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W olf and Elk Population Dynamics in Banff National Park (130 pp).

Director: Daniel H. Pletscher 

Abstract:

Wolves (Canis lupus) recolonized the Canadian Rockies in the mid 1980’s 
after a thirty year absence. I studied wolf and elk {Cervus elaphus) population dynamics 
during the winters o f 1986 to 2000 in Banff National Park (BNP), Alberta. Elk are the 
primary prey o f wolves in BNP, differing from other major prey species by living in 
herds. I studied how elk herding affected predation by wolves. Wolves encountered larger 
elk herds more than expected based on availability, and w olf attack success on larger elk 
herds was higher than expected based on encounters. W olf selection for larger elk herds, 
combined with increasing herd size with elk density, may affect the functional response 
o f wolves preying on elk. Individual elk still benefited from living in herds, and predation 
by wolves links individual behavior o f elk to population dynamics.

Quantitative assessment of the effects of wolves on elk populations requires 
estimating w olf kill-rates. I developed a statistical estimator for winter kill-rates for five 
w olf packs from 1986 to 2000. The mean total kill-rate (not equal to consumption rates) 
was 9.5 KG of prey/day/wolf, or 0.33 kills/day/pack (k/d/p). Mean total kill-rates were 
composed of 0.23 elk/d/p, 0.04 mule deer/d/p, 0.03 white-tailed deer/d/p, 0.02 bighorn 
sheep/d/p, and 0.01 moose/d/p. Kill-rate estimates were variable despite intensive 
sampling. Elk kill-rates explained 93% of the variation in total kill-rates, suggesting low 
potential for prey switching within the relatively high elk densities we observed.

Lastly, I studied factors affecting elk population growth rates in the Bow Valley 
o f BNP over a 15-year period using a pseudo-experimental approach in three zones that 
differed in relative w olf use and contained separate sub-populations of elk. High human 
use in the central zone of the Bow Valley reduced relative w olf density. In this zone, elk 
population growth rates and population size appeared regulated by elk density. By 
contrast, with predation by wolves, a combination of snow depth and wolf predation 
limited elk population growth rates. My research characterizes differences in ungulate 
population dynamics with and without predators, and suggests predation by wolves can 
limit elk in multiple prey systems.
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Preface

In 1987, Parks Canada initiated a study of wolves recolonizing the Bow Valley o f 
B anff National Park (BNP). The first w olf pack since the 1950’s denned in the Bow 
Valley o f BNP in 1986, and the Banff Warden Service radio-collared a w olf from this 
pack in the winter o f 1986/87. In 1989, Parks Canada contracted Dr. Paul Paquet to lead a 
regional research program investigating the ecology of recolonizing wolves, and Dr. 
Paquet initiated the Central Rockies W olf Project. University o f British Columbia Master 
o f Science student David J. Huggard completed his graduate research in cooperation with 
this contract. This contract ended in June 1993, and was continued by the Banff Warden 
Service and Dr. Paul Paquet until 1994/95, when University of Guelph Doctoral 
candidate Carolyn Callaghan took over direction o f the research in Banff National Park.
In 1997 I began my contract with Parks Canada to study wolf and elk population 
dynamics in response to recommendations in the government task force, the Banff Bow 
Valley Study, and the new BNP management plan. Other cooperating agencies during 
this period included Alberta Environment Protection, Kananaksis Country, Kootenay and 
Yoho National Parks, Mount Assiniboine Provincial Park, and British Columbia Ministry 
o f Environment, Lands, and Parks. This 15-year cooperative research project provided 
me with a unique opportunity to research w olf and elk population dynamics over a 15- 
year period in Banff National Park.

The following thesis contains three manuscripts (chapters 2, 3, &4) stemming 
from research completed during my graduate degree, and include data collected 
throughout the extended length of this study. Chapter 2 (on elk herding) was a novel area 
o f research conducted during my intensive study period from 1997 to 2000. In chapter 3,
I used w olf predation and monitoring data collected since the first wolf was radio
collared in 1987, including data collected under contract by Dr. Paul Paquet and as part 
o f Carolyn Callaghan’s Ph.D. Therefore they will be co-authors on the final manuscript 
when submitted for publication. Chapter 4 uses these data on wolf predation and a 15- 
year time series o f elk population counts collected by the Banff Warden Service as part of 
annual monitoring. Because o f Dr. Paul Paquet’s involvement with data collection and 
study design over the entire period of the research, he will be co-author on this final 
manuscript as well. Dr. Daniel H. Pletscher will be a co-author on all three chapters due 
to his very important role during all o f my research. My co-authors acknowledge my 
senior role in conducting this research as part of my Master in Science graduate degree, 
and I will be lead author on all manuscripts submitted for publication from this thesis.
Due to the collaborative nature o f this research, I have used ‘w e’ instead of ‘I’ in the 
three chapters. I directed the field work for chapter 2, and 3 years of field work for 
chapters 3 and 4, did all of the data analysis and writing and take full responsibility for 
any errors contained in this thesis.
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By the 1970s, when I was soaring and turning and circling over the dry 
bones o f  elephants on the barren plain at Tsavo, a curious situation had 

arisen, in which the accepted theories were failing to provide a successful 
basis for the management o f  living resources. It seemed to me that it is 

one thing to play games in a laboratory and pretend that nature is like an 
artificial container offruit f ie s , but quite another to fool ourselves 

that such a game should be played out with the remaining treasures o f  
wildlife and wild habitats in the realities o f our complex and discordant

world.
Daniel Botkin, Discordant Harmonies. 1990

Chapter 1. Introduction

As Botkin (1990) suggested in his example of the ecological disaster o f elephant 

management in Tsavo National Park, management o f living resources requires a firm 

ecological and theoretical basis, or it is doomed to repeat the failures o f the past. Through 

dispersal (Boyd and Pletscher 1999) and active réintroduction (Fritts et al. 1997), gray 

wolves {Cants lupus) are poised to reclaim much o f their former range through western 

North America in the lower forty-eight states. Central questions regarding recolonizing 

w olf populations revolve around the ecological impact of wolves on ecosystems and the 

ungulate populations in them. Debate over the impact of predation by wolves on northern 

ungulates have occupied managers and biologists for decades, and empirical and 

theoretical research suggests wolf predation may limit or even regulate ungulate 

populations in single prey systems (e.g., Gasaway et al. 1992, Dale et al. 1994, McLaren 

and Peterson 1994, Messier 1994, Van Ballenberghe and Ballard 1994, Boertje et al. 

1996, Ballard et al. 1997, Jedrzejewska et al. 1997, Orians et al. 1997, Jedrzejewski et al. 

2000).

Despite this knowledge, predicting the ecological impact of wolves in restored 

ecosystems is currently difficult to answer. Many of the areas where wolves are 

recovering are multiple prey systems where the dominant ungulate is elk {Cervus 

elaphus)^ with alternate prey species which could include mule deer {Odocoileus



hemionus), white-tailed deer {Odocoileus virginianus), moose {Aloes aloes), bighorn 

sheep (Ov75 canadensis), mountain goats {Oreamnos amerioanus), pronghorn 

{Antilooapra amerioana), and even bison {Bison bison). Researchers have only recently 

begun to study wolf-prey dynamics in multiple prey systems, and wolf-elk research does 

not benefit from long-term quantitative studies. Managers and researchers in wolf-moose 

systems have benefited from such research, developing an extensive body o f empirically 

based theory to base management and research (Orians et al. 1997). Multiple prey 

systems will be more complex because of the effects of alternate prey. Despite these 

difficulties, managers will need theory to guide management regarding the effects of 

predation by wolves on elk populations and the ecological importance o f wolves in 

conservation strategy.

Wolves recolonized the Canadian Central Rockies Ecosystem (CRE, White et al.

1995) during the 1980’s from continuous populations to the north (Paquet 1993), denning 

for the first time in >30 years in the Bow Valley o f Banff National Park (BNP) in 1986. I 

focused my research on w olf and elk population dynamics in the Bow Valley using a 

long-term study spanning 15-years which included the increase in elk populations in the 

Townsite o f Banff and the recolonization of wolves into the Bow Valley. My research 

benefited from a solid foundation following previous wolf-elk research in the Canadian 

Rockies (Paquet 1993, Huggard 1993 a,b,c. Weaver 1994, Paquet et al. 1996). This 

research demonstrated wolves selected elk, and suggested elk herding behavior may be a 

factor that lead to this selection. Population consequences o f selection for elk and effects 

o f herding are uncertain, but suggest a greater impact on elk than expected in solitary 

prey systems (i.e., moose-wolf). Alternatively, in multiple prey systems, wolves could



switch to alternate prey at lower elk densities, reducing the impact o f wolves on elk 

populations. The combination of factors affecting elk population dynamics in BNP 

include w olf predation, human-caused mortality, variation in climate, winter severity, 

forage availability, and elk density itself. Understanding how predation by wolves fits in 

with these complex assortment o f factors would aid our knowledge of wolf-elk dynamics.

The objective o f my research was to examine the role o f some o f these factors on 

wolf-elk populations dynamics to gain a clearer understanding o f predator-prey ecology 

to aid management and conservation. I divided my thesis into three chapters on various 

aspects o f w olf and elk population dynamics. In chapter 2 , 1 examined the impact o f elk 

herding behavior on w olf predation. I tested a novel hypothesis that elk herd size may 

influence encounter rates and attack success of wolves preying on elk living in herds. I 

then explored the consequences to wolf-elk population dynamics. Finally, I explored the 

implications o f herd size selectivity by wolves on predation risk for individual elk. This 

exploration of predation risk offered insights into the evolutionary ecology of wolf and 

elk dynamics (Gavin 1991) that are relevant to current management problems in BNP.

The study o f wolf-prey dynamics benefits from a mechanistic understanding of 

the components o f predation (Rolling 1959). One of the most important pieces of 

information to estimate these components of predation is the kill-rate, or how many prey 

predators kill per unit time. In chapter 3 ,1 developed a robust statistical estimator for 

w olf kill-rate. With this estimator, I determined the kill-rate and variance in kill-rate for 

w olf packs in the Bow Valley from 1986 to 2 000 .1 decomposed kill-rates into species- 

specific and Bow Valley area-specific kill-rates. I then explored factors that affected



different species and total kill-rates, and tested a prey switching hypothesis to gain insight 

into the importance of multiple prey species to wolves in BNP.

Finally, in chapter 4 , 1 used statistical modeling to explain patterns o f variation in 

elk population growth rate in the 15-year data set for the Bow Valley. Wolves 

differentially recolonized the Bow Valley as a result of human activity, leading to three 

different zones with varying wolf predation intensity and elk densities. I constructed a set 

o f a-priori candidate models explaining elk population growth rate from mortality factors 

w olf predation, snow depth, elk density, and human-caused mortality. I selected the best 

candidate model from each zone to explore factors affecting elk population dynamics in 

the different zones using an information-theoretic approach to guide model selection and 

inference. Finally, I compared candidate models across zones taking advantage of 

pseudo-experimental conditions to determine the effects of differential wolf 

recolonization o f the Bow Valley on elk population dynamics.

I make conclusions about the effects o f predation by wolves on elk populations 

and other components of the ecosystem in human dominated landscapes. I make 

predictions based on this research as to the nature o f wolf and elk population dynamics in 

multiple prey systems, and make suggestions for future research. I make management 

recommendations for the management of ecological integrity in BNP based on the 

theoretical and empirical implications of my research. It is my hope that the ecological 

information contained herein will be used by managers in BNP and elsewhere where 

wolves are recolonizing their former range to develop sound science-based management 

o f our remaining treasures of wildlife and wildlife habitat.



Chapter 2. Effects of Elk Herding on Predation by Wolves: Linking 
Anti-predator Behavior to Population Dynamics.

Introduction

Historically, predator-prey theory focused on the direct lethal effects of predators 

on prey giving rise to a wide variety of Lotka-Volterra type approaches that ignored the 

effects o f behavior. Behavior was often left out due to the difficulty in parameterizing 

behavioral effects on predator-prey dynamics. Rolling (1959) incorporated the effects of 

behavior into predator-prey models by decomposing predation into the numeric response 

(number o f predators) and functional response (number of prey killed per predator) o f 

predators to changes in prey density per unit time. Behavioral aspects o f predation were 

accommodated in the functional response, which decomposed into the encounter and 

attack stage (Rolling 1959, Taylor 1984). The encounter stage included search and 

detection, while the attack stage included pursuit and capture o f prey. Row different 

behavioral processes affect the encounter and attack stages of predation is critical to 

understanding the consequences of behavior to populations (Taylor 1979, Taylor 1984, 

Fryxell and Lundberg 1998).

Recently, ecologists have begun to bridge the gap between individual behavior 

and population dynamics in field studies of predator-prey systems. These recent studies 

described the effects o f predator-induced stress on population dynamics including cycles 

(Ylonen 1994, Rik 1995, Boonstra et al. 1998), compensatory mortality caused by 

predator induced starvation risk (Schmitz 1998), shifts in habitat and diet use under 

predation (Werner et al. 1983, Morgantini and Hudson 1985, Bergerud and Page 1987, 

Ruang and Sih 1990, Kotler et al. 1994, Schmitz 1998, Kie 1999), and behaviorally 

induced trophic cascades (Turner and Mittlebach 1990, Werner and Anholt 1996).



A common response of many prey species to predation is group living or herding 

behavior (Bertram 1978, Pulliam and Caraco 1984). Herding benefits prey through 

dilution o f predation risk (Hamilton 1971, Bertram 1978) and/or through reduction in 

individual vigilance necessary to detect predators (Pulliam and Caraco 1984). Testing 

between the dilution and vigilance hypotheses is confounded (reviewed in Roberts 1996) 

because both vigilance (Lima and Dill 1990) and individual predation risk (Hamilton 

1971) decrease with increasing herd size. Roberts’ (1996) review and empirical work 

(Dehn 1990) suggests reduction in predation risk through dilution is more important, with 

vigilance reduction occurring secondarily. Herding behavior could also arise due to the 

spatial distribution of resources (Geist 1982, Fryxell 1991, Gerard and Loisel 1995), 

foraging benefits (Hirth 1977), or social facilitation (Geist 1982). Although these other 

factors are important, the fitness costs o f predation (i.e., death) exceed those of starvation 

and social benefits over time if predation risk is relatively high (Abrams 1993), therefore, 

reducing predation risk may be the main cause for herding.

Linking predation risk and herding to population dynamics has received little 

attention. Huggard (1993b) used a simple modeling approach and showed the functional 

response o f wolves (Canis lupus) to elk (Cervus elaphus) density depended on the 

relationship between elk density and the number of herds. If the number of elk herds 

increased with density, wolves encountered more elk herds, with potential changes to the 

functional response that could increase wolf predation rates on elk ([predation rate = 

(functional response*numeric response)/prey population size], Holling 1959, Taylor 

1979. Huggard (1993b) assumed wolf encounter rates and attack success did not vary 

with elk herd size, yet herd size has been shown to affect the attack success of other



mammalian predators. Lions {Panthera leo) had higher attack success on the largest and 

smallest herds o f zebra {Equus burchelU), wildebeest (Connochaetes taurinus), and 

gazelles {Gazella spp., Schaller 1972, Van Orsdol 1984). Attack success o f African wild 

dogs (Lycaon pictus) was higher in herds of >200 (31%) compared to herds of 1 (13%), 

although this was not statistically significant (Fanshawe and Fitzgibbon 1993). Finally, 

Crisler (1956) suggested wolf attack success increased with the herd size o f caribou 

{Rangifer tarandus). Therefore, changes in wolf encounter rates and attack success with 

prey herd size, mediated by the relationship between herd size and prey density, could 

affect the functional response of wolves preying on herding prey such as elk.

Predator-prey modeling prior to wolf réintroduction (Fritts et al. 1997) in 

Yellowstone National Park (YNP), used research on predator-prey dynamics o f solitary 

prey species (e.g., Gasaway et al. 1992, Messier 1994). Drawing on this literature, Boyce 

and Gaillard (1992) estimated 25% declines o f northern Yellowstone elk populations 

after w olf recolonization. Garton and Crabtree (1992) predicted a 10% decline in elk 

numbers following wolf recolonization using a similar approach. These models were 

useful to managers, suggesting high variation was certain in new wolf-elk systems. 

However, in Banff National Park (BNP), Alberta, researchers documented 50-70% 

declines in elk in areas recolonized by wolves (Paquet et al. 1996, Woods et al. 1996, 

chapter 4). One possible reason for differences between models in YNP and observations 

in BNP could be the effects o f elk herding. Population models that do not incorporate 

behavior o f prey may fail to adequately describe predator-prey dynamics (Brown et al. 

1999).
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We tested whether elk herd size affected predation by wolves during the winters 

o f 1997/98 and 1998/99 in BNP. On the level o f an encounter between a w olf pack and 

elk herd we tested if 1) the sizes o f elk herds encountered by wolves were independent of 

the sizes o f available elk herds, and 2) if the sizes of elk herds from which wolves made 

kills were independent o f the sizes o f elk herds they encountered. We examined 

population level relationships between elk density and both the size and number o f elk 

herds to explore consequences of behavior to population dynamics. We compared these 

herding relationships with and without predation by wolves to examine differences in elk 

herding behavior. Regardless o f how wolf attack success and encounter rates varied with 

herd size, we expected individual elk to benefit from herding if herding is an evolutionary 

stable strategy (ESS, Cockbum 1991). Therefore, we constructed a predation risk model 

to assess how the relative probability o f predation for individual elk living in different 

herd sizes varied with w olf predation in BNP.

Methods 

Study Area

BNP is located 120 km west o f Calgary, Alberta, in the front and main ranges of 

the Canadian Rocky Mountains, is 6641 km^ in area, and is characterized by extreme 

mountainous topography (1400 m to 3400 m). The climate is characterized by long cold 

winters with infrequent warm weather caused by Chinook winds, and short, relatively dry 

summers. Six species o f ungulates are available to wolves in BNP; elk, white-tailed deer 

{Odocoileus virginanus), moose {Aloes aloes), mule deer {Odoooileus hemioniis), bighorn 

sheep {Ovis canadensis), and mountain goat {Oreamnos amerioanus). Elk are the most



abundant ungulate in BNP, and comprise 40-70% of the diet of wolves (Paquet et al.

1996). Mule and white-tailed deer occur at low density throughout winter elk range, 

while moose, bighorn sheep, and mountain goats are rarer and spatially separated from 

wolves in winter.

Vegetation in BNP is divided into the montane, subalpine, and alpine ecoregions. 

Montane habitats are found in low elevation valley bottoms, 2-5 km in width, and contain 

the highest quality habitat for wolves and elk in BNP (Holroyd and Van Tighem 1983, 

Paquet et al. 1996), The montane ecoregion is characterized by lodgepole pine {Pinus 

contorta) forests interspersed with riparian Engelmann spruce {Picea engelmanii) -  

willow {Salix spp.) areas, aspen {Popiilus tremuloides) -  parkland, and grassland systems. 

Sub-alpine and alpine ecoregions are comprised of Engelmann spruce-subalpine fir 

(Abies lasiocarpd) -  lodgepole forest interspersed with willow-shrub meadow riparian 

communities, subalpine grasslands, and avalanche terrain, giving way to open shrub-forb 

meadows in the alpine ecoregion. The primary study area focused on the Bow Valley 

(between the towns o f Canmore in the southeast and Lake Louise in the northwest) and 

adjacent side valleys (see Fig.l in chapter 3). Valley bottom elevations range from 1350 

m to 1600 m. The Bow Valley is used by more than 5 million visitors per year (Green et 

al. 1996). Two towns, the national railway and highway system, and numerous secondary 

roads and other human developments (ski resorts, golf courses) fragment the study area. 

The two winters o f our study included a mild (1997/98) and an average (1998/99) winter, 

with mean snowpack depths o f 30 and 46 cm, respectively (15-year average, 45cm, 

chapter 4). See Holland and Coen (1983), Holroyd and Van Tighem (1983), and Huggard 

(1993a,b) for additional details.
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W olf Monitoring

Wolves were captured and radio-collared using modified steel foot-hold traps 

(toothed and padded No. 4 offset foot-hold traps, Livestock Protection Co., Alpine, TX) 

with trap transmitters (Advanced Telemetry Systems, Isanti, MN) in the summer months, 

or by aerial darting from rotary-wing aircraft during winter. From 1997 to 2000, we 

chemically immobilized 5 wolves using Ketamine-Xylazine, Telazol, or a Telazol- 

Xylazine mixture under veterinary direction, and then fitted them with a radio-collar 

(LOTEK engineering, Newmarket, ON). The BNP Cumulative Effects Assessment task 

force and Canadian Council for Animal Care approved capture protocol. Radio-collared 

wolves were relocated almost daily from November to the end o f April in each year of 

the study from the ground or air following Mech (1983). Two w olf packs inhabited the 

study area during the intensive tracking period. The Bow Valley pack numbered 2-4 

wolves and ranged west and south o f the Townsite of Banff. The Cascade pack occupied 

the Cascade Valley to the north east o f the town of Banff, and numbered 7-18 wolves.

Elk Herd Size Selection 

Availability

Two aerial elk surveys were flown in rotary wing aircraft each year using aerial 

survey protocol developed for Parks Canada by Jacobson and Kunelius (1985). We 

conducted surveys in January and March of 1998 and 1999 in the Cascade pack territory, 

and in April 1998, March 1999, and April 1999 in the Bow Valley pack territory. We 

used a sightability model for elk herd size and habitat cover class developed in Idaho to 

correct for missed elk on BNP surveys (Samuel et al. 1987, Samuel et al. 1992) because a
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preliminary sightability model developed in BNP with a small sample size (n=30) was 

similar to the Idaho models (Appendix A .l). Recent model validation in Montana 

(Samuel et al. 1992), and model development in Michigan (Cogan and Diefenbach 1998), 

Wyoming (Anderson et al. 1998), and Washington (McCorquodale 2000), indicate the 

Idaho sightability model is robust to changes in study area and time o f year.

