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ABSTRACT
The accessibility of specific sequences in domain V of E. coli 23S rRNA

in the 50S subunit to complementary oligodeoxyribonucleotides (cDNA) has been
investigated. The apparent percentage of subunits engaged in complex formation
was determined by incubation of radiolabeled cDNA probe with 50S subunits,
followed by nitrocellulose membrane filtration of the reaction mixtures and
measurement of the bound radiolabeled cDNA probes by liquid scintillation
counting of the filters. The site(s) of hybridization were determined by
digestion of the RNA in the RNA/DNA heteroduplex by RNase H.

The results of this study indicated that single-stranded sequences,
2058-2062, 2448-2454, 2467-2483, and 2497-2505 were available for
hybridization to cDNA probes. Bases 2489-2496, which have been postulated to
be base paired with 2455-2461 were also accessible for hybridization.

INTRODUCTION

Several techniques are now being employed to determine the accessibilty

of rRNA both within the individual subunits and the intact 70S ribosome. The

data accumulated to date have been obtained primarily from ribonuclease

digestion (1,2,3,4), chemical modification (5), and cDNA hybridization studies

(6,7). Although considerable work has been done on the accessibility of 16S

rRNA in the 30S subunit of E. coli, the picture of accessible 23S rRNA regions

in the 50S subunit is not well defined. The sequence of 23S rRNA has been

determined for several organisms and secondary structure maps have been

postulated (8,9,10). These models are in close agreement.

It is now apparent that rRNA is involved in subunit association (6,11),
antibiotic binding (12), tRNA interactions (13,14,15), and mRNA binding and

alignment (16,17). The rRNA involved in these interactions is single-stranded

and in most cases highly conserved (18). In line with the postulate that these

conserved, single-stranded sequences of rRNA are directly involved in

ribosomal functions, it follows that these sequences should be exposed to

solvent and available for interaction.
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We have begun probing the accessibility of single-stranded 23S rRNA

sequences to complementary oligodeoxyribonucleotides. Accessibility to these

probes provides evidence for the potential of particular sites to participate
in ribosomal functions in which surface location and solvent exposure is

necessary.

There are two advantages to oligodeoxyribonucleotide probing. First,
probing with cDNA is highly specific because these probes are designed to

interact with defined rRNA sequences, whereas ribonuclease digestion and

chemical modification result in either digestion or modification of several

sites within the molecule, which may perturb conformation throughout the

ribosome. Second, the conditions employed in cDNA probing are essentially
physiological, thus minimizing secondary effects as a result of solvent

conditions which can cause alterations in the native conformation of the

ribosome.

In this paper we report on the accessibility of several sequences in

domain V of E. coli 23S rRNA within the 50S subunit to cDNA probes. This study
focuses on single-stranded sequences which occur between bases 2043 through
2625 (Figure 1). This central loop of domain V comprises the major rRNA

portion of the peptidyltransferase center, a region postulated to be highly
active (18).
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Figure 1. A portion of the secondary structure map of E. coli 23S rRNA
containing domain V.
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MATERIALS AND METHODS

Synthesis and Purification of Oligodeoxyribonucleotides

Oligodeoxyribonucleotides were synthesized on a Biosearch model 8600 Automated

DNA Synthesizer utilizing beta-cyanoethyl diisopropylamino phosphoramidite

chemistry. All reagents were obtained from Biosearch with the exception of

HPLC grade acetonitrile and methylene chloride (Baker). The cDNA oligomers

were deblocked according to the manufacturers protocol and purified both

before and after removal of the 5t dimethoxytrityl (DMT) blocking group by

reverse phase high performance liquid chromotography (RP-HPLC). A Column

Engineering, C-18 ODS, 5 uM, 25 cm column was employed. The gradient used ran

from 100% buffer A (10 mM TEA-Ac, pH 7.2) to 70.8% buffer B (10mM TEA-Ac/50%

acetonitrile) at a flow rate of 1 ml/min.

