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Mach, Kathleen E., M.S. August 1993 Biochemistry

T h e  in vivo effect of ACTH on GYP 17 mRNA in the rabbit adrenal.

Director: H. Richard Fevold

Cytochrome P450 17a/17,20 lyase (P450]y^) is encoded by the CYP17 gene. 
Upon ACTH stimulation the am ount of this protein and its enzymatic activity have 
been shown to increase in the rabbit adrenal. The present study was designed to 
determ ine whether these increases could be correlated to an increase in CYP17 
mRNA. Adrenal RNA isolated from ACTH-stimulated, control rabbits injected 
with the injection vehicle, and uninjected control rabbits were compared for the 
level of CYP17 mRNA. After four days of ACTH injections little change (1.07 fold 
increase) in CYP17 mRNA could be detected. With six days of ACTH injection 
1.34 fold increase in CYP17 mRNA was found compared to the injected controls 
and a 1.7 fold increase compared to the uninjected controls. Western analysis 
confirmed ACTH stimulation with a 21 fold increase in P450i7a protein in ACTH- 
stimulated rabbits compared to the injected control and a greater than 50 fold 
increase compared to the uninjected control rabbits. The difference between 
injected control rabbits and uninjected control rabbits is presumably caused 
secretion of endogenous ACTH. The large elevation in P450i7« protein levels with 
a minimal increase in CYP17 mRNA indicates the increase in P450,7^ protein with 
ACTH stimulation is due to translation of mRNA already present in the adrenals.
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INTRODUCTION

P450i7«

Cytochrome P450 17a hydroxylase/17,20 lyase (P450i?^) is a key enzyme in 

the synthesis o f  glucocorticosteroids, estrogens and androgens from cholesterol. 

In all species investigated it is encoded by a single copy gene named GYP 17 

(Nelson et al. 1993). This gene or its cDNA has been isolated from several species, 

including bovine (Zuber et al. 1986a, Bhasker et a!. 1989), hum an (Chung et al.

1987, Picado-Leonard and Miller 1987, Bradshaw et al. 1987, Kagimoto et al.

1988, Brentano et al. 1990), rat (Namiki et al. 1988, Nishihara et al. 1988, Fevold 

et al. 1989, Zhang et al. 1992), mouse (Youngblood and Payne 1992), and porcine 

(Conley et al. 1992 and Zhang et al. 1992). T he degree of homology among these 

genes is high enough to allow hybridization of CYP17 cDNAs from different 

species. In hum ans this gene is located on chromosome 10 at q24.3 (Fan et al. 

1992). Expression of CYP17 is tissue specific. While it is expressed in the testes 

and ovaries of all mammals, expression in the adrenal glands varies among 

species.

P450]7„ is an integral m em brane hemoprotein located in the smooth 

endoplasmic reticulum. This enzyme can be expressed in COS 1 cells; for active 

expression in this system m em brane attachment is required. The amino terminal 

sequence functions as a signal anchor sequence for m em brane attachment and 

may be im portant for proper folding of the protein (Clark and W aterman 1991 

and Clark and W aterman 1992).
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Figure 1: Reactions catalyzed by P450j7^ represented by horizontal arrows.

P450i7« catalyzes two separate types of reactions (Figure 1). The first 

reaction is the addition of a hydroxyl group in the alpha position of carbon 17 of 

pregnenolone or progesterone (list of abbreviations and common names used are 

found at end of thesis). In this reaction the heme prosthetic group plays a key 

role; Figure 2 depicts this mechanism (Guengerich 1991). T he second reaction is 

the cleavage between carbons 17 and 20 of 17a-hydroxypregnenolone or 17a- 

hydroxyprogesterone. The 17-hydroxylase and 17,20-lyase catalytic activities are 

located in the same polypeptide chain. This has been shown by isolation and 

characterization of the protein (Nakajin and Hall 1981 and Nakajin et ai. 1983)
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Figure 2: Scheme for P-450 oxygen activation and oxygenation. S,substrate; 
P, product; and RO, artificial active oxygen donor. (Guengerich 1990).

and expression of the CYP17 cDNAin nonsteroidogenic cells (Zuber et al. 1986b).

P450i7«, and the other microsomal P450 proteins receive their reducing 

equivalents from nicotinamide adenine dinucleotide phosphate (NADPH) via 

NADPH cytochrome P-450 reductase. Two electrons from NADPH are 

transferred to NADPH cytochrome P-450 reductase and then to the P450 protein 

(Om ura et al. 1966 and Hiwatashi and Ichikawa 1979).



TH E ADRENAL GLAND

T he adrenal glands are part of the mammalian endocrine system. They are 

composed of two sections, the medulla in the center and the outer cortex. The 

medulla is responsible for synthesizing catecholamines and the cortex produces 

aldosterone, glucocorticoids, and adrenal androgens. T he cortex can be further 

divided into three layers. The outer layer of the cortex, the zona glomerulosa, 

produces primarily aldosterone and does not express P450i7^. T he inner two 

layers, zona fasciculata and zona reticularis are responsible for the production of 

the glucocorticoids, cortisol or corticosterone, and adrenal androgens. In cortisol 

producing species P450i7« is expressed in the inner two layers of the adrenal 

cortex (as reviewed by Norm an and Litwack 1987).

STEROID HORMONE PRODUCTION

T he production of steroid hormones begins in the mitochondria where 

cholesterol is converted to pregnenolone by P450scc (Figure 3). Pregnenolone 

then moves to the endoplasmic reticulum. Steroidogenic enzymes P450i7«, 3B~ 

hydroxysteroid dehydrogenase (3BHSD), and 21-hydroxylase (P450c2i) are all 

located in the endoplasmic reticulum. Products of the sequence of reactions 

catalyzed by these enzymes are transported back to the mitochondria where they 

are converted to cortisol or corticosterone by 11 B-hydroxylation. Since P450c2i 

and 1 IB-hydroxylase (P450,,J are expressed only in the adrenal glands, the 

adrenal is the only organ to produce glucocorticosteroids.
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Figure 3; Metabolic pathway for production of glucocorticosteroids in the 
adrenal glands (Waterman and Simpson 1989).



ACTH AND STEROIDOGENESIS

Glucocorticoid production is under the control of the peptide hormone, 

ACTH (Figure 4). ACTH is synthesized in the anterior pituitary as part of a 

polyprotein, POMC. POMC produces three melanocyte-stimulating hormones, 

three endorphins, and ACTH; there is some overlap am ong these sequences. 

T he  level of expression of ACTH is controlled by posttranslational processing of 

POMC (as reviewed by Bolander 1989).

