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MS. July, 1994 Forestry

Validating Diurnal and Topographic Climatology Logic Of The MT-CLIM model 

Director: Steven W. Running ^  —

World-wide interest in potential global climate change continues to motivate the 
development of a variety of ecosystem models at various spatial scales. Virtually all of 
these models require meteorological data as part of their parameterization. The MT- 
CLIM climatology model validated here offers a streamlined approach to providing these 
estimates. The diurnal component of MT-CLIM treats temporally cyclic parameters (e.g. 
humidity, incident solar radiation, and diurnal temperature) and the topographic 
component treats spatially sensitive parameters (e.g. hillslope air temperatures). This 
study validates key diagnostic variables for both types of logic. The diurnal logic was 
tested by comparing estimated incident solar and humidity parameters with observed 
meteorology data collected along a climatic gradient across a 200 km transect in Oregon 
in 1990. The validity of using night minimum temperatures as a surrogate for dew point 
temperatures was also tested. The topographic logic was tested through a comparison of 
modelled air temperatures with remotely sensed, thermal infrared surface temperatures 
derived from three Daedalus Thematic Mapper Simulator scenes taken in 1990 for a 10.8 
km^ study area near Sisters, Oregon.

In the diurnal study, I found good agreement between observed and modeled incident 
solar shortwave radiation (r  ̂values ranged from 0.82 to 0.89), and fair agreement 
between observed and estimated vapor pressure deficits (r  ̂values of 0.66 to 0.84). Night 
minimum temperatures proved to be a fairly useful substitute for dew point temperatures 
in this study. In the topographic study, after stratifying by canopy closure and relative 
solar loading, r̂  values of 0.74, 0.89, and 0.97 for the March, June and August samples 
were obtained using the new air temperature method, with consistently lower correlations 
using the original method (r  ̂of 0.70, 0.52, and 0.66 for the March, June and August 
samples). Several ideas for related follow-on studies are also suggested.

11



Table of Contents

Table of C ontents........................................................................................................................iii

List of T a b le s ............................  vi

List of Figures ........................................................................................................................ vii

Acknowledgements ....................................................................................................................ix

Chapter 1

Introduction .................................................................................................................................. l

Literature Cited ........................................................................................................................... 5

Chapter 2

Validating Diurnal Climatology Logic of the MT-CLIM Model Across A Climatic
Gradient In Oregon ........................................................................................................8
Introduction .....................................................................................................................8

Climatological Data Requirements For Ecological Models ........................8
M eth o d s..........................................................................................................................13

Humidity and Vapor Pressure Deficit ...........................................................16
Incident Solar Radiation.................................................................................. 21
Simulations and A nalysis................................................................................25

Results and Discussion ............................................................................................... 26
Humidity ..........................................................................................................26
Incident Solar R ad ia tion ................................................................................ 31

C onclusions...................................................................................................................32
Literature Cited ............................................................................................................ 35

111



Chapter 3

Validating Topographic Climatology Logic of the MT-CLIM Model Across A Seasonal
G rad ien t......................................................................................................................... 39
Introduction ...................................................................................................................39

Objectives ........................................................................................................42
Background ......................................................................................................43

M eth o d s......................................................................................................................... 48
Description of the MT-CLIM M o d e l.............................................................50
Description of the MTNTEMP M odel...........................................................55
MTNTEMP Model In p u ts .............................................................................. 56

Elevation and Derived Layers ...........................................................57
Canopy Closure L a y e r ........................................................................59
Albedo L a y e r .......................................................................................61
Relative Solar Loading Layer  ........................................................ 62
Derivation of Surface Temperatures from TMS Imagery .............64

Description of the new MTNTEMP model air temperature algorithm . . 67 
Development of the Canopy (T« and x) Temperature Adjustment

................................................................................................. 71
Development of the topographic temperature adjustm ent.............76

Analysis D esig n ............................................................................................... 77
Pooled Comparisons ..........................................................................81
Across-Category Comparisons...........................................................81
Within-Category Comparisons ........................................................ 82
Multiple Regressions..........................................................................84

Results and Discussion ............................................................................................... 85
Pooled and Across-Category Partition Results ........................................... 85
Within-Category Partition R esu lts.................................................................91
Multiple Regression Results ..........................................................................93

C onclusions...................................................................................................................96
Literature Cited ...........................................................................................................100

C hapter 4

Conclusions .............................................................................................................................. 107

IV



Appendices

Appendix 3.1 Statistical Summary of Study Site V ariab les.............................................112

Appendix 3.2 Example of MT-CLIM Model Input Requirem ents................................114

Appendix 3.3 Inputs Used for MTNTEMP Model R u n s ................................................. 116