Encounters

Wolves are almost always hunting while traveling (Mech 1970, Peterson 1977), 

therefore, the number, species, and herd size o f ungulate tracks crossed while tracking 

wolves give an estimate o f wolf encounters with prey. We estimated the size of elk herds 

encountered while tracking wolves by either snow tracking elk or observing nearby elk 

herds. We used snow tracking to estimate herd size by tracking elk to bed-sites and 

counting elk beds, and/or by tracking elk herds until they spread out and then counting 

individual elk tracks. Observations o f elk herds close in space (<1 km) and time (<1 day) 

to the tracking session were obtained opportunistically and/or in conjunction with 

concurrent radio-collared elk research in BNP (J. McKenzie, pers. comm.).

Kills

We located prey killed by wolves using tracking and radio-telemetry. Systematic 

criteria were used to evaluate cause of death (e.g., Gauthier and Larsen 1986), and to 

determine prey species, sex, and age. We determined the herd size of elk killed by wolves 

in the same manner as for elk encountered by wolves.
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Herd Size Classification Error

Estimates o f herd size from snow tracking could be subject to error. We 

determined error by counting the number o f elk in observed herds; field personnel who 

had not seen the herd visited these areas 1 -2 days afterwards and estimated the size o f the 

herd using snow tracks. We assumed counts reflected true herd size because herd sizes 

were relatively small (<30) and we made repeat counts. We subtracted snow tracking 

estimates o f elk herd size from observed herd size within herd size categories to estimate 

error.

Comparison of Availability, Encounters, and Kills

We compared the distributions of elk herd sizes available, encountered, and killed 

by wolves in two stages. First, we determined if  we could pool herd size distributions of 

elk available and encountered by wolves across different wolf packs and years. Secondly, 

we compared encounters to available, and kills to encounters in these pooled samples 

within herd size categories.

To determine pooled samples, we compared the herd sizes of elk available to 

wolves for each w olf pack between years (i.e.. Cascade 97/98 vs. 98/99) and between 

w olf packs for a given year (i.e.. Bow Valley 97/98 vs. Cascade 97/98) using the two- 

sample Kolmogorov-Smimov (K-S) test to test for differences in the continuous 

distributions of available herd sizes of elk (Sokal and Rohlf 1995). We determined pooled 

samples for comparing kills to encounters similarly, comparing herd sizes o f elk 

encountered by packs and years.
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Next, we compared wolf selection for herd size within these pooled samples. We 

tested if  herd sizes o f elk available to wolves were different than the herd sizes o f elk 

encountered by wolves. Next, we tested if  herd sizes of elk encountered by wolves were 

different than the herd sizes o f elk killed by wolves. We conducted all tests between 

availability, encounters, and kills within herd size categories. We determined herd size 

categories using natural breaks in the distribution of elk herds available to both packs 

over both years using K-means cluster analysis where we set the number o f elk herd size 

classes from 3 to 7 (SYSTAT 8.0, Wilkinson 1998). We tested for differences within 

herd size categories using the G-test (Sokal and Rohlf 1995: 698). We calculated the 

expected frequency o f encounters from the observed number o f herds available within 

herd size categories, and the expected frequency of kills from the observed number of 

encounters. We used the Williams correction (Sokal and Rohlf 1995: 698) to reduce type 

I error. We pooled the number of herds in a herd size category with adjacent categories 

when a category had <5 herds in it. When the G-test indicated a difference, we used 

adjusted standardized G-test residuals [([observed-expected]/ expected)/ standard 

deviation] to determine herd size categories where differences occurred and the direction 

o f the difference (sensu Haberman 1973). Probability values for the standardized G-test 

residuals were adjusted to control for experiment-wise type I error (a=0.05/ number o f 

categories, Sokal and Rohlf 1995).

Elk Herd-Density Relationships

We used BNP aerial elk surveys conducted during late winter from 1985 to 1999 

(Parks Canada, unpubl. data) to determine the relationship between 1 ) the number of
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herds and elk density, and 2) mean herd size and elk density. The Bow Valley was 

divided into three survey zones, central (42 km^), eastern (66 km^), and western (187 

km^, see Fig.l in chapter 4), which correspond with low, medium, and high wolf density. 

To test for the effect o f wolf presence on herding-density relationships we analyzed 

relationships separately from elk sub-populations in zones with (western zone, high wolf) 

and without wolves (central zone, low wolf, see chapter 4 for detailed zone description). 

We regressed the number o f herds against elk density (elk/km^), and regressed mean herd 

size against elk density in both zones to determine herding-density relationships with and 

without wolves. We used and AICc (Burnham and Anderson 1998) to select among 

linear and non-linear (exponential, logarithmic) regression models.

Individual Elk Predation Risk Model

We developed a model to evaluate the effects o f differential wolf encounter and 

attack success on relative predation risk for individual elk living in different sized herds 

following Wrona and Dixon (1991). We used two components of predation, the relative 

probability o f encounter (Pg), and relative probability o f successful attack (i.e., death, ?d) 

to assess predation risk (Turner and Pitcher 1986, Lindstrom 1989, Wrona and Dixon 

1991). We defined Pg as the relative risk o f encounter for a particular herd size class, 

measured by the total number o f elk herds in a herd size class encountered by wolves 

divided by the number o f available elk herds in that herd size class. We defined Pd as the 

relative risk o f death for an individual elk given an encounter, measured by the total 

number o f elk killed by wolves within an elk herd size class divided by the herd size and 

the total number o f elk herds available (i.e., total number of elk within that herd size
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class). We estimated w olf predation risk for individual elk living in different herd sizes in 

BNP during winter using

IP R ,= P ,* P ,= f ^ l f 1 (equation 1)

where IPRi = relative predation risk of individual elk in herd size i, E,= number of elk 

herds encountered in herd size class i, Aj= number of elk herds available to wolves within 

herd size class i, Kj= number o f wolf-killed elk within herd size class i, Nj= number o f elk 

in herd size class i, and i = 1 to n, where n equals the number o f herd size categories o f 

elk. Because small sample sizes o f kills compared to encounters or availability limited 

within pack comparisons, we grouped data from both packs and years to examine the risk 

of predation for individual elk, reflecting predation risk over a broad geographic area 

(approximately -4000 km^).

Results

We found elk herds available to wolves in BNP were best broken into five elk 

herd size categories using K-means cluster analysis; herds of sizes 1, 2-5, 6-12, 13-30, 

and >31 elk, which we used in subsequent categorical tests.

Elk Herd Size Selection - Availability

After correcting for sightability bias (Appendix A .l) the majority o f elk herds 

available to wolves in BNP occurred in herds o f 1 and 2-5 (83% for Bow valley pack, 

62% for Cascade pack. Table 1). The distribution of elk herds available to the Bow 

Valley pack (2-sample Kolmogorov-Smirnov (K-S) test = 0.69, p=0.72, n=146) and the 

Cascade w olf pack (K-S test = 1.29, p=0.08, n=142) were similar between years.
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However, the herd size distribution o f elk available to wolves in the Cascade pack 

differed from elk available to the Bow Valley pack during both years (K-S test = 1.78, 

p=0.004, n=274). Therefore, we compared encounters to availability by individual pack, 

where possible.

Encounters

We recorded 184 encounters with groups of prey (62% elk) during 627 km of 

tracking in 1997/98, and 237 encounters with groups of prey (48% elk) during 467 km of 

tracking in 1998/99 (Table 2). Elk were the most abundant ungulate encountered across 

packs and years (47-65% o f all encounters with groups, and 62-91% of all prey 

encountered). The distribution of herd size classes encountered between years was similar 

for the Cascade pack (Table 1, K-S test = 1.06, p=0.21, n=81) and the Bow Valley pack 

(Table 1, K-S test = 1.22, p=0.08, n = 145). However, Cascade pack encounters were 

different than Bow Valley encounters for both years (Table 1, K-S test = 1.49, p=0.03, 

n=226).

Kills

We found a total o f 77 prey killed by wolves in both winters o f the study, of 

which 52% were elk, 31% were deer spp., and the remainder moose (9%) and bighorn 

sheep (8%, Table 2). We located 22 elk kills from the Cascade pack and 11 kills from the 

Bow Valley pack for which we determined herd size (Table 2) in both winters. Small 

sample size limited our ability to compare kills to encounters between wolf packs and 

years. Therefore, we compared kills to encounters by individual pack, and then combined 

across both packs.
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Herd Size Classification

We observed 40 elk herds for which we later estimated herd size using snow 

tracking to test for herd size classification error. We estimated elk herd size within the 

correct category 80% of the time using snow tracking (Table 3), and within one herd size 

class in all other cases (Table 3). Because only 50% of herd size estimates came from 

snow tracks (the other 50% were sightings), and classification error was small, we felt 

that the effect o f this error on subsequent analyses was negligible.

Comparisons of Availability, Encounters and Kills

The herd sizes of elk encountered and those available to wolves (Table 1) in the 

Cascade pack differed (Gadj=17.2, d.f.=3, P<0.001), as did the herd sizes o f elk killed and 

encountered (Table 1, Gadj=18.4, d.f.=3, P<0.001). The trend for the Cascade pack was to 

encounter and kill elk more frequently from larger elk herd sizes than expected (Table 4). 

Herd sizes o f elk encountered and available (Table 1) to the Bow Valley pack were 

different (Gadj=36.2, d.f.=3, P<0.0001), but the herd size o f elk killed and encountered 

(Table 1) by the Bow Valley pack did not differ (Gadj=2.0, d.f =3, P=0.35) although 

sample size o f kills (n=l 1) was small. Despite small differences between encounters and 

kills for the Bow Valley pack, the trend in differences were similar to the Cascade pack 

(Table 4). Differences between packs were primarily due to differences in availability 

(Table 1); trends in encounters and kills were similar for both packs. Therefore, we 

pooled packs and years. The herd size o f encountered elk and those available (Gadj=35.5, 

d.f.=3, P< 0.0001), and the herd size o f elk killed and encountered (Gadj=24.0 d.f.=3,
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P<0.0001) by wolves from both packs differed (Table 1), and wolves encountered and 

killed elk in larger herds more than expected (Table 4).

Elk Herd-Density Relationship

We were unable to distinguish between linear and exponential or logarithmic 

models (Appendix A) for the regression of mean herd size and elk density or number of 

herds and density in either Bow Valley zone. Therefore, we adopted linear models for 

these herding relationships. The number of herds increased linearly with elk density (Fig. 

la) but mean herd size did not depend on elk density (Fig. lb) in the low w olf density 

zone (central). In the high wolf density zone, both the number o f elk herds (Fig. Ic) and 

mean elk herd size increased linearly with elk density (Fig. Id).

Individual Elk Predation Risk Model

The relative risk of encounter (Pe=Ej/Ai, equation 1) peaked in intermediate herd 

sizes o f 13 to 30 elk (Fig. 2a). The relative risk o f death for elk given an encounter 

(Pd=K,/Ni*Aj, equation 1) also increased in these intermediate herd sizes o f elk (Fig. 2a). 

Combined, the relative risk o f predation for individual elk peaked in intermediate herd 

sizes and was lowest at small and large herd sizes (Fig. 2b).

Discussion

Wolves encountered large elk herds more than expected based on availability 

(Table 4), and given an encounter, made more kills than expected based on encounters in 

larger elk herds (Table 4), similar to a wide variety o f other predators (Schaller 1972,
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Van Orsdol 1984, Morgan 1985, Lindstrom 1989, Fanshawe and Fitzgibbon 1993, 

Krause and Godin 1995, Connell 1999). Although sample size restricted our ability to 

directly compare kills to encounters within the Bow Valley pack, these small samples 

constitute a large proportion of the total elk kills made by the Bow Valley pack during 

these winters (estimated 34% of all kills during the winter, chapter 3). The trend for 

wolves to select larger elk herds to encounter and from which to make kills reflected 

patterns o f w olf predation over a large geographic area (approximately -4000  km^).

Increased encounter rates and attack success on large elk herds could arise from a 

number o f processes. Detection probability may increase with increasing herd size for 

olfactory predators (Triesman 1975) such as wolves, increasing encounter rates. Large 

herds may be more predictable in their location, especially in mountainous terrain, 

increasing encounter rates of wolves (Huggard 1993b). Attack success may increase in 

large herds because they are statistically more likely to contain weak or sick individuals 

(Bertram 1978). Large elk herds are frequently mixed cow-calf herds, and increased 

vulnerability o f elk calves to wolf predation during winter is well known (Carbyn 1983, 

Huggard 1993c, Weaver 1994), potentially contributing to increased wolf attack success 

in large herds.

Individual Predation Risk and Life-History of Elk

If encounter rates and attack success increased with increasing elk herd size, why 

herd at all? Using our predation risk model, we showed individual elk have a lower risk 

o f predation in small and large herd sizes (Fig. 2). In large herds, encounter rates and 

attack success increased, but this increase was offset by the effects o f dilution ( 1/herd
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size). In smaller elk herds, lower relative encounter rates and attack success by wolves 

(Fig. 2) reduced predation risk. Intermediate sized elk herds were encountered and 

wolves had higher attack success than small herds, yet herd size was not large enough to 

reduce predation risk through dilution. Thus, individual elk reduced predation risk 

through a strategy o f either 1) diluting predation risk by living in large herds, or 2) living 

in small herds that had lower encounter rates and attack success.

Ungulates adopt a variety of strategies to reduce predation risk that shape life- 

history (Bleich et al. 1997, Kie 1999, Kie and Bowyer 1999, Berger and Gompper 1999). 

Predation risk that peaks in intermediate herd sizes could act as disruptional selection in 

ungulate life-history evolution, selecting individual elk that adopted a strategy o f either 

living in small or large herds to maximize individual fitness. Predation by wolves may 

therefore link predation risk to patterns of sexual segregation in elk (Kie 1999). Although 

we were unable to separate the effects of elk sex on wolf selection for herd size, elk 

exhibit strong sexual spatial segregation in habitat use (Geist 1982, Uns worth et al. 1998, 

McCorquodale 2000).

Snow depth and mountainous topography could effect elk predation risk through 

sexual segregation. Male elk separate from female elk, often living in small groups that 

winter at higher elevations and deeper snow than females (Geist 1982), which could 

reduce encounter rates with wolves. Given an encounter, male elk may be able to repel 

attacks by wolves more successfully due to larger body size. Combined, these factors 

may contribute to male elk adopting the small group size strategy to reduce predation risk 

during winter. Conversely, elk females with calves are often restricted by snow to lower 

elevations because o f the small body size of calves (Trottier et al. 1983). Given increased
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vulnerability o f female elk and calves to wolves, dilution o f predation risk may be their 

best strategy to reduce individual predation risk. Further, elk may switch between 

strategies, whether seasonally as observed in migratory elk populations where pre

parturient females often move to high elevation alpine ranges in small groups (Geist 

1982), or opportunistically if predation risk is altered across a landscape by humans or 

other causes (Jedrzrejewksi et al. 1992). Knowledge of the evolutionary ecology of elk 

herding and predation risk provides an evolutionary framework (sensu Gavin 1991) for 

understanding the development o f management problems such as urban elk.

Wrona and Dixon (1992) described decreasing predation risk for increasing 

trichopteran larvae group size, and few larvae lived in small group sizes. Using our 

individual predation risk model (equation 1) with data from Schaller (1972: p 446), we 

found zebra, wildebeest, and Thompsons gazelle {Gazella thomsoni) showed declining 

individual predation risk as herd size increased (Appendix A.3), and all three species live 

in large herds (Jarman 1974). Future research on predation risk-herd size relationships is 

required to determine if  the peaked pattern of predation risk we observed in elk is 

common in other sexually segregating ungulates.

Potential Consequences to Population Dynamics

Mean elk herd size appeared unrelated to elk density in areas without wolves. 

Living in herds exacts a cost in terms of reduced foraging opportunities through 

competition with conspecifics (Geist 1982, Hunter and Skinner 1998). Without predation 

by wolves, elk may be freed from constraints placed on herd size by predation and follow 

optimal foraging patterns driven by energetic return (Stephens and Krebs 1986).
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However, this relationship without wolves could be due the herd size-density curve 

flattening out at high elk density (Fig. lb).

In the high wolf density zone, herd size increased with elk density (Fig. Id). 

Encounter rates and attack success also increased with herd size (Table 1,4), therefore 

they would also increase with elk density. In addition, Huggard (1993b) showed the 

number o f elk herds increased with elk density, and wolf encounter rates increased with 

the number o f herds. Because both encounters and attack success increased with herd size 

and density, predation rates may increase as a result of changes to the functional 

response. Constraints o f handling and search time would ultimately limit increases in 

predation rates, but kill-rates may approach these upper limits more rapidly in elk than in 

solitary prey because of these herding relationships. Therefore, wolf predation rates on 

elk at moderate densities may be expected to be higher than predictions of solitary, non

herding prey models (Boyce 1992, chapter 4).

Comparison of functional responses for wolves preying on solitary and herding 

prey provides further evidence for this interpretation. Messier’s (1994) type II functional 

response for wolves preying on solitary moose approached an asymptote more slowly 

than Dale et al.’s (1994) type II functional response for wolves preying on herding 

caribou. Dale et al. (1994) speculated that w olf efficiency preying on herding caribou is 

responsible for this steeper response, and showed the attack rate constant (the a in Dale et 

al. 1994 model) is responsible for the difference in the shape o f their wolf-caribou 

functional response compared to Messier’s (1994) moose-wolf response. We found that 

components o f the attack rate constant (encounter rates and attack success) change with 

herd size, suggesting a potential mechanism for Dale et al.’s (1994) steep type II
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functional response. Research on the shape and components o f the wolf-elk functional 

response will allow further insight into the effects of herding on predation by wolves.

Environmental conditions may also interact with these wolf predation-herding 

relationships. Herd size of musk-oxen {Ovibos moschatus. Heard 1992) and European red 

deer (Jedrzejewski et al. 1992) increased with increasing snow depth. Preliminary 

observations in BNP suggest a positive relationship between snow depth and elk herd 

size (M. Hebblewhite, pers. obs.) which could interact to increase wolf encounter and 

attack success rates in deep snow winters, contributing to increased wolf kill-rates on elk 

in deeper snow (Huggard 1993a, Post et al. 1999).

Considering the effects of herding in predator-prey models will provide an 

opportunity to determine how increased encounter rates and attack success on large elk 

herds may affect the functional response. This knowledge may help refine predictive 

models o f w olf and elk population dynamics, and could be used to test whether the 

effects of herding could explain differences between model predictions in Yellowstone 

National Park (YNP) and observed elk declines in BNP. Broad ecological differences in 

habitat, prey distribution, and prey density between BNP and YNP could limit 

generalization of the patterns we report. However, D. MacNulty (University o f 

Minnesota, pers. comm.) suggested that in YNP, herd size may influence w olf predation 

similarly as in BNP, because the probability of wolves making a kill once a herd is 

encountered increased with herd size. Despite differences between study areas and 

methods, similar patterns of elk herd size influencing wolf predation support the 

important role that herding behavior may play in determining the effects of wolves on elk 

populations.
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Table 1. Percentages o f the total elk herds a) available (after correcting for sightability), 
b) encountered, and c) killed by wolves in the five different herd size classes by the Bow 
Valley pack. Cascade pack, and both packs combined, during the winters o f 1997/98 and 
1998/99 in Banff National Park, Alberta.

a) Available
Herd Size Bow Valley Pack 

Freq. %
Cascade Pack 
Freq. %

Both Packs 
req .  %

1 49 33.5 21 14.8 70 24.3
2 to 5 69 47.3 67 47.2 136 47.2
6 to 12 17 11.6 30 21.0 47 16.3
13 to 30 7 4.8 12 8.5 19 6.6
>30 4 2.7 12 8.5 16 5.6
Sample size n= 146 n= 142 n==288

b) Encountered
Herd Size Bow Valley Pack Cascade Pack Both Packs

Freq. % Freq. % Freq. %
1 28 19.3 6 7.4 34 15.0
2 to 5 65 44.8 28 34.6 93 41.2
6 to 12 33 22.8 22 27.2 55 24.3
13 to 30 16 11.0 16 19.8 32 14.2
>30 3 2.1 9 11.1 12 5.3
Sample size n= 145 n=81 n=226

c) Killed
Herd Size Bow Valley Pack Cascade Pack Both Packs

Freq % Freq. % Freq. %
1 1 9.1 0 0 1 3.0
2 to 5 4 36.4 1 4.5 5 15.2
6 to 12 4 36.4 6 27.3 10 30.3
13 to 30 2 18.2 10 45.5 12 36.4
>30 0 0 5 22.7 5 15.2
Sample size n=l 1 n=22 n==33
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Table 2. Species composition of ungulate prey species encountered (number o f herds and 
individuals in brackets) and killed by wolves in the Cascade (CA) wolf and Bow Valley 
(BV) packs during winter in Banff National Park, Alberta, 1997 to 1999.

Species CA
97/98
B V

Encounters 

All CA
98/99
B V All CA

97/98
B V

Kills 

All CA
98/99

BV All
Elk 49 66 115 35 80 115 16 4 20 10 10 20

(523) (596) (1119) (1278) (346) (1642)

Deer 19 29 48 27 80 107 3 3 6 6 12 18

s p p ' (66) (82) (148) (85) (209) (294)

Moose 7 12 19 6 1 7 5 1 6 1 0 1
(8) (16) (24) (7) (1) (8)

Bighorn 1 1 2 6 2 8 3 1 4 1 1 2
Sheep (6) (2) (8) (25) (9) (34)

N= 76 108 184 74 163 237 27 9 36 18 23 41
1 - White-tailed deer, mule deer, and unknown deer species.
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Table 3. Error o f snow tracking estimates o f elk herd size in BNP during winters 1997/98 
and 1998/99.

Herd Size 
Class

% correct 
herd size class 
classification

% within one 
herd size class

Sample Size

1 80% 20% 5
2 to 5 57% 43% 7
6 to 12 85% 15% 13
13 to 30 86% 14% 7
>31 87% 13% 8

Mean 80% 21% N = 40

Table 4. Summary of G-test residuals from comparisons o f herd sizes of elk killed and 
encountered by wolves during winter in BNP, 1997 to 1999. Associated p-values and the 
direction o f the difference are presented.

