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HIV-2 RNA dimerization is regulated by intramolecular

interactions in vitro

TAYYBA T. BAIG, JEAN-MARC LANCHY, and J. STEPHEN LODMELL
Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA

ABSTRACT

Genomic RNA dimerization is an essential process in the retroviral replication cycle. In vitro, HIV-2 RNA dimerization is
mediated at least in part by direct intermolecular interaction at stem–loop 1 (SL1) within the 59-untranslated leader region
(UTR). RNA dimerization is thought to be regulated via alternate presentation and sequestration of dimerization signals by
intramolecular base-pairings. One of the proposed regulatory elements is a palindrome sequence (pal) located upstream of SL1.
To investigate the role of pal in the regulation of HIV-2 dimerization, we randomized this motif and selected in vitro for
dimerization-competent and dimerization-impaired RNAs. Energy minimization folding analysis of these isolated sequences
suggests the involvement of pal region in several short-distance intramolecular interactions with other upstream and
downstream regions of the UTR. Moreover, the consensus predicted folding patterns indicate the altered presentation of SL1
depending on the interactions of pal with other regions of RNA. The data suggest that pal can act as a positive or negative
regulator of SL1-mediated dimerization and that the modulation of base-pairing arrangements that affect RNA dimerization
could coordinate multiple signals located within the 59-UTR.
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INTRODUCTION

Retroviruses package two copies of their positive sense
single-stranded RNA genome into a single viral particle.
Analysis of the packaged genomes revealed the two RNA
molecules are linked by noncovalent bonds and form a
dimeric RNA structure inside the viral particle (for review,
see Greatorex and Lever 1998; Paillart et al. 2004b; Russell
et al. 2004). The dimeric nature of the genomic RNA has
been characterized by sedimentation analysis (Cheung et al.
1972) and nondenaturing gel electrophoresis (Fu and Rein
1993). Moreover, electron microscopic studies indicated
that the two RNA molecules are joined strongly with each
other through a region close to their 59 ends, termed the
dimer linkage structure (DLS) (Bender and Davidson 1976;
Hoglund et al. 1997).

The mechanism of dimerization promoted by the DLS
was further studied in vitro using RNA fragments encom-
passing the 59 end of the HIV-1 genomic RNA, which
showed the spontaneous dimerization of these RNA frag-

ments without any cellular or viral proteins (Darlix et al.
1990). The essential motif for dimerization of the HIV-1
genomic RNA was identified in vitro and called the
dimerization initiation site (DIS) (Laughrea and Jette
1994; Paillart et al. 1994; Skripkin et al. 1994; Muriaux
et al. 1995) or stem–loop 1 (SL1) (McBride and Panganiban
1996). In vitro, this motif mediates dimerization between
two RNA molecules through a kissing loop interaction
(Laughrea and Jette 1994; Paillart et al. 1994; Skripkin et al.
1994) that may proceed further through an extended
intermolecular interaction to form a stable extended duplex
at least when short RNA constructs are used (Laughrea and
Jette 1996; Muriaux et al. 1996a; Greatorex and Lever 1998).

The dimerization properties of the HIV-2 leader RNA
are somewhat different from those of the HIV-1 leader.
Multiple dimerization elements have been described within
the HIV-2 leader RNA, including stem–loop 1, which is
homologous to the HIV-1 SL1 (Dirac et al. 2001; Lanchy
and Lodmell 2002), and nucleotides within the primer-
binding site (PBS) (Jossinet et al. 2001; Lanchy and
Lodmell 2002). Furthermore, a 10-nucleotide (nt) palin-
drome sequence called pal within the encapsidation signal
of the HIV-2 leader RNA has been proposed to be involved
in dimerization or its regulation in vitro (Lanchy et al.
2003a).
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The ability of genomic RNA to dimerize is a potentially
important event for key steps of the viral replication cycle
such as translation, encapsidation, and recombination
(Darlix et al. 1990; Hu and Temin 1990; Stuhlmann and
Berg 1992; Baudin et al. 1993; Fu and Rein 1993; Fu et al.
1994; Rein 1994; Jetzt et al. 2000; Mikkelsen et al. 2000;
Abbink and Berkhout 2003; Sakuragi et al. 2003; D’Souza
and Summers 2004; Flynn et al. 2004; Hibbert et al.
2004; Chin et al. 2005). Genomic RNA dimerization and
encapsidation have been proposed to be regulated through
different conformations of the leader RNA region that
trigger or prevent these two processes. Two alternative con-
formations have been reported in vitro for HIV-1 leader
RNA that show different dimerization properties (Berkhout
and van Wamel 2000; Huthoff and Berkhout 2001). One
of the proposed conformations exists as a rod like struc-
ture with a long-distance base-pairing interaction (LDI)
between the poly (A) signal stem–loop and SL1 domains
(Huthoff and Berkhout 2001), therefore masking the SL1
and inhibiting dimerization. In the other proposed con-
formation, the leader region can refold into a branched
structure with multiple hairpins (BMH) that exposes both
the poly (A) and SL1 hairpins and favors dimerization.
Although disruption of the LDI causes phenotypic changes
in HIV-1 replication (Ooms et al. 2004; Abbink et al. 2005),
structural evidence for the two conformations has been
elusive, as chemical probing of the HIV-1 genomic RNA
structure in infected cells and in viral particles did not
reveal the existence of a predominant LDI conformation
(Paillart et al. 2004a).

