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Ribosomal localization of translation initiation factor IF2

STEFANO MARZI,1,2 WILLIAM KNIGHT,2 LETIZIA BRANDI,1,2 ENRICO CASERTA,1 NATALIA SOBOLEVA,1

WALTER E. HILL,2 CLAUDIO O. GUALERZI,1 and J. STEPHEN LODMELL2
1Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC) Italy
2Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA

ABSTRACT

Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal
P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of
initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation
complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA
tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices
H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the
thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with
P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit’s factor-binding center. Comparison of our
present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition
from the 30S to 70S initiation complex.

Keywords: BABE; fMet-tRNA; IF2; phenanthroline; ribosome topography; translation initiation; tethered nuclease

INTRODUCTION

Translation initiation factor 2 (IF2) is an essential GTP/

GDP-binding protein whose main recognized function is to

interact specifically with initiator fMet-tRNA and to posi-

tion it correctly in the ribosomal P site, thereby increasing

the rate and fidelity of translation initiation (for recent re-

views, see Gualerzi et al. 2000, 2001; Boelens and Gualerzi

2002). In the last few years, a wealth of high-resolution

crystallographic and electron microscopy data has shed light

on structural intricacies of the translational apparatus. The

high-resolution x-ray crystal structures of 30S and 50S sub-

units have been determined by several groups (Ban et al.

2000; Schluenzen et al. 2000; Wimberly et al. 2000) and the

structure of the 70S ribosome with tRNAs was determined

at 5.5 Å resolution (Yusupov et al. 2001). In addition, high-

resolution structures of translation initiation factors IF1

(Sette et al. 1997), IF3 (Biou et al. 1995; Garcia et al.

1995a,b), the ribosome recycling factor (RRF; Selmer et al.

1999), and translation termination factor RF2 (Vestergaard

et al. 2001) have been added recently to an impressive list of

solved structures, including the elongation factors EF-Tu

and EF-G in various functional states (Kjeldgaard and Ny-

borg 1992; Berchtold et al. 1993; Kjeldgaard et al. 1993;

Ævarsson et al. 1994; Czworkowski et al. 1994; Nissen et al.

1995, 1999; Abel et al. 1996; al-Karadaghi et al. 1996; Pole-

khina et al. 1996). Furthermore, structural models of com-

plexes between factors EF-Tu/EF-Ts (Kawashima et al.

1996) and between ribosomes or ribosomal subunits and

IF1, IF3, EF-Tu, and EF-G have elucidated the binding sites

of these factors and have suggested mechanisms for their

functions (Stark et al. 1997, 2000; Agrawal et al. 1999; Mc-

Cutcheon et al. 1999; Carter et al. 2001; Dallas and Noller

2001; Pioletti et al. 2001).

The structure of the eubacterial IF2 fMet-tRNA-binding

domain has been determined at high resolution (Meunier et

al. 2000), whereas the crystallographic structure of the

complete archaeal IF2/eIF5B revealed an unusual chalice

shape (Roll-Mecak et al. 2000). More recently, the structure

of the first 157 amino acids of the amino-terminal domain

of Escherichia coli was characterized by NMR (Laursen et

al. 2003). Although it is likely that the overall three-di-

mensional structure of IF2/eIF5B is very similar to that of

bacterial IF2, the archaeal protein lacks a large polypep-

tide segment at its amino terminus (as do a few eubacterial

IF2s) and contains two additional �-helices at its carboxyl
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terminus. Furthermore, at least some of the functions per-

formed by bacterial IF2 are different from those of IF2/

eIF5B.

Compared with the other translation factors, much less is

known about IF2’s localization on the ribosome and the

mechanism by which this factor interacts with and is ejected

from the ribosome. In fact, not only is a high-resolution

structure of an IF2:ribosome complex still lacking, but even

the more traditional biochemical data concerning the bind-

ing site of IF2 on the ribosome have been equivocal. Pro-

tein–protein cross-linking studies identified a diffuse pat-

tern of IF2 neighbors on the 50S subunit (Heimark et al.

1976), the 30S subunit (Bollen et al. 1975), and IF1 (Boileau

et al. 1983). Likewise, protein–rRNA cross-linking and in

situ chemical probing with ethylnitrosourea showed that

the structure of several regions of the 30S subunit were

found to be affected by IF2 binding (Wakao et al. 1990,

1991). On the other hand, no changes in reactivity toward

base-specific probes directly attributable to IF2 were ob-

served in 16S rRNA upon IF2 binding to the 30S subunit

(Moazed et al. 1995) or to a 70S initiation complex (La

Teana et al. 2001). Thus, rather than identifying and pre-

cisely localizing IF2 on the 30S subunit, these results were

taken variously to indicate the occurrence of a global IF2-

induced conformational change of the subunit (Wakao et

al. 1990, 1991), that IF2 may interact with the 30S subunit

primarily via protein–protein interactions (Moazed et al.