Herd Size 
Class

Encounters to 
Availability

Direction Kills to 
Encounters

Direction

Bow Valley 
1 p=0.001^ Less than p=0.002 Less than
2 to 5 p=0.216 Less than p=0.009 Less than
6 to 12 p=0.012 More than p=0.001 More than
13 to 30 p=0.044 More than p-0.077 More than
>30 ———— ---- *—- ----
Cascade
1 p=0.034 Less than __ 1

2 to 5 P=0.001 Less than p=0.011 Less than
6 to 12 p=0.067 More than p=0.497 More than
13 to 30 p=0.003 More than p=0.057 More than
>30 p=0.255 More than p=0.238 More than
Both Packs 
1 p=0.003 Less than __ I

2 to 5 p=0.053 Less than p=0.004 Less than
6 to 12 p=0.013 More than p=0.33 More than
13 to 30 p=0.021 More than p=0.06 More than
>30 p=0.450 More than p=0.24 More than

1- Indicates cell frequencies <5, leading to lumping in adjacent cells.
2- Alpha levels were adjusted for experiment-wise error rates with a Bonferoni 

adjustment (0.05/n cases).
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Appendix A .l Banff National Park Aerial Elk Sightability Model Development. 

Introduction

Bias against detecting small herds on aerial surveys is well known (Caughley 

1974). This bias could affect estimates o f herd sizes available to wolves. Therefore, I 

used a sightability model approach for elk herd size and habitat cover class developed in 

Idaho (Samuel et al. 1987) to correct for this bias during aerial elk surveys in the Bow 

Valley. Two aerial surveys were flown during the winters o f 1997/98 and 1998/99 using 

aerial survey methodology developed by Jacobson and Kunelius (1985) for Parks 

Canada. Costs prevented the development o f a comprehensive sightability model for elk 

in BNP. Instead, I developed a preliminary sightability model with two aerial flights in 

the winters o f 1997/98 and 1998/99 using radio-collared elk from a concurrent study 

(McKenzie, unpubl.data). My objective was to determine differences between a more 

robust sightability model (the Idaho model in Unsworth et al. 1994) and this preliminary 

BNP sightability model. If there were no differences, I would use the more robust Idaho 

model to correct aerial elk surveys for missed elk herds to estimate the herd size 

distribution of elk available to wolves in BNP for herd size selectivity research (chapter 

2).

Methods

I used rotary-wing aircraft equipped with telemetry equipment to determine the 

number o f radio-collared elk herds which were missed on normal aerial elk surveys, 

following methods described in Samuel et al. (1992). I recorded the herd size and cover 

class o f all elk herds observed and missed on aerial surveys. Variables recorded with all
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elk observations were herd size and cover class, which was originally collected in 3 

categorical variables and later reclassified to match the 7 categorical values o f Samuel et 

al. (1987). I examined the relationship between radio-collard elk herd size, cover class (in 

7 classes) and sightability using logistic regression (Hosmer and Lemeshow 1989). The 

dependent variable was as a dichotomous variable, coded 1 if the radio-collared elk herd 

was seen and 0 if  missed, and independent variables cover class and herd size were 

associated with each radio-collared elk herd. The logistic regression model used was:

where Y = the probability that an elk herd was observed on an aerial survey, Xi is elk 

herd size, X2 is canopy cover coded in 7 categories, and pi and p2 are coefficients of the 

independent variables Xi and X2.

I anticipated limited data would restrict development o f a robust BNP sightability 

model. Therefore, I used forced-entry logistic regression retaining both independent 

variables in the model, and compared BNP model coefficients to Idaho and Montana 

model coefficients. To evaluate classification error using the Idaho model in BNP, I used 

the Idaho sightability model to predict the class (0 or 1) o f each radio-collared elk herd 

observed during surveys in BNP. If the preliminary model did not differ from the Idaho 

model, and classification error was not large, we would use the more robust Idaho 

sightability model described by Unsworth et al. (1992) to correct herd size distribution in 

chapter 2 .



31

Results and Discussion

Previously published models used over 250 data points (Unsworth et al. 1994) to 

estimate logistic regression models describing elk sightability. I collected only 30 data 

points during our two sightability flights, 20 herds which were seen, and 10 herds which 

were missed, limiting development o f a robust BNP sightability model. Nonetheless, the 

preliminary forced-entry logistic regression model indicated that herd size had a positive 

and measurable effect on sightability (Pi =0.54, S.E.=0.25, P=0.07), and cover class had a 

negative effect on sightability that was estimated poorly (P%=-0.44, S.E.=0.42, P=0.4), 

likely due to small sample size. The intercept estimate for our preliminary model was 

negative, but poorly estimated and not different than zero (Table A 1.1). Compared to the 

Idaho and Montana models (Table A 1.1), parameter estimates did not differ from the 

BNP model, supporting use o f the Idaho model in BNP.

In further support o f our use o f the Idaho model in BNP, the Idaho sightability 

model has been validated in Montana (Samuel et al. 1992), and additional model 

development and refinement has occurred in Michigan (Cogan and Diefenbach 1998), 

Wyoming (Anderson et al. 1998), and Washington (McCorquodale 2000). These studies 

indicate the relationships between sightability with herd size and cover class appear 

robust to changes in study area and time of year. Furthermore, our main objective was to 

correct the herd size distribution for missed herds, not to correct the number o f missed 

animals. Differences between models generally did not affect the number o f herds missed 

or the herd size category for those missed elk herds as we analyzed effects o f wolf 

selection for elk herd size in categories (chapter 2).
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For example, we applied the sightability models for Idaho (Unsworth et al. 1994) 

and Montana (Hurley 1992) to our aerial survey data from the winter o f 1997/98. The 

same number o f herds were ‘missed’ with both models (34), and there were only slight 

differences in the herd size o f the missed herds between the two models. The Idaho 

model added 137 elk in 34 herds, the Montana model added 164 elk in 34 herds. Finally, 

the Idaho sightability model correctly classified 80% of the BNP radio-collared aerial elk 

sample as either seen or not seen based on herd size and cover class. Therefore, I used the 

Idaho elk sightability model (described in Unsworth et al. 1994) without snow (as snow 

cover was high) to correct our aerial survey data on elk herd size availability in chapter 2.

Using the Idaho model on aerial elk survey data from 1997 to 1999 indicated 

approximately 33% of the total number o f herds were missed (Table A1.2), and 88% of 

these herds were in categories of elk herds o f 1 to 5 (Table A1.4), confirming a 

significant bias against detecting small herds. Although our primary interest was in 

correcting the number o f herds missed, we report the corrected numbers o f elk from each 

survey as an estimate of total missed elk (Table A1.3). Aerial elk surveys in BNP 

underestimated elk population size by 13% (Table A1.3) assuming applicability o f the 

Idaho model to elk in BNP. However, a cautionary note is required regarding the negative 

intercept term. Although estimated with poor precision, if the negative term persists in 

further BNP models, this implies sightability for elk is lower in BNP than Idaho, and this 

effect will be especially prevalent in small herds. While the adjustment to the number of 

herds missed would not change as much, the percent o f the total numbers missed could 

change substantially. Therefore, the 13% underestimate using the Idaho sightability 

model should not be applied to BNP elk surveys without further model development.
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In conclusion, although the Idaho model did not significantly differ from the 

preliminary BNP model, the lack of difference may have been due to wide parameter 

estimates for sightability model parameters. Further model development in BNP should 

strengthen parameter estimates. By comparison, a relatively robust sightability model 

developed by Montana Fish, Wildlife and Parks (Hurley 1992) used 60-70 sightability 

points to develop the model. With 30 points collected for this preliminary model, 

collection o f another 30-40 data points could help stabilize parameter estimates and 

provide a useful method to estimate the population size of elk in the Bow Valley under a 

range o f sighting conditions. Future work should include more detailed descriptions o f 

cover class and potentially snow cover as independent variables.

Table A 1.1 : Elk sightability models from Idaho, Montana, and BNP, with parameter 
estimates and sample sizes used to develop the models. Standard errors for the BNP 
model are presented for comparison among models. All models are logistic regression 
models o f the form Y = (e7 (l+ e“) where the dependent variable is the probability o f 
being seen, and u -  the linear form of the logistic, U= B^+ B\X \ B 2X 2, where 5i=herd 
size, and .82-cover class.

Model Herd Size S.E. Cover
Class

S.E. Intercept
Bo

S.E. N

Idaho ‘ 0.296 - — “ -0.762 — — 2.160 ———— 282
Montana ^ 0.298 -0.658 ———— 1.615 — — 63
BNP^ 0.543 0.255 -0.437 0.419 - 1.919 1.437 30

1- Idaho sightability model first described in Samuel et al. 1987, modified in Unsworth 
et al (1994). Cover class % was described as a categorical variable in 7 classes.

2- Montana sightability model Hurley (1992) described in Unsworth et al. (1994). 
Vegetation cover was described in 5% increments above 30% and in 10 % increments 
below 30%.

3- Forced entry logistic regression model from this BNP. Cover class % was reclassified 
similar to the Idaho sightability model after originally collected in 3 categorical 
variables.
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Table A l.2: Summary of Idaho sightability model adjustments to the number of herds 
missed during normal aerial elk surveys in BNP, 1997/98 and 1998/99.

Wolf-Pack Year Raw # 
Herds

Corrected # of Herds Raw Proportion 
Using Idaho Model Underestimated

1997/98 Cascade 42 63 0.67
1998/99 Cascade 60 80 0.75
1997/98 Bow 37 44 0.84
1998/99 Bow 48 101 0.48
1997/98 Casc/Bow 74 100 0.74
1998/99 Casc/Bow 103 176 0.59
1997/99 Bow Valley 82 142 0.58
1997/99 Cascade 102 142 0.72
1997-1999 Both Packs 177 274 0.65

Mean underestimate 0.66

Table A1.3: Summary o f Idaho sightability model adjustments to the number of elk 
missed during normal aerial elk surveys in BNP, 1997/98 and 1998/99.

Wolf-Pack Year Raw # 
Elk

Corrected # o f Elk 
Using Idaho Model

Raw Proportion 
Underestimated

1997/98 Cascade 1333 1400 0.95
1998/99 Cascade 1716 1825 0.94
1997/98 Bow 234 250 0.94
1998/99 Bow 292 465 0.63
1997/98 Casc/Bow 1466 1547 0.95
1998/99 Casc/Bow 1895 2165 0.88
1997/99 Bow Valley 367 556 0.66
1997/99 Cascade 3049 3212 0.95
1997-1999 Both Packs 3361 3701 0.91

Mean underestimate 0.87

Table A1.4. Proportion of the total number of elk herds in herd size classes observed on 
aerial elk surveys, added by the Idaho sightability model, and combined during winter elk 
surveys in BNP, 1997 to 1999.

Elk Herd 
Size Class

Elk Counted Elk ‘Missed’ Combined

1 0.25 0.25 0.25
2 to 5 0.40 0.63 0.48
6 to 12 0.18 0.12 0.16
13 to 30 0.10 0.00 0.07
> 3 0 0.07 0.00 0.04
Total # o f Herds 177 97 274
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Appendix A.2. Elk Herd Size Density Relationships

Table A2.1 Model selection criteria for elk herding-density (as independent variable) 
regression equations, showing linear, logarithmic, and exponential regression equations 
for each zone and dependent variable, mean herd size or the number of herds. Model 
selection criteria reported are R^, P-value, AICc and AAICc (Burnham and Anderson 
1998). The model selected by the three model selection criteria is marked with an *.

Dependent Variable 
and Bow Valley Zone

Model Form P-value AICc AAICc

Central Zone (No wolf)
Number o f Elk Herds Linear* 0.46 0.006 32.41 0.004
Number of Elk Herds Logarithmic^ 0.42 0.009 32.90 0.493
Number of Elk Herds Exponential^ 0.47* 0.005* 32.41 0*
Mean Herd Size Linear 0.10 0.248 32.68 0*
Mean Herd Size Logarithmic 0.08 0.321 32.86 0.184
Mean Herd Size Exponential 0.14* 0.169* 32.78 0.096

Western Zone (Wolf)
Number o f Elk Herds Linear 0.73 0.0005 29.41 1.88
Number of Elk Herds Logarithmic 0.61 0.001 31.76 4.23
Number of Elk Herds Exponential 0.78* 0.0005* 27.53 0*
Mean Herd Size Linear 0.58 0.001 13.88 1.96
Mean Herd Size Logarithmic 0.69* 0.0005* 11.92 0*
Mean Herd Size Exponential 0.63 0.0005 14.99 3.0732

1- Linear models are o f the form Y=po+PiX
2- Logarithmic models o f the form Y= po+PilnX
3- Exponential models o f the form Y=Poe^'^.
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Appendix A3. Predation Risk of Ungulates Hunted by Lions in Africa (from 
Schaller 1972).

Schaller (1972) described number of attacks (encounters) and number of kills for 

lions {Panthera leo) preying on zebra {Equus grevyi), wildebeest (Connochaetes 

taurinus), and Thompsons gazelle (Gazella thomsoni) in the Serengeti. I used these data 

in a similar format as the analysis o f predation data by wolves on elk in BNP in chapter 2, 

although I was unable to compare encounter rates to those expected based on availability. 

I assumed that availability was the same across the three different species, therefore 

restricting our interpretation of Schallers’ data to the effects of differential attack success 

given an encounter on individual predation risk.

Using the individual predation risk (IPR) model formula developed in chapter 2 ,1 

determined IPR using the formula:

r
1PR^=P ,̂*P  ̂= K.

V y
(equation 1)

Where parameters are defined similarly to Hebblewhite (chapter 2). Table A3.1 describes 

the data we used to determine patterns of predation risk from Schaller (1972). Using 

these data, I developed individual predation risk models for the three ungulate species 

(Figure A3.1).

Literature Cited

Schaller, G. 1972. The Serengeti Lion. University of Chicago Press, Chicago.
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Table A3.1 Proportion of total Gazelle, Wildebeest, Zebra herds a) encountered and 
individuals b) killed by lions in 4 different herd size classes for the Bow Valley pack. 
Cascade pack and both packs in BNP, 1997/98 and 1998/99.

a) Number o f Lion Hunts

Herd Size Gazelle Wildebeest Zebra
Freq. % Freq. % Freq. %

1 64 0.15 19 0.33 5 0.13
2 to 10 164 0.39 8 0.14 1 0.03
11 to 75 165 0.40 11 0.19 26 0.68
>75 24 0.06 20 0.34 6 0.16
Sample size 417 58 38

ber o f Kills

Herd Size Gazelle Wildebeest Zebra
Freq. % Freq. % Freq. %

1 33 0.29 47 0.39 60 0.44
2 to 10 21 0.19 13 0.11 21 0.15
11 to 75 25 0.22 9 0.08 23 0.17
>75 33 0.29 50 0.42 33 0.24
Sample size 112 119 137
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1972.
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Chapter 3. Estimating wolf kill-rates in a multiple prey system in Banff 
National Park.

Introduction

Recent recolonization of wolves {Canis lupus) across western North America 

through dispersal (Boyd and Pletscher 1999) and réintroduction (Fritts et al. 1997) is 

restoring the wolf to ecosystems with multiple prey species. The dominant ungulate in 

many o f these ecosystems is elk {Cervus elaphiis). Determining the impact o f predation 

by wolves on elk populations is important to test the ecological importance of wolves as 

keystone, indicator, and/or umbrella species (Estes 1996, Terborgh et al. 1999). In 

addition, the impact o f predation by wolves on harvested elk populations may lead to 

conflict between recolonizing wolves and hunting by humans (Boyce 1992, Kunkel and 

Pletscher 1999, Ballard et al. 2000). W olf predation can limit, and even regulate, 

populations o f moose {Alces alces), caribou {Rangifer tarandus), and white-tailed deer 

{Odocoileus virginianus, Gauthier and Theberge 1986, Messier 1991, Gasaway et al. 

1992, Seip 1992, Messier 1994, Boertje et al. 1996, Ballard et al. 1997, but see Boutin 

1992). However, little research has been conducted in wolf-prey systems with multiple 

species o f prey in North America due, in part, to wolf extirpation where multiple prey 

species are common (Young and Goldman 1944). Predicting the impact o f wolves on elk 

is difficult as quantitative analyses o f wolf-elk dynamics have received scant attention.

Elk are the primary prey of wolves in many multiple prey systems, and are often 

the preferred prey when available (Carbyn 1983, Huggard 1993b, Weaver 1994,, 

Jedrzejewski et al. 2000, but see Kunkel et al. 1999). The consequences of wolf 

preference for elk to population dynamics is complex due to prey switching (Oaten and
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Murdoch 1975, Patterson et al. 1998), alternate prey increasing predator density at low 

primary prey density (Messier 1995b), spatial distribution of multiple prey species (Iwasa 

et al. 1981), and differential encounter rates across species (Huggard 1993b). Rolling 

(1959) divided predation into the numeric (number o f wolves as a function of prey 

density) and functional responses (number of prey killed per predator as a function of 

prey density). Understanding the components o f predation in multiple prey systems 

would provide a theoretical basis for management similar to the large body of predator- 

prey theory that guides management in wolf-moose systems (Orians et al. 1997).

In multiple prey systems, understanding predator-prey relationships for the 

primary prey will generate predictions about population dynamics for the entire system 

(Messier 1995b). If wolves switch between primary and alternate prey disproportionate to 

primary prey abundance, then the functional response for the primary prey species would 

be sigmoid or a type III response (Oaten and Murdoch, 1975). Sigmoid functional 

responses result in low kill-rates at low primary prey density, switching to 

disproportionately high kill-rates at higher densities because wolf densities depend more 

on alternate prey species at low primary prey densities (Rolling 1959). Alternatively, if 

wolves select primary prey species in proportion to their abundance, the functional 

response for primary prey is more likely to be a constantly declining function of prey 

density, or a type II response. Type II and type III functional responses imply different 

population dynamics, and have different management and ecosystem implications 

(Orians et al. 1997).

Determining the shape o f the functional response curve requires estimating kill- 

rate across a range o f prey density (e.g., Messier 1994). W olf kill-rate is costly and
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difficult to estimate, and methods vary across studies. Marshal and Boutin (1999) showed 

variation in kill-rate limited statistical power to discern functional response relationships. 

Unfortunately, few researchers have estimated variance in kill-rate (but see Jedrzejewski 

et al. 2000, Hayes et al. 2000). Kill-rates are also used to evaluate impact o f predation on 

ungulate populations by estimating the number of ungulates killed over some time period 

and then comparing loss from predation to estimates of recruitment (e.g., Keith 1983, 

Fuller 1989). However, only Jedrzejewski et al. (2000) incorporated kill-rate variation 

into evaluating the impact of predation on ungulates.

We studied predation by wolves during the winter in the Bow Valley of Banff 

National Park (BNP) from 1986 to 2000. We estimated kill-rates (and associated 

variance) for 23 wolf pack-years in a multiple prey system for individual prey species and 

geographic zone using an estimator we developed based on statistical sampling theory. 

We compared our kill-rate estimator to two other published methods. We tested how kill- 

rates vary by prey species and zone in BNP to examine predation patterns in a multiple 

prey system with extensive human use. We tested how population density o f the primary 

prey, elk, affected wolf kill-rates. Finally, we tested whether wolves switched from 

primary prey to alternate prey species as primary prey density declined.

Study Area

Banff National Park (BNP), 6641 km^ in area, is located in the front and main 

ranges o f the Canadian Rocky Mountains on the eastern slope of the continental divide. 

The climate is characterized by short, dry summers, and long, cold winters with 

infrequent warm weather caused by Chinook winds. The primary study area was defined
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by w olf pack territories and included the Bow Valley and side valleys (-3000 km^). 

Topography is extreme in the Canadian Rockies (elevation 1400 m to 3400 m), and 

approximately half o f BNP is rock and ice unusable to wolves and their prey (Holroyd 

and Van Tighem 1983). Mean snow depth varies throughout the study area, from 50 cm 

at the town o f Banff to 75 cm in Lake Louise, and is higher in side valleys (Holland and 

Coen 1983). Prey populations in the study area are among the most diverse in North 

America, including the numerically dominant elk, mule deer {Odocoileus hemionus), 

white-tailed deer, moose, bighorn sheep {Ovis canadensis), and mountain goat 

{Oreamnos canadensis). See Huggard (1993b) and chapter 2 for additional details.

W olf capture and radio-telemetry methods were described in detail in chapter 2. 

We radio-collared 18 wolves in five different wolf packs which inhabited the study area 

at different times between 1986 to 2000 (Fig. 1). The Spray Valley pack inhabited the 

areas southwest o f the town of Banff from 1986 to 1992, and the Castle pack inhabited 

the upper Bow Valley from 1986 to 1991 (Fig. 1). After 1992, the Spray and Castle packs 

merged to form the Bow Valley pack (Fig. 1). We grouped these packs into the combined 

Bow Valley pack for analyses. The Cascade pack occupied the Cascade Valley to the 

northeast o f the town of Banff (Fig. 1) from 1991/92 on. During the fall o f 1999/2000, 

the Fairholme pack formed in the central Bow Valley in the areas surrounding and east of 

the town o f Banff (Fig. 1). Before the Spray, Castle, and Cascade packs formed, these 

areas lacked resident w olf packs for approximately 30 years. Wolf-pack territories ranged 

from approximately 500 to 2000 km^ (using 95% minimum convex polygon, Fig.l, 

Appendix B).
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We divided the Bow Valley into three zones (eastern, central, and western) to 

determine the effects of predation by wolves on elk sub-populations (see chapter 4 for 

detailed zone rationale). These zones are based on biological differences between elk 

sub-populations (Woods et al. 1996), and correspond with medium, low, and high relative 

w olf density (Paquet et al. 1996). The Bow Valley pack territory overlapped closely with 

the western zone elk sub-population, while the Cascade pack made primary use of the 

eastern zone.

M ethods

Estimating Kill-rate

Researchers commonly use one of two methods to estimate wolf kill-rate. One 

method uses aerial radio-telemetry to estimate kill-rate as a function o f the number of 

days wolves are relocated from the air on a kill (Mech 1977, Fuller and Keith 1980). 

Biases in aerial methods include differences in prey handling times affecting probability 

o f locating wolves on a kill, but these biases have been addressed by Fuller and Keith 

(1980) and Fuller (1989).

The more common approach used in our study uses ground tracking and radio- 

telemetry to estimate kill-rate in continuous periods (Fluggard 1993a, Dale et al. 1995, 

Murphy 1998, Hayes et al. 2000). Ground methods are often thought to be the most 

accurate method to estimate kill-rate (Fuller 1989), yet biases have not been addressed. 

