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Larson, Scott James, M.S., May 2005 Pharmaceutical Sciences

Detection of Surrogate M arkers after Gamma-hydroxybutyrate (GHB) Exposure

Chairperson: Mark Pershouse, Ph.D.

Gamma-hydroxybutyrate (GHB) is a substance naturally present in humans, as well as a 
drug of abuse. The use of GHB in date-rape sexual assaults has increased over the past 
few years. Currently different chromatography techniques are used to detect GHB in 
blood or urine, with a detection timeframe of around 12 hours. This limited window of 
detection causes many problems for law enforcement in preparing for these rape cases. In 
this study microarray technology is used in a mouse model to detect biomarkers in 
peripheral blood after GHB exposure. Epiregulin and Phosphoprotein enriched in 
astrocytes 15 (Pea-15) both had increased expression in GHB dosed mice (Ig/kg) over 
control. The detection of these genes RNA was confirmed using a semi-quantitative RT- 
PCR assay. An intracellular flow cytometry assay was developed that could detect 
protein changes in peripheral blood in both of these potential biomarkers after GHB 
exposure. These results suggest that after further development, epiregulin and Pea-15 
may prove to be significant surrogate markers in the indirect detection of GHB.
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Introduction

Gamma-hydroxybutyrate (GHB) is a powerful and rapidly active central nervous 

system depressant. It is a naturally occurring substance in the brain, first synthetically 

produced in 1960 as an anesthetic (Laborit, 1964). The majority of early research on 

GHB investigated its anesthetic properties.

GHB is both a metabolite of gamma-aminobutyric acid (GABA) and a precursor 

that can be degraded to produce a functional pool of G ABA. Because of their chemical 

and metabolic relationship the two compounds have often been discussed and compared 

to each other. Exogenously administered GHB has many of the behavioral effects that are 

tied to GAB A compounds, though many now consider GHB as a pharmacological entity 

that is unique and may act as a neurotransmitter (Bemasconi et al., 1999; Howard and 

Feigenbaum, 1997; Maitre, 1997; Tunnicliff, 1992; Vayer et al., 1987). Whether GHB 

acts as a neurotransmitter or neuromodulator is still the subject of much controversy in 

the literature.

GHB has recently been receiving more attention because of the potential 

therapeutic affects but also because the incidence of abuse has increased. The euphoric 

properties of GHB helped to foster the drug's emergence as a popular club drug in the 

late 1990’s. In February of 2000, after it was termed a drug of abuse and a date rape drug, 

GHB was re-classified as a schedule I drug by the United States Drug Enforcement 

Administration (2000).

This introduction covers the chemical, pharmacological, behavioral, and 

toxicological background information on GHB. This introduction will also discuss



microarray technology and the use of surrogate markers. Additionally, the overall 

direction of this project will be presented.

M etabolism and Distribution

GHB is distributed in distinct regions of the brain. It is found in the substantia 

nigra, striatum, hippocampus, and the frontal cortex. Higher concentrations of GHB have 

been found in peripheral organs such as the heart, kidney, liver, muscle, and fat though 

the biological significance of these concentrations is not known.

The metabolism of gamma-aminobutyrate (GABA) provides the primary source 

of GHB in the brain (Figure 1). This has been demonstrated by the administering of 

radiolabeled GABA into the rat brain and measuring its conversion to labeled GHB (Roth 

and Giarman, 1969). GABA is deaminaled to succinic semialdehyde (SSA) by the 

enzyme GABA aminotransferase. The majority of SSA is converted to succinate and 

used in the K reb’s cycle, but a small portion is converted to GHB by SSA reductase 

(Cash et al., 1981 ; Gold and Roth, 1977). Experiments looking at the distribution of the 

SSA reductase enzyme have shown that it is present only in the cytoplasm of neurons. 

These neurons also contain the enzymes needed for the synthesis of GABA. It was 

concluded that GHB formation occurs in neurons that are also able to synthesize GABA.

Other precursors to GHB in the brain and in peripheral organs are 1,4-butanediol 

and gamma-butyrolacetone. Both of these are present in the rat brain at 10% the levels of 

GHB (Barker et al., 1985; Doherty et al., 1975). 1,4-butanediol is transformed rapidly 

into GHB in the brain {Snead and Liu, 1984; Snead et al., 1982) while gamma- 

butyrolacetone is probably metabolized before entry in the brain, through the blood-brain
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Figure 1. Biosynthesis of GHB in brain

The main pathway for GHB synthesis is the metabolism of GABA. GABA is metabolized 

in the brain to succinic semialdehyde (SSA) and SSA eventually is broken down into 

GHB. Another route for GHB synthesis is through the reduction of 1,4 butanediol or 

gamma-butyrolactone. Both 1,4 butanediol and gamma-butyrolactone are present in low 

concentrations compared to GHB and GABA.



barrier by peripheral lactonases (Roth and Giarman, 1968). Gamma-butyrolactone has 

been used in many pharmacological studies because it is absorbed more easily in the 

body than GHB. It is also easier to obtain than GHB and can also be used as a drug of 

abuse.

Once GHB has bound to a receptor, released, and the activity terminated by 

uptake of the molecule from the synaptic cleft, it is then degraded. The degradative 

pathway of GHB starts with GHB dehydrogenase converting it to SSA. The SSA is then 

further broken down to succinate or GABA (Doherty et al., 1975; Kaufman and Nelson, 

1991; Mohler et al., 1976). The succinate is further metabolized into carbon dioxide and 

water. The degradation of GHB into GABA can produce a functional pool of GABA 

(Figure 2).

GHB binding To GHB receptor and relationship with GABAb receptors

Many studies have been conducted examining the binding of GHB to a receptor 

so that pharmacological actions can take place. For years it was thought that GHB bound 

to the GABAb receptors exclusively. Eventually, research showed that GHB bound to a 

unique G-protein coupled receptor specific for the molecule (Maitre, 1997; Snead, 1994). 

Snead measured radiolabelled GHB binding patterns in a rat brain by autoradiography. 

He found that there was a different pattern of distribution of the labeled GHB from 

labeled GABA binding. It was also determined that there are both high and low affinity 

binding sites present in the brain. The GHB high affinity sites are absent from peripheral 

tissues like the liver, kidney, muscle and heart, even though there are significant amounts 

of endogenous levels of GHB in these organs (Snead and Liu, 1984). GHB-specific
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Figure 2. Degradation of GHB in brain

The main route of GHB degradation is to succinic semialdehyde (SSA). SSA is then 

converted to GABA or oxidized through the Krebs cycle. GHB can also be converted to 

trans-hydroxycrotonate and further broken down through the Krebs cycle. The GABA 

pool formed from this pathway can be released and bind to GABAb receptors. Before 

degradation, the GHB can be released and bind to either the GHB receptor or GABAb 

receptors.



binding sites appear to exist only on neurons in different locations throughout the brain. 

Further evidence was gathered after the first antagonist for GHB binding (NCS-382) was 

discovered (Maitre et al., 1990). M aitre's research showed that this antagonist blocked 

GHB binding and many of the pharmacological and physiological effects of exogenous 

GHB administration.

GHB s mode of action in the brain appears through dual mechanisms (Wong et 

al., 2004). The neurobiological activity of GHB seems to be mediated through the GHB 

receptor, while the pharmacological effects of exogenously administered GHB seems to 

be partially mediated through the GABAb receptor. GHB may act directly on GABAb as 

a partial agonist or indirectly on GABAb receptor via GHB-derived GABA (Hechler et 

al., 1997). Evidence supporting this hypothesis comes from studies showing minimal 

binding of physiological levels of radiolabeled GHB to different GABAb receptor 

isoforms that were overexpressed in cells. When higher concentrations of the labeled 

GHB were used, there were low levels of binding to the GABAb receptors (Wu et al., 

2004). This premise was strengthened when GHB-sensitive and GHB-resistant rats were 

dosed with GHB and baclofen (GABA agonist). Depending on dose, differences in motor 

coordination between the two groups of rats led the authors to conclude that high 

concentrations of GHB can lead to the activation of the GABAergic system (Lobina et 

al., 2005).

