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Abstract. Terrestrial ecosystems of northem Enrasia are 
demonstrating an increasing gross primary prodnctivity 
(GPP), yet few stndies have provided definitive attribntion 
for the changes. While prior stndies point to increasing tem- 
peratmes as the principle environmental control, inllnences 
from moistnre and other factors are less clear. We assess how 
changes in temperatnre, precipitation, clondiness, and for­
est fires individnally contribnte to changes in GPP derived 
from satellite data across northem Enrasia nsing a light-nse- 
efficiency-based model, for the period 1982-2010. We find 
that armnal satellite-derived GPP is most sensitive to the tem- 
peratme, precipitation and clondiness of snmmer, which is 
the peak of the growing season and also the period of the 
year when the GPP trend is maximnm. Considering the re­
gional median, the snmmer temperatme explains as mnch as 
37.7 % of the variation in annnal GPP, while precipitation and 
clondiness explain20.7 and 19.3 %. Warming over the period 
analysed, even withont a snstained increase in precipitation, 
led to a significant positive impact on GPP for 61.7 % of the 
region. However, a significant negative impact on GPP was 
also fonnd, for 2.4 % of the region, primarily the dryer grass­
lands in the sonth-west of the stndy area. For this region, pre­
cipitation positively correlates with GPP, as does clondiness. 
This shows that the sonth-westem part of northem Enrasia is 
relatively more vnlnerable to dronght than other areas. While 
onr resnlts further advance the notion that air temperatnre is 
the dominant environmental control for recent GPP increases 
across northem Enrasia, the role of precipitation and clondi­
ness can not be ignored.

1 Introduction

Several analyses of normalized difference vegetation index 
(NDVl) data derived from satellite remote sensing have 
pointed to a positive trend in gross primary prodnctivity 
(GPP) and leaf area index (LAI) of the northem high latitudes 
in the recent decades (Myneni et al., 1997; Carlson and Rip­
ley, 1997; Zhon et al., 2001; Gnay et al., 2014). Warming has 
also occurred over this time. Global mean surface air tem­
peratures increased by 0.2 to 0.3 °C over the past 40 years, 
with warming greatest across northem land areas around 40- 
70° N (Nicholls et al., 1996; Overpeck et al., 1997). Precip­
itation increases have also been observed over both North 
America and Emasia over the past century (Nicholls et al., 
1996; G roism anetal., 1991). Urban etal. (2014) describe the 
co-occnrrence of these climatic and ecosystem changes. Here 
we investigate increasing GPP of terrestrial ecosystems of 
northem Emasia and determine the relative attribntion aris­
ing through changes in several geophysical quantities, here­
inafter referred to as “environmental variables”, as they po­
tentially drive observed temporal changes in vegetation pro­
dnctivity.

GPP is a physical measure of the rate of photosynthesis, 
or the rate at which atmospheric CO2  is fixed by antotrophic 
(generally green) plants to form carbohydrate molecules. 
Photosynthesis, being a biological process, is regulated by 
several environmental factors. Prodnctivity is highest at the 
optimum temperatnre, though this optimum can be modified 
by cold or warm acclimation (Larcher, 1969, 2003). Water 
availability also affects plant hydraulics and chemistry by
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Figure 1. Simplified land cover for northern Eurasia for year 2007 
overlaid with the spatial distribution o f the 10 flux tower sites whose 
GPP (gross primary productivity) data were used to validate the 
GPP data derived from satellite NDVI (normalized difference veg­
etation index). For our statistical analysis, we show the distribution 
of two fundamental types of vegetation types: (i) herbaceous, i.e. 
without woody stems, which includes tundra in the north and grass­
lands (Eurasian Steppe) to the south, and (ii) wooded, i.e. plants 
with wood as its structural tissue, which includes the boreal forests 
appearing in the middle and extending from the western to the east­
ern boundary. This land cover map has been derived from the Mod­
erate Resolution Imaging Speetroradiometer (MODIS) Type 5 land 
cover product (Friedl et al., 2002). The details o f the flux tower sites 
are listed in Table 2.

controlling the nntrient nptake throngh shoot transportation 
(Sharp et al., 2004; Stevens et al., 2004). Increasing atmo­
spheric CO2  concentration increases GPP by biochemical 
fertilization for C3 plants and increasing water nse efficiency 
for both C3 and C4  plants (Bowes, 1996; Rotter and Geijn, 
1999).

There is both direct and indirect evidence of increasing 
prodnctivity across the northem high latitndes. Flask- and 
aircraft-based measnrements show that the seasonal ampli- 
tnde of atmospheric CO2  concentration across the Northem 
Hemisphere has increased since the 1950s, with the greatest 
increases occnrring across the higher latitndes (Graven et al., 
2013). This trend snggests a considerable role of northem 
boreal forests, consistent with the notion that warmer tem- 
peratmes have promoted enhanced plant prodnctivity dnring 
snmmer and respiration dnring winter (Graven et al., 2013; 
Kim et al., 2014; Myneni et al., 1997). Observed at eddy co- 
variance sites, net ecosystem exchange (NEE), the inverse 
of net ecosystem prodnctivity (NEP), is a strong function 
of mean annnal temperatnre at mid- and high latitndes, np 
to the optimum temperatnre of approximately 16 °C, above 
which moistnre availability overrides the temperatnre influ­
ence (Yi et al., 2010). Other stndies have fonnd vnlnerabili- 
ties in ecosystems of North America as well as Enrasia from 
warming-related changes in hydrological patterns (Parida 
and Bnermann, 2014; Bnermann et al., 2014), thereby high­
lighting the importance of precipitation. With warming, low- 
temperatnre constraints to prodnctivity have relaxed (Nemani 
etal., 2003; Zhang etal., 2008; Yi etal., 2013). Tree-ring data 
suggest that black sprace forests have experienced dronght

stress dnring extreme warmth (Walker et al., 2015). Over 
northem Enrasia, precipitation trends have complicated the 
relationship between temperatnre and prodnctivity, as the in­
creasing moistnre constraints have made northem Enrasia 
more drought-sensitive (Zhang et al., 2008; Yi et al., 2013). 
Increasing atmospheric CO2  concentration is another factor, 
as CO2  fertilization has been demonstrated throngh obser­
vations, models, and FACE (free-air CO2  enrichment) ex­
periments (Ainsworth and Long, 2005; Hickler et al., 2008; 
Graven et al., 2013). Clondiness or shade can strongly in­
fluence vegetation prodnctivity (Roderick et al., 2001), par­
ticularly over northem Enrasia (Nemani et al., 2003). Distm- 
bances throngh forest flres also affect vegetation prodnctivity 
by destroying existing vegetation and allowing for regener­
ation (Goetz et al., 2005; Amiro et al., 2000; Reich et al., 
2001).

The role of temperatnre and precipitation in the positive 
trend of GPP of northem high latitndes, especially northem 
Emasia, has not been flrmly established. Few stndies have 
examined the effect of CO2  concentration, clondiness, and 
forest flres. O f these environmental variables, CO2  concen­
tration is unlike the others, given its long atmospheric life­
time (~  100-300 years; Biasing, 2009). Thus, CO2  concen­
tration is assumed to be more spatially nnrform. As a result, 
any statistical analysis nsing this variable will not be compa­
rable with the other variables. We consequently do not anal­
yse the influence of CO2  concentration. While some stndies 
have focused on terrestrial ecosystems of the pan-Arctic (Ur­
ban et al., 2014; Myneni et al., 1997; Gnay et al., 2014; Kim 
et al., 2014) or the high latitndes of North America (Goetz 
et al., 2005; Bnermarm et al., 2013; Thompson et al., 2006), 
few stndies have investigated the relative role of different en­
vironmental variables on increasing GPP of northem Enrasia. 
Therefore, we assess in this stndy how vegetation prodnctiv­
ity trends in northem Enrasia are influenced by the environ­
mental variables air temperatnre, precipitation, clondiness, 
and forest lire. Objectives are to (1) calculate the long-term 
trend of both GPP and the environmental variables, (2) assess 
the magnitude of the efifect of the environmental variables 
on GPP, (3) identify the seasonality of the variables, and (4) 
identify the regions of northem Enrasia where the variables 
boost or reduce GPP. Exploiting the availability of long-term 
time series observation-based data we perform a spatially ex­
plicit grid point statistical analysis to achieve the above ob­
jectives.

2 Data and methods 

2.1 Data

2.1.1 Land cover

The stndy domain is the Northem Emasia Earth Science Part­
nership Initiative (NEESPl) region (Groisman and Bartalev,
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Table 1. Biome property look-up table (BPLUT) for GPP algorithm with ERA-Interim and NDVI as inputs. The full names for the University 
o f Maryland land eover elasses (UMD V E G L C ) in the MOD12Q1 data set are evergreen needleleaf forest (ENF), evergreen broadleaf forest 
(EBF), deeiduous needleleaf forest (DNF), deeiduous broadleaf forest (DBF), mixed forests (MF), elosed shrublands (CS), open shrublands 
(OS), woody savannas (WS), savannas (SVN), grassland (GRS), and eroplands (Crop).

U M D V E G L C ENF EBF DNF DBF MF CS OS WS SVN GRS Crop

FPAR scale 0.8326 0.8565 0.8326 0.8565 0.84455 0.7873 0.834 0.8437 0.8596 0.8444 0.8944
FPAR offset 0.0837 -0.0104 0.0837 -0 .0104 0.03665 -0.0323 -0.0107 -0.0183 -0.0044 -0.0297 -0 .0517
LUFmax 0.001055 0.00125 0.001055 0.00125 0.001138 0.00111 0.00111 0.001175 0.001175 0.0012 0.0012
(k g C m ^ ^ j- l  m u ' )  

Fmn mill ( C) - 8 - 8 - 8 - 6 - 7 - 8 - 8 - 8 - 8 - 8 - 8
Fmn max (°C) 8.31 9.09 10.44 9.94 9.5 8.61 8.8 11.39 11.39 12.02 12.02
V P D ^„  (Pa) 500 1800 500 500 500 500 500 434 300 752 500
VPDniax (P^) 4000 4000 4160 4160 2732 6000 4455 5000 3913 5500 5071

2007), defined as the area between 15° E longitnde in the 
west, the Pacific coast in the east, 45° N latitnde in the sonth, 
and the Arctic Ocean coast in the north. The total area of 
this region is 22.4 million km^. Land cover distribntion for 
the region is drawn from the Moderate Resolntion Imaging 
Speetroradiometer (MODIS) MCD12Q1 Type 5 land cover 
prodnct for the year 2007, available online at https://lpdaac. 
nsgs.gov/data_access/data_pool from Land Processes Dis- 
tribnted Active Archive Center (LP DAAC), Sionx Falls, 
Sonth Dakota, USA. The prodnct provides global land cover 
at 1 km spatial resolntion, prodnced from several classifica­
tion systems, principally that of the International Geosphere- 
Biosphere Programme (IGBP). Friedl et al. (2002) describe 
the snpervised classification methodology which leveraged 
a global database of traiiung sites interpreted from high- 
resolntion imagery. The GPP prodncts nsed in this stndy (de­
scribed below) nse a static land cover (LC) classification to 
define biome response characteristics over the stndy record. 
Thns the effect of each environmental variable acconnts only 
for changes in NDVI and does not track potential changes 
in land cover type. While the GPP prodncts nse the standard 
IGBP MODIS global land cover classification, for onr statis­
tical analysis we simplify the LC distribntion into two fun­
damental types. One is “herbaceons”, withont woody stems, 
fonnd in the tnndra to the north and grasslands to the south, 
one of the driest biomes of northem Enrasia. The second is 
“woody vegetation”, plants with woody stems, located within 
the area of boreal forests extending from west to east across 
mnch of the centre of the domain (Fig. 1).