Methods of defining the start and end of a continuous ground tracking period, called the 

predation period by Hayes et al. (2000), vary across studies. The length of time between 

kills (kill interval) before and after the sampled predation period is unknown, and
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researchers assumed including these periods would bias kill-rates. To minimize this 

presumed bias, Ballard et al. (1997) removed the first day sampled in a predation period, 

Hayes et al. (2000) ended a predation period if the wolf pack had not been seen for >3 

days, and Dale et al. (1995) started a predation period the day after the first kill and ended 

the day of the last observed kill. Murphy (1998) and Jedrzejewski et al. (2000) adopted 

the Dale et al. (1995) method of truncating the predation period to the day after the first 

kill and the day o f the last observed kill to reduce this presumed bias. No quantitative 

assessment o f this assumption has been conducted, and these truncation approaches 

reduce the amount o f information used to estimate kill-rates.

The Ratio Estimator

To determine the impact o f predation by wolves on ungulates, the most common 

measure o f kill-rate is kills per day per pack (k/d/p) for calculating the number of prey 

killed by a w olf pack. Converting kill-rate to per-capita kill-rate in kilograms of prey 

killed per day per w olf (KG/d/w) allows comparison across studies with different prey 

species and w olf pack sizes. Therefore, we developed an estimator for either application 

that addresses some o f the problems in other methods.

Consider a sampling design where wolves are continuously monitored during 

predation periods and all kills are located within each period. Periods where wolves are 

monitored are interspersed with periods without monitoring, and assuming these periods 

are distributed at random (we discuss this below), kill-rate (i.e., kills/day) is a ratio 

variable. When the number of days in each period is a random variable, this design 

corresponds to a model-based design for ratio estimation (Thompson 1992: 71). If the
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relationship between the number of days and the number of kills is described by a linear 

regression through the origin (wolves make 0 kills in 0 days), this relationship can be 

used to derive kill rate (Thompson 1992: 71) using the fixed intercept regression model yi 

= |3xi, where yj= the number of kills in period i (or kg of prey killed in period i for 

KG/d/w), Xi= the number o f days in period i, and P = kill-rate. Kill-rate, p, is then 

estimated by

 ̂ T "  y
p  = — ——- (equation 1, Thompson 1992: 73)

where i= the predation period sampled, 1 to n, and n = the total number o f predation 

periods sampled. An unbiased estimate for the variance in kill-rate is

V y
ŝ . (equation 2, Thompson 1992: 73)

X^n

where N= total number of predation periods (sampled and unsampled) in the population, 

n= number o f predation periods sampled, X= total number o f days in the study period 

(i.e., 181 days), x  = X/N or mean number o f days in the population of predation periods,

= mean length in days of unsampled periods, = mean length in days o f sampled

periods, and expands to =

1 ^ ( y . - k r—  (equation 3, Thompson 1992: 74).
n - \ t \  X.

To estimate the total number of kills (Y) made during the total population of days 

in a winter period (X), use Y = p x  , and to estimate the variance in Y, multiply equation 

3 by the number o f days in a winter period (X). Dividing kill-rate by pack size, and 

variance by the delta method (i.e., by pack size^) gives these relationships for per capita
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kill-rates. Equation 3 incorporates a finite population size adjustment based on the 

proportion of total periods sampled.

This approach assumes we selected predation periods at random (Thompson 

1992). Our ability to track wolves was often dependent on weather conditions for aerial 

telemetry, and periods without significant snowfall for ground tracking. Random 

sampling assumes no difference in kill-rates during periods that are difficult for tracking. 

In our study, because wolves seemed to travel and hunt under all winter conditions, we 

felt this assumption was reasonable.

W olf Monitoring

We monitored wolf packs between the winters of 1986/87 and 1999/2000, defined 

between November to April 30̂  ̂ (181 days, 182 in leap years). We used a combination 

o f radio-telemetry and snow tracking on wolf packs to locate kills and maintain 

continuous predation periods for as long as possible. We used mean travelling pack size 

observed on aerial telemetry flights (average number of wolves travelling and feeding 

together in a winter. Messier (1985) and Dale et al. (1995)) to calculate per-capita killing 

rates (KG/d/w).

Kill-rates

We estimated kill-rate, and variance, in k/d/p and KG/d/w (see below for 

calculation o f kg o f prey killed) for 23 wolf pack-years using the ratio-estimator from 

predation periods. We divided total kill-rates into species-specific kill-rates for elk, mule 

deer, white-tailed deer, moose, and bighorn sheep using the number (or KG) of a
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particular prey species killed per predation period. We similarly divided kill-rates for elk 

into the three Bow Valley zones (east, central, and west). We used only prey killed by 

wolves to estimate kill-rate, and did not include prey scavenged by wolves.

We calculated the mass in kilograms (kg) of prey killed (not equal to consumption 

rates) by wolves in each predation period using mean mass for each species, age, and sex 

class killed on highways and railways in BNP from 1982 to 2000 (Table 1, Parks Canada, 

unpubl. data). To reduce effects o f seasonal variation in body mass, we used only winter 

values for young o f year age classes, and when sample sizes permitted, for other age 

classes (Table 1). Occasionally, we were unable to distinguish the species o f deer killed 

by wolves, and in cases o f unknown deer, we used mean values for mule and white-tailed 

deer. Kill-rates in KG/d/w are not corrected for the percent o f the carcass consumed by 

wolves or lost to scavengers.

Comparison of Methods

We estimated the total kill-rate in k/d/p for the 23 wolf pack-years following the 

methods o f Dale et al. (1995) and our ratio estimator described above. We compared kill- 

rates estimated with the two methods in each pack-year with a paired t-test, using kill-rate 

in k/d/p (instead o f KG/d/w) because w olf pack size and prey species killed were the 

same for both methods in paired kill-rates for a given year. Kill-rate methods should not 

be biased with respect to the length of a predation period. We compared methods for this 

potential bias by testing whether tracking interval length (Xj) affected individual predation 

period kill-rate (y/xi) using simple linear regression. Finally, to compare the ratio- 

estimate o f variance in kill-rate (k/d/p) with the approach of Jedrzejewski et al. (2000),
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we derived an unweighted estimate o f variance in kill-rate by treating all predation 

periods equally (i.e., associated with a straight mean kill-rate).

Factors Affecting Kill-rates

We used KG/d/w for analyses of factors affecting kill-rates to control variation in 

pack size and prey species killed across pack-years. We tested whether kill-rates differed 

by prey species and whether elk kill-rates differed by Bow Valley zone using analysis of 

variance (ANOVA, Sokal and Rohlf 1995). We examined relationships among different 

prey species kill-rates as density o f primary prey (elk) in the Bow Valley declined 

(chapter 4) as a preliminary test of the prey switching hypothesis (Oaten and Murdoch 

1975). If wolves switch between primary and alternate prey, total kill-rate should depend 

on both primary and alternate prey species kill-rate. If wolves primarily kill elk and do 

not switch to alternate prey at low elk density, total kill-rate should be unrelated to 

alternate species kill-rate (Patterson et al. 1998). As primary prey density declines, 

alternate prey species kill-rates should increase if wolves switch to alternate prey (Oaten 

and Murdoch 1975).

We used Pearson’s correlation’s (Sokal and Rohlf, 1995) to compare relationships 

between prey species kill-rates. If  relationships between non-elk species did not differ, 

we grouped prey into primary (elk) and alternate (all other ungulates) categories. We then 

used simple linear regression to test the relationships between 1) alternate and total kill- 

rates, 2) elk and total kill-rates, and 3) alternate and elk kill-rates, where the first and 

second variable correspond to dependent and independent variables, respectively. We
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examined these relationships by individual w olf pack, and then combined packs where 

appropriate.

In addition to evaluating relationships among kill-rates, we tested for the effects 

o f primary prey density (elk) on kill-rate using Pearson’s correlation between kill-rates 

(total, elk, and alternate) and elk density in the western and eastern zones (from chapter 

4) for each pack. Although both packs made use of areas outside of these zones, trends 

within the east and west zones reflected general elk population trends elsewhere within 

their territories (Parks Canada, unpubl. data).

Statistical analyses were conducted using SYSTAT 8.0 (Wilkinson 1998). For 

ANOVA, we assessed differences between categories using post-hoc Bonferoni multiple 

comparisons procedures that controlled for experiment-wise error rate. We assessed 

normality with normal p-p plots, and variance homoscedasticity with Levene’s F-test in 

ANOVA and residual plots in regression analyses. We transformed variables to meet 

parametric assumptions when underlying distributions were not normally distributed.

Results 

W olf Monitoring

We monitored eighteen radio-collared wolves in five different wolf packs at 

different times throughout the study for a total o f 23 wolf pack-years between 1986 and 

2000. We collected 195 predation periods, locating 429 kills made by wolves over 1294 

days (Table 2). We tracked packs an average of 8.5 periods per year and periods averaged 

7.0 days in length (Table 2). Mean pack size was 6.1 wolves, ranging from 2 to 18 (Table 

2). We monitored w olf packs an average o f 31% of the winter study period (Table 2). We
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summarize w olf predation by prey species, age, and sex elsewhere (Hebblewhite, in 

prep.).

Kill-rates

W olf kill-rate averaged 0.33 k/d/p (Table 2), composed o f an average of 0.23 

elk/d/p, 0.04 mule deer/d/p, 0.022 white-tailed deer/d/p, 0.015 moose/d/p, and 0.017 

bighorn sheep/d/p (Table 3). The standard error o f total kill-rate (k/d/p) ranged from 

0.005 to 0.036, with 95% C.I. that ranged from +/- 0.01 to 0.12 k/d/p (Table 2). Across 

all packs the pooled 95% C.I. was 0.29 to 0.37 k/d/p, or approximately 52 to 67 kills 

during a 181-day winter period (Table 2). W olf packs killed an average of 41.8 elk (95% 

C.I. 34.9 to 48.7), 7.1 mule deer (3.3 to 10.9), 3.9 white-tailed deer (0.6 to 7.3), 2.7 

moose (0.5 to 4.9), and 3.1 bighorn sheep (0.5 to 5.6) per winter. Total kill-rates in kg 

prey killed/day/wolf (unadjusted for the percent edible, eaten, or lost to scavengers) 

averaged 9.5 KG/d/w, composed of 8.33 KG/d/w of elk (Table 3), 0.39 KG/d/w of mule 

deer, 0.38 KG/d/w o f white-tailed deer, 0.86 KG/d/w of moose, and 0,36 KG/d/w of 

bighorn sheep (Table 3). See Appendix B.l for detailed zone and species kill-rates for 

each w olf pack-year.

Comparison of Kill-rate Estimators

The Dale et al. (1995) method estimated higher kill-rates (0.36 k/d/p. Table 2) 

than the ratio method (0.32 k/d/p. Table 2, paired t-test, t22,a=o.05/2-  2.33, P=0.03). For the 

ratio method, the slope o f the model k/d/w, = po+piXj where x, is period length in days, 

was not different than 0 (Pi= -0.0007, S.E.(p 0=0.001, P=0.31). For the Dale et al. (1995)
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method, the slope was marginally different than 0 (Pi= -0.002, S.E.(pi)=0.001, P=0.07), 

suggesting a negative bias in kill-rate as predation period increased. Finally, the 

unweighted estimate o f kill-rate variance (Jedrzejewski et al. 2000) overestimated kill- 

rate variance compared to the ratio estimator by approximately 70% (Table 2).

Factors Affecting Kill-rates 

Prey Species

Kill-rates in KG/d/w differed among the five prey species (ANOVA, F4 gg=36.70, 

P<0.0005, Table 3). Kill-rates of elk were greater than other prey species kill-rates 

(P<0.0005), while kill-rates for the four alternate prey species were much lower and did 

not differ from each other (Table 3, all comparisons P>0.50).

Bow Valley Zones

Kill-rates o f elk in KG/d/w differed between Bow Valley zones (ANOVA, 

F2,4i= 5.80, P=0.006, Table 3). Central zone kill-rates of elk were lower than the eastern 

(P=0.004) and western zones (P=0.004). Although there was not much difference 

between eastern and western zone kill-rates (P=0.19), this was likely due to high 

variation in eastern zone kill-rates as a result of partial use by wolves (see discussion).

Prey-Switching

Kill-rates o f elk were strongly related to total kill-rate for both packs (Table 4). 

Kill-rates for individual prey species were unrelated to either elk or total kill-rates in both 

packs (Table 4), therefore we combined alternate prey species. Similar to the individual
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species relationships, combined alternate prey species kill-rate was unrelated to either elk 

or total kill-rates for both packs (Table 4). Relationships among prey species kill-rates for 

both packs indicated similar relationships in correlation analyses, therefore we report 

only the combined pack relationships in prey switching regression analyses (see 

Appendix B for individual pack models).

For both packs, kill-rate o f elk (KG/d/w) was strongly related to total kill-rate 

(Fig. 2a, F 1,21=283.4, r^=0.93, P<0.0005), but kill-rate o f combined alternate prey was 

unrelated to total kill-rate (Fig. 2a, Fi 2o=2.95, r^=0.08, P=0.11). Kill-rate of alternate prey 

was unrelated to kill-rate of elk (Fi,2o=0.39, r^=0.04, p=0.39) including the outlier for the 

Cascade pack from 1991/92. Excluding this point resulted in a shallow negative 

relationship between kill-rates o f elk and alternate species (Fig. 2b, Fi,2o=6.18, r^=0.24, 

p=0.02). Relationships within separate packs were similar (Appendix B).

Elk Density

Elk density declined substantially in the eastern and western zones since wolves 

recolonized in the mid 1980’s (chapter 4). Elk and total kill-rate (in KG/d/w) for both 

packs declined with decreasing elk density within their respective zone (Table 4). Elk 

density was unrelated to kill-rates of mule deer, white-tailed deer, or combined alternate 

prey for both the Bow Valley pack or Cascade pack (Table 4).

Discussion

W olf kill-rates in BNP (mean = 9.5 KG/d/w) were relatively high compared to 

published kill-rate estimates from other studies. Wolves in Minnesota killed 1.5 to 5.8 kg



53

of prey/d/w (Mech 1977), preying primarily on white-tailed deer. Thurber and Peterson 

(1993) found wolves killed approximately 6.2 KG of moose/d/w on Isle Royale. Wolves 

in a multiple prey system in Denali National Park killed a mean of 6.9 kg of prey/d/w 

(range 4.1 to 12.0 KG/d/w, Dale et al. 1994), >90% of which was caribou. Wolves preyed 

relatively equally on migratory caribou and moose in Alaska, killing an average of 5.3 kg 

o f prey/d/w (Ballard et al. 1997). In Riding Mountain National Park, Carbyn (1983) 

found wolves preying on elk in a multiple prey system killed a mean of 6.9 KG/d/w, 78% 

of which was elk. In another multiple prey system in Bialowieza primeval forest in 

Poland, wolves killed 7.7 KG/day/wolf, 68% of which was European red deer 

(Jedrzejewski et al. 2000).

The variability in kill-rate methods we reviewed make direct comparisons across 

studies difficult, nonetheless, our higher kill-rates were likely due to several factors. Kill- 

rates were unadjusted for the percent o f the carcass edible (approximately 75% by mass 

for moose, Peterson 1977) or the percent o f the carcass actually consumed by wolves 

(approximately 70% in BNP, Hebblewhite, in prep.). Kill-rates were also not adjusted for 

the percent of the carcass lost to scavengers such as ravens {Covus corax), which can 

consume up to 50% of a moose carcass killed by a pair of wolves (Hayes et al. 2000). 

Incorporating these factors is necessary to estimate actual consumption rates for wolves 

in BNP. In addition, kill-rates were higher than would be expected after wolves and elk 

are sympatric for some time, because wolf kill-rates declined over the recolonization 

period concurrent with declining elk density (Table 3, chapter 4, see discussion below). 

Therefore, the kill-rates we present should not be expected to reflect long-term or 

equilibrium conditions.
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In chapter 4 we show that wolf predation and snow depth can limit elk 

populations. Parks Canada (unpubl.data) estimated approximately 1000 bighorn sheep in 

the study area, thus the impact o f winter wolf predation on bighorn sheep (6-10 killed by 

both packs per winter) in our study area should be minimal. In the mid 1990’s, Hurd 

(1999) showed low density moose populations (~50 in the study area) were declining due 

to low adult survival, and predation by wolves was a leading cause of mortality. The 

relatively higher impact o f winter wolf predation (5-8 moose/winter) on these low density 

moose populations is consistent with these declines. Assessing the impact o f wolf 

predation on mule deer (14-16 mule deer/winter) and white-tailed deer (8-12 white-tailed 

deer/winter) is difficult because population sizes for these species have not been 

estimated in BNP.

Kill-rate estimates varied considerably despite intensive monitoring, and pooling 

estimates of precision across years masked within year variation. For example, in 

1996/97, we tracked the Cascade pack for 45% of the winter in 15 periods, and estimated 

a kill rate of 0.47 k/d/p. Despite this intense sampling effort, the 95% C.I. was 0.40 to 

0.54 k/d/p, larger than if we used the pooled variance estimate (95% pooled C.I., 0.43 to 

0.50). Despite intensive sampling effort, substantial process variation remained in kill- 

rates. A sampling effort of >25-30% of the winter period in >6-8 predation periods 

stabilized sampling variance in kill-rate estimates (Table 2, Appendix B). Therefore, 

intense sampling may be required to reliably estimate wolf kill-rates.

The Dale et al. (1995) kill-rate method estimated higher (8-9 more kills per 

winter) kill-rates than our method (Table 2). This was likely due to the relationship 

between the number of days between kills (kill interval) and probability of ending a
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predation period during w olf tracking. The probability of ending a predation period 

increases with longer kill interval due to weather, wolf movements, or reaching the end o f 

a pre-determined sampling protocol. By excluding the periods before and after the first 

and last kill, the Dale et al. (1995) method excluded long intervals without kills, 

overestimating kill-rate. Reducing the sampling period length in this manner would also 

increase sampling variation associated with kill-rates. In addition, we found a negative 

bias in kill-rate with increasing predation period length using this method. In summary, 

we recommend the ratio method for estimating kill-rate because the ratio method 

included longer kill intervals between kills than the Dale et al. (1995) method, it showed 

no evidence for bias with interval length, and has statistical properties based on sampling 

theory.

Factors Affecting W olf Kill-rates 

Prey Species

Carbyn (1983), Huggard (1993a), and Weaver (1994) reported that elk dominated 

the diet o f wolves in the Canadian Rockies, similar to our results. Kill-rates o f elk were 

much higher than kill-rates o f other prey, which did not differ. Kill-rates were ranked elk 

»  mule deer > white-tailed deer > moose % bighorn sheep, similar to Weaver’s (1994) 

review of North American wolf-elk studies.

Human Disturbance

Human use was the highest in the central zone surrounding the town of Banff and 

associated urban infrastructure (Green et al. 1996). Lower kill-rates o f elk occurred
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despite much higher densities o f elk in this zone (chapter 4) because of the negative 

relationship between wolf and human use (Paquet et al. 1996). Human use levels were 

similar in the eastern and western zone (Green et al. 1996), yet eastern zone kill-rates 

were lower than western zone kill-rates (Table 3). The Trans-Canada Highway (TCH) 

bisects the eastern zone, which was fenced to reduce highway-caused wildlife mortality 

(chapter 4) before the Cascade pack recolonized the area. Fencing created a barrier to 

movement for this w olf pack (Fig.l in chapter 4, Duke et al. in press) which failed to use 

wildlife crossing structures to access the south side o f the TCH over an 8-year period. 

Therefore, habitat fragmentation caused by the TCH is likely the main reason why 

eastern zone kill-rates o f elk were lower than the western zone.

Reduced predation by wolves has been linked to increased elk population growth 

and survival (chapter 4, Woods et al. 1996, McKenzie, in prep.). Increased elk density in 

the central zone had cascading effects on the ecosystem. These effects include increased 

elk herbivory on riparian willow {Salix spp.) and trembling aspen {Popiilus tremuloides, 

Nietvelt 2000, White and Feller 2000, White 2001), and indirect and exploitative 

competition with moose (Hurd 1999), beaver (Castor canadensis), and riparian 

passerines and amphibians (Nietvelt 2000). Although a quantitative test o f whether 

wolves are a keystone species (Menge et al. 1994, Power et al. 1996) has not been 

conducted, this indirect evidence suggests a causal mechanism of human disturbance 

altering w olf distribution, with associated cascading effects to lower trophic levels. 

Future research should test this hypothesis.

Reducing elk populations for public safety and ecological restoration objectives 

within the central zone is an important management issue in BNP (Parks Canada 1999).
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Recent formation of the Fairholme pack during 1999/00 increased kill-rates within the 

central zone (Table 3). Higher w olf kill-rates for elk in the central zone will limit elk 

populations (chapter 4). Human-caused mortality is an important factor affecting wolf 

population dynamics in BNP (Paquet et al. 1996), and human infrastructure has restricted 

w olf use o f the central zone (Duke et al. in press). Therefore, reducing human-caused 

w olf mortality and human use around the townsite will be critical to reducing elk 

populations in this zone in the future.

Elk Density

Both total w olf kill-rates and kill-rates of elk declined with elk density over time 

in BNP. The shape of the functional response of wolves to elk density is the subject of 

current research (Hebblewhite, in prep.) Regardless o f the shape, although the simple 

correlation between elk density and kill-rates alone cannot imply cause and effect, 

elsewhere we provide evidence (chapter 4) that wolf predation limited elk population 

growth rates and size. Reduced elk population size would lead to lower wolf density and 

kill-rates via well documented wolf-ungulate biomass relationships (Keith 1983, Fuller 

1989). We observed high fecundity through multiple litter production in several packs 

during early w olf recolonization (Paquet 1993, Paquet et al. 1996), suggesting that 

wolves had abundant prey at this time (Keith 1983, Boertje and Stephenson 1992, Boertje 

et al. 1996). Kill-rates, body condition, and fecundity of wolves recently reintroduced to 

Yellowstone National Park (YNP) also appear high (Smith et al. 1999). Therefore, kill- 

rates, population growth rates, and survival o f wolves may be higher early in wolf 

recolonization than where wolves and prey have been sympatric for some time.
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However, human-caused wolf mortality was high throughout the BNP study 

(Paquet et al. 1996, Callaghan in prep.) precluding simple interpretation of these wolf-elk 

relationships. W olf response to prey variation and human-caused mortality are both 

important factors explaining wolf-elk population dynamics (Keith 1983, Fuller 1989), but 

determining which factor is more important will be difficult in retrospective analyses, and 

may not be necessary for park management. The relationship between wolf and prey 

density (Keith 1983, Fuller 1989) is an ecological process tied closely to Parks Canada’s 

guiding legislation and policies of maintaining ecological integrity (Government of 

Canada 1988), and human-caused mortality is a human impact on this process.