1995), or that it does not establish stable interactions that

affect base pairing in 16S rRNA, but could still interact with

the sugar-phosphate backbone of the rRNA (La Teana et al.

2001).

The first successful IF2 mapping on the 50S ribosomal

subunit came with the identification of specific reactivity

increases/decreases of bases within the �-sarcin-ricin loop

(G2655, A2660, G2661, and A2665) and helix 89 (A2476

and A2478) of 23S rRNA upon binding of the factor (La

Teana et al. 2001). These findings, together with the obser-

vation that IF2 could be cross-linked to L7/L12 (Heimark et

al. 1976), and the recent finding that IF2 can inhibit EF-G

binding to the ribosome (Cameron et al. 2002), confirmed

at least a partial overlap of the IF2-binding site with that of

the elongation factors EF-Tu and EF-G (Moazed et al.

1988).

Here, we have investigated the proximity between speci-

fic positions of IF2 and regions of the 16S and 23S rRNA

using two different tethered chemical nucleases, Fe(II)-

EDTA and Cu(II):1,10-orthophenanthroline (Cu:oP). The

tethered nuclease method has been used successfully by

Noller’s group and collaborators to map sites of interac-

tion of several ribosomal proteins and translation fac-

tors with the ribosome (Heilek et al. 1995; Wilson and

Noller 1998; Lieberman et al. 2000; Dallas and Noller

2001; Lancaster et al. 2002). The present results provide the

first complete localization of IF2 on the 70S initiation com-

plex.

RESULTS

Experimental strategy

Bacterial translation initiation factor IF2 consists of five

structural domains (Gualerzi et al. 1991; Roll-Mecak et al.

2000; Spurio et al. 2000). The amino-terminal domain (N-

domain), which in Bacillus stearothermophilus comprises

the first 227 residues, is very rich in alanine as well as in

both positively and negatively charged amino acids. Overall,

this domain is less conserved than the rest of the molecule,

its susceptibility to proteolysis suggests it is weakly struc-

tured, and it is apparently dispensable for all basic transla-

tional functions of IF2 (Cenatiempo et al. 1987; Gualerzi et

al. 1991). The next domain, GI, spans residues 228 to 412,

is highly conserved, and contains all of the structural motifs

characteristic of the family of GTP/GDP-binding proteins

(Cenatiempo et al. 1987; Roll-Mecak et al. 2000). Domain

GII consists of 107 highly conserved amino acids (residues

413–520), and is predicted in bacteria, and found in archaea

to be a �-barrel module (al-Karadaghi et al. 1996; Roll-

Mecak et al. 2000). This module is structurally homologous

to domain II of EF-G and EF-Tu (Nissen et al. 1995; Brock

et al. 1998) and to the carboxy-terminal-most domain of

IF2 itself, called IF2 C-2 (Meunier et al. 2000). Following

the GII domain, is C-1, a rather sturdy domain rich in

helical structures (Misselwitz et al. 1997; Krafft et al. 2000;

Spurio et al. 2000). The last 110 amino acids of the protein

(from Glu 632 to Ala 741) constitute the C-2 domain,

which is responsible for the recognition and binding of

fMet-tRNA (Guenneugues et al. 2000; Krafft et al. 2000;

Spurio et al. 2000).

The domains of B. stearothermophilus IF2 are presented

in Figure 1. A structural alignment of B. stearothermophilus

IF2 with the corresponding regions of archaeal IF2/eIF5B,

EF-Tu, and EF-G (Swiss-PDBViewer, Guex and Peitsch

1997) yielded a three-dimensional homology map of good

quality. This alignment enabled us to present, with reason-

able confidence, the probable three-dimensional structure

of GI, GII, C-1, and the orientation of C-2 of B. stearother-

mophilus IF2 (Fig. 1). In this figure, the structure of C-2 is

derived from NMR spectroscopy (Meunier et al. 2000), and

the regions of IF2 for which this structural alignment is less

clear are highlighted in ochre.

IF2 binds both subunits of the ribosome. Of the above-

mentioned domains, GII is the best candidate for interact-

ing with the 30S subunit, as suggested by its homology with

domain II of EF-G (Moreno et al. 2000; Roll-Mecak et al.

2001) and by its localization in the molecule on the side

opposite GI, which is likely involved in establishing the

contact with the 50S subunit, ultimately triggering GTP

hydrolysis. Additional contacts between IF2 and the 30S

subunit may also involve parts of the amino-terminal do-

main of the factor (Moreno et al. 1999).