2.1.2 Vegetation produetivity -  long-term data

GPP represents the total amount of carbon fixed per unit area 
by plants in an ecosystem utilizing the physiological pro­
cess of photosynthesis (Watson et al., 2000). GPP is one of 
the key metrics useful in assessments of changes in vege­
tation prodnctivity. It is also a standard output of process- 
based vegetation models. The GPP fields nsed in this stndy 
represent model estimates driven by satellite data. The GPP 
model nsed is based on a light nse efficiency (LUE) model

that prescribes theoretical maximnm photosynthetic conver­
sion efficiency for different land cover classes. LUE is re­
duced from potential (LUEmax) rates for snboptimal environ­
mental conditions determined as the prodnct of daily envi- 
romnental control factors defined for the different land cover 
types nsing daily surface meteorological inputs from ERA- 
Interim reanalysis data. Daily surface meteorology inputs to 
the model include incident solar radiation ( S W r a d ) ,  minimum 
and average daily air temperatures (Tjnm and T/ivg), and atmo­
spheric vapour pressure deficit (VPD). GPP is derived on a 
daily basis as (Rniming et al., 2004; Zhang et al., 2008)

GPP =  e  X  FPAR x  PAR, (1)

e  =  6 m a x  X  Tf X VPDf, (2)

where e  is a LUE parameter (g C M J“ ̂ ) for the conversion of 
photosynthetically active radiation (PAR, MJ m “ ^) to GPP. 
FPAR is estimated from NDVI nsing biome-specific em­
pirical relationships emphasizing northem ecosystems (Yi 
et al., 2013). Several stndies demonstrated the linear rela­
tionship between NDVI and FPAR throngh field measnre­
ments and theoretical analysis (Fensholt et al., 2004; Myneni 
and Williams, 1994; Rnimy et al., 1994; Sellers, 1985).Two 
sets of NDVI records are obtained for this stndy and nsed to 
derive altemative FPAR and GPP simulations: (i) the third 
generation Global Inventory Modeling and Mapping Stnd­
ies (GlMMSSg; Zhn et al., 2013; Pinzon and Tucker, 2010), 
downloaded from https://nex.nasa.gov/nex/ (referred to as 
GIMMS-GPP), and (ii) the Vegetation Index and Phenol­
ogy (VIP) database (Didan, 2010; Barreto-Mnnoz, 2013), 
downloaded from http://phenology.arizona.edn/ (University 
of Arizona’s Vegetation Index and Phenology Lab; referred 
to as VIP-GPP). The 16-day NDVI records are first inter­
polated to a daily time step nsing temporal linear interpo­
lation to estimate daily FPAR following previously estab­
lished methods (Yi et al., 2013). The nse of daily NDVI 
and FPAR inputs rather than coarser (8 -day or 16-day) tem­
poral composites reduces potentially abmpt step changes in 
the model calculations due to temporal shifts in the coarser 
time series canopy inputs. Moreover, the daily interpolation 
was fonnd to improve simulations of GPP seasonality es­
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pecially during spring and antnmn transitional periods over 
northem land areas (Yi et al., 2013). PAR is estimated as a 
constant proportion (0.45) of incident shortwave solar radi­
ation ( S W r a d ) .  6 m a x  IS the potential maximnm e nnder opti­
mal environmental conditions. Tf and VPDf are scalars that 
define snboptimal temperatnre and moistnre conditions rep­
resented by respective daily and VPD inpnts. Tf and 
VPDf are defined nsing a linear ramp function (Yi et al., 
2013; Heinsch et al., 2006), as well as minimnm and max­
imnm environmental constraints defined for different biome 
types ( T m n  m i n  and T m n  m a x .  VPDjjiin and V P D j j i a x ) .  Table 1 
snmmarizes the biome property look-np table (BPLUT) nsed 
to define the environmental response characteristics in the 
model. These GPP data sets are cnrrently available throngh a 
pnblic FTP directory (ftp://ftp.ntsg.nmt.edn/pnb/data/HNL_ 
m o n th ly O P P N P P /).

The GPP data are derived at a daily time step and have 
been aggregated to a monthly time step for this stndy. Spa­
tial resolntion is 25 km, with a temporal range from 1982 
to 2010, restricted to the northem high latitndes (>  45° N). 
In many of the statistical analyses to follow we nse the 
ensemble mean of the two satellite-derived GPP data sets, 
henceforth denoted as “GPPsat”. Winter is characterized 
by extremely low prodnctivity, and technical constraints of 
optical-lR  remote sensing dne to low solar illnmination and 
persistent clond cover make for a particnlar challenge in esti­
mating vegetation indices and conseqnently compnting GPP 
across the high latitndes (Pettorelli et al., 2005). Given the 
limited confidence in GPP data over winter (driven mainly 
by the nncertainty in winter NDVI) we focns on the remain­
der of the year in onr analysis.

Accnracy of the GlMMS-NDVl data set has been exam­
ined in several recent stndies. Analysing trends in growing- 
season start over the Tibetan Platean, Zhang et al. (2013) 
fonnd that GIMMS NDVI differed snbstantially over the pe­
riod 2001-2006 from SPOT-VGT and MODlS-NDVls, in­
dicating significant nncertainty among NDVI retrievals from 
different satellite sensors and data records. The GlMMS3g 
data set is based on the NOAA-AVHRR (Advanced Very 
High Resolntion Radiometer) long-term time series record, 
which is comprised of AVHRR2 and AVHRR3 sensors on 
board the NOAA-7 throngh to NOAA-19 satellites span­
ning mnltiple overlapping time periods; this leads to potential 
artifacts from cross-sensor differences and inter-calibration 
effects inflnencing long-term trends in the AVHRR NDVI 
time series (Pinzon and Tncker, 2014). The Vegetation Index 
and Phenology (VIP) NDVI data set applies a different data 
processing scheme from that of GlMMS3g (Fensholt et al., 
2015), and involves an integration and calibration of over­
lapping AVHRR, SPOT, and MODIS sensor records for gen­
erating consistent NDVI (Didan, 2010). The ensemble mean 
and variance of alternate GPP calcnlations derived nsing the 
GlMMS3g and VIP NDVI records was nsed as a metric of 
nncertainty in the regional prodnctivity trends and nnderly- 
ing satellite observation records.

2.1.3 Flux tower data

To verify the satellite-based GPP estimates we nse gap-filled 
daily tower GPP data at 10 llnx tower sites distribnted across 
northem Enrasia, available for different periods of time. De­
tails of the individnal towers are provided in Table 2. The 
data, generated nsing the eddy covariance measmements ac- 
qnired by the FLUXNET commnnity, were collected from 
http://www.llnxdata.org/ for the “free fair-nse” data snbset. 
The spatial distribntion of the llnx towers nsed in this stndy 
is shown in Fig. 1. Unless otherwise noted, we nse seasonal 
totals of the daily gap-filled tower GPP data. Monthly and 
seasonal valnes were aggregated from the daily data.

We also nse monthly GPP data compnted nsing 
FLUXNET observations of carbon dioxide, water and energy 
llnxes npscaled to the global scale for additional verification 
of the satellite-derived GPP record for the entire stndy area, 
on a per grid cell basis. Upscaling of the FLUXNET observa­
tions was performed nsing a machine learning techniqne and 
model tree ensembles (MTE) approach from the Max Planck 
Institnte of Biogeochemistry, Jena, Germany, and available 
online at https://www.bgc-jena.mpg.de/geodb/projects/Data. 
php. Description and benchmarking of this data set can be 
fonnd in Jnng et al. (2009) and Jnng et al. (2011). O f the two 
versions available, we nse the one which incorporates llnx 
partitioning based on Reichstein et al. (2005).

2.1.4 Temperature, preeipitation, and eloudiness

Monthly valnes of 2 m air temperatnre (in °C), precipita­
tion (in mm), and clondiness (in %) are taken from monthly 
observations from meteorological stations, extending over 
the global land snrface and interpolated onto a 0.5° grid 
(Mitchell and Jones, 2005). The data set, CRU TS 3.21, is 
prodnced by the Climatic Research Unit of the University of 
East Anglia in conjnnction with the Hadley Centre (at the UK 
M et Office) and is available at http://iridl.ldeo.colnmbia.edn/ 
SOURCES/.UEA/.CRU/.TS3p21/.monthly/ (Jones and Har­
ris, 2013).

Althongh the LUE-based GPP model does not nse precip­
itation as an inpnt, we assnme that precipitation is a nseful 
metric of water snpply to vegetation and thns analyse it as 
one of the environmental variables affecting GPP. Here we 
nse monthly valnes of temperatme, precipitation, and clondi­
ness for the period of 1982 to 2010, since this is the common 
period for which both GPPsat and the environmental variable 
data are available. Seasonal means for spring (March, April, 
May), snmmer (Jnne, Jnly, Angnst), and antnmn (September, 
October, November) are derived from the monthly valnes. As 
explained in Sect. 2.1.2, lower reliability and availability of 
satellite NDVI observations and associated GPP data for the 
winter months lead ns to focns on the spring, snmmer, and 
antnmn seasons.
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Table 2. Details o f the flux towers whose GPP data have been used to validate the satellite NDVI-based GPP data. The spatial distribution of 
these flux towers is shown in Fig. 1.

FLUXNET site code Site name Period Lat, long IGBP land cover Dominant PFT Principal investigator

RU-Cok Chokurdaldi/Kytalyk 2003-2005 70.83, 147.49 Open shrublands Shrub Han Dolman,
Free Univ. Amsterdam

RU-Fyo Fedorovskoje 1998-2006 56.46, 32.92 M ixed forests Evergreen needleleaf trees Andrej Varlagin,
Russian Academy of Sciences

RU-Hal Ubs N ut- Hakasija 2002-2004 54.73, 90.00 Grasslands Grass Dario Papale, 
University of Tuscia

RU-Zot Zotino 2002-2004 60.80, 89.35 Woody savannas Evergreen needleleaf trees Corinna Rebmann, M ax Planck 
Institute for Biogeochemistry

FI-Hyy Hyytiala 1996-2006 61.85, 24.29 Eveigreen needleleaf forest Evergreen needleleaf trees Timo Vesala, 
University of Helsinki

FI-Kaa Kaamanen wetland 2000-2006 69.14, 27.30 Woody savannas Grass Tuomas Laurila, Finnish 
Meteorological Institute

Fl-Sod Sodankyla 2000-2006 67.36, 26.64 Eveigreen needleleaf forest Evergreen needleleaf trees Tuomas Laurila, Finnish 
Meteorological Institute

CZ-BKl Bily Kriz- Beskidy Mountains 2000-2006 49.50, 18.54 Eveigreen needleleaf forest Evergreen needleleaf trees M arian Pavelka
HU-Bug Bugacpuszta 2002-2006 46.69, 19.60 Croplands Cereal crop Zoltan Nagy,

Szent Istvan University
HU-Mat Matra 2004-2006 47.84, 19.73 Croplands Cereal crop Zoltan Nagy,

Szent Istvan University

2.1.5 Fire

Fire is represented by proportional bnmt area (% of each 
grid cell) estimates from the Global Fire Emissions Database 
(GFED) Monthly Bnmed Area Data Set Version 3.1 released 
in April 2010. This prodnct was developed on a global scale 
at a 0.5° spatial resolntion and covers the period from 1997 
to 2011. The GFED is an ensemble prodnct of bnm  areas 
derived from mnltiple satellite sensors, thongh primarily em­
phasizing MODIS snrface reflectance imagery (Giglio et al., 
2010).

2.2 Methods

2.2.1 Spatial interpolation

Data not on a 0.5° grid were interpolated to that resolntion 
nsing spherical version of Shepard’s traditional algorithm 
(Shepard, 1968; Willmott et al., 1985). This method takes 
into acconnt (i) distances of the data points to the grid lo­
cation, (ii) the directional distribntion of stations in order 
to avoid overweighting of clnstered stations, and (hi) spatial 
gradients within the data field in the grid point environment.