Prey Switching

We found little support for prey switching by wolves between elk (primary prey) 

and alternate prey species. Kill-rate o f elk (in KG/d/w) explained 93% of the variation in 

total kill-rate, while alternate species kill-rate was unrelated to total kill-rate (Fig. 2a). 

Alternate species kill-rate was, however, weakly related to elk kill-rates (Fig. 2b, pi= -

0.08, S,E.(pi)= 0.02), indicating total kill-rates increased very little at low elk kill-rates as 

a result o f this shallow ‘switch’ to alternate prey (Table 4). These are not strong tests of 

prey switching because alternate prey densities were not controlled (sensu Patterson et al. 

1998). Despite this problem, we suggest wolf kill-rates were closely tied to elk density 

during our study, and alternate prey species kill-rates were low and essentially constant 

over a broad range o f high elk density (0.21 to 3.55 elk/km^, eastern and western zone, 

chapter 4) relative to alternate prey species density. Dale et al. (1994) found little 

evidence o f prey switching in wolf-caribou-moose systems, likely due to w olf selection
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for caribou. Similarly, strong selection for elk by wolves (Carbyn 1983, Huggard 1993b) 

may preclude prey switching at the range o f elk densities we observed. Alternately, low 

alternate prey densities (i.e. deer spp.. White (2001)) relative to elk in our study area may 

have precluded prey switching. Future research may highlight the importance o f the ratio 

o f elk to deer density for determining the potential for prey switching. However, at the 

elk and alternate prey species densities in our area of the Canadian Rockies, relationships 

between wolves and elk will likely dominate wolf-prey population dynamics.

This suggests the functional response of wolves to changes in elk density may be 

a constantly decelerating function of density, or a type II relationship ( Dale et al. 1994, 

Messier 1994, Hayes and Harestad 2000). Whether predation by wolves is regulatory 

depends on both the functional and numeric response, especially in multiple-prey systems 

(Messier 1995b). Given the close relationship between elk and total kill-rates, the y- 

intercept may be low or close to zero, suggesting regulatory dynamics for wolf-elk 

systems similar to moose-wolf systems (Messier 1994). Functional responses for 

alternate prey would be expected to be sigmoid or type III because wolves would switch 

predation to these species only at high alternate prey densities (Messier 1995b).

Conclusions

W olf kill-rates are inherently variable, and robust methods must be employed to 

estimate them. The wide array of methods used to estimate kill-rate is problematic, and 

following a statistical sampling design improved estimation techniques. In multiple prey 

systems where elk are the dominant prey species, total wolf kill-rate may depend mostly 

on elk, and wolves may not switch to alternate prey at low elk densities. W olf kill-rates
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may initially be higher following recolonization than when wolves and elk have been 

sympatric for some time. Humans can affect wolf-prey relationships by excluding wolves 

through habitat fragmentation and human use. Finally, while we expect analysis of the 

components o f predation will reveal important patterns in wolf-multi-prey systems, it will 

certainly suffer the same methodological problems that plague the study o f wolf-moose 

systems (Marshal and Boutin 1999). We echo Marshal and Boutin’s (1999) concerns that 

given low sample size and power, and the high variation we describe in kill-rates, perhaps 

the best way to infer the effects of wolf predation on dynamics o f northern ungulates is to 

estimate ungulate survival under varying ungulate and wolf densities.
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Table 1. Biomass values and sample size (in parentheses) for age/sex classes o f ungulates 
killed on highways and railways in Banff National Park, Alberta, collected from 1982 to 
2000 .

Age/Sex
Class Elk

Species Mass (KG) and Sample Size
Mule
deer

White
tailed deer

Deer spp. Moose Bighorn

Adult Female 223 67 58 64 — — —— 63
(35)' (37)2 (16)2 (53)' (7)2

Adult Male 262 88 81 85 ---- 78
(19)' (19)' (12)2 (31)' (7)2

Adult Combined 237 74 68 72 314 71
(54)' (56)' (28)2 (84)' (7)2 (14)2

Yearling 139 50 52 51 230 37'
Combined (14)' (15)' (14)2 (29)' (5)2 (4 ) '
Young o f the 113 34 38 38 169 29'
Year Combined (33)' (18)' (4)' ( 10) ' (6)2 (6) '
1 - Determined from winter (Nov to May ) sample.
3- Determined from yearly sample due to small sample size in winter.



Table 2. Snow tracking data used to estimate winter kill-rate of wolves in BNP from 1986 to 2000. For each wolf pack-year, the 
number of tracking periods (N), mean period length in days (Xs), number of days tracked (n), total number of days (X), % of the winter 
period tracked, number of kills found (y j, and mean travelling wolf pack size are reported. Total wolf kill-rate in kills/day/pack 
(k/d/p) and KG prey killed/day/wolf (KG/d/w) were estimated with a model-based ratio-estimator. Kill-rates calculated using the Dale 
et al. (1995) method are presented for comparison.

W olf
Pack-Year*

# of
period
s(N )

Mean 
length in 
days (Xs)

# Days 
tracked 
(n)

%
winter
tracked

# of 
Kills
(yi)

Wolf
pack
size

Ratio-estimator 
kill-rates 

k/d/p KG/d/w

Dale et 
ai. 

(1995) 
k/d/p

S.E. of (k/d/p) 

Unweighted^ Ratio^

SP 86/87 1 8.0 8 4.4 4 4.0 0.40 18.95 0.313 ___ 4 _4

SP 87/88 7 7.3 51 28.0 24 5.8 0.47 14.67 0.455 0.052 0.029
SP 88/89 10 5.2 52 28.7 14 5.0 0.29 8.09 0.333 0.041 0.014
SP 89/90 7 13.6 95 52.5 38 4.6 0.40 13.51 0.423 0.013 0.007
SP 90/91 6 7.7 46 25.4 22 6.2 0.48 12.70 0.577 0.080 0.036
SP 91/92 12 6.3 75 41.2 22 6.0 0.29 8.31 0.282 0-078 0.012
CT 90/91 7 6.6 46 25.4 22 5.6 0.48 4.57 0.500 0.051 0.023

EVP 93/94
5 6.0 30 16.6 11 5.3 0.37 10.83 0.200 0.031 0.014

EVP 94/95 11 7.4 81 44.8 19 8.4 0.23 4.05 0.333 0.035 0.010
EVP 95/96 14 6.6 93 51.1 24 5.3 0.26 8.16 0.308 0.026 0.010
EVP 96/97 15 5.5 83 45.9 20 5.9 0.24 6.12 0.438 0.022 0.007
EVP 97/98 7 9.4 66 36.5 5 2.8 0.08 4.61 0.100 0.031 0.011
EVP 98/99 12 5 60 33.1 16 2.3 0.27 14.91 0.462 0.035 0.010
EVP 99/00 8 13.0 104 57.1 12 2.1 0.11 8.70 0.166 0.013 0.005

CA 91/92
4 5.2 26 14.4 9 4.0 0.35 17.52 0.385 0.083 0.032

CA 93/94 7 3.7 26 14.4 8 4.0 0.31 15.27 0.235 0.052 0.018
CA 94/95 8 5.3 42 23.2 13 6.0 0.31 10.55 0.273 0.050 0.019 ONK>



Table 2. continued.
Wolf # of Mean # Days % # of Wolf Ratio-estimator Dale et S.E. of (k/d/p)

Pack-Year ̂ period length in tracked winter Kills pack kill-rates al.
s(N) days (Xs) (n) tracked (yi) size k/d/p KG/d/w (1995)

k/d/p
Unweighted^ Ratio^

CA 95/96 14 7.4 103 56.6 42 8.9 0.41 8.08 0.508 0.019 0.007
CA 96/97 9 8.2 24 13.3 35 13.1 0.46 6.41 0.596 0.053 0.023
CA 97/98 10 6.8 68 37.6 24 15.2 0.35 5.30 0.406 0.025 0.007
CA 98/99 9 4.9 44 24.3 14 12.3 0.30 4.09 0.333 0.037 0.015
CA 99/00 4 6.3 25 13.7 7 6.3 0.28 3.95 0.333 0.033 0.020
FR 99/00 8 5.8 46 25.3 12 2.1^ 0.26 20.18 0.417 0.039 0.013
X 8.5 7.0 68.8 31.0 23.7 6.1 0.33 9.98 0.363 •---

Totaf or 195* ———— 1294* 417* ———— 0,11'’ 5,07'’ 0.0286'’ ———- ————

Pooled S.E.'’

1. Abbreviations are CA -  Cascade pack, SP- the Spray pack, CT -  Castle pack, FR- Fairholme, BVP- Bow Valley pack, for year, 
winter 1999/2000 is abbreviated as 99/00.

2. Unweighted variance calculated from unweighted mean kill-rate following Jedzrejewski et al. (2000, see methods) with a finite 
population size adjustment accounting for % winter tracked (Thompson, 1992).

3. Model-based ratio variance estimate for k/d/p using equation 3 in methods.
4. Only one interval collected for Spray 1986/87 pack.
5. Pack size estimated from snow tracking, no wolves were radio-collared in this pack.

o>U)
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Table 3. Summary of winter wolf kill-rates from both w olf packs combined in 
kills/day/pack and KG of prey killed/day/wolf for the five prey species, and by Bow 
Valley zone for elk, in Banff National Park, 1986 to 2000. See Appendix B for detailed 
data for the 23 wolf-pack years.

Species / zone 
kill-rate

X
kills/day/pack

Range Pooled
S.E.

%
KG/day/wolf

Range Pooled
S.E.

Elk 0.23 0.04-0.40 0.025 8.33 1.66-20.18 5.19
Elk -  eastern zone 0.12' 0.02-0.28 0.036 3.44' 0.40-7.71 2.79
Elk- central zone 0.04' 0.00-0.20 0.050 1.73' 0.0-16.50 3.46

Elk -  western zone 0.15' 0.03-0.38 0.030 5.99' 1.49-16.03 4.33
Mule deer 0.039 0.01-0.12 0.010 0.40 0.15-1.56 0.45

White-tailed deer 0.022 0.01-0.12 0.007 0.38 0.04-1.17 0.32
Moose 0.015 0.01-0.08 0.004 0.86 0.31-6.04 1.35

Bighorn sheep 0.017 0.01-0.09 0.004 0.36 0.04-0.70 0.23

1 — Zone specific kill-rates of elk do not sum to total elk kill-rates because zone specific 
kill-rates only include years where wolves used a specific zone, while the total elk kill- 
rate is an average of all wolf-pack years in all zones.
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Table 4. Relationships between total kill-rates (KG/d/w), species kill-rates and elk 
density in the Bow Valley and Cascade w olf packs in Banff National Park, Alberta, 1986 
to 2000. Pearsons’s correlation coefficients between variables, p-value, and sample size 
for each pack.

Correlation
between Bow Valley Pack

W olf pack
Cascade Pack

r P n r P n
Total kill-rates (KG/d/w) and

Elk 0.99 <0.0005 14 0.92 0.001 8
Alternate prey -0.26 0.37 12 0.55 0.16 8

Mule -0.07 0.81 11 -0.18 0.70 6
WTD 0.29 0.45 8 -0.65 0.35 4

Moose -0.11 0.72 14 0.54 0.35 5
Bighorn Sheep 0.0 0.99 10 -0.51 0.66 4

Elk kill-rates (KG/d/w) and 
Alternate prey’ -0.41 0.15 14 0.19 0.66 8

Mule -0.14 0.63 11 -0.27 0.52 6
WTD 0.17 0.66 9 -0.74 0.25 4

Moose -0.20 0.50 14 0.47 0.42 5
Bighorn Sheep -0.07 0.86 8 0.63 0.57 3

Between Elk Density (KG/d/w) and 
Total 0.63 0.02 13 0.81 0.02 8
Elk 0.66 0.014 13 0.90 0.003 8

Alternate Prey’ -0.32 0.30 12 0.12 0.28 8
Mule -0.20 0.52 11 -0.26 0.54 6
WTD 0.33 0.43 8 -0.18 0.83 4

Moose -0.20 0.52 13 0.20 0.74 5
Bighorn Sheep 0.30 0.44 9 0.90 0.10 3

1- Combined deer species, moose, and bighorn sheep.
2- Elk abundance refers to the number of elk present in the main Bow Valley zone that 

corresponds to the specific wolf pack. The Bow Valley pack primarily used the 
western zone, and the Cascade pack primarily used the eastern zone. Using total Bow 
Valley elk abundance did not change patterns or correlations appreciably.
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Figure 1. General location of the study area in North America and detailed map of study 
area showing annual w olf pack territories (95% MCP) for the Cascade, Castle, Fairholme 
and Spray w olf packs in Banff National Park, Alberta, 1986 to 2000.



67

a)

b)

25

20

^  15

o>

10

0

1 1

•  Elk 
Alternate

1

species

1

•  y /  -# y X

/  -

— e

-  w

Cascade
Pack
Outlier -

1 -->0 r  )
/  o f  ^ ^ ,1-,

) 5 10 15 20 25
Total kill-rate (kg/d/w)

5.0

I
?

0.0
200 5 10 15 25

Elk kill-rate (kg/d/w)

Figure 2. Relationships between a) total kill-rate (k/d/p) and elk (circles) and total kill- 
rate and combined alternate prey (squares) species kill-rate, and b) elk kill-rate and 
alternate prey species kill-rate (with the 1991/92 cascade outlier removed), from the 
combined Bow Valley and Cascade w olf packs in the Bow Valley of Banff National 
Park, 1986 to 2000.
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Appendix B .l. W olf pack territory sizes, 1986 to 2000

I determined annual cumulative territory size for the Spray, Castle, Bow Valley, 

and Cascade w olf packs from 1986 to 2000 using the 95% Minimum Convex Polygon 

(MCP) and 95% Adaptive Kernel home range estimators in CALHOME (Kie et al. 

1996). I randomly selected 500 (the maximum allowed by CALHOME) radio-telemetry 

locations from aerial and confident class ‘ 1 ’ ground locations, using a maximum of 1 

location per 24-hour period.

Table B l. Cumulative annual wolf pack territory size in km^ in Banff National Park, 
Alberta, between 1988 and 2000. Length in years monitored, number o f radio-telemetry 
locations used in estimation (n), 95% Minimum convex polygon, and 95% adaptive 
kernel home range estimators are presented.

W olf Pack Years n 95% MCP 95% ADK
Spray 1 9 8 8 - 1993 500 721.2 1010.0
Castle 1 9 8 8 - 1993 387 1288.0 1644.0
Bow Valley 1994-2000 500 1904.0 2641.4
Cascade 1992-2000 500 1305.0 1291.0
Fairholme' 1999-2000 -3 0 0 N/A
1 -  no radio collared wolves in this pack of 2 during this period. MCP home range 
estimated from snow tracking.
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Appendix B.2. Wolf-pack specific prey switching regression models

Table B2. Linear regression models for testing prey switching hypotheses using KG prey 
consumed per day per wolf, showing parameter estimates, standard errors, and model 
diagnostics for Cascade, Bow Valley, and both packs combined in Banff National Park 
from 1986 to 2000.

Pack Dependent 
Variable (y)

Bo S.E. Independent 
Variable (x)

Estimate S.E. Model Diagnostics 
p-value

Both Packs
Elk kill-rate -1.54 0.65 Total kill-rate 0.99 0.06 0.93 p<0.0005
Alternate
kill-rate

1.94 0.38 Total kill-rate 0.06 0.036 0.13 p=0.102

Alternate
kill-rate'

1.75 0.35 Elk kill-rate 0.04 0.044 0.04 p=0.39

Alternate
kill-rate^

1.98 0.30 Elk kill-rate -0.08 0.022 0.24 p=0.022

Bow Valley Pack
Elk kill-rate^ -2.23 0.54 Total kill-rate 1.06 0.050 0.97 p<0.0005
Alternate
kill-rate'’

1.57 0.59 Total kill-rate -0.02 0.06 0.04 p=0.85

Alternate
kill-rate^

1.85 0.49 Elk kill-rate -0.02 0.06 0.014 p=0.70

Cascade Pack
Elk kill-rate^ 0.10 1.35 Total kill-rate 0.78 0.13 0.85 p=0.001
Alternate
kill-rate'’

1.74 0.51 Total kill-rate -0.07 0.06 0.22 p=0.29

Alternate
kill-rate^

1.71 0.40 Elk kill-rate -0.08 .05 0.32 p=0.I 8

1- Model including alternate species kill-rate outlier point Cascade 1991/92 (high moose 
kill-rate)

2- Model without Cascade 1991/92 alternate species kill-rate.
a,b,c — Parameter estimates for the intercept and independent variable did not differ 
between packs, and so were combined for the both packs analysis for the corresponding 
prey switching model.



Appendix B.3. Species and Bow Valley Zone Specific Kill-rates

Table B3. Elk kill-rates in kills/day/pack (k/d/p) and KG killed/day/wolf (KG/d/w), with the standard error in k/d/p, in BNP from 1986 
to 2000. Total elk kill-rates are divided into zone-specific kill-rates for the western, central, and eastern Bow Valley zones. Elk kills 
made outside of the Bow Valley are not shown, so the sum of the zone kill-rates do not equal total kill-rates.

Wolf Pack- 
Year

Total Elk kill-rates 
k/d/p S.E. KG/d/w 

(k/d/p)

Western Zone kill-rate 
k/d/p S.E. KG/d/ 

(k/d/p) w

Central Zone kill-rate 
k/d/p S.E. KG/d/w 

(k/d/p)

Eastern zone kill-rate 
k/d/p S.E. KG/d/ 

(k/d/p)
SP 86/87 0.40 18.95 0.38 16.03 0.13 N/A 2.93 _1 . . . . . .

SP 87/88 0.39 0.029 13.70 0.33 0.025 10.00 0.02 0.007 0.76 0.02 0.005 0.40
SP 88/89 0.21 0.015 7.22 0.10 0.014 3.86 0.10 0.011 2.83 . . . . . . . . .

SP 89/90 0.29 0.009 11.50 0.25 0.011 9.89 0.04 0.006 1.09 . . . . . . . . .

SP 90/91 0.35 0.037 11.01 0.11 0.019 2.93 0.11 0.016 2.64 . . . . . . . . .

SP 91/92 0.20 0.010 6.10 0.19 0.010 5.52 0.01 0.003 0.58 . . . . . . . . .

CT 90/91 0.09 0.013 1.76 0.09 0.013 1.76 . . . . . . . . . . . . . . . . . .

BVP 93/94 0.30 0.009 8.54 0.27 0.021 6.94 0.07 0.018 1.60
BVP 94/95 0.11 0.006 2.35 0.08 0.005 1.94 0.02 0.002 0.41 . . . . . . . . .

BVP 95/96 0.18 0.011 6.79 0.13 0.008 4.77 0.01 0.003 0.28 . . . . . . . . .

BVP 96/97 0.12 0.009 4.69 0.04 0.004 1.49 0.10 0.008 2.66 . . . . . . . . .

BVP 97/98 0.05 0.010 3.90 0.03 0.007 2.67 0.02 0.009 1.23 . . . . . . . . .

BVP 98/99 0.17 0.011 12.90 0.16 0.008 11.31 0.02 0.003 1.59 . . . . . . . . .

BVP 99/00 0.05 0.005 5.72 0.04 0.071 4.71 0.01 0.003 1.00 . . . . . . . . .

CA 91/92 0.19 0.032 10.80 —»— ——— ——— . . . . . . . . .

CA 93/94 0.27 0.020 14.79 *— 0.000 0.000 0.000 0.16 0.016 7.71
CA 94/95 0.26 0.023 9.10 — 0.000 0.000 0.000 0.12 0.016 3.45
CA 95/96 0.29 0.007 7.07 — - 0.000 0.000 0.000 0.28 0.007 6.79
CA 96/97 0.32 0.021 5.21 ---- . . . 0.000 0.000 0.000 0.25 0.020 4.11
CA 97/98 0.24 0.008 4.09 ——- . . . 0.09 0.007 1.87 0.03 0.003 0.47

o



Table B.3. Continued.
Wolf Pack- Total Elk kill-rates Western Zone kill-rate Central Zone kill-rate Eastern zone kill-rate
Year k/d/p S.E. KG/d/w k/d/p S.E. KG/d/w k/d/p S.E. KG/d/w k/d/p S.E. KG/d/w

CA 98/99 0.20 0.013 3.46 0.000 0.000 0.000 0.07 0.014 0.92
CA 99/00 0.04 0.021 1,66 0.000 0.000 0.000
FR 99/00 0.26 0.013 20.18 — - 0.20 0.015 16.50 0.04 0.006 3.68

X 0.23 8.33 0.14' N/A 5.99' 0.04^ N/A 1.73^ 0.12^ N/A 3.44'
Pooled S.E. 0.025 -------- 5.19 0.030 4.33 0.05 3.46 0.036 2.79

1 - Dashed lines in zone kill-rates indicate wolves did not use that zone during that wolf-pack year.
2- Zone specific kill-rates (k/d/p or KG/d/w) of elk do not sum to total elk kill-rates because zone specific kill-rates only include 

. years where wolves used a specific zone, while the total elk kill-rate is an average of all wolf-pack years in all zones.



Table B4. Alternate species kill-rates in kills/day/pack (k/d/p), KG killed/day/wolf (KG/d/w), with standard error in k/d/p, in BNP 
from 1986 to 2000. Kill-rates for mule-dger, white-tailed deer, moose, and bighorn sheep are presented. Unknown deer are not 
included, therefore species totals do not always equal total kill-rates. Dashed lines indicate no kills for that species found.

