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Heterogeneous chemistry involving methanol in tropospheric clouds

A. Tabazadeh,1 R. J. Yokelson,2 H. B. Singh,1 P. V. Hobbs,3 J. H. Crawford,4 and

L. T. Iraci1

Received 4 October 2003; revised 2 December 2003; accepted 20 February 2004; published 23 March 2004.

[1] In this report we analyze airborne measurements to
suggest that methanol in biomass burning smoke is lost
heterogeneously in clouds. When a smoke plume
intersected a cumulus cloud during the SAFARI 2000
field project, the observed methanol gas phase concentration
rapidly declined. Current understanding of gas and aqueous
phase chemistry cannot explain the loss of methanol
documented by these measurements. Two plausible
heterogeneous reactions are proposed to explain the
observed simultaneous loss and production of methanol
and formaldehyde, respectively. If the rapid heterogeneous
processing of methanol, seen in a cloud impacted by smoke,
occurs in more pristine clouds, it could affect the oxidizing
capacity of the troposphere on a global scale. INDEX

TERMS: 0322 Atmospheric Composition and Structure:

Constituent sources and sinks; 0345 Atmospheric Composition

and Structure: Pollution—urban and regional (0305); 0368

Atmospheric Composition and Structure: Troposphere—

constituent transport and chemistry; 0365 Atmospheric

Composition and Structure: Troposphere—composition and

chemistry. Citation: Tabazadeh, A., R. J. Yokelson, H. B.

Singh, P. V. Hobbs, J. H. Crawford, and L. T. Iraci (2004),

Heterogeneous chemistry involving methanol in tropospheric

clouds, Geophys. Res. Lett., 31, L06114, doi:10.1029/

2003GL018775.

1. Introduction

[2] After methane, methanol (CH3OH) is the second most
abundant organic trace gas in the Earth’s atmosphere [Singh
et al., 2000, 2001]. In the troposphere CH3OH reacts
directly with OH in the gas and aqueous phases, contribut-
ing to sources of reactive species such as formaldehyde
(HCHO), ozone and hydrogen radicals. Currently, the
sources and sinks of methanol are not well understood
[Singh et al., 2000; Heikes et al., 2002; Galbally and
Kirstine, 2002]. The mass of methanol lost in the atmo-
sphere due to gas and aqueous phase OH oxidation is
estimated to be �100 and �10 Tg/year [Heikes et al.,
2002], respectively, which is smaller than the total estimated
source. According to these estimates, the lifetime of meth-
anol in the atmosphere is primarily controlled by gas phase

oxidation. Below the possibility of a heterogeneous sink for
methanol is explored.

2. Measurement Summary

[3] The SAFARI 2000 (S2K) field project employed a
combination of ground, airborne, and satellite instruments
to study the atmospheric effects of biomass burning [Hobbs
et al., 2003]. The mixing of clouds and smoke was common
during the S2K experiment (see auxiliary photos1). The
bottom figure in the auxiliary file shows a smoke plume
mixing with a capping cumulus cloud on August 18, 2000.
The latter situation provides a unique opportunity to explore
how various trace gases, particularly oxygenated organics,
interact with clouds.
[4] A number of trace gases were measured with an

airborne FTIR (AFTIR) instrument [Yokelson et al., 1999,
2003a] during the S2K field experiment. Laboratory studies
indicate that the inlet has a good passing efficiency for a
large number of molecules, including CH3OH, HCHO, and
C2H4 [Yokelson et al., 2003b]. Most reactive and stable
trace gases present above 5–20 ppbv (e.g., the CH3OH
detection limit is �5 ppb) were measured by the AFTIR.
[5] On August 18, 2000 the University of Washington’s