It seems that endogenous levels of GHB do not bind to, or activate, the GABAb 

receptors. The concentrations of GHB needed to stimulate these receptors are much 

higher than are found in the brain.



Release and membrane transport o f GHB

It was determined that GHB plays a role in interneuronal signaling when it was 

discovered that there was localized release after cellular depolarization. Brain slices 

containing radiolabeled GHB gave results that were consistent with a depolarization- 

evoked and calcium-dependent release (Maitre et al., 1983; Maitre and Mandel, 1982).

Since exogenous GHB can pass through the blood-brain barrier and also be 

synthesized in the brain, an active transport system was postulated. It was discovered that 

there was a high-affinity uptake system that was dependent on both sodium and chloride 

ions (Benavides et al., 1982). Radiolabeled GHB accumulated in membrane vesicles in 

the brain with a linear dependence on the sodium ion concentration. Though there is still 

a small amount of uptake in vesicles that do not contain either the sodium or chloride 

ions, the ion’s presence marks a large rise in uptake.

Role o f  GHB in brain function

Since GHB was synthesized as a substance to try and mimic GABA-like effects, 

the majority of early studies tried to understand the role of exogenous GHB activity. 

Humans need large doses of GHB (20-40 grams) to receive the sedative or anesthetic 

results, while endogenous levels of GHB in the brain are only in the 1-10 micromolar 

range (Vayer and Maitre, 1988). The role of GHB in daily brain function has yet to be 

determined.

The study of specific neuronal responses to GHB is hindered because it is 

metabolized to form GABA so rapidly. GHB administered to neuronal tissue {in vivo), 

brain slices, or neural cells can lead to a GHB-specific response mediated through either



the GHB receptor or the stimulation of the GABAergic system depending on dose. Past 

research has shown that low doses of GHB (micromolar range) can be blocked or reduced 

by specific GHB receptor antagonists. There is no change in signal with GABA receptor 

antagonists (Harris et al., 1989; Maitre et al., 1990; Osorio and Davidoff, 1979). Higher 

doses of GHB (millimolar) result in a blocked signal when using GABAb antagonists 

(Waldmeier, 1991 ; Xie and Smart, 1992). Other groups looked further into the GHB 

effect on the GABA system by inhibiting the ability of GHB to be metabolized (Hechler 

et al., 1997). W hen they inhibited the enzymes responsible for that action the formation 

of GABA from GHB was reduced. GHB was inhibited in displacing labeled GABA from 

its binding sites on GABAb receptors, further indicating that GHB was not a specific 

ligand for those receptors. These results have led many researchers to state that 

exogenous GHB metabolism is able to produce enough GABA to effect GABAergic 

signaling, but physiological levels of GHB have little affinity for the GABAb receptors.

Besides affecting the GABAergic system, exogenous GHB is known to affect the 

dopaminergic system. GHB initially inhibits the release of dopamine. This results in an 

accumulation of dopamine in presynaptic neurons (Hechler et al., 1991 ; Nissbrandt et al., 

1994; Roth et al., 1980). After high doses of GHB there is a rapid increase in dopamine 

levels, followed by the release of this dopamine in certain regions of the brain (Hechler et 

al., 1993). This increase in dopamine levels is very high, reaching between 6-10 times 

baseline levels. Research has shown that changes in the dopamine system are regulated 

through the GHB receptors but that the GABAergic system is indirectly involved 

(Nissbrandt et al., 1994). These increases of dopaminergic activity may play a role in the 

euphoric effects and abuse potential of GHB.
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It is also known that GHB affects the serotonin system, but whether this is 

through direct means or via another system (dopamine or GABA) is not known. GHB has 

been shown to increase serotonin turnover rates without altering absolute levels (Hedner 

and Lundborg, 1983; Waldmeier and Fehr, 1978). The mechanism for this is not known 

but it is thought that it may have to do with the elevated tryptophan (precursor to 

serotonin) levels associated with an increase in GHB levels (Maitre, 1997). Some 

researchers believe that this control on serotonin turnover is the result of the affects of 

GHB on the GABA system, since baclofen (GABAb agonist) has also been shown to 

alter serotonin turnover (Waldmeier and Fehr, 1978). However, the distributions of 

serotonin modulation are completely different between GHB and baclofen. This suggests 

a unique mechanism may exist for the affect on serotonin from GHB (Maitre, 1997).

Behavioral pharmacology o f GHB

There have been many animal studies on the effects of GHB at the cellular level, 

but relatively few concerning the behavioral effects of the drug based on the therapeutic 

potential of GHB. The first behavioral effect found was anxiolytic effects. Given a non­

sedative dose of GHB, mice showed a reduction in passive behaviors and increased 

interaction with littermates (Krsiak et al., 1974). This is similar to the loss of inhibitions 

humans show upon the ingestion of this drug. Further studies show that it is likely these 

effects are mediated through either the conversion of GHB to GABA and the subsequent 

binding to GABAa receptors (Hechler et al., 1997) or actual GHB stimulation of GABA 

release in certain sections of the brain (Gobaille et al., 1999; Goodwin et al., 2005).
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There have also been studies looking at the reinforcing effects of self­

administrated GHB preceding drug abuse. Colom bo’s group gave W istar rats the option 

of water and a GHB solution. The rats always voluntarily consumed the GHB (Colombo 

et aL, 1995a). Later, Colombo’s group conducted experiments with alcohol-preferring 

rats (sP) and non-perferring (sNP) rats (Colombo et al., 1998). Presenting the GHB 

solution for fourteen days as the only water source and later giving the choice between 

the GHB solution and water both groups of rats showed an overwhelming preference for 

the GHB solution after the two-week time frame. The research suggested that the 

reinforcing properties of GHB were unmasked by the long time frame of GHB ingestion. 

When they repeated this experiment they only presented the GHB solution for three days 

instead of fourteen before giving the rats a choice. This time the sNP rats consumed very 

low amounts of the GHB solution when given the choice, while the sP rats continued to 

use large amounts of the GHB solution. The researchers theorized that the selectively 

bred high alcohol preference rats (sP) possessed a genetically higher sensitivity to the 

effects of alcohol, as well as GHB. They also concluded that GHB yields reinforcing 

properties similar to those of alcohol and that the two drugs share similar pathways at the 

cellular level.

Therapeutic uses o f  GHB

There are many potential therapeutic uses for GHB. It is currently being used for 

the treatment of narcolepsy and alcohol withdrawal. Studies have also considered GHB 

for the treatment of heroin dependence, anesthesia, anxiety, fibromyalgia, and other 

medical problems.

12



G H B’s most important therapeutic use is to treat alcohol abuse. It has been used 

successfully in Russia and W estern Europe for years to combat the effects of alcoholism 

and withdrawal symptoms, though this therapy has not been adopted in the United States. 

GHB is effective in treating alcoholism because it reduces alcohol cravings and alleviates 

the symptoms of alcohol withdrawal (Addolorato et al., 2000; Gallimberti et al., 2000). 

There are many pharmacological similarities between the two drugs and it has been 

proposed that GHB exerts its effects on alcohol dependence by duplicating the action of 

alcohol in the central nervous system (Gessa et al., 2000).

Alcohol withdrawal can cause an increase in heart and respiratory rates, nausea, 

depression, tremors, and seizures. Early studies looked at the ability of GHB to diminish 

these symptoms in a dose dependent manner. When high doses of GHB (1 g/kg) are 

administered, ethanol-dependent Sprague-Dawley rats were completely protected from 

tremors and seizures (Fadda et al., 1989). Many other similar studies have looked at these 

positive effects and all of them concluded that acute administration of GHB reduced the 

affects of ethanol withdrawal.