Using these structural and functional data as a starting

Localization of IF2
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point for directed chemical probing, we introduced Cys

residues in the IF2 protein sequence to provide reactive side

chains on which to tether chemical nucleases in the amino-

terminal and GII domains, and at the junction of domains

C-1 and C-2. The two chemical nucleases we used here are

Fe(II)-EDTA and Cu(II)-phenanthroline, whose use as

structural probes of nucleic acid structure was largely pio-

neered by Dervan and by Sigman. Fe(II)-EDTA generates

diffusible hydroxyl radicals that have the potential to cleave

rRNA even at considerable distance (Moser and Dervan

1987; Hall and Fox 1999), whereas Cu(II):1,10-orthophen-

anthroline (Cu:oP) interacts preferentially with bulged or

stacked single-stranded regions of rRNA and generates

more localized (Pope and Sigman 1984; Johnson and

Nazhat 1987; Mazumder et al. 1992), and generally less-

robust RNA cleavages compared with Fe-EDTA (Bowen et

al. 2001).

Cysteine substitutions in IF2 and derivatization
with chemical nucleases

In this study, we used B. stearothermophilus IF2 (82 kD),

which is functionally interchangeable with E. coli IF2

(Brombach et al. 1986). It is able to form complexes with E.

coli ribosomes and ribosomal subunits that are somewhat

more stable than those formed by the homologous factor

(La Teana et al. 2001). Thus, we constructed 12 active mu-

tants, in which amino acids at specific positions of the mol-

ecule were individually replaced by a Cys residue. Five of

these substitutions (at positions S17, R51, F84, F164, and

G137) were introduced in the N-domain of IF2, two were

introduced at positions V451 and S520, located in the

middle of a �-strand (S13) and at the carboxy-terminal

edge of domain GII, respectively, K540 was substituted in

the first helix of domain C-1, and four were introduced in

the region spanning from C-1 to C-2 (Y625, E632, M638,

and E644; Fig. 1). Formation of a thioether bond between

the bromo- or iodo-acetamido linker attached to the chemi-

cal nucleases and the reduced thiol of the cysteine residue

tethered the chemical nucleases to these residues of the IF2

molecule. Both iron conjugated to the chemical reagent

bromoacetamidobenzyl-EDTA (BABE) and copper conju-

gated to 5-iodoacetamido-1,10-phenanthroline are de-

signed to yield cleavages originating from a tether length of

about 13Å (Rana and Meares 1991; Chen et al. 1993; Perrin

et al. 1994).

The efficiency of derivatization of the IF2 mutant pro-

teins was assayed by the colorimetric change resulting from

the accessibility of the free thiol groups to the Ellman’s

reagent, 5,5�-dithiobis, 2-nitrobenzoic acid (DTNB) as de-

scribed in Materials and Methods. The biological activity of

the derivatized IF2 variants was tested in 70S initiation-

complex formation by filter-binding assay as well as in an

IF2-dependent in vitro translation assay, which indicated

that the IF2 conjugates were able to promote translation to

levels comparable with wild-type IF2 (see Table 1). In ad-

dition to the Cys residues introduced by site-directed mu-

tagenesis, wild-type B. stearothermophilus IF2 contains four

naturally encoded Cys residues. However, only two of these

cysteines (positions 210 and 384) could theoretically be ac-

cessible to chemical modification under nondenaturing

conditions, as an earlier Raman spectroscopy study showed

that the two Cys residues (C668 and C714) present in the

fMet-tRNA-binding domain (IF2C-2) of IF2 are not reac-

tive (Misselwitz et al. 1999). Of the two potentially reactive

FIGURE 1. Domain structure of B. stearothermophilus IF2 displaying
the location of the cysteine residues (natural and introduced by mu-
tagenesis). The five domains of B. stearothermophilus IF2 are depicted
schematically and color coded at the top of the figure. The three-
dimensional structure of the protein as predicted by homology mod-
eling (Guex and Peitsch 1997) with the archaeal IF2/eIF5B three-
dimensional structure (Roll-Mecak et al. 2000) is presented at the
bottom of the figure, following the same color scheme (the three-
dimensional structure of the C-2 domain was taken from pdb file
1D1NA) (Guennegues et al. 2000). The regions of likely structural
discrepancy between bacterial and archaeal proteins, according to the
structural alignment and energy minimization, are shown in ochre.
Bound GDP is shown in yellow. All Cys residues, including those
naturally present in IF2 and those introduced by site-directed muta-
genesis, are depicted as space-filled red residues within the three-
dimensional structure model of IF2 and within the bar representing
the amino-terminal portion of IF2.

Marzi et al.
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and naturally occurring cysteines, one (C210) is located in

the N-domain and the second (C384) in the GI domain.

Our results indicate that none of these is in fact reactive

with DTNB, and because no cleavage was seen from the

nucleases tethered to wild-type IF2, we did not investigate

this issue in greater depth.