Appendix 3.4 Major Differences Between MTNTEMP and MT-CLIM Model
Implementations...........................................................................................................121

Appendix 3.5 Statistical Summary of the OTTER Project Metolius weather station 1990 
daily dataset for 1990 .................................................................................................. 123

Appendix 3.6 Percent Canopy Closure Data L a y e r ........................................................... 125

Appendix 3.7 Annotated MTNEMP result database table structure l is t in g .................. 126



List of Tables

Chapter 2

Table 2.1: Example of MT-CLEM Model In p u ts ....................................................................11
Table 2.2: OTTER Site S um m ary ........................................................................................... 14
Table 2.3: Seasonal Distribution of Day Analyzed By S i te ...................................................16
Table 2.4: Solar Radiation and VPD Analysis Summary ....................................................27

Chapter 3

Table 3.1: Sun-Earth Geometry Parameters Used To Generate Relative Solar Loading
Images ........................................................................................................................... 63

Table 3.2: Daedalus TMS Channel Characteristics...............................................................66
Table 3.3: Comparison of Methods To Assign T_ Coefficients for the three Sample Dates

(March 21, June 25, and August 13, 1990) .............................................................  73
Table 3.4: MTNTEMP Model Run M a tr ix ............................................................................78
Table 3.5: Original Method Run Regression Results For Pooled and Across-Category

Partitioning.....................................................................................................................87
Table 3.6: New Method Regression Results from For Pooled and Across-Category

Partitioning.....................................................................................................................88
Table 3.7: Multiple Linear regression models for T  ̂vs Tg using the new site temperature 

estimation m e th o d ........................................................................................................94

VI



List of Figures

Chapter 2 Page

Figure 2 .1 Frequencies of days sampled by month for two sample years (1989 and 1990),
by OTTER site.................................................................................................................18

Figure 2.2 Diagram of MT-CLIM diurnal logic illustrating the relationship of diurnal
minimum and maximum temperature, incoming solar radiation, and the truncated
period defining daylight average temperature.............................................................21

Figure 2.3 Comparative plot of vapor pressure deficit (VPD) regression lines for the five 
sites, illustrating the ranking of the regression slopes across the site gradient. . . 28 

Figure 2.5 Comparative plot of incident solar regression lines for the five sites,
illustrating the division of the lines into two basic groups........................................29

Figure 2.4 Scatterplot and regression line of the vapor pressure deficit (VPD) model for 
the Santiam Pass (Oregon) OTTER site using 1989 and 1990 LTER (Long Term 
Ecological Research) data. This regression model provides a representative 
example of average humidity performance since data from this site did not require
screening.......................................................................................................................... 29

Figure 2.6 Scatterplot and regression line of the incident solar radiation model for the 
Waring's Woods (Corvallis, Oregon) OTTER site using 1989 and 1990 LTER 
data................................................................................................................................... 32

Chapter 3

Figure 3.1 OTTER project and study site location.................................................................48
Figure 3.2 Black Butte cinder cone 10.8 km^ study site, rendered from the USGS Bend

West 3 arc-second DMA digital elevation model...................................................... 49
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Chapter 1

Introduction

The renewed interest in potential global climate change world wide has intensified 

the science communities interest in developing better methods to provide meteorological 

parameterizations at various spatial scales (Dickenson, 1988; Schimel, 1991). Ecosystem 

models emphasizing the estimation of net primary productivity (NPP) and related 

parameters typically require key meteorological variables that include temperature, 

humidity, radiation loading, and precipitation (Pierce, 1994; Running, 1990; Running et 

al., 1989). The problems of adequately characterizing meteorology within an ecosystem 

modelling context involve both the temporal and spatial scales employed (Risser et al., 

1988; Running and Coughlan, 1988; Nemani and Running, 1993). Higher resolution 

(=30 to 90 m) ecosystem analyses have relied on watershed or even smaller scale, point 

based climatology databases such as the Long Term Ecological Research (LTER) 

network sites such as Coweeta and H.J. Andrews, National Weather Service (NWS) 

airport station sites, and USDA Forest Service fire Weather Library (Furman and Brink, 

1975). While these weather databases remain useful sources of point based climatology 

for establishing initial baseline conditions, they generally lack the site and temporal 

specificity required by newer, multiple scale ecosystem models (Nemani et al., 1993). 