The currently accepted hypothesis is that GHB exerts effects on ethanol 

dependence through a substitution mechanism (Colombo et aL, 1995b). There have been 

many observed pharmacological similarities on which this argument is based. Both low 

doses of GHB and ethanol have been reported to increase the release of dopamine in 

certain regions of the brain (Cheramy et al., 1977; Maitre et al., 1990) as well as to 

stimulate locomotor activity (Maitre, 1997). These findings are relevant because the 

activation of the dopamine system and increased locomotor activity are common in the 

reinforcing properties of drugs like alcohol (Bozarth, 1986; Wise and Bozarth, 1985). It

n



was also noted that doses of GHB producing anesthesia in naïve rats would only impose 

low levels of sedation in ethanol-dependant rats (Colombo et aL, 1995d). These reports of 

cross-tolerance between GHB and ethanol suggest common neuronal changes by both 

drugs and could impose a problem in the use of GHB as a therapeutic drug.

The potential for abusing GHB is also the subject of much interest in the 

literature. Many studies have shown both a preference towards self-administration in rats 

(Colombo et aL, 1995a; Colombo et aL, 1998; Colombo et aL, 1995c) and abuse by 

human beings (Addolorato et aL, 2000); Centers for Disease Control, 1991; US Food and 

Drug Administration, 1991). These reports strengthen the idea that GHB possesses 

reinforcing properties similar to ethanol. Another similarity of GHB to ethanol is that it 

reduces anxiety. Many studies have looked at this property of alcohol (Becker and 

Flaherty, 1982; Blanchard et aL, 1993; Colombo et aL, 1995d) and only a few with GHB 

(Colombo et aL, 1998; Krsiak et aL, 1974). Measuring different levels of anti-anxiety 

behavior, both groups concluded that consumption of GHB produces effects similar to 

alcohol.

Because of the research conducted on alcohol withdrawal, the effects of GHB on 

the treatment of heroin dependence became a focus of several studies (Gallimberti et aL, 

1993; Gallimberti et aL, 1994). Gallim berti's group performed a study to see if GHB was 

effective in suppressing withdrawal symptoms in heroin and methadone-dependent 

patients. They found that after treatment with GHB for over one week, the addicts 

showed fewer withdrawal symptoms than the placebo group. Their studies suggested the 

efficiency of GHB in suppressing opiate withdrawal in humans. Another study failed to 

demonstrate protection from opiate withdrawal symptoms by GHB (Rosen et aL, 1996).
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There were differences in the schedule and dosage of heroin; and this may explain the 

differential response. Even though there are discrepancies in the studies there is enough 

promising evidence to prompt continued study into GHB's efficiency in treating the 

withdrawal symptoms of heroin.

To legally purchase GHB, one must obtain a prescription (Xyrem) for the 

treatment of narcolepsy. Narcolepsy is a rare sleep disorder whose symptoms include 

excessive daytime sleepiness, sudden sleep attacks, sleep paralysis, hallucinations upon 

falling asleep, and the temporary loss of muscle tone. All these symptoms are created 

because of problems with REM sleep. The mechanism of narcolepsy is unknown, but 

there has been a substantial amount of work done categorizing symptoms patients’ 

experience. Researchers believe these symptoms stem from the instability caused by both 

REM and non-REM sleep, an increased number of awakenings and long periods of time 

between sleep onset (Montplaisir et al., 1978; Zarcone, 1973; Zorick et al., 1986). The 

most common treatment for narcolepsy includes the use of a stimulant during the day to 

hold off the sudden sleep attacks, and later, an anti-REM sleep agent to ward off the more 

serious symptoms. The problem with this approach to treatment is the individual’s drug 

tolerance, low compliance, and a low level of effectiveness. GHB was initially 

considered as a treatment for narcolepsy in the late 1970's (Broughton and Mamelak, 

1979). After treating sixteen narcoleptic patients, researchers found that GHB produced a 

reduction in the severity of the symptoms including limiting hallucinations and sleep 

paralysis. They suggested that, GHB administered at night and certain amphetamine 

analogs given during the day, reduced the major symptoms of narcolepsy. The largest 

disadvantage of this treatment is the short duration of action requiring multiple

15



administrations. There have been many follow-up studies that have come to the same 

conclusion; GHB is an effective agent for the treatment of narcolepsy (Lammers et aL, 

1993; Mamelak et al., 1979; Scharf et al., 1985; Scrima et al., 1989; Scrima et al., 1990).

The mechanism by which GHB treats narcolepsy is not understood, but it is most 

likely a cumulative effect of many processes. First, the activation of GHB receptors is 

known to produce the sedative or sleep-inducing effects. This is known because the 

specific GHB antagonist NCS-382 can block this effect (Schmidt et al., 1991 ). GHB is 

also known to improve REM sleep efficiency and decrease latency (Entholzner et al., 

1995; Lapierre et al., 1990). The GHB induced increase in opioid and dopamine response 

could be a factor in the anti-depressant effects found in GHB-treated patients. GHB also 

affects the release of acetylcholine, which has been implicated in animal models of 

narcolepsy (Nishino et al., 1995; Nitz et al., 1995).

GHB has been studied for its anesthesia properties as early as the 1960’s and 

these studies continue today. Early research concluded that GHB treatment resulted in 

profound relaxation of jaw muscles, which helped facilitate upper airway surgery. There 

was no depression in the circulatory system, no need for other analgesic agents, and no 

major side effects (Solway and Sadove, 1965). Surgeries used in these studies have 

ranged from gastrectomy, pneumonectomy (Solway and Sadove, 1965), coronary artery 

bypass grafting (Kleinschmidt et al., 1997), and others. Despite a large amount of 

positive data, widespread acceptance has eluded GHB as an analgesic. This may be 

because of GHB’s potentially addictive nature and its ability to produce seizures in 

animals that resemble petit mal epilepsy (Tunnicliff, 1992).



The current accepted hypothesis for the mechanism of schizophrenia is increased 

activity in the release of dopamine. While this theory has not been proven, there are 

several links to the idea. Drugs that treat schizophrenia block dopamine receptors, while 

drugs that increase dopaminergic activity usually aggravate symptoms. The interest in 

GHB comes from its ability to regulate dopaminergic activity. GHB is known to have 

conflicting effects on dopamine, causing both the stimulation and inhibition of the firing 

of dopamine. Some studies (Levy et al., 1983; Schulz et al., 1981) have looked into the 

efficacy of GHB with schizophrenia patients. The overall results of these studies showed 

that GHB had little to no antipsychotic effects and would not be helpful in the treatment 

of schizophrenia patients.

There have been many other studies conducted to further document the 

therapeutic effects of GHB, such as treatment for depression, anti-anxiety, and 

fibromyalgia. A study was performed with thirty females suffering depression who were 

injected with daily doses of GHB for 3-12 days. Depression severity was lowered in over 

80% of patients (Rinaldi et al., 1967). As yet, there has been no follow up to this study 

and GHB is not used as an antidepressant today. GHB has also been tested as an anti­

anxiety drug. Studies have shown that GHB can decrease anxiety and bring a level of 

calmness to subjects (Addolorato et al., 1999; Ferrara et al., 1999). The symptoms of 

fibromyalgia include chronic fatigue, muscular-skeleton pain, and non-restorative sleep. 

These symptoms are found in an estimated 2% of Americans (Wolfe et al., 1995). When 

GHB was administered to afflicted patients there was a significant decrease in the 

severity of the problem (Scharf et al., 1998). The mechanism involved is unknown, but it 

may be connected to the ability of GHB to increase slow-wave sleep.
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Abuse Potential and Toxicology ofGHB

GHB is absorbed rapidly and the onset of action is approximately fifteen minutes 

after ingestion (Vickers, 1969). Adverse effects associated with GHB are dose- 

dependent. Small doses (10 mg/kg) can cause euphoria, amnesia, nausea, vomiting, 

dizziness, confusion, drowsiness, and a lowered respiratory state. Large doses of the drug 

(50 mg/kg) can cause unconsciousness, coma, or death. These negative effects are 

produced from respiratory depression and can be difficult to treat. In fact, there is no real 

treatment for a GHB overdose. Supportive care is the usual action, since the effects of 

GHB toxicity usually wear off in a matter of hours. Physostigmine has been used in the 

past as a potential drug in treating GHB-related comas (Yates and Viera, 2000). The 

effectiveness of this treatment has recently been challenged in a new study that warned 

that physostigmine does not always arouse coma patients, but can cause physostigmine 

related toxicity (Bania and Chu, 2005). This drug acts as an acetlycholinesterase inhibitor 

and thus potentiates cholinergic transmission. These mechanisms are not clear, except 

that since GHB is a CNS depressant, the activation of the cholinergic system by 

physostigmine, should increase the excitatory pathways enough to overcome the 

inhibition from GHB.