ACTH elicits an acute effect, the mobilization of cholesterol for conversion 

to pregnenolone, in a matter of minutes. T he cellular response to ACTH begins 

with binding of ACTH to specific cell surface receptors in the zona reticularis and 

zona fasciculata. This activates adenylate cyclase causing an increase in the 

production of cAMP. The resulting increased concentration in of cAMP activates 

the catalytic subunit of protein kinase A (Haynes 1958 and Haynes et al. 1959). 

Active protein kinase A phosphorylates other proteins in a cascade of events 

resulting in hydrolysis of the stored cholesterol esters (Jefcoate et al. 1987), The 

free cholesterol is transported to the mitochondria by sterol carrier protein 2 

(Chanderbhan et al. 1982) where it is the substrate for P450«-c- P450scc catalyzes 

the initial and rate limiting step in the synthesis of glucocorticosteroids. T he acute 

action of ACTH is to increase the am ount of initial substrate, and thereby escalate 

steroid horm one production.

ACTH also has a chronic or long term effect on steroidogenesis (Kass et al. 

1954). It maintains optimal levels of steroidogenic enzymes in the adrenal cortex
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Figure 4: Through a cascade of reactions ACTH acts to increase the am ount 
of available substrate and maintain enzyme levels for steroidogenesis.

and alters steroidogenic pathways. Adrenocortical P450 levels fall after 

hypophysectomy and are increased by the administration of ACTH (Purvis et al. 

1973). Many studies have focused on elucidating the mechanism by which ACTH 

controls enzyme levels. Considering the pleiotropic effects of ACTH, the control 

mechanisms in the adrenal gland is probably variable among species.

Bovine adrenocortical cells grown in primary culture are found to produce 

substantially less cortisol in the absence of ACTH compared to cells grown with 

ACTH (Goodyer et al. 1976, Simonian et al. 1979, Kram er et al. 1983). The
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ability of  these cells to produce cortisol was linked to the activity of 17a- 

hydroxylase (McCarthy etal. 1983). In cultures lacking ACTH little to no P45017a 

protein or CYP17 mRNA was detected. I f  the same cells were grown in the 

presence of ACTH or cAMP, levels of CYP17 mRNA (John ef al. 1986) and 

P450i7„ protein (Zuber et ai. 1985) returned to nearly normal levels. This 

demonstrates the requirem ent of ACTH for maintenance of P450i7a levels and 

indicates that in cattle ACTH control is at the transcriptional level. Studies of 

bovine fetuses showed adrenal expression of P450,7« in the first 100 days of 

gestation; between days 100 and 230 P450,7« and CYP17 mRNA were not 

detectable; and after day 230 P45017a and CYP17 mRNA were again expressed. 

Blood levels of ACTH and cortisol also follow the same pattern as P450]7«, 

present early and late in gestation but absent between days 100 and 230 (Lund et 

al. 1989). During ovine fetus development the same presence, absence, 

reappearance pattern of expression of P45017a, CYP17 mRNA, ACTH, and 

cortisol was found (Tangalakis et al. 1990). These results provide further evidence 

that ACTH can function in vivo as well as in cell culture to induce transcription 

of the CYP17 gene . The factors affecting ACTH inducibility of CYP17 may vary 

throughout the cattle’s life as seen by the observance of lower levels of CYP17 

mRNA in the adrenals of older (10-12 years old) cow and primary adrenal cell 

cultures from old cattle produce less CYP17 mRNA than that from young (1 year 

old) cattle (Ogo et ai. 1991).

Hamsters, a cortisol producing rodent, express P450i7„ in response to
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ACTH stimulation (LeHoux et al. 1987). When the effect of ACTH was followed 

over time LeHoux et al. (1992) found that CYP17 mRNA is maximally increased 

at 2.5 hours after injection, while the levels of P45017a protein increase gradually 

between 5 and 10 hours after ACTH injection and reached a constant level after 

15 hours. T he pronounced lag between mRNA synthesis and protein production 

indicated a control point between transcription and translation.

Guinea pigs, another cortisol producing rodent, express some of the highest 

levels of adrenal P450,7« of any species. The level of adrenal P450i7« expression 

can be increased slightly with ACTH stimulation. Upon ACTH stimulation of 

guinea pig adrenal cells in culture, both CYP17 mRNA and P45017# protein 

increased (Provencher et al. 1992a). However, in vivo an apparent increase in 

17cE-hydroxylase activity was observed with no corresponding increase in CYP17 

mRNA. In northern blot analyses the level of CYP17 mRNA appeared to drop 

(Provencher et al. 1992b). In vivo observations of the CYP17 mRNA levels in 

these studies did not take into account the 35% increase in adrenal weight 

observed in the ACTH stimulated animals, however along with the increase in 

adrenal size is a larger pool of RNAs. This could mask increases in the level of 

CYP17 mRNA.

Rats and mice produce no 17«-hydroxylated steroids in their adrenal 

cortex, and no 17a-hydroxylase activity can be detected in the adrenals of these 

rodents (LaPlante et al. 1964). When injected with ACTH an increase in the 

blood levels of corticosterone is seen. This is due, at least in part, to the acute
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action of  ACTH, increasing the availability of initial substrate (Koritz and Kum ar 

1970). In these species ACTH does not induce adrenal 17a-hydroxylase activity 

and does not stimulate production of cortisol (Slaga and Krum  1976). Although 

cAMP does not induce CYP17 expression in the adrenal, in testicular leydig cells 

luteinizing hormone, which also acts via a cAMP second messenger, can induces 

transcription of CYP17 (Nishihara et al. 1988). This indicates that other factors 

that control transcription of CYP17 are tissue specific.

RABBITS, ACTH, AND P450n.

T he link between ACTH stimulation and an increase in 17a-hydroxylated 

steroid horm one production was first described in rabbits (Kass et al 1954). 

Rabbits are mainly a corticosterone producing mammal; little or no cortisol can 

be detected in their blood (Bush 1953). In 1954 Kass et al. reported that when 

rabbits were injected with porcine ACTH the size of the adrenal glands increased, 

and increasing amounts of cortisol could be found in the adrenal vein blood. The 

ratio of cortisol to corticosterone in untreated animals was <0.05, after 7 days of 

ACTH injections the ratio rose to 0.5, and after 21-28 days of ACTH stimulation 

the cortisol level was four time higher than that of corticosterone. When Krum 

and Glenn (1965) repeated this work they also reported a cortisol to corticosterone 

ratio of 0.05 in control animals and ratios of 0.36 and 0.81 after 15 and 30 days 

of stimulation with porcine ACTH. It has been repeatedly confirmed that there 

is an increase in cortisol production in ACTH stimulated rabbits.
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T h e  increase in cortisol levels of rabbits is due to an increase in 17a- 

hydroxylase activity (Fevold 1969; Fevold et al. 1978). T he  increase in 

hydroxylase activity with ACTH stimulation can be shown in vitro (Fevold 1984) 

and in vivo (Fevold et al. 1978) W hen comparing adrenal levels of P450i7« 

protein, ACTH stimulated rabbits showed a 4 fold increase over unstimulated 

animals (Chouinard and Fevold, 1990). The effect of ACTH on adrenal 

steroidogenic enzymes has been shown to be specific to P450i7«, the levels of 21- 

hydroxylase and 38HSD showed little to no change upon ACTH stimulation 

(Slanina and Fevold 1982).
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STATEMENT OF THE PROBLEM

Rabbits are unusual in that they normally produce mainly corticosterone 

yet th rough  ACTH stimulation begin producing more cortisol and less 

corticosterone (Kass et aï. 1954 and Krum and Glenn 1965). T he increase in 

cortisol production has been linked to an increase in 17a-hydroxylase activity 

(Fevold et al. 1978) with a corresponding increase in the am ount of P450i7« 

protein (Chouinard and Fevold 1990).