In contrast to HIV-1, the HIV-2 leader RNA fragment
does not dimerize efficiently through SL1 in vitro (Dirac
et al. 2002a; Lanchy and Lodmell 2002; Lanchy et al. 2003a,
b). It has been proposed that similar to HIV-1, monomeric
HIV-2 RNA can adopt two alternative conformations that
sequester and release SL1, respectively (Dirac et al. 2002a;
Lanchy et al. 2003a). The impaired dimerization of HIV-2
RNA is thought to be caused by an energetically favored
folding that sequesters SL1 (Dirac et al. 2002a; Lanchy et al.
2003b). We suggested that the intramolecular sequestration
of SL1 occurs through base-pairing with the upstream 10-nt
pal sequence (Lanchy et al. 2003b).

Since pal can affect the SL1-mediated dimerization of
HIV-2 leader RNA fragments in vitro, we have character-
ized in the present study the role of pal by randomizing this
motif and selecting from a population of random-pal RNAs
those with enhanced or diminished dimerization proper-
ties. We cloned and sequenced individual RNAs from the
selected pools and used their sequences to analyze the
functionally important secondary structures that might be
involved in silencing or enhancing SL1’s role as a dimer-
ization element. In particular, the predicted folding models
suggest that the nonnative selected pal sequences (denoted
pal* to distinguish from the wild-type pal sequence) were
involved in different patterns of binding in the monomer

and dimer RNA populations. Moreover, the different pal*
binding patterns are associated with different structural
presentation of SL1 that correlated with the observed
dimerization abilities of the selected RNAs. Our observa-
tions underscore the importance of pal* as a regulator of
dimerization by modulating SL1 presentation. In addition,
similarities in the dimerization behavior and predicted
folding of the monomer pool RNAs with wild-type RNA
suggest a general model for pal’s involvement in the
regulation of dimerization.

RESULTS

Construction of pool 0 RNA and selections
for dimerization-competent and
dimerization-impaired RNAs

The HIV-2 leader RNA fragment (561-nt-long) was pre-
viously shown to dimerize inefficiently through SL1 in vitro
(Lanchy and Lodmell 2002; Lanchy et al. 2003b). The
existence of an alternative conformation of the monomeric
leader RNA was proposed to be responsible for this
inability to dimerize efficiently, in which a short-range
intramolecular interaction (pal-SL1) occludes the SL1
dimerization element (Lanchy et al. 2003a). The 10-nt pal
sequence (392–401) is located upstream of the SL1 in the
HIV-2 RNA (Fig. 1). To further characterize the role of pal,

FIGURE 1. HIV-2 leader RNA and location of the pal and SL1
elements. (A) The 59 leader region of HIV-2 ROD genomic RNA is
represented with boxes and numbers to indicate the landmark se-
quences with their names indicated above. TAR, poly A signal, C-box,
PBS, c, SL1, SD, G-box, and gag represent the trans-activation region,
the poly (A) signal domain, C-rich sequence, the primer binding site,
the encapsidation signal c, stem–loop 1, the major splice donor site,
G-rich sequence, and the 59 end of the Gag protein coding region,
respectively. (B) A simplified secondary structure of nucleotides 380–
444. The gray box highlights the 10-nt palindrome sequence (pal) in
the encapsidation signal, and the 6-nt autocomplementary sequence
essential for SL1-mediated dimerization in the apical loop of the SL1
is outlined.
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we designed a 1–561 RNA construct harboring a random-
ized pal to determine how pal could act as a regulatory
element for SL1. Nucleotides 393–401 of pal were random-
ized within the DNA transcription template used in this
study. Hence, the preselection (pool 0) RNA species were
561-nt-long and harbored a 392GNNNNNNNNN401 se-
quence (where N has an equal probability of being A, C,
G, or U) instead of the wild-type 392GGAGUGCUCC401

sequence (Figs. 1B, 2A). Randomization of this region was
verified by sequencing (data not shown).

An in vitro selection/amplification technique was used to
enrich the randomized populations for RNAs that were
dimerization competent or impaired. The approach used in
the selections of both pools is explained in the Materials
and Methods and in Figure 2B. Pool 0 RNA was fraction-
ated into dimer and monomer species by nondenaturing
gel electrophoresis. RNA migrating as a dimer species was
excised from the gel, subjected to RT-PCR and transcrip-
tion, and the resulting RNA was used in a subsequent
round of selection for dimerization-competent RNAs.
Likewise, RNA migrating as a monomer species was simi-
larly processed, and the reamplified RNA was used in a
subsequent round of selection for dimerization-impaired
RNAs (Fig. 2B). After initial fractionation of pool 0 for
dimer and monomer RNA species, further selections were
made separately to minimize cross-contamination. The
percentage of RNA migrating in dimeric form increased
with the consecutive rounds of dimerization-competent

RNAs selection (Fig. 3A). We stopped the dimerization-
competent RNAs selection when the percentage of dimer
reached a plateau and remained constant for several rounds
of selection (Fig. 3C). In parallel, the percentage of dimer
decreased with the successive rounds of dimerization-
impaired RNAs selection (Fig. 3B). We discontinued the
selection when the percentage of dimer remained the same
for several rounds of selection (Fig. 3C).