Point based estimates also typically require special or complex treatments to allow
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extrapolation to spatial regions (Isaaks and Srivastava, 1989; Burrough, 1986; Daly et al., 

1994). Ecosystem models at the regional, continental or global scales typically address 

the model problem on an orthogonal grid cell basis, typically simulating conditions on a 

sequence of spatial adjacent analysis cells ranging in size from 30 m  ̂(stand level), 1 km^ 

(landscape), 50 km^ (continental), to by 1° ( = 100 km^) or larger — the global scale 

resolutions common to general circulation model (GCM) approaches (Dickenson et al., 

1993). Few of these grid cell raster based analysis approaches represent truly spatially 

connected designs; for simplicity the majority of these abstract the problem as a large 

number of contiguous, but essentially independent points.

As attempts are made to accurately represent ecosystem processes at these 

regional and larger scales, the lack of site specific climatology data at equivalent spatial 

and temporal scales becomes a serious limitation (Nemani and Running, 1989; Running, 

1991; Running and Hunt, 1991). Particularly at larger spatial cell resolutions (above 500 

m), a challenge remains in how well current modelling approaches account for sub-grid 

heterogeneity (Risser et al., 1988; Woodmansee, 1988). Researchers have responded to 

this need in several ways, with some applying classic geostatistical based approaches 

(Myers, 1991; Isaacs and Srivatrava, 1989; Phillips et al., 1991), some adopting 

modelling approaches such as MT-CLIM that combine atmospheric physics "first 

principles" with empirical extrapolation logic (Running et al., 1988), and some favoring 

statistical dynamical approaches that blend aspects of all of these (Avissar, pers. comm ). 

A primary advantage in models like MT-CLIM is the relative ease of parameterization



compared to more sophisticated models such as RAMS (Pielke et al., 1992) that treat site 

energy balances and atmospheric physics much more explicitly. The operational 

practicality of many of these more explicit models — a separate concern from their 

conceptual rigor — remains an issue for modelers faced with growing responsibilities to 

scale up in the face of historically unstable budgets.

The basic logic employed within the MT-CLIM model was validated as part of its 

original development and publication (Running et al., 1987; Hungerford et al., 1989). 

Since its appearance, the MT-CLIM model has begun to see more widespread use in a 

number of applications beyond its original scope (Redmond, pers. comm, and Milner, 

pers. comm). These more recent uses and the potential role MT-CLIM could play in 

regional and larger scale applications have invited a more thorough examination and 

validation of the basic assumptions underlying the model.

I address the general issue of validating MT-CLIM logic through two separate 

studies. The diurnal portion of the model is examined in Chapter 2, where the humidity 

measure (via vapor pressure deficit dynamics) and solar radiation variables are evaluated. 

The topographic portion of the model logic is treated in Chapter 3, through an in-depth 

examination of the site temperature mechanism in the model. The conclusion in Chapter 

4 summarizes the results of these two validation studies and suggests some areas in which 

the basic MT-CLIM logic might be improved in the future. As a comprehensive 

mountain climatology model, MT-CLIM provides estimates for many more variables than



are explicitly validated in this study. Specifically, minimum and maximum temperature 

estimates are not addressed here, as the logic used to estimate them is parallel but 

separate from that used to estimate the site hillslope temperatures. Precipitation patterns 

over mountainous terrain represent very complex spatial and temporal phenomena. An 

adequate treatment of precipitation was felt to be beyond the scope of this paper. 

Thornton and Running (1994), Daly et al. (1994), and others are currently investigating 

new, more rigorous methods for estimating precipitation over complex terrain. In the 

future, some form of this work will hopefully be incorporated into revisions of the MT- 

CLIM model.
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Chapter 2

Validating Diurnal Climatology Logic of the 

MT-CLIM Model Across A Climatic Gradient In Oregon 

Introduction

Climatological Data Requirements For Ecological Models

Climatological data play a critical role in regional and global scale ecosystem 

applications. In a review of climate information needs for ecological effects models, Peer 

(1990) describes 19 contemporary models, including biome level, ecosystem process, 

species dynamics, individual tree, and agricultural models, that all require basic 

meteorological data. Examples of such applications include hydro-ecology models (Band 

and Wood, 1988; Band et al., 1991), grassland models such as CENTURY (Parton et al., 

1988), and forest and biome ecosystem process models (Âgren et al. 1991 ; McMurtrie, 

1985; Running and Coughlan 1988; Running et al. 1989; Running and Gower, 1991). To 

exploit current remote sensing and geographical information system (GIS) approaches, 

many ecosystem models are evolving from one to two dimensional applications (Nemani 

et al., 1993), encouraging the development of better methods to generate climate surfaces.

