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Aluminum in silica phases formed in hot springs 

Nancy W. Hinman1* and J. Michelle Kotler2 

1Department of Geosciences, The University of Montana, Missoula, MT 59812 USA 
2Gorlaeus Laboratories, Leiden Institute of Chemistry, 2333 CC Leiden Sweden  

Abstract 

Sinters are difficult to characterize with traditional methods and are often described by their chemical composition 
alone. Yet information about the depositional environment and possible diagenetic processes is available in atomic 
structure. This study probes the atomic structure of siliceous sinters from two geothermal areas using nuclear 
magnetic resonance (NMR) spectroscopic techniques. Specifically, this study demonstrated that Al is present in 
tetrahedral coordination with or without octahedral coordination in geyserites from Yellowstone National Park, WY, 
USA and Geyser Valley, Kamchatka, Russia.  
 
© 2012 The Authors. Published by Elsevier B.V.  
Selection and/or peer-review under responsibility of Organizing and Scientific Committee of WRI 14 - 2013 
 
Keywords: silica; aluminum; hot springs; geothermal 

1. Introduction 

Siliceous rocks, particularly hot spring deposits or siliceous sinters, host the earliest and best-preserved 
microfossils [1, 2]. The original silica phase, opal, in hot spring environments transforms diagenetically to 
the stable phase, quartz. The factors controlling rates and sequences of silica diagenesis are well known: 
temperature, pH, ionic strength, cations, organic matter, degree of saturation, and polymerization. Yet 
these factors offer little insight into silica structure and reactivity because the intractable amorphous 
precursor makes prediction and interpretation of depositional and diagenetic conditions difficult.  

Atomic defects occur in silica phases and reflect disorder in the Si-O-Si network, which affects 
reactivity, energetics, and oxygen-exchange rates [3-6]. Understanding the origin and persistence of these 
defects in natural silica minerals would provide insight into controls on deposition and diagenesis in silica 
phases. Rapidly crystallizing precursors may have more of these defects. The atomic environment of Si 
reflects the degree of polymerization or bridging of Si-O-Si bonds. Any element that changes the 
polymerization environment would influence the atomic environment of Si. Intermediate ions, such as Al 
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and Fe, replace Si in the silica polymer but do not terminate the network. The placement of Al in the 
network in either tetrahedral or octahedral coordination is a function of temperature and solution 
chemistry. Al coordination, therefore, may help distinguish depositional and diagenetic. The tetrahedral 
coordination state of Al is distinguished from octahedral coordination by MAS 27Al-NMR chemical shifts 
in silica polymorphs [7] and in natural and synthetic aluminosilicates [8, 9]. 

Determinations of structure in such solids present well-known challenges, and nuclear magnetic 
resonance (NMR) spectroscopy has been one of the only ways to obtain detailed structural information. 
Herein, solution chemistry is related to information on Al atomic environment in hot spring precipitates. 

2. Methods 

2.1. Sample Collection and Preparation 

Geyserite samples and fluids were collected in Yellowstone National Park and The Valley of Geysers, 
Kamchatka. Geyserites were analyzed by X-ray diffraction (XRD). Aside from a little quartz identified in 
geyserite from Trinoy Geyser (TG), no aluminosilicate phases were observed, although such phases may 
be below the resolution or detection limit of XRD. Fluids of the Kamchatka sample were analyzed using 
standard physical (temperature and pH) and chemical analysis (alkalinity, anion, and cation) techniques. 
Fluid composition for Yellow Sponge Spring (YSS) was taken from [10]; the identification of YSS was 
extrapolated from the locations of Glen, Frill, and Pearl Springs using reported GPS coordinates. 
Compositions of springs in this area have a narrow compositional range with pH 7.0 and 8.0, [Si] 115 and 
160 mg/L, [Al] 0.10 and 0.41 mg/L, and [F] 19.2 and 25.5 mg/L. 

2.2. NMR Experiments 

Spectra were collected with a MAS probe (5.0 mm Pencil design) on a Chemagnetics Infinity 300 
MHz NMR Spectrometer (William R. Wiley Environmental Molecular Science Laboratory User Facility, 
Pacific Northwest Laboratory, Richland, WA). 1 M Al(H2O)6

3+ was the reference. 