Upon ACTH stimulation an increase in adrenal CYP17 mRNA resulting in 

an increase in adrenal P450i7^ has been demonstrated in cattle (John et al. 1986) 

and hum ans (Brentano et al. 1990). The purpose of this research was to 

determ ine whether the increase in P450]7« in rabbits is due to an increase in 

CYP17 mRNA as is seen in other species.
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EXPERIMENTAL METHODS

Male New Zealand White rabbits from R&R Rabbi try (Stanwood, WA) were 

housed at the University of Montana animal laboratory and given food and water 

ad libitum. T he  rabbits were injected intramuscularly twice daily, in the morning 

and evening. Rabbits were injected for either a four or six day period. 

Experimental rabbits were injected with 28 to 40 lU ACTH (Armour 

Pharmaceutical Co., Kankakee, IL). ACTH was injected in 5% beeswax in peanut 

oil containing 0.5% phenol (ICN, Irving, CA) as a preservative (Fevold 1967) or 

from the commercially prepared Acthar gel. All ACTH was a gift from Dr. R. 

Schlueter, A rm our Pharmaceutical Co. Control rabbits were either injected with 

the control vehicle or left uninjected.

Following completion of the injection period, rabbits were anesthetized with 

sodium pentobarbital then sacrificed by exsanguination. The adrenal glands, 

testes, and a portion of the liver were removed from the animals. T he excised 

tissues were immediately frozen in liquid nitrogen and used for isolation of either 

total RNA or microsomal protein.

RNA ISOLATION AND QUANTITATION

RNA was isolated by the acid guanidinium thiocyanate-phenol-chloroform 

extraction method described by Chomczynski and Sacchi (1987). The tissue was
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weighed and homogenized in 4M guanidinium thiocyanate (Fisher, Fair Lawn 

NJ), 25mM sodium citrate (Sigma, St. Louis, MO), 0.5% sodium sarcosyl (Sigma), 

and 0.1 M B-mercaptoethanol (Sigma) using a Tissuemizer homogenizer (Tekmar, 

Cincinnati, OH). One tenth volume 3M sodium acetate (Fisher), pH 4.0; an equal 

volume water saturated phenol (ICN); and two tenths volume chloroform (Fisher) 

were added to the homogenized tissue and mixed by inversion. T he mixture was 

centrifuged to separate the aqueous phase from the phenol/chloroform phase. 

The aqueous phase was collected and the RNA precipitated hy adding two volumes 

isopropanol and storing at -20°C for at least one hour. T he precipitate was 

collected by centrifugation and the supernatant discarded. The pellet was 

redissolved in homogenate buffer and reprecipitated with isopropanol as above. 

T he  RNA pellet was air dried then redissolved in lOmM Tris (USB, Cleveland, 

OH) and ImM EDTA (Sigma), pH 7.2. The quantity and quality of RNA isolated 

was determined spectrophotometrically by measuring the optical density of a 1:300 

dilution of the RNA in 10 mM Tris and 1 mM EDTA at 260 and 280 nm using a 

Gilford model 2400 spectrophotometer. For all manipulations of RNA DEPC 

treated solutions and RNase free glass wear was used.

N orthern  blot analysis was preformed on the isolated RNA samples. RNAs 

were separated by electrophoresis through agarose gels containing formaldehyde 

(protocol from Sam brook ct al. 1989). Gels contained 1.0% agarose GTG (FMC, 

Rockland ME), 2.0 mM MOPS (Boehringer Mannheim GbmH, Mannheim W. 

Germany), 5.0 niM sodium acetate, 1.0 mM EDTA, 0.25 p,g ml * ethidium
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bromide (Sigma), and 1.0 M formaldehyde (Fisher). To prepare samples for 

electrophoresis RNA was precipitated by adding sodium acetate to 0.3M and 2 

volumes ethanol and storing at -20*^0 for at least one hour, collected by 

centrifugation, washed with an equal volume of 70% ethanol, and dried. The 

RNA was redissolved in a buffer containing 2.0 mM MOPS, 5.0 mM sodium 

acetate, 1.0 mM EDTA, 1.0 M formaldehyde, and 50% deionized formamide 

(Fisher). T he solution was heated to 65°C for 15 minutes to denature the RNA, 

then cooled on ice. To each RNA sample 2^1 bromophenol blue/xylene cyanol 

tracking dye mixture was added. Samples were loaded onto a gel submerged in 

running buffer, 2.0 mM MOPS, 5.0 mM sodium acetate, 1.0 mM EDTA, and 1.0 

M formaldehyde. Samples were electrophoresed at 80 volts until the bromophenol 

blue ran out of the gel. After electrophoresis RNA was visualized under 

ultraviolet light and photographed with a Polaroid MP-4 Land camera and 

Polaroid type 55 film. The locations of 28S and 18S ribosomal RNA bands were 

noted.

After electrophoresis the RNA was transferred to a Zeta Probe (BioRad, 

Richmond, CA) nylon m em brane by wicking from below with a solution of 1.5 M 

sodium chloride (Fisher) and 1.5 M sodium citrate, lOX SSC (Thomas 1983). 

After transfer was complete the locations of the 28S and 18S ribosomal RNA bands 

were marked and the m em brane baked in a 80° C vacuum oven for one hour to 

irreversibly bind the RNA. Membranes with bound RNA were prehybridized at 

45°C with gentle shaking over-night in Seal-A-Meal bags in a buffer of 50%
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formamide; 25 mM potassium phosphate (EM Science, Cherry Hill, NJ), pH 7.4; 

5X D enhardt’s solution, and 0.5 mg ml ' sheared denatured salmon sperm DNA 

(Sigma). T he  membranes were hybridized in a buffer containing 50% fromamide; 

25 mM potassium phosphate, pH 7.4; 5X Denhardt’s solution, 0.5 mg/ml sheared 

denatured  salmon sperm DNA, 10% dextran sulfate (Sigma), and the denatured 

labeled cDNA probe at 45°C in a shaking waterbath (Thomas 1983).

