compounds.” Emission ratios are generally 

calculated from the slope o f the least squares line in a plot o f one set o f excess mixing ratios 

versus the other.

2.D.3. Near-Source M easurem ents

The majority o f biomass combustion smoke plume analysis has focused on 

characterizing the emissions produced directly from the fire. Table 2.1 summarizes some of 

these near-source measurements using the concise enhancement ratio format and 

encompassing a variety o f instrumental techniques, as well as sampling platforms.

In order to use a single, consistent data set that accounts for the presence of 

oxygenated organic compounds the modeling work presented here uses initial concentrations 

within the biomass combustion smoke plume as recommended by Yokelson et al. [1996, 

1997]. While we chose a specific data set, the enhancement ratios used herein compare well 

with the average o f the measurements recorded in Table 2.1 (Table 2.2).
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Table 2.2 Comparison of enhancement ratios, as a percentage, used in the 
work presented here to the average of the near-source measurements 
reported in Table 2.1.

Enhancement Ratio Average o f Table 2.1 Value used herein

co/co2 7.76 7.00
n o /c o 2 0.15 0.15
NO/CO, 0.05 0.04
NHj/CO 2.03 2.15
HCN/CO 0.45 0.22
CHVCO 6.70 8.72
c îyco 0.66 0.68
C.H/CO 1.71 2.15
CoHVCO 0.38 0.68
c,ivco 0.50 0.15
QH./CO 0.51 0.48
c h 2o /c o 1.98 2.15
CH^OHJCHO/CO 0.80 0.80
HCOOH/CO 0.79 0.80
CHjCOOH/CO 1.38 2.15
CHjOH/CO 1.61 2.15
QHjOWCO 0.44 0.80

2.D.4. Downwind Measurements

The speciation and quantification o f components within biomass combustion smoke 

plumes downwind o f their source has been studied, in general, to afa r lesser degree than the 

near-source emissions. The limited data which are available are summarized in Table 2.3, 

roughly ordered according to the reported plume age. Please note that values reported by 

Mauzerall et al. [1998] are consistently higher (by a factor o f ~ 10) than would seem 

reasonable based on those reported by other sources. Nevertheless, we include these numbers 

in order to accurately present a review o f previously reported values.
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It is difficult to build any generalized trends based upon these data due in part to the 

sparsity o f the measurements, but also because it is more meaningful to analyse the chemical 

transformations occurring within a specific individual plume rather than in collection o f smoke 

plumes which span a variety o f  fuel types and processing conditions. Two studies [Mauzerall 

et al., 1998 and Goode et al., 2000] have attempted to monitor the chemistry occurring 

within an individual smoke plume by characterizing the concentration profiles at various 

locations downwind o f the plume source. These specific studies have been separated from 

the above and are summarized according to the individual plumes and their ages (Table 2.4). 

Again we note that the values reported by Mauzerall et al. [1998] seem rather high, but will 

use them simply to develop some general trends in species concentrations versus plume age.

Based on Table 2.4, the enhancement ratios for individual NMHCs, CH20 , NO, and 

NH3 tend to generally decrease as the plume ages due to the direct production o f these 

species from the fire and the more rapid disappearance o f these reactive species as compared 

to CO [Mauzerall et al., 1998; Goode et al., 2000]. Meanwhile, the enhancement ratio of 

0 3 seems to increase in time, presumably due to photochemical production o f 0 3 within the 

smoke-plume, in addition to photochemical loss o f CO [Mauzerall et al., 1998]. The 

ANO/ACO ratio (NO, * NO, + PANs + HN03) tends to stay relatively constant, most likely 

sustained by redistribution o f NO, between its reservoir species, e.g., PANs and HN03 

[Mauzerall et al., 1998]. The enhancement ratios o f formic and acetic acid tend to generally 

increase downwind o f  the fire source, indicating a secondary, photochemical source o f 

organic acids within the smoke-plume, in addition to their previously reported direct emission 

[Goode et al., 2000].
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Likewise, hydroperoxide enhancement ratios generally increase during plume evolution, but 

in the absence o f evidence for their direct production, indicating a net photochemical source 

within the smoke plume.

Models attempting to depict the chemistry occurring within biomass combustion 

smoke plumes should be able to reproduce these general trends. In addition to the general 

trends, modeled enhancement ratios should be comparable to the absolute values measured 

in these campaigns. We will address both o f these comparisons in relation to the work 

reported here after our results are presented.

2.E. Summary

The purpose o f this chapter is to present an introduction into the nature o f biomass 

combustion, its properties, and the important factors which affect biomass combustion 

emissions. We have additionally presented a brief overview o f the primary species emitted 

from biomass combustion, as well as providing a partial review o f their reported emission 

factors. These emissions are released directly into the atmosphere, and the goal o f the work 

presented here is to model the chemical transformations that occur within biomass combustion 

smoke plumes in order to  gain some understanding o f the impact o f these emissions on the 

local, regional, and perhaps even global atmospheric environment. The purpose o f the 

following four chapters is to introduce the fundamental concepts and tools required in order 

to perform this modeling task.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 

The Troposphere

3.A. Introduction

The Earth’s atmosphere is divided into four layers according to the variation o f 

temperature with altitude (Figure 3.1).

W — (Ton)

io-* to-* to-' i io io*
100

TO

I  "
$ so

40

20

200100 300

Figure 3.1 Typical variation of temperature with 
altitude at mid-latitudes as a basis for the divisions 
of the atmosphere. Also shown is the variation of 
total pressure with altitude (top scale, base 10 
logarithms). [From Finlayson-Pitts and Pitts, 2000]

The lowest layer o f the atmosphere, in which temperature generally decreases with increasing 

altitude, is called the troposphere and extends from the Earth’s surface up to ~ 10 - 15 km,
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depending upon latitude and time o f year [Seinfeld and Pandis, 1998]. The height o f the 

tropopause, which separates the troposphere from the next highest atmospheric layer, the 

stratosphere, is a maximum over the tropics and decreases moving towards the poles 

[Seinfeld and Pandis, 1998].

The troposphere can be subdivided into two layers: the p lanetary  boundary layer 

(PBL), extending from the Earth’s surface up to ~ 200 - 2000 m, and the free troposphere, 

extending from the PBL to the tropopause [Jacobson, 1999]. The PBL is that part o f the 

troposphere that is directly influenced by the presence o f the Earth’s surface, and responds 

to surface forcings on the time scale o f about an hour o r less [Stull, 1988]. It is within this 

level o f the atmosphere that the transport and dispersion o f  pollutants released at the surface 

is controlled [Seinfeld and Pandis, 1998]. The movement o f air parcels within the PBL is 

influenced by the frictional drag o f the surface and by energy transfer processes, such as 

conduction, radiation, advection and mechanical and thermal turbulence [Jacobson, 1999]. 

The combination o f these effects and surface heating during the day causes the height o f the 

PBL to increase, allowing air from the free troposphere to be mixed in. Conversely, at night 

radiative cooling leads to a decrease in the PBL height, thereby releasing air from within the 

boundary layer to be mixed into the free troposphere [Fishman and Carney, 1984]. Hence 

significant mixing occurs between the free troposphere and the PBL, but on time scales longer 

than mixing within the boundary layer itself [Jacobson, 1999].

The troposphere as a whole is, thus, a region o f continual turbulence and rapid vertical 

mixing. This convective flow within the troposphere arises in part owing to the transfer o f 

heat from the sun-warmed Earth to air in contact with the surface, which subsequently rises
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due to decreases in its density [Finlayson-Pitts and Pitts, 2000]. As an air parcel adiabatically 

rises, its temperature decreases in response to the local pressure. While the troposphere 

accounts for only a small fraction o f the atmosphere’s total height (Figure 3.1), it contains 

about 80% o f its total mass, including almost all o f the atmosphere’s water vapor [Seinfeld 

and Pandis, 1998]. This predominance o f water vapor within tropospheric air parcels has the 

effect that as an air parcel rises and its temperature decreases, it can be accompanied by a 

substantial increase in relative humidity due to the strong dependence o f saturation vapor 

pressure on temperature [Seinfeld and Pandis, 1998]. As a result, upward air motions o f a 

few hundreds o f meters can cause the air to reach saturation, and even supersaturation, 

leading to the formation o f clouds. Interestingly, even though a rising air parcel cools due to 

changes in pressure, the condensation o f water vapor can provide sufficient heating o f the 

parcel to maintain its temperature above that o f the surrounding air [Jacobson, 1999]. When 

this occurs, the air parcel remains buoyant and its upward movement is accelerated, leading 

to even more condensation [Seinfeld and Pandis, 1998]. Cumulus clouds are produced in 

this fashion, and the vertical convection associated with cumulus clouds is, in fact, another 

principal mechanism for transporting air from close to the Earth’s surface to the free 

troposphere [Seinfeld and Pandis, 1998].

The strong vertical mixing within the troposphere, coupled to the temperature 

inversion above the tropopause (Figure 3.1) trapping air within the troposphere, allows it to 

act as a chemical reservoir distinctly separate from the stratosphere, such that chemical 

species with lifetimes less than ~ 1 year are destroyed within the troposphere itself [Seinfeld 

and Pandis, 1998]. Unreactive species and species with longer lifetimes, e.g., N2, 0 2, C 02,
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CH< and Ar, tend to be well-mixed within the troposphere leading to globally sustained 

background concentrations and accounting for the majority o f tropospheric composition by 

volume (Table 3.1) [Jacobson, 1999]. It is within the minor components o f tropospheric 

gases, the so-called trace gases, that most tropospheric chemistry occurs.

Table 3.1 Volume percentage composition 
of dry air. "variable; batmospheric moisture

Gas % by Volume
n2 78.09
o2 20.94
Ar 0.93
co2 0.03"
He, Ne, Kr, Xe 0.002
c h 4 0.00015"

0.00005
All others combined'’ <0.00004

(i.e., trace gases)

3.B. Gas-Phase Chem istry

The Earth’s atmosphere is an oxidizing environment [Seinfeld and Pandis, 1998]. 

Hydrocarbons released from the surface eventually end up as carbon dioxide and water. 

Nitrogenous species are driven toward nitric acid, while sulfur-containing species cascade 

down their oxidative chain towards sulfuric acid. Thermodynamically, the oxidized products 

are generally lower in free-energy than their reduced counterparts, and this difference 

provides the driving force for their gas-phase oxidation. The formation o f higher free-energy 

species, e.g., 0 3, may be photochemically driven by sunlight. Nevertheless, in general, 

chemical reactions need an input o f energy to initiate the reaction process. This activation 

energy may be supplied thermally, but at normal atmospheric temperatures this is a slow 

process. Thus, in the atmosphere the energy o f activation is often provided by the sun via 

photo lytic reactions. Because the stratospheric ozone layer absorbs wavelengths less than
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290 nm, only species which absorb lower-energy radiation are photochemically active in the 

troposphere [Finlayson-Pitts and Pitts, 2000]. For example, while the photolysis o f 

molecular oxygen (Oj) provides the primary source o f atomic oxygen [0 (3P)], and hence 

ozone (0 3), in the stratosphere, in the troposphere nitrogen dioxide (NO,) photolysis (at 

wavelengths greater than 290 nm but less than 424 nm) fulfills that role via reactions 3.1 and 

3.2 [Seinfeld and Pandis, 1998].

N 02 + h v ------------- ► NO + 0 (3P) (3.1)

0 (3P) + 0 2 — 0 3 (3.2)

Just as the formation and destruction o f 0 3 is a well-known focus o f stratospheric chemistry 

{i.e., the ozone hole), the chemistry o f 0 3 is central to the troposphere as well [Crutzen, 

1995].

The majority o f photochemically active surface emission species can be categorized 

as nitrogen oxides (NOx = NO + N 0 2) or volatile organic compounds (VOCs). The term 

VOC is used to refer collectively to all hydrocarbon species (HCs), i.e., ethane (C^HJ, as well 

as oxygenated organic compounds, such as formaldehyde (H2CO). NOx emissions result from 

the oxidation o f either atmospheric nitrogen CNV) for industrial and vehicular sources, or fuel 

nitrogen in the case o f biomass burning.

3.B .I. Basic Tropospheric Photochem ical Cycle

Overall the gas-phase chemistry o f the troposphere may be described as the 

photochemically driven, NOx-catalyzed oxidation o f carbon monoxide (CO) and VOCs with 

the coproduction o f 0 3 (Figure 3.2).
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[ground sources |
Figure 3.2 Schematic of the basic 
tropospheric photochemical cycle.

The majority o f VOC-oxidation pathways are initiated by hydroxyl radical (-OH) attack, 

which produces peroxy radicals (H 02% RXV, R C (0)02*) in the presence o f 0 2, e.g., reactions 

3.3- 3.5.

CO + -OH —  HO,* + C 02 (3.3)

RH + -OH —  — RO, * + H20  (3.4)

RCHO + -OH —  — RC( 0) 02* + H20  (3.5)

These peroxy radicals are primarily responsible for converting nitric oxide (NO) to NOz, 

regenerating *OH in the case o f H 02* and forming higher-order oxy radical species in the case 

o f RO,* and RC(0)0,* (reactions 3.6-3.8).

H 02* + N O  > OH + N 02 (3.6)

RO,* + N O  > RO* + N 02 (3.7)

R C (0)02* + N O  > RC(0)0* + NO, (3.8)
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The higher-order oxy radical species (reactions 3.7 and 3.8) generally react with 0 2 lin in g  

to the production o f additional H 02* and R 02*, as well as to the formation o f an oxygenated 

organic compound, e.g., reactions 3.9 and 3.10.

H-
RO • + 0 2 aton**? H 02* + RCHO (3.9)

RC(0)0* + 0 2  > R 02* + C 02 (3.10)

Carbonyl compounds (Reaction 3.9) add to the suite o f VOCs that can be attacked by 'OH, 

and in fact enhance the photochemical cycle (as discussed below), while the ‘fresh’ peroxy 

radicals are now available to convert more NO to NOz. The subsequent photolysis o f N 0 2 

regenerates NO and leads to the production o f 0 3 (Reactions 3.1 and 3.2).

The generalized mechanism presented above thus propagates via a free-radical chain 

in which VOCs are converted into more oxidized products. In the oxidation process multiple 

NO -to-N 02 conversions occur, eventually regenerating 'OH (and thus completing the 

photochemical cycle [Figure 3.2]), and leading to the production o f 0 3. For example,

RH + -OH —  — R0 2- + H20  (3.4)

R 02- + N O  > RO- + NO, (3.7)

RO* + 0 2  > H 02- + RCHO (3.9)

HO,- + N O ------- > 'OH +- N 0 2 (3.6)

2 x[ NO, + h v ------- > NO + 0 (3P) (3.1)]
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2 x[ 0 ( 3P) + 0 2 — 0 3 (3.2)]

net: RH + 2 hv —  —  ̂  2 0 3 + RCHO (M l)

Thus the propagation steps o f the tropospheric photochemical reaction cycle oxidize 

hydrocarbons via a series o f  intermediate oxygenated organic species, to eventually form C 02. 

The cycle being initiated and perpetuated through radical species.

Free radicals are introduced into the troposphere via, mainly photolytic, radical 

initiation steps [Seinfeld and Pandis, 1998]. For example, 'OH is primarily introduced via 

the photolysis (at wavelengths shorter than 325 nm) o f 0 3, in the presence o f water, 

(reactions 3.11 and 3.12).

0 3 + h v ----------> O('D) + 0 2 (3.11)

0 ( lD) + H20 ---------► 2 -OH (3.12)

Since *OH initiates most oxidative tropospheric reaction pathways, and because it is formed 

from the photolysis o f 0 3, the availability o f 0 3 is generally considered to determine the 

oxidizing capacity o f the troposphere [Seinfeld and Pandis, 1998].

3.B.2. Nighttime Chemistry

At night, when photolytic free radical sources are not available, the principal oxidant 

o f VOCs is the nitrate radical (N 03a), often rivaling in magnitude the loss by reaction with 

•OH during the day [Finlayson-Pitts and Pitts, 2000]. The prerequisite for N 03' production 

is the simultaneous presence o f N 0 2 and 0 3 in the same airmass, as the only primary source 

o f N 0 3* is via reaction 3.13 [Seinfeld and Pandis, 1998].
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N 0 2 + O j  > N 0 3* + Oj (3.13)

NOa* is also formed via its equilibrium with N2Os (reaction 3.14), an important feature o f 

N 03- chemistry.

N 0 3- + N 0 2 N2Os (3.14)

During the day, N 03- rapidly photolyzes (reactions 3.15 and 3.16), thereby restricting its 

chemistry to night,

N 0 3- + h v  ► NO + 0 2 (3.15)

N 0 3* + h v  > N 0 2 + O (3.16)

and reacts with NO (reaction 3.17),

N 0 3- + N O  > 2N 02 (3.17)

sufBciently rapidly that NO and N 0 3* cannot coexist at mixing ratios o f a few parts per trillion 

(ppt) or higher [.Seinfeld and Pandis, 1998]. For typical daytime conditions, the maximum 

N 0 3* mixing ratio will be 0.6 ppt. At nighttime, however, when NO concentrations drop near 

zero due to reaction with 0 3, and assuming the concurrent presence o f sufficient quantities 

o f both N 0 2 and 0 3, the N 03* mixing ratios can reach 100 ppt.

3.B.3. Radical-Chain Termination

Radical species, as well as NO„ are removed (in many cases only temporarily) from 

the photochemical cycle via termination reactions, e.g., reactions 3.18- 3.22.

•OH + N 0 2 -------> H N 03 (3.18)
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RC(0)02- + N 02 --------> RC(0)02N02 [a.k.a. PANs] (3.19)

R 02- + N O -------- > RONO, (3.20)

H 02‘ + HO,’ -------- > H20 2 + 0 2 (3.21)

R 02- + H O , - --------> ROOH + 0 2 (3.22)

The first three reactions consume NO„ as well as radical species, and will be referred to here 

as ‘Rad + N O / termination reactions, while the last two are radical-recombination reactions 

and will be referenced as ‘Rad + Rad’ termination reactions [Kleinman, 1994].

Rad + NOx and Rad + Rad reactions were introduced above as consuming or 

removing radicals and NO, from the photochemical cycle. However, they are also important 

because most o f the products formed in reactions 3.18-3.22, and other similar reactions, are 

long-term pollutant reservoir species; they allow transport o f photochemically-active species 

away from local events and into regional, possibly even global, atmospheres. For example, 

nitric acid (HNO}) and peroxy acyl nitrates (PANs), formed in reactions 3.18 and 3.19, 

sequester NOx, which can be released photochemically or thermally, respectively [Seinfeld 

and Pandis, 1998]. The hydroperoxide products (H20 2 and ROOH) o f reactions 3.21 and 

3.22 are reservoirs o f HQ, (’OH + H 02*), which may be released by photolysis, reaction with 

*OH or, for some peroxides, dissolution into cloud droplets [Seinfeld and Pandis, 1998]. 

Thus, on a local scale, termination reactions remove radicals, and sometimes also NOz, from 

the photochemical cycle, but they also allow long-range transport o f these photochemically 

important species, possibly to be reintroduced into the atmosphere at a later time. Hence,
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while NOx-removal will be used to refer to the local effect, the possible Iarger-scale 

implications o f  this process should not be overlooked.

The dominant termination reactions are determined by the relative availability ofNO, 

and radical species and, under limiting circumstances, are characteristic o f the atmospheric 

processing state, either VOC- or NOx- sensitive [Kleinman, 1994], as described below.

3.C. VOC/ NOx Sensitivity

Three decades o f  tropospheric photochemical modeling have revealed the nonlinear 

relationship between 0 3 formation and its two primary precursors, NO, and VOCs [Sillman, 

1999, and references therein]. From these studies, including analysis o f  the underlying 

chemical equations [Kleinman, 1997], the troposphere has been found to have two 

fundamentally different processing states: one in which the rate o f0 3 formation increases with 

increasing [NOJ and is largely independent o f [VOC], known as NOx-sensitive {-limited) or 

low-NO„ and another in which the rate o f0 3 production decreases with increasing [NOJ but 

increases with increasing [VOC], termed VOC-sensitive {-limited), NOx-saturated, or high- 

NOx [Kleinman, 1994, Sillman, 1999, and references therein]. These two states reflect basic 

differences in the dominant photochemical reaction pathways and are directly related to the 

relative availability ofN O , and radical species. Tropospheric photochemical models are often 

run under differing constant emission fluxes o f VOC and NO, (occasionally keeping the 

VOC/NO, ratio constant) in order to determine which processing state a particular simulated 

event represents.