2.3. Geochemical Modeling 

PHREEQC was used for speciation (Table 1) for TG and YSS [11]. Speciation was calculated for a 
range of +/- 1 pH unit to accommodate errors in field measurements. Charge imbalances calculated for 
compositions from each spring were less than +/- 4.2 % over the pH range used. 

 
Table 1. Chemistry of Hot Springs in Study 
 

Location T (C) pH F Cl SO4 Al Ca Mg Na Si Ref. 
TG 95 6.2 2.15 620 142 0.058 17.8 <0.100 485 151 a 

YSS 93 7.3 21.6 200 53 0.35 1.0 .05 315 124 b 
a. This work. b. [13]           

 

3. Results and Discussion 

3.1. 27Al MAS-NMR Spectroscopy 
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Tetrahedral Al was revealed by shifts of + 100 to + 50 ppm while shifts for octahedral Al were in ±25 
ppm range.  The shifts of the 27Al-NMR spectra of the TG and YSS specimens (Figure 1) indicated that 
the former had both tetrahedral and octahedral Al, while the latter had only tetrahedral Al. These results 
are similar to those at Steep Cone hot spring (Yellowstone National Park, WY, USA) where tetrahedrally 
and octahedrally coordinated Al was found in sinters throughout the runoff channel [12]. At higher 
temperatures, Al was dominantly tetrahedrally coordinated with octahedral coordination increasing upon 
cooling [12]. Gallup [13] observed only tetrahedral Al in scales formed from geothermal brines; 
consistent with the observation that tetrahedral Al dominates at high temperatures. Yokoyama et al. [15] 
also observed the concentration of Al in solids and solution decreased at lower temperature in the runoff 
channel.  This observation is consistent with studies on the solubility of Al, which is extremely insoluble 
at neutral pH, but may attain higher concentrations as a consequence of elevated temperatures or 
complexation [12,13]. Thus, although the source concentration is low in these hot springs (Table 1), Al is 
partitioned into the solid phase because of its relative insolubility, and Al coordination reflects 
temperature and other factors, possibly solution chemistry or other chemical effects. 

3.2. Solution Chemistry and Geochemical Modeling 

Concentrations were higher at TG than YSS (Table 1) except for F and Al. Calculated speciation of 
TG and YSS was different. Al speciation in TG and YSS waters showed hydrolysis products dominated. 
At TG, speciation calculated at a lower pH (5.2) favored Al-fluoride complexes instead of Al-hydrolysis 
products. Similar behavior was observed for YSS where at higher values, Al-hydrolysis products 
dominated, and at lower pH values, Al-fluoride complexes dominated. 

Estimating the effect of speciation on solid properties in natural systems is complicated because solids 
accumulate over many years, during which the geochemistry may have changed. The observed Al 
coordination represents a longer time scale than the snapshot of solution composition afforded by 
episodic sampling. Nevertheless, the presence of both coordination states at TG and only one at YSS 
despite similar temperatures suggested a persistent difference in Al incorporation into the solid phase.  

Fluoride promotes dissolution of δ-Al2O3 through surface complexation [14], similarly providing a 
mechanism for incorporation of Al into solids. Indeed, aqueous fluoride complexes have been shown to 
insert Al into tetrahedral sites in zeolites affecting the reactivity of the zeolite at higher pH despite the 

 
 
Figure 1. (left). 27Al MAS-NMR spectra for siliceous sinter from TG, Geyser Valley, Kamchatka. (right). 27Al 
MAS-NMR spectra for siliceous sinter from an YSS, Shoshone Geyser Basin, Yellowstone National Park, 
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decrease in solubility [15]. The higher F concentrations in YSS than TG coupled with differences in 
calculated Al speciation suggests that Al-fluoride complexes may play an important role in determining 
the coordination of Al in geyserites under some circumstances. 

4. Conclusions and Recommendations 

Two observations are combined to attempt to explain Al uptake into solids formed in hot springs. First, 
the Al is present in two types of coordination sites: octahedral and tetrahedral. In some cases, only the 
latter is present. Second, hydrolysis products and fluoride complexes dominate Al speciation, with the 
former making up nearly 100 % of the species at higher pH and the latter becoming more dominant at 
lower pH. Despite higher Al concentrations in the YSS sample, Al was restricted to tetrahedral 
coordination. This could be because higher F concentrations in solution promote uptake into tetrahedral 
sites, even at higher pH, as has been observed in zeolite chemistry. 
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