2.2.2 Verification

The GIMMS-GPP and VIP-GPP simnlations are evalnated 
against co-located tower-based GPP observations for model 
grid cells corresponding to each of the ten regional llnx tower 
locations (Table 2). The evalnation is carried ont nsing five 
different approaches:

1. Pearson’s prodnct moment correlation, which is a mea- 
snre of the linear dependence between simnlated 
(GIMMS-GPP and VIP-GPP) and observed (tower- 
based GPP) valnes and its valne ranges from - 1  to +1,

A n n u a l
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Figure 2. Relationship between the annual GPP reeorded at the 
flux tower sites and the eorresponding values o f the satellite-derived 
GPP. The blaek solid line is the line o f best fit and helps better un­
derstand the relationship between the two. The dashed line is the 
1 : 1 line and demonstrates how mueh the relationship between the 
two sets o f values deviates from the 1 : 1 perfeet relationship.

where 0  is no correlation and - 1 /  - 
or positive correlation respectively.

1 is total negative

2. Percent bias, which measnres the average tendency of 
the simnlated valnes to be larger or smaller than the cor­
responding observations. The optimal valne is 0.0 with 
low-magnitnde valnes indicating accnrate model sim­
nlations. Positive valnes indicate overestimations and 
vice versa (Yapo et al., 1996; Sorooshian et al., 1993).

3. The Nash-Sntclilfe efficiency (NSE) coefficient, which 
is a normalized statistic that detemtines the relative 
magnitnde of the residnal variance compared to the 
measmed data variance (Nash and Sntclrffe, 1970). The 
statistic indicates how well the plot of observed vs. sim­
nlated data fits the 1: 1 line. Nash-Sntclrffe efficiencies 
range from —oo to 1. An efficiency of 1 corresponds to 
a perfect match of model-simnlated GPP to the observed
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Table 3. Validation o f GIMMS3g and VIP-GPP data sets along with their ensemble mean using flux tower GPP from 10 flux tower sites 
aeross northern Eurasia. The spatial distribution of the flux tower sites is shown in Fig. 1. Validation was earried out using the following 
approaehes. (1) Pearson’s produet moment eorrelation, whieh is a measure o f the linear dependenee between the simulated and observed 
GPP and its value ranges from —1 to -Fl, where 0 is no eorrelation and — 1/ -F 1 is total negative or positive eorrelation. (2) Pereent bias, 
whieh measures the average tendeney o f the simulated values to be larger or smaller than their observed ones. The optimal value is 0.0, 
with low-magnitude values indieating aeeurate model simulations. Positive values indieate overestimations and viee versa (Yapo et al., 1996; 
Sorooshian et al., 1993). (3) Nash-Suteliffe model effieieney eoeffieient (Nash and Suteliffe, 1970), values o f whieh range from —oo to 
1. An effieieney o f 1 eorresponds to a perfeet mateh o f model-simulated GPP to the observed data. An effieieney o f 0 indieates that the 
model predietions are as aeeurate as the mean o f the observed data, whereas an effieieney less than zero oeeurs when the observed mean is 
a better predietor than the model or, in other words, when the residual varianee (between modelled and observed values) is larger than the 
data varianee (between observed values and the observed mean). Essentially, the eloser the model effieieney is to 1, the more aeeurate the 
model is.

Correlation (R) GIMMS-GPP VIP-GPP GPPsat 
(ensemble mean)

Annual 0.71 0.68 0.70
Spring 0.82 0.81 0.81
Summer 0.72 0.64 0.69
Autumn 0.64 0.67 0.66

Pereent bias GIMMS-GPP VIP-GPP GPPsat 
(ensemble mean)

Annual -1 6 .9 % -1 9 .7 % -1 8 .3 %
Spring -9 .1 % -1 7 .3 % -1 3 .2 %
Summer 1.9% -2 .1 % -0 .1 %
Autumn -3 5 .1 % -2 8 .3  % -3 1 .7 %

Nash-Suteliffe effieieney GIMMS-GPP VIP-GPP GPPsat 
(ensemble mean)

Annual 0.36 0.29 0.33
Spring 0.64 0.57 0.61
Summer 0.46 0.40 0.44
Autumn 0.13 0.27 0.21

data. An efficiency of 0 indicates that the model predic­
tions are as accnrate as the mean of the observed data, 
whereas an efficiency less than zero occnrs when the ob­
served mean is a better predictor than the model or, in 
other words, when the residnal variance (between mod­
elled and observed valnes) is larger than the data vari­
ance (between observed valnes and the observed mean). 
Essentially, the closer the model efficiency is to 1, the 
more accmate the model is.

4. A scatter plot, which demonstrates nsing Cartesian co­
ordinates the correlation between satellite-derived GPP 
and tower-derived GPP at the respective sites for the re­
spective time periods. This along with the line of best fit 
helps determine how well the two data sets agree with 
each other.

5. Spatially explicit, pixel-by-pixel validation nsing the 
npscaled GPP data from FLUXNET observations (de­
scribed in Sect. 2.1.3) nsing correlation and difference 
maps for the entire period.

2.2.3 Trend analysis

Temporal changes for each enviromnental variable are de­
termined nsing linear regression. Both armnal and seasonal 
time integrations are examined. Trends are deemed statis­
tically significant at the 95 % level. For each variable, we 
compnte the trend per decade ( 1 0 yr“ )̂ from the monthly 
valnes (month“ ^). Other stndies have implemented a simi­
lar methodology to identify trends (Piao et al., 2011; de Jong 
et al., 2011; Forkel et al., 2013; Goetz et al., 2005). In order 
to determine whether the temporal rate of change differs for 
different periods of the stndy period we plot the percentage 
difference of the armnal means (of the regional average) from 
that o f the first 5-year mean.

For the entire period of stndy, a few of the variables as­
sessed show strong trends. Moreover, we assnme the vari­
ables to be linearly associated. This introdnces the issne of 
collinearity, as a conseqnence of which the stndy of itrflnence 
of one variable on another becomes less precise. Therefore, 
in order to make accmate assessments of correlation between 
two variables, correlation analysis has only been carried ont
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Figure 3. Spatially explicit validation o f GPPsat using upscaled FLUXNET observations. Panel (a) is the eorrelation map and displays the 
statistically significant (95 % level) correlations between the two sets o f values o f annual GPP for the period o f 1982-2010. Panel (b) is the 
difference between the 29-year mean o f GPPsat and upscaled FLUXNET database, with negative values demonstrating an underestimation 
o f GPPsat and viee versa.

after long-term trends (for period 1982-2010) have been re­
moved and consequently only the interannual variability is 
preserved.

2.2.4 Correlation

We use the Pearson product-moment correlation coefficient 
(represented as R), one of the more popular measures of de­
pendence between two variables and which is sensitive only 
to a linear relationship between two variables. This metric 
is defined from + 1  (perfect increasing linear relationship) to 
- 1  (perfect decreasing linear relationship or “inverse corre­
lation”) and as the value approaches zero, the relationship 
becomes uncorrelated (Dowdy and Wearden, 1983). When 
a single variable is affected by more than one independent 
factor, simple correlation is inappropriate. We perform par­
tial correlation to better assess the relationship between two 
variables after eliminating the influence of other variables.

2.2.5 Attribution

The primary objective of this study is to determine the mag­
nitude and spatio-temporal variations in trends for environ­
mental conditions (variables) which have contributed to the 
increase in GPP of northern Eurasia indicated from the satel­
lite records. Ideally one would study the direct influence of 
one condition on another in experiments in which all other 
possible causes of variation are eliminated. However, since 
this study involves only large-scale observational data and 
not process-based models or laboratory-based experiments, 
there is no control over the causes of variation. Investigations 
into the structure and function of terrestrial ecosystems, like 
those for many elements of the biological sciences, involve 
quantities which are often correlated. In some cases, the de­
rived relationship may be spurious. The coefficient of deter­
mination (represented as R^) is a common measure to esti­
mate the degree to which one variable can be explained by 
another (percentage; Wright, 1921), while correlation anal­

ysis (R) can explain this dependence of one variable on an­
other keeping the sign of the relationship (± ) intact (Aldrich, 
1995).

3 Results and discussion

3.1 Verification of satellite-derived GPP

The GIMMS-GPP and VIP-GPP, as well as their ensemble 
mean (GPPsat), are individually verified against the flux- 
tower-based GPP data using Pearson’s correlation coeffi­
cient, percent bias, and the Nash-Suteliffe normalized statis­
tic. Scatter plots (Fig. 2) show that GPP derived from the 
satellite NDVI records is generally higher than the tower- 
based GPP at the flux tower sites that have comparatively 
lower productivity (and vice versa). Moreover, the agree­
ment is stronger at lower-productivity sites than at higher- 
productivity sites. Though Table 3 lists all o f the verifica­
tion statistics, we focus primarily on the annual GPPsat re­
sults for the rest o f the study. The correlation coefficients are 
all positive and high (0.7 for annual GPPsat); percent bias 
is predominantly negative (18.3 %); and since all the values 
of the Nash-Suteliffe efficiencies are above zero (0.33), we 
conclude that the satellite NDVI-derived values are a more 
accurate estimate of GPP than the observed mean for the 
respective flux tower sites. Spatially explicit verification of 
GPPsat reveals that the correlation is high and statistically 
significant for almost the entire study area (Fig. 3a). GPPsat 
shows a general underestimation in the boreal forests of the 
western parts o f northern Eurasia and overestimation in the 
Eurasian steppes to the south of the study area (Fig. 3b).

Satellite-derived vegetation indices have been evaluated 
using a variety of techniques. Using tree-ring width measure­
ments as a proxy for productivity, Berner et al. (2011) exam­
ined its relationship with NDVI from AVHRR instruments 
and found the correlation to be highly variable across the 
sites, though consistently positive. Remarkably strong corre­
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Figure 4. Change in annual GPP for GPPsat over the period 1982-2010. Panel (a) is the trend map for GPPsat, i.e. the ensemble mean (of 
two GPP data sets). Shades of green represent a positive trend and shades o f red represent a negative trend. The trends have been derived from 
a linear least-squares fit to the GPP time series for GlMMSSg and VIP data sets. Trend values represent the rate o f ehange o f produetivity per
deeade (g C(Carbon) m “  month“  10yr“  ). Panel ( b )  is the uneertainty map (uneertainty due to the use o f two GPP data sets) represented 
by eomputing the eoeffieient o f variation (CV). Darker values represent higher uneertainty and viee versa. Panel (c) shows yearly ehange 
in the regional average GPP for the data sets derived from the GlMMSSg (red) and VIP (blue) NDVI data sets. The interannual variation is 
smoothed using a smoothing spline using a smoothing parameter o f 0.8.

lations were observed in comparisons of GIMMS3g NDVI to 
abovegronnd phytomass at the peak of snmmer at two repre­
sentative zonal sites along two trans-Arctic transects in North 
America and Emasia (Raynolds et al., 2012). From com­
parison of prodnction efficiency model-derived NPP (Zhang 
et al., 2008) to the stand level observations of boreal aspen 
growth for the 72 CIPHA (Climate Impacts on Prodnctivity 
and Health of Aspen) sites, the correlation was fonnd to be 
positive. LUE algorithms similar to the one nsed in this stndy 
for the generation of GPP data sets from satellite NDVI pro- 
dnce favonrable GPP resnlts relative to daily tower observa­
tions, with a strong positive correlation (Yi et al., 2013; Ynan 
et al., 2007; Schnbert et al., 2010). Evalnating the nncertain- 
ties in the estimated carbon llnxes compnted nsing a similar 
LUE-based GPP model, Yi et al. (2013) conclnded that the

nncertainty in LUE (e) characterization is the main sonrce 
of simnlated GPP nncertainty. GPP simnlation errors nnder 
dry conditions are increased by an insnfficient model vapom 
pressme deficit (VPD) representation of soil water deficit 
constraints on canopy stomatal condnctance and e (Lerming 
et al., 2005; Schaefer et al., 2012). It was also fonnd that the 
GPP model does not consider the response of e to diffuse 
light dne to canopy clnmping (Chen et al., 2012) and shaded 
leaves (Gn et al., 2002).