For analysis of RNA spotted onto nylon membranes, RNA samples were 

dissolved in a mixture of 2X SSC, 2.0 M formaldehyde, and 50% formamide. A 

Zeta Probe nylon m em brane (BioRad) was wetted in 20X SSC and placed in a 

hybridot dot blot manifold (BRL, Gaithersburg, MD). RNA samples were spotted 

onto the m em brane using suction. Slots containing RNA samples were washed 

twice with lOX SSC, and the membrane was baked in an 80° C vacuum oven to 

bind the RNA to the membrane. Membranes were prehybridized and hybridized 

in the same m anner as northern blots.

Complementary DNA probes were used for northern blot and dot blot 

hybridizations. These probes were labeled with (cr-^-P)dCTP SOOOCi mmol ’ (NEN 

Research products, Boston, MA) using a Boehringer Mannheim random primed 

DNA labeling kit or by PCR (Perkin Elmer, Norwalk, CT) incorporation of {a- 

^-P)dCTP 3000Ci/mmol (NEN Research products). Probes were purified to 

remove unincorporated nucleotides by centrifugation through a G-50 Sephadex 

column as described by Sambrook et al 1989.

CYP17 mRNA was detected on each m em brane with a rat CYP17 cDNA
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probe (Fevold e t ai. 1989). CYP17 probes were either a 1.1 kb Kpnl (Promega, 

Madison, WI) - Sacl (Promega) restriction fragment representing bases 102 to 

1352, a 0.4 kb Bam HI (Boehringer Mannheim) - PstI (Promega) restriction 

fragment representing bases 936 to 1376, or 0.5 kb PCR amplified fragment of the 

rat CYP17 cDNA. The sequences of the PGR primers used were 

TTCAATGACCGGTCT and CTAGAGCCACGCGGTCC, which amplified the 

sequence from base 1026 to 1489.

Hybridized membranses were washed twice in 2X SSC and 0.1% SDS at 

room tem perature  for 5 minutes per wash, in IX SSC and 0.1% SDS at room 

tem perature for 30 minutes, and in 0.5X SSC and 0.1% SDS at 50°C for 30 

minutes. Binding of the probe was detected by autoradiography using Kodak 

XAR-5 film. Blots were exposed to film in a cassette with intensifying screens for 

two to ten days at -80° C. Film was developed using Kodak GBX (Eastman 

Kodak, Rochester NY) developer and fixer. Density of the signal on the 

developed film representing the hybridized bands was determined by scanning 

densitometry using an EC densitometer (St. Petersburg FL).

Membranse with RNA were then stripped of probe by submerging in O.IX 

SSC and 0.1% SDS for 30 minutes at 80°C, prehybridizing, and rehybridized as 

above, but using a ^-P labeled 0.9 kb EcoRl/BamHl restriction fragment 

representing bases 490 to 1389 of the rat CYP21 cDNA. Efficiency of stripping 

was checked by overnight exposure to film prior to reprobing. Hybridization was 

detected by autoradiography and intensity of signal determined as above.
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PROTEIN ISOLATION AND DETECTION

Microsomal proteins were isolated by the procedure described by Fevold 

and D rum m ond (1972). The tissue was weighed, minced on a gauze pad 

saturated in 0.9% NaCl, rinsed with 0.154 M KCl (Fisher) in 0.1 M NaPO^, 1 mM 

D l l  (Sigma), pH 6.8, and homogenized in 0.25 M sucrose (Sigma) in 0.1 M 

NaPO^,l mM D l l , pH 6.8, using a ground glass homogenizer. Homogenate was 

centrifuged at 9000 xg for 20 minutes to remove plasma membranes, 

mitochondria, unbroken cells, and cell debris. The supernatant was recentrifuged 

at 17,500 xg for 30 minutes to remove light mitochondria, and the resulting 

supernatant centrifuged at 105,000 xg for one hour to pellet the microsomes. The 

pellet from the last centrifugation was washed by resuspending in 0.154 M KCl in 

0.1 M NaP0 4 , 1.0 mM D l l  and recentrifuging at 105,000 xg for one hour. The 

final pellet was resuspended in 0.25 M sucrose in 0.1 M NaPO^, 1 mM D l l , and 

20% glycerol and stored at -20° C. Quantity of protein isolated was determined 

using the Lowry method (Lowry et al. 1951).

Proteins from the microsomal faction were separated by SDS-PAGE 

(Laemmli 1970) for western blotting as described by Chouinard and Fevold (1990). 

T he  gel consisted of a separating gel of 10% acrylamide (Sigma), 0.27% N,N- 

methylene bis acrylamide (Sigma), 0.375 M Tris-HCl, pH 8.8, 2 mM EDTA, 

0.025% (v/v) TEMED (Sigma), and 0.1% am monium persulfate (Sigma), with a 

stacking gel of 5% acrylamide, 0.13% N,N-methylene bis acrylamide, 0.125M Tris- 

HCl, pH 6.8, 2 mM EDTA, 0.5% (v/v) TEMED, and 0.1% ammonium persulfate.
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Gels were run  with a buffer of 25 mM Tris, 192 mM glycine (Sigma), and 0.1% 

SDS at pH8.3.

Protein samples of 20 to 40 pg were mixed with an equal volume of sample 

solubilizing buffer to a final concentration of 2% SDS, 1 M B-mercaptoethanol, 

20% glycerol, 0.125 M tris-HCl, pH 6.8, and 0.01% bromophenol blue as a 

tracking dye. Molecular weight markers (BioRad low range) were treated the 

same as the microsomal protein samples. Samples in solubilizing solution were 

vortexed to thoroughly mix then boiled for 10 minutes in a water bath to 

denature  the proteins. Immediately after heating, the samples were loaded onto 

the gel and electrophoresed until the dye front reached the end of the gel.

After electrophoresis the molecular weight m arker lanes were removed, 

fixed in 45% methanol, 1% acetic acid for one hour and stained with 0.1% (w/v) 

Coomassie brilliant blue in 50% methanol for one hour. The m arker lanes were 

cleared of excess dye by soaking in 45% methanol, 1% acetic acid for two hours. 