Interactions of in vitro selected pal sequences
(pal*) within the 561-nt-long RNA

The resulting cDNAs from the last dimerization-competent
(sixth round) and dimerization-impaired (fifth round)
selections were cloned into pUC18 for either sequencing
or expression of the individual clonal RNAs. Sixty clones
from each pool were sequenced and subjected to computer-
assisted lowest-energy folding. We called these two pools
monomer and dimer pools, since they originated from the
last dimerization-impaired and -competent RNA selec-
tions, respectively. Mfold version 2.3 (Zuker 2003) was
used to predict the most stable secondary structure at
55°C for each of the 120 individual sequences. The folding
temperature was set at 55°C since the RNAs were incubated
at 55°C in our selection protocol. The 120 optimal
secondary structures were visually analyzed, and the orga-
nization of the pal* and SL1 elements and the base-pairing
partners of the selected pal* nucleotides was recorded and

shown in Figure 4 by model structures
and dots adjacent to the leader RNA
schematic, respectively.

One striking pattern revealed by
Mfold analysis was the reproducible
and relatively small number of intra-
molecular interactions that variant pal*
made with upstream and downstream
RNA sequences, as evidenced by the
peaks of dots in Figure 4. Distinct
structural groups are formed by pal*
interacting with either the C-box, 380,
SL1, 444, or 500 regions. We included
another structural group called free pal*,
representing the variant pal* sequences
where none of pal* nucleotides are base-
paired in the optimal Mfold-predicted
structure (7% and 13% of dimer and
monomer pool sequences, respectively)
(Table 3, see below). The major partners
of pal* among RNA species isolated
from the dimer pool were C-box, 380-
region, and SL1 (Fig. 4A). They repre-
sent 27%, 45%, and 20% of the dimer
pool sequences, respectively (Table 3,
see below). In the monomer pool, the
major regions predicted to base-pair

FIGURE 2. Randomized pal* sequence and in vitro selection methodology. (A) Detailed view
of randomized pal region of the 561-nt pool 0 RNA used for in vitro selection. The pal element
is a 10-nt palindrome sequence within the encapsidation signal c, located immediately
upstream of SL1. Nine nucleotides (393–401) in the pal sequence were randomized in the
template used for transcription of the pool 0 RNAs, while keeping the first nucleotide of pal
(G392) constant so as not to disrupt the Hpy99I restriction site required for template
construction (see Materials and Methods). (B) Schematic of the SELEX approach used to select
and amplify the dimerization-competent and dimerization-impaired RNAs from the dimer and
monomer pools, respectively. The dimeric and monomeric RNAs were partitioned on
nondenaturing agarose gel. The dimeric and monomeric RNAs were excised from the pool
0 gel and used as the templates for RT-PCR to generate the DNA template to transcribe RNAs
for the subsequent dimer and monomer pools. This cycle was repeated several times separately
for the dimer and monomer selections. The solid arrows represent the dimeric and monomeric
RNAs used for each subsequent round of selection. The dotted arrows represent those RNAs
that were not processed for selection.

Regulation of HIV-2 RNA dimerization
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with pal* included the 380, SL1, 444, and 500-regions (Fig.
4B). They represent 22, 20, 30, and 12% of the monomer
pool sequences respectively (Table 3, see below).

Another feature revealed by Mfold analysis was that the
structural environment of SL1 differs between dimer and
monomer pools and correlates with the pal*-defined
structural groups. In the dimer pool, SL1 is often presented
as an individualized stem–loop structure (80% of the dimer

pool sequences) (Fig. 4A; Table 3, see below), while pal*
interacts with sequences located upstream of itself, either
the C-box element or the 380-region (27% and 45%,
respectively) (Table 3, see below).

Although some pal* binding partners are located
upstream of pal* (25%) (Fig. 4B; Table 3, see below),
monomer pool sequences are characterized by increased
interaction of pal* with sequences located downstream of
SL1, either with the 444-region or the 500-region (30% and
12%, respectively) (Fig. 4B; Table 3, see below). The direct
consequence is a local increase of SL1 stability, which may
regulate HIV-2 RNA dimerization (see Discussion).

Interestingly, 20% of both monomer and dimer pools
sequences optimal structures sequester SL1 by direct base-
pairing with part of SL1 (pal*-SL1) (Fig. 4B; Table 3, see
below). The pal*–SL1 interactions could be further divided
in two subgroups, depending on whether pal* interacts
with the 59 stem of SL1 or its loop and 39 stem (Fig. 4, cf.
pal*-SL1 structures in panels A and B). Moreover, the pal*–
(59 stem SL1) interactions are more represented among
dimer pool sequences than among monomer pool sequen-
ces (13% and 7%, respectively) (Table 3, see below).

Characterization of the RNAs isolated from
the last dimer and last monomer pools

Sixteen sequenced DNA plasmid clones, chosen from the
last dimer and monomer pool selections were transcribed
into pure clonal RNAs. These clonal RNAs were character-
ized for their dimerization properties by nondenaturing gel
electrophoresis. The HIV-2 leader RNA was shown pre-
viously to be dimerization-impaired (Lanchy et al. 2003a).
As expected, the dimerization yield of all eight clonal
RNAs (M01–8) from the monomer pool selection was
quite similar to the wild type (Fig. 5A, cf. lanes 1 and 2–9),
whereas the level of dimerization for six of the eight clonal
RNAs (D01–6) from the dimer pool selection was higher
than wild type (Fig. 5B, cf. lanes 1 and 2–7). The
dimerization efficiency of the other two clonal RNAs
(D07 and D08) was similar to wild type (Fig. 5B, cf. lanes
1 and 8,9). Although D07 and D08 RNAs were isolated
from the last dimer pool selection, their impaired dimer-
ization yields suggest that either they were selected as
heterodimers with more dimerization-competent RNAs,
such as D01–6 (Fig. 5B), or that the stringency of the
selection allows carryover of some monomer RNA species
at each round. In fact, the repartitioning of RNAs into
dimer and monomer bands at each round, even though the
RNA at each round is derived from template originating
from solely dimer (or monomer) RNA in the previous
round, suggests that the RNAs can adopt dimerization-
competent or -impaired conformations.