GHB has been tested for genotoxicity in erythrocytes in the peripheral blood of 

mice (Dass and Ali, 2004). This study showed that GHB does not seem to be genotoxic, 

but future work must be done to assess any potential carcinogenicity. There is no 

evidence of tolerance, withdrawal, or physical dependence when GHB is used at or near 

therapeutic levels (3.5 g/day). Multiple studies of humans and rodents have supported 

these results (Addolorato et al., 2005; Addolorato et al., 1996; Maitre, 1997)). However,
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there are reports of high volume, chronic users of the drug that have produced withdrawal 

symptoms similar to that of alcohol (Craig et al., 2000; Miotto et al., 2001). In 2000, the 

increased abuse of GHB led the DEA to re-classify the drug as a schedule 1 substance 

(2000).

Prevalence in Society Today

The prevalence of GHB in drug-facilitated rape is increasing and is now the most 

common substance used for this purpose (NDIC-2003 National Drug Threat 

Assessment). Drug facilitated rape or date rape occurs when the victim is physically 

unable to consent to a sexual activity. The ability of GHB to mentally and physically 

incapacitate a victim is further intensified when combined with alcohol. The combination 

of GHB and alcohol can cause an increased effect of symptoms during the time the 

alcohol is present in the body as compared to the effect of GHB alone (McCabe et al., 

1971). GHB is quickly metabolized in the body by oxidative enzymes and the eventual 

byproducts are carbon dioxide and water. With rapid degradation, and no metabolite 

present, detecting this drug in victims is a serious problem. Many victims will not report 

an assault until days afterwards because of memory lapses or the physiological trauma 

associated with such an event. GHB is detectable in a person’s system for only a limited 

amount of time; twelve hours in the urine (Kavanagh et al., 2001 ) and eight hours in 

blood (Ferrara et al., 1993) using currently available techniques. The most popular 

method so far is the use of gas chromatography-mass spectrometry (GC-MS) after the 

drug is extracted from the sample. New detection techniques are beginning to be 

developed that lower the sample preparation time and increase the sensitivity using both
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GC-M S, liquid chromatography-tandem mass spectrometry, and capillary 

electrophoresis-electrospray ionization ion-trap mass spectrometry (Crookes et al., 2004; 

Gottardo et al., 2004; Wood et al., 2004)). With a window of less than 24 hours for 

detection of GHB, many perpetrators are acquitted for lack of evidence that the victim 

was drugged. This problem will be solved only by continued improvements in 

chromatography technology or new approaches to developing a test for the detection of 

GHB.

MicroArray Technology

Microarray analysis has become such a valuable technique because it generates 

useful data for the expression of thousands of well-annotated genes in a manner of days. 

Previously, this was either logistically impossible, or would have taken years of 

experiments. While microarray analysis was originally dismissed as unfocused, this bias 

is dissipating due to the realization that understanding a molecule, in this study GHB, in 

the context of its interactions with thousands of other genes, requires a high-throughput 

approach. The strength of a discovery-driven approach is that the results are not limited 

by the scope of an investigator’s expectations. Results are often found that are 

unexpected and potentially more valuable than the expected results.

Modem microarrays contain 50-70 base pair long oligonucleotides designed to 

specifically detect thousands of RNA transcripts. Each spot on a chip correlates with a 

specific probe, and each probe corresponds to a specific gene transcript. These 

oligonucleotides are spotted multiple times on a chip to assess intra-array variability. The 

labeled pools of cDNA are then incubated with the slides and specifically bound to the
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oligonucleotides. The fluorescent signal intensity is detected and this signal is indicative 

of the relative expression level of the gene versus control.

One concern with microarray experiments is the design of the experiments 

themselves. This procedure is often too expensive, time consuming, and requires more 

material than one tissue or animal yields. Pooling of samples from like animals can be 

done in some experimental designs. There are at least two types of pooling, complete and 

sub-pooling (Peng et al., 2003). Complete pooling occurs when all of the samples from 

one treatment group are pooled onto one array and the array is hybridized only once. This 

approach cannot be used for statistical analysis, but can be used to focus on potential 

targets or genes important to the treatment. Sub-pooling is similar to complete pooling 

except multiple arrays are used within each group. This addresses the variability found 

among array experiments. This approach can be used in statistical microarray 

experiments and is much more thorough, but it is also more expensive, time-consuming, 

and analysis is much more difficult. The experimental approach depends on the focus and 

aim of the study. This study used the complete pooling method. Some arrays were 

duplicated and the results from the genes of interest were consistent. Even after 

considering these potential concerns there is no other technology available that is as 

powerful and or rapid at uncovering novel biomarkers. This method provides a unique 

opportunity to identify thousands of genes expressed simultaneously in one set of 

experiments that can be directly compared.

The use of microarray technology to determine biomarkers is gaining acceptance 

in many different fields. Biomarkers are defined as a laboratory measurement that reflects 

the activity of a disease or drug process (Katz, 2004). Many studies have been conducted
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to find markers for alcohol abuse (Chen et al., 2003; Helander, 2003; Montalto and Bean,

2003). These biomarkers have helped improve on knowledge of drinking patterns for 

treatment, monitored abstinence in outpatient treatment, and identified individuals at risk 

of alcohol abuse. Appropriate use o f biochemical markers will facilitate early 

intervention and successful management of patients with alcohol use disorders. 

Biomarkers have also been developed to study the effects of heroin, cocaine, nicotine, 

and methamphetamines abuse (Al-Amri et al., 2004; Benowitz et al., 2003; Brenneisen et 

al., 2002; Elkashef and Vocci, 2003; Garcia-Fuster et a l ,  2003; Ishigami et a l ,  2003; 

Underner et a l ,  2004; Wiesner et a l ,  2004). By measuring apomorphine, researchers can 

assess central dopamine system alterations that are associated with chronic heroin 

consumption (Guardia et a l ,  2002). Other researchers have looked through 

neuroendocrine and neuroimaging studies to identify specific biological markers that 

could be used to characterize genes that are activated among chronic cocaine users 

(Elkashef and Vocci, 2003). In cancer diagnosis and treatment many surrogate markers 

have been discovered, and are currently being developed (Alvaro et a l, 2005; Blay et a l ,  

2005; Schmitt et a l, 2004; Van den Eynden et a l , 2004). Inflammatory breast cancer is 

an aggressive form of cancer with poor detection and prognosis. Surrogate markers such 

as the overexpression of E-Cadherin and RhoC GTPase proteins in breast tissue have 

been developed and are currently being used in laboratories (Van den Eynden et a l ,

2004). This is a relatively new field but one that is rapidly gaining acceptance.
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Specific Aims

My hypothesis is that GHB will induce gene expression changes in a mouse 

model and these changes will be correlated with the time interval post exposure. In other 

words, GHB will induce acute gene expression changes that moderate over time. These 

gene expression changes may be of a longer duration than the time it takes to metabolize 

GHB, thus improving our window of detection.
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Materials and Methods

Mice

Female DBA/2J mice (7-8 weeks old) were obtained from The Jackson Laboratory (Bar 

Harbor, ME) and housed one week before GHB treatment, with a 12-hour light/dark 

cycle. The mice were maintained with 3 mice per cage and had access to mouse chow 

and water continuously. Animals used in this study were maintained in facilities 

consistent with the guidelines of American Association for the Accreditation of 

Laboratory Animal Care (AAA-LAC) and the Institutional Animal Care and Use 

Committee (lUCUC).