The formation o f 0 3 in the VOC- and NOx- sensitive states o f the troposphere can be 

viewed as a stoichiometry problem based upon the NO -to-NO , conversion (reactions 3.6-
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3.8). The majority ofN O x emissions into the atmosphere are in the form ofN O  [Finlayson- 

Pitts and Pitts, 2000]. However, 0 3 production results from the photolysis o fN 0 2 (reactions 

3.1 and 3.2). As such, in order to obtain net 0 3 formation NO must be converted to N 02 by 

a molecule other than 0 3 itself It is a primary role o f peroxy radical species (H 02*, R 02*, and 

R C (0)02*) to perform this conversion through reactions such as 3.6-3.8, and in these 

reactions either reactant may be in excess.

3 .C .I. VOC-Sensitive Tropospheric Processing State

In the VOC-sensitive (high-NOJ tropospheric state the emission ofNOx exceeds the 

production (via the photochemistry outlined in the previous section) o f radical species. 

Radicals are thus rapidly removed from the system, via the Rad + NOx reactions, limiting their 

availability to perform the NO-to-NOz conversion and inhibiting 0 3 production. Hence an 

increase in [NOJ causes a decrease in [0 3] due to both radical destruction and reaction of 0 3 

with NO (reaction 3.23).

NO + 0 3 ------------- > N 02 + O, (3.23)

Conversely, an increase in [VOC], increases peroxy radical production via reaction with ’OH 

(reactions which compete with reaction 3.18) and therefore increases 0 3 formation. Overall 

the VOC-sensitive state is characterized by a decrease (as compared to the NOx-sensitive 

state) in the oxidizing capacity o f the troposphere due to reduced radical species 

concentrations [Sillman, 1999]. This leads to the accumulation o f primary pollutants such 

as NOx and VOCs (as alternate removal processes are slow), and a suppression o f 

hydroperoxide formation via the Rad + Rad reactions [Kleinman, 1994]. The diminished role 

o f the Rad + Rad term ination reactions, as well as the abundance o f NOx, leads to the
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dominance o f  Rad + NOx termination reactions in the removal o f radical species from the 

photochemical cycle under VOC-sensitive conditions [Sillman, 1990; Poppe et a I., 1993]. 

Urban atmospheres are typically found to be VOC-sensitive due to the significant source o f 

NOx from vehicular, as well as industrial, emissions.

3.C.2. NOx-Sensitfve Tropospheric Processing State

The NOx-sensitive (low-NOx) tropospheric processing state occurs under 

stoichiometric conditions (in reactions such as 3.6-3.8) opposite to those o f the VOC- 

sensitive state. Rather than the NO -to-N02 conversion reactions being limited by radical 

availability, in the NOx-sensitive state 0 3 production is limited by the availability ofNOx itself. 

Under such conditions 0 3 formation increases with increasing [NOJ because radical species 

are readily available to convert NO to NOz [Kleinman, 1994]. Previous studies also have 

concluded that 0 3 production in this state is largely independent o f [VOC], presumably due 

to a saturation effect in which an increase in radical species, which are already more available 

than NOx, does not lead to an increase in NO -to-N02 conversion rate and hence little effect 

on 0 3 production [Sillman, 1999]. (However, the simulations presented here illustrate that 

net 0 3 production can sometimes be VOC-dependent under NOx-sensitive conditions owing 

to VOC-induced removal o f NOx leading to reductions in both 0 3 destruction and 

production).

The NOx-sensitive state is, thus, characterized by abundant radical species, which 

rapidly remove NOx via Rad + NOx termination reactions, and increased hydroperoxide 

concentrations due to ‘excess' radicals reacting among themselves in Rad + Rad termination 

reactions. Under certain conditions, the availability o f excess radical species can even lead

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to the dominance o f  the Rad + Rad termination reactions for removal o f radical species from 

the photochemical cycle. However, it is important to mention that while in general VOC- 

sensitive conditions are dominated by the Rad + NOx termination reactions and NOx-sensitive 

conditions by the Rad + Rad termination reactions, there are circumstances under which the 

troposphere is in an NOx-sensitive state but radical removal by the Rad + NO, termination 

reactions is still favored over the Rad + Rad reactions [Kleinman, 1994].

3.C.3. VOC- to NOx-Sensitive Transition

It has frequently been observed in previous VOC/NO, models that urban plumes 

undergo a transition from VOC-sensitive to NOx-sensitive photochemical processing as the 

plume moves downwind from the city source. That is, urban environments to be NO,-rich 

due to vehicular and industrial emissions; however, rural environments tend to be 

characterized by fairly high VOC-to-NO, ratios owing to the relatively rapid removal ofNO, 

from distant sources as compared to VOCs. The photochemical removal ofNO, from urban 

plumes is generally also coupled to the absence o f strong, rural NO, sources, as well as to the 

dilution o f  the plume by background concentrations [Sillman, 1999]. The depletion ofNO, 

concentrations within the urban plume cause the relative ratio o f  NO, to radical species 

production to shift, leading to the transition between VOC- and NO,-sensitive chemistry.

3.D. Radical Autocatalysis/ Positive Feedback

The inclusion o f oxygenated organic species into a tropospheric model in which they 

had previously been ignored can have a significant impact upon the predicted photochemical 

processing. This influence is associated with two features o f  tropospheric gas-phase 

chemistry: radical-chain initiation and autocatalysis. Oxygenated organic compounds differ
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from HCs in that their oxidation proceeds not only via *OH attack, but alsn through direct 

photolysis, especially for aldehydes. Thus oxygenated organic compounds act as an 

additional direct source o f  radical species by providing added photolytic radical-initiation 

steps.

Autocatalysis is a positive feedback process in which a chemical species becomes 

involved in a cycle whereby it catalyzes its own formation. Recall from the generalized 

mechanism presented earlier that in the propagation steps o f  the tropospheric reaction cycle 

(assuming the presence o f high enough concentrations o f  N O J multiple NO-to-N02 

conversions may occur for each oxidative step o f  a VOC (reaction scheme M l). Each o f  

these NO, conversions require an associated transformation, but not termination, in RQ, 

(=*OH + HOv+ ROv + RC (0)02')> implying that the general tropospheric cycle may, in feet, 

be autocatalytic in radical formation. This radical amplification can be visualized by 

completing the cycle o f Ml to include the *OH-formation reactions:

RH + -OH + 2 hv 2 0 3 + *OH + R’CHO (M l)

2 x [0 3 + hv ------ > 0 ( lD) + 0 2 (3.11)]

2 x [O('D) + H20 --------------------- ------ ► 2 -OH (3.12)]

net: RH + -OH + 4hv  —  5 -OH + R’CHO (M2)

An equivalent reaction cycle can be written based upon any o f  the general VOC-oxidation 

initiation steps (reactions 3.3- 3.5) and/or for the amplification o f  peroxy radicals, e.g. H 0 2*, 

instead o f  the *OH radical. The overall stoichiometry o f  M2 is autocatalytic in that one
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radical leads to the production o f  more than one radical at a rate that is proportional to the 

concentration o f  the radical itsel£ indicating that the generalized tropospheric oxidation cycle 

may be autocatalytic under conditions where M l is rapid as compared to reaction 3.18. The 

reaction cycle M2 is in feet an idealized maximum radical-muhiplication scheme. 

Tropospheric chemistry is exceedingly complex in that there are many competing reactions 

occurring simultaneously, and the rate o f  change for any particular species is intricately 

coupled to the concentrations o f  other species. Hence, the reaction scheme M2 does not 

occur in isolation, i.e., *OH radicals, as well as some 0 3, are lost due to reaction with NOx, 

and each step in the cycle depends upon the relative concentrations of 0 3, radicals, NOx and 

VOCs. As written, then, it is not completely realistic. However, the purpose in presenting 

this one possible reaction pathway is simply to illustrate that the general tropospheric 

photochemical cycle has the ability to be autocatalytic in radical production (albeit mediated 

by 0 3), 311 important contingency in the modeling work presented here. Note also that the 

photolysis o f  0 3 to yield ‘OH (reactions 3.11 and 3.12) is both rate-determining and initiating 

for M2. Thus this chemistry appears as an autocatalysis in [03], which a priori controls the 

oxidative capacity o f  the troposphere.

A  sim ilar positive feedback loop involving the ‘OH-mediated rate d [03]/dt 

[V 0C ][03]/[N 02] has been proposed as a critical link in the nonlinear phenomena associated 

with tropospheric chemistry (e.g., the high-NO/ low-NOx chemistry discussed earlier) and 

in oscillatory tropospheric chemical models [Kleinman, 1997; Field, et. al., 2001; Tinsley and 

Field, 2001 ]. Both the positive feedback loop presented here and those proposed previously 

indicate that, providing there is sufficient NOx available, an increase in VOC-loading will lead

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to an increase in radical species production through the basic photochemical cycle itself. This 

effect is expected to be even more pronounced when the increase in VOC-loading results 

from the inclusion o f oxygenated organic compounds since they tend to be more reactive with 

•OH in general than are HCs [Finlayson-Pitts and Pitts, 2000].

3.E. Summary

The goal o f this chapter is to introduce the troposphere, describe some o f its basic 

properties, and give an overview o f the fundamental, and yet very complex, chemistry that 

occurs within it. As the lowest level o f the atmosphere, it is the chemistry o f  the troposphere 

which is directly affected by surface emissions, such as biomass combustion and urban 

pollution. Modeling tropospheric chemistry requires the ability to mathematically describe 

the possible chemical transformations, as well as any physical processes which influence 

reactive species availability. The following two chapters aim to introduce the fundamental 

concepts upon which such mathematical models are based, as well as providing some details 

specific to the work presented here. Chapter 6 describes additional, more specific information 

on the exact modeling software employed in our research. Please note that in this chapter we 

attempted to explicitly indicated radical species {e.g., H 02*) but from this point forward will 

avoid this precise, dot notation.
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Chapter 4 

Atmospheric Modeling

4.A. Introduction

The atmosphere is an extremely complex system in which numerous physical and 

chemical processes occur simultaneously. A major goal o f the atmospheric sciences is to 

understand how these coincident processes lead to the behavior o f trace atmospheric 

constituents on both the spatial and temporal levels. Atmospheric measurements give us 

insight into the instantaneous atmospheric conditions at a particular place at a particular time, 

but do not provide insight into the governing atmospheric processes that lead to the measured 

properties. Laboratory and theoretical studies yield specific atmospheric parameters and 

processes, but do not imply an understanding o f the system as a whole. It is mathematical 

computer models which combine the theoretical equations o f the individual atmospheric 

processes and impart an understanding o f their interactions as a  whole; they provide the 

causal relationship between emission fluxes, meteorology, chemical transformations and 

removal processes, and ambient concentrations.

There are o f course many different types o f  models [Seinfeld and Pandis, 1998]. 

There are physical models which attempt to simulate a real area and/or event by building a 

small-scale replica o f the situation. There are statistical models which use past data, along
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with current measurements, as variables in a statistical analysis to predict near-future 

conditions. But both o f  these have limited usefulness because they are not based on a 

fundamental description of the atmosphere in terms o f both its physical and chemical 

processes. In order to obtain an understanding o f the interdependent relationships occurring 

in the atmosphere we need a mathematical model which is based upon these fundamental 

equations, a so-called atmospheric chemical transport model (ACTM).

In this chapter we will describe the different types o f ACTMs including introducing 

the concept o f their dimensionality. We will then detail the specific modeling approaches used 

within the work present here, focusing upon the derivation o f the fundamental differential 

equations which describe the temporal evolution of species concentrations.

4.B. Types o f Atmospheric Chemical T ransport Models

There are two approximations under which ACTMs have been designed (Figure 4.1) 

{Seinfeld and Pandis, 1998].

Species

(«) (b)

Figure 4.1 Schematic depiction of (a) a Lagrangian model and (b) an 
Eulerian model. [From Seinfeld and Pandis, 1998].

A Lagrangian model moves with the local wind so as to simulate changes in the chemical 

composition o f a given air parcel(s) as it is advected through the atmosphere (Figure 4.1a).
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As the air parcel moves, species emissions are allowed to enter and leave the parcel through 

its base, but otherwise there is, in general, no mass exchange between the parcel and the 

surroundings (unless the size o f the air parcel is permitted to change in time). Since the air 

parcel moves continuously, the Lagrangian model actually simulates species concentrations 

at different locations as a function o f time [Finlayson-Pitts and Pitts, 2000]. The Eulerian 

approach differs from the Lagrangian in that the modeling framework remains fixed in space 

(Figure 4.1 b). As such, an Eulerian model describes the flux and chemical behavior o f an air 

mass moving through o f an array o f stationary computational cells, which cover the entire 

modeling domain. Species enter and leave each cell through the walls (either to exchange 

between cells or between a given cell and the surroundings) with additional mass exchange, 

due to emission and deposition, through the cell base (Figure 4.1b). The Eulerian model 

simulates species concentrations at all locations as a function of time [Seinfeld and Pandis, 

1998]. In the modeling work presented here, both the Lagrangian and Eulerian modeling 

approaches are employed depending upon the modeling intent.

The area that an atmospheric model describes varies from a few hundred square 

meters to thousands o f square kilometers, of variable height, depending upon the goal o f the 

modeling study [Jacobson, 1999]. The domain o f  the model usually consists o f an array of 

computational cells, each having a uniform chemical composition [Seinfeld and Pandis, 

1998]. The size o f these cells, that is the volume (area*height) over which the calculated 

species concentrations are averaged, determines the spatial resolution o f the model, while the 

number and arrangement o f the cells determines its dimensionality (Figure 4.2). The simplest 

atmospheric model, o f  dimension zero, consists o f  only one box which covers the entire
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computational domain. In a so-called box model, concentrations are the everywhere 

and therefore are a function o f  time only,

M
box ((H ))

(b)

<c>

column (1-0) »o
Figure 4.2 Schematic depiction of (a) a box 
model (zero-dimensional), (b) a column 
model (one-dimensional), (c) a two- 
dimensional model, and (d) a three- 
dimensional model. [From Seinfeld and 
Pandis, 1998].

As the dimensionality o f an atmospheric model increases beyond the simple box model, 

species concentrations are allowed to be increasingly dependent upon spatial variables as well. 

As such, one-dimensional models, i.e. column models, assume that concentrations are a 

function o f height and time, c,(z,t), while three-dimensional models simulate the full 

concentration dependence on latitude and longitude, as well as height and time, c,(x,y,z,t). 

The work presented here uses only the simplest modeling representation- the box model.

4.C. Box Models

Box models are closely related to more complex airshed models in that they are based 

on the conservation o f mass equation (mass-action chemical kinetics) and include chemical 

submodels to represent the detailed photochemical kinetics [Finlayson-Pitts and Pitts, 2000].
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However, they have the advantage that they do not require the detailed, temporally and/or 

spatially resolved emission and meteorological data needed for the more complex models, and 

hence require less computational time [Jacobson, 1999].

4.C.I. The Eulerian Box Model

The Eulerian box encompassing a region ofthe atmosphere usually is assumed to have 

a fixed length, x , a  fixed width, y , but variable height, h(t) (Figure 4.3).

Vvtatote mfaong haight

Figure 4 3  Schematic diagram showing the basic elements of a 
simple Eulerian box model. [From Finlayson-Pitts and Pills, 2000].

Ambient species concentrations, c “, are advected into the box, displacing species 

concentrations within the box, cp due to the wind, which is assumed to have a constant 

direction and speed, u. Additionally the chemical composition o f species / within the box are 

affected by their emission rate, E„ their deposition rate, D„ and via their net chemical 

production (or destruction) rate, R,. (Units are assumed as follows: concentrations in 

molecules cm'3, wind speed in cm hr'1, chemical production rate in molecules cm'3 hr'1,
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emission and deposition rates in molecules hr'1). Assuming initially that the fixed Eulerian box 

has constant volume, xyh, then, the mass o fa  particular species i must be conserved such that 

[Seinfeld and Pandis, 1998], 

d
— 0C'Xyh) = £ , - £ >  + R,xyh + uyh{c° -  c ,). (4.1)

Dividing by the volume, simplifies the Eulerian box model governing equation, assuming a 

constant box height h, to

dc, E, D, u
<4-2a>

Now let us allow the height o f  the box to vary diumally, h(t), in order to simulate the 

evolution o f  the atmospheric mixing state, that is, the natural height variation o f the PBL, 

which typically grows during the day due to increased thermal turbulence but falls at night 

[Jacobson, 1999]. Physically, when the mixing height decreases, there is no direct affect on 

the concentrations c, within the boundary layer [Seinfeld and Pandis, 2000]. That is, as the 

box height decreases, air originally inside the box, which is modeled as having uniform 

composition, is left aloft but this does not impact the species concentrations remaining within 

the box. O f course, as the box becomes smaller, surface emissions and sinks have a greater 

effect. As the mixing height increases, however, the box entrains air from above, thereby 

impacting the chemical composition within the well-mixed box, c„ by dilution with ambient 

air concentrations, c,a [Seinfeld and Pandis, 1998]. At time t, when the box has height h(t), 

an increase in the box height o f Ah yields the mass balance equation,

(c, + Ac, YM t) + A A) = c,h{t) + c° Ah. (4.3)

Neglecting the second-order term, Ac,Ah, dividing by At, and taking the limit as A /-0 yields
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equation (4.4) for the instantaneous effect o f  an increasing box height on concentrations c„

dc, «  -  c,) dh(,)
dt h(t) dt ' (44)

Thus, if the mixing height is increasing, then the governing equation for the Eulerian box 

model must include an additional entrainment term [Seinfeld and Pandis, 1998]. 

Summarizing, the entraining Eulerian box-model equations are,

dc, E, D, u dh(t)
* " S * » - 5 5 c 0 + * ' + J (C' - °  for ^ < 0 ,  (4.2b)

and,

dci E i D f . {c° -  ct ) dh(t) e dh(t) n „
77" = — 77T~ — 7TT+ + — \ c i  ~ c*) + — 77~l-------Z—  «>r — ;—  > 0- (4.5)dt xyh(t) xyh(t) x  h(t) dt dt

These equations describe mathematically the concentration o f species above a  given area 

assuming that the corresponding airshed (box) is well-mixed. They account for emission, 

deposition, advection o f material into and out o f  the airshed, entrainment o f material during 

the growth o f the mixed layer, and chemical reactions, assuming the use o f a realistic gas- 

phase chemical mechanism for calculation o f the R, terms. Chapter 6 discusses, in part, the 

use o f  a  variable height Eulerian box model to simulate an urban airshed.

4.C.2. The Lagrangian Box Model

The Lagrangian box model approximation is particularly suited for simulating a 

heavily polluted plume moving away from a near point-source where an initial profile o f 

species react, essentially in a closed system, as the plume evolves. Hence, this model is used 

in the work presented here to describe the advection o f an expanding air parcel containing 

biomass-combustion emissions. The Lagrangian box is assumed to behave as a point
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identically following the wind patterns. Thus the mass balance for the T -agrangian  box o f  

fixed size is identical to that for the Eulerian approximation (equation 4.2a) with the exception 

that the advection terms are absent [Seinfeld and Pandis, 1998]. In this modeling work we 

assume that the box moves vertically with the mixing layer height, and hence has fixed height, 

h, but, in order to account for the atmospheric dilution o f  the plume, has variable width, y(t) 

(Figure 4.4).

- r *  co n s ta n t

Figure 4.4 Schematic diagram of a diluting 
Lagrangian box model as used in the work presented 
here, (a) top view; (b) side view.

Following the same logic as before for the impact o f changing height on species 

concentrations, the instantaneous effect o f plume widening on species concentrations, c„ is,

dc, _ (c° -  c,) dy(t) 
dt

(4.6)
y{t) dt

Since the width o f  the smoke-plume is always increasing, and we assume its height is fixed, 

then the governing equation for the diluting Lagrangian box model is,
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dc> _ E< _ A  . r  , (c° - c ,) d y ( t )
d t xy(t)h xy(t)h  ' y(/) <* ’ '

which is identical to those for the Eulerian model but for the missing advection terms and the 

assumed constant height but variable width. In the absence o f emission and deposition terms, 

the time variation o f  species concentrations within the moving Lagrangian box model are 

affected solely by chemical reaction and the assumed plume-widening expression.