Cleavage of rRNA by tethered nucleases

To identify the rRNA regions proximal to the bound IF2 in

30S and 70S initiation complexes, complexes were formed

with derivatized IF2, and cleavage reactions were initiated

by addition of reducing agent. The Fe-BABE reaction was

initiated with ascorbate and hydrogen peroxide and pro-

duces diffusible hydroxyl radicals that cleave predominantly

within about a 10Å radius of the iron center (Imlay and

Linn 1988; Heilek et al. 1995; Heilek and Noller 1996),

whereas the cleavage by the Cu:oP-derivatized proteins was

initiated by addition of 3-mercaptopropionic acid (MPA)

and, as mentioned above, does not cleave significantly be-

yond the tether length. Following the reaction, the cleavage

sites were mapped by primer extension analysis using prim-

ers complementary to multiple sites along the 16S and 23S

rRNA.

When wild-type IF2 or the individual mutagenized pro-

teins were bound to 30S ribosomal subunits or to a com-

plete 30S initiation complex, no cleavage of the 16S rRNA

was detected, even though IF2 is capable of binding to both

free 30S ribosomal subunits (Pon et al. 1985), and with even

greater affinity, to a complete 30S initiation complex (Tom-

sic 2002). On the other hand, cleavage of the 16S rRNA was

obtained when derivatized IF2 was bound to a 70S initiation

complex.

The 30S cleavages obtained are shown in the autoradio-

grams in Figure 2 and are summarized in the secondary

structure map in Figure 3. The cleavage locations are su-

perimposed on the structure of the small subunit of Ther-

mus thermophilus in Figure 4 (Carter et al. 2001). The main

cleavage sites from IF2 position V451C (the near GII do-

main) tethered with Fe-BABE were centered around posi-

tions G38-G39-C40 and A498 (Fig. 2A,F), whereas the

Cu:oP derivative at position 451 produced a cleavage at

nucleotides G35–C36 (Fig. 2B). This was the only instance

in this study in which the observed Cu:oP cleavage was

different from the homologous Fe:BABE cleavage. These

cleavage sites are located in helices H3 and H4 and at the

base of H17 (Fig. 3E) and are close to each other in the

three-dimensional structure of the 30S subunit (Fig. 4).

Fe-BABE-derivatized F84C and S520C of IF2 also cleaved

specific sites of the 16S rRNA. Fe-BABE tethered to F84C in

the N-domain produced cleavages around G423 (Fig. 2E)

located in the apical loop of helix H16 (Fig. 3B,E) in the

shoulder of 30S, whereas Fe-BABE at position 520 in do-

main GII cleaved at nucleotides G538-A539-G540 (Fig. 2F),

close to the position to which IF1 has been localized (Carter

et al. 2001) (Fig. 4).

On the 50S subunit, we obtained several characteristic

cleavages from Fe-BABE tethered to the C-1/C-2 region. In

helix 89 of 23S rRNA, cleavage was observed at positions

U2474 from IF2 E644C (and weakly from Y625C) and

A2482 from position E644C (Figs. 2C, 3D, 5). These cleav-

ages are in agreement with previously reported IF2-depen-

dent changes in chemical reactivity in H89 toward base-

specific probes (La Teana et al. 2001). In addition, several

nucleotides in the thiostrepton/L11-binding region were

cleaved. G1068 was cleaved only by BABE-derivatized po-

sition E632C, whereas C1076 was cleaved by derivatized

positions E632C and E644C, and weakly by position Y625C.

Computer modeling of the IF2:70S initiation complex

After orienting IF2 on the 30S subunit with respect to the

cleavage data, we docked IF2 on the 70S ribosome contain-

ing a P-site-bound tRNA. The docking was accomplished by

first orienting the factor exactly as it was on the 30S subunit

alone, then adjusting its position subtly to minimize steric

clashes when the 50S subunit was added to the 30S:IF2

complex model. A natural fit was obtained by bringing the

C2 domain of IF2 into proximity to the P-site tRNA on the

50S side [the tRNA was prepositioned in the P site exactly

as seen in the 70S ribosome backbone crystal structure (Yu-

supov et al. 2001)]. This docking, based first on the 16S

TABLE 1. Initiation complex formation activity of IF2 mutants ex-
pressed as a percentage of wild type activity

Attached probes

Domain IF2 mutants None Fe-EDTA Cu:oP

wt 100 96.7 ± 10.4 84.5 ± 11.3

N S17 76.7 ± 14.7 74.3 ± 8.7 100.8 ± 29.6

R51 86.5 ± 9.3 73.7 ± 4.3 79.0 ± 8.4

F84 83.4 ± 12.2 88.0 ± 7.9 78.8 ± 2.0

G137 89.3 ± 9.2 100.7 ± 3.7 64.5 ± 9.8

F164 68.4 ± 10.7 65.7 ± 19.2 133.2 ± 3.0

GII V451 99.9 ± 21.9 80.5 ± 16.0 96.0 ± 0.1

S520 109.8 ± 13.9 94.7 ± 21.3 96.2 ± 2.2

C-1 K540 138.1 ± 2.3 132.7 ± 17.3 n.d.