Administration o f  GHB and Blood Isolation

GHB (4-Hydroxybutyric acid sodium salt, Sigma-Aldrich, St Louis, MO) was kindly 

provided by the State of M ontana Crime Lab. GHB was dissolved in distilled water (213 

mg/ml) and injected intraperitoneally at a single dose of 1 g/kg. The injection size was 

7.5 ml/kg per mouse. Animals were sacrificed on day 1,2, 4, or 7 post-injection by C 02 

affiliation and exsanguinated by cardiac puncture. Blood used in microarrays was 

immediately frozen in liquid nitrogen, while blood used for RT-PCR or Flow Cytometer 

assays was placed in ice and immediately processed.

Microarray Experiments 

RNA Isolation

Blood was pooled within the groups by days post-injection and total RNA was isolated 

using QIAamp RNA Blood M ini Kit (Qiagen, Valencia, CA). Brain tissue samples were
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processed by Polytron homogenization in the presence of TRIzol reagent. RNA is then 

isolated following the m anufacturer’s protocol (GIBCO BRL, Grand Island, NY). 

Additional purification of the total RNA population was performed using the RNeasy kit 

(Qiagen, Valencia, CA). RNA quality is assessed by absorbance at 260/280 nm.

RNA Amplification

RiboAmp RNA Amplification Kit (Arcturus Biosciences, Mountain View, CA) was used 

to amplify the blood total RNA to high yields of aRNA. An average of 500-600 ng of 

total RNA was used perform a single round of amplification and the yield averaged 10 pg  

of mRNA.

Mouse ÎOK Microarrays

Microarray Array A oligonucleotides were purchased from MWG Biotech (High Point, 

NC) and consisted of 9853 mouse genes. The genes are represented by 50 bp oligos 

designed to specifically detect the gene of interest. The arrays also include 104 

Arabidopsis controls. The represented genes were selected from various databases (e.g. 

EBI, NCBI, Ensembl, GoldenPath) and kept non-redundant in MWG’s proprietary 

CodeSeq® database. Almost all genes on Array A have a known function or clearly 

defined protein domains.

Target Labeling and Hybridization

Labeled targets are made by incorporating aminoallyl-labeled dUTP (Ares Labeling Kit, 

M olecular Probes Inc., Eugene, OR) during first strand synthesis using 2 pg  of amplified
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RNA as template, reverse transcriptase (Superscript II, GIBCO BRL, Grand Island, NY ) 

and oligo dT (18) primers. Ares AlexaFluor 555 and AlexaFluor 647 dyes (Molecular 

Probes, Eugene, OR) are added by covalent attachment to the amino allyl group 

according to the manufacturer’s protocol, and incubated for 60 minutes at room 

temperature. To insure sufficient labeling, the levels of the labeled cDNA were measured 

by spectrophotometer (Nanodrop, ) before hybridization. The experimental or control 

target and the reference target were mixed and hybridized to the array at 46°C for 16 

hours in a hybridization chamber. Arrays were washed once in 1 X SSC and 0.01% SDS, 

twice in IX  SSC, and twice in lOmM TE, then dried by centrifugation in a tabletop 

centrifuge fitted with a plate spinning rotor.

MicroArray Scanning and Analysis

The processed microarray is read with an Axon GenePix 4000B laser slide scanner. This 

scanner was fitted with two excitation lasers (532 nm and 635 nm) permitting 

simultaneous scanning of two color data without the need for multiple image registration. 

GenePix Pro 4.0 software was used to perform automatic delineation of spot boundaries, 

measurement of local background for each spot, and digitization of fluorescence intensity 

on the microarray. Tabular data was exported to GeneTraffic Duo Microarray Data 

Management and Analysis Software (lobion Informatics, LLC, La Jolla, CA).

GeneTraffic integrates the data and image files from GenePix into a browser-based 

interface that connects to an on-site Linux server. The software provides the user with an 

easy to use system for normalization, analysis, data backup and storage. The scanning 

parameters for successful array spots were set based on fluorescence intensity and 

detection levels. The brightest spots were adjusted to be at or Just below saturation of the 

detector. Array spots with obvious defects were tagged and excluded from subsequent
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analyses. Normalization was performed based on total red and green dye intensity levels 

throughout the spots on the array. This normalization compensates for differences in 

signal intensity based on extraction or labeling differences between samples. The 

fluorescence intensity values were log-transformed and replicates of the identical samples 

were checked for analogous readings. Ratios of gene expression for each feature (gene) 

were filtered to limit analysis to those outside of intra-array and experimentally induced 

variance. Genes that alter their expression between test populations and control by a 

factor of 2 (50% decrease or 100% increase) were then considered for confirmation by 

RT-PCR.

Semi-quantitative RT-PCR

The expression levels of epiregulin and Pea-15 mRNA were analyzed using reverse 

transcription-PCR method. Total RNA was isolated using QIAamp RNA Blood Mini Kit 

(Qiagen, Valencia, CA) from peripheral blood. The reverse transcription contained 50 ng 

RNA, oligo-dT primer and followed the protocol of Sensiscript RT (Qiagen, Valencia, 

CA). The cDNA was then subjected to gene-specific PCR.

Primer Name Sequence Size Annealing

Temperature

Cycles

Pea-15 (+) 5 ' -CCGTCCTGACCTCCTC ACTAT-3 ' 233 bp. 61 29

Pea-15 (-) 5 ’ -GG AAGGGAGTGGTCTG ATG AA-3 ’ — —

Epiregulin(+) 5 -ACACTGGTCTGCGATGTGAGC-3 ' 195 bp. 64 26

Epiregulin(-) 5 ’ -TCCCCTG AGGTC ACTCTCTC A-3 ’ — — --

P-actin (-K) 5 '-TTCTTTGCAGCTCCTTCGTTGCCG-3 ' 457 bp. ---

P-actin (-) 5 ' -TGG ATGGCTACGTAC ATGGCTGGG-3 ' — — --
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Through electrophoresis, the amplified PCR product was resolved on a 10% 

polyacrylamide gel, stained with ethidium bromide, and the intensities were measured 

using the NIH Image Analysis program. The ratio of the gene of interest divided by the 

P-actin control was then determined. This ratio was log transformed and this data is 

presented.

Flow Cytometer

Peripheral blood was collected in a tube with EDTA (5mM final concentration). Whole 

blood (50p.l) was added to 250 p,l erythrocyte lysis Buffer EL (Qiagen, Valencia, CA). 

Cells were then washed two times with PAB (IX  PBS, 1% BSA, 0.1% sodium azide). 

Cells were then fixed with a final concentration of 1.6% formaldehyde (Calbiochem, La 

Jolla, CA) for 10 minutes at room temperature and washed with PAB. The cells were 

then permeabilized with ice-cold methanol (J.T. Baker, Phillipsburg, NJ) for 15 minutes 

on ice and again washed with PAB. Cells were then incubated with 50 yd RatIgG (600 

p.g/ml) for 10 minutes on ice to block the Fc receptors and then washed with PAB. Goat 

anti-epiregulin antibody (1.5 pg) (R&D Systems, Minneapolis, MN) or goat anti-mouse 

Pea-15 (1.7 pg) (Santa Cruz Biotechnology, Santa Cruz, CA) was added and incubated 

on ice for 40 minutes. Cells were washed with PAB, resuspended, and then incubated 

with fluorescein isothiocyanate (FITC)-conjugated donkey anti-goat Alexa flour 488 

(Molecular Probes, Eugene, OR) for 20 minutes on ice. As a control, cells were incubated 

with anti-mouse CD45 (BD Biosciences Pharmingen, San Diego, CA), Epiregulin 

antibody pre-incubated with recombinant epiregulin (R&D Systems), or Pea-15 antibody
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pre-incubated with a specific blocking peptide (Santa Cruz Technology). The cells were 

then washed two times with PAB. The labeled cells were analyzed on a Becton 

Dickenson FACSaria flow cytometer.