Microsomal proteins were transfered to a nitrocellulose m em brane (BioRad) by 

electroblotting in a Genie blotting apparatus (Idea Scientific, Corvallis, OR) filled 

with 20 mM sodium phosphate buffer, pH 8.0. The nitrocellulose m em brane with 

the transferred microsomal protein was removed from the blotting apparatus and 

soaked in a blocking solution of 10 mM Tris in 150 mM NaCl, pH 7.4, with 0.3% 

Tween-20 (BioRad), TTBS, and 2% nonfat milk for one hour. Blots were soaked 

overnight in TTBS containing 1 p,g ml ' primary antibody. After allowing the 

primary antibody to complex with the protein, the blots were washed six times, 15
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minutes per wash, in TTBS, followed by an incubation for one hour in TTBS 

containing 2-5 X 10  ̂cpm/ml labeled protein A, specific activity > 30 pCi pg ' 

(ICN). T h e  blots were washed again six times in TTBS, wrapped in plastic wrap, 

and exposed to Kodak XAR-5 film in a cassette with intensifying screens at -70° 

C for 2 days. After exposure the film was developed with Kodak GBX chemicals. 

Intensity of bands on autoradiograms was determined by scanning densitometry 

with an EC densitometer.

P450,7„ protein was detected on the western blots using a rabbit anti-pig 

P450]7« antibody provided by Dr. Anita Payne. Some blots were then stripped of 

antibody by incubation at 70° C for 30 minutes in a solution of 2% (w/v) SDS, 

containing 100 mM B-mercaptoethanol and 62.5 mM Tris-HCl, pH 6.8, 

(Kaufmann et ai. 1987), both stripped or unstripped blots were reprobed with a 

rabbit anti-bovine P450c2i antibody provided by Dr. Michael Waterman.
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RESULTS

EFFECTS OF ACTH STIMULATION

T h e  effects of ACTH stimulation on adrenal size and adrenal RNA yield are 

shown in Table 1. Adrenal glands from rabbits injected with ACTH were 

substantially larger then those from unstimulated animals. In the first experiment 

in which the rabbits were injected for four days, there was a 36% increase in 

adrenal weight of the ACTH-stimulated animals over the control animals. In this 

experim ent the ACTH-injected rabbits were an average of 12% larger than those 

in the control group, which might account for some of the difference in adrenal 

size. In the first six day injection experiment a 15% increase in adrenal size was

EXP
NO.

AVERAGE
BODY
WEIGHT, kg

AVERAGE 
ADRENAL 
WEIGHT, g

TOTAL RNA/ 
ADRENAL, iig

TOTAL 
R N A /g 
TISSUE, ng

I 4 DAY ACTH 3.05 ±  0.18 0.1375 177 1288

CONTROL 2.68 ±  0.29 0.0875 148 1697

2 6 DAY ACTH * 0.0875 118 1347

CONTROL * 0.075 27** 360**

3 6 DAY ACTH 2.07 ±  0.19 0.117 293 2515

INJ ECTED 
CONTROL

2.06 ± 0 . 1 1 0.080 127 1589

U N 
INJECTED
CONTROL

2.25 ±  0.12 0.082 154 1889

Table 1: ACTH-stimulated and control rabbit adrenal 
weights and RNA yield. All data an average of pool of 
adrenals from 4 rabbits 

* Not recorded.
** Apparent loss of RNA during preparation.
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observed in the ACTH -stimulated rabbits, the possible contribution of rabbit size 

to this increase in adrenal weight cannot be determined as the weights of the 

rabbits were not recorded. Adrenal size was also increased in the third 

experim ent (Table 1). T he ACTH-stimulated rabbit adrenal gland were 32% 

larger than those of both the injected control and uninjected control. T he am ount 

of RNA and protein isolated from each adrenal was greater in the ACTH- 

stimulated as compared to that of the control group(s) in all experiments. These 

results confirm effective stimulation by ACTH.

Figure 5 shows northern  blot analysis of RNA isolated from rabbits after 

four days of stimulation with ACTH and from control rabbits injected with vehicle. 

This blot was probed with a 1.1 kb restriction fragment of the rat CYPI7 cDNA 

which was labeled with (a-^-P) dCTP by random primed labeling. Lanes 5 and 6 

contain 40 and 20 pg RNA isolated from the adrenals of ACTH-stimulated rabbits 

and lanes 9 and 10 contain 40 and 20 pg RNA isolated from control rabbit 

adrenals. Lanes 1 and 3 contain 20 \ig and lanes 2 and 4 contain 10 M-g of rat 

testis RNA, and lanes 7 and 8 contain 40 and 20 pg rabbit testis RNA, all as 

positive controls. Lanes 11 and 12 contain 40 and 20 pg rabbit liver RNA as 

negative controls. Scanning densitometry of the autoradiogram showed no 

significant difference in the intensity of bands of equal concentrations of adrenal 

RNA from ACTH-stimulated and control rabbits (Table 2). This result indicated 

that ACTH caused no change in the am ount of CYP17 mRNA per microgram of
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1 2 3 4 5 6 7 8 9 10 11 12

28S-
18S-

CYP 17

Figure 5: N orthern  blot analysis of RNA from rabbits after 4 days of injection 
with ACTH. RNA was probed with a labeled 1.1 kb rat GYP 17 cDNA. Lanes
1-4: rat testis RNA; 5 and 6: 40 and 20 pg ACTH stimulated rabbit adrenal 
RNA; 7 and 8: 40 and 20 pg rabbit testis RNA; 9 and 10: 40 and 20 p.g control 
rabbit adrenal RNA; 11 and 12: 40 and 20 p-g rabbit liver RNA.

1 2 3 4 5 6 7 8 9 10 11 12
28S-

18S- f» %»
GYP 21

Figure 6: T h e  filter from the experim ent in Figure 5 was stripped and reprobed
with the 0.9 kb rat CYP21 cDNA.
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EXP.
NO.

INJECTION
DURATION

AM OUNT AND SOURCE OF 
ADRENAL RNA

INTENSITY OF 
CYP17 BANDS=»

INTENSITY OF 
CYP21 BANDS^'»

1 4 DAY 20 \Lg ACTH- STIMULATED 2.21 21.4

20 Jig INJECTED CONTROL 2.09 22.8

40 Jig ACTH STIMULATED 9.86 56. L

40 \ig I NJ ECTED CONTROL 12.6 57.8

2 6 DAY' 10 Jig ACTH- STIMULATED 2.41 33.7

10 îg INJECTED CONTROL 2.46 45.5

20 \ig ACTH- STIMULATED 9.06 * 82.5

20 îg INJECTED CONTROL 4.45 87.4

3 6 DA\^ 40 Jig ACTH- STIMULATED 8.96 5.22

40 Jig INJECTED CONTROL 15.9 22.6

40 Jig UNINJECTED  
CONTROL

10.6 29.9

80 Jig ACTH- STIMULATED 19.3 17.9

80 Jig INJECTED CONTROL 29.0 52.2

80 Jig UNINJECTED 
CONTROL

21.4 57.3

Table 2: Intensities of CYP17 bands and CYP21 on northern  
blots as determined by scanning densitometry.