Convair-580 aircraft penetrated a fresh biomass-burning
plume at various altitudes below and within a capping
cumulus cloud. The AFTIR measured rapid loss and pro-
duction of CH3OH and HCHO, respectively, which corre-
lated with increased exposure to the cloud [Yokelson et al.,
2003a]. Isolated, and cloud-free, plumes from three other
fires were sampled at different stages in their evolutions,
ranging in age from 5–45 minutes, but no significant
changes of CH3OH and HCHO were detected in these cases
[Yokelson et al., 2003a; Hobbs et al., 2003]. This is
consistent with the stability of these two compounds for
the first 2–3 hours of ‘‘cloud-free’’ smoke aging for a
biomass fire observed in Alaska [Goode et al., 2000].
[6] The smoke plume was penetrated and sampled at

three altitudes: once below the cloud, and twice within the
cumulus cloud at different altitudes above the cloud base
(Table 1). We assume that the degree of cloud processing of
the smoke increases with altitude above the cloud base. From
the rate of the observed ozone recovery in the smoke
[Yokelson et al., 2003a], the horizontal dimensions of
the cloud (�3 km), the measured horizontal windspeed
(5 ± 1 m s�1), and typical updraft velocities (�1–2 m
s�1), we can estimate how long the smoke sampled was
cloud-processed. The results are summarized in Table 1. We
use CO as a conserved tracer to account for the dilution of
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the smoke [Hobbs et al., 2003]. The CH3OH gas-phase
concentration measured by the AFTIR in the lowest in-cloud
sample (sample 2) was not close to 36 ppb, which would
occur from dilution alone, but was 15 ppb after only
�3 minutes of exposure to cloudy conditions (Figure 1).
After �10 minutes of exposure (Table 1, sample 3), the
methanol concentration was below the AFTIR detection
[Yokelson et al., 1999, 2003a].

3. Gas- and Aqueous-Phase Oxidation

[7] Biomass burning emits large quantities of chlorine
species into the atmosphere [Li et al., 2003]. We performed
some simple calculations to explore the possibility of
oxidation chemistry involving chlorine radicals. A drop in
CH3OH concentration by more than one-half in �3 mins
(Figure 1) requires a steady state concentration of Cl in the
gas phase of �7 � 107 cm�3 (rate constant for Cl reaction
with CH3OH is 5.5 � 10�11 cm3 s�1) [Atkinson et al.,
1997]. At such high Cl levels, C2H4 oxidation would have
been complete, since it reacts with Cl about 5 times faster
than methanol (rate constant for C2H4 reaction with Cl is
3 � 10�10 cm3 s�1) [Atkinson et al., 1997]. Clearly, this did
not happen since no significant loss in C2H4/CO ratio was
measured with the AFTIR during even the first 10 mins of
exposure to the cloud [see Yokelson et al., 2003a, Table 1].
In addition, in cloud-free smoke, produced by another fire in
the same region, the rate of oxidation in the gas phase for a
large number of species was consistent with OH chemistry
[Hobbs et al., 2003].
[8] Having ruled out chlorine chemistry, the rapid de-

crease in the CH3OH concentration cannot be explained by
‘‘standard’’ gas and aqueous phase chemistry (see Appendix
A in the auxiliary file, reactions 1–4). In 3 mins (Figure 1),
less than 0.1 ppb of CH3OH can be lost through gas-phase
reaction with OH. The maximum aqueous phase loss, where
we assumed water droplets to be in thermodynamic equi-

librium with the gas phase, can account for only �7 ppb
loss of CH3OH in 3 mins. In fact, more than 3 times as
much CH3OH was lost during this time period (Table 1).
Overall, measurable loss through bulk aqueous phase chem-
istry is highly unlikely due to mass transport limitations,
since significant gas transfer into the bulk of water droplets
cannot occur in 3 to 10 mins of exposure [Jacob, 1986] (see
auxiliary file (Appendix A), for more details). Below we
propose a few plausible heterogeneous chemical processes
involving OH and NO2 that may help to explain the rapid
loss of gaseous CH3OH in the cloud.