Wolf Pack- Mule-deer kill-rate White-tailed deer kill-rate Moose kill-rate Bighorn sheep kill-rate
Year k/d/p S.E. KG/d/w k/d/p S.E. KG/d/ k/d/p S.E. KG/d/w k/d/p S.E. KG/d/

k/d/p (k/d/p) w (k/d/p) (k/d/p) w
SP 86/87 0.04 0.009 0.00 ———— ———— ———— ———— ————

SP 87/88 0.06 0.008 0.42 0.04 0.017 0.55 ———— -------- --------

SP 88/89 0.03 0.005 0.67 0.02 0.003 0.20 -------- -------- --------

SP 89/90 0.02 0.005 0.37 0.03 0.005 0.38 O.OI 0.002 0.73 0.03 0.003 0.54
SP 90/91 0.01 0.003 0.18 0.04 0.009 0.44 0.02 0.004 0.59 0.04 0.011 0.47
SP 91/92 0.20 0.014 0.15 ———— ———- — — 0.03 0.005 1.40 0.05 0.010 0.66
CT 90/91 1.45 0.11 0.012 0.66 -------- -------- 0.00 0.09 0.018 0.70

BVP 93/94 0-05 0.004 0.00 0.03 0.008 1.96
BVP 94/95 0.01 0.002 0.36 0.01 0.001 0.08 0.02 0.004 0.92 0.04 0.007 0.34
BVP 95/96 0.04 0.004 0.18 0.01 0.002 0.11 0.01 0.003 0.64 0.01 0.002 0.00
BVP 96/97 ———— ———- 0.40 0.04 0.004 0.33 0.00 0.04 0.003 0.55
BVP 97/98 0.08 0.008 0.00 — — - - - - - - - - 0.00 0.02 0.002 0.43
BVP 98/99 0.03 0.003 1.56 - - - - -------- -------- 0.00 0.02 0.004 0.45
BVP 99/00 0.04 0.012 0.63 0.01 0.003 0.59 0.01 0.003 1.41 0.01 0.001 0.35

CA 91/92 0.04 0.019 0.33 —— — ̂ 0.08 0.013 6.04 0.04 0.013 0.36
CA 93/94 -------- 0.48 -------- ------' - - - - - - - - -------- ———— ————

CA 94/95 0.03 0.003 0.00 — - -------- 0.02 0.009 1.25 ————

CA 95/96 0.08 0.008 0.16 0.04 0.002 0.26 0.01 0.001 0.34 ———

CA 96/97 -------- — “ “ 0.45 0.01 0.003 0.04 0.03 0.004 0.65 0.01 0.002 0.06
CA 97/98 0.05 0.009 0.00 0.01 0.003 0.08 0.06 0.006 1.00 0.01 0.003 0.04
CA 98/99 0.12 0.024 0.26 -------- -------- 0.02 0.005 0.31 0.02 0.004 0.05
CA 99/00 -------- 1.19 0.12 0.027 1.17 -------- -------- — - -

to



Table B.4. Continued.
W olf Pack- Mule-deer kill-rate White-tailed deer kill-rate Moose kill-rate Bighorn sheep kill-rate
Year k/d/p S.E. KG/d/w k/d/p S.E. KG/d/ k/d/p S.E. KG/d/w k/d/p S.E. KG/d/

_______________________k/d/p_____________________ k/d/p_____ w_______________k/d/p_____________________ k/d/p_____ w

k' 1̂  j — ““'   ̂ ———— ———— “ “ — “““" “““ “
0.039 Ô4Ô 0.022 : 038 0.015 Ô86 ÔÔÎ7 0 3 ^

Pooled S.E. 0.010 0.45 0.007 0.32 0.004 1.35 0.004 0.23

w
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Figure B l. Relationship between the model-based ratio-estimate of the standard error of 
kill-rate in kills/day/pack and the a) percent o f the winter tracked, and b) number of 
predation periods (intervals) tracked from snow tracking data collected in Banff National 
Park from 1986 to 2000. The best fitting non-linear curves are a) Y=0.26x'
Fi,20=29.7, r^=0.60, and b) Y=-0.141n(x)+0.045, Fi,2o=l 1.94, P=0.37.
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Chapter 4. Factors affecting elk population dynamics in areas with and 
without predation by recolonizing wolves in Banff National Park, 
Alberta.

Introduction

Population dynamics of northern ungulates are affected by ungulate density, snow 

depth, weather, and predation (see reviews in Sæther 1997, Gaillard et al. 1998). Studies 

conducted in areas without predators emphasize density-dependence and weather as 

drivers o f ungulate population dynamics (Picton 1984, Albon et al. 1987, Clutton-Brock 

et al. 1987, Merrill and Boyce 1991, Langvatn et al. 1996, Jedrzejewska et al. 1997, 

Sæther 1997, Singer et al. 1997, Portier et al. 1998, Post and Stenseth 1998, Post et al. 

1999, Post and Stenseth 1999, Milner et al. 1999). Increasing ungulate density and severe 

weather decrease survival, and severe winter weather can interact with density, 

exacerbating mortality (e.g.. Portier et al. 1998, Milner et al. 1999). Adult survival is 

relatively high and constant, while juvenile survival varies with weather and density, and 

is often the prime determinant o f population growth rate (Gaillard et al. 1998).

Factors affecting population dynamics of northern ungulates are less clear when 

they are sympatric with predators such as gray wolves {Canis lupus), but general patterns 

are emerging of predation by wolves limiting if  not regulating growth rate and size of 

ungulate populations (Skogland 1991, Messier 1994, Orians et al. 1997). Limiting factors 

are density-independent, such as the effects of climate on growth rates, whereas a 

regulatory factor is density dependent, such as density-induced starvation (Sinclair 1989). 

Despite the difficulties in applying rigorous experimental design to predator-prey studies 

(Boutin 1992, Orians et al. 1997, Minta et al. 1999), many researchers have reported
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w olf predation decreases ungulate survival or growth rate, including some pseudo- 

experimental wolf controls (Gauthier and Theberge 1986, Gasaway et al. 1992, Hatter 

and Janz 1994, Boertje et al. 1996, Jedrzejewska et al. 1997, Bergerud and Elliot 1998, 

Berger et al. 1999, Kunkel and Pletscher 1999, Hayes and Harestad 2000). Many 

researchers found wolf predation increased with snow depth (Nelson and Mech 1986, 

Huggard 1993a, Post et al. 1997, Post et al. 1999), indicating predation interacts with 

weather in its effect on ungulate populations.

Analyses of factors affecting ungulate population dynamics have progressed from 

simple (Mech et al. 1987) and multiple linear regression (Messier 1991, McRoberts et al. 

1995), to accommodate complexities o f collinearity, time lags, and autocorrelation in 

generalized linear modeling of population dynamics (Royama 1992, Post et al. 1997, 

Portier et al. 1998, Milner et al. 1999). This progression reflects the complexity o f these 

systems, yet methods suffer from two fundamental statistical problems; model selection 

uncertainty (Burnham and Anderson 1998, Anderson et al. 2000), and the limitations of 

correlative studies in general (Royama 1992, Boyce and Anderson 1999).

Traditional model selection methods (e.g., stepwise) inadequately address model 

selection uncertainty and often are poor at selecting the correct model in complex 

systems (Burnham and Anderson 1998). Sparse data often limits our ability to distinguish 

among hypotheses in predator-prey research (Marshal and Boutin 1999), yet traditional 

hypothesis testing only allows consideration of single models (Burnham and Anderson 

1998, Johnson 1999, Anderson et al. 2000). Analysis o f complex systems such as 

ungulate population dynamics may benefit from adopting an information-theoretic
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approach where the philosophy of multiple working hypotheses (Chamberlain 1890) is 

central.

Problems with correlative approaches in the study of population dynamics are 

difficult to remedy (Royama 1992, Royama 1996, Boyce and Anderson 1999). 

Experiments are the best way to tease such factors apart (Underwood 1997), yet in a 

recent review, Minta et al. (1999) noted applying classic experimental design to predator- 

prey systems is nearly impossible, and others echoed these sentiments (Estes 1996, 

Terborgh et al. 1999). The only consistent advice has been to take advantage of natural 

experiments that provide variation in carnivore and ungulate density, and to compare 

population processes across this range of densities (Sinclair 1991, Royama 1992, Orians 

et al. 1997, Minta et al. 1999, Elkington 2000).

Wolves recolonized the Bow Valley o f Banff National Park (BNP) during the mid 

1980’s (Paquet 1993). Paquet et al. (1996) and Woods et al. (1996) suggested wolves 

were an important factor affecting elk population dynamics after recolonization. Human 

activity excluded wolves from an area (zone) o f the Bow Valley (Green et al. 1996), 

providing a serendipitous pseudo-experiment to evaluate the effects of different levels of 

w olf predation on elk population growth rate in different zones. We selected wolf 

predation, elk density, human-caused elk mortality, and snow depth (as a measure of 

winter severity) as possible determinants of elk population growth in BNP, and 

constructed an a-priori set of candidate models using these factors to explain population 

growth rate. We fit time series data from long-term monitoring of elk and wolf 

population dynamics from 1985 to 2000 to this set o f candidate models. We adopted an 

information-theoretic approach to guide model selection, using Akaike Information
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Criteria (AIC, Burnham and Anderson 1998) to select the best candidate model(s) for 

each zone. We compared models in zones with and without wolves to determine the 

effects o f differential wolf predation on elk population growth rate. If predation by 

wolves limits elk population growth rate, we predicted 1) elk populations will decline 

from pre-wolf conditions in areas with wolves compared to areas without wolves, 2) wolf 

predation should reduce ungulate population growth rate in areas with wolves, 3) high elk 

density should decrease growth rate in areas without wolves, 4) snow depth should 

interact with predation by wolves on elk in areas with wolves to decrease growth rate in 

deep snow winters, and 5) snow depth should interact with high elk density in areas 

without wolves to decrease population growth rate.

Study A rea

Banff National Park (BNP), 6641 km^ in area, is located on the eastern slope of 

the continental divide in the front and main ranges of the Canadian Rocky Mountains, 

and is characterized by extreme mountainous topography (1400 m to 3400 m). The 

climate is characterized by long, cold winters and short, relatively dry summers. The 

primary study area centers on the Bow Valley and adjacent side valleys. Mean snow 

accumulation in the valley-bottom averages 50 and 75 cm at Banff and Lake Louise, 

respectively, but is greater in side valleys and higher elevations. Two major towns (< 

10,000), the national railway (Canadian Pacific Railway, CPR) and highway (Trans- 

Canada Highway, TCH) system, numerous secondary roads and human development (ski 

resorts, golf courses) fragment the study area (see Fig. 1, chapter 3). See Huggard (1993 

a,b) and chapter 2 for additional details.
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M ethods 

Bow Valley Zones

During winter, elk in BNP are restricted to low elevations o f the Bow Valley (Fig. 

1, 2, Woods 1991, Woods et al. 1996, McKenzie 2001). Wolf, human, and elk densities 

vary throughout the Bow Valley (Fig. 1&2, Green et al., 1996, Paquet et al, 1996, Woods 

et al. 1996), and we divided the area into three zones (eastern, central, and western) that 

reflected these differences. General patterns o f elk mortality and elk and wolf density in 

the Bow Valley zones are summarized in Table 1. Elk exist in sub-populations 

corresponding to these three zones, with little permanent migration (<5%) and differing 

mortality patterns between zones (Woods 1991, Woods et al. 1996, McKenzie 2001). 

Human use was the highest in the central zone surrounding the Townsite o f Banff (Green 

et al. 1996), excluding wolves (Paquet et al. 1996), and reducing predation on elk 

(chapter 3). Highway-caused mortality o f elk in the central zone declined after TCH 

fencing was completed by 1990 (Clevenger et al. in press). W olf predation on elk was 

higher in the western zone (chapter 3), and elk were exposed to high railway and 

highway-caused mortality (prior to TCH fencing in 1997). Wolves recolonized the 

eastern zone in 1992/93; however they used this zone unevenly because of habitat 

fragmentation caused by the TCH (Fig. 1, chapter 3). Elk are exposed to high human- 

caused railway mortality in this zone, but highway caused mortality was eliminated 

following fencing in the mid 1980’s (Clevenger et al. in press).
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W olf Monitoring

We describe capture, radio-collaring, radio-telemetry, snow tracking, and kill-rate 

methods in detail in chapters 2 and 3. We studied 5 wolf packs from 1986 to 2000 

(detailed description and map in chapter 3). The Castle and Spray packs merged to form 

the Bow Valley pack in 1992/93, and were considered one pack for analysis. The Bow 

Valley packs made use of the western zone o f the Bow valley. The Cascade pack formed 

in 1992/93, the Fairholme pack in 1999/00. These packs primarily used the eastern and 

central zones, respectively.

Elk Population Size and Population Growth Rate (r)

We determined elk population size using late winter aerial elk surveys from 1985 

to 2000 following methods developed by Jacobson and Kunelius (1985) for Parks 

Canada. We used raw elk counts from aerial surveys because they have been shown to be 

similar to previous mark-recapture estimates (Woods 1991). Elk locations on surveys 

were used to assign elk to zones. We calculated elk density using the area o f each of the 

three survey zones (east, central and west). Survey zone boundaries were delineated by 

an elevation cut (to exclude rare observations) derived from aerial survey elk sightings 

and the survey flight line (Jacobson and Kunelius 1985). Elk were located below -2000 

m 99% o f the time during winter in the BV (Fig. 2). Therefore, we used this elevation 

contour to delineate zone boundaries using Idrisil6-GIS (Clark Labs) and a 1:50,000 

digital elevation model. The BV zones were eastern zone - 66 km^, central zone - 44 km^ 

and western zone - 187 km^ in area (Fig. 2), and we calculated winter range elk density 

(elk/km^) using these values.
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We defined our biological year from May 1̂  ̂to the following April 

approximating the life cycle of elk with aerial survey methods (Fig. 3). We calculated elk 

population growth rate using the instantaneous or exponential population growth rate, r = 

ln(Nt+i/Nt). We used exponential growth rate instead of percent change in population size 

(i.e., lambda) because taking the natural log o f lambda reduces statistical dependence 

between lambda and population size (Royama 1992: 6-7), and is equivalent to 

differencing time series to produce stationarity required for time series analyses (Royama 

1992).

Snow Depth

We estimated mean snow depth during each winter by averaging snow depths 

measured at 15-day intervals between October 15**̂ and April 30**̂  at the base o f Banff 

Mount Norquay ski resort (© Banff Mount Norquay, 2000) in the central zone (1700 m 

elevation). Snowfall varied substantially in timing and duration across all winters, and 

snow depth influences ungulate population growth through its effects on locomotion, 

foraging, and interaction with predation (Telfer and Kelsall 1984, Hobbs 1989, Huggard 

1993a). Therefore, we used mean snow depth to investigate the effects of winter severity 

on elk population dynamics. We included a SNOW* WOLF interaction in zones with 

predation (east, west) and SNOW*ELK term in the central zone to test for these 

interactive effects on growth rate (Appendix C).

Previous researchers described the importance of time-lag effects of snowfall 

(Post and Stenseth 1999) and cumulative snowfall on ungulate growth and survival 

(Mech et al. 1987, McRoberts et al. 1995). We tested for time-lags between snow depth
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and growth rate using cross-correlation function (CCF) analysis to ensure the snow index 

in our candidate model set was the appropriate measure (sensu Post and Stenseth 1998). 

Messier (1991) reasoned the r̂  values o f the relationship between growth rate and 

cumulative snowfall should increase over the relevant integration period (1 or more 

years) if cumulative snowfall was important. Therefore, we examined trends in Pearsons 

correlation coefficients between population growth rate and the cumulative snow depth 

over 1 to 3 years to determine the appropriate cumulative period for snow depth.

Human-Caused Elk Mortality

We determined the number o f elk killed by humans (on the TCH and CPR) during 

the winter between November and April 30̂  ̂of each year and zone from BNP warden 

service records (Parks Canada, unpubl.data). We used only winter human-caused 

mortality for comparison to winter wolf kill-rates (see below) to keep time periods 

consistent. We converted the number of elk killed by zone into a daily winter rate (elk 

killed/day) to further facilitate comparison to winter wolf kill-rates. We compared 

human-caused mortality rates (arcsine square-root transformed) between zones using 

ANOVA. We tested for the overall effect o f TCH fencing on central zone growth rate by 

including a dummy variable for whether the TCH was fenced (0 -  TCH not fenced, 1 - 

fenced). No fencing variables were used in the east and west zone because fencing was 

either present (eastern) or absent (western) for much of the time period, having little time 

to affect growth rate in a measurable manner.
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W olf Pack Size and Kill-rates

Mean travelling w olf pack size was determined similar to Messier (1985) and 

Dale et al. (1994, chapter 3). We combined pack sizes when more than one w olf pack 

used a zone to estimate the total number o f wolves using that zone. We estimated zone- 

specific per-capita kill-rate for elk (elk/day/wolf/zone) from continuous tracking intervals 

(chapter 3). Kill-rate per pack (total kill-rate) integrates the number o f wolves in a zone 

and their use of that zone (kill-rate). Therefore we multiplied the total number o f wolves 

by the kill-rate (elk/day/wolf/zone) to determine the total kill-rate (elk/day/zone/pack), or 

the total predation response (Messier 1995b).

Post and Stenseth (1998) reasoned Messier’s (1991) analysis o f the effects of 

predation rate (total kill-rate as a proportion of the prey population) on moose dynamics 

was subject to the problem of lack of independence between variables or spurious 

correlation ( e.g., McCullough (1979): p89, but see Prarie and Bird (1989). Therefore, 

Post and Stenseth (1998) used wolf density only in their analysis. We tested how total 

kill-rate affected elk population growth rate, a more informative index than wolf density 

alone, yet without the potential spurious correlation problem of predation rate.

We estimated kill-rates for the Spray, Bow Valley, Cascade, and Fairholme wolf 

packs between 1986 and 2000 (chapter 3), excluding 1992/93 when intensive monitoring 

lapsed. We obtained kill-rate data for the Castle pack for one year only (1990/91), yet this 

pack was active from 1986/87 to 1991/92 in the western zone. Failing to include their 

kill-rates biases western zone kill-rate low during the period this pack was active. 

Therefore, we assumed kill-rates for the Castle pack were constant over this period and
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added the kill-rate estimate for 1990/91 (0.09 elk/day/pack, chapter 3) to Spray pack kill- 

rates in the western zone for all years between 1986/87 to 1991/92 for analyses.

Statistical Analyses

We tested how elk density, snow depth, wolf kill-rate, and human-caused 

mortality affected elk population growth from time t to t+1 over the 15-year time series 

(Fig. 3). We developed an a-priori set o f candidate generalized linear models (GLMs) 

from these mortality factors (Appendix A4.1) that explicitly stated different hypotheses 

o f factors affecting elk population growth rate as models (e.g., appendix C in Orians et al.

1997). We restricted models to first order terms, plus the interactions between snow and 

w olf predation and snow and elk density because of the limited length of the time series 

(n=15). GLM ’s were of the general form

K = In
y

where t = 1 through 15 years, rt= exponential population growth rate, po is a constant, 

pi...pm were coefficients o f independent variables X| .... Xm, e is random error with the 

Z(e)=0. Candidate models were selected to align with previous models o f ungulate 

population dynamics.

We used maximum likelihood estimation (type III) in PROC GENMOD in SAS 

8.0 (SAS Institute, 1998) to estimate GLM’s for elk population growth rate, and to 

estimate parameter coefficients and likelihood profiles. Akaike Information Criteria 

(AIC) was calculated from the general formula for AIC = -2 (log likelihood) + 2K, where 

K = the number o f parameters, using the AICc correction for small sample sizes from
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Bumham and Anderson (1998). We then used AAICc to select the best approximating 

model(s) within a zone, using an approximate cutoff o f AAICc=^4 to describe the top 

model set (Burnham and Anderson 1998, Anderson et al. 2000). We used the sum of 

Akaike weights (coj) for each variable to rank them by importance (Bumham and 

Anderson 1998: 141) when model selection uncertainty arose in the top model set.

Autocorrelation, Time-lags, and Detecting Density Dependence

Autocorrelation, time lags, and the problem of detecting density dependence can 

affect regression analyses o f population dynamics (Royama 1992, Post and Stenseth

1998). We examined autocorrelation functions (ACF) and partial autocorrelation 

functions (PACF) to test for autocorrelation in independent variables (Royama 

1992:112). To test for time-lags between variables and growth rate, we used cross 

correlation function (CCF) analysis to explore the relationships between model variables 

and population growth rate. Many of our candidate models included Nt as an independent 

variable. Testing for density dependence by regressing Nt against population growth rate 

(rt = ln(Nt+i/Nt)) may negatively bias coefficients, increasing type I error rates (Royama 

1992, Elkington 2000). The relatively short (n=15) length o f our time series rendered the 

utility o f many of the techniques reviewed by Elkington (2000) to detect density 

dependence uncertain.

To address these statistical problems, we followed advice from Elkington (2000) 

and others (Sinclair 1989, Royama 1992, Estes 1996, Minta et al. 1999) that studies of 

predator-prey dynamics should take a multi-pronged and pseudo-experimental approach 

to minimize these problems. Because of the psuedo-experimental nature of our across
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zone comparison, we did not account for autocorrelation unless differences existed 

between zones in the degree of autocorrelation for a particular variable. Furthermore, we 

did not correct elk density parameter estimates in growth rate models because time-series 

length, and therefore bias, was equal between zones.

Model Validation

We decomposed GLM’s for each zone into difference equations representing 

linear models of elk abundance (Nt) following Merrill and Boyce (1991) as a limited 

form of model validation (sensu Boyce 2000). We used observed values for individual 

variables (Table 2) in the models to compare model predictions to observed elk 

population size, using the starting value for Nt at t= l . We converted density back to 

abundance for management interpretation. Where elk abundance was included in the 

model, we used mean values (Table 2) for other factors to predict abundance under 

average conditions using starting Nt,. This is equivalent to rewriting GLM’s (eq.l) as a 

form of the logistic growth equation (Merrill and Boyce 1991), where the GLM becomes

+ (equation 2)

where Nt= elk population size at time t, t = 1 to 15, and Pi= the coefficient of independent 

variable X,. To select among the top model set for validation, we correlated predicted Nt 

and observed Nt for each model in the top model set in each zone (similar to analysis of 

explained variation in logistic regression, Mittlebock and Schemper 1996). We present 

model validation results for the model in the top set with the highest Pearson’s correlation 

coefficient.
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Results

Elk declined in the eastern and western zone, while increasing in the central zone 

over the study period (Fig. 4) after starting at relatively similar densities in 1986 (Table

2). Elk density in all three zones were autocorrelated (eastern zone ACF r=0.57, p=0.04, 

central r=0.45, p=0.02, west r= 0.68, p=0.06) to density at 1-time lag. However, because 

the degree and strength of autocorrelation were relatively similar between zones, we 

ignored effects on parameter estimates for our comparative approach across zones.