Finally, analysis of the structural groups to which the 16
clonal RNAs belong showed the same correlation between

FIGURE 3. Evolution of dimerization characteristics after repeated
rounds of selection for dimerization-competent and dimerization-
impaired pool RNAs. (A) A non-denaturing dimerization gel is shown
to represent the pool 0 (unselected RNA) and successive rounds of
selection (first, second, fourth, fifth, and sixth) of the dimer pools.
The top band, migrating as dimer for pool 0 RNA, was used as the
starting material for each subsequent round of selection for dimer-
ization-competent RNAs, while the bottom band for pool 0 RNA was
used during the separate selections for dimerization-impaired RNAs.
The dimerization of the wild-type RNA is shown for comparison. (B)
A nondenaturing dimerization gel is shown to represent the pool
0 (unselected RNA) and successive rounds of selection (first, third,
and fifth) of the monomer pools. The wild-type RNA is also shown
for comparison. (C) The percentage of dimer yield from the dimer
pools (open squares) and from the monomer pools (open circles) was
quantified by phosphorimager scanning and analyzed with Fuji Image
Gauge v3.3 software.
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structural groups and dimerization phenotypes as the one
we observed for the 120 sequenced individual clones (Table
2, see below). Moreover, D07 and D08 belong to the pal*-
SL1 group, a group represented equally in both monomer
and dimer pools (20%) (Table 3, see below), reinforcing the
hypothesis that these were selected in the dimer pool as
heterodimers or that they emerged through the selection
despite their marginal dimerization capacity (see above).

Wild-type 1–561 HIV-2 RNA solution
structure probing

To examine the conformation(s) of the wild-type HIV-2
leader RNA in solution, we performed chemical probing
of the accessibility (reactivity) of the adenine residues
in dimer buffer at 55°C over time (0, 4, or 20 min)
(Fig. 6A). Since the level of tight dimers is low over

FIGURE 4. Summary of the base-pairing interactions of in vitro selected pal* in the predicted optimal 1–561 RNA structures from the last dimer
pool (panel A) and monomer pool (panel B) individual sequences. The secondary structures of the selected RNAs from the dimer and monomer
pools were predicted using the Mfold program, v2.3 at 55°C (Zuker 2003). The base-pairing partners of pal* (nt 392–401) were taken from
the most stable predicted structure for each of the 120 cloned sequences. Nucleotides predicted to interact with pal* in all of the most stable
secondary structures are indicated by dots above the leader region schematic (i.e., one dot equals one base-pair with one pal* nucleotide). The
high peaks of dots represent the major partners of pal*, and include the C-box (nt 186–199), the 380-region (nt 358–390), SL1 (nt 409–436), the
444 region (nt 437–444), and the 500 region (nt 490–514). The major pal* binding regions for both selections are indicated with brackets
below panel B. Secondary structure of pal*, SL1, and pal*-interacting partners for the structural groups are indicated above the dots schematic in
both panels. Only the pal* nucleotides that are consistently base-paired in each structural group are indicated. Y indicates a pyrimidine residue
(C or U).
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the first 20 min of folding at 55°C (Lanchy et al. 2003a),
this experiment was designed to investigate the con-
formation of the monomeric RNA species together with
the SL1-mediated kissing loop dimer species, which can
also form under these conditions. Because solution struc-
ture probing yields data on the average accessibility of
each nucleotide, the readout potentially represents the
superimposed reactivities of several distinct con-
formations if more than one conformation exists in the
reaction.

Indeed, most adenine residues of the pal and SL1
elements are rather accessible to DMS methylation (on
the N1 atom of their Watson–Crick side) (Fig. 6; for
review, see Ehresmann et al. 1987). The most reactive
adenine is A427 in SL1’s loop, and the most unreactive is
A387 located upstream of pal (Fig. 6). Furthermore, the
A423 residue in SL1’s palindromic sequence is weakly
reactive, suggesting that a majority of RNA molecules
may be involved in a ‘‘kissing’’ SL1 loop–loop interaction
(loose dimers), since we know that only a small minority
form tight dimers after 20 min of incubation (see Discus-
sion and Lanchy et al. 2003a).

Finally, comparison of the change of reactivities over
time (Fig. 6A, lanes 2–4) indicated that the structure
involving the pal and SL1 elements formed fast and did
not change drastically during the first 20 min of folding,
except that the A387 residue became unreactive after 4 min
(Fig. 6A). The chemical structure probing results are
consistent with the extended SL1 model (Fig. 6B).

FIGURE 5. Characterization of selected RNAs from each of the
last dimer and monomer pools. Eight RNAs from each pool were
selected to characterize their behavior in standard dimerization
assays. (A) Clonal RNAs from the final monomer pool are represented
by M01–M08. Lanes 2–9 show the dimerization-impaired RNAs,
and lane 1 shows the wild-type RNA. (B) Clonal RNAs from the
final dimer pool are represented by D01-D08. Lanes 2–7 show the
dimer-competent RNAs (D01–06). Lanes 8 and 9 show the dimer-
ization-impaired D07 and D08 RNAs that persisted during the
selection for dimerization-competent RNAs, and lane 1 represents
the wt RNA.