Y625 144.9 ± 3.0 110.0 ± 2.1 n.d.

E632 124.2 ± 4.9 97.0 ± 1.9 n.d.

M638 85.8 ± 14.6 79.7 ± 1.4 n.d.

C-1/C-2 E644 103.4 ± 12.5 98.3 ± 1.0 n.d.

The ability of wild-type and mutant derivatized and underivatized
IF2 proteins to stimulate the binding of 35SfMet-tRNA to the 70S
ribosome in the presence of IF1, IF3, and 022 mRNA was assayed
by a filter-binding assay as described in Materials and Methods.
The first column indicates the domains of IF2 in which the cysteine
substitution was introduced. The second column specifies the po-
sition of the mutagenized amino acids. The third column shows the
activity of the underivatized IF2 mutants as a percentage of the
wild-type underivatized IF2. The fourth and fifth columns show
activity of the Cu-oP or Fe-EDTA-derivatized proteins as a percent-
age of the underivatized wild-type IF2 activity.

Localization of IF2
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cleavage data, then on steric considerations at the 30S:50S

interface, brought the C-1:C-2 junction in proximity to he-

lix 89, the site of our 23S cleavage. This fit also placed IF2’s

GI domain in proximity of the �-sarcin loop, in agreement

with chemical structure-probing data described above (La

Teana et al. 2001). The simultaneous proximity of the cleav-

age sites on the 16S and 23S rRNA and the protection sites

on the 23S strongly supports our docking of IF2 on the 70S

ribosome. The proximity of the C2 domain with the -CCA

terminus of a P-site-bound tRNA provided yet another

solid docking constraint. Significantly, the only residual

steric clash remaining in the model concerns a small region

FIGURE 2. Analysis of the cleavage sites in 16S and 23S rRNA produced by chemical nucleases tethered to IF2. Denaturing electrophoretic
analysis of the primer extension products of the 16S (A,B,E,F) and 23S (C,D) rRNAs that were subjected to in situ cleavages by the IF2-tethered
chemical nucleases Fe:EDTA (A,C,D–F) or Cu:oP (B). The nucleases were tethered to Cys residues naturally present or introduced by site-directed
mutagenesis at the positions indicated at the tops of the lanes. (Lanes K,W) Control reaction mixtures that contained either nonderivatized
wild-type IF2 (K) or the cleavage reaction carried out with derivatized wild-type IF2 (W). (Lanes A,G) Dideoxy sequencing lanes that refer to the
sequence of 16S rRNA. The hydroxyl radical cleavages are seen as additional bands produced specifically by the chemical nucleases. See text for
further details.

Marzi et al.
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of the carboxyl terminus of ribosomal protein S12 and the

junction of the IF2 GII and C1 domains. Because a degree

of conformational flexibility is likely for both IF2, and per-

haps also for this external segment of S12, we do not believe

this steric conflict represents a serious challenge to our

placement of IF2.

DISCUSSION

To better understand the mechanism of action of IF2 dur-

ing initiation of protein synthesis, we investigated the bind-

ing site(s) of this factor on the ribosome by tethered nucle-

ase probing from IF2. The results obtained represent the

first unambiguous mapping of IF2 on the 30S ribosomal

subunit. The position of IF2, and more precisely, of its GII

domain on the small ribosomal subunit is very similar to

that of fusidic acid-stalled EF-G (Agrawal et al. 1998), a

similarity further supported by the extensive overlap be-

tween the nucleotides cleaved by Fe-EDTA tethered to EF-G

and IF2. In fact, the same 16S rRNA

cleavage is obtained from nucleases

tethered to Cys residues replacing Ser

520 and Val 451 of IF2 and Gly 301 and

Glu 314 of EF-G (Wilson and Noller

1998), which are located in almost iden-

tical positions of domain II of the two

factors (Brock et al. 1998).

The docking of IF2 here (Fig. 6) per-

tains specifically to the position of IF2

within a 70S initiation complex, be-

cause, as mentioned above, the 16S

rRNA was not cleaved by IF2-tethered

nucleases within a 30S initiation com-

plex. The rRNA positions cleaved by the

IF2-tethered chemical nucleases high-

lighted in Figures 4 and 5 are in close

proximity to the derivatized positions of

IF2. In addition to the cleavage data, we

used other constraints to validate the

docking. We have placed IF2 such that

the C-2 domain is very close to the ac-

ceptor end of a P-site-bound tRNA (Yu-

supov et al. 2001), as the molecular de-

terminants for the recognition and

binding of fMet-tRNA are located in

C-2 (Spurio et al. 2000), and, almost ex-

clusively, within the acceptor end of ini-

tiator tRNA (Guenneugues et al. 2000).