4.D. Summary

In this chapter we have developed the fundamental mathematical equations, which 

form the basis for atmospheric chemical transport models, under two different box-model 

approximations. This set o f  differential equations (one equation for each reacting species) 

describe, in essence, the temporal evolution o f  chemical species due to both physical (i.e., 

emission, deposition, and advection) and chemical processes. However, the chemical 

transformations occurring within the atmosphere (e.g., the R, terms) require independent, 

detailed treatment, which has not been described here but is the focus o f the next chapter.
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Chapter 5 

Photochemical Kinetics 

5.A. Introduction

The chemical component o f  atmospheric chemical transport models is described by 

a set o f  mass-action differential equations. That is, species emitted at the Earth's surface are 

transformed within the atmosphere via thousands o f simultaneously occurring, 

photochemically initiated reactions. Sunlight drives the chemistry through photolytic 

reactions that dissociate molecules into highly reactive fragments (radicals), and the reactions 

between these radical species and other trace atmospheric components perpetuates radical- 

chain reaction mechanisms, generally leading to the degradation (oxidation) o f surface 

emissions. These photochemical reactions are, by definition, dynamic and the field o f  kinetics 

is focused on mathematically describing their time dependence. Based upon kinetic principals 

the temporal behavior o f species concentrations due to chemical transformation is described 

by a set o f  coupled, often non-linear, differential equations. It is these fundamental time- 

differentials which describe the chemistry within mathematical, atmospheric models.

In this chapter we present the principals o f photochemical kinetics and, thus, the set 

o f  differential equations used to describe the chemical transformations within an atmospheric 

chemical model. This will lead to a discussion o f  numerical techniques used in to solve large
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sets o f  chemical ordinary differential equations, focusing upon those techniques employed in 

the modeling work presented here. Since atmospheric chemistry is photochemically initiated, 

we will begin by discussing photolysis reactions and the computation o f their reaction rates. 

5.B. Photolytic Reactions and their Rates

The energy required to initiate atmospheric chemistry is provided by solar radiation 

through photolytic reactions [Seinfeld and Pandis, 1998]. Photolysis reactions are 

unimolecular processes involving the absorption o f a single photon o f  energy h v, causing the 

excitation o f  a molecule to a higher electronic energy state (reaction 5.1) [Woodbury, 1997].

A + h v  A* (5.1)

The electronically excited molecule, A*, can undergo many different processes. It may return 

to the ground state either by radiative (i.e. fluorescence) or non-radiative (i.e. collisional) 

deactivation processes, or it may transfer its excess electronic energy to another molecule 

[Woodbury, 1997]. Another alternative (and the one that is o f interest here) is that the 

electronically excited molecule may dissociate into fragments [Jacobson, 1999], such as with 

the photolysis o f  N 0 2 (reaction 5.2).

NO, + h v  -  N 0 2* -  NO + 0 (3P) (5.2)

The rate at which a  photolytically-active molecule dissociates has the general form,

rate = jA [4], (5.3)

where j A is the first-order photodissociation, or photolytic, rate constant o f species A. This 

rate constant depends on the availability o f photons o f suitable energy, as well as the 

fractional yield o f dissociation as compared to other electronically excited pathways.

In order to determine the availability o f photons o f  suitable energy, it is first necessary

54

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.



to determine the total photon flux (i.e. photons per second) on a given volume o f  air from all 

directions, e.g., the actinic flu x  [Seinfeld and Pandis, 1998]. The actinic flux [/(A,/)] is a 

function o f  wavelength (due initially to the wavelength distribution o f  solar radiation) and 

depends upon the absorption and scattering o f  light by atmospheric constituents, as well as 

the reflection o f radiation from the Earth’s surface [Seinfeld and Pandis, 1998]. The 

attenuation o f  solar radiation due to absorption and scattering depends upon the 

concentrations and nature o f atmospheric gases and particles and upon the pathlength through 

which the solar beam passes. This pathlength is, in turn, dependent upon the angle ofthe sun, 

which is a function o f  location (latitude, longitude and altitude), time o f  day, and date. Thus, 

computation o f  the actinic flux, as a function o f  wavelength and time o f  day, for a  given date 

and location requires the provision o f  a surface albedo, to describe the extent o f  radiative 

reflection, and a vertical profile o f  atmospheric gases and particulates, to determine the solar 

attenuation. In general the actinic flux is calculated within an atmospheric chemical-transport 

model via a  separate radiative transfer submodel which divides the atmosphere into layers and 

the radiative spectrum into wavelength intervals.

The actinic (photon) flux is the fundamental quantity that is pertinent to all 

photochemical reactions. However, the photodissociation rate constant depends not only 

upon the photon flux, but also upon the energy o f light which is available, as well as the 

nature o f  the molecule itself [Seinfeld and Pandis, 1998]. More specifically, in computing 

the photolytic rate constant one needs to account for the probability o f an encounter between 

a given molecule, A, and a photon o f  appropriate energy (i.e., the absorption cross section, 

crA) and the probability that the molecule will actually dissociate for each photon that is

55

Reproduced with permission ofthe copyright owner. Further reproduction prohibited without permission.



absorbed (i.e., the quantum yield, tftf). Thus, the photodissociation rate constant,/, for a 

given absorbing molecule, A, as a function o f  time o f day is calculated by integrating over all 

wavelengths the product o f  the actinic flux, and the absorption cross section and quantum 

yield for the molecule o f  interest (equation 5.4) [Seinfeld and Pandis, 1998].

J a CO = \ (5.4)

For computational purposes this integral is often approximated by summing over small

wavelength intervals. Since the values o f  o(A) and may not be available on precisely the

same intervals as for /(A, /), some interpolation may be necessary [Seinfeld and Pandis,

1998].

5.C. Chemical Reactions, their Rates and the Rate Law

The rate at which a given chemical reaction proceeds is described through the change

in the concentrations o f reactant and/or product species with time. For the general reaction,

aA + 6B -  cC + dD, (5.5)

the rate o f  reaction is defined [Woodbury, 1997] as,

1 d[A] 1 d[B] 1 d[C] 1 d[D]
rate -   ----- -— = - ——-— = --—— = ——-— , (5.6)

a dt b dt c dt d  dt

where the first two differential terms describe the rate o f consumption ofthe reactant species, 

A and B, and the last two terms describe the rate o f formation for the product species, C and 

D. The relation between the reaction rate and the time-dependant species concentrations for 

any chemical reaction is known as the rate law [Woodbury, 1997] and has the general form, 

rate = KT) [A]u [B]v [O f [D f, 

where u, v, w, and x  are constants and k(T) is known as the rate constant, which is constant
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in the sense that it doesn’t depend on species concentrations, but it does in general depend 

upon temperature [Woodbury, 1997]. It is important to note that for a given chemical 

reaction the exponents in the rate law (e.g., u, v, w, andx) do not necessarily bear any relation 

to the stoichiometric coefficients o f  the reaction (e.g., a, b, c, and d).

Most chemical reactions occur through a series o f  steps called elementary reactions, 

which generally involve only one or two reacting molecules [Woodbury, 1997]. (In the case 

o f gas-phase chemistry there are a number o f  processes that involve a third participant- 

typically symbolized using the notation ‘M ’- whose role is simply to siphon off some o f the 

excess energy and thereby stabilize an energy-rich intermediate or product, thus preventing 

dissociation back into reactants [Finlayson-Pitts and Pitts, 2000].) A reaction mechanism 

is composed o f a set o f  elementary reactions that combine to give the overall observed 

stoichiometry and rate o f reaction [Woodbury, 1997]. The rate law for any elementary 

reaction can be determined from the chemical reaction itself owing to the fact that the reaction 

rate is proportional to the concentrations) o f  the reactant species raised to their 

stoichiometric coefficient(s) [Woodbury, 1997]. Assuming the general reaction (5.5) is 

elementary, the rate law for the reaction is,

Combining the reaction rate (5.6) with the rate law (5.7) describes the rate o f change o f  each 

species o f a given elementary reaction in time.

rate = k(T) [A]a [5]A. (5.7)

d[A] d[B]
=  - k ( A y [ B ] b

dt dt 

d[C] d(D]
=  k [ A y [ B fd t dt
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Hence the time derivatives o f  each species in a  reaction mechanism (which is composed o f 

elementary reactions) can be determined in terms ofthe rates o f each reaction. For example, 

consider the mechanism,

2A — B

B — C

B.

The time derivatives for each species in terms o f  the elementary reaction rates are,

- * , [ * ] + * 2[C]

Thus, the time variation in the concentrations o f  each species in a reaction mechanism are 

generally dependent upon the other species {i.e., they are coupled) and are individually 

described by nonlinear, homogeneous, ordinary differential equations (ODEs). In order to 

predict how species concentrations will change in time, we need only integrate the time 

derivative rate equations, i.e., a set o f  coupled nonlinear ODEs. For most reaction 

mechanisms (including atmospheric applications) this requires simultaneously solving a set 

o f equations equal to the number o f  reacting species, a daunting task which usually requires 

the implementation o f  numerical techniques since an analytical solution generally does not 

exist [Jacobson, 1999; Seinfeld and Pandis, 1998]. By using a sufficiently small integration
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step (/») and accurate integration methods, the numerical solution can be made to converge 

upon the true solution [Gear, 1971].

5.D. Solving Chemical Ordinary Differential Equations

5.D. 1. Introduction to Numerical Techniques

Sets o f  photochemical ODEs are generally numerically stiff in that the chemical 

lifetimes o f  individual species vary by many orders o f magnitude [Jacobson, 1999]. For 

example, the lifetime o f an individual OH radical is on the order o f  milliseconds, while that 

for methane (CH4) is on the order o f  years. When sets o f  ODEs are stiff, some classical 

(explicit) numerical methods are not useful for solving them [Jacobson, 1999; Olcese and 

Toselli, 1998] as the code will choose prohibitively small integration steps in order to 

preserve stability. A numerical method is defined to be stable if a  fixed change in the starting 

values o f an integration step produces a bounded change in the numerical solution [Gear, 

1971]. Semi-implicit integrators can take time steps much longer than the lifetime o f the 

shortest-lived species and remain stable and are therefore generally used in order to solve stiff 

sets o f  ODEs [Jacobson, 1999]. Solvers o f stiff ODEs are semi-implicit in that their solutions 

at the end o f  a time step (c,^) depend upon time derivatives (c ')  evaluated at the end o f the 

current time step (t+h), the beginning o f the current time step (t), and the beginning of 

previous time steps (t-nh) [Jacobson, 1999]. The work presented here uses a semi-implicit 

solver based upon one o f the more advanced, accurate and elegant methods o f solving stiff 

ODEs, Gear’s method [Jacobson, 1999].

S.D.2. Gear’s Method

Gear’s method is based upon the backward Euler approximation using a Newton-
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Raphson predictor-corrector methodology. The following summary is based upon a 

description ofthe methods given by Olcese and Toselli [1998]. In the most simplistic terms, 

the backward Euler method solves stiff ODEs in the autonomous form,

c ' “ / t o .  (5.8)

using a semi-implicit scheme involving the first two terms ofthe Taylor-series expansion, such 

that

c,-h = c, + hfic,-*). (5.9)

(The bold notion is used to represent the array o f differential equations, thereby avoiding the 

subscript / notion). By linearizing the equations, as in Newton’s method, one obtains

= c, + h[/ict) + /(c,)x(cf_A - cf)], (5.10)

where J(ct) is the Jacobian matrix, that is the matrix o f  partial derivatives o f  the rates o f  

change o f  each species with respect to every species (dfldc), evaluated at the current time 

step. After some manipulation equation 5.10 can be rearranged to,

«** = ct + h[ 1 - h J(c )r* A c t). (5.11)

Hence, the first-order Gear’s method numerically calculates future concentrations based upon 

the current concentrations, and involves the computation and inversion ofthe Jacobian matrix, 

in principal, at every time step. In practice numerical solvers based upon Gear’s method use 

higher-order approximations, which are more accurate [Jacobson, 1999]. These involve the 

calculation o f  future concentrations based upon the current concentrations, previous 

concentrations, and a prediction o f the future concentrations themselves. Within every time 

step the predicted future concentrations are corrected through a number o f iterations 

(predictor-corrector methodology), based upon their rates o f  change with respect to each
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species {i.e., the Jacobian matrix), until the convergence criterion is met. It is through this 

iterative procedure, based upon mathematical approximations to the ODEs, that numerical 

solver routines calculate the time evolution o f  species concentrations within a chemical 

mechanism.

5.D.3. The Jacobian Matrix and Sparseness

The Jacobian matrix describes how quickly the differential equation for each species 

changes at the point at which it is evaluated, and therefore relates, locally, the lifetime ofeach 

species to every other species {Gear, 1971]. Because the Jacobian is a N*N matrix (where 

N is the number o f solvable species), which in principal should be evaluated at every time 

step, it can be computationally expensive to solve. Fortunately, if the partial derivatives do 

not change much between time steps the Jacobian need not be re-evaluated at each iteration 

[Gear, 1971]. Furthermore, for a Newton-type method (such as Gear’s method), if the 

numerical solution, in which the Jacobian matrix in not re-evaluated at each step, converges, 

it does so to a solution o f the differential equation [Gear, 1971].

An additional feature o f  the Jacobian matrix that reduces computational expense, is 

the sparseness ofthe matrix The Jacobian is the matrix o f partial derivatives o f  the time rates 

o f  change o f  each species with respect to every species, that is,

d zci d c s
dc.dt oC;dt

ccHdt dcNdt

(5.12)
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As it turns out many o f  these partial derivatives for chemical kinetic systems are zero 

[Jacobson, 1999; Olcese and Toselli, 1998]. This feature o f  the Jacobian to contain only a 

small fraction o f  nonzero entries is known as sparseness. Since multiplication by zero requires 

as much computational time as multiplication by any other number, a numerical technique 

which takes into account the sparse ness ofthe Jacobian matrix, thereby avoiding unnecessary 

multiplications, can save enormous amounts of computational time [Jacobson, 1999; Olcese 

and Toselli, 1998].

The semi-implicit numerical solver routine used in the work presented here is based 

upon Gear’s method, utilizing sparse Jacobian matrix techniques. Both the step-size (h) and 

the order o f  approximation are actually varied during the integration process, by use o f  

estimates o f  the local error at each step, in relation to user-specified error tolerances.

5.E. Summary

In this chapter we have defined the rate law and the rate o f  reaction, and shown how 

they can be combined to form differential equations that describe the temporal evolution for 

all species concentrations within a given chemical reaction mechanism. Atmospheric reaction 

m echanism s tend to involve a large number o f species that may react via several, different, 

simultaneously occurring pathways. Since each chemical species has its own descriptive 

differential equation, atmospheric chemistry models must be able to solve large sets ofODE’s 

coincidently. As such we have also discussed numerical techniques employed in atmospheric 

models. The photochemical kinetic principals and numerical techniques introduced in this 

chapter are used within the atmospheric chemistry model employed within the work presented 

here, as described in more detail in the following chapter.
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Chapter 6 

The Model

6.A. Description of Components

The modeling work presented here was conducted using a zero-dimensional 

tropospheric chemical mass-balance model developed at the National Center for Atmospheric 

Research (NCAR) and uniformly coded in FORTRAN 77. This so-called ‘Master 

Mechanism’ (MM) [Madronich and Calvert, 1989] is one o f  the most chemically detailed 

models available and consists o f five separate components.

The photochemical component (directory MM/) contains a detailed description, in ~ 

5000 kinetic reactions involving some 2000 chemical species, o f the gas-phase 

photochemistry o f alkanes and aromatics up to Cg, alkenes up to C4, two biogenic 

hydrocarbons, isoprene and a-pinene, as well as oxygenated species produced in the 

degradation of these HCs. The only ‘clumping’ within the reaction mechanism involves the 

hundreds o f peroxy-radical species, which all react among themselves. Explicit depiction o f 

each o f these self- and cross-reactions would require N2̂  reactions, where N is the number 

o f  radicals {e.g., for 200 peroxy radical species, 20,000 explicit reactions would be 

necessary). However, o f the few o f these reactions whose rates have been measured directly 

the results indicate similar behavior among the radicals grouped according to whether they
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are primary, secondary, tertiary or acyl [Afadronich and Calvert, 1990]. The rates o f  the 

methyl peroxy radical are sufficiently different to be treated separately [Madronich and 

Calvert, 1990]. Hence counters are used to keep track o f  each group o f peroxy radicals and 

then, instead o f  N2/2 reactions, one can write 5N reactions that have the same effect as the 

explicit reactions [Madronich and Calvert, 1990].

A subset o f  the full reaction mechanism may be selected by specifying an initial profile 

o f  chemical species (SHRINK.F). The software then selects a mechanism involving the 

reactions o f these species and their derivatives. Thus, in order to keep the photochemical 

component o f our modeling work somewhat manageable, we have restricted our HCs to C3 

and less. These lightweight HCs comprise ~ 75 % o f  those emitted from biomass combustion 

[Lobert et al., 1991; Hao et al., 1996], and this restriction reduces the complete mechanism 

to 702 reactions (79 photolytic) involving 267 species.

The radiative transfer model, the second component o f the MM, computes the actinic 

flux as a function o f time o f  day and wavelength for a given location and date (directory 

TUV/) [Madronich, 1987]. In order to perform this numerical calculation the height o f  the 

atmosphere must be divided into layers, and the radiative spectrum and day must be divided 

into intervals, according to user specification. The radiative spectrum between 185 nm and 

730 nm is divided into irregularly-spaced intervals o f  1 nm resolution initially, eventually 

increasing to 10 nm. The daily resolution was specified to be 15 minutes. The height o f  the 

computational box was approximated to be 1 km, the average height o f  the PBL, and the 

vertical grid spacing above this uses 50 levels o f 1 km resolution with the uppermost layer 

comprising the whole o f the atmosphere above 50 km. Within this altitude grid, the
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distribution o f  atmospheric gases and particulates must be specified in order to account for 

the effect o f  absorption and scattering on incoming solar radiation.

Atmospheric conditions are based upon the US standard atmosphere (1976), which 

specifies the vertical profiles o f  temperature, air density, [O J and [0 3], assuming clear-sky 

conditions. (The assumed clear-sky conditions can only be strictly representative o f  the top 

o f  the smoke plume.) Aerosol optical depths are taken from Elterman [1968] at 340 nm and 

assumed to scale inversely with the first power o f  wavelength. Additionally, the reflection o f 

radiation by the Earth’s surface (/.e., albedo) affects the total photon flux within a given 

volume o f  air. The surface albedo was specified to be 0.15, appropriate for a savanna 

covered surface [Finlayson-Pitts and Pitts, 2000], and is assumed to be Lambertian, i.e., the 

reflected light is isotropic [Seinfeld and Pandis, 1998], and independent o f wavelength or 

direction o f incidence o f light.

In order to represent photochemical processing occurring over Southern Africa during 

the tropical dry season, where 80% o f global biomass combustion is reported to occur [Hao 

and Liu, 1994], the date and location was specified to be August 31 at 13°S and 27°E. All 

o f the above user-supplied information allow the atmospheric, surface, and solar pathlength 

effects on the photon flux into the computational box to be determined via numerical 

summation across the altitude spacing and within the wavelength and daily resolution. This 

detailed algorithm to compute the actinic flux, coupled to the explicit photochemical 

mechanism, {i.e. the first two sub-models o f  the MM) are the real strengths o f the MM, but 

are also computationally expensive and thereby restrict the use o f the MM to the more simple 

atmospheric modeling applications.
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The actinic flux, as a function o f time o f day and wavelength, is used as input for the 

third MM sub-model (directoiy JBLOCK/), which computes the photodissociation rate 

constants as a function o f time o f day. The photolytic cross-sections and quantum yields for 

absorbing species are additional necessary inputs for this computation. The photolytic rate 

constants are then compiled along with the reduced mechanism and the user-specified initial 

conditions (e.g. an array o f initial concentrations, the time in which the simulation should 

begin and end, etc.) into a solver input file by the fourth component o f the MM (directory 

PREP/). The final sub-model o f the MM is the actual ODE solver (directory SOL V/), which 

reads in all the data and numerically integrates the kinetic differential equations to yield the 

time variations for all species concentrations. The overall rate for each reaction, which 

depends not only upon the supplied kinetic rate constant, but also upon the time-dependent 

reactant species concentrations, are also tabulated.

6 .B. M odifications to the MM Num erical Solver

A number o f modifications have been made to the MM numerical integration (a.k.a. 