3.2 Temporal changes in GPP

Across the stndy domain, regionally averaged GPPsat ex­
hibits a trend of 2.2 (± 1 .4 )g C m “ ^month“  ̂decade"^ Fig­
ure 4a displays the armnal GPP trend map. Increases are
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noted across most o f the region except for a small area in 
the north-central part o f the region, jnst east of the Yenisey 
River. The largest increases are located in the western and 
sonth-eastem part of the region. Over half (69.1 %) of the 
stndy area exhibits a statistically significant positive trend 
(95 % sigiuficance level), while 0 . 0 1  % of the area has a sta­
tistically significant negative trend. Uncertainty in the en­
semble mean GPP is illnstrated by the coefficient o f varia­
tion map (Fig. 4b). The highest nncertainty is noted in the 
north-central and the sonth-westem part of the region. The 
yearly increase in armnal GPP for both GIMMS-GPP (red) 
and VIP-GPP (bine; Fig. 4c) reveal the difference between 
the two data sets, which is highest at the beginning of the 
stndy period. The natme of increase in GPP is also different 
for the two data sets, with the rise in one being more linear 
than the other. A possible explanation for the differences in 
the two data sets is discnssed in Sect. 2.1.2. Examining the 
seasonality of GPP trends (of GPPsat; Fig. 5), we find that 
the snmmer trend is greatest among all other seasons. This 
implies that the response of GPP to environmental changes 
is greatest at the peak of the growing season. While the pro­
dnctivity of the region is predominantly increasing, there are 
clearly certain areas each season with decreasing prodnctiv­
ity.

The GPP increase described here is consistent with the re­
snlts of Sitch et al. (2007), who also noted considerable inter- 
armnal and spatial variability, with many areas demonstrating 
decreased greeimess and lower prodnctivity. Using a process- 
based model (LPJ-DGVM) to perform a retrospective anal­
ysis for the period of 1982-1998, Lncht et al. (2002) fonnd, 
after acconnting for the carbon loss dne to antotrophic respi­
ration, that boreal zone NPP increased by 34.6 g C m~^ y r“ ^, 
which is comparable to om  estimate. The higher GPP trend in 
snmmer (Fig. 5), especially over the northem Emasia portion 
of the domain, snggests that the vegetation of this region is 
predominantly cold-constrained, a finding described in other 
recent stndies (Yi et al., 2013; Kim et al., 2014).

3.3 Temporal changes in the environmental variables

The regionally averaged air temperatnre increase is nearly 
monotonic and the distribntions displayed in Fig. 6 a show 
that the region has a predominantly positive trend for all 
parts o f the growing season. Warming is highest in antnmn. 
A statistically sigiuficant increase in temperatnre is noted 
for approximately half of the region. The greatest increases 
are fonnd in the north-eastem and sonth-westem parts of the 
region (maps not shown). Unlike temperatnre, precipitation 
does not exhibit a snstained increase over the stndy period. 
While the regional median trend for precipitation is highest 
for spring (Fig. 6 b), the range of trends for this region, from 
minimnm to maximnm, is highest for snmmer. The fraction 
of the region experiencing sigiuficant increases in annnal pre­
cipitation is about 3 times the area experiencing significant 
decreases. The significant positive trends are located in the
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Figure 5. Box plot showing grid distributions o f seasonal 
GPP trends for GPPsat. The GPP trends are expressed in 
g C m “ ^m onth“  ̂ 10yr“ b  The blaek band and middle noteh rep­
resent the 2nd quartiie or median; box extents mark the 25th (1st 
quartile) and 75th (3rd quartiie) pereentiies. Whiskers extend from 
the smallest non-outlier value to the largest non-outlier value. The 
eoiours, green, red, orange, and grey represent spring, summer, 
autumn, and annual seasonal trends respeetively. As deseribed in 
Seet. 2.1.2, GPP trends for winter have not been assessed in this 
study.

north-eastem and westem parts (mainly boreal forests) of 
the domain, while significant negative trends are located in 
the west-central (boreal forests) and sonth-eastem (steppes) 
parts of the region (maps not shown). Along with the regional 
averages of other environmental variables. Table 4 reveals 
the regional average of clondiness, which shows a negative 
trend. However, similar to precipitation, the spatial standard 
deviation is very high, implying a high spatial variability 
in clondiness trends across the region. Unlike precipitation, 
a greater fraction of the region is experiencing significant de­
creasing clondiness or a significant clear-sky trend (Fig. 6 c). 
Compared to the rest of the region, armnal clondiness shows 
higher negative trends in the sonthem parts of the stndy area 
(maps not shown). Bnmt area exhibits significant trends, both 
positive and negative, over only 1 % of the region, with the 
total yearly bnmt area for the stndy area increasing from 15.9 
to 17.1 million hectares from 1997 to 2010. The negative 
trend of the regional mean (Table 4; Fig. 6 d) is not signifi­
cant.

Recent stndies have reported similar changes in these en­
vironmental variables. For the period of 1979 to 2005, Tren- 
berth et al. (2007) fonnd temperatnre trends over the region 
range from 0.3 to 0.7°Cdecade“ \  and for most regions of 
the higher latitndes, especially from 30 to 85° N, significant
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Table 4. Trend statistics for annual monthly averages o f environmental variables. The first and second columns list the fraction o f the region 
with signifieant (95 % signifieanee level) positive trends and negative trends respeetively. The third column is the regional mean trend o f the 
variables per deeade. The fourth column is the eoeffieient o f variation, estimated as the distribution mean divided by the standard deviation.

Environmental
driver

Positive trend 
(% of area)

Negative trend 
(% o f area)

Trend lOyr  ̂
(regional mean)

Coeffieient 
o f variation

Temperature 50.9% 0% 0.39 °C 0.53
Preeipitation 15.2% 4.5 % 0.61 m m m onth“ ^ 3.0
Cloudiness 7.9% 16.9% —0.18%  o f grid eell 4.2
Burnt area 0.7% 0.3 % -0 .8 8  ha 20.6

(a.)

E

E

Spring Summer Autumn Annual Spring Summer Autumn Annual

( d . )  °

I

< IT)
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Figure 6. Change in the environmental variables over the period of 
study represented by seasonal trends. Panels (a-c) show distribu­
tion o f 2 m air temperature, preeipitation, and cloud eover respee­
tively for the period 1982-2010, and panel (d) illustrates seasonal 
trends o f total burnt area for the period 1997-2011. The tempera­
ture, preeipitation, and cloud eover data are taken from the Climatie 
Research Unit (CRU TS 3.21) data set (Harris et al., 2014). Burnt 
area data from the Global Fire Emissions Database (GFED; Giglio 
e ta l., 2010).

positive precipitation trends have occnrred. Contrary to the 
clond cover trend we find here, stndies reported in AR4 sng- 
gest an increase in total clond cover since the middle of the 
last centnry over many continental regions, inclnding the for­
mer USSR and westem Enrope (Snn et al., 2001; Snn and 
Groisman, 2000). The large spatial variability in the gridded 
clond cover trends (Table 4) may explain the disagreement. 
Bnmt area data, representing fire distnrbance, is dissimilar 
from the other environmental variables in that it spans only 
14 years of the 29-year stndy record, and it is spatially non- 
nniform, involving only a fraction of the total stndy area. 
This limitation makes it difficnlt to assess impacts on veg­
etation prodnctivity (Balshi et al., 2007). While the model

nsed to generate the satellite NDVI-derived GPP data does 
not acconnt for CO2  fertilization directly, the fertilization ef­
fect may be partially represented throngh associated changes 
in NDVI. As stated in Sect. 1, we do not analyse atmospheric 
CO2  concentration dne to its spatial homogeneity.

3.4 Attributing GPP changes to environmental 
variables and assessing seasonality

Aimnal GPP is affected by more than one enviromnental vari­
able. To stndy the impact of an individnal enviromnental vari­
able, we eliminate the impact o f other variables by perform­
ing partial correlations. With the temporal range of the fire 
data (GFED) being a fraction of that of the other environ­
mental variables, it is not possible to compnte the partial cor­
relation. Conseqnently, we are nnable to assess the effects 
o f only fire by eliminating the effects of the other variables. 
Moreover, fires have been fonnd to be sigitificantly correlated 
with armnal GPP (GPPsat) for only a small fraction (1.7 to
3.4 % depending on season) of the entire stndy area. The im­
pact o f fires on armnal GPP for the region is therefore ignored 
in this stndy.

The regional median partial coefficient o f detemtination 
(R^)  for sigrrificant valnes (Table 5) snggests that the snm­
mer valnes of the errvirorrmental variables have the highest 
itrflnence on armnal GPPsat. The contrast between srrmmer 
and the other seasons is strongest for temperatnre, highlight­
ing the importance of snmmer temperatmes to armnal pro­
dnctivity. Fignre 7 reveals that the relationships between an­
nnal GPP and the errvirorrmental variables are not completely 
explained by simple correlation (R^),  as the distribntiorrs of 
partial correlations provide more irrformation abont the in­
teraction. Considering otrly sigrrificant correlations (Fig. 7), 
we find that increasing temperatnres predomitrantiy increase 
GPP. The relationship between precipitation or clondiness 
and GPP, on the other hand, leads to a predontinantly bi- 
modal distribntion, with both positive and negative effects. 
Other than spring, areas demonstrating sigrrificant negative 
partial correlations appear to be larger than the areas of sig- 
rrificant positive partial correlatiotrs. Among the etrvirotrmen- 
tal variables assessed, temperatme has the highest partial co­
efficient of detemtination (Table 5). Moreover, ntrlike pre­
cipitation and clondiness, temperatme has a predontinantly
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Figure 7. Bean plots o f the multi-modal distribution for signifieant 
(95 % signifieanee) partial eorrelation between annual de-trended 
GPP (GPPsat) and the values o f eaeb de-trended environmental 
variable after eliminating the infiuenee o f the other variables. A 
bean plot is an alternative to the box plot and is fundamentally a 
one-dimensional seatter plot. Here it is preferred over a box plot 
as it helps to show a muiti-modai distribution. The tbiekness o f a 
“bean” is a funetion o f the frequeney o f the speeifie value -  that is, 
the tbieker a “bean” is for a value, the relatively higher the number 
o f grid points having that value. The values shown are the Pearson’s 
eorrelation eoetfieients whieh are based on the linear least-squares 
trend fit. Correlation values range from —1 to -j-1. Values eloser to 
— 1 or -j-1 indieate strong eorrelation, while those eloser to 0 indi­
eate weak eorrelation. The eoiour o f the box indieates the season of 
the environmental variable being investigated (annual: grey; spring: 
green; summer: red; autumn: amber). The short horizontal blaek 
lines for eaeb “bean” is the median o f that distribution.

positive relationship with annual GPP. These relationships 
imply that, over recent decades, low temperatnres have been 
the major constraint for GPP in northem Enrasia.

Similar resnlts were reported by Yi et al. (2014), who 
conclnded that satellite-derived vegetation indices show an 
overall benefit for snmmer photo synthetic activity from re­
gional warming and only a limited impact from spring pre­
cipitation. The dominant constraint of temperatnre was de­
scribed by Zhang et al. (2008), who fonnd the same con­
straint to be decreasing. However, onr resnlts contrast with 
those of Piao et al. (2011), who conclnded that at the con­
tinental scale of Emasia, vegetation indices in snmmer are 
more strongly regulated by precipitation, while temperatme 
is a relatively stronger regulator in spring and antnmn. Re­
garding the dominance of temperatnre as a regulator, Yi et al. 
(2013) conclnded that, over the last decade, Enrasia has been 
more drought-sensitive than other high-latitnde areas.