FIGURE 6. DMS probing of the pal and SL1 elements in the wild-
type HIV-2 leader RNA. (A) Wild-type 1–561 RNA was denatured,
then incubated in the presence of dimer buffer at 55°C for the times
indicated. DMS was then added (0.5% final concentration), and
incubation was continued at 27°C for 2 min. Reactions were stopped,
and primer extensions were performed to visualize the sites and the
intensities of adenine residues modifications as described in Materials
and Methods (lanes 1–4). Lanes A, C, G, U represent the DNA
sequencing of the plasmid DNA used to synthesize the RNA. The pal
(nt 392–401) and SL1 (nt 409–436) regions are indicated by vertical
lines along the DNA sequencing lanes. (B) Summary of the principal
nucleotide reactivities superimposed on a secondary structure model
of the pal and SL1 elements for experiments done in this study (closed
stars) or in previous publications: open stars for kethoxal probing of
the guanine residues (Lanchy et al. 2004), open triangles for the
single-strand-specific T1 nuclease (Damgaard et al. 1998), and open
circles and closed triangles for DMS and T1 nuclease, respectively
(Dirac et al. 2001). The boxed nucleotides indicate a lack of reactivity
of the indicated adenines (this work) or guanines (Lanchy et al. 2004).
The number of stars, triangles, or circles juxtaposed to a residue
represent the relative levels of reactivity of this residue vis-à-vis the
probing reagent (the stronger the reactivity, the greater the number of
symbols).

Baig et al.

1346 RNA, Vol. 13, No. 8



DISCUSSION

Among the compact genomes of the RNA viruses, the viral
RNA encodes not only viral proteins but also noncoding
structural motifs that help to direct and regulate replicative
functions. Because these regulatory entities need to be
active only transiently, we and others have hypothesized
that structural rearrangements of noncoding RNA lead to
the alternate presentation and sequestration of signals in
the HIV 59 untranslated leader region (Berkhout and van
Wamel 2000; Huthoff and Berkhout 2001; Dirac et al.
2002a; Lanchy et al. 2003a,b). We previously presented
evidence that pal can interact with SL1 to inhibit HIV-2
RNA dimerization in vitro, but details of the interaction
were unknown (Lanchy et al. 2003a). Because of the high
degree of conservation of nucleotides in the region,
comparative analysis of HIV-2 and SIV sequences was of
little use. In vitro evolution of RNA molecules provides a
convenient way to generate an artificial phylogeny of
functionally similar molecules (Joyce 1989; Ellington and
Szostak 1990; Tuerk and Gold 1990).

By randomizing pal and selecting for molecules that were
either dimerization-competent or -impaired, we could
examine the ability of the pal region to regulate the SL1
dimerization signal without making a priori assumptions
about structures involved. During the course of the study,
we evolved pools of RNAs that had two distinct dimeriza-
tion phenotypes. Mfold-mediated optimal secondary struc-
ture folding of 120 individual RNAs from these pools
displayed patterns of intramolecular interactions with pre-
dictive value with respect to dimerization properties, at the
level of both selection pools and individual clonal RNAs. In
addition, similarities in the dimerization phenotype and
predicted folding of the monomer pool RNAs with wild-
type RNA suggest a general model for pal’s involvement in
the regulation of SL1-mediated HIV-2 RNA dimerization
in vitro.

Analysis of the lowest energy predicted folding structures
for members of each evolved population provided general
as well as specific insight into potential regulatory base-
pairing interactions. The observation that most of the pal*
interactions were local upstream and downstream base-
pairing was striking and in line with very recent observa-
tions of essential interactions of the pal in viruses in cell
culture (see below). Although such predominance of local
base-pairing structures could not have been predicted, on
theoretical grounds it is satisfying. To avoid large thermo-
dynamic barriers against switching between conformations,
it is likely that regulatory conformational rearrangements
are nearly isoenergetic and that switching between confor-
mations should involve rearrangement of a limited number
of base-pairs; such criteria are most easily satisfied when
base-pairing changes are localized to a given domain.
Furthermore, in the original population of randomized
pal variants, the potential existed for pal* to hybridize

anywhere along the leader region. The fact that discrete and
predominantly local base-pairing arrangements were found
after selection suggests that either other arrangements
were irrelevant to the selection or that the native folding
of the 1–561 RNA limited the access of other regions of
the leader RNA for hybridization with pal*, for instance,
the intrinsically stable TAR and PBS domains (encompass-
ing nt 1–123 and 197–379, respectively) (Berkhout and
Schoneveld 1993).

Although most pal* base-pairing involved short-range
interactions with partners located less than 45 nt upstream
and downstream (Fig. 4), two exceptions were observed in
both dimer and monomer pools. The first example is
represented by 27% of the dimer pool sequences (pal*–
C-box) (Table 3, see below), where pal* was predicted to
hybridize with the so-called C-box (nt 186–199) (Fig. 4A;
Table 2, see below), an element located between the poly A
signal and PBS domains that we previously showed is
capable of modulating dimerization through interactions
with the G-box located at the 39 end of the leader RNA
(Lanchy et al. 2003b). This result corroborated previous
observations because pal* hybridizing to the C-box had the
same effect on dimerization as mutagenesis of the C-box or
hybridization of a small complementary oligonucleotide.
We hypothesize that binding of pal* to the C-box increased
the accessibility of SL1 for intermolecular interactions, thus
explaining the enrichment of C-box-complementary pal*
sequences (Table 2, see below) in the dimer pool selection
(27% vs. 3% in monomer pool) (Table 3, see below).