‘solver’) routine (directory SOLV/) in order to increase stability and adapt the model to our 

specific simulation needs. The MM originally used Gear’s method [Gear, 1971] in order to 

solve the stiff system o f chemical ODEs. While Gear’s code was the original o f the more 

advanced semi-implicit numerical methods, we had difficulty getting the solution to converge 

under highly polluted conditions. Hence, the MM ‘solver’ routine was adapted to use the 

Livermore solver for ordinary differential equations using sparse matrix techniques 

(LSODES) [Hindmarsh, 1983]. LSODES is based upon Gear’s method, but uses revised 

algorithms for method, step-size and order adjustment [Seinfeld and Pandis, 1998]. It is

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



considered to be one o f the most robust routines available to obtain solutions to stiff systems 

o f ODEs and has been used to evaluate the precision o f a number o f other methods [Olcese 

and Toselli, 1998]. Implementation o f LSODES required the sparse Jacobian matrix be 

supplied, as the system o f chemical ODEs is stiff [Olcese and Toselli, 1998; Hindmarsh, 

1983]. The sparseness o f the Jacobian matrix is described via two arrays: LA, which 

delineates the number o f nonzero elements (NNZ) in each column [e.g., the NNZ in column 

/ is IA(/+1) - IA(/)], and JA, which specifies the specific row elements in each column that are 

nonzero. Using these arrays, a subroutine was written to compute the sparse Jacobian matrix 

by column, as required by LSODES, and by reaction, as required by the MM solver. (The 

MM can be used without the below additional changes by setting NDILUT * 1, NAMBT = 

0 and NSR = 0.)

6 .B .I. Biomass-Combustion Smoke-Plume M odeling

Additional minor modifications were made to the MM in order to more accurately 

model the evolution o f a biomass-combustion smoke-plume. The modeling work presented 

here uses a  Lagrangian box to represent the advection o f an air parcel, initially containing 

biomass-combustion emissions, in time. We assume that species concentrations within the 

box are not affected due to further emission or deposition, and hence the governing equation 

(see equation 5.7) for a box o f constant height and length but variable width, y{t), is,

~ c>)
,(,) (6 1 ) 

where R, represents the net photochemical production (or destruction) rate o f species / (as 

determined based upon the photochemical mechanism), and c “ and c, are the associated
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ambient and smoke-plume concentrations, respectively. The variable width term, y(t), 

accounts for the atmospheric dilution due to expansion o f the smoke-plume as it evolves, 

which has a substantial impact on predicted species concentrations [Kley, 1997; Mauzerall 

et al., 1998; Poppe et al., 1998]. The form o f y(t) is assumed to be,

X 0 = W 0 ) j + 8 V 1 M' (6.2)

where y(0 ) is the initial plume-width and Ky is the cross-flow (horizontal) diffusion coefficient. 

This equation was obtained with reference to the Gaussian solution to the Fickian diffusion 

equation, do/d/ = K Ja [Csanady, 1973], by setting the plume width, y(t), equal to twice the 

Gaussian variance, o  [Sillman et al., 1990]. Substitution o f (6.2) into (6.1) yields,

~ t =R,Jr [ jK O )2 +  8 * / ]  ^  ( 6 3 )

for the governing time-dependent equation o f  species concentration, c„ in an expanding, 

Lagrangian box as incorporated into the modeling work presented here. The expansion term 

o f (6.3) goes to zero as t  -  00 and (c“ - c,) ^  0, as is expected. The parameter Ky was 

determined here using an initial plume width, y(0 ), o f 1 km and fitting the dilution rates o f 

excess (over ambient) CO and C 0 2 mixing ratios (ACO and AC02) to those estimated from 

observations on large isolated plumes by Babbitt et al. [1998] and Goode et al. [2000]. 

Based upon this curve fitting Ky is set to 3.33 * 10'3km2 min'1. Equation (6.3) is incorporated 

into the MM such that all species concentrations are diluted by their corresponding ambient 

concentrations, c “, at every time step (assuming that a flag, NDILUT, is set to 1).

Diurnal variations in ambient concentrations, c,a, were estimated by running the MM 

(with NDILUT= 0 and NAMBT = 1) holding a profile o f longer-lived species concentrations
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(Table 6.1) typical o f a rural environment [.Finlayson-Pitts and Pitts, 2000; Seinfeld and 

Pandis, 1998] constant. All other species concentrations were allowed to vary.

Table 6.1. Ambient Concentrations Used in Smoke-Plume Dilution

Name Formula Total Concentration (ppbv)

Nitrogen n 2 7.8 x 10*
Nitrogen Dioxide NO* 1
Nitric Oxide NO 0.05
Nitrous Oxide n 2o 320
Dinitrogen Pentoxide N A 0.005
Nitric Acid HNOj 0.2
Nitrous Acid HNO, 0.03
Ammonia NH3 0.1
Peroxyacetyl Nitrate PAN 0.05
Hydrogen Cyanide HCN 0.19
Methane CH4 1650
Ethane QH* 13.50
Ethene QH, 11.10
Ethyne (Acetylene) C,H2 8.65
Propane QjH* 18.70
Propene C A 2.6
Methanol CHjOH 0.5
Acetic Acid CHjCOOH 2.1
Formic Acid HCOOH 5.4
Formaldehyde CHjO 9.1
Carbon Dioxide CO, 3.5 x 105
Carbon Monoxide CO 200
Carbonyl Sulfide OCS 0.5
Sulfur Dioxide SO, 0.2
Oxygen O, 2.1 x 10*
Ozone O3' 29.30
Hydrogen Peroxide H,Oj 0.690
Water h2o 1.0 x 107
Hydrogen H, 500

There are some species ( -  30, in our case) within the MM chemical mechanism which are 

product-only species (these can be determined using the program PRODUCT.FOR in 

directory PRODUCT/) and hence their concentrations continually increase in time. 

Therefore, the ambient simulation was run until all species, aside from product-only species, 

achieved a stable diurnal cycle (typically -6 0  - 90 day simulation). Ambient profiles for a 24-
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hour day were then tabulated (see directory PROFILE/) at 3-minute resolution and linear 

interpolation methods were used at intermediate times. It is important to note that as time 

increases the ambient concentrations become a more important component o f the ralmiaiwi 

smoke-plume concentrations.

One type o f destruction term not explicitly represented within the kinetics o f a 

chemical mechanism is loss due to heterogeneous chemistry, i.e., aerosol formation. Due to 

the significant direct production o f gaseous ammonia [NH3(g)] in biomass combustion, the 

formation o f ammonium nitrate aerosol [NHtNO^j)] becomes important. This formation 

directly affects the plume concentrations o f NH3(g) and H N 03(g), and indirectly affects the 

concentrations o f many nitrogenous species, as well as 0 3 and HO*. Thus, for smoke-plume 

modeling, the MM solver was adapted to include two additional, conditional terms in the 

differential equations for NH3(g) and H N 03(g) in order to describe their loss due to 

NH4N 03(j) formation. The thermodynamic equilibrium constant for NH4N 0 3(j), defined as 

Keq = [N H jCg^tH N O jfe)]^, is 3.07 x 10-6 ppm2 at 297 K [Seinfeld and Pandis, 1998]. The 

rate o f removal o f NH3(g) and H N 03(g) is assumed to be diflusion controlled, e.g., the 

reaction rate constant, k, is 10.5 ppm"1 min"1 when [NH3(g)][H N 03 (g)] > Keq, and zero 

otherwise.

6.B.2. U rban M odeling

As a result o f some o f the effects occurring within a simulated biomass-combustion 

smoke-plume (to be discussed in detail later), we became interested in modeling the mixing 

o f such a smoke-plume into an urban environment. As fate would have it, this very event 

occurred during the western US forest fires o f  2000, in which smoke from fires in the
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Bitterroot National Forest was blown (advected) into the Missoula valley urban airshed. 

Hence we chose to apply the results o f our smoke-modeling studies to this particular 

occurrence. We simulate the localized urban environment (indicated via the flag NSR * 0) 

using a well-mixed, zero-dimensional box model employing the Eulerian approximation with 

source emissions from the surface. Recall from chapter 5, section C. 1 (equations 5.2b and 

5.5) that the governing equations for the time-dependent species concentrations within an 

Eulerian box including PBL-height variation are,

The photochemical mechanism (used to obtain the R, terms) and ambient conditions, c% are 

the same as employed in the biomass-combustion smoke-plume simulations. Photolytic rate 

constants were computed for August 5 at 48°N and 114°W {i.e., Missoula, MT), but found 

to have little effect upon predicted species concentrations as compared to the South African 

profile. Hence, for the purpose o f comparison, the urban model employs the same photolytic 

rate constants as used in the smoke-plume modeling. In order to depict stagnant conditions, 

the wind speed, u, was specified to be 1 mile hr'1. The area o f the computational box was 

chosen to be 64 mile2 [Schmidt], while the variation in the height o f the PBL, h(t), was taken 

from Sillman et al. [1990] (Figure 6 .1).

dt xyh{t) xyh(t)

and,

dc E  Dt I
dt xyh{t) xyh(t)
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Figure 6.1 Planetary Boundary Layer (PBL) height, in 
kilometers, versus time of day, in hours, as used in the urban 
model. Midnight = 0 and 24 hours.

Standard deposition rates, D„ (Table 6.2) were based on Seinfeld and Pandis [1998].

Table 6.2 Deposition rates, in seconds'1, used in 
the urban model.

Chemical Species Deposition Rate (sec'1)

o , 1.0 * 10*
NO 1.0 x 10*
NO, 1.0 x 10*
CO 1.0 x io-7
h n o 3 1.0 x 10*

Urban emission rates, £,, were obtained for the city o f Missoula airshed as described 

below (directory SOURCE/). Total daily NOx and CO emissions were taken from reports 

obtained through the Missoula County Environmental Health Department [Schmidt]. Within 

the Missoula city limits (a 64 mile2 area), vehicles account for~  70% o f yearly NOz emissions, 

with the remaining being accounted for by the burning o f natural gas and wood (~ 28%) and 

industrial sources (~ 2%) [Schmidt]. In this same region, vehicles account for ~ 78 % o f 

average daily CO emissions, with the remaining being accounted for by the burning o f natural 

gas and wood (~ 16%) and industrial, locomotive, and aviation exhaust (~ 6%) [Schmidt].
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Thus, within the Missoula urban airshed the majority o f NOx and CO emissions result from

vehicles. It is assumed that most natural gas and wood combustion occurs during the winter

season [Schmidt], hence for the summertime urban modeling reported here we assume that

the only emissions into the modeled urban airshed result from vehicular emissions. Based

upon this assumption, the total daily NOx and CO emissions are 3.1 and 36.1 metric tons,

respectively [Schmidt]. The NOx emissions are further assumed to be composed in a 9:1 ratio

o f NO to N 02 [Finlayson-Pitts and Pitts, 2000].

Total daily VOC emissions were estimated to be 1/10 o f CO emissions (3.6 metric

tons) based upon a Missoula county emission inventory study [Schmidt], Speciation o f the

VOCs was based on a program, called SPECIATE (version 3.0), obtained through the

Environmental Protection Agency (EPA) website.

Table 6-3 Scaling of VOCs contained within both the MM reduced mechanism and the 
EPA vehicular-emission -speciation. Actual percentage is based upon the EPA 
SPECIATE program; adjusted percentage is that used in this work for speciation of the 
urban VOC emissions. Total emission per day is based upon the VOC total emissions 
of 3.6 metric tons and the weighted-average molecular weight o f25.32 grams mole '.

Chemical Species Actual % Adjusted % Total Emission per Day 
/molecules)

CH, 10.97 38.82 3.33 x 102*
C A 1.79 6.33 5.42 x 1027
CjH* 8.41 29.76 2.55 * 102*
c ,h2 225 7.96 6.82 x 1027
QH, 2.88 10.19 8.73 x to27
c h 2o 1.42 5.03 4.31 x 1027
CHjCHO 0.49 1.73 1.48 x 1027
CH3CH2CHO 0.05 0.18 1.54 x 1026
Total 28.26 100.00 8.57 x 10“

Unfortunately, within this EPA speciation o f vehicular VOC emissions, only 8  species 

(accounting for ~ 28 % o f total vehicular VOC emissions) are likewise present within the 267 

chemical species o f the (reduced) photochemical mechanism used here. Hence, in order to
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use the same photochemical mechanism as used in the smoke-plume modeling, while fully

representing the total daily VOC emissions (3.6 metric tons), these 8 vehicular VOC 

emissions were scaled to represent the whole (Table 6.3).

The diurnal variation o f source emissions was approximated based upon an average

daily traffic flow for the city o f Missoula. Hourly car counts were obtained for six sites across

Missoula (Table 6.4) [Segar, 2000].

Table 6.4 Hourly car counts for six sites across Missoula, MT [From 
Segar, 2000]. Time, in hours, starts at 1 am and ends at midnight (24 
hours). Sites are as follows: 30- 6th street at the corner of Arthur and 
Maurice; 69- lower Miller Creek, 100 feet southwest of Y; 99- Mount road 
300 feet west o f Johnson; 136- Grant Creek north of 1-90; 173- South 
avenue between Catlin and Washburn; 178- Russell street south of 34*.

Time Number of Cars
(hr) Site 30 Site 69 Site 99 Site 136 Site 173 Site 178

1 58 22 67 21 79 53
2 45 7 34 8 43 40
3 37 3 31 10 28 18
4 21 7 15 6 14 18
5 25 9 14 12 32 28
6 129 32 68 41 67 81
7 256 126 203 90 211 230
8 930 319 848 380 713 647
9 1096 253 903 332 839 702
10 701 152 639 270 841 519
11 608 156 701 259 899 524
12 854 182 807 294 1039 618
13 944 202 856 365 1192 702
14 792 212 928 342 1151 720
15 899 209 941 277 1229 631
16 1095 268 1214 386 1332 877
17 1099 332 1375 443 1210 909
18 1213 421 1373 467 1172 966
19 898 330 857 401 841 853
20 662 203 542 282 593 625
21 557 228 436 216 438 523
22 412 144 329 155 350 437
23 250 76 214 101 212 237
24 125 39 135 68 105 142

Total 13706 3932 13530 5226 14630 11100

These hourly counts were divided by the total number o f cars for the day in order to obtain
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a fractional hourly traffic flow (Figure 6.2a). Despite the wide range o f locations at which 

these counts were taken, there exists a high diurnal correlation between sites (Figure 6.2a). 

Thus, in order to approximate an average daily traffic flow across the entire city o f Missoula, 

hourly car counts for all six locations were totaled and used to obtain a combined fractional 

hourly traffic flow (Figure 6.2b). Our diurnal variation (Figure 6.2b) compares quite well 

with that recommended by Hough [1986].
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Figure 6.2 Fractional hourly traffic flow versus time of day. (a) 
Each of the six Missoula sites individually. Site 30 (solid); site 
69 (dotted); site 99 (dash-dot); site 136 (dashed); site 173 (dash- 
triple dot); site 178 (long dash), (b) Fraction of the total for all 
six sites, as is used in the urban model.
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Daily total emissions (DT,) for NO„ CO and VOCs (3.1, 36.1, and 3.6 metric tons, 

respectively) were scaled according to this fractional hourly traffic flow (frac,) in order to 

obtain time-dependent source emission rates, E, (equation 6 .6).

E t -  D T ,*Jract (6 .6 )

Thus, the diurnal variation o f source emissions within the MM follows basic traffic flow 

patterns (Figure 6.2b) and is determined at every time step using linear interpolation methods 

between hourly data points.

6.C. Summary

In this chapter we have provided a detailed description o f the atmospheric chemistry 

model employed in this work. Additionally, we have specified chosen parameters, model 

implicit assumptions, and modifications required to conduct smoke-plume and urban airshed 

simulations. The following two chapters detail the results o f these simulations using the 

atmospheric model as described above. Chapter 7 describes our biomass combustion smoke 

plume simulations designed to investigate the effect o f the inclusion o f oxygenated organic 

species, while chapter 8 reports our investigations on the mixing o f an oxygenated smoke- 

plume with an urban environment.
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Chapter 7 

Results of Smoke Plume Simulations

7.A. Overview

In order to determine the impact o f oxygenated organic species on smoke-plume 

photochemistry, and therefore on overall plume composition, two sets o f simulations were 

conducted using the same photochemical mechanism but differing initial conditions (i.e., No 

Oxy and A ll Oxy simulations). In general, initial concentrations within the smoke plume are 

chosen to approximate fire-averaged conditions ~ 1 km above a large biomass fire with a 

AC02 o f 100 ppmv (parts per million by volume) and a ACO/AC02 = 7 %. Other initial 

concentrations were scaled to either AC02 or ACO depending upon whether a particular 

species results mainly from flaming or smoldering combustion [YokeIson et al., 1996a]. 

Simulations using an initial species profile for fresh smoke based upon Lobert et al. [1991], 

not including oxygenated species and referred to here as No Oxy, are used as a standard. 

Other simulations were then conducted with the six primary oxygenated species (CH20 , 

CH2(OH)CHO, CH3OH, QHjOH, CHjCOOH, HCOOH) added at the levels observed on 

average by Yokelson et al. [1996a] (except for phenol, whose concentration represents a high- 

end limit) in a profile referred to as All Oxy. The No Oxy profile is similar to that used in 

most previous smoke plume models, while the A ll Oxy profile includes the influence of
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oxygenated organic compounds. Additionally, simulations were performed using perturbed 

initial values o f VOCs and NOx in order to evaluate VOC/NOx sensitivity.

7.B. Non-Diluting Smoke Plume

We began our investigation o f the photochemistry within biomass combustion smoke 

plumes using a simple (0-D) Lagrangian box model (assuming no emission or deposition 

terms), in the absence o f plume dilution {i.e., using the MM without any modifications). 

These preliminary, day-long simulations start at midnight and use a mechanism o f 1222 

chemical reactions, involving 452 species, owing to the inclusion o f methyl chloride and a - 

pinene chemistry. It was later decided to exclude these latter compounds (reducing the 

mechanism to 702 reactions involving 267 species), in part to simplify the chemical 

mechanism, but also due to uncertainties in their smoke-plume concentrations.

For both initial species profiles {i.e., No Oxy and A ll Oxy) twelve simulations were 

carried out in which the (initial) A[NO]o/A[CO]0 ratio was varied from 1 to 6  % for three 

different A[CH20]oM[CO]0: 0 %, 2 % and 4 %. The variation in NO initial concentration 

exemplifies the range observed in real biomass fires. A 1 % A[NO](/A[CO]0 emission ratio 

is representative o f smoldering combustion, while flaming combustion yields an upper limit 

A[NO]o/A[CO]0 o f  4-6% (a A[NO],/A[CO]0 o f 2 % describes an average combustion 

situation) [Yoke Ison et al., 1999b]. Additionally, the variation o f both [NO]0 and [CH2O]0 

puts their individual effects into perspective. NO drives the conversion o f H 02 to OH, 

forming a source o f NO,, which may then photolyze to give 0 3. Some o f this 0 3 may then 

photolyze to yield additional OH. CH20 , on the other hand, is well-known to provide a 

source ofHOz radicals, either through its chemistry or through direct photolysis [Seinfeld and
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Pandis, 1998]. Hence, one expects increasing [NO] will lead to an increase in [0 3] and [HOJ

(mostly in the form ofOH), while increasing [CH20 ] will lead to an increase in [HOJ (mostly

in the form o f H O J which does not depend on increased [0 3].

Initial concentrations used in these simulations are given in Table 7 .1.

Table 7.1 Initial Concentrations (i.e., at 12 pm) used in Various Non-Diluting 
Smoke-Plume Simulations.

Name Formula Total Concentration foobv)
Nitrogen n 2 7.7 x 10»
Nitrogen Dioxide n o 2 36.60
Nitric Oxide NO 75.20 (1%), 150.4(2%), 

300.8 (4 %), or 4512 (6 %)
Ammonia n h 3 150.4
Hydrogen Cyanide HCN 15.00
Methane CH« 609.8
Ethane C A 47.60
Ethene QH, 150.4
Ethyne (Acetylene) c ,h2 47.60
Propane c 3h , 10.20
Propene C A 33.20
Methanol CHjOH 150.4 (All Oxy only)
Phenol C A O H 61.00 (All Oxy only)
Acetic Acid CHjCOOH 150.4 (All Oxy only)
Formic Acid HCOOH 48.80 (All Oxy only)
Formaldehyde CH,0 0(0% ), 150.4(2%), 

or 300.8 (4 %)
Hydroxyacetaldehyde CHj(OH)CHO 48.80 (All Oxy only)
Carbon Dioxide CO, 9.8 x 10*
Carbon Monoxide CO 7320
Carbonyl Sulfide OCS 48.80
Sulfur Dioxide SO, 48.80
Oxygen O, 2.0 x 10*
Ozone o3 29.30
Hydroxyl Radical OH 2.0 x 10-5
Hydroperoxyl Radical HO, 0.020
Hydrogen Peroxide H A 0.690
Water H ,0 1.0 x 107
Hydrogen H, 150.4
Methyl Chloride CH3C1 11.70
a-Pinene C|oH|6 150.4

These concentrations differ from those used in later simulations in that they include methyl 

chloride and a-pinene, and in that we had not yet accounted for background (ambient) species
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concentrations; hence, the smoke-plume concentrations used here represent only the excess 

mixing ratios for most species (exceptions being N2, 0 2, 0 3, and H20 2 whose concentrations 

result solely from ambient values).