Purified DNA oligomers were then 5' end labeled by using [gamma-32P]ATP

(New England Nuclear) and T4 polynucleotide kinase (United States Biochemical)

according to the method of Chaconas and van de Sande (19).

Enzymatic Sequencing of cDNA Probes

The sequences of the synthesized probes were determined by an enzymatic

method developed by Black and Gilham (20). The cDNA probes were digested with

spleen phosphodiesterase II (Pharmacia) to yield a nested set of fragments, 5'

end labeled with [gamma 32-P]ATP using polynucleotide kinase and seperated by

thin layer chromotography (TLC) on polyethyleneimine cellulose sheets

(Brinkman). A subsequent treatment with Bal 31 (Bethesda Research Labs)

produced labeled mononucleotides which were identified by TLC in the second

dimension.

Isolation of Ribosomes and Ribosomal Subunits

E. coli strain, MRE 600 was grown in standard trypticase soy broth (BBL

Microbiology Systems), at 37 C with vigorous shaking. Cells were harvested at

an A-600 value of 0.5-0.6 corresponding to the mid to late log phase of

growth. The cultures were quickly chilled on ice and pelleted by

centrifugation at 5000 RPM for 5 mins. in a Sorvall GSA rotor. Alumina (Sigma)

was added to the cell paste at a ratio of 2:1 (wt/wt) and the cells were hand

ground for one hour in the cold. Buffer A (10 mM MgC12, 100 mM KC1, and 10 mM

Tris-HCl, pH 7.4) was added as needed to form a slurry. The alumina was

removed by centrifugation at 16,000 RPM for 1 hour in a Sorvall SS-34 rotor.

The supernatant was spun at 60,000 RPM for 2.5 hours in a Beckman Ti-70 rotor,

pellets were resuspended overnight in a minimal volume of buffer A at 4 C, and

the low speed spin was repeated followed by a second high speed spin as

before. Pellets were resuspended in buffer B (1.5mM MgC12, lOOmM KCl, and 10mM
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Tris-HCl, pH 7.4) to the desired concentration.

Separation of the subunits was accomplished by the procedure of Tam and

Hill (21) with some modifications. After separation of the subunits by zonal

centrifugation the 50S and 30S fractions were pelleted separately by

centrifugation at 60,000 RPM in a Beckman Ti-70 rotor for 6 hours and 8 hours

respectively. Pellets were resuspended in buffer B and then repelleted in the

Ti-70 rotor at 60,000 RPM for 4 hours for the 50S particles and 6 hours for

the 30S particles. Pellets were resuspended in buffer B, dialyzed against 2x4

liters of buffer B at 4 C over a 24 hour period and stored in 500 ul. aliquots

at -70 C. The 50S subunit preparations were checked for 30S contamination and

subunit integrity by sedimentation velocity centrifugation using schlieren

optics in a Spinco Model E analytical ultracentrifuge.

Binding of Probes to 50S Subunits

The binding of cDNA probes to 50S subunits was assayed by incubating the

subunits with 5' end labeled probe (with specific activities between 250-1000

cpm/pmol) for 2-24 hours at 4 C on ice in 50 uls of binding buffer (5-15mM

MgC12, 100-150mM KC1, and 10 mM Tris-HCl, pH 7.4). After incubation the

reaction mixtures were diluted to 1 ml with binding buffer and filtered

through HAWP 0.45 uM nitrocellulose filters (Millipore) followed by two 1 ml

washes of the filter with binding buffer. The amount of complex formation

between radiolabeled probe and subunit was quantified by liquid scintillation

counting of the dried filters. All reactions were performed in triplicate in

order to correct for variations in the retention of subunits on the filters.

Sucrose gradient centrifugation was also used to assay complex formation.