Mean snow depth varied throughout the period (range 30 to 80 cm, CV=32%, 

Table 2), yet we found no evidence for cumulative effects of snow o f up to three years 

on population growth rate of elk (Appendix C). In addition, CCF analysis did not reveal 

any significant correlation’s in time lags other than the current year between elk growth 

rate and snow depth. Therefore, we used snow depth at a lag of 1 (i.e., snow depth at time 

t) to determine effects on growth rate at time t.

W olf kill-rates were highest in the western zone (0.17 kill/day/pack = k/d/p), 

intermediate in the eastern zone (0.12 k/d/p) when years when wolves were absent were 

excluded, and lowest in the central zone (0.06 k/d/p. Table 2, chapter 3). W olf kill-rate 

varied considerably within zones (CV’s from 67 to 82% , Table 2), but were the least 

variable in the western zone where wolves resided continuously through the study.

Human-caused mortality differed between zones (ANOVA, p=0.07, F2,42=3.24), 

and was highest in the western zone (0.07 elk/day), followed by the eastern zone (0.06 

elk/day), and central zone (0.05 elk/day). Western zone human-caused mortality was 

higher than the central zone (p=0.002), but not the eastern zone (p=0.14), and eastern and 

central human kill-rates did not differ (p=0.30, post-hoc bonferoni multiple comparisons).
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We found no autocorrelation among zone-specific w olf or human kill-rates nor time-lag 

effects on population growth rate in any zones. Finally, model selection or parameter 

estimates were not different using either Castle pack corrected or uncorrected western 

zone kill-rates for the period that the Castle pack was active, supporting use of the Castle 

adjusted kill-rates in western zone analyses.

E aste rn  Zone — M edium  W olf Density

Several models should be considered as good models o f population growth rate 

for the eastern zone (Table 3). The top model (SNOW) was only one and a half times as 

likely as the second model (WOLF + SNOW) to be the best approximating model, given 

the data (Table 3, the ratio of c o s n o w /  c o s n o w + w o l f =  1.5 equals the likelihood of model 1 

being the better approximating model, Burnham and Anderson, 1998: 126). Summing the 

Akaike weights (Zcoj) for the four parameters included in the top model set (0-4 AAICc) 

ranked variables in the following order, SNOW (co,= 0.87), WOLF (Zo)i= 0.37), 

WOLF*SNOW (2coi= 0.12), and elk (Dcoj= 0.11). Snow depth had a strong negative 

effect on elk population growth rate, as did predation by wolves (Table 3). Although the 

models SNOW + SNOW* WOLF, and SNOW + ELK were included in the top models 

set, parameter estimates for elk density and the snow-predation interaction had 95% 

likelihood ratio confidence intervals that broadly overlapped zero (Table 3).

Post-hoc exploratory analyses indicated a significant effect o f the presence of 

wolves (0-no wolves, 1- wolves) on elk population growth rate. Following this 

presence/absence analysis, we divided the eastern zone into two separate time series, one 

with and one without wolves. Despite small sample sizes (n=8 years without wolves, n=7
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with wolves), in simple univariate analyses elk density was negatively correlated with 

growth rate without wolf predation (Pearson’s r=-0.77, P=0.03) but not with wolf 

predation (r=0.37, P=0.42). W olf predation was negatively related to growth rate after 

1992 when they recolonized this zone (r=-0.74, P=0.05). Snow depth was negatively 

related to elk growth rates with wolves present (r=-0.78, P=0.04) but not without wolves 

(r=-0.41, P=0.14). Finally, human-caused mortality was unrelated to growth rate with 

(P=0.19) or without wolf predation (p=0.39).

C entra l Zone — Low W olf Density

The top model, ELK + TCH (cOj=0.41) was 3 times more likely to be the best 

approximating model compared to the second model, ELK+ H UM AN+ TCH (coj=0.13, 

AAICc=2.4, Table 3). In the top model, elk density was strongly negatively related to 

population growth rate, and TCH fencing was positively related to growth rate (Table 3). 

Across all 4 top models, the effects o f elk density were strongly negative (Table 3). 

Similarly, the effects of TCH fencing were strongly positive in the top model set (Table

3). The ELK* SNOW interaction term was not in any of the top models (Y=ELK* SNOW 

+ ELK + TCH, ranked 9̂ "̂ , AAICc=4.9), and did not differ from 0 ( P e l k * s n o w =  -4.0x1 0^  

S.E.= 2.0x1 O'*). The negative sign of snow depth and human coefficients in the second 

and fourth models were consistent with expectations (Table 3), but poor estimates 

indicated high variation.



90

Western Zone — High W olf Density

Elk population growth in the western zone was best described by a constant rate 

o f decline (Y=INTERCEPT, Table 3). Model selection was uncertain (low coj’s for all 

models), and all models fit poorly (Table 3) . SNOW was the best predictor (ZcL)i= 0.28), 

followed by ELK(ZcOi = 0.17), and HUMAN (EcOi= 0.07), but all variables had low 

akaike weights. Snow depth had a consistent and precisely estimated negative effect 

(Table 3). However, the negative effects o f elk density and human mortality on growth 

rate were weak (Table 3).

Model Validation

In the eastern zone, the model WOLF+SNOW matched observed elk population 

trends closer than other models in the top set (Fig. 5a, observed Nt vs model-predicted Nt 

Pearsons r=0.88, P=0.03). In the central zone, the model ELK+HUMAN+ TCH matched 

observed elk populations closer (Fig. 5b, r=0.84, P=0.05) than other models. Using this 

central zone model under average human caused mortality with the TCH fenced, the elk 

population stabilized close to a carrying capacity, k, of 450 elk (Fig. 5b). In the western 

zone, the INTERCEPT and SNOW model matched observed population size similarly 

(r=0.92, P=0.04, r=0.91, P=0.04, Fig. 5b).

Discussion

The limiting effect o f wolf predation and winter severity on elk population growth 

rate, and the regulatory effect of elk density on population growth rates without wolves in 

BNP, agrees with the findings of researchers studying northern ungulates elsewhere
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(Skogland 1991, Messier 1994, Sæther 1997, Orians et al. 1997, Gaillard et al. 1998). 

Without predation by wolves, elk in the central zone increased during the early part of the 

study while elk in other zones decreased, evidence for the limiting role o f wolf predation 

(Fig. 4). Reduction in human-caused mortality when the TCH was fenced in 1991 

increased population growth rates for central zone elk. Population growth rate declined as 

density increased in the central zone, and was regulated around a carrying capacity (K) of 

approximately 10 elk/km^ (~ 450 elk. Fig. 5b).

Snow depth and predation by wolves limited elk population growth in the eastern 

zone. When wolves recolonized this zone, the combination of predation by wolves and 

snow depth limited elk population growth rate and population density. In addition to 

support from the time-series models in the eastern zone, the simple univariate analyses 

confirmed these results in this zone. During the 7 years with predation by wolves, wolf 

predation and snow depth limited elk population growth rate. However, similar to the 

central zone, during the 8 years before w olf recolonization, elk density regulated 

population growth rate, and therefore elk population size to around 3.0 elk/km^, or 200 

elk (solving for 0 growth rate using the regression model, Elk population growth =1.10- 

0.35*ELKDEN, p=0.026, rW .59).

The western zone (high w olf density) was more difficult to interpret. A constant 

rate o f decline and no relationship between western zone kill-rate and elk growth rate 

seemed counter to results from the eastern zone. We feel this may be due to the pitfalls of 

correlative studies in predator-prey research (Royama 1996, Boyce and Anderson 1999). 

Boyce and Anderson ( 1999) described a three trophic level wolf-elk-vegetation 

population model, and explored the effects o f where variation entered the model (wolf
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predation or vegetation biomass) on how much variation in elk numbers was explained 

by w olf predation or vegetation biomass. By alternately introducing random variation to 

w olf predation or vegetation biomass, they showed the degree of variation in either 

trophic level controlled how much elk numbers correlated with that trophic level. This 

demonstrated the difficulty obtaining insights into population dynamics through 

regression analyses, and suggested the lack o f variation in elk population growth rates 

(Fig. 5c) rendered results from this zone uninformative. These results echo the caution of 

others (Royama 1996, Boyce and Anderson 1999, Minta et al. 1999) that key-factor type 

regression analyses on population growth rate have limited utility without an 

experimental approach.

Pseudo-experimental comparison o f the eastern and central zones provided a 

clearer test for the limiting role of wolf predation, and approximated a before-after- 

control impact design (BACI, sensu Minta et al. 1999). Wolves remained absent in the 

central zone (control) throughout the study, while in the eastern zone (treatment) wolves 

recolonized (impact) mid-way. Support for the limiting effect o f wolf predation comes 

from the comparison across zones for density-dependence and the effects of snow. With 

wolves present, density-dependence was not observed, although all three zones started at 

similar density ranges (Table 2), and a density dependent effect existed in the eastern 

zone before wolf recolonization. Therefore, the presence of wolves seems to limit elk 

below densities which would regulate growth rates, similar to other northern ungulates 

(Gasaway, 1992, Jedrzrejewska et al. 1997).

Winter severity (snow depth) negatively affected population growth rates with 

wolves in the eastern zone. However, contrary to our predictions and previous research
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showing the interactive effects o f density and weather on population growth rates in 

ungulate populations without wolves (Picton 1984, Fortier et al. 1998, Milner et al.

1999), the effects o f snow did not manifest without predation in the central zone. The 

lack o f a SNOW or SNOW*ELK interaction effect in the central zone could arise 

because starving elk follow a risk-sensitive foraging strategy (Sinclair and Arcese 1995), 

leaving the relatively safe central zone to forage on more abundant vegetation elsewhere 

in deep snow winters. Density-dependent starvation mortality o f elk in BNP during 

winter is extremely rare (Parks Canada, unpubl.data), and wolf predation is known to be 

at least partially compensatory (e.g, Mech et al. 1995). Therefore, at high elk density in 

BNP in the central zone, the effects o f snow do not manifest, perhaps because on a 

regional scale predation by wolves is partially compensatory on starving elk. This pattern 

may characterize the landscape scale of wolf predation on ungulate populations, and help 

explain the continental pattern of high winter kill in ungulate populations without wolf 

predation (Leopold et al. 1947).

The lack o f a strong SNOW* WOLF interaction in the eastern zone may be an 

artifact of the temporal scale o f the time series analysis. During deep snow winters, 

wolves ate less of each kill (M.Hebblewhite, unpubl.data), and Huggard (1993a) found 

kill-rates increased with increasing snow depths, revealing the importance of the 

interaction o f snow depth and predation within a particular winter. Using mean values of 

snow depth and predation for each winter in time series analyses masks this within year 

snow-predation interaction. Therefore, we believe the main effects of snow depth on elk 

are realized through this within winter interaction with w olf predation in BNP. The fact 

that there was no SNOW effect in the central zone also supports this interpretation.
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Inferences from our study would have been strengthened if  we had measures of 

calf and adult survival. Without such age-specific survival data, we were unable to infer 

how snow, w olf predation, or density affect demographic processes. Features o f our study 

area should be considered before our findings are generalized to other wolf-ungulate 

systems. Despite the strong evidence for elk sub-population structure (Woods 1991, 

Paquet et al. 1996, Woods et al. 1996, McKenzie 2001) and differences in wolf predation 

in BNP that align with the analysis zones (chapter 3, Fig. 1, 2), such boundaries are 

arbitrary at some level. We assume decreased elk numbers in the eastern zone to be the 

result of direct lethal effects o f predation. Following wolf recolonization of the eastern 

zone, elk may have adopted a strategy to minimize predation risk that included spending 

more time in the central (wolf-free) zone. If this occurred for even some elk in the eastern 

zone, our analysis includes both the direct lethal effects of predation and the indirect 

effects. Regardless, the consequences o f direct and indirect effects could manifest 

similarly on other trophic levels (Schmitz 1998).

In the analysis of complex ecological systems such as ungulate population 

dynamics, using an information-theoretic approach to guide data-based model selection 

and inference offers several advantages. Considering alternate models, especially with 

high model selection uncertainty, allowed us to gain a deeper understanding of factors 

affecting elk population dynamics. Adopting a single model for inference (i.e., using 

stepwise model selection) may have led us to overlook the important effects o f wolf 

predation and snow depth in the across zone comparison, and the significance o f the 

univariate before and after comparison in the eastern zone. Model selection uncertainty is
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not a weakness of this approach, as such uncertainty is a realistic measure o f our 

confidence in the models, given the data (Burnham and Anderson, 1998).

We used this approach (Appendix C.3) to examine the longstanding debate 

surrounding analysis of factors affecting moose population dynamics on Isle Royale 

(Mech et al. 1987, Messier 1991, McRoberts et al. 1995, Messier 1995a, Post and 

Stenseth 1998). We simultaneously compared 11 competing models explaining moose 

population growth rate using AlC, and found the best model aligned with Messier’s 

(1991) moose and wolf density model, which was 4 times as likely as any other model, 

and 60 times as likely as Mech et al.’s (1987) original snow (1 year or 3 year lag) model 

(Appendix C3). Adopting the multiple working hypotheses approach would have pre

empted debate surrounding these data, and future analyses o f factors affecting ungulate 

population dynamics should adopt an information-theoretic approach.

W olf predation on elk in the eastern zone had positive conservation implications 

for ecosystem processes within Parks Canada’s mandate to maintain ecological integrity 

(Government o f Canada 1988). Declining elk density as a result of predation by wolves 

reduced elk herbivory on riparian willow {Salix spp.) and trembling aspen {Populus 

tremuloides^ Nietvelt 2000, White 2001), and reduced indirect and exploitative 

competition o f elk with moose (Hurd 1999), beaver {Castor canadensis), and riparian 

passerines (Nietvelt 2000). Although a quantitative test o f whether wolves are acting as a 

keystone species (Menge et al., 1994, Power et al. 1996) has not been conducted, this 

indirect evidence suggests a causal mechanism of human disturbance altering wolf 

distribution, with associated cascading effects to lower trophic levels. Future research 

should test this hypothesis.
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Gaillard et al. (1998) suggested constant adult survival and variable juvenile 

recruitment characterized northern ungulate population dynamics. Their review included 

populations with and without major predators such as wolves in sensitivity analyses of 

ungulate population growth rate. Although we report population growth rates and not 

age-specific survival o f elk in BNP, we show ungulate population processes differ with 

and without wolves, and wolf predation appears to reduce interaction o f density on 

ungulate population dynamics. Therefore, with wolf predation, we may expect juvenile 

and/or adult survival to vary less with environmental factors, which could dramatically 

alter results o f sensitivity analyses. Northern ungulates evolved with predators such as 

wolves, and combining results from studies with and without predation may have serious 

implications for meta-analyses (sensu Gaillard et al. 1998) o f ungulate population 

dynamics.

Conclusions

Predation by wolves and snow depth limited elk growth rates in BNP, and density 

regulated elk population growth without predation by wolves. W olf predation in BNP 

appears capable o f reducing elk densities below the range at which density-dependent 

processes occur. We found no evidence o f interactive effects o f snow depth and density 

as described in ungulate populations without predators. Humans can have dramatic 

effects on ungulate population dynamics by altering the distribution of predators, and 

these effects may ripple down through trophic cascades to herbivores and vegetation. Our 

analysis offers an example o f the benefits o f adopting an information-theoretic approach 

to data-based model selection and inference in complex biological systems. Within the
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context o f protected area management and conservation across North American 

landscapes, restoration o f wolves has the potential to restore many of these ecosystems 

through their effects on elk population dynamics, and ecologists should take advantage of 

pseudo-experimental conditions that wolf restoration will present.
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Table 1. Summary o f w olf density, predation, and elk mortality patterns in the different 
zones o f the Bow Valley of Banff National Park (from Green et al. 1996, Paquet et al. 
1996, Woods et al. 1996).

Zone W olf Density W olf Predation Human Mortality
Eastern Medium' Partial ' Low highway, high

Central Low Almost None
railway
Low highway after 1990,

Western High Full
and low railway 
High highway, high 
railway

1 — Wolves recolonized this zone mid-way through the study, and then only used areas 
north o f the Trans Canada Highway.

Table 2. Bow Valley elk population data from Banff National Park, Alberta, from 1986 to 
2000. See text for variable descriptions. Mean and coefficient o f variation are presented. 
Mean height o f snowpack were the same for all three zones.

a) Central Zone

Bioyear Elk Nt rt Elk/km^ Snow
(cm)

Human
(Elk/day)

W olf
(Elk/d/w)

1985/86 223 0.40 5.20 39.00 0.12
1986/87 334 -0.19 7.79 45.51 0.07 0.13
1987/88 277 0.29 6.46 30.18 0.01 0.02
1988/89 369 0.04 8.60 45.83 0.01 0.10
1989/90 385 -0.04 8.97 39.54 0.03 0.04
1990/91 371 0.10 8.65 80.39 0.09 0.11
1991/92 412 -0.05 9.60 32.64 0.01 0.01
1992/93 390 0.31 9.09 32.89 0.01 ------
1993/94 533 -0.15 12.42 46.84 0.01 0.07
1994/95 459 0.08 10.70 45.79 0.06 0.02
1995/96 497 -0.08 11.59 62.92 0.04 0.01
1996/97 458 -0.01 10.68 67.24 0.08 0.10
1997/98 455 -0.16 10.61 30.96 0.07 0.10
1998/99 388 0.19 9.04 46.08 0.06 0.02
1999/00 467 0.00 10.89 33.28 0.04 0.21
2000/01 467* N/A --- - ----- ---- ----

Mean 401.20 0.05 9.35 45.27 0.05 0.07
CV —— 20.50 32.29 73.77 82.40

1 -T his count includes the 153 elk translocated during the preceding winter.
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Eastern Zone Western Zone
Bioyear Elk

Nt
rt Elk/

km^
Human

(Elk/day)
W olf
(Elk/
d/w)

Elk
Nt

rt Elk/
km^

Human
(Elk/day)

W olf
(Elk/
d/w)

1985/86 139 0.53 2.08 0.06 0.00 411 -0.21 2.20 0.149
1986/87 237 -0.22 3.55 0.08 0.00 332 0.10 1.78 0.199 0.47'
1987/88 191 0.37 2.86 0.06 0.00 366 -0.24 1.96 0.061 0.41'
1988/89 277 -0.21 4.15 0.06 0.00 288 -0.28 1.54 0.094 0.19'
1989/90 225 -0.06 3.37 0.06 0.00 218 0.33 1.17 0.099 0.34'
1990/91 211 -0.40 3.16 0.09 0.00 302 -0.52 1.62 0.238 0.28'
1991/92 141 0.27 2.11 0.10 0.00 179 -0.46 0.96 0.061 0.28'
1992/93 184 0.04 2.75 0.07 0.00 113 -0.25 0.61 0.028
1993/94 192 0.01 2.87 0.05 0.16 88 -0.20 0.47 0.066 0.27
1994/95 194 -0.11 2.90 0.04 0.12 72 0.32 0.39 0.017 0.08
1995/96 174 -0.66 2.60 0.10 0.28 99 -0.70 0.53 0.055 0.13
1996/97 90 -0.22 1.35 0.03 0.25 49 -0.20 0.26 0.022 0.04
1997/98 72 0.27 1.08 0.07 0.03 40 0.22 0.21 0.039 0.03
1998/99 94 -0.28 1.41 0.03 0.07 50 0.32 0.27 0.061 0.16
1999/00 71 0.03 1.06 0.05 0.04 69 -0.01 0.37 0.039 0.04
2000/01 73 N/A ----- ---- ---- 68 N/A - - — -----------

Mean 166.1 -0.04 2.49 0.06 0.12 178.4 -0.12 0.96 0.08 0.17
CV 37.9 ----------- 37.90 34.57 82.9 72.80 79.87 67.2

1- These are Castle pack adjusted western zone kill-rate



Table 3. Top GLM model set by Bow Valley zone for elk population growth rate, with model deviance, model structure and 
corresponding AAICc and Akaike weight (û>i(Bumham and Anderson 1998). Maximum likelihood estimates (MLE, type III) for 
coefficients in the models are presented with standard errors, coefficients with likelihood ration chi-square probabilities <0.05 are 
highlighted in black, and <0.10 marked by an asterix. Coefficients are reported in the order in the model, i.e. for pj, \= 1 if the model 
only has one parameter.

Model Structure
Deviance AAICc COi Po S.E. Pi S.E. Pi S.E. pi S.E.