These preliminary simulations strongly suggest that the oxygenated compounds 

identified by Yokelson et al. have a significant impact on smoke plume chemistry. In 

particular, the presence o f the oxygenated species causes very different trends in the 

maximum concentrations o f 0 3, OH, and H 0 2 (Figures 7.1, 7.2, and 7.3), species o f marked 

tropospheric importance.

7.B.I. Effects on [0 3] and [OH] M axima

Maximum concentrations o f 0 3 and OH follow classic nonlinear behavior in the No 

Oxy simulations as [NO]0 is increased. That is, as [NO]0 is increased the maximum 

concentrations initially increase as well, but eventually, beyond a ‘threshold’ level, they 

decrease (Figure 7.1). Increasing [CH2O]0 acts to increase this ‘threshold’ level, i.e., CH20  

acts as a ‘buffer’ o f sorts (Figure 7.1). These results can be rationalized as follows. The 

nonlinear behavior is very likely attributable to a transition between NO,- and VOC-sensitive 

photochemical processing as the initial [NOJ is increased. From studies o f tropospheric 

chemistry models [Sillman, 1999, and references therein], it is known that as [NOJ is initially 

increased, [0 3] and [OH] likewise increase due to NO,-sensitive atmospheric processing, in 

which radical species are more prevalent than is NO,, leading to rapid conversion o f NO-to- 

N 0 2 and photochemical 0 3 production [Sillman, 1999, and references therein]. However, 

beyond a certain level, increasing [NOJ causes [0 3] and [OH] to decrease; this signifies a 

transition to VOC-sensitive photochemical reaction pathways in which radicals are removed
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via Rad + NOx reactions, thus inhibiting both the conversion o f N O -to-N 02 and the 

production o f 0 3 [Sillman, 1999, and references therein]. An increase in the [VOC]/[NOx] 

ratio (in this case, through the addition o f CH20 ), increases the source o f radical species 

relative to the source ofNQp thereby increasing the ‘threshold’ level o f initial [NO] that must 

be consumed before the transition between NOx- and VOC-sensitive chemistry occurs (Figure 

7.1).

20

20

«  10

2% 4% 6%1%
A[NO]oM[CO]o

Figure 7.1 Simulated maximum concentrations under No 
Oxy conditions for (a) 0 3 (molecules/cm3/1012) and (b) OH 
(molecules/cm3/106). A[CH20]o/A[CO]„ = 0%, solid lines;
A[CH2O]</A[CO]0 = 2%, dotted lines; A[CH2O],/A[CO]0 =
4%, dashed lines.

Hence, in the No Oxy simulations increasing [NO]0 causes a transition between NOx- and 

VOC-sensitive photochemistry, while increasing [CH2O]0 acts to delay this transition.

This nonlinear behavior o f [0 3] and [OH] maxima observed in the No Oxy simulations
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is not apparent in the A ll Oxy simulations. The maximum concentrations o f  these species 

monotonicaUy increase with increasing [NO]0 within the range investigated here (Figure 7.2).

20
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^ 15
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Figure 7.2 Simulated maximum concentrations under All 
Oxy conditions for (a) Q, (molecules/cm3/ 10l2) and (b) OH 
(molecules/cm3/ 106). A[CH2O]<>/A[CO]0 = 0%, solid lines; 
A[CH,0]o/A[CO]0 = 2%, dotted lines; A[CH2OyA[CO]0 = 
4%, dashed lines.

Additionally, [0 3] and [OH] maxima show a remarkable stability to changes in [CH2O]0 under 

One A ll Oxy initial conditions, e.g., increasing [CH2O]0 causes little variation in their maximum 

values. This monotonic increase in maxima for [0 3] and [OH] seems to be due to the increase 

in the [VOC]/[NOJ ratio through the addition o f the oxygenated species, causing conditions 

within the A ll Oxy smoke plume to remain NO^-sensitive for all values o f [NO]0 used here. 

Hence in these preliminary simulations conditions within the No Oxy smoke plume may either
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be NO,- or VOC-sensitive (as characterized [0 3] and [OH] maxima), while conditions within 

the A ll Oxy smoke plume are found to dominated solely by NOx-sensitive chemistry.

It is apparent (from traces o f concentration versus time) that the OH radical has only 

one daytime peak in the Vo Oxy simulations that is well-known to occur due to photolysis 

reactions during the diurnal cycle. However, the addition o f CH20 , as well as the inclusion 

o f oxygenates, causes a second, later, daytime peak to appear. This second peak is also due 

to photolytic reactions since both peaks disappear when the simulation is conducted in the 

absence o f light. As [CH2O]0 is increased and oxygenated species are included, this second 

peak becomes more pronounced, indicating that it is due to transient species somehow related 

to the oxygenated species. Furthermore, while increasing the concentrations o f oxygenates 

causes the second peak to become larger, increasing [NO]0 decreases it.

An additional interesting difference between the A ll Oxy and No Oxy simulations is 

that at low-[NOJ0, the [0 3] maxima are lower in the All Oxy case than in the No Oxy case, 

while at higher [NOJ0 these maxima are greater in the A ll Oxy case (Figures 7.1 and 7.2). 

This effect is repeated by [OH] maxima and indicates not only a difference in dominate 

reaction pathways occurring within the two simulations, but it also reflects upon the overall 

level o f photochemistry. These effects are investigated in much greater detail in our 

subsequent (diluting) smoke-plume simulations.

7.B.2. Effect on [H O J M axima

The maximum H 02 concentrations decrease in all Vo Oxy simulations as [NO]0 is 

increased, but they decrease less quickly as [CH2O]0 is increased (Figure 7.3a). The first 

result is consistent both with the conversion o f NO-to-N02, which is accompanied by an
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associated conversion o fH 0 2-to-OH, and with the role o f Rad +■ NOr reactions. Rad + NO* X

reactions dominate VOC-sensitive chemistry and occasionally dominate NOx-sensitive 

chemistry (especially when close to the NOx- to VOC-sensitive transition), thereby removing 

radicals from the system. The effect o f  CH20  is compatible with the its role as an H 02 source 

[Seinfeld and Pandis, 1998].
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Figure 7.3 Simulated maximum concentrations for HOz 
(molecules/cm3/109) under (a) No Oxy conditions and (b) All 
Oxy conditions. A[CH20]</A[CO]o = 0%, solid lines;
A[CH2OyA[CO]0 = 2%, dotted lines; A[CH2OyA[CO]0 =
4%, dashed lines.

The [H O J maxima in the A ll Oxy simulations, on the other hand, tend to increase with 

increasing [NO]0 up to a ‘threshold’ level, beyond which they decrease (Figure 7.3b). We 

believe this increase in [H O J, which is not observed in the No Oxy simulations, arises due to
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a combination o f intertwined effects. The oxygenates tend to be more reactive (with respect 

to OH) in general than are NMHCs, and hence they act as a source o f H 02 through the basic 

tropospheric photochemical cycle. This increase in peroxy radical production would have an 

associated increase in the conversion ofN O -to-N 02 (and HOr to-OH), especially as the initial 

[NOJ is increased. This conversion could lead to a decrease in H 0 2 concentration (as in the 

No Oxy simulations) if there were not an associated conversion o f OH back to HO„ a role 

fulfilled by the highly reactive oxygenated species. (Thus these two effects are intertwined- 

the first leads to the second which leads back to the first). Because the basic photochemical 

cycle can be autocatalytic in radical production, this increase in the photochemical processing 

can lead to an increase in radical species concentrations in general, and peroxy radicals in 

particular. (This autocatalysis is associated with 0 3 production as w ell) Keeping in mind 

that the A ll Oxy simulations occur under NOx-sensitive conditions, it is possible that the 

increased production o f radical species (due to the inclusion o f the oxygenates) is swamping 

the system to a degree greater than the initial increase in [NO J0. Since a particular Rad + 

NOx reaction can at most remove only one radical per NOx, the [N O J must be at a particular 

level in relation to the radical production in order to maintain or reduce radical 

concentrations. Thus, it is only beyond a certain initial concentration that an increase in 

[NO J0 would cause a decrease in radical species via the Rad + NOx reactions; this is the effect 

observed for the [H O J maxima in the All Oxy simulations.

7.B J. Summary of Non-Diluting Smoke Plume Simulations

These initial, preliminary simulations indicate that inclusion o f oxygenated species 

‘switched on’ alternative reaction pathways which are not present under the No Oxy
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conditions. These simulations gave first indication o f the importance o f the oxygenated 

organic species in smoke-plume photochemistry. They provide the motivation to further 

develop our smoke-plume model in order to more accurately simulate plume evolution and 

to investigate in more detail the differences in the fundamental chemical kinetics that lead to 

the overall simulated results.

7.C. D iluting Smoke Plume

As discussed in sections 6 .B and 6 .B. 1, modifications were made to the original MM 

code (after the above preliminary simulations were conducted) in order to increase the 

stability o f the numerical solver and to adapt the MM to our particular needs o f simulating 

the temporal evolution o f a biomass combustion smoke plume. Briefly, these alterations o f 

the MM code were the conversion o f the numerical solver from Gear’s method to LSODES 

and the inclusion of: ( 1) ambient concentration profiles (for most species); (2 ) dilution o f the 

smoke plume; and (3) formation of the ammonium nitrate aerosol. With these modifications 

in place we embarked upon a new collection o f smoke plume simulations.

Two basic sets o f simulations were conducted as discussed above (No Oxy and All 

Oxy) in order to determine the impact o f the oxygenated organic species. Additionally each 

set o f simulations was conducted at values of A[NOVA[CO]0 ofboth 1 and 2 % (representing 

a range o f typical values for real biomass combustion) and with perturbed values o f HCs 

(moreHCs) in order to evaluate the NO/VOC sensitivity. This design allows not only for 

analysis o f the effect of changing initial [VOC] via the increase o f initial HCs (as well as the 

addition o f initial concentrations of oxygenated organic species to the smoke profile), but also 

for analysis o f the effect o f changing initial [NOJ. The full span o f actual initial
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concentrations (i.e., the smoke-plume enhancement concentration plus the ambient 

concentration) are given in Table 7.2. (Refer to Table 6.1 for ambient concentrations).

Table 7.2 Initial Concentrations in the Smoke Plume (i.e., at 12:00 Noon of First Day) 
for the No Oxy and All Oxy Cases.

Name Formula Total Concentration fnnbv)
Nitrogen n 2 7.8 x I0»
Nitrogen Dioxide NO; 37.60
Nitric Oxide NO 75.25 (1%) or 150.5 (2%)
Nitrous Oxide n 2o 335.0
Dinitrogen Pentoxide n 2o } 0.005
Nitric Acid HNOj 0.2
Nitrous Acid h n o 2 0.03
Ammonia n h 3 150.5
Peroxyacetyl Nitrate PAN 0.05
Hydrogen Cyanide HCN 15.20
Methane CH, 2260 (No Oxy, All Oxy) 

or 2870 (MoreHCs)
Ethane CjHs 61.10 (No Oxy, All Oxy) 

or 108.6 (MoreHCs)
Ethene c j tu 161.6 (No Oxy, All Oxy) 

or 311.9 (MoreHCs)
Ethyne (Acetylene) C2H2 56.20 (No Oxy, All Oxy) 

or 103.8 (MoreHCs)
Propane c 3h , 28.80 (No Oxy, All Oxy) 

or 39.03 (MoreHCs)
Propene c 3tu 35.80 (No Oxy, All Oxy) 

or 69.02 (MoreHCs)
Methanol CHjOH 0.50 (No Oxy) or 150.9 (All Oxy)
Phenol QHjOH 0.00 (No Oxy) or 56.10 (All Oxy)
Acetic Acid CHjCOOH 2.10 (No Oxy) or 152 (All Oxy)
Formic Acid HCOOH 5.40 (No Oxy) or 61.5 (All Oxy)
Formaldehyde c h 2o 9.10 (No Oxy) or 159.5 (All Oxy)
Hydroxyacetaldehyde CH;(OH)CHO 1.50 (No Oxy) or 57.6 (All Oxy)
Carbon Dioxide co2 4.5 x io5
Carbon Monoxide CO 7200
Carbonyl Sulfide OCS 49.30
Sulfur Dioxide SO; 49.00
Oxygen O, 2.1 x 10s
Ozone 03* 29 JO
Hydrogen Peroxide h2o 2 0.690
Water h2o 1.0 x io7
Hydrogen H, 650.4

Smoke-plume simulations were started at 12:00 (noon) and run for 30 hours. The 

most dramatic changes occur within the first few hours when the sun is high and the plume
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is relatively concentrated. Typical simulated time profiles for [0 3] are shown in Figure 7.4, 

and the absolute concentrations o f several species at 2 PM on days 1 and 2 are listed in Table 

7.3 for each o f the four emission scenarios. Insight into the effects o f oxygenated organic 

compounds upon early smoke-plume photochemistry are made by comparing results from A ll 

Oxy simulations to those from No Oxy simulations.

Table 7_3 Simulated Species Concentrations (ppbv) in an Aged Smoke Plume at 14:00 on Day I and at 14DO on Day 2

Total Concentrations at 14:00 on Day I Total Concentrations at 14DO on Day 2
A[NOyA[CO]„ = 1%; AlNOl/ACCOJo = 2% A[N01o/A[C01o = 1 %; A[NOyA[CO]o = 2%

Species No Oxy AU Oxy No Oxy All Oxy No Oxy All Oxy No Oxy All Oxy

n o 2 26.6 1.25 57 3 6.24 0.52 0J7 0 . 6 8 0.61
NO 3.38 0.08 163 0.34 0.06 0.05 0.09 0.07
NjO 328 328 327 328 322 322 322 322
N A 0.03 0 . 0 0 0 . 0 2 0 . 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

h n o 4 0.40 0 . 1 1 0 . 1 0 0.56 0 . 0 2 0 . 0 1 0 . 0 2 0 . 0 2

HNOj 0.38 0.08 0.38 0.33 0.38 0.23 2.95 0.63
NH, 54.5 53.7 56.9 32.8 8 J 6 13.8 1.04 5.11
NH4NO3  (Aerosol) 24.7 323 2 1 . 2 60.6 43.8 37.4 58.7 70.2
PAN 4.49 6.08 138 8.78 2 J 0 1.65 2.63 2.55
Hydroxy-PAN 1.24 6.89 0.50 8.63 0 . 6 8 0.71 0.84 1.08
All PAN Species 
Mono-substituted

6.85 2 2 . 1 2.58 28.7 3.61 3.03 4.20 4.77

Nitrophenol
Di-substituted

0 . 0 0 3.89 0 . 0 0 3.13 0 . 0 0 0.07 0 . 0 0 0 . 0 0

Nitrophenol 0 . 0 0 1.45 0 . 0 0 3.03 0 . 0 0 2.19 0 . 0 0 2.14
HCN 7.53 7.52 7.53 7.52 2.48 2.48 2.48 2.48
CH« 1947 1947 1948 1947 1742 1742 1742 1742
QHs 36.3 36.3 36.5 36.1 19.8 2 0 . 1 19.9 19.8
C,H< 55.2 48.8 66.5 41.5 4.18 6.82 5.23 3.93
qH 30.8 30.6 31.3 30.1 13.8 14.4 13.9 13.8
C3 H, 22.5 22.3 23.0 2 1 . 8 16.7 17.7 16.7 16.7
CjHs 3.94 2.49 7.80 1.45 0.08 0 . 1 2 0.07 0.08
CH3OH 0.48 70.1 0.49 6 8 . 8 0.57 20.3 0.51 19.0
QHjOH 0 . 0 0 3.09 0 . 0 0 1 . 1 2 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

CH3 COOH 2.17 73.1 2.15 72.1 2.23 23.1 2.13 2 2 . 1

HCOOH 6.50 34.4 6.34 34.2 7.78 16.5 7.53 16.0
CH,0 39.6 55.1 30.2 59.5 5.01 6.17 5.97 5.89
HOCHjCHO 5.51 14.8 4.50 12.5 1.29 2.35 1.43 1.50
CO 3609 3688 3614 3691 1281 1335 1286 1329
OCS 24.3 24.3 24.3 24.3 7.97 7.97 7.97 7.97
SOj 21.7 2 0 . 8 22.7 2 0 . 1 4.67 5.26 4.98 4.53
Oj 172 251 85.1 322 138 1 1 0 133 148
H ,0, 0.71 15.5 0.63 6.87 14.3 22.7 13.6 21.5
Organic Peroxides 4.38 9.23 5.08 5.26 7.28 10.7 6.32 8.33
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Figure 7.4 SimulatedO, concentration (molecules/cm3/l0 12) 
versus time (hours). No Oxy, solid lines; All Oxy, dotted- 
dashed lines, (a) A[NO],/A[CO]0 = 1%; (b) A[NOyA[CO]0 
= 2%. Simulations were started at 12:00 (noon) and ran for 
30 hours with sunset occurring at -18 hours on the first day 
and sunrise occurring at -6  am (30 hours) on the second day.
The decline in concentration after -16 hours is mainly 
associated with dilution of the smoke plume.

We report here the relative changes in overall average reaction rates, overall average 

concentrations, and total species production at the first-day maximum, the end o f the first day 

and the final, 42-hr, values (obtained by multiplying the specified concentrations by the plume 

volume at that time). Exact numerical values are undoubtedly model dependent [Olson et al., 

1997], but we believe these relative values give a reliable account o f the effect o f the 

oxygenated organic species on smoke-plume photochemistry.
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7.C .I. Overall VOC/NOx Sensitivity

Addition o f the direct emission ofoxygenated organic species has a significant impact 

upon the dominant photochemical processing occurring within a smoke plume, as is observed 

in the previous, non-diluting photochemical simulations. Table 7.4 details changes in the No 

Oxy and A ll Oxy simulated 0 3 and OH production at the first-day maximum owing to a 

perturbation o f the initial concentrations o f either hydrocarbons or NOx.

Table 7.4 Effect of a Given Increase on Total Production (Plume Volume 
x Concentration) at the First Day Maximum

Species No Oxy All Oxy

Increase NOx o3 -36% 38%
OH -52% 30%

Increase Hydrocarbons O, 12% 7%
OH 0.3% -11%

Increase Oxygenated
Organics 03 -28% N/A*

OH -13% N/A*

* N/A, not applicable.

The No Oxy simulations are characterized as VOC-sensitive owing to the decrease in 

production of both 0 3 and OH as [NOJ0 is increased, together with comparable ([OH]) or 

increased ([0 3]) values resulting from an increase in hydrocarbon concentration. In contrast, 

the photochemistry within the A ll Oxy simulations is found to be dominated by NO^-sensitive 

chemistry, as is demonstrated by a substantial increase in production o f 0 3 and OH with 

increasing initial [N O J. Thus, inclusion o f oxygenated organics causes the dominant 

photochemistry within the smoke plume to change from VOC- to NOx-sensitive, similar to 

the effect seen in the non-diluting smoke-plume simulations.

The source o f  dominance o f VOC-sensitive processing can be understood by looking
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at the fraction o f radicals lost via reaction with NO„ as opposed to reaction with other 

radicals (Rad + NO, and Rad + Rad being the two primary pathways for radical loss in the 

troposphere). Klemman et al. [1994, 1997] and Daum et al. [2000] have shown that the 

fraction o f radicals lost via these two pathways provides a very good indication o f the 

sensitivity o f 0 3 production to 0 3 precursors. Their analyses indicate that when the fraction 

o f radicals lost via reaction with NO, (Lj/Q) takes on a high value and the fraction lost via 

Rad + Rad reactions (L r/Q ) is small 0.15) VOC-sensitive photochemical processing is 

dominant. Likewise, when the LN/Q fraction is low, and the LR/Q fraction is high, then 

conditions are NO,-sensitive.

Figure 7.5 shows both fractions for the simulations reported here. As expected all 

simulations show the dominance o f Rad +• NO, reactions at night (>18 hours in Figure 7.5) 

due to the nighttime N 0 3 chemistry and reduced radical concentrations. Though, by the 

second day all simulations show a diurnal variation o f the classic VOC- to NO,-sensitive 

transition that is expected as a plume evolves [Sillman, 1999]. An important difference 

among the traces, however, is the VOC- to NO,-sensitive transition that occurs on the &st 

day in the A ll Oxy simulations, but which is not present in the No Oxy simulations. Thus, 

while the No Oxy simulations are primarily VOC-sensitive, the A ll Oxy simulations are 

dominated by NO,-sensitive photochemical processing.