Radiolabeled probes (500,000 CPM) were incubated with 55 pmol of 50S subunits

in 50 uls of binding buffer at 4 C (on ice) for 4.5 hours. Binding reactions

were then layered onto a 5-20% (wt/vol) sucrose gradient in binding buffer and

centrifuged in a Beckman SW-60 rotor at 54,000 RPM for 1.75 hours at 4 C. The

gradient fractions were assayed spectrophotometrically at 260 nm for subunit

migration and by liquid scintillation to monitor probe migration.

The reversible nature of probe binding was determined by competition

analysis. Increasing amounts of cold probe were added to preincubated labeled

probe/50S subunit complexes and the initial incubation period was repeated.

Radiolableled probe binding was assayed by nitrocellulose membrane filtration

and liquid scintillation counting.

Binding Specificity
To determine the site(s) of hybridization 25 pmol of 50S subunits were

incubated with 50 pmol of probe in 50 uls of RNase H buffer (40mM Tris-HCl,
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Table 1. Probe sequences and binding data.

APPARENT SATURATION
MAXIMUM RATIO

PROBE PROBE SEQUENCE _to3') BINDING (PROBE/5OS)
1) 2058-2062 TCTTT 11 20:1
2) 2448-2454 CTGTTAT 21 30:1
3) 2450-2455 CCTGTT 16 30:1
4) 2467-2476 TGAACTCTTG 13 34:1
5) 2468-2482 TCGATATGAACTCTT 25 24:1
6) 2469-2481 CGATATGAACTCT 23 28:1
7) 2472-2481 CGATATGAAC 23 40:1
8) 2489-2499 GGTGCCAAACA 4 13:1
9) 2497-2501 CATCG 20 15:1
10) 2497-2505 CATCGAGGT 32 30:1

lOmM MgC12, and 60mM KC1, pH 7.4) with 2.4 units of RNase H (Pharmacia) for 18

hours at 4 C. After incubation, the reactions were phenol extracted 3x's with

an equal volume of equilibrated phenol, three volumes of absolute ethanol was

added to the aqueous phase, followed by centrifugation for 1 hour at 10,000

RPM in a Sorvall HB-4 rotor. The ethanol was aspirated off and the pellets

were washed with 70% ethanol/4 mM NaCl and centrifuged as before. The

digestion products were dissolved in 7M urea, 0.025% xylene cyanol, and 0.025%

bromophenol blue and analyzed by electrophoresis on a 7M urea, 5%

polyacrylamide gel (35:1 acrylamide/bis, 89mM Tris-borate, 1 mM EDTA, pH 8.3)

for 5 hours at a constant current of 12.5 mA. RNA size markers (Bethesda

Research Labs) were treated according to the manufacturers protocol.

RESULTS

Oligodeoxyribonucleotide Synthesis and Purification

The secondary structure map proposed by Noller (18) was used to design

the sequence of several probes which would complement the desired target

sites. The probe sequences are listed in Table 1. In all cases but one, the

target sites were proposed to be single-stranded (Fig.l). The probes have been

assigned numerical codes based on the sequence to which they are

complementary. Selected probes were sequenced in order to certify proper

functioning of the automated synthesizer (data not shown). In all cases the

sequence obtained was correct.

Binding of Oligodeoxyribonucleotides to 50S Subunits.

The percentage of 50S subunits which formed probe/subunit complexes was

assayed by a nitrocellulose membrane filtration. Apparent binding ranged from

4% for probe 2489-2499, which has a binding site proposed to occur in a double
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Figure 2. Binding curves for probes, 2497-505 and 2489-499. Conditions were
as described in Materials and Methods.

stranded conformation, to 32% for probe 2497-2505, which has a single-stranded

binding site (Fig. 2). Probe binding saturated when between 13-40 fold excess

of probe was added to the SOS subunits (pmol/pmol). Table 1 lists the apparent

maximum percent binding for each probe and the ratio of probe/subunit required

to saturate.