The other example of a nonlocal base-pairing interaction
came from a structural group comprising 12% of the final
monomer pool sequences (pal*-500-region) (Table 3, see
below), where pal* was predicted to interact with the 500
region (nt 490–514) (Fig. 4B; Table 2, see below). Although
they are slightly different, we hypothesize that the structure
centered around SL1 in pal*–500 region clones is function-
ally similar to the one in pal*–444 region clones with regard
to their effect on SL1 presentation (Fig. 4B). Indeed, the
445–485 region folds into two stable and conserved stem–
loop structures (c1 and the major splice donor site stem–
loop) (Dirac et al. 2002b) that, together with the pal*–500
region, form a constrained domain structurally extending
SL1 in a way similar to the pal*–444 region fold. Such a
constrained SL1 may impair the transition between mono-
mers and tight dimers (see below), explaining the presence
of the pal*–500 region selected RNAs in the monomer pool
(12% versus none in dimer pool) (Table 3, see below).

The precise secondary structure(s) of the SL1 domain
have not been definitively established for HIV-2 leader
RNA, compared with the homologous region in HIV-1 (see
below and Shen et al. 2000, 2001). Several secondary
structure models have been proposed, some of which
correspond to the structures predicted in this work. First,
wild-type pal may interact with upstream nt 376–386 and
form a stem–loop located between the PBS domain and

Regulation of HIV-2 RNA dimerization
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SL1, similar to the pal*-380-region structure shown in
Figure 4A. This structure was proposed to form or to be
part of a strong encapsidation signal for the HIV-2 genomic
RNA (Griffin et al. 2001). Second, wild-type pal may
interact with part of SL1, similar to the pal*–SL1 structures
described in Figure 4A. The altered presentation of SL1’s
palindromic sequence may lead to a decrease of its
dimerization capacity (Lanchy et al. 2003b). However,
our present study using pal*–randomized RNAs found that
the pal interaction with the 59 side of SL1 was not
frequently detected and, surprisingly, was slightly more
represented in the final dimer pool (13% and 7% in dimer
and monomer pools, respectively) (Table 3, see below).
Third, the 39 end of wild-type pal may interact with a 59

GGAGC motif located downstream of SL1 (Fig. 6B;
McCann and Lever 1997; Dirac et al. 2001) and form a
structure similar to the one found in pal*–444 region
species, which we called the extended SL1 (Lanchy and
Lodmell 2007).

Two interesting outcomes of this study are that the
dimerization-impaired population is enriched with RNA
species (30% of the monomer pool sequences) (Table 3, see
below) showing a predicted, extended
SL1 structure (i.e., the pal*-444-region)
(Fig. 4B) and that the wild-type HIV-2
pal and SL1 elements may fold into a
similar structure (Fig. 6B). Wild-type
RNA, in line with this observation,
forms tight dimers rather inefficiently,
to an extent similar to the yields of
monomer pool RNA species (Figs. 3B,
5A), yet SL1 in the extended SL1 struc-
ture seems clearly presented as an
individualized stem–loop with its pal-
indromic sequence in the apical loop
(Fig. 6B). This apparent paradox
between a presentation of SL1 appar-
ently optimal for dimerization and an
impaired dimerization phenotype may
be explained if one considers both the
mechanism of SL1-mediated tight
dimerization and the relative stabilities
of the SL1 structures (Fig. 7). Although
the mechanism of the transition
between monomers and tight dimers is
still a matter of discussion, studies using
a 39-mer HIV-1 SL1 or larger leader
RNA fragments revealed that this tran-
sition could be regulated by the stability
of the stem of SL1 during the transition
from kissing loops dimers to tight
dimers in vitro (Muriaux et al. 1996b;
Laughrea et al. 1999; Shubsda et al.
1999; Takahashi et al. 2000; Baba et al.
2001; Huthoff and Berkhout 2002;

Bernacchi et al. 2005; Mujeeb et al. 2007). Accordingly,
the increased stability of extended (�11.3 kcal/mol) versus
short (�7.5 kcal/mol) HIV-2 SL1 structures could have a
similar negative effect on tight dimerization efficiency.
Furthermore, the extended SL1 structure is even more
stable in HIV-2 than the comparable 39-mer HIV-1 SL1
(�11.3 and �6.4 kcal/mol, respectively; Mfold v2.3, 55°C;
data not shown), which could increase the energy barrier of
the transition from kissing to tight dimers.