Thus, in Figure 4, IF2 is oriented on the

30S subunit so that an approaching 50S

subunit would contact IF2 C-2 with its

peptidyl transferase center and the sar-

cin-ricin loop of 23S would be shielded

by the GI domain of IF2, in agreement

with published chemical protection data

(La Teana et al. 2001). The proposed localization of IF2 on

the 50S subunit is shown in Figure 5. It is notable that this

docking of IF2 on the 70S ribosome is reminiscent of a

similar docking of EF-G on the 50S subunit (Ban et al.

1999). Furthermore, Dahlberg and coworkers recently dem-

onstrated the ability of IF2 to compete with EF-G for bind-

ing on the ribosome, suggesting an overlapping binding site

(Cameron et al. 2002).

Although the precise structure of the amino-terminal do-

main of B. stearothermophilus IF2 is not known, the cleavage

of 16S rRNA residues in the 421–425 region places it at the

shoulder of the leading edge of the 30S subunit. Because this

IF2 region is dispensable for translational functions in E.

coli, the significance of this interaction is still unclear.

Additional proximity relationships between IF2 and

fMet-tRNA that are suggested by footprinting, cross-link-

ing, and proteolysis data, were useful in the development of

our model. For example, parts of the elbow region of the

tRNA and part of the anticodon arm were found to be

FIGURE 4. Location of cleavage sites on 16S rRNA superimposed on the three-dimensional
structure of the 30S subunit. (A) Two views of IF2 (transparent yellow) with the derivatized
amino acid positions S520 (purple) and V451 (green) that produced cleavage on the 16S rRNA
are shown. (B) A surface representation of the interface side of the 30S subunit with rRNA
shown in dark gray and ribosomal protein colored light purple (Carter et al. 2000). The major
rRNA cleavage sites G38-C40 (red) and G538-G540 (green) are indicated. (C,D) Side and
interface views of the 30S:IF2 docking.
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shielded by IF2 within an IF-2/fMet-tRNA complex and

within a 30S initiation complex, whereas the anticodon

could be cross-linked to the N-domain of IF2. Furthermore,

residues within the GII peptide Asn 611–Arg 645 of E. coli

IF2 (corresponding to Asn 464–Glu 498 of B. stearother-

mophilus) were found to be close to the elbow region of the

tRNA (Wakao et al. 1989; Yusupova et al. 1996). Finally,

binding of fMet-tRNA to B. stearothermophilus IF2 was

found to protect the Arg 308–Ala 309 bond, located in the

GTP-binding domain GI, and, more weakly, the Arg 519–

Ser 520 bond in the GII domain from trypsin digestion

(Severini et al. 1992).

Thus, whereas the present data indicate that IF2 GII is

localized on the 30S subunit within a 70S initiation com-

plex, the cross-linking data place this domain close to the

elbow of the initiator tRNA in both IF2/fMet-tRNA binary

complex and in 30S initiation complexes. Because the dis-

tance between the cleavage sites originating from IF2 GII in

the 16S rRNA and in the elbow of P-site-bound fMet-tRNA

appears to be too large to allow GII to establish both con-

tacts and/or proximity relationships with both sites at the

same time, we must draw the conclusion that the ribosomal

localization of the IF2–fMet-tRNA com-

plex changes during the transition from

30S to 70S initiation complex. Drawing

from fast kinetic analysis of the late

events of translation initiation (Tomsic

et al. 2000), as well as our failure here to

detect any cleavage of the 16S rRNA in

the IF2:30S complex, it appears that a

conformational change involving the ri-

bosomal subunits and IF2 accompanies

the transition from 30S to 70S initiation

complex.

These considerations suggest that,

when bound within a 30S initiation

complex, IF2 occupies a position some-

what different from that depicted in Fig-

ures 4 and 6. Moving the GII domain

closer to the elbow of the tRNA, and

thus more centrally located on the in-

terface side of the 30S subunit compared

with Figure 4, could account for at least

some of the earlier protein–protein

cross-linking data such as IF2-IF1 (Boi-

leau et al. 1983), IF2-S12, and possibly

IF2-S13 and IF2-S19 (Bollen et al.

1975).

In conclusion, we suggest the follow-

ing general scenario. In solution and

during initial interactions with the

30S subunit, IF2 contacts fMet-tRNA

through an interaction between its C-2

domain and fMet-ACCAAC, allowing

contacts/proximity between GII domain

and the T stem and between the N-domain and the anti-

codon stem. On the 30S subunit, IF2 is near or in direct

contact with ribosomal protein S12 and IF1 (which

strengthens the affinity of IF2 for the ribosome and oc-

cludes the A site). Upon joining of the 50S subunit with the

30S initiation complex, the GII of IF2 moves toward the

edge of the 30S ribosomal subunit, away from the elbow of

fMet-tRNA, losing some contacts with the IF1-binding re-

gion and favoring the ejection of IF1 from the 30S subunit,

whereas its GI domain binds in the vicinity of the factor-

binding center of the 50S subunit before leaving the 70S

initiation complex in a state suitable for the subsequent

binding of the EF-Tu–aminoacyl-tRNA–GTP ternary com-

plex.