The binding of probes to the 50S subunits was also assayed by sucrose

gradient centrifugation. Fiqure 3 shows a typical profile obtained by this

type of analysis. All of the probes assayed by this technique demonstrated

comigration of radiolabeled probe with 50S subunits.
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Figure 3. Sucrose gradient binding analysis of probe 2448-454 and 50S
subunits. Conditions were as described in Materials and Methods.
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Figure 4. Probe competition assay. Cold 2497-505 was added to reactions
containing preformed radiolableled 2497-505/SOS subunit complexes (see
Materials and Methods for conditions)

The effects of magnesium concentration on probe binding were tested for

the 2497-2505, 2448-2454, and 2468-2482 probes. The apparent maximum percent

binding did not vary when concentrations of 5, 10, and 15 mM MgC12 were used.

The KC1 concentration was maintained at 100 mM in these studies. Increasing

the KC1 concentration to 150 mM while the Mg concentration was held at either

10 or 15 mM did not have an effect on the apparent maximum percent binding.

The reversibilty of probe binding was demonstrated by a competition assay

in which increasing amounts of identical cold probe were added to radiolabeled

probe/SOS subunit complexes. As the concentration of the cold probe is

increased the amount of radiolabeled probe bound is seen to decrease (Figure

4).

Specificity of Probe Binding.

In addition to the target site, to which a particular probe is designed

to interact, there may be several other sites which share either complete or

partial homology. For all of the probes studied, computer searches revealed no

sites, other than the desired target site, which were completely

complementary. There were however additional sites which shared partial

complementarity.

To ascertain target site specificity, RNase H digestion assays were

performed. In all cases, when cleavage occurred, only fragments of the

expected size were observed. Fiqure 5 shows some representative RNase H

digests of several of the sites investigated. Table 2 summarizes the RNase H
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Figure 5. RNase H digestions of probe/subunit complexes. Lane 1: RNA size
markers (in kb's). Lanes 2 through 6 are the RNase H digestion products
obtained by coincubation of RNase H, 50S subunits and the corresponding probes
(see Materials and Methods for conditions). The 3' digestion fragments are
indicated by letters a-d. Lane 2: 2058-062, lane 3: 2497-505(a), lane 4: 2489-
499(b), lane 5: 2469-478(c), lane 6: 2448-454 (d). Lane 7: control 23S rRNA.
For the control, 50 pmol of 50S subunits were treated identically to the
digestion reactions. Samples were electrophoresed for 5 hours in a 7M urea, 5%
polyacrylamide gel at a constant current of 12.5 mA.

Table 2. RNase H digestion results.

TARGET POTENTIAL # OF APPROX. SIZE
SITE SINGLE-STRANDED CLIPS OF OBSERVED

PROBE STRUCTURE* BINDING SITES** OBSERVED FRAGMENT***

1) 2058-62 SS 217-221,478-482 0 ---
503-507,1084-1088

2) 2448-54 SS 714-718 1 454
3) 2450-55 SS 714-718 Not Done ---
4) 2467-76 HP NONE 1 430
5) 2468-82 HP 1885-89,2267-72 1 430

2384-88
6) 2469-81 HP 2267-72,2384-88 1 430
7) 2472-81 HP 2384-88 1 430
8) 2489-99 DS NONE 1 410
9) 2497-501 SS NONE 1 405
10) 2497-505 SS 47-51,1375-80 1 400

* SS (single-stranded), HP (hairpin loop), DS (double-stranded)
** All 23S rRNA single-stranded sites of 5 (or greater) base
complementarity are listed. The intended target site is not included.
*** Fragment sizes were estimated to within +/- 10 bases, based on RNA
size markers.
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data obtained and the positions of other potential probe binding sites. The

size of the digestion products was determined through the use of RNA size

markers. Computer search analysis of the sequence of E. coli 23S rRNA revealed

only one region in 23S rRNA which could result in the observed differential

migration pattern when digests of the 2448-2454, 2467-2476, 2489-2499, and

2497-2505 sites are compared. This region corresponds to domain V which

contains the desired target sites.