Statistical Methods

Statistical analysis was done using the software package PRISM, v. 3.03 (Graphpad, San 

Diego, CA) and Excel. Differences between control and GHB treated mouse groups in 

the flow cytometer experiments were assessed using a paired two-tailed t-test after the 

data was normalized to percent control. Differences between control and GHB treated 

mouse groups in the RT-PCR experiments were assessed using a paired two-tailed t-test 

after the log of the ratio between the gene specific band and the (3-actin control band was 

determined. All values are reported as mean 4-/-SEM; P<0.01 and P<0.05 were 

considered significant.
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Results

Microarray

M icroarray technology was used to identify potential gene expression changes in 

peripheral blood from GHB injected DBA/2J mice. Total RNA was obtained from blood 

that was extracted from four GHB injected mice and pooled for each of the three time- 

points. There were also three saline injected control mice pooled for each of the time- 

points. Using the Mouse lOK Array set A from MWG we found nine genes that passed 

through the arbitrary cutoff 24 hours after a single acute GHB injection. Phosphoprotein 

enriched in Astrocytes 15 (Pea-15) showed a 20.9-fold increase in samples from day 1 

mice, an 8.5 fold increase in samples from day 4 mice, and a return to background levels 

by day 7 in those samples. Epiregulin increased 19.2-fold in day 1, 4.6-fold by day 4, and 

below control levels by day 7. Other genes that showed a large expression increase over 

control in day 1 mice were Dopamine receptor 2, Cholinergic receptor-muscarinic 3, 

Galanin, Nucleolar protein family A, Neurotensin receptor 2, Colony stimulating factor 2 

receptor, and Histidine decarboxylase (Table 1). Based on the large increases of Pea-15 

and epiregulin expression through 4 days post-GHB injection it was determined to look 

further at the affect of GHB on these genes.
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TABLE 1

UNIQID Name Dayl Day4 Day7
Activated genes
NM _008556 Phosphoprotein enriched astroeytes 15 (Pea-15) 20.9 8.5 .05
NM _007950 Epiregulin (Ereg) 19.2 4.6 -1.1
NM _033269 Cholinergic Receptor,Muscarinic 3 (Chrm3) 8.0 3.8 -.07
N M _010077 Dopamine Receptor 2 (Drd2) 7.8 .1 .02
NM _010253 Galanin (Gai) 6.5 N/A .03
NM _026578 Nucleolar protein family A (N ola l) 5.5 3.2 1.1
NM _008747 Neurotensin receptor 2 (Ntsr2) 5.0 N/A -.1
NM _007780 Colony Stimulating factor 2 receptor (Csf2rbl) 4.9 2.8 ,03
NM _008230 Histidine Decarboxylase (Hdc) 4.5 3.1 -.24

Suppressed Genes
NM^O 19578 Exostoses (multiple)-like 1 (E xtll) -2.53 -1.58 -1.39
NM„025301 Mitochondrial Ribosomal protein L17 (M rpll7) -2.3 -1.37 -1.3
NM^Ol 1404 Solute carrier family 7 transporter (Slc7a5) -1.8 -1.52 -1.23



Semi-quantitative RT-PCR

Semi-quantitative reverse transcription PCR (RT-PCR) was used to confirm the 

microarray data. Using gene specific primers, along with control primers (|3-actin), 

differences in total mRNA levels can be distinguished. Total RNA was extracted from 

white blood cells and analyzed. Conditions were determined so that the gene specific RT- 

PCR product was still in the linear phase when the comparisons between that product and 

the control product were made. There were increased levels of Epiregulin expression in 

GHB injected mice (.4733 -t-/- ,06) over the saline control group (.2857 +/- .05) after Day 

1 (Figure 3). This increase lasted through the Day 2 experimental groups (GHB= .4324 

-I-/- .067 and control^ .2564 -t-/- .067) while by Day 4 there were small detectable changes 

between the groups (GHB= .2307 +/- .063 and control^ .2784 4-/- .05). While there were 

changes between the two groups they fall out of the statistical significant range.

Pea-15 expression was also increased through Day 1 (GHB= .1637 +1- .01 and 

control= .0339 4- / -  .009) and Day 2 (GHB= .2053 4- / -  .03 and control= .0614 4- / -  .003), 

while declining to control levels by Day 4 (GHB= .3035 +/- .06 and control^ .2577 +/- 

.0024) (Figure 4).

The experimental design included 6 GHB-inJected mice that were pooled into 3 

groups during a timeframe of 24, 48, and 96 hours. Four saline-injected control mice 

were pooled into 2 groups during a timeframe of 24, 48, and 96 hours. All experiments 

were performed at least 2 times.
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Figure 3. Epiregulin Semi-quantitative RT-PCR

(a) Representation of Epiregulin Semi-Quantitative RT-PCR experiment, (b) Densities of 

bands were averaged from all experiments after background was subtracted. The ratio of 

Epiregulin/p-actin bands was determined and the log of that ratio was used in graph. Data 

is presented as the mean 4-/- SEM. Samples 1-3, day 1 GHB-treated mice; sample 4, day 

1 Control mice; molecular weight ladder; sample 5-7, day 2 GHB-treated mice; sample 8- 

9, day 2 Control mice; samples 10-12, day 4 GHB-treated mice; samples 13-14, day 4, 

Control mice.
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FIGURE 4
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Figure 4. Pea-15 Semi-quantitative RT-PCR

(a) Representation of Pea-15 Semi-Quantitative RT-PCR experiment, (b) Densities of 

bands were averaged from all experiments and background was subtracted. The ratio of 

Pea-15/p-actin bands was determined and the log of that ratio was used in graph. Data is 

presented as the mean -h/- SEM. *(p<0.05 using t-test). Samples 1-3, day 1 GHB-treated 

mice; sample 4-5, day 1 Control mice; molecular weight ladder; sample 6-8, day 2 GHB- 

treated mice; sample 9-10, day 2 Control mice; samples 11-13, day 4 GHB-treated mice; 

molecular weight ladder; samples 14-15, day 4 Control mice.
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Intracellular Protein Staining

An intracellular flow cytometer assay was developed to look for protein 

differences between the GHB- treated and saline-treated control groups. Epiregulin was 

expressed both on the cell membrane and in the cytoplasm. Pea-15, however, is only 

found in the cytoplasm. This assay enabled us to use specific antibodies to detect the 

proteins in formaldehyde fixed white blood cells.

Epiregulin protein levels in GHB-treated mice were increased (256% -t-/- 39.6) 

over control 24 hours after injection (Figure 5). There was a smaller but statistically 

significant increase detected after day 2 (163% +!- 11), while levels returned to near 

baseline by day 4 (127% +/- 12). Co-incubation with a CD-45 specific lymphocyte- 

specific marker determined that the epiregulin antibody specifically stained white blood 

cells (Figure 6). Next, it was important to see if the antibodies were binding specifically 

to their respective proteins in the cell. Recombinant epiregulin protein was pre-incubated 

with the epiregulin antibody and blocked antibody binding by 67% (Figure 9a).

Pea-15 protein levels in GHB mice were increased (213% +/- 30.3) over control 

24 hours after injection (Figure 7). Pea-15 levels were still increased after day 2 (208% 

+/- 32.2), while levels were near percent control by day 4 ( 112% +/- 6.6). Using a CD-45 

lymphocyte specific marker it was determined that the Pea-15 antibody specifically 

stained white blood cells (Figure 8). A blocking peptide was used in correlation with the 

Pea-15 antibody to inhibit 54%-75% of antibody binding as assessed by median 

fluorescence (Figure 9b).
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Figure 5. Epiregulin Specific Staining

(A) Overlay of background fluorescence from secondary antibody, epiregulin binding on 

control WBC and the population shift of epiregulin detection in GHB treated WBC. (B) 

Detection of both the intracellular and the membrane surface Epiregulin protein on white 

blood cells isolated from GHB treated mice and control. GHB treated mice (n=10) and 

control mice (n=7) were examined at 24 hours after exposure. GHB treated mice (n=7) 

and control mice (n=5) were also examined after 48 hours. After 96 hours protein levels 

were also determined in GHB (n=7) and control (n=5) mice. The FITC median intensity 

was measured on all samples. Data are presented as percent of control mean +/- SEM. 