* Nonspecific probe binding apparent in this band.
* Injected twice daily with 40 lU porcine ACTH in 

beeswax in peanut oil.
- Injected twice daily: In the m orning with 40 lU 

porcine ACTH in beeswax in peanut oil; in the 
evening with 40 lU ACTH a r gel.

 ̂ Arbitrary units.
Comparisons should not be drawn between CYPI7 and 
CYP21 blots.
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total RNA. T h e  blot was stripped of GYP 17 cDNA probe and reprobed with the 

0.9 kb restriction fragment of CYP21 cDNA. This was done as a negative control, 

since previous results (Chouinard and Fevold, 1990) had demonstrated that ACTH 

stimulation has a negligible effect on P450c2i protein expression. T he intensity of 

the signal from the CYP21 probe was also the same from ACTH-stimulated and 

control rabbits at equal RNA concentrations (Table 2). Since microsomal protein 

was not isolated from these animals, a western blot analysis could not be done. 

From this experim ent it appeared that ACTH stimulation had no effect on the 

am ount of either CYP17 or CYP21 mRNA per microgram of total RNA.

Since a 4 day stimulation resulted in no increase in CYP17 mRNA, a longer 

stimulation period was used in the next experiment. Analysis of RNA isolated 

from rabbits injected for six days with 40 lU ACTH in 1% beeswax in peanut oil 

gave results similar to the 4 day injection. T here  appeared to be equal amounts 

of CYP17 mRNA per microgram of total RNA in the adrenals of both ACTH- 

stimulated and control rabbits by northern blot (Figure 7) as confirmed by 

densitometry (Table 2). The level CYP21 mRNA also appeared equal, by 

densitometry, in both experimental and control groups (Table 2 and Figure 8).

ACTH stimulation in Experiment 2 (Table 2) was confirmed by western blot 

analysis of the adrenal microsomal proteins from the ACTH-stimulated and 

control rabbits. Figure 9 is a western blot probed with the P450,;^ antibody. 

Lanes 4 and 5 contain 40 and 80 jig adrenal microsomal protein isolated from 

ACTH stimulated animals and lanes 6 and 7 contain 40 and 80 p.g adrenal
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1 2 3 4  5 6 7 8 9  10
28

18 #

Figure 7: N orthern  blot analysis of RNA from rabbits after 6 days of ACTH 
injection using a PCR generated rat CYP17 cDNA probe. Lanes 1 and 2: 20 and 
40 pg rabbit liver RNA; 3 and 5: 20 M-g rabbit testis RNA; 4 and 6: 40 pg rabbit 
testis RNA; 7 and 8: 20 and 40 p,g control rabbit adrenal RNA; 9 and 10: 20 and 
40 |ig ACTH stimulated rabbit adrenal RNA.

1 2 3 4 5 8 7 8 9 10
28

18

Figure 8: T h e  filter from the experim etn in Figure 7 was stripped and reprobed
with a 0.9 kb rat CYP21 cDNA.
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1 3 4 6 7

66  -

45 -

Figure 9: Western blot analysis of P450i7« protein in microsomal proteins. Lane 
1: 40 pg guinea pig adrenal; 2: 40 pg rabbit testis; 3: 40 pg rabbit liver; 4 and 5; 
40 and 80 pg ACTH stimulated rabbit adrenal; 6 and 7: 40 and 80 pg control 
rabbit adrenal.

1 2 3 4 5 6 7

66  -

45 -
Figure 10: T h e filter from the experim ent in Figure 5 was stripped and reprobed
with the P450c2i antibody.
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microsomal protein isolated from control rabbits. T he blot shown in Figure 10 is 

the same blot as in Figure 9 stripped of the P450i7« antibody and reprobed with 

the P450c2i antibody detected with labeled protein A. Scanning densitometry 

of theses blots showed an unmeasurable am ount P450i7« protein present in the 

unstimulated animals and a densitometry readings of 1.43 and 4.18 for 40 and 80 

\ig microsomal protein in the ACTH-stimulated rabbits. T he P450c2i 

autoradiogram  had densitometry readings of 4.86 and 9.08 for 40 and 80 \ig 

microsomal protein from ACTH stimulated rabbits, and 10.24 and 12.00 for 40 

and 80 p.g from the control group, an actual decrease of P450c2i protein per 

microgram of adrenal microsomal protein.

T he  unexpected amounts of CYP17 mRNA in the injected control 

adrenals,and no evidence of an increase resulting from the injection of ACTH, 

suggested that the stimulation of endogenous ACTH secretion resulting from the 

act o f  injecting the animals might have been responsible for the CYP17 mRNA in 

the control animals. T he six day injection experiments were repeated adding an 

uninjected control group and using A CTH ar gel, a more potent ACTH 

preparation, for the evening injection of ACTH in an attempt to obtain a higher 

degree of stimulation. Judging  by the increase in adrenal weight and total RNA, 

stimulation was greater in this experim ent than in the previous two (Table 1). In 

no rthern  blot (Figure 11) and dot blot (Figure 13) analyses of the RNA isolated 

from this experim ent there is 15-44% less CYP17 mRNA per ng total RNA in 

ACTH stimulated animals compared to both control groups (Table 2). Also, when
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1 2 3 4 5 6 7 8 9 10 11 12
2 8 S -

18S-

(
..i4.

GYP 17

Figure 11: N orthern  blot analysis of RNA from rabbits after 6 days of ACTH and 
Acthar gel injection using a 0.4 kb rat CYP17 cDNA probe. Lanes 1 and 2, 40 
and 80 p.g ACTH-stimulated rabbit testis RNA; 3 and 4, 40 and 80 |ig uninjected 
control rabbit testis RNA; 5 and 6, 40 and 80 |ig liver RNA; 7 and 8, 40 and 80 
p,g ACTH-stimulated adrenal RNA; 9 and 10 injected control adrenal RNA; II 
and 12 uninjected control adrenal RNA.

1 2 3 4 5 6 7 8 9 10 11 12
2 8 S -

18S -

CYP21
Figure 12: T h e  filter from the experim ent in Figure 11 was stripped and reprobed
with a 0.9 kb rat CYP21 cDNA.
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ACTH

Injected Control #  #

Uninjected Control #  #

Liver

Testis \  #  :# #

Figure 13: RNA dot blot probed with 0.4 kb rat GYP 17 cDNA. All samples were 
applied in duplicate. T he first three lines are adrenal RNA. T he  liver and testis 
were from uninjected control rabbits. T he second 10 |ig sample of the injected 
control and the second 5 pg sample of the testis RNA were inadvertently displaced 
one position to the right and below, respectively.