DISCUSSION

The results obtained in this study demonstrate the accessibility of bases

2448-2454, 2468-2483, and 2489-2505 to oligodeoxyribonucleotides of defined

sequence. While the 2058-2062 sequence appears to be available for

hybridization we were unable to demonstrate specificity of probe binding for

this site and therefore we cannot draw a conclusion concerning its

accessibility to cDNA probes. All of the sites chosen in this study, with the

exception of the 2489-2499 site, exhibit a high degree of phylogenetic

conservation (18) which is presumed to indicate the importance or necessity of

these sequences in either structural or functional roles. Functional roles

such as the binding of tRNA, mRNA, or other translational factors would

require that the rRNA be accessible for interaction.

The rRNA within domain V has been implicated in the binding of several

antibiotics which have been shown to inhibit the peptidyltransferase reactions

(22). Base substitutions at positions 2447, 2503 (23), 2504, 2451 (24), and

2452 (25) result in chloramphenicol resistance. The proposed secondary

structure of E. coli 23S rRNA brings these two sites in close proximity (Fig.

1).

Substitutions at 2611, result in resistance to both erythryomycin and

spiramycin (26) suggesting that these antibiotics bind, at least partially

within domain V. In addition, crosslinking of puromycin (27) and tRNA

derivatives (13) to nucleotides in domain V suggests that the tRNA must

position itself in close proximity to the rRNA of the peptidyltransferase

center. These studies support the notion that the rRNA of this area should be

accessible to solvent and thus capable of interaction with cDNA probes.

The apparent percentage of subunits participitating in probe/subunit
complex formation, when assayed by nitrocellulose filtration, ranged from 4%

to 32% for the 2489-2499 and 2497-2505 sites respectively. Sucrose gradient
centrifugation also provided a qualitative approach in analyzing complex
formation, but the dilution of probe concentration as the probe/subunit
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complexes sedimented resulted in a low level of complex formation. However,

this technique illustrated that the probes were binding equally throughout the

entire subunit population and not to a subset defined by gross structural or

conformational alterations. Less prominent subsets, if they exist, may not be

detected. This approach also demonstrated that the binding of probes does not

result in gross conformational changes.

The lengths of the probes used ranged from 5 to 15 bases. Within a

particular site, increased probe length generally resulted in an increased

level of binding. Probe 2497-2501 (5 bases) bound at a level of 20% and

saturated at a ratio of 20:1 (probe/subunit) while probe 2497-2505 (9 bases)

bound at 32% and saturated at a ratio of 30:1. Similiar results were observed

for the hairpin loop which extends from base 2467 to base 2483. Probe

2467-2476 (10 mer) binds at a maximum level of 13%. In comparision, probe

2468-2482 (15 mer) bound at 25%. It is difficult to accurately assess the role

which probe length may play in contributing to the observed maximum percent

binding and in determining the equilibrium of complex formation since several

additional factors come into play, such as rRNA sequence, secondary structure,

tertiary interactions, and the effects due to RNA/protein interactions. In

view of these variables, the level of binding cannot strictly be used as an

absolute gauge to monitor the exposure of one site relative to another.

The reversible nature of probe binding was demonstrated by competing

unlabeled probe with prebound radiolabeled probe. The addition of unlabeled

2497-2505 probe to preformed 2497-2505/50S complexes at a ratio of 1:1

(unlabeled/labeled) resulted in a decrease of radiolabeled probe binding from

31% to 17%. This illustrates that complex formation is a dynamic process and

that the maximum percent binding obtained for each site is a direct reflection

of the association constant.