MATERIALS AND METHODS

Preparation of IF2 mutants

Individual Cys residues were introduced in IF2 by oligonucleotide-

directed mutagenesis of B. stearothermophilus infB as described

previously (Spurio et al. 2000). After confirming the mutations by

FIGURE 5. Location of cleavage sites on 23S rRNA superimposed on the three-dimensional
structure of the 50S subunit. (A) IF2 shown in transparent yellow with the locations of Y625
and E644 indicated in green and purple, respectively. (B, top) View of the 50S:IF2 complex. (C)
A surface representation of the interface side of the 50S subunit with rRNA shown in dark gray
and ribosomal protein colored light purple (Ban et al. 2000). The locations the landmark rRNA
cleavage sites U2474 (red) and A2482 (green) are indicated. (D) Interface view of the 50S:IF2
interaction. Note that IF2 is transparent; amino acids shown are buried against the 50S inter-
face.
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DNA sequencing, the mutagenized genes were subcloned into

pPLc 2833, transformed in E. coli UT5600. The overexpressed

proteins were purified essentially as described previously (Spurio

et al. 2000). Protein purity as judged by SDS-PAGE was �95%.

Protein concentration was determined by the Bradford colorimet-

ric assay (Bradford 1976). The purified proteins were kept at

−80°C in storage buffer [20mM Tris-HCl (pH 7.1), 200 mM

NH4Cl, 6 mM �-mercaptoethanol, 0.1 mM EDTA, 10% glycerol).

Preparation of mRNA and fMet-tRNA

Model 022 mRNA was transcribed in vitro by T7 RNA polymerase

and purified as described by La Teana et al. (1993). fMet-tRNA

and 35S-labeled fMet-tRNA were prepared and purified as de-

scribed previously (Rodnina et al. 1994).

IF2-dependent in vitro translation

IF2-dependent in vitro translation of 022 mRNA by E. coli

MRE600 high-salt washed 70S ribosomes was performed essen-

tially as described (La Teana et al. 1993; Grill et al. 2000), except

that no DTT was added when derivatized proteins were tested.

Preparation of Cu(II):phenanthroline and
Fe(II)-BABE-derivatized IF2

Conjugation of Fe(II)-BABE to IF2 was performed essentially as

described in Culver et al. (1999). A total of 2 µL 1 M DTT were

added to 1 mL of IF2 solution (1 µg/µL in storage buffer). After a

15-min incubation at 4°C, the buffer was exchanged with prefil-

tered modification buffer [30 mM Tris-HCl (pH 7.1), 800 mM

KCl] using Microcon YM30 (Millipore) speed filter tubes, and the

IF2 proteins were concentrated threefold before being derivatized

with either Cu(II):phenanthroline or Fe(II)-BABE, following dif-

ferent derivatization procedures (below).

Fe(II)-BABE derivatization

A total of 20 µL of freshly made 50 mM Fe(NH4)2(SO4)2 were

mixed with 100 µL 11 mM BABE (Dojindo Molecular Technolo-

gies, Inc.) in 100 mM NaOAc, and incubated for 40 min at 22°C

before addition of 6 µL 50 mM EDTA (pH 7.1); the resulting

Fe(II)-BABE solution was incubated for an additional 20 min at

22°C, and then kept on ice until use. An equal volume (120 µL) of

Fe(II)-BABE and of reduced IF2 solution (∼3 µg/µL) were mixed

with 760 µL Modification buffer containing 0.01% Triton X-100,

and protein derivatization was allowed to continue for 30 min at

22°C.

Phenanthroline derivatization

A total of 100 µL of phenanthroline (Molecular Probes) solution

(10 mM in 100% DMSO) were mixed with 120 µL of reduced IF2

(∼3 µg/µL) and with 780 µL of Modification buffer containing 0.01

% Triton X-100. Complete reaction of the thiol groups was

achieved after a 2-h incubation in the dark at 22° C.

Sample preparation and DTNB assay

To remove the free reagents from the modified protein, the

samples derivatized with Fe(II)-BABE were dialyzed exhaustively

against protein storage buffer (with no EDTA and no glycerol),

and then washed several times with storage buffer (with no EDTA

and no glycerol) on Microcon YM30 (Millipore); the samples

derivatized with phenanthroline were purified on a G-25 Sephadex

(1.5 mL) spin column, and then washed several times with storage

buffer (with no EDTA) on Microcon YM30 (Millipore). Before

use, the phenanthroline-derivatized proteins were incubated for 2

min on ice with a 20-fold molar excess of Cu(SO4)2.