This alteration o f the dominate photochemical pathway has interesting consequences 

for 0 3 and OH, as well as for other photochemically important species. While increasing the 

initial concentration o f hydrocarbons in the No Oxy simulations leads to increased [0 3] with 

little change in [OH], typical o f VOC-sensitive chemistry [Sillman, 1999], a comparable
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increase in the initial concentrations o f oxygenates (comparing tbs A ll Oxy simulation to the 

No Oxy simulation) leads to substantially decreased concentrations for both o f these indicator 

species (Table 7.4).
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Figure 7.5 Simulated results for fraction of total radical removal 
via Rad + Rad reactions (solid lines) and Rad + NOx reactions 
(dotted-dashed lines). Contributions from other radical removal 
pathways are not significant, (a) No Oxy with A[NO]</A[CO]0 = 
1%. (b) A ll Oxy with A[NOyA[CO]0 = 1%. (c) No Oxy with 
A[NOyA[CO]0 = 2%. (d) All Oxy with A[NO]</A[CO]0 = 2%. 
Values of the Rad + Rad fraction greater than ~0.15 are indicative 
of NO, sensitive conditions [Kleinman, 1994].
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This effect seems to result from differences in the two photochemical processing regimes, and 

indicates that the more reactive and photochemically active oxygenated organics have a 

greater impact upon VOC/NOx sensitivity than do pure hydrocarbons.

7.C.2. Plume Evolution: VOC- to NOx- Sensitive Transition

Evidence o f a transition from VOC- to NOz- sensitive chemistry occurring during 

plume evolution, as has been reported for urban plumes, can be seen in the present 

simulations. Sillman [1995] recommends use o f  the [HjOJ/fHNOj] ratio as a measurable 

(and therefore verifiable) indicator ofVOC/NOx sensitive chemistry in real atmospheres. This 

is because high concentrations ofH N 03 reflect VOC-sensitive conditions in which Rad + NOx 

termination reactions dominate [Sillman, 1995], while H20 2 results from Rad +■ Rad reactions, 

which are suppressed under VOC-sensitive conditions, but increase linearly with respect to 

radical production in the NOx-sensitive state [Kleinman, 1994].

In A ll Oxy simulations and the lower-NO, No Oxy simulation, the formation rate o f 

H N 03 reaches a maximum and dominates Rad + Rad reaction rates (which lead to 

hydroperoxide production) during the first hours o f the simulations (Figure 7.6). The 

transition takes longer for the No Oxy simulations (and does not even occur in the higher-NO, 

No Oxy case) than for the All Oxy simulations. After the first few hours, however, the Rad 

+ Rad reaction rates exceed the H N 03 production rate (Figure 7.6) indicating a shift from 

VOC-sensitive to NOx-sensitive photochemical processing.

The concentration profiles for total hydroperoxides also indicate that as the smoke- 

plume ages beyond the first few hours, the chemical processing tends to shift from VOC- 

(decreasing hydroperoxide concentration) to NOx-sensitive (increasing hydroperoxide
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Figure 7.6 Calculated reaction rates (molecules/cm3 s /107) versus 
time (hours) for Rad + Rad reactions (solid lines) and OH +- NOz 
-  HN0 3 (dotted-dashed lines), (a) No Oxy with A[NOyA[CO]0 
= 1%. (b) All Oxy with A[NO](/A[CO]0 = 1%. (c) No Oxy with 
A[NOyA[CO]0 = 2%. (d) All Oxy with A[NOyA[CO]0 = 2%. 
Most traces show HNO3 formation to initially dominate, 
indicative of VOC sensitive conditions, but the radical 
recombination reactions eventually surpass HN03 formation, 
signifying a transition to NO, sensitive conditions.
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Figure 7.7 Simulated results for total hydroperoxide 
concentration (molecules/cmVlO") versus time (hours) for 
A[NO]</A[CO]0 = 1%, (solid line) and A[NO],/AtCO]o =
2% (dotted-dashed line), (a) No Oxy. Qo) A ll Oxy. Traces 
show an initial decline in total hydroperoxide 
concentration, consistent with VOC-sensitive conditions, 
followed by a resurgence in their concentration 
corresponding to NOx sensitive conditions. The 
[hydroperoxides] continue to increase on the second day 
(not shown).

Again this transition takes longer to occur in the No Oxy simulations than in the A ll Oxy 

simulations. While neither o f the above conditions define the VOC-sensitive state, they both 

serve as indications that all o f the simulated smoke-plumes are controlled by VOC-sensitive 

chemistry early in the simulation period (even though the A ll Oxy simulations are in total 

dominated by NOx-sensitive photochemical processing).

7.C.3. Decrease in NOx Lifetim e

The passage from VOC- to NOx- sensitive chemistry occurs due to the removal o f
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NOx from the plume [Sillman, 1999]. The lifetime o f NO*, defined as the tim? over which 

[NO,] fells to Me o f its initial value, is decreased by a factor o f ~ 2 due to the addition o f 

oxygenates (Table 7.5).

Table 7.5 Lifetime of NO,. Calculated as the Time Required for 
[NOJ to Fall to Me of Its Initial Value

Simulation Lifetime (hours)

A [N oyA [co]0 = i% No Oxy 1.57
All Oxy 0.57

A[NO]o/A[COJo = 2% No Oxy 2.17
All Oxy 1.16

This dramatic decrease in the NO, lifetime is perhaps the most important effect o f the 

oxygenates on smoke-plume photochemistry because it limits the time that NO, is available 

to catalyze the production o f 0 3, thereby affecting the overall oxidizing ability within the 

smoke-plume. As a side note, [NOJ decreases in the simulations reported here as a result o f 

dilution with ambient air, as well as by chemical reaction. Undoubtedly the results would 

differ if such a plume were to mix with NO,-rich, urban air rather than the relatively NO,-poor 

ambient air used here; thus providing the basic motivation for the final set o f simulations 

reported here (chapter 8 ), that o f a smoke plume mixing with an urban environment.

7.C.4. Removal of NO,

The early dominance o f the Rad + NO, termination reactions (Figure 7.5) leads to 

rapid removal ofNO, from the smoke-plume. Figure 7.8 details the component reaction rates 

which make-up the Rad + NO, reactions. HN03-fbrmation is typically the dominant fete o f 

NO, in the troposphere [Seinfeld and Pandis, 1998], and for the smoke-plume simulations 

reported here the formation o f HNOs (Reaction 3.13) is the dominant Rad + NO, reaction
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early in the plume lifetime (Figure 7.8).

12 14 16 IS 20
Tane(hoiirs)

Figure 7.8 Component reaction rates (molecules/cm3 s/107) of 
the Rad + NOx reactions. RC(0)0; + N 02 — PANs, dotted- 
dashed lines; Phenol + NO- -  Nitrophenols, dotted lines; OH 
+ NO2 -  HNO3, solid lines; and ROz + NO -  RONOj, dashed 
lines, (a) No Oxy with A[NO],/A[CO]0 = 1%; (b) A ll Oxy with 
A[NO]o/A[CO]0 = 1%; (c) No Oxy with A[NO]^A[CO]0 = 2%; 
(d) A ll Oxy with A[NO](/A[CO]0 = 2%. All traces show an 
initial dominance of HNO3 formation which is eventually 
surpassed by the formation of PANs and RONO-. There is an 
additional contribution to NOx removal in the A ll Oxy 
simulations owing to the production of nitrophenols.
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However the production o f PANs (Reaction 3.14) and organic nitrates (RONO,) (Reaction 

3.15) becomes the dominant NOx sink as the plume evolves (Table 7.6). The addition o f 

oxygenates leads to a decrease in the formation rates o f organic nitrates, while the preference 

for PANs-formation over H N 03-production becomes more pronounced upon the addition o f 

oxygenates (Figure 7.8, Table 7.6).

Table 7.6 Average Reaction Rates Over a 30-Hour Simulation and the Percent Change Between No Oxy 
and A ll Oxy Cases With A[NOyA[CO]0 = 1% and 2% ( 1% and 2% case).

Averaee Reaction Rates, molecules/cm3 s 
AfNOlVAfCOln = 1% AfNOln/AfCOl, = 2% Chance. %

Reactions No Oxy All Oxy No Oxy All Oxy 1% case 2% case

Rad + NO, (Net)* 1.03 x 10* 9.84 x io7 1.17 x 10* 1.47 x 10* -5 26

RC(0)02 + NO, -  
PANs 5.47 x io7 6.45 x io7 4.63 x 107 9.19 x 107 18 98

HO + NO, -  HNOj 9.55 x 106 7.29 x io6 138 x 107 1.45 x 107 -2 4 5

R02 + NO -  RONO, 3.85 x 107 2.36 x io7 5.67 x 107 3.72 x 107 -39 -34

ROH + NOi -  
Nitrophenols 0.0 3.10 x io6 0.0 3.41 x 106 N/Ah N/Ab

NO-to-NO, Conversion 1.12 x 10* 1.09 x io* 1.02 x 10* 1.52 x 10* -3 50

CH,0 + hv 1.75 x 107 3.02 x io7 1.66 x 107 3.07 x 107 72 85

Rad + Rad 2.63 x 107 5.51 x io7 2.14 x 107 4.75 x 107 110 122

HO, + 0 3 -  HO + 20 , 7.86 x IO6 1.26 x io7 4.86 x 106 1.43 x 107 60 195

* the HO, + NO: » HN04 reaction has been excluded because it occurs equally in both directions.
b N/A, not applicable.

This latter effect has also been noted by Tanner et al. [1988] and by Singh et al. [1995]. It 

results, we believe, from an increase in R C (0)02 radicals due to the oxidation o f aldehyde 

(and ketone) components o f the oxygenates, as well as from a decrease in available OH
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(which reacts with N 0 2 to form H N 03) due to increased VOC-loading (Table 7 .7). The 

removal o f NOx into either PANs or H N 03 is a local effect which has regional and possibly 

even global implications owing to their role as NOx-reservoirs.

There is a significant added contribution to NOx-removal via Rad + NOx reactions in 

A ll Oxy simulations due to the formation o f nitrophenols (Reactions 7.1 and 7.2).

•C ^ O H  + NO, -> CfcH^OtfKNOJ (7.1)

•QH^OHXNOj) + NO, -> C6H3(0H )(N 0;)(N 02) (7.2)

Unlike PANs and H N 03, the possibility o f re-releasing NOx from nitrophenols is uncertain 

[Seinfeld and Pandis, 1998] and they are simply a sink for NOx in the present model. 

Nevertheless, their added contribution helps to offset decreases in the formation rates o f 

H N 03 (for the A[NO]o/A[CO]0 = 1 % case only) and R 0N 02 due to the addition o f 

oxygenates (Table 7.6), and it is quite apparent that nitrophenols represent a significant 

addition to the product distribution profile within a biomass-combustion smoke-plume. These 

results suggest that the chemistry o f these species should be considered further.

7.C.S. Increase In Radical Species

The addition o f oxygenates causes an overall increase in the removal rate ofNOx (via 

the Rad + NOx termination reactions) due to an increase in the concentrations o f radical 

species, most notably H 0 2 (Table 7.7). A portion o f this increase in [HOJ results from an 

increase in the photolysis o f CH20  (Table 7.6), which arises both from an increase in the 

initial concentrations o f it and its precursors {e.g., CH3OH) and a decrease in its removal by 

OH (due to increased [VOC]-loading). Additionally, radical concentrations are increased 

because increasing [VOC] within the smoke-plume leads to an increase in the overall rate of
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the tropospheric photochemical cycle outlined in chapter 3 .B, and this cycle has the capability

to produce more radicals than it consumes (see chapter 3.D) [Crutzen, 1995; Holzinger et al., 

1999; Field et al., 2000].

Table 7.7 Average Concentrations over a 30-Hour Simulation Period, Total Number of Molecules Present 
(Plume Volume * Concentration) at the First Day Maximum and After 30 Hours, and Percent Change 
Between the No Oxy and All Oxy Cases With A[NO]</A[CO]0 = 1% and 2% (1% and 2 % case).

AfNOUAfCOL^ T%= = Z[^oU2ilCQL = 2%=========,Changer=%!
Species No Oxy All Oxy No Oxy A ll Oxy 1% case 2% case

Concentration, ppbv

[Total radical species] 0.079 0.113 0.084 0.105 44 25
[OH] 0.00010 0.00007 0.00009 0.00010 -30 13
[HOJ 0.043 0.067 0.035 0.062 55 75
[ROj + RCCOXJJ 0.036 0.047 0.049 0.043 30 -11

[O,] 155 137 105 176 -11 68
[PANs] 6.12 7.04 5.23 10.1 15 93

Total Production at Day 1 Maximum, molecules

H ,0, 2.28 x io* 1.41 x io27 7.90 x 10* 1.09 x 1027 519 1275
ROOH 9.24 x io25 2.19 x 1027 7.42 x 1026 1.68 x 1027 137 126
HO, 4.90 x 102* 1.04 x io* 1.29 x 1024 1.02 x 10* 113 690
OH 2.23 x i (p 1.95 x 1022 1.08 x 10- 2.52 x 1022 -13 135
o 3 1.63 x io* 1.17 x 10* 1.04 x IO28 1.61 x 10* -28 54
PANs 7.96 x 1026 1.06 x io27 7.67 x 1026 1.44 x 1027 34 88

Total Production at End of Day 1, molecules

h2o .

aoX 2.50 x io27 1.23 x 10* 1.89 x 1027 479 1437
ROOH 1.44 x 1027 4.37 x 1027 1.16 x 1027 3.43 x 1027 203 197
o 3 2.67 x 10* 2.16 x 10* 1.50 x IO28 2.81 x io* -19 88
PANs 1.22 x io27 1.02 x 1027 125 x 1027 1.63 x io27 -16 30

Total Production at End of 42 Hours, molecules

h ,o 2 2.45 x to27 3.79 x 1027 2.36 x 1027 3.60 x 1027 55 53
ROOH 3.62 x 1027 5.48 x io27 3.38 x 1027 4.91 x 1027 51 45
o 3 2.34 x 1028 1.90 x 10* 2.32 x 1028 2.54 x 10* -19 9
PANs 5.03 x 1026 4.29 x 10* 5.80 x 1026 6.64 x 10* -15 14
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7.C.6. Increase in Hydroperoxides

The increased abundance o f radical species due to the addition o f oxygenates also 

increases the R ad+ Rad termination reactions (Table 7.6) leading to an increase in overall and 

maximum hydroperoxide (HjOj and ROOH) production via reactions 3.16 and 3.17 (Table 

7.7). This dramatic increase in hydroperoxides represents another oxygenates-based 

alteration o f the product distribution profile and has important implications for regional and 

global tropospheric chemistry. Hydroperoxides act as a reservoir o f  HO, and transport o f  

hydroperoxides from the lower to the upper troposphere has been postulated in order to 

provide an additional HO, source required to sustain calculated [HO,] levels comparable to 

those actually measured [Wermberg et a l., 1998]. Our results indicate that biomass 

combustion may represent an important source o f hydroperoxides due to photochemical 

processing within the smoke-plume. Increased H20 2 concentrations may have additional 

significance for heterogeneous chemistry by increasing sulphate aerosol formation and cloud 

condensation nuclei concentrations [von Salzen et al., 2000].

7.C.7. Net 0 3 Production

It has been previously reported that net 0 3-production is largely independent o f 

[VOC] under NO,-sensitive conditions [Sillman, 1999]. However, our simulations show that 

the net effect o f directly-emitted oxygenates on overall 0 3 production is quite complex due 

to an increase in radical-species concentrations and subsequent increase in the rate o f removal 

o f NO, from the plume via Rad +■ NO, reactions.

Because 0 3 production (0 2 + 0 3P -  0 3) results from the photolysis ofN O j (to yield 

N O + 0 3P), the decrease in NO, lifetime due to the addition o f oxygenates is mimicked by 0 3
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production (Table 7.8) under both NO emission scenarios.

Table 7.8 Average O3 Destruction, O, Production, and Net O, Production Rates Over a  30-Hour 
Simulation, and the Percent Change between No Oxy and All Oxy Cases with A[NOyA[CO]0 = 1% 
and 2% (1% and 2% cases).

Reaction Rates, molecules/cm3 s 
AfNOyAfCOln = 1% AfNOlVAfCOL = 2% Change. %

Reaction No Oxy A ll Oxy No Oxy All Oxy l% case 2% a

Oj-Destruction 
Individual Reactions

Av + O j-O C P ) 8.48 x 10s 8.31 x 10* 6.41 x 10* 1.04 x io9 -2 62
Av + Oj-CK'D) 6.41 x io7 6.63 x IO7 5.05 x io7 8.06 x io7 4 60
NO + Oj -  NOj + O, 9.63 x 10* 3.34 x 10* 1.92 x 109 8.64 x io* -65 -55
NCM- O, -  NO, + a 1.15 x 107 5.49 x 106 1.90 x 107 1.22 x io7 -52 -36
N 02 + a - N 0  + 2 0 2 3.48 x 10s 1.66 x 10s 5.76 x 10s 3.71 x 10s -52 -36
HO + O, -H O , + Oj 6.38 x 10s 4.46 x 10s 4.18 x 10s 7.83 x 10s -30 88
HOj + Oj -  H O+20, 7.86 x to6 1.26 x IO7 4.86 x IO6 1.43 x io7 60 195
C,H» + Oj -  ■ 2.89 x io6 3.64 x IO6 2.40 x 106 3.49 x 106 26 46
QHs + O , - * 8.55 x 10s 1.20 x 106 7.85 x 10s 9.83 x 10s 41 25
ud41 + 0 3 -** 0.00 00 & X IO2 0.00 6.54 x io2 N/Ae N/Ac

Combined Reactions

Total Photolysis 9.12 x 10* 8.97 x 10* 6.92 x 10* 1.12 x 109 -2 61
Total NO, 9.75 x 10* 3.39 x 10* 1.94 x 109 8.77 x 10* -65 -55
Total HO, 8.50 x 10* 1.31 x 107 5.28 x 106 1.51 x io7 54 187
Total VOC 3.75 x IO6 4.84 x 10s 3.18 x IO6 4.48 x 106 29 41

Total 0 3 Destruction 1.90 xlO9 1.25 x 109 2.64 x 109 2.01 x 109 -34 -24

Total O3 Production
From 0 ,+ 0  ('/*) -  O3 1.98 x 109 1.33 x 109 2.69 x 109 2.11 x 10* -33 -2 2

Net O3 Production 7.56 x 107 7.65 x !07 5.22 x IO7 1.00 x 10* 1 92

•First product is an epoxide leading eventually to carbonyl compounds. 
"Here ud41 = HCOCH = CHCHO.
•N/A not applicable.

Net 0 3 production, however, takes into account changes in 0 3-destruction, as well as 0 3 - 

production. In the MM there are a total o f20 0 3 destruction reactions. The primary 0 3 - 

destruction reaction rates, combined as in Table 7.8, are shown in Figure 7.9. Overall 0 3 - 

destruction decreases due to the addition o f the oxygenates for both NO emission scenarios
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(Table 7.8). This is mainly due to a decrease in the NO, + 0 3 reactions (Table 7.8), an effect 

that naturally follows from the decrease in NO, lifetime. This decrease in 0 3-destruction due 

to reaction with NO, is slightly counter-acted by an increase in 0 3-destruction due to reaction 

with HOj (Table 7.8). Both Field et al. [2000] and Crutzen [1995] have noted the 

importance o f the H 0 2 + 0 3 reaction with respect to 0 3-depletion in NOx-poor environments 

Hence both 0 3-destruction and 0 3-production are reduced due to the addition o f the 

oxygenated organic species, and net 0 3 production results from a balancing o f these two 

effects.
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figure 7.9 Log of combined O3 destruction 
reaction rates (molecules/ cm3 s) versus time 
(hours) for the All-Oxy, A[NO](/A[CO]0 =
1%, simulation. Total photolysis, solid line; 
total NO„ dotted-dashed line; total HO„ 
dotted line; total VOC, dashed line.