Although the extended SL1 structure characterized only
one of the different RNA structural models revealed during
the in vitro selections, recent results suggest that this
conformation of the SL1 domain is functionally important
in vivo. In particular, we showed that the formation of the
extended SL1 structure is necessary for HIV-2 replication
and genomic RNA encapsidation (Lanchy and Lodmell
2007). Our experiments showed that one important role of
the 39 end of pal is to base-pair with the 59-GGAGC motif
located downstream of SL1 and that this interaction is
necessary for an effective genomic RNA encapsidation to
occur (Lanchy and Lodmell 2007). Although a strong
selective pressure during viral replication for an adenine

FIGURE 7. Model of pal’s regulatory function in HIV-2 leader RNA SL1-mediated
dimerization. Different conformations of the pal and SL1 elements and different stages of
the RNA tight dimerization process are represented. The top left structure corresponds to the
extended SL1 structure where the 39 end of pal base-pairs to a sequence immediately
downstream of SL1 (Fig. 6B; Dirac et al. 2001). The top right structure shows individualized
intra-c and SL1 small stem–loop structures (Fig. 4A; Griffin et al. 2001). The dimerization-
impaired phenotype for RNAs bearing extended SL1 may be due to a thermodynamically
disfavored transition from kissing loop dimers to tight dimers, compared with dimerization-
competent RNA species. However, one cannot rule out that a favored folding of extended SL1
may further amplify the dimerization-impaired phenotype of wild type HIV-2 leader RNA
during in vitro dimerization assay. Finally, the virally encoded nucleocapsid protein NC and its
Gag polyprotein precursor have RNA chaperone activity and may play a role in either the
initial intramolecular folding or the different stages of SL1-mediated RNA dimerization.
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at position 394 was observed upon mutation to a guanine
residue (Lanchy and Lodmell 2007), the precise role of the
59 end of pal is less understood. Nevertheless, it is notable
that the extended SL1 structure is surrounded by two 59-
GGAG motifs, including one in pal (Fig. 6B). It is possible
that these purine motifs might be involved in the specific
RNA–protein interactions taking place during genomic
RNA selection and encapsidation. Likewise, deletion muta-
genesis studies suggest that an extended SL1 element is
involved in encapsidation and dimerization of the SIV-
mac239 genomic RNA (Strappe et al. 2003; Whitney and
Wainberg 2006).

In conclusion, our study shows that a few nucleotide
changes in the pal element of HIV-2 leader RNA lead to
altered dimerization phenotypes in vitro. The efficiency of
SL1-mediated tight dimerization seems to correlate with
the folding of the pal and SL1 elements, especially with the
degree of structural constraint around the SL1 element.
Extrapolating to wild type, our results suggest that the
monomeric form of HIV-2 leader RNA adopts several local
conformations that regulate the usage of SL1 as a dimer-
ization element (Fig. 7). Factors that contribute to the
transition from dimerization-impaired to dimerization-
competent RNA species possibly include viral proteins
binding to this dynamic region, either Gag or NC or both
(Fig. 7; Clever et al. 2000; D’Souza and Summers 2005).
Testing the protein–RNA interactions in this region repre-
sents our next endeavor.

MATERIALS AND METHODS

Production of pool 0 DNA template

Several PCR reactions and ligation steps were used to build the
pool 0 DNA library, which was degenerate at 9 nt in the
palindrome sequence (pal). First, a sense primer containing a
BamHI site with a T7 RNA polymerase promoter (Table 1,
sBamT7R) and an anti-sense primer containing the unique
Hpy99I site (nt 388–392) (Table 1, asHpy) were used to amplify
the first 392-nt-long fragment of the HIV-2 leader region (ROD
isolate, GenBank M15390). Second, a sense primer containing
the Hpy99I site with the degenerate sequence in pal (sHpy-
random) (Table 1) and an anti-sense primer containing an EcoR1
site (asEco561) (Table 1) were used to amplify the last 169-nt-long
fragment of the HIV-2 1–561 region (PfuUltra High Fidelity DNA
polymerase, Stratagene). The 10-nt pal was degenerate at only 9 nt
(393–401), because the first nucleotide (G392) of pal belongs to

the Hpy99I recognition site used in our cloning strategy and thus
needed to be kept intact to get cohesive Hpy99I ends of the
fragments (see Fig. 2A). Third, the agarose gel-purified PCR
fragments were digested with Hpy99I and ligated together using
the Quick ligation kit (New England Biolabs). Another gel
purification was used to purify the correct ligation product, i.e.,
the 392-nt fragment ligated to the 169-nt fragment. Fourth, the
561-nt-long ligation product was reamplified using sBamT7R and
asEco561 primers, gel-purified, and digested with BamHI and
EcoR1 to get the pool 0 DNA template.

Pool 0 RNA synthesis and purification

Pool 0 RNA was synthesized from the pool 0 DNA template with
the AmpliScribe T7 transcription kit (Epicentre). After transcrip-
tion, the DNA template was digested with RNase-free DNase. The
RNA transcripts were purified by phenol/chloroform extraction,
ammonium acetate precipitation, and ethanol precipitation fol-
lowed by denaturing gel electrophoresis, excision, and extraction
of the 1–561 RNA. A sample of the pool 0 DNA template was
sequenced to verify degeneracy of the pal region (data not shown).

Selections for dimerization-competent and
dimerization-impaired RNAs

The selection for dimerization-competent RNAs was carried out
essentially as previously described (Lodmell et al. 2000). In this
study, additional selections were made separately for dimeriza-
tion-impaired RNAs. Briefly, an aliquot of the pool 0 degenerate
RNA was denatured in 8 mL H2O for 2 min at 90°C and then snap
cooled on ice for 2 min. Dimerization was allowed to proceed for
30 min at 55°C after adding the dimer buffer (final concentration:
50 mM Tris-HCl at pH 7.5 at 37°C, 300 mM KCl, and 5 mM
MgCl2). Following 30 min of incubation, samples were loaded
with 2 mL of 63 glycerol loading dye (40% glycerol, 44 mM Tris-
borate at pH 8.3, 0.25% Bromophenol blue) onto a 0.8% agarose
gel. Electrophoresis was carried out for 90 min at room temper-
ature (24°C) in 44 mM Tris-borate (pH 8.3) and 1 mM EDTA
(0.53 TBE). The ethidium bromide–stained gel was visualized on
a Fuji FLA3000G Image Analyzer. The bands corresponding to the
dimer and monomer RNA species were excised from the gel. To
obtain the templates for further rounds of transcription and
selection, a slice of each excised band was subjected to reverse
transcription and polymerase chain reaction (RT-PCR) using
AccuScript High Fidelity RT-PCR kit (Stratagene). The reverse
transcription step was performed in a final volume of 10 mL to
synthesize the cDNA from a 5 mL equivalent slice of each excised
band with the asEco561 antisense primer (0.6 mM) (Table 1),
dNTP mix (1 mM of each dNTP), 13 AccuScript RT buffer, and
0.5 mL AccuScript High Fidelity RT enzyme according to the