Table 5. Medians of the distributions o f the relative partial signif­
ieant eontribution {R^ -  95 % signifieanee) o f eaeb de-trended en­
vironmental variable (exeept fire) o f eaeb season to the interannual 
variability in de-trended annual GPP (GPPsat). In eaeb ease the to­
tal eontribution may not add up to 100 %. In these eases the faetors 
behind the unexplained attribution are not identified.

Environmental variable Annual Spring Summer Autumn

Temperature 26.1% 26.5 % 37.7% 19.9%
Precipitation 22.9% 20.7% 20.7% 17.9%
Cloudiness 18.9% 18.3% 19.3 % 18.8%

Since GPP trends are highest in snmmer (Fig. 5), the peak 
of the growing season, we are interested more in the im­
pact of the enviromnental variables dnring snmmer on an­
nnal GPP since the terrestrial vegetation is likely to be more 
responsive to variations in snmmer enviromnental conditions 
relative to other seasons. Spatial analysis helps to elaborate 
on the resnlts shown in Table 5 and Fig. 7. Assessing the pm- 
tial sigiuficant correlation of annnal GPP and snmmer tem­
peratnre (Fig. 8 a; Table 6 ), we find that meas with a positive 
correlation (62 % of the area) me concentrated to the north 
and east of the region, which include both tnndra and bo­
real forest meas. Negative correlations occur across 2 % of 
the region, Imgely in the sonth within the Eurasian steppes. 
For other parts of the year (maps not shown for spring and 
antnmn correlations but distribntions represented in Fig. 7), 
significant negative correlations become more spatially dis­
perse, while significant positive correlations me limited to 
the centre and west of the region for spring, becoming more 
disperse in antnmn. Determining the partial correlation be­
tween mmnal GPP and snmmer precipitation. Fig. 8 b reveals 
that the meas of significant positive correlations (4 % of area) 
are scattered over the sonthem part of the stndy mea (steppes 
vegetation), while the significant negative correlations (16 % 
of area) me scattered across the north (tnndra and boreal). 
Correlations for spring precipitation with mmnal GPP (maps 
not shown) me predominantly positive, while that for antnmn 
precipitation is predominantly negative. The spatial correla­
tions for snmmer clondiness and snmmer precipitation me 
similar (Fig. 8 c), thongh the mea nnder significant corre­
lation is comparatively less. Negative correlation meas me 
abont 9 times more extensive than positive correlation meas 
(Table 6 ). Compmed to snmmer, the mea nnder significant 
positive correlation is higher for spring, while the area nnder 
negative correlation is higher for antnmn (maps not shown).

The negative correlations for temperatnre and positive cor­
relations for precipitation and clondiness in the sonthem 
grasslands (Eurasian steppes) me not surprising, as these 
grasslands me relatively dry compmed to other biomes in the 
broader region. In this part of the stndy mea, increasing tem­
peratnres in snmmer may lead to greater water stress (Gates, 
1964; Wiegand and Namken, 1966; Jackson et al., 1981). 
Decreasing precipitation would increase water stress. More-
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Figure 8. Spatial distribution of statistically significant (95 % significance level) partial correlation between de-trended annual GPP (GPPsat) 
and de-trended summer values o f environmental variables (a) temperature, (b) precipitation, and (c) cloud cover. Negative correlations are 
shown with shades o f red and positive correlations are shown in shades of blue.
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Figure 9. Box plots o f the distribution for correlation between de­
trended values of each environmental variable. The location o f the 
box and in particular the median on the y axis, on either side o f the 
zero line, reveals the predominant sign of the correlation.

over, increasing cloud cover would tend to lead to a higher 
probability of rain (Richards and Arkin, 1981), thus reliev­
ing water stress induced by warming in this relatively dry 
area. The cause of the negative correlations in the north is 
unclear. The relationship may be attributable to the predomi­
nantly positive relationship between cloud cover (equivalent 
to inverse of sunshine duration) and precipitation (Sect. 3.5). 
In the light-limited and relatively colder north, an increase 
in cloud cover could, on the one hand, cause a decrease in 
direct radiation and increase in diffuse radiation, which may 
increase GPP through higher LUE (Alton et al., 2007; Gu 
et al., 2002; Williams et al., 2014; Roderick et al., 2001). 
However, an increase in cloud cover could decrease total so­
lar radiation and, in turn, productivity (Nemani et al., 2003; 
Shim et al., 2014).

Recent studies have shown similar relationships to those 
found here. Zhang et al. (2008) showed that, across the 
pan-Arctic basin, while productivity increased with warm­
ing, increasing drought stress can offset some of the poten­
tial benefits. However, Yi et al. (2013) concluded that while 
GPP was significantly higher during warm years for the pan- 
Arctic, the same was not true for the Eurasian boreal forests, 
which showed greater drought sensitivity. Positive impacts 
of warming on GPP have been suggested in warming exper­
iments (Natali et al., 2013). However, decreasing growing-
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Table 6. Connection between annual GPP of northern Eurasia 
(GPPsat) and summer values o f environmental variables shown as 
percentage o f the study area with statistically signifieant (95 % sig­
nifieanee level) positive and negative partial eorrelation eoetfieients.

Environmental GPP (ensemble mean)
variable positive negative

Temperature 61.7% 2.4%
Preeipitation 3.9% 15.9%
Cloudiness 1.3% 9.5 %

season forest productivity, represented as a decline in “green­
ness” across northem Enrasia, may be a reflection of contin- 
ned snmmer warming in the absence of snstained increases 
in precipitation (Bnermaim et at., 2014; Zhon et at., 200t).

3.5 Relationships among individnal environmental 
variables

Enviromnental variables are not independent of one another. 
We examine correlations among the de-trended individnal 
variables to better understand their interactions. Fignre 9 
shows distribntions of the correlations. The temperatnre- 
precipitation correlation is predominantly negative, indicat­
ing tliat increases in precipitation did not accompany recent 
warming. Signiflcant negative trends are located in the sonth­
em  parts of the stndy area (steppes) as well as the boreal 
forests at the westem and eastem ends of the region. These 
changes may be leading to increasing water stress, evidence 
of wliich is noted in a snbset o f the region. Indeed, approx­
imately 2.4 % of the area in the sonthem parts of the stndy 
area (Fig. 8 a) shows signiflcant negative partial correlation 
between armnal GPP (GPPsat) and snmmer temperatnre. The 
relationsliip between temperatnre and clond cover is simi­
larly predominantly negative. Spatially, however, the signifl­
cant negative correlations are located in the central and west­
em  parts of the region. Grid-cell-wise correlations between 
precipitation and clond cover are predominately positive, 
with the signiflcant correlations spread ont across the region. 
As described in Sect. 3.4, the correlations between precipi­
tation and clond cover help to explain why spatial distribn­
tions of the correlation coefficients of precipitation and clond 
cover with GPP are similar. Wang et al. (2014) documented 
a positive relationsliip between snnsliine duration (equiva­
lent to the inverse of clond cover) and vegetation greenness. 
Wliile increasing clond cover leads to an increased probabil­
ity of precipitation, and thns reduces water stress, it also re­
duces the snnsliine duration and hence GPP. According to Ta­
ble 4, regional mean precipitation lias a positive trend, wliile 
clondiness has a negative trend. However, Fig. 9 reveals the 
predominantly positive correlation between these two vari­
ables. Tliis apparent contradiction is because the long-term 
trends are calcnlated for the actual valnes, wliile the correla­

tion analysis is performed after de-trending (removing long­
term trends) the variables.

Consistent with om  resnlts, Thompson et al. (2006) fonnd 
that, in the boreal and tnndra regions of Alaska, NPP de­
creased when it was warmer and dryer and increased when 
it was warmer and wetter. They also described how colder 
and wetter conditions also increased NPP. Yi et al. (2013) 
conclnded that while, globally, annnal GPP for boreal forests 
is significantly higher in warmer years, the relationship does 
not hold trae for Emasian boreal forests, which they identity 
to be more drought-sensitive. For this reason, regional GPP 
variations are more consistent with regional wetting and dry­
ing anomalies, as we note for the sonth-westem part of the 
stndy region. In tliis stndy we assessed oifly GPP. Other car­
bon cycle processes such as antotrophic and heterotrophic 
respiration and disturbances may not be responding in a sim­
ilar marmer. Additional stndies are required before extrapo­
lating these resnlts to other carbon cycle components.

4 Conclusions

The ensemble mean of the GPP data sets derived from 
GIMMS3g and VIP NDVI data indicates that vegetation pro­
dnctivity generally increased across northem Enrasia over 
the period 1982 to 2010, with a signiflcant increase for as 
mnch as 69. t % of the region. A signiflcant decrease in GPP 
occnrred across oifly 0.01 % of the region. We note some dis­
agreement in the natme and magnitnde of the increasing GPP 
among the two data sets. The regional mean trend for the en­
semble mean GPP is 2.2 (±1.4) g C m “  ̂month“  ̂decade"^ 
The regional analysis is consistent with resnlts of prior 
stndies which have suggested that air temperatnre is the 
dominant enviromnental variable inflnencing prodnctivity in­
creases across the northem high latitndes. Examining partial 
coefficients o f determination we find that the snmmer 
valnes of temperatnre, precipitation, and clondiness have the 
highest inflnence on armnal GPP. Considering the regional 
median of partial signiflcant valnes, snmmer air temper­
atnre explains as mnch as 37.7%  of the variation in armnal 
GPP. In contrast, precipitation and clondiness explain 20.7 
and 19.3 % respectively. A signiflcant positive partial corre­
lation between snmmer air temperatnre and armnal GPP is 
noted for 61.7 % of the region. For 2.4 % of the mea, specifl- 
cally the dryer grasslands in the sonth-west, temperatnre and 
GPP me itrversely correlated. Precipitation and clondiness 
dnring snmmer also impart a sigrrificant itrflnence, showing 
areas with both positive and negative sigrrificant partial corre­
lation with mmnal GPP. Fire has a very small effect, with orrty 
np to 3.4 % of the region showing sigrrificant correlation, and 
conseqnently the impact of tire on GPP was ignored for the 
subsequent analysis. The spatial analysis reveals that the sta­
tistical relationships me not spatially homogeneous. While 
warming likely contribnted to increasing prodnctivity across 
mnch of the north of the region, the relationship reverses in
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the southern grasslands, which are relatively dry. That region 
exhibits increasing GPP, bnt with warming accompanying 
increased moistnre deficits potentially restricting continned 
prodnctivity increase. This resnlt demonstrates that vegeta­
tion has been resilient to dronght stress, which may be in­
creasing over time.

We recommended that this stndy be followed np with ex­
periments condncted nsing process-based models in which 
a single forcing variable independent of the others is ma- 
nipnlated. If feasible, mnltiple models shonld be nsed in or­
der to qnantity the nncertainty dne to differences in model 
parameterization. Depending on emissions, popnlation, and 
other forcing scenarios, rates of change in the environmen­
tal drivers snch as air temperatnre and precipitation may be 
different than those fonnd in this stndy. Thns it is critical 
to examine fntnre scenarios of change across the region to 
better nnderstand terrestrial vegetation dynamics nnder the 
respective model simnlations. Environmental drivers infln- 
ence other elements of the carbon cycle beyond the individ­
nal plant. In order to determine how terrestrial carbon stocks 
and llnxes have changed in the recent past, or may change 
in the near fntnre, all aspects o f the carbon cycle shonld be 
investigated in the context o f changes in overarching climate 
inflnences.