ACTH

Injected Control

# #
• * #

-  * e #
-  *

e e e 
e e

Liver

Testes

Figure 14: T h e  filter from the experim ent in Figure 13 was stripped and
reprobed with a 0.9 kb rat CYP21 cDNA.
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1 2 3 4 5 6 7 8 9 10 11 12

66  -

4 5 -

Figure 15: Western blot analysis of P450i7« protein in microsomal proteins. Lanes 
1 and 2, 40 and 80 pg guinea pig adrenal; 3 and 4, 40 and 80 pg liver; 5 and 6, 
40 and 80 pg rabbit testis; 7 and 8, 40 and 80 pg ACTH-stimulated adrenal; 9 and 
10, 40 and 80 pg injected control adrenal; 11 and 12, 40 and 80 pg uninjected 
control adrenal.

1 2 3 4 5 6 7 8 9 10 11 12

66 -

4 5 -

Figure 16: T h e  filter from the experim ent in Figure 15 was probed with a second
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antibody, P450c2i

the blots were stripped and reprobed with the CYP21 cDNA (Figures 12 and 14) 

there  was 18 to 39% less CYP21 mRNA per p.g total RNA, presumably from the 

46% stimulation in total RNA production (Table 2).

ACTH stimulation was confirmed by western blot. Figure 15 shows the 

P450j7a detection in microsomal protein SDS-polyacrylamide electrophoretic 

patterns. Lanes 1 and 2 are guinea pig adrenal, 3 and 4 are rabbit liver, 5 and 

6 are rabbit testis, 7 and 8 contain 40 and 80 \ig adrenal microsomal protein from 

ACTH stimulated rabbits, lanes 9 and 10 contain 40 and 80 \xg adrenal 

microsomal protein from injected control rabbits, and lanes 11 and 12 contain 40 

and 80 jig adrenal microsomal protein from uninjected control rabbits. Figure 16 

is the same blot as 15 probed with the P450c2i antibody without prior stripping of 

the P450]7„ antibody. T he  data from this experim ent confirm those of the 

previous experim ent and show no apparent stimulation of an increase in CYP17 

mRNA per microgram of total RNA but a dramatic increase in P450i7« protein per 

microgram of microsomal protein.

T he data obtained from analysis of the CYP17 RNA and P450,7« protein 

were analyzed as a fraction of the pool of RNA or microsomal protein isolated per 

adrenal to determ ine whether the total am ount of either had been altered due to 

ACTH stimulation. From the CYP17 mRNA or P450)7„ levels per adrenal the 

ratios between ACTH stimulated rabbits and control rabbits were determined 

(Table 3).
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ACTH / INJECTED CONTROL ACTH / UN INJECTED CONTROL
Legend

4 DAY6 DAY

Figure 17: Ratio of CYP17 mRNA per adrenal in ACTH stimulated rabbits 
verses control rabbits. E rro r bars are the average deviation of two ratios.
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Figure 18: Ratio of P450i7« and P450cO] protein per adrenal in ACTH
stimulated verses uninjected control rabbits. E rror bars are the average 
deviation of two ratios.
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In the 4-day ACTH injection experim ent the ratio of the am ount of adrenal 

GYP 17 mRNA from ACTH stimulated to control rabbits was 1.07 (Exp 1, Table 

3). In the second 6-day experim ent (Exp 3, Table 2) the ratio for CYP17 mRNA 

was 1.34 between ACTH-stimulated and injected control rabbits and 1.70 between 

ACTH-stimulated and uninjected controls (Figure 17). T he larger am ount in 

injected controls compared to uninjected controls (ratio 1.18) was presumably due 

to endogenous ACTH secretion. While the expression of CYP17 mRNA was 

minimally increased, the P450,7« protein per adrenal was increased over 50 fold 

compared to the uninjected controls (Figure 18) and 21 fold compared to the 

injected controls.

T he level of CYP21 mRNA increased by a ratio of 1.23 for ACTH- 

stimulated to either injected control or uninjected control. T he increase in CYP21 

mRNA was accompanied by a slight increase in P450c2i protein, a ratio of 1.8 for 

ACTH-stimulated to injected control and 1.12 for ACTH-stimulated to uninjected 

control (Figure 18). The increase in P450c2i protein is consistent with previously 

reported data (Chouinard and Fevold 1990).
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EXP.
NO.

IN JEC TIO N
DURATION

RATIO

1 4 DAYS ACTH/INJECTED
CONTROL

1.07 ± 0.14*

3 6 DAYS ACTH/INJECTED
CO N TRO L

1.34 ± 0.19

ACTH/UNINJECTED
CONTROL

1.70 ± 0.09

Table 3: Ratios of am ount of  CYP17 mRNA per adrenal between ACTH 
stimulated and control rabbits. * Average deviation of duplicate 

determinations.
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DISCUSSION

ACTH stimulation of rabbits results in growth of the adrenal glands (Kass 

et al. 1954). An increase in the weight of the adrenals, an increase in microsomal 

protein, and an increase in RNA (Table 1) were all observed in the ACTH 

stimulated rabbits in these experiments. An increase in immunoreactive P450j7« 

protein with little increase in P450c2i also indicated that the ACTH injections were 

effectively stimulating the rabbits (Chouinard and Fevold 1990).

Specific binding of the cDNA probe in northern  analysis of rabbit RNA 

dem onstrated that there was enough sequence homology between rabbit and rat 

CYP17 genes for cross hybridization. This allowed the use of a rat CYP17 cDNA 

as a probe to determ ine relative amounts of CYP17 mRNA isolated from ACTH- 

stimulated and control rabbits.

Previous results have shown an increase in the level of 17a-hydroxylase 

activity (Fevold 1969 and Fevold et al. 1978). The results presented here show a 

>50 fold increase in the level of adrenal P450i7« protein in ACTH stimulated 

rabbits verses uninjected control rabbits; this contrasted with a m ere 1.7 fold 

increase in the am ount of adrenal CYP17 mRNA (Figures 17 and 18, Table 3). 

Chouniard  and Fevold (1990) found a 6 to 8 fold increase in immunoreactive 

P450i7« protein in ACTH-stimulated rabbits compared to the injected controls; in 

this experim ent the control animals were injected with an oil injection vehicle and 

some stimulation of endogenous ACTH secretion may have occurred. This results
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in h igher P450i7« levels in controls and a smaller apparent increase in the ACTH- 

injected animals. This is consistent with our finding that injected controls had 

slightly h igher CYP17 mRNA levels than did non-injected controls (Table 3). Also 

in this study the rabbits were injected with ACTH for 6 days, whereas in the study 

by C houinard  and Fevold the injection period was 3 days. T he longer injection 

period accounts for the larger increase (21 fold) in protein in the injected controls 

seen in this experiment. T he large increase in P450i7« protein production coupled 

with a significantly lower increase in CYP17 mRNA production per adrenal 

indicates that ACTH is mainly inducing translation of message which is already 

present in the adrenal. In the bovine adrenals a 2 to 4 fold increase in the 

am m ount of CYP17 mRNA corresponds with a 4 to 10 fold increase in the 

am m ount of  P450,7« protein (John et al. 1986).