4. Possible Heterogeneous Reactions

[9] Here we use the measured rate of change in the
CH3OH gas phase concentration, as well as typical micro-
physical properties of cloud drops, to determine a pseudo
first-order rate constant for methanol reaction on cloud
droplet surfaces. In deriving the pseudo first-order rate
constants below, we assumed only the gas phase supplied
the oxidant to the surface of cloud drops. However, in
reality, the steady state oxidant concentration at the surface
is also affected by supply from the bulk phase as well as
possible in situ conversion mechanisms at the surface (e.g.,
the reaction of O(1D) with surface water to produce in situ
OH). Some recent molecular dynamics simulations suggest
that the OH concentration is enriched at the interface of
aqueous salt solutions [Roeselova et al., 2003]. Whether this
conclusion applies to water droplets in clouds requires

Table 1. Observations of Chemical Changes Due to Cloud

Processing of Smokea

Sample H(m)

Excess Mixing Ratio (ppb)

CH3OH HCHO NO2 NO CO

1 1945 68 (0.0135) 102 (0.0202) 191 (0.0379) 185 (0.0367) 5043
2a 3866 36 (0.0135) 54 (0.0202) 101 (0.0370) 98 (0.0367) 2663
2b 3866 15 (0.0056) 59 (0.0222) 86 (0.0323) 122 (0.0458) 2663
2c 3866 �21 +5 �15 +24 2663
3a 4166 30 (0.0135) 45 (0.0202) 84 (0.0379) 81 (0.0367) 2215
3b 4166 < 5 76 (0.0343) 58 (0.0262) 121 (0.0546) 2215
3c 4166 �25 to �30 +31 �26 +40 2215
aExcess mixing ratio (EMR) is defined as ppbv in the smoke minus ppbv

in the background. Numbers in parentheses are dimensionless quantities,
which are obtained by dividing the species EMR by the CO EMR. Sample 1
gives the EMR measured below the cloud base in a diluting column. Trace
gas-to-CO ratios in sample 1 (cloud free) provide the benchmark for
detecting chemical changes in samples 2 and 3, which were taken after the
smoke intersected a cumulus cloud. 2a and 3a give the calculated EMR at
different heights, due to dilution only, which were obtained by multiplying
trace gas to CO ratios in sample 1 by the EMR of CO in samples 2 and 3,
respectively. 2b and 3b give the measured EMR after �3 and �10 mins of
smoke exposure to the cloud, respectively. 2c and 3c give the inferred
chemical changes (sample (b)-sample (a)) due to cloud processing of the
smoke. AFTIR precision and calibration accuracy are better than 1% and
5%, respectively (1s). The detection limits, which dominate the uncertainty
(2s) in this data are: CH3OH and CO (�5 ppbv); NO, NO2, and HCHO
(15–20 ppbv).

Figure 1. The measured chemical decrease in the CH3OH
gas-phase concentration as a function of exposure time to
the cloud. The AFTIR data point at time zero gives the
CH3OH concentration just below the cloud base. The error
bars indicate the range of measurement uncertainties. The
upper line shows the maximum calculated decrease in the
CH3OH gas-phase concentration based on known aqueous
phase chemistry since the gas phase loss due to the reaction
with OH is negligible. The lower line shows a fit to the
experimental data. The experimental decay curve was used
to derive a range of possible heterogeneous rate constants,
which are given in the auxiliary file (Appendix A). See
caption to Table 1 and the auxiliary file (Appendix A) for
more details.
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further investigation. However, it is beyond the scope of this
paper to distinguish what processes may have contributed to
the oxidant concentration at or near the surface.
[10] The most likely heterogeneous process to consider

here is the reaction of adsorbed CH3OH with OH:

CH3OHðsÞ þ OHðgÞ ! CH2OHðsÞ þ H2OðsÞ

CH2OHðgÞ þ O2ðgÞ ! HCHOðgÞ þ HO2ðgÞ

This heterogeneous process may also help to explain why a
rapid production of HCHO was simultaneously observed in
the cloud (Table 1). Laboratory measurements indicate that
CH3OH on dry ammonium sulfate surfaces (relative
humidity (RH) �35%) can react with OH to yield
formaldehyde [Oh and Andino, 2000, 2001]. According to
these measurements, the rate of gas phase methanol reaction
with OH is enhanced by about 30% in the presence of dry
ammonium sulfate surfaces at �35% RH. However, no
yield for CH3OH reaction with OH on dry ammonium
sulfate was measured at �3% RH [Sorensen et al., 2002].
Since the RH conditions were different in the above
experiments, we suspect that the rate of this reaction may
have a dependence on the RH and/or the physical phase of
the particles. In the Sorensen et al. study, it was assumed
that OH was only supplied to the surface from the gas
phase. While this assumption may hold at 3% RH, at higher
RHs other mechanisms (noted above) may also supply OH
to the surface of particles, thereby enhancing the overall rate
of this surface oxidation process. More experimental work
is needed to investigate whether the above reaction can
occur at a faster rate on cloud drop surfaces.
[11] To obtain a pseudo first-order rate constant for the

heterogeneous CH3OH reaction with OH, the measurements
shown in Figure 1 were used. Assuming a constant concen-
tration for gas phase OH in the smoke ([OH] = 2� 107 cm�3)
[Hobbs et al., 2003], the change in the CH3OH gas-phase
concentration can be calculated from,

ln
CH3OH½ 	f
CH3OH½ 	i

¼ � kg þ kaq*þ kOHhet

� �
OH½ 	gDt

where, [CH3OH]i is the expected concentration of CH3OH
in sample 2 (�36 ppbv), and [CH3OH]f is the measured
concentration of CH3OH in sample 2. We set [CH3OH]f =
15 ppbv and Dt = 180 s (see Table 1) to derive a value for
the rate of this heterogeneous process (khet

OH) at �5�C. The
rest of the parameters in the above equation are constant and
are given in the auxiliary file (Appendix A).
[12] The normalized pseudo first-order heterogeneous

rate constant obtained here (�3.7 � 10�8 cm3 s�1 cm,
see Appendix A in the auxiliary file) is about 300 times
larger than the gas-phase rate constant for the conditions
sampled in this cloud (S = 0.0063 cm2 cm�3, where S is the
surface area of cloud droplets per unit volume of air).
Although this relative increase appears to be too large, it
is perhaps more useful to compare the heterogeneous and
aqueous phase loss rates to assess whether the inferred rates
derived here are plausible. To do so we analyze the loss
rates calculated and measured for sample 2 (Table 1). The
maximum aqueous phase methanol loss for sample 2 is
7 ppb (Figure 1). On the other hand, the observed loss for

sample 2 is 21 ppb (Table 1), indicating that the heteroge-
neous loss is �3 times faster (21/7) than the maximum
aqueous phase loss. In a recent study, the reaction of Cl2

.�

radical anion with ethanol was found to be at least two times
faster at the air-water interface than in the bulk [Strekowski et
al., 2003]. Thus the inferred loss rate calculated here for the
methanol reaction with OH on the cloud surface is consistent
with current information (admittedly limited) on reactions of
radicals with small alcohols on aqueous surfaces.
[13] Another possible heterogeneous process is the reac-

tion of adsorbed methanol with gas phase NO2:

CH3OHðsÞ þ 2NO2ðgÞ ! CH3ONOðsÞ þ HNO3ðsÞ

CH3ONOðgÞ þ hn ! CH3OðgÞ þ NOðgÞ

CH3OðgÞ þ O2ðgÞ ! HCHOðgÞ þ HO2ðgÞ

where methyl nitrite (CH3ONO) photolyzes in the gas
phase, as shown above, to yield NO and formaldehyde.
Taylor et al. [1980] showed that the photochemical lifetime
of CH3ONO is nearly independent of altitude and is
�2 mins. Laboratory studies indicate that the reaction of
CH3OH with NO2 is enhanced catalytically on various
surfaces, including stainless steel, Pyrex and smog chamber
walls [Takagi et al., 1986]. We used pseudo first-
order kinetics to derive a normalized rate constant (�4.3 �
10�13 cm3 s�1 cm, see Appendix A in the auxiliary file) for
the CH3OH reaction with NO2. The procedure used is
identical to that described above for the reaction with OH.