**(p<0.01 using t-test)

19
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Figure 6. Epiregulin and CD45 Isotype Staining

Example of cells stained with both the CD45 isotype and the epiregulin specific antibody. 

(A) Illustration of side scatter vs. forward scatter. (B) CD45 isotype staining vs. protein 

specific staining. (C) Histogram of total FITC protein specific staining. (D) Diagram 

illustrating the histogram of CD45 isotype staining. This specificity demonstrates that 

between 90-98% of the FITC signal was derived from CD45 positive cells.
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Figure 7. Pea-15 Specific Staining

(A) Overlay of background fluorescence from secondary antibody. Pea-15 binding on 

control WBC and the population shift of Pea-15 detection in GHB treated WBC. (B) 

Detection of intracellular Pea-15 protein on white blood cells isolated from GHB treated 

mice and control. GHB treated mice (n=10) and control mice (n=7) were examined at 24 

hours after exposure. GHB treated mice (n=7) and control mice (n=5) were also 

examined after 48 hours. After 96 hours protein levels were also determined in GHB- 

treated (n=7) and control (n=5) mice. The FITC median intensity was measured on all 

samples. Data are presented as percent of control of mean +/- SEM. **(p<0.01 using t- 

test) and *(p<0.05 using t-test)

41



FIGURE 8

Fig. Sa Fig. 8b

4000

3000

œ 2000 co

1000

0 1000 2000 3000 4000

PI 5 +2nd GHB + CD45 
Count: 30000 
Ungated

PI 5 + 2nd GHB + CD45 
Count: 274di:,
'/inble Cells

FSC-A

100000  -

800 -

600 -
2

X 400 -

200  -

10000  1000001 0 0 0

PIS

1 0 0 0 0  -

O  1000

100 7

0 100 1 00 0 0  1 0 0 0 0 0

P15 + 2nd GHB ♦ CD4: 
Count: 274i'iii 
VInlile Colis

1000 -f

800 -

X 400 -

2 0 0  -

10000 1000001000100
CD45

PI " + 2nd GHB + CD4' 
Count 27400 
VI nid H Colis

Fig. 8c Fig. 8d

44



Figure 8. Pea-15 and CD45 Isotype Staining

Example of cells stained with both the CD45 isotype antibody and the Pea-15 specific 

antibody. (A) Illustration of side scatter vs. forward scatter. (B) CD45 isotype staining vs. 

protein specific staining. (C) Histogram of total FITC protein specific staining. (D) 

Diagram illustrating the histogram of CD45 isotype staining. This specificity 

demonstrates that between 90-98% of the FITC signal was derived from CD45 positive 

cells.

45



FIGURE 9

Fig. 9a

100

8 0  -

6 0  -

% 40  -

!"'H "P"t

0 100 1000 10000 100000

E p ire g u lin

Epi + 2 ik I C o n tro l 1 
Epi + 2ncl C o n tro l + r opi

Fig. 9b

100

80  -

GO -

40  -

10000 10000010000 100

P -1 5

P I  5 + 2ncl C o n tro l 1 
P I  5 + 2 n d  C o n tro l + BP

46



Figure 9. Antibody Specific Staining for Epiregulin and Pea-15

(A) Recombinant epiregulin blocks epiregulin antibody binding on white blood cells. (B) 

Pea-15 blocking peptide inhibits Pea-15 antibody binding on white blood cells. Antibody 

specificity is illustrated by blocking the antibody binding.
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Discussion

General GHB use has risen dramatically over the last ten years. The use of GHB 

in drug-facilitated sexual assaults has increased the public awareness of the abuses of this 

drug. Because of the rapid metabolism of GHB and the short time frame it is present in 

the body, detection of the drug is very difficult. This has caused difficulties for clinics, 

forensic crime-iabs, and general law enforcement in determining the overall prevalence 

of GHB use in sexual assault cases. This study examines potential surrogate markers that 

may be developed to improve the window of detection for GHB.

Epiregulin and Pea-15 were worthy of note because of their high levels of 

expression 24 hours after GHB exposure in the microarrays. The fact that 48 hours after 

injection both still had large increases over control made them candidates for further 

study. Neither Epiregulin nor Pea-15 was up regulated in microarrays performed with 

RNA from the brain on GHB dosed mice (data not shown). The idea that these genes 

were only activated in the blood is an important aspect of the development of a surrogate 

marker. It suggests that the event being measured in blood is indirectly related to the 

pathology. The fact that this effect takes time to develop and lasts for at least 48 hours 

works to our benefit. It rules out that the increased Pea-15 or Epiregulin production 

originated in the brain and escaped into systemic circulation. This is highly unlikely but 

the mechanism behind this increase in protein levels is not understood.

Epiregulin is a member of the epidermal growth factor (EGF) family (Toyoda et 

al., 1995). This protein was initially purified from media excreted from NIH3T3/clone 

T7, a mouse fibroblast-derived tumor cell line. The gene is mainly expressed in the 

placenta and on peripheral blood leukocytes in normal human tissues (Toyoda et al..
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1997). Overall, the expression level of epiregulin is low in normal adult tissues. It is also 

expressed in many different tumor cell lines. The highest levels of expression were in the 

bladder (T-24), lung (A-549), kidney (ACHN and TR-24), colon (Colo201 and HCT-15), 

and epidermal (HeLa and KB) carcinoma lines (Toyoda et al., 1997).

Various functional assays have suggested that epiregulin is a cell-signaling 

mediator that is involved in many biological systems. Originally thought to only act as a 

growth-inhibitor factor, epiregulin was later proven to act as a mitogen in some cell 

types. Its functions include a role in reproduction, liver regeneration, and as a vascular 

smooth muscle cell mitogen (Das et al., 1997; Park et al., 2004; Sekiguchi et al., 2002; 

Toyoda et al., 1997; Toyoda et al., 1995). Epiregulin expression is closely tied to bladder 

cancer survivors, but expression is also upregulated and active in the development of 

pancreatic and prostate cancer (Thogersen et al.. 2001; Torring et al., 2000; Zhu et al., 

2000). The expression of epiregulin is not needed in the development of intestinal 

tumors, but it is required for protection from intestinal damage (Lee et al., 2004). 

Epiregulin is a target molecule involved in tumorgenesis in Ki-Ras-mediated signaling in 

colon cancer cells (Baba et al., 2000). It has also been shown to be important in the 

immortalization of human fibroblasts by telomerase (Lindvall et al., 2003). Recently, 

epiregulin was found to play a role in the inflammatory response of kératinocytes and 

macrophages (Shirasawa et al., 2004).

The epiregulin protein is found in a membrane-bound form and also as a mature 

secreted form (Baba et al., 2000). The majority of the research conducted to date has 

focused on the mature form of the protein in the cytoplasm and later, as a type of 

cytokine through secretion. The membrane-bound epiregulin seems to act as a
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proinflammatory cytokine that is produced in macrophages (Shirasawa et ah, 2004). This 

shows that the soluble form and the membrane-bound form may have distinct functions.

Phosphoprotein enriched in astrocytes 15 (Pea-15) is a 15 kDa protein that was 

originally identified as an abundant protein located in the cytoplasm of brain astrocytes 

(Araujo et aL, 1993). Pea-15 was later shown to be expressed in a wide range of tissues 

and to be conserved in various mammals (Danziger et al., 1995; Estelles et al., 1996; 

Ramos et al., 2000). Pea-15 structurally contains a N-terminal death effector domain 

(DBD) and a C-terminal tail. It exists in three isoforms based on phosphorylation state. It 

can be present containing zero (N), one (Pa), or two (Pb) phosphorylated serine sites. The 

Pa isoform is phosphorylated (Serine-116) via calcium-calmodulin Kinase II, while 

protein kinase C controls the phosphorylation of the Pb (Serine 104) (Kubes et al., 1998).