Acknowledgements. This research was supported through NASA 
grant NNX11AR16G and the Permafrost Carbon Network 
(http://www.permafrostearbon.org/), funded by the National Sci­
ence Foundation. The MODIS land eover type product data were 
obtained through the online Data Pool at the NASA Land Processes 
Distributed Active Archive Center (LP DAAC), USGS/Earth 
Resources Observation and Science (EROS) Center, Sioux Falls, 
South Dakota (https://lpdaae.usgs.gov/dataaeeess). We thank the 
researchers working at FLUXNET sites for making their CO2  flux 
data available.

Edited by: T. Keenan

References

Ainsworth, E. A. and Long, S. P.: What have we learned from 15 
years o f free-air C 02  enrichment (FACE)? A meta-analytie re­
view of the responses o f photosynthesis, canopy properties and 
plant production to rising CO2 , New Phytok, 165, 351-372, 
doi:10.1111/j.l469-8137.2004.01224.x, 2005.

Aldrich, J.: Correlations Genuine and Spurious in Pearson and Yule, 
Stat. Sei., 10, 364-376, 1995.

Alton, P. B., North, P. R., and Los, S. O.: The impact o f dif­
fuse sunlight on canopy light-use effieieney, gross photosyn- 
thetie product and net ecosystem exchange in three forest 
biomes. Glob. Change Biol., 13, 776-787, doi:10.1111/j.l365- 
2486.2007.01316.x, 2007.

Amiro, B. D., Chen, J. M., and Liu, J.: Net primary produetivity 
following forest fire for Canadian eeoregions. Can. J. Forest Res., 
30, 939-947, doi:10.1139/x00-025, 2000.

Balshi, M. S., McGuire, A. D., Zhuang, Q., Melillo, I ,  Kick- 
lighter, D. W., Kasisehke, E., Wirth, C., Flannigan, M., Harden, 
I ,  Clein, J. S., Burnside, T. I ,  McAllister, J., Kurz, W. A., 
Apps, M., and Shvidenko, A.: The role o f historical fire dis­
turbance in the carbon dynamics o f the pan-boreal region: A 
process-based analysis, J. Geophys. Res.-Biogeo., 112, G02 029, 
doi:10.1029/2006JG000380, 2007.

Barreto-Munoz, A.: Multi-Sensor Vegetation Index and Land Sur­
face Phenology Earth Science Data Records in Support o f Global 
Change Studies: Data Quality Challenges and Data Explorer 
System, available at: http://arizona.openrepository.eom/arizona/ 
handle/10150/301661 (last access: 19 May 2015), 2013.

Berner, L. L , Beck, P. S. A., Bunn, A. G., Lloyd, A. H., 
and Goetz, S. J.: High-latitude tree growth and satellite 
vegetation indices: Correlations and trends in Russia and 
Canada (1982-2008), J. Geophys. Res.-Biogeo., 116, G01015, 
doi: 10.1029/2010JGOO1475, 2011.

Biasing, T.: Recent Greenhouse Gas Concentrations, Tech. rep., 
http://ediae.ornl.gov/pns/eurrent_ghg.html (last access: 30 Jan­
uary 2015), 2009.

Bowes, G.: Photosynthetie responses to changing atmospheric car­
bon dioxide concentration, in: Photosynthesis and the Environ­
ment, Springer, 387M 07, 1996.

Bnermann, W., Bikash, P. R., Jung, M., Burn, D. H., and Reieh- 
stein, M.: Earlier springs decrease peak summer produetivity in 
North American boreal forests. Environ. Res. Lett., 8, 024027, 
doi: 10.1088/1748-9326/8/2/024027, 2013.

Bnermann, W., Parida, B., Jung, M., MacDonald, G. M., 
Tucker, C. J., and Reichstein, M.: Recent shift in Eurasian 
boreal forest greening response may be associated with 
warmer and drier summers, Geophys. Res. Lett., GL059450, 
doi:10.1002/2014GL059450, 2014.

Carlson, T. N. and Ripley, D. A.: On the relation between NDVI, 
fractional vegetation eover, and leaf area index. Remote Sens. 
Environ., 62, 241-252, doi: 10.1016/S0034-4257(97)00104-1, 
1997.

Chen, J. M., Mo, G., Pisek, J., Liu, J., Deng, F., Ishizawa, M., and 
Chan, D.: Effects o f foliage clumping on the estimation o f global 
terrestrial gross primary produetivity. Global Biogeoehem. Cy., 
26, GB1019, doi:10.1029/2010GB003996,2012.

de Jong, R., de Bruin, S., de Wit, A., Sehaepman, M. E., and Dent,
D. L.: Analysis o f monotonie greening and browning trends from 
global NDVI time-series. Remote Sens. Environ., 115, 692-702, 
doi:10.1016/j.rse.2010.10.011,2011.

Didan, K.: Multi-Satellite Earth Science Data Record for Studying 
Global Vegetation Trends and Changes, in: Proceedings o f the 
2010 International Geoseienee and Remote Sens. Symposium, 
Honolulu, m , USA, 25-30,2010.

Dowdy, S. and Wearden, S.: Statistics for research, Wiley series in 
probability and mathematical statistics, 1-629, 1983.

Fensholt, R., Sandholt, L, and Rasmussen, M. S.: Evaluation of 
MODIS LAI, fAPAR and the relation between fAPAR and NDVI 
in a semi-arid environment using in situ measurements. Remote 
Sens. Environ., 91, 490-507,2004.

Fensholt, R., Horion, S., Tagesson, L , Ehammer, A., Grogan, K., 
Tian, F., Huber, S., Verbesselt, J., Prince, S. D., Tucker, C. J., and 
Rasmussen, K.: Assessment o f Vegetation Trends in Drylands 
from Time Series o f Earth Observation Data, in: Remote Sensing 
Time Series, edited by: Kuenzer, C., Deeh, S., and Wagner, W.,

Biogeoseienees, 13,45-62,2016 www.biogeoseienees.net/13/45/2016/

http://www.permafrostearbon.org/
https://lpdaae.usgs.gov/dataaeeess
http://arizona.openrepository.eom/arizona/
http://ediae.ornl.gov/pns/eurrent_ghg.html
http://www.biogeoseienees.net/13/45/2016/


p. Dass et al.: Vegetation greening aeross northem Enrasia 59

no. 22 in Remote Sensing and Digital Image Proeessing, 159- 
182, Springer International Publishing, 2015.

Forkel, M., Carvalhais, N., Verbesselt, J., Maheeha, M. D., Neigh,
C. S. R., and Reiehstein, M.: Trend Change Deteetion in NDVI 
Time Series: Effeets o f Inter-Annual Variability and Methodol­
ogy, Remote Sens., 5,2113-2144, doi: 10.3390/rs5052113,2013.

Friedl, M. A., Melver, D. K., Hodges, J. C. F., Zhang, X. Y , Mu- 
ehoney, D., Strahler, A. H., Woodeoek, C. E., Gopal, S., Sehnei- 
der. A., Cooper, A., Baeeini, A., Gao, F., and Sehaaf, C.: Global 
land eover mapping from MODIS: algorithms and early re­
sults, Remote Sens. Environ., 83, 287-302, doi:10.1016/S0034- 
4257(02)00078-0,2002.

Gates, D. M.: Leaf Temperature and Transpiration, Agron. J., 56, 
273, doi:10.2134/agronjl964.00021962005600030007x, 1964.

Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P.
S., Collatz, G. J., Morton, D. C., and DeFries, R. S.: Assess­
ing variability and long-term trends in burned area by merging 
multiple satellite fire produets, Biogeoseienees, 7, 1171-1186, 
doi:10.5194/bg-7-l 171-2010, 2010.

Goetz, S. J., Bunn, A. G., Fiske, G. J., and Houghton, 
R. A.: Satellite-observed photosynthetie trends aeross bo­
real North Ameriea assoeiated with elimate and fire dis- 
turbanee, P. Natl. Aead. Sei. USA, 102, 13521-13525, 
doi:10.1073/pnas.0506179102,2005.

Graven, H. D., Keeling, R. F., Piper, S. C., Patra, P. K., Stephens,
B. B., Wofsy, S. C., Welp, L. R., Sweeney, C., Tans, P. P., 
Kelley, J. J., Daube, B. C., Kort, E. A., Santoni, G. W., 
and Bent, J. D.: Enhaneed Seasonal Exehange o f C 02  by 
Northern Eeosystems Sinee 1960, Seienee, 341, 1085-1089, 
doi:10.1126/seienee.l239207, 2013.

Groisman, P. Y. and Bartalev, S. A.: Northern Eurasia 
earth seienee partnership initiative (NEESPl), seienee 
plan overview. Global Planet. Change, 56, 215-234,
doi:10.1016/j.gloplaeha.2006.07.027, 2007.

Groisman, P. Y , Koknaeva, V , Belokrylova, T., and Karl, T.: Over- 
eoming biases o f preeipitation measurement: A history of the 
U SSRexperienee,B . Am. Meteorol. Soe., 72, 1725-1733, 1991.

Gu, L., Baldoeehi, D., Verma, S. B., Blaek, T. A., Vesala, T., Falge, 
E. M., and Dowty, P. R.: Advantages o f diffuse radiation for ter­
restrial eeosystem produetivity, J. Geophys. Res.-Atmos., 107, 
ACL 2-1 , doi:10.1029/2001JD001242,2002.

Guay, K. C., Beek, P. S., Berner, L. T., Goetz, S. J., Baeeini, A., and 
Bnermann, W.: Vegetation produetivity patterns at high northern 
latitudes: a multi-sensor satellite data assessment. Glob. Change 
Biol., 20, 3147-3158, doi: 10.1 lll/g eb .1 2 6 4 7 ,2014.

Harris, T, Jones, P., Osborn, T., and Lister, D.: Updated 
high-resolution grids o f monthly elimatie observations -  
the CRU TS3.10 Dataset, Int. J. Climatok, 34, 623-642, 
doi:10.1002/joe.3711,2014.

Heinseh, F. A ., Zhao, M., Running, S. W., Kimball, J. S., Nemani, 
R. R., Davis, K. J., Bolstad, P. V , Cook, B. D., Desai, A. R., and 
Rieeiuto, D. M.: Evaluation o f remote sensing based terrestrial 
produetivity from MODIS using regional tower eddy flux net­
work observations, Geoseienee and Remote Sens., IEEE Trans- 
aetions on, 44, 1908-1925,2006.

Hiekler, T., Smith, B., Prentiee, I. C., Mjofors, K., Miller, P., 
Arneth, A., and Sykes, M. T.: CO2  fertilization in temper­
ate FACE experiments not representative o f boreal and tropieal

forests. Glob. Change Biol., 14, 1531-1542, doi:10.1111/j.l365- 
2486.2008.01598.x, 2008.

Jaekson, R. D., Idso, S. B., Reginato, R. J., and Pinter, P. J.: Canopy 
temperature as a erop water stress indieator. Water Resour. Res., 
17, 1133-1138, doi:10.1029/WR017i004p01133, 1981.

Jones, P. and Harris, I.: University ofE ast Anglia Climatie Researeh 
Unit, CRU TS3. 21: Climatie Researeh Unit (CRU) Time-Series 
(TS) Version 3.21 o f High Resolution Gridded Data of Month- 
by-month Variation in Climate (Jan. 1901-Dee. 2012), NCAS 
British Atmospherie Data Centre, doi: 10.5285/D0E1585D-3417- 
485F-87AE-4FCECF10A992, 2013.

Jung, M., Reiehstein, M., and Bondeau, A.: Towards global em- 
pirieal upsealing o f FLUXNET eddy eovarianee observations: 
validation o f a model tree ensemble approaeh using a biosphere 
model, Biogeoseienees, 6, 2001-2013, doi:10.5194/bg-6-2001- 
2009,2009.