Figure 2. The ratio of heterogeneous-to-gas phase loss of
CH3OH as a function of surface area of cloud drops for an
assumed range of oxidant concentrations. The gas-phase
and heterogeneous rate constants used in the calculations
are given in the auxiliary file (Appendix A). The
heterogeneous loss is calculated for a period of 1 h (rate =
1 � khet � S [oxidant] [CH3OH]). The gas phase loss is
calculated for a period of 24 h (rate = 24 � kgas[OH]
[CH3OH]). Gas-phase OH concentration was set to 106 cm�3

for all calculations. See text for more details. The surface area
of the particles in the cloud affected by smoke, which was
sampled on August 18, 2000, is indicated on the plot by the
shaded vertical line.
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[14] Of the two reactions proposed above, the OH reac-
tion is more plausible since methanol loss (�25–30 ppb)
and HCHO production in sample 3 (31 ppb) are nearly
identical (see Table 1). However, the measurements seem to
indicate that NO2 and methanol were consumed as NO and
HCHO were produced in the cloud (Table 1), which
provides some support for the NO2 surface reaction.

5. Atmospheric Implications

[15] In Figure 2 the ratio of heterogeneous-to-gas phase
loss of CH3OH is shown using the rate constants given in
Appendix A for typical ranges of oxidant concentrations.
The heterogeneous loss is calculated assuming that an air
mass spends on average �1 h in cloudy air each day [Jacob,
1999]. The gas phase loss is calculated for 24 h. If the
heterogeneous rate constants derived in this work from field
data are applicable to the global troposphere, then clouds
can provide a major sink for gas-phase CH3OH through
reaction with OH. For the NO2 reaction, the effect could be
significant only for polluted conditions.
[16] In clouds affected by smoke there might be signif-

icant organic coverage on the surface. This might, in turn,
promote the methanol uptake and oxidation on the surface.
In clouds unaffected by smoke, the surface tension of water
droplets is lower than pure water due to organic contami-
nation [Facchini et al., 2000]. Partial or complete organic
coatings may provide a more suitable medium for CH3OH
uptake and for reactions to occur in the global atmosphere
[Djikaev and Tabazadeh, 2003]. However, the rate of
heterogeneous CH3OH oxidation in the global atmosphere
may be lower than that determined here for a ‘‘dirty’’ cloud,
since organic layers on aqueous surfaces are probably
thicker and more prominent in smoky environments.
[17] Clearly, future targeted laboratory and fieldwork are

needed to determine whether the heterogeneous CH3OH
loss, reported here to occur rapidly in a cloud affected by
smoke, also occurs in more pristine clouds. The mixing of
clouds and smoke is quite common throughout the tropics
[e.g., Reid et al., 1998]. If the heterogeneous reactions
proposed here occur in cleaner environments, then oxida-
tion of methanol on cloud drops would be a more important
process, since methanol and clouds are globally distributed
in the Earth’s atmosphere. Thus, heterogeneous oxidation in
clouds has the potential to provide a major global source for
reactive organic species (e.g., HCHO, CH3ONO), as well as
a sink for CH3OH.

[18] Acknowledgments. We thank Prof. Roger Atkinson for helpful
comments and discussions. Data collection was supported by grants NAG5-
9022 and NAG5-7675 from NASA’s Radiation Science Program and grants
ATM-9901G24, ATM-9900494, and ATM-0228003 from NSF’s Division
of Atmospheric Sciences.
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