Eastern Zone Models
l.Po+Pi(SNOW) 0.609 0 0.37 0.68 0.175 -0.016 0.004 —
2. Po+pi(SNOW)+p2 (WOLF) 0.573 0.63 0.27 0.63 0.177 -0.014 0.004 -0.62 0.25
3. Po+P,(SNOW)+P2(WOLF*SNOW) 0.577 2.38 0.12 0.619 0.183 -0.014 0.004 -0.009 0.010
4. po+p,(SNOW)+p4 (ELK) 0.586 2.60 0.11 0.767 0.206 -0.016 0.004 -0.044 0.05

Central Zone Models
l.po+p4(ELK)+p5(TCH) 0.175 0 0.41 0.89 0.174 -0.106 0.023 0.23 0.09 ——
2.Po+P3(HUMAN)+p4(ELK)+P5(TCH) 0.157 2.40 0.13 1.03 0.19 -1.14 0.87 0.118 0.02 0.267 0.09
3.Po+P4(ELK) 0.255 2.44 0.12 0.632 0.173 -0.062 0.018 ---
4.po+pi(SNOW)+P4(ELK)+P5(TCH) 0.172 3.60 0.07 0.924 0.19 -0.001 0.02 -0.106 0.02 0.238 0.09

Western Zone Models
1 .Po+e 1.459 0 0.21 -0.120 0.081 ----

2.po+p,(SNOW) 1.229 0.11 0.20 0.278 0.25 -0.01 + 0.005 ----

3.po+p4(ELK) 1.364 1.68 0.09 -0.007 0.135 -0.12 0.116 ----
4.po+Pi(SNOW)+P4(ELK) 1.127 2.00 0.08 0.40 0.026 -0.01* 0.005 0.12 0.105
5.po+p3(HUMAN) 1.406 2.13 0.07 -0.043 0.13 -0.95 1.25 —

oo
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Figure 1. Wolf and elk distribution during the winters in the Bow Valley of BNP, Alberta, 1997 to 1999, using random radio-telemetry 
locations (n=363) for radio-collared wolves in the Cascade and Bow Valley pack, and 45 radio-collared elk (J.McKenzie, 
unpubl.data). Bow Valley zones used in analyses were derived from aerial survey units (see Fig. 2), and correspond with high 
(western), medium (eastern) and low (central) wolf density and predation.
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Nt N,t+i N t+2

t Winter Mortality Factors t+1 Winter Mortality Factors t+2

Figure 3. Annual life cycle o f elk in BNP used for analysis showing late April survey 
periods in the squares, and intervals where growth and mortality occur as arrow lines.
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Figure 4. Elk population trends in the three zones (east, central, west) and total in the 
Bow Valley o f Banff National Park, Alberta, from aerial elk surveys during late 
winter, 1986 to 2000.
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a) Eastern Zone (medium w olf density), Y= SNOW+WOLF
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c) Western zone (high wolf density) Intercept Model and Y=SNOW
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Figure 5. Observed spring elk counts in Banff National Park (BNP) zone versus elk count 
predicted using top candidate generalized linear models converted to difference equations 
for each zone from 1985 to 2000. For the central zone, elk population size is predicted 
assuming average human caused mortality and a fenced highway using the GLM 
expanded as an approximation of the logistic growth equation.
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Appendix C l  Candidate Models for GLM Analysis

Table A4.1. Candidate models for determining factors that affect elk population 
dynamics, where the dependent variable in all models is elk population growth rate, and 
independent variables are listed in Table 2. In the eastern and western zones, a total o f 32 
(without TCH) models are in the candidate set, in the central zone there is a total o f 58 
models. Po= intercept, Pi=Snow Depth, Pz— Wolf Predation, P3=Human-caused mortality, p4= elk 
density p^= TCH fenced, Pô= Interaction term.

Candidate Model Description Model Structure

GLOBAL MODEL
INTERCEPT ONLY
WOLF
SNOW
ELK
HUMAN
T C H “
INTERACTION^
WOLF + SNOW 
WOLF + ELK 
WOLF + HUMAN 
WOLF + TCH"
WOLF + INTERACTION‘S 
TCH" + INTERACTION‘s 
SNOW + ELK 
SNOW + HUMAN 
SNOW + TCH"
SNOW + INTERACTION 
ELK + HUMAN 
ELK + INTERACTION 
ELK + TCH"
FIUMAN + INTERACTION 
HUMAN + TCH"
WOLF + ELK + SNOW 
WOLF + ELK + HUMAN 
WOLF + ELK + TCH"
WOLF + ELK + INTERACTION’S 
WOLF + HUMAN + SNOW 
WOLF + HUMAN + TCH"
WOLF + HUMAN + INTERACTION’S 
WOLF + SNOW + TCH"
WOLF + SNOW + INTERACTION’S 
SNOW + ELK + HUMAN 
SNOW + ELK + INTERACTION’S 
SNOW + HUMAN + TCH"
SNOW + HUMAN + INTERACTION’S

Y —Po+P 1X 1+ P 2X 2+ P 3X 3+ P 4X 4+P5X 5+P6X 6+E
Y = P o+ 8

Y=po+p2X2+£
Y =po+PiX i+s
Y=Po+P4X 4+6

Y=p0+p3X3+£
Y^po+PsXs+e
Y = P o+ P ôX 6+ £

Y=Po+Pi X i+P2X2+£
Y=Po+P2X2+p4X4+£
Y=Po+p2X2+P3X3+E
Y=po+p2X2“l'P5X5+£
Y = P o+ P 2X 2+ P ôX 6+ £
Y^po+PgX^+P^X^+c 
Y=Po+Pl X i+p4X4+£
Y=Po+Pi X 1+P3X3+£
Y=po+P 1XI+P5X5+£
Y=po+piXi+p6X6+£
Y=po+P4X4+p3X3+£
Y = P o+ P 4X 4+ P 6X 6+ £
Y=Po+P4X4+p5X5+£
Y=Po+p3X3+p6X6+£
Y=Po+P3X3+p5X5+£ 
Y=po+PiXi+P2X2+P4X4+e 
Y —P0+P 2X 2+ P 3X 3+p4X4+£ 
Y=Po+P2X2+p4X4-t-p5X5+8 
Y=Po+P2X2~*‘P4X4+P6X6+8
Y=Po+P 1X 1+P 2X 2+ P 3X 3+ 8

Y=Po+p2X2+P3X3+P5X5+8 
Y=Po+P2X2+p3X3+pûXô+8 
Y=Po+P 1X i+p2X2+P5X5+e 
Y=Po+P 1X1+P2 X2 +P6 X6 + 8  

Y=Po+P 1X I+P3 X3 +P4 X4 + 8  

Y=Po+P 1X1+P3 X3 +P6 X5 + 8  

Y=Po+P 1X I+P3X 3+ P 5X 5+8 

Y = P o + P iX i+ P 3 X 3 + P 6 X 6 + 8
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ELK + HUMAN + TCH"
ELK + HUMAN + INTERACTION*^
ELK + SNOW + TCH"
ELK + SNOW + i n t e r a c t i o n ‘s 
WOLF + TCH" 4- i n t e r a c t i o n * ’
ELK + TCH + INTERACTION 
HUMAN + TCH+ INTERACTION 
SNOW + TCH + INTERACTION 
ELK + SNOW + HUMAN + TCH"
ELK + SNOW + HUMAN + INTERACTION’S 
WOLF + SNOW + ELK + HUMAN 
WOLF + SNOW + ELK + INTERACTION’S 
WOLF + HUMAN + ELK + TCH"
WOLF + HUMAN + ELK + INTERACTION’S 
WOLF + ELK + SNOW + TCH"
WOLF + SNOW +TCH" 4-INTERACTION’S 
WOLF + ELK + TCH" 4-INTERACTION’S 
WOLF + HUMAN 4- TCH" +INTERACTION's 
SNOW 4- ELK + TCH" +INTERACTION’s 
SNOW + HUMAN + TCH" +INTERACTION’’ 
ELK + HUMAN 4- TCH" +INTERACTION's 
WOLF + ELK + SNOW + INTERACTION’S

Y—P04-P3X34-P4X4-1-P5X54-E
Y=po4-p3X34-p4X4-l-P5X64-s
Y=Pq4-P 1X 14-p4X44-P5X54-e
Y=po4-p 1X 14-P4X44-P6X64-G
Y=Po4-p2X24-p5X5-hP6Xe4-8
Y=Po4-p3X34-p5X5-t-P6X64-8
Y=Po4-P4X44-p5X54-P6X64-S
Y=Po4-p2X24-P5X5-|-P6Xâ4-8
Y=Po4-P 1X 1+P3X34-P4X4+P5X54-8

Y=po4-p 1X |4-p3X34-p4X44-p()X6+E
Y = P o 4 -P iX i4 -p 2X 24-P 3X 34-p 4X 44-8

Y=Po4-PiX]+p2X24-P3X34-p6X64-S
Y=Po4-P2X24-p3X3-|-p4X44-p5X54-S
Y=Po4'P2X24-P3X3-|-P4X44-p6X64-E
Y=po4-p IX14-P2X24-P4X44-P5X54-E
Y = p o 4 “p iX i4 -p 2 X 2 4 -P jX 5 4 -P 6 X 6 4 -8

Y = P o 4-P 1X 14-P4X4-1-P5X54-P5X64-8

Y=Po4-PiXi4-p3X34-P5X$4-p^X64-E
Y=Po4-P2X24-P4X44-PjXg4-p^X6+8
Y=po4-p2X24-P3X34-P5X54-p6X64-8
Y =Po4-p3X 34-p4X 44-P5X 54-P(iX 64-E
Y=Po4-pi X i4-p2X24-p4X4+psX54-£

a. TCH models not run in the eastern and western zone.
b. The interaction term was SNOW* WOLF in the eastern and western zone, and 

SNOW* ELK in the central zone.

A ppendix C.2. C um ulative snow analyses

Table C.2. Pearson’s correlation (R) between cumulative measures o f mean snowpack 
height over 1 to 3 previous winters on elk population growth rate in BNP. (P-values at 
a=0.05 are presented.)

Cumulative Bow Valley Zone
Winters Eastern Central Western
1 R = -0.745 -0.398 -0.150

P = <0.001 0.142 0.595
2 R = -0.333 -0.372 -0.360

P = 0.225 0.172 0.188
3 R = -0.422 -0.292 -0.216

P = 0.117 0.292 0.436
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Appendix C.3. Isle Royale Moose Population Dynamics Re-analysis Using an 
Information-Theoretic Approach to Model Selection

We re-analyzed the original (non-transformed) moose population data from 

Messier (1991) as a further example o f the utility o f the information theoretic approach. 

We simplified these data to the independent variables moose density, w olf density, 

current year snow depth and cumulative snow depth over the previous three years, and 

the dependent variable exponential growth rate. The competing models o f Messier (1991) 

and Mech et al. (1987) can be generalized to Moose+Wolf, and Snow (1 or 3 year time 

lag). We generated an a-priori model set o f all non-interaction models (not including 

models with 2 snow variables, for a total o f 11 models, Table A4.2) that explained 

population growth rate (In(lambda)), and used AICc to select the best candidate model 

given the data using methods described above for our analyses in BNP. The best 

approximating model was Y=Moose + Wolf, and this model had high Akaike weight 

(cùj=0.68) and low model deviance (Table A4.2). Considering parameter estimates from 

the top 3 models (i.e., within 0-4 AAICc) strengthened inference about the important role 

o f moose and wolf density on moose population growth on Isle Royale, and the low 

likelihood o f any snow effect (Table A4.2). This simple analysis agrees with Messier 

(1991, 1995), but more importantly illustrates the utility o f considering multiple working 

hypotheses simultaneously when compared to the acrimonious and confusing debate in 

the literature (Mech et al. 1987, Messier 1991, McRoberts et al. 1995, Messier 1995a, 

Post and Stenseth, 1998). Despite Post and Stenseth’s (1998) sophisticated re-analysis 

using step-wise model selection, how alternate models would have fit these data is 

unknown.



Table C.3. Re-analysis of the original data from Messier (1991) from Isle Royale Moose-wolf population dynamics research, showing 
the candidate generalized linear model (GLM) set used, the top model, AAICc, Akaike weights (co,), and parameter coefficients with 
standard errors. The dependent variable in all GLM’s was the natural logarithm of percent change (lambda) described in Messier 
(1991). Analysis was similar to methods described in detail for elk population in BNP. Coefficients with log likelihood chi-square 
probabilities <0.05 and the top model are indicated in bold.

Model Description Deviance AAICc COi Po S.E. P. S.E. p2 S.E. Po S.E.

Moose + W olf 0.254 0.00 0.66 1.05 0.23 -0.53 0.12 -0.06 0.018
Moose + Wolf + Snowl 0.244 3.01 0.15 1.05 0.23 -0.58 0.14 -0.07 0.02 0.0002 0.0003
Moose + Wolf + Snow3 0.251 3.45 0.12 1.13 0.30 -0.52 0.012 -0.06 0.02 -0.009 0.02
Moose 0.440 5.73 0.04 0.41 0.19 -0.31 0.14
Moose + Snow3 0.434 8.60 0.01 0.52 0.32 -0.30 0.14 0.012 0.026
Moose + Snowl 0.440 8.81 0.01 0.41 0.19 -0.31 0.15 0.00004 0.0004
Wolf 0.551 9.34 0.01 0.11 0.14 -0.02 0.02
Snowl 0.553 9.38 0.01 0.12 0.15 -0.0004 0.0004
Snow3 0.565 9.74 0.01 0.20 0.32 -0.02 0.03
W olf+ Snowl 0.520 11.47 0.00 0.26 0.20 -0.02 0.02 -0.0004 0.0004
Wolf + Snow3 0.536 11.95 0.00 0.32 0.34 -0.02 0.02 -0.02 0.03

o
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Chapter 5: Conclusions, Management Implications and 
Recommendations.

I summarize key management implications and recommendations from the 

separate chapters first, and then provide a synthesis and conclusions.

Chapter 2 -  Effects of elk herding on w olf predation

Wildlife managers and researchers should focus attention on the relationships 

between elk population size, herd size, and the number of herds because o f the 

importance o f these relationships to understanding the population consequences of 

predation by wolves on elk. Behavior may differ in areas without wolves. These 

relationships may not be the same in increasing or decreasing elk populations, because 

elk behavior may affect relationships differently dependent on population trajectory.

The evolutionary ecology of elk herding suggests elk minimize predation risk from 

wolves by either living in small, difficult to find herds, or by living in large herds and 

minimizing risk through dilution. These strategies may align with seasonal migration 

strategies. Urban elk populations should be viewed in this evolutionary framework of 

avoiding predation risk, and the behavioral plasticity of elk may allow switching between 

strategies to seek out predation réfugia. Therefore, managers may expect the development 

o f urban elk populations in landscapes where wolves are recolonizing. Factors that may 

contribute to this include the provision of high-quality forage, such as on golf courses 

(e.g., surrounding Canmore, AB) and with winter feeding programs (i.e., Jackson, WY).
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Chapter 3 — Estimating wolf killing rates in a multi-prey system

Humans can have a dramatic Impact on w olf kill-rates. By excluding w olf use of 

areas through fragmentation or high human use, humans may affect wolf-prey 

relationships, leading to predation réfugia for elk and other ungulates. This has broad 

ecosystem management implications where wolves, elk and humans are sympatric.

The correlation between elk and wolf density and wolf kill-rates, and the limiting 

effect o f wolves on elk populations, suggests declines in wolf populations may be 

expected after wolf populations rapidly increase following recolonization. Pup production 

and survival increased with prey density elsewhere (e.g., Boertje and Stephenson 1992), 

suggesting w olf populations may be able to absorb higher levels o f human caused 

mortality during early recolonization than after populations have been established for 

some time.

Chapter 4 — Factors Affecting Population Dynamics

Without wolf predation, carrying capacity (K) for elk is regulated by density around 

450 elk (-1 0  elk/ km^) in the central zone. Translocation as a management tool to reduce 

elk population density in this area is o f limited long-term utility because removing elk 

without reducing K will result in increased population growth rate back to carrying 

capacity.

W olf predation appears capable o f limiting elk populations in conjunction with snow 

depth. Increasing predation rates o f wolves to reduce elk in the central zone is consistent 

with Parks Canada’s policies o f minimal interference to maintain ecological integrity 

through ecological process management (Parks Canada 1994). Maintaining predation by
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wolves in the central zone requires restoring carnivore movements surrounding the 

Townsite through corridor restoration, and reducing human caused mortality o f wolves in 

BNP. Other measures to reduce the carrying capacity for elk in the central zone include 

aversive conditioning and reducing elk forage attractants. However, compared to the 

demonstrated effectiveness of wolves, these methods may do little in isolation to change 

elk population size in the central zone.

Wolves recolonized the eastern zone in 1992/93, however, habitat fragmentation 

caused by the TCH and an open waterway associated with a hydroelectric development 

(the Penstock) restricted full wolf use o f the eastern zone. The Penstock was buried in 

1995/96, and wolves increased use of the eastern zone north of the TCH dramatically 

(Stevens and Owchar 1996, chapter 4, Fig. 1), and this appeared to relate to elk declines 

after 1995/96 (chapter 4, Fig. 4). Duke et al. (in press) report similar effects o f corridor 

restoration on Cascade pack movements and kill-rate north of the TCH in the central zone 

during 1997/98. Therefore, corridor restoration in existing urban landscapes, and 

appropriate urban planning which considers carnivore corridor use in new developments 

is essential to reduce or prevent development of urban elk populations.

Although human-caused mortality was not a good predictor o f elk population growth 

rates, human-caused mortality is likely an important limiting factor of elk population 

growth. Fencing the central zone resulted in a large increase in central zone population 

growth rates. In the western zone, human-caused mortality rates were relatively high 

(Table 3, chapter 4). Cause-specific mortality rates for elk will help us understand the 

role o f human-caused mortality (McKenzie, in prep.).
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Im plications for W olf-EIk Dynamics

The effects o f w olf predation on elk populations will depend in part on whether wolf 

predation is described by a type II or type III functional response (Rolling 1959, Messier 

1995b). I will estimate the shape o f the functional response for wolves in BNP using data 

from this thesis in future research (Hebblewhite, in prep.). However, I believe my 

research suggests the functional response should be type II. The importance of elk to wolf 

kill-rates (chapter 3) suggests wolves will not switch between elk and other prey at low 

elk density. This is similar to wolf-caribou-moose dynamics (Dale et al. 1994, Dale et al. 

1995), characterized by a steep type II functional response for wolves preying on caribou.

The effects o f herding on predation by wolves in chapter 2 suggests more similarities 

to wolf-caribou dynamics. Wolves have higher encounter rates and attack success on 

larger herds o f elk, and I predict increased predation rates o f elk at intermediate elk 

densities, leading to a steeply shaped type II functional response than when compared to 

w olf single-prey models (i.e., moose-wolf. Messier, 1994).

The effects of alternate prey on predation rates by wolves on elk could result in a 

numeric response o f wolves to elk with a positive Y-intercept, because alternate prey 

could sustain wolves in the absence of elk (Messier 1995b). In simulation models,

Messier (1995b) showed a type II functional response combined with either a linear or 

type II numeric response with a positive Y-intercept lead to total predation rates on elk 

that are depensatory, or highest at intermediate-low densities (Messier 1995b). The 

dependence o f w olf kill-rates on elk in chapter 3 suggests a numeric response through the 

origin. In this case, a type II wolf functional response would lead to predation rates that 

are density-dependent (Messier 1995b). In the presence o f other predators, numeric
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responses with and without a zero Y-intercept may both result in low-density elk 

populations (Messier, 1995b).

Regardless of the nature o f the wolf predation rate on elk, empirical evidence from 

chapter 4 demonstrates the limiting role that wolf predation has on elk populations in 

BNP. The effects o f wolf predation on elk we observed are from an exploited wolf 

population, therefore the numeric response of wolves to prey density was likely 

depressed. Total predation rate possible for an unexploited wolf population should be 

higher than we observed.

Conservative ungulate harvest management may therefore be required, especially 

during early wolf recolonization as a result of these many factors. W olf kill-rates on elk 

may be increased at high elk density due to wolf-elk herding relationships. Wolves may 

have higher survival and recruitment, and therefore predation rates, during early 

recolonization when compared to long-term conditions. Post-wolf restoration harvests of 

ungulates should be expected to be less than pre-wolf restoration, precipitating 

conservative harvest management in areas where wolves are recolonizing to ensure the 

long term sustainability of wolf-elk-human hunter systems.

My research suggests that wolves are important ecologically, potentially functioning 

as keystone species in montane ecosystems through their effects on elk populations. 

Collaborative research in BNP suggests a mechanism of increased predation on elk 

reducing elk density, with increases in willow, aspen and other vegetation in response to 

reduced herbivory by elk. By reducing competition with elk for these plant resources, 

w olf predation may indirectly benefit moose, beaver, and biodiversity in general. Future 

research in BNP should formally test this hypothesis.
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The strength of the effect o f wolf predation on elk populations suggests hunting o f elk 

by humans may not be necessary to achieve ecological integrity objectives in BNP. 

Invoking the need for hunting by humans to remedy the lack of aspen regeneration in 

response to the restoration of wolf predation (White et al. 1998, White 2001) may be 

preliminary, especially considering the exploited nature of the w olf population in the 

Bow Valley o f BNP. Evidence for elk densities that are almost low enough to regenerate 

aspen clones in the Bow Valley of BNP within 15 years o f predation by exploited wolves 

suggests that hunting by humans is not necessary to maintain and restore ecological 

integrity in BNP. This should be an attractive implication for managers because it 

precludes opening up the Pandora’s box of hunting by humans in National Parks, and 

adheres to the Parks Canada principle of using minimal human interference to achieve 

ecological integrity objectives. While hunting by humans was no doubt important in 

shaping ecosystem states, uncertainty over effects of native hunting before and after the 

introduction o f firearms and horse-based hunting, as well as the difficulties in quantifying 

overall impacts of hunting, make science based management that includes a role for 

hunting by humans difficult, especially in today’s realities o f increasing human habitat 

fragmentation and habitat loss in and around our National Parks.

Conclusions

Management interpretation of the effects of w olf predation on elk populations will 

differ dependent on the policies o f the responsible land management agency. In National 

Parks and other protected areas mandated with the maintenance and restoration of 

ecological integrity, the impact of predation by wolves on elk populations should be
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viewed in a positive frame of mind. W olf restoration should resolve long-standing debate 

about the management o f ungulate populations that are perceived by some as being 

“overabundant” (Kay 1998, Boyce 1998, Singer et al. 1998), and will assist National Park 

objectives o f maintaining biodiversity due to the positive effects o f predation by wolves 

on ecosystems.

However, in management environments where the production of a maximum 

sustained yield o f elk or other ungulates for the hunting and/or the guiding industry is an 

important management objective, the implications of my research may be interpreted 

quite differently. Managing carnivores such as wolves differently in adjacent land 

management Jurisdictions is difficult (e.g., Smith et al. 1999). Wolves are susceptible to 

human-caused mortality due to their large home ranges, vagile nature, and potential for 

conflict with humans via livestock depredation (reviewed in Noss et al. 1996, Weaver et 

al. 1996). Therefore, wildlife managers should note the ecological importance of wolves 

regardless o f management environment on an appropriate ecosystem scale.
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