Jung, M., Reiehstein, M., Margolis, H. A ., Ceseatti, A., Riehardson,
A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, 
J., Gianelle, D., Gobron, N., Kiely, G., Kutseh, W., Lasslop, G., 
Law, B. E., Lindroth, A ., Merbold, L., Montagnani, L., Moors,
E. J., Papale, D., Sottoeornola, M., Vaeeari, F., and Williams, C.: 
Global patterns o f land-atmosphere fluxes o f earbon dioxide, la­
tent heat, and sensible heat derived from eddy eovarianee, satel­
lite, and meteorologieal observations, J. Geophys. Res.-Biogeo., 
116, G00J07,doi:10.1029/2010JG001566,2011.

Kim, Y , Kimball, J., Zhang, K., Didan, K., Velieogna, I., and Me- 
Donald, K.: Attribution o f divergent northern vegetation growth 
responses to lengthening non-frozen seasons using satellite 
optieal-NlR and mierowave remote sensing. Int. J. Remote Sens., 
35, 3700-3721, doi:10.1080/01431161.2014.915595,2014.

Lareher, W.: elfeet o f environmental and physiologieal variables 
on the earbon dioxide gas exehange o f trees, Photosynthetiea, 
3, 167-198, 1969.

Lareher, W.: Physiologieal plant eeology: eeophysiology and stress 
physiology offunetional groups. Springer, 1-517, 2003.

Leuning, R., Cleugh, H. A., Zegelin, S. J., and Hughes, D.: Carbon 
and water fluxes over a temperate Euealyptus forest and a tropi­
eal wet/dry savanna in Australia: measurements and eomparison 
with MODIS remote sensing estimates, Agr. Forest Meteorol., 
129, 151-173,2005.

Lueht, W., Prentiee, I. C., Myneni, R. B., Siteh, S., Friedling- 
stein. P., Cramer, W., Bousquet, P., Bnermann, W., and Smith,
B.: Climatie Control o f the High-Latitude Vegetation Green­
ing Trend and Pinatubo Effeet, Seienee, 296, 1687-1689, 
doi: 10.1126/seienee. 1071828,2002.

Mitehell, T. D. and Jones, P. D.: An improved method o f eon- 
strueting a database of monthly elimate observations and as­
soeiated high-resolution grids. Int. J. Climatok, 25, 693-712, 
doi:10.1002/joe.ll81,2005.

Myneni, R. and Williams, D.: On the relationship between FAPAR 
and NDVI, Remote Sens. Environ., 49 ,200-211, 1994.

Myneni, R. B., Keeling, C. D., Tueker, C. J., Asrar, G., and Nemani, 
R. R.: Inereased plant growth in the northern high latitudes from 
1981 to 1991, Nature, 386, 698-702, doi: 10.1038/386698a0, 
1997.

Nash, J. E. and Suteliffe, J. V: River flow foreeasting through eon- 
eeptual models part I -  A diseussion o f prineiples, J. Hydrok, 10, 
282-290, doi:10.1016/0022-1694(70)90255-6, 1970.

www.biogeosciences.net/13/45/2016/ Biogeoseienees, 13,45-62,2016

http://www.biogeosciences.net/13/45/2016/


60 P. Dass et al.: Vegetation greening aeross northem Enrasia

Natali, S. M., Schuur, E. A. G., Webb, E. E., Pries, C. E. H., 
and Crummer, K. G.: Permafrost degradation stimulates earbon 
loss from experimentally warmed tundra, Eeology, 95, 602-608, 
doi:10.1890/13-0602.1,2013.

Nemani, R. R., Keeling, C. D., Elashimoto, El., Jolly, W. M., 
Piper, S. C., Tueker, C. J., Myneni, R. B., and Running, 
S. W.: Climate-Driven Inereases in Global Terrestrial Net Pri­
mary Produetion from 1982 to 1999, Seienee, 300, 1560-1563, 
doi: 10.1126/seienee. 1082750, 2003.

Nieholls, N., Gruza, G., Jouzel, J., Karl, T., Ogallo, L., and Parker, 
D.: Observed elimate variability and ehange, Cambridge Univer­
sity Press, 133-192, 1996.

Overpeek, J., Elughen, K., Elardy, D., Bradley, R., Case, R., Dou­
glas, M., Finney, B., Gajewski, K., Jaeoby, G., Jennings, A., 
Lamoureux, S., Lasea, A., MaeDonald, G., Moore, J., Retelle, 
M., Smith, S., Wolfe, A., and Zielinski, G.: Aretie environmental 
ehange of the last four eenturies, Seienee, 278,1251-1256,1997.

Parida, B. R. and Bnermann, W.: Inereasing summer dry­
ing in North Ameriean eeosystems in response to longer 
nonfrozen periods, Geophys. Res. Lett., 41, GL060495, 
doi:10.1002/2014GL060495,2014.

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tueker,
C. J., and Stenseth, N. C.: Using the satellite-derived NDVI to as­
sess eeologieal responses to environmental ehange. Trends Eeol. 
Evok, 20, 503-510, doi: 10.1016/j.tree.2005.05.011, 2005.

Piao, S., Wang, X., Ciais, P., Zhu, B., Wang, T., and Liu, J.: Changes 
in satellite-derived vegetation growth trend in temperate and bo­
real Eurasia from 1982 to 2006, Glob. Change Biol., 17, 3228- 
3239, doi:10.1111/j.l365-2486.20n.02419.x, 201E

Pinzon, J. E. and Tueker, C. J.: GIMMS 3g NDVI set and global 
NDVI trends, in: Seeond Yamal Land-Cover Land-Use Change 
Workshop Aretie Centre (Rovaniemi, Mareh), 8-10,2010.

Pinzon, J. E. and Tueker, C. J.: A Non-Stationary 1981-2012 
AVHRR NDVI3g Time Series, Remote Sens., 6, 6929-6960, 
doi:10.3390/rs6086929, 2014.

Raynolds, M. K., Walker, D. A., Epstein, H. E., Pinzon, J. E., and 
Tueker, C. J.: A new estimate o f tundra-biome phytomass from 
trans-Aretie field data and AVHRR NDVI, Remote Sens. Letters, 
3, 403M 11, doi: 10.1080/01431161.2011.609188, 2012.

Reieh, P. B., Peterson, D. W., Wedin, D. A., and Wrage, K.: Fire 
and vegetation effeets on produetivity and nitrogen eyeling 
aeross a forest-grassland eontinuum, Eeology, 82, 1703-1719, 
doi:10.1890/0012-9658(2001)082[1703:FAVEOP]2.0.CO;2, 
2001 .

Reiehstein, M., Falge, E., Baldoeehi, D., Papale, D., Aubinet, 
M., Berbigier, P., Bernhofer, C., Buehmann, N., Gilmanov, T., 
Granier, A., Grtinwald, T., Havrankova, K., llvesniemi, H., 
Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Mat- 
teueei, G., Meyers, T., Miglietta, F., Oureival, J.-M., Pumpanen, 
J., Rambal, S.,Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., 
Vaeeari, F., Vesala, T., Yakir, D., and Valentini,R.: On the separa­
tion of net eeosystem exehange into assimilation and eeosystem 
respiration: review and improved algorithm. Glob. Change Biol., 
11, 1424-1439, doi:10.1111/j.l365-2486.2005.001002.x, 2005.

Riehards, F. and Arkin, P.: On the Relationship between Satellite- 
Observed Cloud Cover and Preeipitation, Mon. Weather 
Rev., 109, 1081-1093, doi:10.1175/1520-0493(1981)109<
1081:OTRBSO>2.0.CO;2, 1981.

Roderiek, M. L., Farquhar, G. D., Berry, S. L., and Noble, 1. R.: 
On the direet effeet o f elouds and atmospherie partieles on the 
produetivity and strueture o f vegetation, Oeeologia, 129, 21-30, 
doi:10.1007/s004420100760„ 2001.

Ruimy, A., Saugier, B., and Dedieu, G.: Methodology for the es­
timation o f terrestrial net primary produetion from remotely 
sensed data, J. Geophys. Res., 99, 5263-5263, 1994.

Running, S. W., Nemani, R. R., Heinseh, F. A., Zhao, M., 
Reeves, M., and Hashimoto, H.: A Continuous Satellite- 
Derived Measure o f Global Terrestrial Primary Pro­
duetion, BioSeienee, 54, 547-560, doi:10.1641/0006-
3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004.

Rotter, R. and Geijn, S. C. v. d.: Climate Change Effeets on Plant 
Growth, Crop Yield and Livestoek, Climatie Change, 43, 651- 
681, doi: 10.1023/A: 1005541132734, 1999.

Sehaefer, K., Sehwalm, C. R., Williams, C., Arain, M. A., Barr, A., 
Chen, J. M., Davis, K. J., Dimitrov, D., Hilton, T. W., Hollinger, 
D. Y , Humphreys, E., Poulter, B., Raezka, B. M., Riehardson,
A. D., Sahoo, A ., Thornton, P., Vargas, R., Verbeeek, H., A n­
derson, R., Baker, T, Blaek, T. A., Bolstad, P., Chen, J., Curtis, 
P. S., Desai, A. R., Dietze, M., Dragoni, D., Gough, C., Grant, 
R. F., Gu, L., Jain, A., Kueharik, C., Law, B., Liu, S., Lokipi- 
tiya, E., Margolis, H. A., Matamala, R., MeCaughey, J. H., Mon- 
son, R., Munger, J. W., Oeehel, W., Peng, C., Priee, D. T., Rie­
eiuto, D., Riley, W. J., Roulet, N., Tian, H., Tonitto, C., Torn, 
M., Weng, E., and Zhou, X.: A model-data eomparison of gross 
primary produetivity: Results from the North Ameriean Carbon 
Program site synthesis, J. Geophys. Res.-Biogeo., 117, G03010, 
doi:10.1029/2012JG001960,2012.

Sehubert, P., Lund, M., Strom, L., and Eklundh, L.: Impaet 
o f nutrients on peatland GPP estimations using MODIS 
time series data. Remote Sens. Environ., 114, 2137-2145, 
doi:10.1016/j.rse.2010.04.018, 2010.

Sellers, P. J.: Canopy refleetanee, photosynthesis and transpiration. 
Int. J. Remote Sens., 6, 1335-1372, 1985.

Sharp, R. E., Poroyko, V , Hejlek, L. G., Spollen, W. G., Springer,
G. K., Bohnert, H. J., and Nguyen, H. T.: Root growth mainte- 
nanee during water defieits: physiology to funetional genomies, 
J. Exp. Bot., 55, 2343-2351, 2004.

Shepard, D.: A two-dimensional interpolation funetion for 
irregularly-spaeed data, in: Proeeedings -  1968 ACM National 
Conferenee, 517-524, 1968.

Shim, C., Hong, J., Hong, J., Kim, Y , Kang, M., Malla Thakuri,
B., Kim, Y , and Chun, J.: Evaluation o f MODIS GPP over a 
eomplex eeosystem in East Asia: A ease study at Gwangne- 
ung flux tower in Korea, Adv. Spaee Res., 54, 2296-2308, 
doi:10.1016/j.asr.2014.08.031,2014.

Siteh, S., MeGuire, A. D., Kimball, J., Gedney, N ., Gamon, J., En- 
gstrom,R., Wolf, A., Zhuang, Q., Clein, J., and MeDonald, K. C.: 
Assessing the earbon balanee of eireumpolar Aretie tundra using 
remote sensing and proeess modeling, Eeologieal applieations: a 
publieation o f the Eeologieal Soeiety of Ameriea, 17, 213-234, 
2007.

Sorooshian, S., Duan, Q., and Gupta, V. K.: Calibration o f rainfall- 
runoff models: Applieation o f global optimization to the Saera- 
mento Soil Moisture Aeeounting Model, Water Resour. Res., 29, 
1185-1194, doi: 10.1029/92W R02617, 1993.