7.C.8. Complex Effects on 0 3 and OH

In the lower initial-[NOJ simulations (A[NO](/A[CO]0 = 1%), the increased removal 

o f NO, due to the addition o f oxygenates causes a decrease in the average NO-to-N02 

conversion rates (Table 7.6) and thus a decrease in the concentrations and production o f 0 3 

and OH (Table 7.7). However, in the higher initial-jNOJ models the increased removal o f
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NO, is balanced by its increased initial concentration, and the average NO-to-N02 conversion 

rates are in feet increased (Table 7.6), and so are [0 3] and [OH] (Table 7 .7). Therefore, 

unlike previous VOC-NO, models which found little dependence o f 0 3 production upon VOC 

emissions under NO,-sensitive atmospheric processing conditions [Sillman, 1999], the smoke- 

plume simulations reported here indicate a very complex relationship between 0 3 formation 

and the initial concentrations o f  at least, oxygenated organic compounds. Under certain 

conditions an increase in [VOC] through the addition o f  oxygenated organic species leads to 

an overall decrease in net 0 3 production, while under other circumstances an equivalent 

increase in [VOC] leads to an increase in net 0 3 production. The overall relationship between 

[VOC] and 0 3 production is dictated by the available NO„ as might be expected from the 

NO,-sensitive conditions that dominate the oxygenated smoke-plume photochemical 

simulations presented here. We believe the complexity that arises in the V 0C -03 relationship 

due to the direct emission ofoxygenated organic species occurs not only because o f increased 

VOC-loading by highly reactive species to the system, but also because o f the ability o f 

oxygenates to photolyze, a  pathway which is not available to hydrocarbons, leading to a direct 

source o f  radical species.

7.C.9. Com parison to  M easurem ents

It is difficult to make valid quantitative comparisons between existing field 

measurements and our calculated species-concentrations. This is because o f simplifications 

within our model and the rarity o f appropriate measurements in isolated plumes only hours 

old. In order to keep the number o f reactions manageable, while taking advantage o f  the 

detailed chemistry o f  the MM, we have restricted VOCs to lighter species containing three
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or less carbon atoms. These lightweight compounds probably represent the majority (by 

molecule) o f HC emissions [Lobert et al.,, 1991; Hao e t al., 1996], but they do not account 

for the full range o f typical emissions. Additionally, our assumed clear-sky conditions could 

only be strictly representative o f the upper-levels o f  a  smoke-plume. Finally, our model 

neglects aerosol chemistry, which undoubtedly is a significant perturbation considering the 

high water solubility o f some product species (e.g., hydroperoxides), as well as the high 

concentrations (up to milligrams/m3) o f particulates and water vapor present in a smoke- 

plume.

In light o f these and other assumptions, our main purpose then is to compare the 

results o f smoke-plume simulations obtained using a standard initial profile o f chemical 

species with and without added oxygenated organic species. The major result o f added 

oxygenates is found to be increased production o f nitrophenols and PANs (Table 7.7) leading 

to a decrease in NO, lifetime within the smoke plume (Table 7.5). Validation o f these results 

would require accurate measurements o f  these organic species in biomass-combustion 

affected air. We are aware o f no such data, and our results suggest the need for measurement 

o f these species, as well as investigation o f their tropospheric chemistry.

Despite these difficulties, it is possible to make some comparisons. To begin with, our 

modeled enhancement ratios for the All Oxy simulations follow the general trends discussed 

in section 2.D.4. Enhancement ratios for individual NMHCs, CHaO, NO„ and NH3 generally 

decrease as the plume ages, while ratios for 0 3, hydroperoxides, and formic acid generally 

increase. These trends are discussed in more detail below, and some are compared to 

absolute measured values.
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Goode et al. [2000] reported evidence o f an initial, very rapid decrease in 

A[NH3]/A[CO] (w ith a lifetime o f 2.5 hr) in downwind measurements o f Alaskan smoke 

plumes. While our predicted lifetime for this ratio is somewhat longer than this, the initial 

rapid decline is clearly present, especially in A ll Oxy simulations. That is, while there is a 

decline in the NH3 enhancement ratio in the No Oxy simulations, it is much more prolonged. 

Additionally, while both the A ll Oxy and the No Oxy simulations show an increase in 

A[HCOOH]/A[CO] as the plume evolves, the All Oxy simulated ratio is consistently 5 times 

higher than the No Oxy simulated ratio and therefore in much closer agreement with reported 

values [Goode e t al., 2000; Mauzerall et al., 1998]. Although our calculated absolute values 

o f this ratio for the All Oxy simulations still do not agree quantitatively with the limited 

observations available, this is not surprising as our model was not designed to specifically 

replicate either situation.

Our calculated values for (All Oxy) excess H20 2 in Table 7.3 are reasonably close to 

the 10 ppbv obtained in limited measurements “near” biomass-combustion plumes at altitudes 

less than 2 km during TRACE-A as reported by Lee et al. [1998]. This agreement is obtained 

without assuming any direct production o f H20 2 from the fire itself. This is consistent with 

TRACE-A analysis by Mauzerall et al. [1998], who reported an inability to find evidence 

o f direct emissions o f hydroperoxides from biomass combustion, but indicated that their net 

photochemical production within the smoke-plume is sufficient to maintain enhancement 

ratios significantly above ambient, as is also found in our simulations, particularly in the All 

Chry case.

Our calculated values o f A [0 3]/A[CO] o f = 6  % (for the A[NO]„/A[CO]0 = 1% case)
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and ~ 8 % (for the AfNO](/A[CO]0 — 2 % case) after 2.5 hr o f photochemical processing are 

consistent with the 7.9 ± 2.4 % A [03]/A[C0] measured 2.2 ±  1 hrs downwind in Alaskan 

smoke plumes with an average A[NO]„/A[CO]0 o f = 1.5 % [Goode et a l., 2 0 0 0 ]. 

Furthermore, the inclusion o f oxygenated species substantially improves agreement between 

simulation and measurement; that is, No Oxy simulations predict a A [0 3]/A [C 0] o f only 2-4 

% after 2.5 hr o f  processing.

While there is not yet an experimental data set with sufficient detail to wholly 

determine if the simulations are more accurate with or without oxygenates, based upon the 

limited number ofexamples above, when a comparison is possible, the addition o f oxygenates 

to simulations does seem to improve agreement with measurement.

7.C.10. Summary o f Diluting Smoke-Plume Simulations

Oxygenated organic compounds have been reported to be ubiquitous components o f 

urban atmospheres and the free troposphere [Lewis et al., 2000; Singh et al., 1995; Tanner 

et al., 1988], as well as the biomass-combustion smoke-plumes central to the work reported 

here. We have incorporated six oxygenates (formaldehyde, acetic acid, formic acid, 

methanol, phenol, and hydroxyacetaldehyde) that have been identified to be present in the 

largest amounts in biomass-combustion emissions [Griffith et al., 1991; Yokelson et al., 

1996a, 1996b, 1997,1999a; Goode et al., 1999,2000], into photochemical simulations o f the 

evolution o f a smoke-plume. There remain oxygenated and hydrocarbon-based species, such 

asterpenes, present in biomass combustion smoke [Yokelson et al., 1996; Goode et al., 1999] 

which have not been included in the simulations reported here due mainly to uncertainties in 

their abundance and photochemistry.

The primary effect o f the addition o f oxygenated organic species into biomass-
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combustion smoke-plumes is to cause a decrease in NOx-lifetime by a factor o f -  2  via Rad 

+ NOx termination reactions. The formation ofPANs and nitrophenols represent a 

portion o f the increase in Rad + NOx reactions due to oxygenate addition. Since A ll Oxy 

simulations occur under primarily NOx-sensitive conditions, the increased availability o f 

radicals also leads to an increase in hydroperoxide concentrations via Rad + Rad termination 

reactions. The increase in hydroperoxides, as well as the preference for PAN-formation over 

HNOj, are o f interest as these species are longer-term pollutant reservoirs o f HOx and NO^ 

respectively, released into a regional atmospheres by biomass combustion.

The depletion o f NOx (via the addition o f oxygenated organic species) to an 

environment which is already NOx-sensitive results in complex behavior o f [0 3] and [OH], 

depending upon initial [NOJ. When the initial [NOJ is large enough to compensate for the 

increased removal ofN O ^ the addition o f oxygenates leads to an overall increase in the NO- 

to-N 02 conversion reactions and therefore an increase in 0 3 and OH (as shown in the 

[NO](/[CO]0 = 2 % simulations reported here). However, lower initial-NOx concentrations 

may not be able to compensate for the increased removal ofNOx, leading to a decrease in 

NO-to-NOz conversion and a subsequent decrease in 0 3 and OH (as exemplified in the 

[NO]o/[CO]0 = 1 % simulations reported here). This intriguing result is contrary to previous 

VOC-NOx models which show little dependence o f 0 3 production on [VOC] under NOx- 

sensitive conditions. This difference is attributed to the ability o f the oxygenates to photolyze 

resulting in an additional direct source o f radical-species which may not be compensated for 

by the [NO J emissions.

These results demonstrate that directly-emitted oxygenated organic species alter the 

product distribution profile, including affecting longer-lived species such as 0 3, PANs, and
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hydroperoxides. Hence, simulations intending to predict the quantities o f various pollutants 

injected into regional atmospheres by biomass combustion, as well as those looking to 

understand the effects o f biomass combustion on a global scale, need to include both direct 

emissions o f oxygenated organic materials and a good estimate o f initial [NOJ.
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C hapter 8 

Results of U rban Simulations

8 .A. Basis

The previous simulations ofthe photochemistry occurring within biomass-combustion 

smoke plumes show a rapid removal ofNO ^ causing conditions within the plum e to become 

quickly NOx-sensitive. Because this removal ofN O x occurs due to plume dilution, as well as 

photochemistry, we naturally questioned what the effect would be o f a NOx-poor smoke- 

plume mixing with a NOx-rich urban environment. Thus, we extended our modeling o f 

biomass-combustion smoke plumes by building an urban model and allowing advection o f a 

smoke plume into the urban airshed, a scenario which is fairly common within the United 

States. Owing to the Western Montana fires o f 2000, we chose to use the Missoula valley 

as a representative example o f such an occurrence. During these fires, smoke was funneled 

up the Bitterroot valley and entered the Missoula urban airshed. On occasion the smoke 

tended to remain within the airshed for some time before being advected out owing to 

overriding stagnant conditions. Hence our main purpose was to build a realistic urban model 

and conduct two sets o f simulations in order to deduce: I) the effect o f the urban atmosphere 

upon smoke-plume chemistry; and 2 ) the impact o f the (pre-processed) smoke-plume 

emissions upon the urban environment.
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8 .B. Urban M odeling

As discussed in section 6.B.2, we model the urban airshed using a simple (0-D) 

Eulerian box with planetary boundary layer (PBL) height variation (see Figure 6.1). The 

model uses the same mechanism o f 702 reactions, the same photolytic and the 

ambient air conditions as used in the diluting smoke-plume simulations. The wind speed was 

chosen to be 1 mile hr*1 in order to represent stagnant conditions. Standard deposition rates 

are given in Table 6.2 and source emissions rates were calculated at every time step according 

to equation 6 .6  based upon reported Missoula city vehicular emissions (as described in 6.B.2).

There exists within our urban model a diurnal variation o f both source emissions and 

the height o f the PBL. This has the effect that while urban emissions are greater in the 

afternoon than in the morning (see Figure 6.2), the boundary layer height is also greater in the 

afternoon (see Figure 6 .1), causing morning emissions to have a greater relative impact upon 

the urban atmosphere than do those occurring later in the day (Figure 8 .1).
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Figure 8.1 Effective source strength (i.e., 
emission rate per unit volume) relative to the 
maximum as a  function of time of day. This 
trace shows that while the morning emission 
rate is smaller than the afternoon rate, its 
effective impact upon the urban environment 
is greater owing to the lower height of the 
planetary boundary layer at that time.
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This effective source strength, i.e., the emission rate per unit volume, is depicted in Figure 8 .1 

on a relative (to the maximum rate) scale. Choosing a relative scale allows the depicted 

source strength to be independent o f species identity. The impact ofPBL height variation on 

source emission strength has important implications for the diurnal profiles o f urban source 

species as present below.

8.B.1 S tandard  (VOC-Sensitive) Urban M odel

Urban simulations using suitable source rates were initiated using ambient 

concentrations (see Table 6 .1 for diurnally constant ambient conditions) and were allowed to 

run until a steady state was achieved (typically one day). The resulting steady-state diurnal 

variation for some tropospherically important species are shown in Figure 8.2.
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Figure 8.2 Diurnal variation of
concentrations (ppbv) in the standard urban 
model for NO, (solid line), NMHCs (dotted 
line), and O, (dashed line).

In this diagram [NOJ and [VOCs] generally build-up during the night owing to emission in 

the absence o f the highly active daytime photochemistry. The profiles o f these primary 

emissions do begin to decrease after midnight as a result o f their declining source strengths 

(Figure 8.1), coupled to replacement o f urban air via advection ofambient concentrations into
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the airshed. During the day, NOx and VOC concentrations generally decrease further, owing 

to the tropospheric photochemical reaction cycle, leading to the production o f secondary 

pollutants, most notably an afternoon (~ 2 pm) maximum in [0 3] o f~ 1 0 0  ppbv. The influence 

o f the relative source strength diurnal variation in the primary emissions o f NOx and VOCs 

is apparent by the morning (~ 8 am) ‘bump’ and the slow afternoon increase in the 

concentrations o f these species.

Other important profiles that are not shown in Figure 8.2 are those for OH and HOz, 

which follow the same general behavior as 0 3. Additionally, while NO, concentrations (not 

shown) are substantial in the afternoon, the majority o f 0 3 has been depleted (predominately 

due to photolysis and reaction with NO, coupled with a decrease in photochemical 

production) by the time sunset occurs (~ 6  pm), thereby restricting NO} radical production. 

N 0 3 concentrations (not shown) remain low (< 0.5 ppt) throughout most o f this standard 

urban simulation, causing an inhibition o f nighttime chemistry.

In comparison to the smoke-plume modeling results, primary emitted species, such 

as NOz and VOCs, generally have greater concentrations within the urban environment than 

within the smoke plume. While, on the other hand, most intermediate, secondary, and end- 

product tropospheric species (i.e., OH, HO,, 0 3, PANs, HN03, and H2Oj) have lower 

concentrations within the urban model than those calculated in the smoke model. These 

differences between the two models can be attributed to the dominate photochemical 

processing. That is, conditions within the smoke plume are governed by NOx-sensitive 

chemistry, while those for the urban model are VOC-sensitive (as described in more detail 

below). Recall that the VOC-sensitive state is characterized by an overall reduced oxidizing
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capacity as compared to the NO*-sensitive state due to the limited availability o f radical 

species. Under urban conditions the diurnal supply o f NO* due to vehicular emissions acts 

to deplete radical species concentrations, owing to the Rad + NO* reactions, as compared to 

the NO* poor smoke plume The limited availability o f radical species acts in turn to keep 0 3 

and hydroperoxide concentrations low as a result o f limited N O -to-N 02 conversion and 

reduced Rad + Rad reactions. These results are to be expected and lend confidence to the 

validity o f the urban model.

8.B.2. 0 3 Isopleth

The chemistry connecting the primary emissions, VOCs and NO*, to the 

concentrations o f secondary pollutants such as 0 3 is very complex. A result o f this complex 

chemistry is that the concentrations o f secondary species are related to those o f their 

precursors in ways that are, under many conditions, highly nonlinear. The dependence o f0 3 

production on the initial amounts o f VOCs and NO* is frequently represented by means o f an 

0 3-isopleth diagram. Such a diagram is a contour plot o f daily maximum 0 3 concentrations 

as a function o f available VOCs and NO*.

We began testing and investigating the urban model by scaling our source-emissions 

o f NO* (from 0.1 to 2.2) and VOCs (from 0.2 to 3.2) in order to  create an 0 3 isopleth 

diagram  (Figure 8.3). (Note that a  scaling o f 1 for VOCs and NO* represents the standard 

urban model as used in the previous section and in the ‘urban plus smoke’ simulations 

presented later). Our diagram compares well with those obtained from other models [see, for 

example, Finlayson-Pitts and Pitts, 2000; Sillman, 2000; Seinfeld and Pandis, 1998]. 0 3 

isopleths, such as Figure 8.3, clearly depict the nonlinear behavior o f  0 3 production and are
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useful for describing VOC/NOx sensitivity.
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Figure &3 0 3-isopleth diagram (indicated isopleth 
concentrations are in ppbv) obtained using the urban 
model with scaled values of NOx and VOC source 
emissions. Conditions for the standard urban model 
are denoted with the filled circle (VOC-sensitive), 
while those used in a ‘scaled' urban model (discussed 
later) are marked by the filled square (NOx-sensitive).

The lower, right-hand portion o f the diagram depicts a  region in which increasing the emission 

ofN O , leads to an increase in [0 3], while increasing VOC-loading has little effect upon [0 3]. 

Hence, model conditions which fall within this region o f the diagram are processing under 

NO,-sensitive conditions. On the other hand, the upper portion o f the plot shows that an 

increase in VOCs causes an associated increase in 0 3 production, while increasing NO, causes 

a decrease in [0 3]. These two effects characterize an airshed to be VOC-sensitive. Since 

conditions within the standard urban model fell within this region o f the diagram, the urban 

model is supposed to be VOC-sensitive, as is expected for an urban environment.

It is also interesting to note that 0 3 production under VOC-sensitive processing tends 

to be lower in general than under NO,-sensitive conditions (Figure 8.3). This effect can likely 

be attributed to the need for NO, emissions, which are primarily in the form o f NO, to be
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converted to NOz in order to obtain net 0 3 production. Under VOC-sensitive conditions 

there exists an inadequate supply o f peroxy radical species to perform this conversion 

to an inhibition o f 0 3 production. However, under NO,-sensitive conditions radicals are 

readily available, leading to rapid conversion ofN O -to-N 02 and increased net 0 3 production.

In preparing the 0 3 isopleth, it became apparent that as the emissions o f NOx are 

decreased and/or the emissions o f VOCs are increased, the [0 3] maxima occurs later in the 

day (Figure 8.4).

This delay in the 0 3 m axima, in addition to the general increase in 0 3 production under NO,- 

sensitive conditions, has important implications for nighttime chemistry. The production of 

NO}, the primary tropospheric oxidant in the absence o f photolytic free radical sources, 

requires a simultaneous lack o f NO and presence o f both N 0 2 and 0 3 in an airmass. The later 

in the day the 0 3 maxim um  occurs, and the larger the maximum is, the more likely there will 

be significant concentrations o f 0 3 available after sunset, thereby increasing the probability

0.4 0.8 1.2 1.6 2.0 2.4 2.8
VOCs (scaled)

Figure 8.4 Isopleth diagram showing the time of day 
(hours) of the [O3] maximum (depicted in Figure 8.3) 
as a function of scaled NO, and VOC emissions. 
Standard urban model, filled circle (VOC-sensitive); 
scaled urban model (discussed in 8.B.3), filled square 
(NO,-sensitive).
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o f producing substantial amounts o f N 0 3 and hence enhancing nighttime chemistry. As a 

means o f testing this hypothesis, as well as our urban model, we investigated this effect by 

scaling our standard urban model, as described below.

8.B.3. Scaled (NOx-Sensitive) Model

The impact o f the time and magnitude o f the 0 3 maximum upon N 0 3 concentration 

is illustrated in Figure 8.5, which shows the diurnal variations for NO,, VOCs, 0 3 and N 0 3 

in a scaled urban model.
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Figure 8.5 Diurnal variation o f species 
concentrations in the scaled urban model for 
NOx (ppbv), solid line; NMHCs (ppbv), 
dotted line; O3 (ppbv), dashed line; and NO3 
(pptv), triple dot-dashed line.

By scaling the emission factors o f VOCs by 2.2 and NO, by 0.3 {i.e., approximately doubling 

VOC emissions and halving NO, emissions into the urban airshed throughout the day), we 

have shifted the time o f the 0 3 maximum from ~ 2 pm to -  4 pm (Figure 8.4), as well as 

shifting the overall photochemical processing from VOC-sensitive to NOx-sensitive (Figure 

8.3). This change in overall dominant photochemistry causes a substantial increase (— triple) 

in the [0 3] maximum. This increase in the [0 3] maximum, coupled with the delay in the time
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o f the peak, causes significant amounts o f 0 3 to become available throughout the night 

leading to substantial nighttime concentrations o fN 0 3. N 0 3 peaks at -  150 ppt and remains 

above 25 ppt between sunset and sunrise in this scaled urban model, as opposed to peaking 

at ~ 2.5 ppt and otherwise remaining near 0 in the standard urban model. This affects not 

only nighttime VOC-oxidation, but also leads to a  decrease in [NOJ even below that 

expected due to the decrease in emission factor (i.e., the emission factor has decreased by a 

third, but [NOJ is decreased by a fifth) because N 0 3 and its subsequent oxidative products 

represent added temporary sinks ofN O x.