T he  effect of ACTH is not the same for all of the enzymes involved in the 

production of cortisol. Little to no change in 21-hydroxylase activity has been 

detected (Fevold and Brown 1978). At the protein level a 1.3 fold increase in 

P450c2i was reported in ACTH-stimulated rabbits compared to injected control 

rabbits (Chouniard and Fevold 1990). In the present study the level of P450c2i 

protein after 6 days of ACTH-stimulation is increased by only 1.23 fold with a 1.8 

fold increase in the level of CYP21 mRNA per adrenal compared to uninjected 

controls. T he correlation between CYP21 mRNA and P450c2i levels here indicates 

that ACTH has only a slight effect at the transcriptional level of CYP21, which is 

consistent with pervious findings (Chouinard and Fevold 1990).
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Since P450n« is at the branch point between production of cortisol and 

corticosterone, it is logical that production of this enzyme is targeted as an 

im portant control point. However, it is unusual that the point of control is 

predominately at the translational ra ther than transcriptional level. This 

translational control seen in rabbits is unique compared to other mammals where 

ACTH has been shown to have a transcriptional effect on the CYP17 gene. The 

hum an (Brentano et al. 1990) and bovine (John et al. 1986) GYP 17 appear to 

respond solely at the transcriptional level to ACTH. In hamsters ACTH- 

stimulated increases in CYP17 mRNA and in P450i7« have been demonstrated; 

however, there is a temporal lag between the peak level of CYP17 mRNA and the 

P450,7« protein increase. This lag suggest that there is a control point between 

transcription and translation. W hether this control point involves ACTH has not 

yet been determ ined (LeHoux et al. 1992). In guinea pigs the level of P450,7« 

protein is also increased upon ACTH-stimulation. In vitro experiments in which 

ACTH is added to cell cultures demonstrate a corresponding increase in the 

CYP17 mRNA (Provencher etal. 1992a); however, after/;? v/vo injection of ACTH 

no increase in CYP17 mRNA was detected upon ACTH -stimulation (Provencher 

et al. 1992b). T he  discrepancy between in vitro and in vivo experiments may be 

due to the artificial system in vitro, or the high level of CYP17 mRNA already 

present in vivo in guinea pig adrenals may impair efforts to detect increases in 

CYP17 mRNA due to ACTH-stimulation.
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TRANSLATIONAL CONTROL

T h ere  are few eukaryotic systems for which a specific translational 

regulatory mechanism has been defined. However, two mechanisms for 

translational regulation have been found: modulation of translation by initiation 

factor-2, which effects overall protein translation (as reviewed by Hershey 1991); 

and inhibition of ferritin translation by an iron-responsive mRNA-binding protein 

(IRE-BP). Ferritin is a protein that sequesters excess iron. IRE-BP binds to the 

5’ end of the ferritin mRNA when iron levels are low. When there is and excess 

of iron the protein dissociates from the mRNA and the message is translated 

(Klausner and Harford 1989; Haile et al. 1989).

Messenger RNAs without poly (A) tails, without an accessible 5 -m^G cap, 

or with secondary structure that hinders translation have been found and are 

translated less efficiently. Yet no mechanism for changing the mRNA structure 

to allow efficient translation of these RNAs has been found. Translational 

activator proteins, the context of the AUG initiator codon, and 

compartmentalization of mRNA have also been proposed as mechanisms for 

translational control; however, there is no evidence of these mechanisms in 

eukaryotic systems (as reviewed by Kozak 1992).

FUTURE DIRECTIONS

Cloning and sequencing of the rabbit CYP17 gene, especially its 5' 

upstream sequences will be an important step in further understanding the control
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mechanisms of this gene. Comparisons between rabbit GYP 17 upstream control 

sequences with those of GYP 17 genes from other species may be important in 

deciphering why there are differences in the effects of AGTH am ong species. Also 

comparison of the 5-noncoding region of rabbit GYP 17 mRNA and those of other 

genes under  translation control may provide insight on the mechanism of 

regulation. Analysis of the GYP 17 mRNA to determine the length of the poly(A) 

tail and if the mRNA is capped, may also be useful.

To determ ine if the barrier to translation is due to the physical subcellular 

location of the GYP 17 mRNA, nuclear RNA could be isolated separately from 

cytoplasmic RNA. Localization of the GYP 17 mRNA in the nucleus would indicate 

that AGTH promotes transport of the mRNA to the cytoplasm were it can be 

translated. However, if the GYP17 mRNA was found mainly in the cytoplasm this 

would suggest that AGTH acts to remove a repressor protein, induce an activator 

protein, or change the secondary structure of the message so that it can be 

translated.

T he  up to 50 fold increase in the level of P45017û: with a small increase in 

GYP17 mRNA upon AGTH-stimulation provides a clear demonstration of 

translational control. This system may prove to be an excellent system in which 

to study translational regulation in an eukaryotic system.
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List of abbreviations and commons names used. Pregnenolone, 36-hydroxy-5- 

pregnen-20-one; progesterone, 4-pregnene-3,20-dione; 17a-hydroxypregnenolone, 

3B, 17a-dihydroxy-5-pregnen-20-one; 17a-hydroxyprogesterone, 17cr-hydroxy-4- 

pregnene-3,20-dione; corticosterone, 1 lB,21-dihydroxy-4-pregnene-3,20-dione;

11-deoxycorticosterone, 21-hydroxy-4-pregnene-3,20-dione; 11-deoxycortisol, 

17a ,21 -dihydroxy-4-pregnene-3,20-dione; cortisol, 118,17a,21 -trihydroxy-4-

pregnene-3,20-dione; P450scc» cytochrome P450 side chain cleavage; 38HSD, 38- 

hydroxy steroid dehydrogenase/isomerase; P450c2i) cytochrome P450 21-

hydroxylase; ACTH, adrenocorticotropic hormone; POMC, proopiomelanocortin; 

MOPS, 3-(N-morpholino) propanesulfonicacid; EDTA, ethylenediaminetetraacetic 

acid; SDS, sodium dodecyl sulfate; D l l ,  dithiothreitol; SDS-PAGE, sodium dodecyl 

s u l f a t e  p o l y a c r y l a m i d e  g e l  e l e c t r o p h o r e s i s ;  t r i s - H C l ,  

tr ih y d ro x y m eth y lam i n o m e th a n e  hydroch lo ride ; TEM ED, N ,N ,N ’,N ’- 

tetramethylenediam ine; PGR, polymerase chain reaction.
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