Biogeoseienees, 13,45-62,2016 www.biogeoseienees.net/13/45/2016/

http://www.biogeoseienees.net/13/45/2016/


p. Dass et al.: Vegetation greening aeross northem Enrasia 61

Stevens, C. J., Dise, N. B., Mountford, J. O., and Gowing, D. J.: Im­
paet o f nitrogen deposition on the speeies riehness o f grasslands, 
Seienee, 303, 1876-1879, 2004.

Sun, B. and Groisman, P. Y.: Cloudiness variations over the former 
Soviet Union, Int. J. Climatol., 20, 1097-1111, 2000.

Sun, B., Groisman, P. Y , and Mokhov, I. I.: Reeent ehanges in 
eloud-type frequeney and inferred inereases in eonveetion over 
the United States and the former USSR, J. Climate, 14, 1864- 
1880,2001.

Thompson, C. C., MeGuire, A. D., Clein, J. S., lii, F. S. C., 
and Beringer, J.: Net Carbon Exehange Aeross the Aretie 
Tundra-Boreal Forest Transition in Alaska 1981-2000, Mitiga­
tion and Adaptation Strategies for Global Change, 11, 805-827, 
doi: 10.1007/s 11027-005-9016-3, 2006.

Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling,
D., Klein Tank, A ., Parker, D., Rahimzadeh, F., Renwiek, J. A., 
Rustieueei, M., Soden, B., Zhai, P., Adler, R., Alexander, L., 
Allan, R., Baldwin, M. P., Beniston, M., Bromwieh, D., Camil- 
loni, T, Cassou, C., Cayan, D. R., Chang, E. K. M., Christy, J., 
Dai, A., Deser, C., Dotzek, N., Fasullo, J., Fogt, R., Folland, C., 
Forster, P., Free, M., Frei, C., Gleason, B., Grieser, J., Grois­
man, P., Gulev, S., Hurrell, J., Ishii, M., Josey, S., Kallberg, P., 
Kennedy, J., Kiladis, G., Kripalani, R., Kunkel, K., Lam, C.-Y, 
Lanzante, J., Lawrimore, J., Levinson, D., Liepert, B., Norris, G., 
Oki, T., Robertson, F. R., Rosenlof, K., Semazzi, F. H., Shea, D., 
Shepherd, J. M., Shepherd, T. G., Sherwood, S., Siegmund, P., 
Simmonds, T, Simmons, A., Thorneroft, C., Thorne, P., Uppala,
S., Vose, R., Wang, B., Warren, S., Washington, R., Wheeler, M., 
Wielieki, B., Wong, T., and Wuertz, D.: Observations: Surfaee 
and Atmospherie Climate Change, in: Climate Change 2007: 
The Physieal Seienee Basis. Contribution o f Working Group 1 to 
the Fourth Assessment Report o f the Intergovernmental Panel on 
Climate Change, Cambridge University Press, Cambridge, UK 
and NY, USA, 235-336, 2007.

Urban, M., Forkel, M., Eberle, J., Htittieh, C., Sehmullius, C., and 
Herold, M.: Pan-Aretie Climate and Land Cover Trends Derived 
from Multi-Variate and Multi-Seale Analyses (1981-2012), Re­
mote Sens., 6,2296-2316, 2014.

Walker, X. J., Maek, M. C., and Johnstone, J. F.: Stable ear­
bon isotope analysis reveals widespread drought stress in bo­
real blaek spruee forests. Glob. Change Biol., 3102-3113, 
doi:10.1111/geb.l2893,2015.

Wang, H., Liu, D., Lin, H., Montenegro, A., and Zhu, X.: NDVI and 
vegetation phenology dynamies under the infiuenee of sunshine 
duration on the Tibetan plateau. Int. J. Climatok, 35, 687-698, 
doi:10.1002/joe.4013,2014.

Watson, R., Noble, I., Bohn, B., Ravindranath, N., Verardo, D., 
and Dokken, D.: Land use, land-use ehange and forestry: a spe- 
eial report o f the Intergovernmental Panel on Climate Change, 
Cambridge University Press, available at: http://www.ipee.eh/ 
ipeereports/sres/land use/ (last aeeess: 25 July 2013), 2000.

Wiegand, C. L. and Namken, L. N.: Influenees o f Plant 
Moisture Stress, Solar Radiation, and Air Temperature 
on Cotton Leaf Temperaturel, Agron. J., 58, 582-586, 
doi:10.2134/agronjl966.00021962005800060009x, 1966.

Williams, M., Rastetter, L. B., Van der Pol, L., and Shaver, G. R.: 
Aretie eanopy photosynthetie effieieney enhaneed under diffuse 
light, linked to a reduetion in the fraetion o f the eanopy in deep

shade. New Phytok, 202, 1267-1276, doi:10.1111/nph.l2750, 
2014.

Willmott, C. J., Rowe, C. M., and Philpot, W. D.: Small-Seale Cli­
mate Maps: A Sensitivity Analysis o f Some Common Assump­
tions Assoeiated with Grid-Point Interpolation and Contouring, 
The Ameriean Cartographer, 12, 5-16, 1985.

Wright, S.: Correlation and eausation. Journal o f agrieultural re­
seareh, 20, 557-585, 1921.

Yapo, P. O., Gupta, H. V , and Sorooshian, S.: Automatie ealibration 
o f eoneeptual rainfall-runolf models: sensitivity to ealibration 
data, J. Hydrok, 181, 23M 8, doi:10.1016/0022-1694(95)02918-
4, 1996.

Yi, C., Rieeiuto, D., Li, R., Wolbeek, J., Xu, X., Nilsson, M., Aires, 
L., Albertson, J. D., Ammann, C., Arain, M. A., Araujo, A. 
C . d ., Aubinet, M ., Aurela, M ., Bareza, Z ., Barr, A ., Berbigier, P., 
Beringer, J., Bernhofer, C., Blaek, A. T., Bolstad, P. V , Bosveld,
F. C., Broadmeadow, M. S. J., Buehmann, N., Burns, S. P., Cel- 
lier. P., Chen, J., Chen, J., Ciais, P., Clement, R., Cook, B. D., 
Curtis, P. S., Dail, D. B., Dellwik, L., Delpierre, N., Desai, A. R., 
Dore, S., Dragoni, D., Drake, B. G., Dufrene, L., Dunn, A., 
Libers, J., Lugster, W., Falk, M., Feigenwinter, C., Flanagan, 
L. B., Foken, T., Frank, J., Fuhrer, J., Gianelle, D., Goldstein,
A., Goulden, M., Granier, A., Grunwald, T., Gu, L., Guo, H., 
Hammerle, A ., Han, S., Hanan, N. P., Haszpra, L., Heineseh,
B., Helfter, C., Hendriks, D., Hutley, L. B., Ibrom, A., Jaeobs,
C., Johansson, T., Jongen, M., Katul, G., Kiely, G., Klumpp, K., 
Knohl, A., Kolb, T., Kutseh, W. L., Lafleur, P., Laurila, T., Leun­
ing, R., Lindroth, A., Liu, H., Loubet, B., Manea, G., Marek, M., 
Margolis, H. A., Martin, T. A., Massman, W. J., Matamala, R., 
Matteueei, G., MeCaughey, H , Merbold, L., Meyers, T., Migli- 
avaeea, M., Miglietta, F., Misson, L., Molder, M., Monerielf, 
J., Monson, R. K., Montagnani, L., Montes-Helu, M., Moors, 
L., Moureaux, C., Mukelabai, M. M., Munger, J. W., Mykle- 
bust, M .,Nagy, Z.,Noormets, A., Oeehel, W., Oren, R., Pallardy,
5. G., U, K. T. P., Pereira, J. S., Pilegaard, K., Pinter, K., Pio,
C., Pita, G., Powell, T. L., Rambal, S., Randerson, J. T., Randow,
C. V . ,  Rebmann, C., Rinne, J., Rossi, F., Roulet, N., Ryel, R. J., 
Sagerfors, J., Saigusa, N., Sanz, M. J., Mugnozza, G.-S., Sehmid,
H. P., Seufert, G., Siqueira, M., Soussana, J.-F., Starr, G., Sut­
ton, M. A., Tenhunen, J., Tuba, Z., Tuovinen, J.-P , Valentini, R., 
Vogel, C. S., Wang, I ,  Wang, S., Wang, W., Welp, L. R., Wen, 
X., Wharton, S., Wilkinson, M., Williams, C. A., Wohlfahrt,
G., Yamamoto, S., Yu, G., Zampedri, R., Zhao, B., and Zhao, 
X.: Climate eontrol o f terrestrial earbon exehange aeross biomes 
and eontinents. Environ. Res. Lett., 5, 1-10, doi:10.1088/1748- 
9326/5/3/034007,2010.

Yi, Y , Kimball, J. S., Jones, L. A., Reiehle, R. H., Nemani, R., 
and Margolis, H. A.: Reeent elimate and fire disturbanee impaets 
on boreal and aretie eeosystem produetivity estimated using a 
satellite-based terrestrial earbon flux model, J. Geophys. Res.- 
Biogeo., 118, 606-622, doi:10.1002/jgrg.20053, 2013.

Yi, Y , Kimball, J. S., and Reiehle, R. H.: Spring hydrology deter­
mines summer net earbon uptake in northern eeosystems. En­
viron. Res. Lett., 9, 1-11, doi: 10.1088/1748-9326/9/6/064003, 
2014.

Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldoeehi,
D., Bernhofer, C., Gholz, H., Goldstein, A. H., Goulden, M. L., 
Hollinger, D. Y , Hu, Y , Law, B. L., Stoy, P. C., Vesala, T., 
and Wofsy, S. C.: Deriving a light use effieieney model from

www.biogeosciences.net/13/45/2016/ Biogeoseienees, 13,45-62,2016

http://www.ipee.eh/
http://www.biogeosciences.net/13/45/2016/


62 P. Dass et al.: Vegetation greening aeross northem Enrasia

eddy covariance flux data for predicting daily gross primary pro­
duetion aeross biomes, Agr. Forest Meteorol., 143, 189-207, 
doi:10.1016/j.agrformet.2006.12.001, 2007.

Zhang, G., Zhang, Y., Dong, J., and Xiao, X.: Green-up dates 
in the Tibetan Plateau have continuously advanced from 
1982 to 2011, P. Natl. Aead. Sei. USA, 110, 4309M314, 
doi:10.1073/pnas.1210423110,2013.

Zhang, K., Kimball, J. S., Hogg, E. H., Zhao, M., Oeehel, W. C., 
Cassano, J. J., and Running, S. W.: Satellite-based model detee­
tion o f reeent climate-driven ehanges in northern high-latitude 
vegetation produetivity, J. Geophys. Res.-Biogeo., 113, G03033, 
doi: 10.1029/2007JG000621, 2008.

Zhou, L., Tueker, C. J., Kaufmann, R. K., Slaybaek, D., Sha- 
banov, N. V., and Myneni, R. B.: Variations in northern vegeta­
tion activity inferred from satellite data o f vegetation index dur­
ing 1981 to 1999, J. Geophys. Res.-Atmos., 106,20069-20083, 
doi: 10.1029/2000JD000115, 2001.

Zhu, Z., Bi, J., Pan, Y , Ganguly, S., Anav, A., Xu, L., Samanta, A., 
Piao, S., Nemani, R. R., and Myneni, R. B.: Global Data Sets o f 
Vegetation L eaf Area Index (LAl)3g and Fraetion o f Photosyn- 
thetieally Active Radiation (FPAR)3g Derived from Global In­
ventory Modeling and Mapping Studies (GIMMS) Normalized 
Difference Vegetation Index (NDVI3g) for the Period 1981 to 
2011, Remote Sens., 5, 927-948, doi: 10.3390/rs5020927, 2013.

Biogeoseienees, 13,45-62,2016 www.biogeoseienees.net/13/45/2016/

http://www.biogeoseienees.net/13/45/2016/

	Environmental controls on the increasing GPP of terrestrial vegetation across northern Eurasia
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1485885046.pdf.8S8Dy