Many studies have shown that Pea-15 regulates multiple cellular functions 

through various interactions. It has been shown that Pea-15 can bind to Fas associated 

death domain (FADD) and caspase-8. This results in the decrease of tumor necrosis 

factor- alpha (TNF) triggered apoptosis in astrocytes (Estelles et al., 1999; Kitsberg et al., 

1999). Pea-15 also decreases Fas-induced apoptosis in fibroblasts (Condorelli et al,, 

1999). Pea-15 activates the extracellular signal receptor-activated kinase (ERK) MAP 

kinase pathway through Ras as well (Ramos et al., 2000). This function may serve to link 

the apoptotic pathways and the ERK MAP kinase pathway. Pea-15 also modifies ERK 

signaling by binding it in the nucleus and transporting it back into the cytoplasm 

(Formstecher et al., 2001). This limits the cell’s ability to enter into the cell cycle.

The level of gene expression changes between the microarray and the RT-PCR 

analyses are very different with both Epiregulin and Pea-15. GHB induced increases in
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Epiregulin expression 19.2 fold in the microarray, while expression was increased only 

1.7 fold with the RT-PCR assay. Pea-15 expression was increased 20.9 fold in the 

microarray, but just 4.8 fold in the RT-PCR assay. There are some potential explanations 

for this large difference. The assays that measure these expression changes are very 

different. Microarrays involve hybridization of labeled cDNA to 50 base pair 

oligonucleotides probes. The microarray is based on the hybridization of the 

oligonucleotides to some internal region of the gene, while the RT-PCR assay is 

dependent on two independent oligonucleotides binding to the ends of the cDNA. The 

regions of the genes detected by the microarray oligonucleotides may have been better 

represented and more accessible for binding than those of the RT-PCR primers.

There was no statistically significant increase in Epiregulin RT-PCR product from 

GHB to control. There was a 1.6-fold increase on day 1 but because of a high standard 

error of the mean this increase fell below a significant change (p<0.08). Pea-15 RT-PCR 

levels were increased 4.8 fold on dayl and 3.3-fold by day 2 in GHB-treated mice over 

control. While these increases are not as great as the increases by microarray, they do 

confirm that these genes are upregulated and increased transcription is detectable in 

peripheral blood.

Since future research goals include developing an assay for the detection of GHB 

exposure, determining the protein levels are the most important aspect of these studies. 

The increases of the Epiregulin and Pea-15 protein in GHB-treated mice over control are 

imperative. These increases represent significant protein changes that are easily 

measured. It is not known whether these changes represent a “mechanism” biomarker of 

GHB exposure. It would be very interesting to determine if these alterations are the result



of random gene expression changes caused from GHB treatment or actual downstream 

effects induced from the drug.

There are no known data or mechanisms that connects epiregulin and GHB.

Studies have been done that make a case for a possible connection. Epiregulin expression 

is induced by follicle-stimulating hormone (FSH), which causes ovarian cell proliferation 

(Sekiguchi et al., 2002). Epiregulin also acts as a mediator of luteinizing hormone (LH) 

action in mammalian ovulatory follicles (Freimann et al., 2004). It has also been found 

that LH stimulation induces the expression of epiregulin in mouse ovaries (Park et al., 

2004). It is widely accepted that both FSH and LH are regulated by gonadotropin- 

releasing hormone (GnRH). Since there is a direct link of epiregulin involvement with 

these gonadotropin hormones in ovarian cells there may be a relationship between 

epiregulin and hormonal changes in other biological systems. It is accepted that GHB can 

directly increase human growth hormone in both humans and mice (Van Cauter et al., 

1997; Volpi et al., 2000; Volpi et al., 1997). It may be that the endocrine system, via the 

release of hormones in the pituitary gland is the mechanism that explains the increase of 

epiregulin in peripheral blood after GHB exposure (Figure 10).

There is also very little data that elucidates a relationship between Pea-15 and 

GHB. A gonadotropin-releasing hormone (GnRH) agonist, leuprolide acetate, reduces the 

expression of Pea-15 by 50% in uterine leiomyomas (Bifulco et al., 2004). Leuprolide 

acetate contains anti-proliferative properties that reduce the leiomyoma volume. This is, 

in part, by suppressing the anti-apoptotic effects of Pea-15. GHB is known to increase the 

concentration of growth hormone, which can also decrease the rate of apoptosis (Baixeras
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et al., 2001; Jeay et al., 2000). It is not known whether these mechanisms are connected 

(Figure 11).

There is the potential that the information found in this study could be developed 

as a protein-based detection system for GHB use. Biomarkers are becoming increasingly 

important in the field of drug detection when there are issues involving their direct 

measurement. Instead of detecting the drug itself, surrogate markers, resulting in directly 

from the GHB exposure, would be detected. Biomarkers should accurately reflect the 

amount of GHB exposure over time. Both Epiregulin and Pea-15 protein levels are 

increased in this model. An important aspect of this study is that these increases are 

longer than the current detection limit of GHB using available techniques, which is 

around 12 hours. The development of an assay that can measure these proteins easily in a 

flow cytometer instrument is very advantageous based on the availability of these 

instruments in hospitals and clinics. It is also important that we have two independent 

markers. We have yet to validate the additional genes that were also up or down regulated 

by GHB. A successful assay may need to possess an optimal combination of multiple 

biomarkers as this could increase sensitivity and decrease false-positives.

Many future experiments would be needed to make sure these results are a 

specific response to GHB exposure. One of these experiments would include comparing 

Epiregulin and Pea-15 levels in DBA/2J mice against combinations of GHB, GAB A, and 

the respective antagonists (NCS-382 and CGP-35348). This information would determine 

if the changes in protein levels are specific for GHB or give an indication that these 

changes are a by-product of complex relationship between the GABAergic and GHB 

systems. After determining which system these changes may be directed through, the

53



next step would be to determine if they are related to the dopaminergic or cholinergic 

systems. Both GHB and GABA affect these neurotransmitter levels and involvement of 

these molecules would be the most logical mechanism. Another study would need to 

compare Epiregulin and Pea-15 protein levels after exposure to other drugs of abuse. A 

comparison among other CNS depressant drugs such as benzodiazepines, barbiturates 

and alcohol would be useful. It is known that neither Epiregulin nor Pea-15 RNA 

expression levels are increased in microarray assays after a Ig/kg dose of ethanol (data 

not shown), but no protein information is available. Further development of this type of 

detection system would be to move from the current mouse model to a human model. 

Human baseline levels of Epiregulin and Pea-15 in peripheral blood would need to be 

determined. There are also no data on how tightly these genes are regulated in human 

white blood cells. There are many difficulties with this type of study that include getting 

approval for administering a schedule 1 drug to humans. Also vital would be to determine 

the influence of different variables such as age, sex, and ethnicity on the validity of the 

biomarkers.

In conclusion, this study begins the process needed to uncover and validate 

potential biomarkers that are specific to GHB exposure. Future work may provide an 

alternative testing system that would provide investigators with a longer timeframe for 

GHB detection.
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Figure 10. Potential mechanism linking Epiregulin and GHB.

GHB is known to affect the release of growth hormone and also directly control multiple 

neurotransmitters that influence the endocrine system. Epiregulin is also tied into the 

endocrine system, mostly through the maturation and proliferation of ovary cells.
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FIGURE 11
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Figure 11. Potential mechanism linking Pea-15 and GHB

GHB is known to increase the release of growth hormone and also affect multiple 

neurotransmitters that influence the endocrine system. Pea-15 and growth hormone have 

been proven to act as inhibitors of apoptosis.
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