The number of different rRNA sites involved in hybridization with the

cDNA probes can be determined by digestion of the rRNA within the DNA/RNA

heteroduplexes with RNase H. RNase H digestion requires a minimum of at least

4 adjacent base-pairs in a DNA/RNA heteroduplex (28). Although most of the

sites studied possess sequences which occur at one or more other positions in

23S rRNA, we observed no digestion products which could be attributed to these

sites. The cleavage patterns are indicative of probe specificity. The

2448-2454 2497-2505 sites should generate 3' fragments of approximately 450

and 400 bases, respectively. Sites within the 2468-2483 hairpin will generate

3' fragments ranging in size from 420 to 433 bases. Upon electrophoresis the

fragments from each cleavage site migrate with similiar rates. The migration
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difference between the smallest digestion fragment, obtained from the 2497-

2505 site, and the largest, from the 2448-2454 site, indicate a size

difference of approximately 50 bases (+/- 10) under our conditions (Fig.5).

The migration pattern provides solid evidence for cleavage occurring at

the desired target sites. A computer search shows that no other region in the

23S rRNA, other than domain V, possesses a series of potential binding sites

which could generate fragments of the appropriate size (about 400-450 bases)

with a similiar pattern of differential migration.

Furthermore, RNase H will only clip where the RNA/DNA heteroduplex is in

a true hydrogen bonded helix (29). This rules out the possibility of cleavage

due to non-base pairing interactions at sites which could by chance generate a

similiar migration pattern. From these arguments we conclude that in all cases

where cleavage occurred, the probes were binding to the intended target sites.

The results of the RNase H digestion assays were as expected in all

cases but two. One exception occurred at the 2489-2499 site. Bases 2489

through 2496 are postulated to be base paired with 2455 through 2461. This

postulated helix is composed primarily of G-U base pairs with a bulged U at

position 2493. This is one of the few helical regions of 23S rRNA which is not

considered proven (18). Probe bound to this site at an apparent level of only

4%, and saturated at a molar ratio of 13:1 (probe/50S subunit). Initially this

was interpreted to represent nonspecific background binding. Increasing the

ratio up to 40:1 did not increase the maximum percent binding. However,

ribonuclease H cleaved this site as well as others in this study, even though

the measurable binding was low. This suggests the this postulated helix, if it

exists may be very weak and thus susceptible to melting by the probe. It is

possible that the postulated helical interaction is a transient one and may

undergo a "flexing" or "breathing" type of transition between a single-

stranded and double-stranded conformation. Similiar transitions between single

and double-stranded conformations have been postulated to occur in 16S rRNA

(18). Such conformational "breathing" could presumably displace bound probe

resulting in the observed low level of binding. RNase H digestion would

require only a transient interaction thus explaining the observed cleavage.

Although the probe extends 3 bases into a single-stranded region on the 3'

side of this postulated helix, this would not provide a suitable recognition

site for RNase H which has been demonstrated to require at least a 4 base pair

RNA/DNA heteroduplex.

A second suprising result was seen for the 2058-2062 site. While this

site bound probe at an apparent maximum level of 11%, digestion by RNase H was
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not observed. It is probable that the access of RNase H to this site could be

impeded by ribosomal proteins or by the folding of rRNA. We are currently

developing alternative methods to clip the RNA in such shielded regions in

order to demonstrate specificity.

The RNase H data suggest that the number of accessible 23S rRNA sites in

the 50S subunit is limited. Such a model is supported by chemical modification

studies (31). The accessibility of single-stranded, conserved sequences, may

indicate a potential functional involvement of these sequences in the

translational process. Although each of the target sites probed in this study

have partially homologous sequences elsewhere in 23S rRNA, these sequences

apparently were not accessible for hybridization with cDNA probes.

Complementary DNA probes can provide a powerful tool for investigating

the accessibility and functionality of specific sequences of rRNA. By blocking

a particular site, thus impeding its ability to interact with various

macromolecules involved in the translational process, or with other portions

of the ribosome, the possible function of rRNA in this process may be

elucidated.
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