The extent of protein modification was determined by compar-

ing the reactivity of the free thiols of the protein before and after

derivatization using the Ellman’s reagent 5,5�-dithio-bis-[2-nitro-
benzoic acid] (DTNB). This reaction was carried out by adding 10

µL of DTNB (4 mg/mL in 100 mM Na2HPO4) to 90 µL of ∼11.1

FIGURE 6. Docking of IF2 on the 70S ribosome. (A) View from the
top of the ribosome with several sites of cleavage indicated. Large
subunit ribosomal protein density is colored purple, small subunit
protein is shown in cyan; rRNA is dark gray. (B) View from the leading
edge of the ribosome, facing the subunit interface. This 70S model was
assembled from the 30S, 50S, and 70S crystal structures (Ban et al.
2000; Wimberly et al. 2000; Carter et al. 2001; Yusupov et al. 2001) as
described in Materials and Methods.

Marzi et al.

966 RNA, Vol. 9, No. 8



µM protein solution (fc ∼10µM), and after 10 min incubation at

22°C, quantifying the colored chromophore formed upon reaction

of DTNB with the sulfhydryl group by determining the A412 nm

(taking the absorbance of the modification buffer as the baseline)

before measuring the absorbance. The extinction coefficient �412

of the chromophore 2-nitro-5-thiobenzoate anion (TNB2−) was

taken to be = 13,600 M−1 cm−1 (Riddles et al. 1983).

Initiation complex formation

After preincubating the ribosomes (20 min at 42°C) in 10 mM

Tris-HCl (pH 7.4) buffer containing MgAc215 mM and KCl 100

mM to activate them, the 30S or 70S initiation complexes were

prepared by mixing, in 30 µL final volume, 50 pmole of 30S

subunits (or 70S ribosomes), 50 pmole each of IF1 and IF3, 50

pmole fMet-tRNA (or 35S-labeled fMet-tRNA), 100 pmole of 022

mRNA and 50 pmole of IF2. The conditions under which the

initiation complexes are formed are as follows: 50 mM Tris-HCl

(pH 7.7), 80 mM NH4Cl; 7.5 mM MgAc2, and 1 mM GTP. After

a 10-min incubation at 37°C, the initiation complexes were filtered

on 0.45-µm membrane filters (Schleicher & Schuell NC45, 24 mm

diameter), or alternatively placed on ice, where the subsequent

cleavage reaction was carried out. For the filter-binding assay ac-

tivity test, the filters were washed twice with a 10 mM Tris-HCl

(pH 7.1) buffer containing MgAc2 7 mM; NH4Cl 100 mM, and

�-mercaptoethanol 2 mM, and then counted with by liquid scin-

tillation.

Fe(II)-BABE cleavage

A total of 1 µL of 250 mM ascorbic acid and 1 µL of 2.5% H2O2

were placed on the wall of a tube containing 30 µL of 30S or 70S

initiation complexes, which was pulse centrifuged to start the Fen-

ton reaction. After 15 min on ice, the reaction was stopped by

addition of 100 µL of Stop solution (NaOAc 300 mM, SDS 2%,

30% glycerol), quickly followed by phenol extraction of the

rRNAs.

Phenanthroline cleavage

A total of 1 µL of 140 mM mercaptopropionic acid (MPA) was

added to the initiation complexes containing the IF2-phenanth-

roline derivatives. The cleavage reaction, carried out for 3 h on ice,

was stopped by addition of 100 µL of stop solution before the

phenol extraction of the rRNA.

Computer modeling

The docking of IF2 on 30S subunits and 70S ribosomes was carried

out to a first approximation by positioning the amino acid resi-

dues on the crystal structure of IF2 (Roll-Mecak et al. 2000) that

we derivatized with chemical nucleases close to those nucleotides

that were cleaved in our assays on the crystal structures of the 30S

subunit (Schluenzen et al. 2000; Wimberly et al. 2000) using Swiss

PDB Viewer (Guex and Peitsch 1997). Although it is possible that

interdomain movement can occur in IF2, we did not attempt

conformational changes in IF2 as we docked it to the ribosome.

The model was refined and adapted to fit the 70S structure

using Ribosome Builder software (WK, WEH, and JSL, to be de-

scribed elsewhere) as follows. First, the high-resolution structures

for the 30S (Schluenzen et al. 2000; Wimberly et al. 2000) and 50S

(Ban et al. 2000) subunits were aligned by superimposing them on

the published backbone structure of the 70S ribosome (Yusupov et

al. 2001). Then, starting from the IF2:30S complex, the position of

IF2 was adjusted to avoid steric conflicts with the 50S subunit,

which brought the GI domain of IF2 in proximity to H89 and the

sarcin-ricin loop of 23S.
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