TABLE 1. Oligonucleotides used in this study

sBamT7R 59-TAG GAT CCT AAT ACG ACT CAC TAT AGG TCG CTC TGC GGA GAG-39
asEco561 59-AAG AAT TCA GTT TCT CGC GCC CAT CTC CC-39

sHpy-random 59-CAA CCA CGA CGN NNN NNN NNT AGA AAG GCG CGG GCC GAG G-39

asHpy 59-AGG CAC TCC GTC GTG GTT TGT TCC TGC CGC CC-39

The nucleotides forming the Hpy99I site are underlined (59-CGACG-39).
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manufacturer’s protocol. The reverse transcription reaction was
incubated for 30 min at 42°C. The PCR step was performed in a
final volume of 50 mL containing 4 mL of the cDNA template,
0.2 mM of sBamT7R and asEco561 primers (Table 1), dNTP mix
(0.2 mM of each dNTP), 13 PCR buffer, and 2.5 units of PfuUltra
High Fidelity DNA polymerase (Stratagene). Forty cycles of
amplification with a 55°C annealing temperature were used. The
resulting RT-PCR products were digested with BamHI and EcoR1
prior to transcription or cloning. We carried out five and six
successive rounds of selections for dimerization-impaired and
dimerization-competent RNAs, respectively (see Fig. 2B). For
sequence analysis, the digested RT-PCR products of the final
rounds for both selections were ligated to the BamHI and EcoRI
sites of the pUC18 plasmid. The ligation reaction was transformed
into competent DH5a Escherichia coli bacteria. Sixty individual
DNA clones from each selection were obtained by DNA isolation
from the bacterial colonies and sequenced.

Prediction of secondary structures

Mfold version 2.3 (Zuker 2003) was used to predict the most
stable secondary structure for 1–561 wild-type HIV-2 ROD and
the 120 individual clonal 1–561 RNA sequences isolated from the
final dimer (seventh) and monomer (sixth) pools. The software
used is found on the Mfold server (http://frontend.bioinfo.
rpi.edu/applications/mfold/cgi-bin/rna-form1-2.3.cgi) (Zuker 2003).
The folding temperature was set at 55°C since the RNAs were
incubated at 55°C in our dimerization protocol. The 120 most
stable (i.e., optimal) secondary structures were visually analyzed,
and the organization of the pal* and SL1 elements and the base-
pairing partners of the selected pal* nucleotides (nt 392–401) were
recorded, allowing segregation of the 120 pal* sequences into
distinct structural groups (see Fig. 4; Tables 2, 3).

Synthesis and purification of selected RNAs

Eight clones out of the 60 individual DNAs from each final dimer
and monomer pools were chosen for characterization of dimer-
ization properties. The plasmids were linearized with EcoRI prior
to in vitro transcription. RNAs were synthesized with AmpliScribe
T7 transcription kit (Epicentre). After synthesis, RNAs were
purified by ammonium acetate precipitation and size exclusion
chromatography (Bio-Gel P-4, Bio-Rad), followed by ethanol
precipitation.

In vitro dimerization of selected RNAs

The dimerization efficiency of the 16 individual clonal RNAs was
checked by nondenaturing gel electrophoresis as described for the
in vitro selection of dimer and monomer pools.

RNA solution structure probing

In a standard experiment, 5 pmol of 1–561 wild-type HIV-2
genomic RNA was heated in water for 2 min at 90°C and then
quench-cooled on ice. The folding was started by the addition
of dimer buffer. After 0-, 4-, or 20-min incubation at 55°C,
dimethylsulfate (DMS, Aldrich) was added to the RNA and the
mixture incubated 2 min at room temperature (27°C). The final
concentration of DMS was 0.5%. Chemical probing was stopped
by the addition of 10 mg glycogen, EDTA (2 mM, final

concentration), and sodium acetate (300 mM, final concentra-
tion), followed by two and a half volumes of absolute ethanol.
After a 30-min precipitation at –25°C, the samples were pelleted
by centrifugation at 15,000 rpm for 30 min, ethanol washed,
vacuum dried, and resuspended in water. One fourth of the
resuspended material was then reverse-transcribed with the avian
myeloblastosis virus reverse transcriptase (Promega) and a 59 end
32P-labeled radioactive DNA oligonucleotide primer (complemen-
tary to nt 470–494). After a 30-min primer extension at 42°C, the
samples were precipitated as described above, and the dried pellet
was resuspended in formamide loading and tracking dye and
analyzed by denaturing polyacrylamide gel electrophoresis. A
DNA sequencing of the plasmid DNA used for the transcription
was loaded together with the primer extension to identify the
modified nucleotides.
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