8.B.4. Sum m ary of U rban M odeling

Considerable effort has been applied to investigating the behavior o f the urban model 

under various emission scenarios. The effects observed under differing emission conditions 

can be rationalized based upon the basic tropospheric cycle and known processing states, and 

are consistent with previous analyses [Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 

1998; Wayne, 1991]. Predicted concentrations o f tropospherically important species (i.e., 

NO„ 0 3, HO J are consistent with expected values, and the chemistry within the urban 

environment has been shown to be VOC-sensitive as would be expected. All o f these features 

lend confidence to the model as representing a typical urban environment, suitable for use in 

an investigation o f mixing between smoke plumes and urban airsheds.

8 .C . ‘Urban plus Smoke* M odeling

There are many variables which could be considered in the mixing o f a smoke plume 

with an urban airshed. For example, on what time scale does the mixing process occur? How 

long have the smoke emissions been processed before encountering the urban airshed? At
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what time o f day does the processed smoke arrive in the city? What is the effect o f the diurnal 

variation in smoke emissions and processed smoke concentrations? How quickly is the smoke 

plume advected into the city? And so forth. Some o f these questions are beyond the scope 

o f our modeling work; that is, they cannot be addressed within the approximations o f our 

model. For instance, the time scale o f mixing cannot be investigated within our well-mixed 

box approximation. Other variables have been fixed in order to reduce the complexity o f the 

calculation (e.g., the wind speed is set to 1 mile an hour). Nevertheless, there are other 

aspects o f the problem that we have attempted to investigate within this simple modeling 

framework.

Beyond the large number o f detailed variables, there are two major conceptual 

vantage points from which the mixing o f a smoke plume with an urban airshed can be viewed: 

1) the effect o f the smoke contents on the urban chemistry, and 2 ) the effect o f the urban 

emissions on the smoke-plume chemistry. Because we are using a simple 0-D box model 

(i.e., with no spatial resolution), we have dealt with each o f these viewpoints separately using 

different modeling techniques.

8 .C .I. Effect o f the Smoke on the Urban Airshed 

In order to investigate the impact o f the smoke plume upon urban chemistry, we 

initiated an urban simulation as above. On the third day, after the urban environment had 

reached a steady state, we changed the background ambient concentrations (Table 6.1) to 

smoke plume concentrations, such that, rather than ‘clean’ air being advected in, ‘smokey’ 

air was mixed in instead. We considered two main variables under this basic scenario: 1) the 

time o f travel o f the smoke plume (i.e., the amount o f time the initial smoke emissions had
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to process before encountering the urban environment), and 2 ) the time at which the smoke 

plume arrives at the city.

8.C .l.a. Smoke Plume Time-of-Travel

We considered three lengths o f time for the chemical processing o f  the initial smoke 

plume before reaching the city: 3 hr, 10 hr, and 15 hr. Because the wind speed is fixed at 1 

mile an hour, these times represent distances o f 3 ,10 , and 15 miles between the fire and the 

city. We assume that the initial fire emissions do not vary in time and are given by Table 7.2 

(All Qxy, A[NO]o/A[CO]0 = 2%). However, there will be a  diurnal variation to the ‘smokey’ 

concentrations which are advected into the city. That is, emissions released at 1 AM will 

arrive at the city at 4 AM while those emitted at 1 PM  will arrive at 4 PM. Between these 

two scenarios there will be a very substantial difference in the chemical speciation because the 

former is processed solely at night, while the latter is processed completely during the day, 

and therefore includes the influence o f photolysis reactions. Thus, we conducted a series of 

smoke-plume simulations in order to determine the diurnal variation o f the processed smoke 

concentrations for each specified time o f travel (i.e., 3 hr, 10 hr and 15 hr).

For each time o f travel we carried out a total o f 95 simulations. The simulations 

started every fifteen minutes from midnight (hour 0) to 11:45 PM and were o f duration equal 

to the travel time. At the end o f each simulation the final smoke plume concentrations for all 

species were tabulated. Referencing these values allowed determination o f the diurnal 

variation o f ‘smokey’ concentrations that are mixed into the urban environment. Some (0 3, 

NO, NO,, and NMHCs) o f these smoke-plume concentrations, after a specified time o f travel, 

throughout a 24-hr period, are depicted in Figure 8 .6 .
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Figure 8.6 Concentrations of O3 (solid lines), NO (dotted lines), NO.
(dotted-dashed lines), and NMHCs (dashed lines) as a function oftime of day, 
depending upon the length of processing time. Processing times are: (a) 3 hr;
(b) 10 hr; (c) 15 hr. Traces show, in essence, two different regions depending 
upon the length of time the emissions were processed under the influence of 
daylight.

The basic shape o f these traces is that o f a step function with two distinct regions: a region 

o f high [0 3] and a region o f low [0 3]. Each o f these regions have associated high and low 

levels o f  other species. For example, the region o f high [0 3] has associated low levels o f 

primary species, [NOJ and [VOCs], but high levels o f other secondary products {e.g., OH, 

H N 03, etc.), and vice-versa for the low [0 3] region. These regions are determined, in 

essence, by the extent to which the advected smoke emissions were processed under the 

influence o f available sunlight. That is, advected emissions which were processed solely at
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night will contribute high concentrations ofNOx and VOCs, with associated low levels o f 0 3, 

owing to little chemical processing and leading to the low [0 3] region (and vice versa for the 

high [0 3] region owing to substantial photochemical processing).

8.C .l.b. Smoke Plume Time-of-Arrival

Given the diurnal variation o f advected smoke-plume concentrations for three different 

travel times, a series o f  simulations were conducted that were designed to investigate the 

effect o f the smoke plume upon the urban airshed as a function o f smoke-plume arrival time. 

As mentioned earlier, the basic procedure for these simulations was to initiate an urban 

simulation and allow advection o f the smoke plume into the urban environment on the third 

day. The advection o f the smoke plume was accomplished by switching (at a  given time) the 

wind concentrations from those o f ambient conditions to those within a specifically aged 

smoke plume.

The effect o f arrival time for every hour throughout a day was investigated for each 

o f the three time-of-travel scenarios. Because 0 3 is the species o f primary importance in 

urban environments due to its detrimental effects on human and vegetative health, our analysis 

is focused on the impact o f the smoke plume upon urban [0 3]. Figure 8.7 depicts the 

maximum in [0 3] for days three and four o f the simulations (i.e., the day o f arrival and the 

following day) as a function o f time o f arrival.

We notice, first o f  all, that the mixing o f the smoke plume with the urban airshed 

always causes an increase in 0 3 production; the longer the travel time, however, the less effect 

the smoke plume has. This most likely is due to photochemical processing and dilution o f the 

smoke plume, both o f which act to deplete the supply o f radical species (as well as 0 3 itself)
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which the smoke plume provides to the urban environment. The [0 3] maximum on the day 

o f arrival o f  the smoke plume is only affected if the plume arrives previous to the time ofthe 

usual 0 3 peak (i.e., previous to ~ 3 pm) (Figure 8.7a). The [0 3] maximum for the following 

day is consistently higher than the [0 3] maximum for the arrival day, and shows little 

dependence upon the time o f arrival, signifying that the urban airshed has once a g a in  reached 

a  steady state (Figure 8.7b). While longer smoke plume processing times lead to smaller 

increases in 0 3 production, the increases in [0 3] for ail investigated travel times are quite 

substantial.
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Figure 8.7 Daily [0 3] maximum for an urban environment as a 
function of time-of-arrival of a smoke plume into the urban airshed 
based upon a 3 hr (solid line), 10 hr (dotted line), or IS hr (dotted- 
dashed line) time-of-travel for the smoke plume, (a) [O,] maximum 
on the day of arrival; (b) [Q,] maximum on the following day (given 
that smoke is continually advected into the urban environment). 
Traces show a general increase in maximum [03] regardless ofthe 
time-of-travel for the smoke plume (provided that the smoke arrives 
previous to the time of the [Oj] maximum).
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8 -C .l.c . Sum m ary o f the Effects o fth e  Smoke on the Urban Airshed

We have investigated two primary variables in the advection o f a smoke plume into 

an urban environment; that o f the processing time that the smoke plume has experienced 

before reaching the city, and that o f the time o f  arrival o fth e  smoke plume into the urban 

airshed. We find that regardless o f these two variables the introduction o f ‘smokey’ air into 

an urban environment acts to increase 0 3 production; although if the smoke arrives after the 

peak in [0 3] for that day, its effect is delayed until the following day. In feet, the impact o f 

the smoke plume on 0 3 production is generally greater the day after arrival than on the day 

o f arrival, most likely due to the additional photochemical processing time. In a situation in 

which a fire continues to bum for several days, continuously supplying the city with advected 

‘smokey’ conditions, it seems that the chemistry within the urban environment reaches an 

alternate steady state within a day or so. As an added note, some simulations were conducted 

using a wind speed o f  5 mph, but the overall behavior was approximately the same as for the 

1 mph simulations. These simulations are o f greatest interest to forest managers and city 

officials in regard to prescribed, as well as natural, burns and their effect upon downwind 

urban communities and human health.

8.C.2. Effect o fth e  C ity on the Smoke Plum e 

Because the variation o f the PBL is accounted for in the urban simulations, but not 

in the smoke simulations, there is an added complexity in modeling the influence o f the urban 

environment upon smoke-plume chemistry. That is, the urban model is an Eulerian (i.e., fixed 

reference) box model which includes PBL height variation. However, the smoke plume 

simulations use a Lagrangian (i.e., moving reference) model approximation in which the
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modeled box is assumed to move with the boundary layer, as well as with the wind. These 

models were chosen to best fit the particular situation, but nevertheless combining them 

requires some consideration. The above situation (e.g., the influence ofthe smoke plume on 

the city) is more easily adapted because it is only a matter o f switching the advected air from 

‘normal’ ambient air to ‘smokey’ air. From the viewpoint o f the urban influence on smoke- 

plume chemistry, the adaption is more complicated because the strength o f  the urban source 

emissions is regulated by the variation o f the PBL height, but the PBL height variation is not 

accounted for in our smoke plume model

To best accommodate this complication the scenario depicted in Figure 8 .8  is chosen.

Figure 8.8 Schematic o f the basic scenario for 
modeling the influence ofthe city on the smoke plume. 
Illustration shows simulation starting with the packet, 
initially containing biomass combustion emissions, 
being advected into an urban airshed and remaining 
for some period of time before being advected out. 
Notice that the moving packet only covers a portion of 
the fixed urban box model at any given point in time. 
[Adapted from Seinfeld and Pandis, 1998].

The smoke plume simulation is initiated as before (see section 7.C) beginning at midday. At 

3 PM, when the PBL height variation as used in the urban simulations reaches and maintains 

its m axim um  (see Figure 6 .1), a packet o f processing smoke-plume emissions enters the city.
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The box is assumed to cover only a certain percentage ( 10%) o f the entire urban domain as 

it moves through and, as such, only that percentage o f the urban source terms enter the box 

through its base. In addition to the added source emissions, the ‘normal’ ambient air 

concentrations which are used in the (horizontal) smoke plume dilution are switched to urban- 

air conditions during the period o f time the packet is within city limits. At 6  PM the smoke 

plume is assumed to leave the city and the simulation returns to the standard smoke plume 

model described in section 7.C.

8.C.2.a. Sim ulated Effects

Simulated results for several tropospherically important species are shown in Figure 

8.9. In these traces [HO-J, [H20 2] and [methyl-PAN] are used to exemplify all peroxy 

radicals, all hydroperoxides, and all PAN-species, respectively. They represent the primary 

constituents o f these groups, and therefore embody a reasonable approximation to the 

temporal behavior o f the group as a whole. Additionally, these traces show the temporal 

variation in concentrations for both the standard urban and standard smoke-plume 

simulations, as well as for the simulated effect o f the city on the smoke-plume. In the 

following discussion we compare the ‘smoke+city’ simulation to the standard smoke-plume 

simulation in order to evaluate the effect o f the urban environment on the smoke plume.

To begin, we notice that both the NMHCs (Figure 8.9a) and the total NOx (Figure 

8.9b) concentrations within the smoke plume are increased due to the influence o f the urban 

emissions. This increase in the ‘fuels’ o f tropospheric photochemistry leads to an increase in 

calculated [0 3] (Figure 8.9c). As might be expected from simulations o f the effect o f the 

smoke on the city, the percentage increase in simulated 0 3 is greater the day after the
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Figure 8.9 Influence of the urban airshed upon smoke-plume photochemistry (dotted 
lines), as represented by: (a) [NMHCs] (ppbv), (b) [NOJ (ppbv), (c) [Oj] (ppbv), (d) 
[OH] (pptv), (e) [HOJ (pptv), (0  [H,OJ (ppbv), (g) [HNO,] (ppbv), (h) [methyi-PAN] 
(ppbv). The modeled smoke-plume is assumed to be advected into the urban 
environment at 3 PM and advected out at 6 PM on the first day. Traces also show 
temporal profiles for the standard smoke-plume model (solid lines) and the standard 
urban model (dotted-dashed line) for comparison.
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introduction o f the added emissions (when the modeled packet is actually no longer within 

the city) than at the time o f introduction, presumably owing to added photochemical 

processing. The increase in 0 3 production leads to a corresponding increase in [OH] (Figure 

8.9d), while the increase in [NOJ causes an initial decrease in [H O J (Figure 8.9e) due to 

increased Rad + NO, reactions. This first-day decrease in [H O J causes a corresponding 

decrease [H2O J (Figure 8.9f), although both peroxy radicals and hydroperoxides are 

increased by the second day when NO, levels have again been depleted. This increase is also 

likely tied to the increase in VOC-loading and [OH], the primary ‘fuels’ for peroxy radical 

formation. The previously mentioned increase in Rad + NO, reactions, owing to the sudden 

increased supply ofN O , from urban emissions, leads to an increase in NO,-reservoir species, 

H N 03 (Figure 8.9g) and PANs (Figure 8.9h).

8.C.2.b. Summary of the Effect of the City on the Smoke Plume

The urban environment overall acts to replenish NO, concentrations within the smoke 

plume, causing photochemical processing conditions within the plume to switch to a more 

VOC-sensitive regime (i.e., increased Rad + NO, termination reactions and decreased Rad 

■+* Rad reactions) for a period o f time. Eventually, however, as generally occurs in plume 

evolution, conditions return to NO,-sensitive processing, but with increased ‘fuel’ loading, 

thereby leading to even further elevated concentrations o f secondary species, such as 0 3, 

H ,0 2, H N 03, and PANs, than is observed in our basic smoke plume models.
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Chapter 9

Conclusions

9.A. Sum m ary

We have been predominantly concerned with incorporating several oxygenated 

organic species into a  model ofbiomass-combustion smoke-plume photochemistry. In  doing 

so we found some interesting results which lead us to also investigate the impact o f an urban 

environment upon smoke plume photochemistry. To these ends we developed two models, 

via modifications to the NCAR ‘Master Mechanism,’ in order to describe the temporal 

evolution o f both a biomass combustion smoke plume and an urban airshed. In the case o f 

the smoke plume, we chose to use a Lagrangian approximation, which simulates the temporal 

evolution o f an initial set o f concentrations within a modeled box domain that moves with the 

wind, as it is particularly suited for such a situation. On the other hand, an urban environment 

is spatially fixed and, as such, is more accurately modeled under an Eulerian approximation 

in which concentrations within a fixed modeling domain are simulated as wind is advected 

through the box and species emission and deposition are exchanged through the cell base. 

We have included additional terms to describe the diurnal variation ofthe planetary boundary 

layer in the urban airshed model and to describe the horizontal expansion of the plume in the 

smoke plume model.
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9.B. Biomass Combustion Smoke Plume Simulations

9.B.I. Conclusions

We found the inclusion o f the six dominant oxygenated organic species (CH-,0, 

CH3OH, CHjCOOH, HCOOH, C6HsOH, and CH2(OH)CHO) into a smoke-plume model to 

lead primarily to an decrease in NOx lifetime. This has important implications for the 

oxidizing capacity o f the smoke-plume because NOx catalyzes 0 3 production and the 

availability o f 0 3 determines the oxidizing ability o f the troposphere (through its role as the 

primary source OH radicals). Through analysis o f species concentrations and reaction rates, 

it seems that the decrease in NO, lifetime results from an increase in the production o f radical 

species both through the tropospheric reaction cycle and through direct photolysis. The 

increase in the removal rate ofNOx and the production o f radical species causes the transition 

from VOC- to NOx- sensitive photochemistry to occur more quickly in the oxygenated smoke 

plume as compared to a smoke plume that does not included oxygenated organic species and 

also leads to an increase in the production ofNOx and HOx reservoir species (e.g., PANs and 

HjOj). This latter effect has important implications for regional and even possibly global 

tropospheric chemistry as these species may be transported over long distances before re- 

releasing their photochemically active reserves. The combination o f these effects strongly 

indicates that the inclusion o f oxygenated organic species, overlooked in previous biomass 

com bustion smoke plume modeling, is a necessity in order to accurately account for the 

impacts o f biomass combustion upon overall local-to-global tropospheric chemistry.

9.B.2. Further Work

On a whole our simulations o f biomass combustion smoke plumes have provided the •
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first indications o f the importance o f oxygenated organic species in terms o f smoke plume 

photochemistry and its impact upon the global troposphere. These results stem mostly from 

their effect upon NO, concentrations, the catalyst o f  tropospheric photochemistry. These first 

indications, while intriguing, also appeal for further investigation. Improvements which could 

be made to the current model include, but are not limited to, the following. (1) 

Characterization and inclusion ofthe photochemistry o f nitrophenols since the addition ofthe 

oxygenates, namely phenoL, leads to their production. (2) Expansion o f the hydrocarbon 

profile used here to include species o f C4 and greater. (3) Vertical stratification o f the smoke- 

plume to account for the effect o f plume ‘haziness’ on actinic (photon) flux infiltration (the 

model used here assumes clear-sky conditions, which is only strictly representative o f the top 

o f the smoke plume). (4) Variation o f the planetary boundary layer height; this could most 

easily be accommodated within the vertically stratified smoke plume. (5) Integration o f a 

model to describe aerosol chemistry into our current chemical mechanism. Considering the 

vast quantities o f particulates, and therefore nucleation sites, emitted by combustion the 

inclusion o f aerosol chemistry seems especially important for accurate modeling o f smoke- 

plumes. (6 ) The development and implementation o f techniques to reduce the photochemical 

mechanism since the current model is too computationally expensive to be available for use 

in larger, global models.

9.C. ‘City plus Smoke* Simulations

9.C.I. Conclusions

The advection o f a smoke plume into an urban environment replenishes the depleted 

NO, concentrations, as well as providing additional [VOCs]. This increase in the ‘fuels’ o f
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tropospheric chemistry leads to an increase in the production o f 0 3 for both the smoke plume 

(even beyond the period o f time that the smoke plume is within the urban airshed) and the 

urban environment. This has important implications for regional and global tropospheric 

chemistry. The increase in the oxidizing capacity within the smoke plume leads to an increase 

in the production o f global NO, and HO, reservoir species, while the increase in 0 3 

production within an urban region can impact vegetative and human health. This latter effect 

is o f particular importance to forest managers and city officials both for the planning of 

controlled bums or in the advising o f residents downwind o f natural burns.

9.C.2. Further Work

The implications o f our simulations modeling the mixing between an urban 

environment and a smoke plume are o f considerable ‘real-world’ interest, but, once again, 

provide only a first glance upon the reality o f the situation. These results call for further 

investigations and monitoring. For example: ( 1) Investigations into the time scales o f mixing 

between the smoke plume and the urban airshed. (There is an implicit assumption within our 

model that, once the plume as been advected in, the smoke is well-mixed across the entire 

urban airshed.) (2) Vertical stratification o f the urban airshed to work in conjunction with the 

vertically stratified smoke plume. (3) Experimental verification o f simulated ‘urban plus 

smoke’ conditions, including downwind urban plume measurements. (4) Development of a 

‘look-up table’ for forest managers and city officials to aid in deciding the optimum conditions 

and times for planning prescribed burns.

9.D. Closing Rem arks

Thousands o f chemical species are continually being emitted from the Earth’s surface
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and those with lifetimes less than about a year are destroyed within the troposphere. 

Understanding the chemistry that occurs within the troposphere is therefore a fundamental 

piece o f understanding the interactions and transformations ofmatter within the natural world.

Fire is an integral part o f this natural world as on any given day some part o f  the world 

is on fire. This burning o f biomass is well-know to be an important source o f trace gases and 

particulates into the atmosphere. Understanding the subsequent chemistry occurring due to 

this influx is, therefore, an integral part o f understanding the chemistry o f the troposphere as 

a whole. We believe our detailed photochemical modeling and analysis has provided further 

insight into the early photochemistry occurring within biomass combustion smoke plumes and 

their mixing with urban environments. It is our hope that this understanding provides a piece 

in building a solid foundation upon which future, larger, more accurate models are based.
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