8



These modelling approaches span a large range of spatial and temporal scales, 

emphasizing the breadth of the climatological data requirement. Climatological 

parameters required by these models typically include air temperature, solar radiation, 

some measure of atmospheric humidity, precipitation, and in some cases, wind speed and 

direction. Meteorology datasets available for ecological models are available in many 

diverse forms. Project specific on-site data from portable meteorology stations is 

available, as well as more localized archives such as the USDA Forest Service Remote 

Automated Weather Stations (RAWS) network (Warren and Vance, 1981; Redmond, 

1991). Longer term meteorological data available includes archived historical weather 

datasets such as the Climatological Data Summaries maintained by the National Oceanic 

and Atmospheric Administration (NCAA), at the National Climatic Data Center 

(NCDC), Ashville, North Carolina), derived from U.S. National Weather Service (NWS) 

stations.

The quality of available meteorological data varies considerably, with problems 

ranging from missing values to erroneous data collected by poorly calibrated or faulty 

instruments. An equally serious problem is that in some cases, variables of interest to 

ecological modelers such as incident solar radiation and humidity are simply not collected 

at all. The MT-CLIM approach of using 24-h minimum temperature as a surrogate for 

dew point temperature attempts to address these deficiencies; the ability to further 

establish the strength and theoretical limitations of this relationship is important in light 

of the relatively small fraction of established weather stations that collect humidity
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measurements of any kind. Running et al. (1987) estimated that the density of primary 

(NWS) stations recording humidity (as well as solar radiation) in any form was less than 

1/100,000 km^ throughout the western United States. The challenge for many ecosystem 

modelers is to match the qualitative and quantitative requirements of their models with 

the spatial and temporal scales of the various climatological data sources available. NWS 

Daily Climatological Summaries represent a dependable data source when good on-site 

weather data cannot be collected and NO A A weather satellite data are too coarse. 

However, the only variables routinely archived at both primary and secondary NWS sites 

are daily maximum and minimum air temperature (taken at 1.4 m above the ground) and 

precipitation. Dew point temperature measurements are taken, however, at some primary 

NWS sites usually situated at major airports. Although originally intended to work using 

NWS station Daily Climatological Summary data, the MT-CLIM model may be driven 

using any weather station source that provides maximum and minimum temperatures and 

precipitation.

Primary inputs to MT-CLIM include base station latitude, base station elevation, 

and site elevation, aspect, slope, albedo, atmospheric transmissivity, base and site 

precipitation isohyets, and temperature lapse rates (Table 2.1).
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Table 2.1 ; Example of MT-CLIM Model Inputs

Cascade Head, Site 1

NASA OTTER PROJECT MTCLIM Validation

CASC89.MTC Input data file (temperatures in deg C)

CASC89.CLM Output data file

S English (Temps: F and PPT: inches, or SI (CM) Units, [E,S]

N Dew point temperature supplied [Y or N]

I Number of PPT stations [ ! or 2]; if 2 then use 2 isohyets below

N Use threshold radiation [Y or N]

T Total or Average radiation [T or A]

Y Use Yearday (Julian) in place o f month & day [Y or N]

208 N. days. Integer variable, all the rest are single precision real values.

44.05 Latitude, in decimal degrees.

49.0 Site elevation (meters for si, or feet for english).

125.0 Site aspect 0 to 360 degrees (0 = north; 180 = south)

lO.O Site slope (Percent)

6.3 Site lai (all sided)

2.0 Site isohyet (precipitation)

2.0 Base isohyet station 1

0.0 Base isohyet station 2 (optional) see number o f ppt stations

1.0 Site east horizon (degrees)

1.0 Site west horizon (degrees)

0.16 Site albedo (.2 = 20%)

0.60 Trancf (Sea level atmospheric transmissivity)

0.45 Tempcf (Temperature correction for sine approx)

6.377 Environmental Lapse rate (Degrees cooling / 1000 m or ft)

7.288 Lapse rate for maximum temperature (Degrees / 1000 m or ft)

3.644 Lapse rate for minimum temperature (Degrees / 1000 m or ft)

2.730 Dew lapse rate (Degrees / 1000 m or ft)
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Standard MT-CLIM outputs include daily microclimate values for air temperature (site 

temperature, maximum and minimum temperature, in °C), incident solar radiation (0.4 to 

2.5 pm, in kJ/mVday), relative humidity, and precipitation (mm) in mountainous terrain.

In response to the paucity of site specific climatology data required for ecological process 

models. Running et al. (1987) devised a mountain microclimate simulator, the MT-CLIM 

model.

MT-CLIM evolved from several earlier research models, H20TRANS and 

DAYTRANS (Running, 1984) which evaluated the ecosystem level significance of 

stomatal control mechanisms (transpiration and water stress) at hourly and daily 

timesteps, respectively. MT-CLIM is composed of two types of climatology logic, the 

topographic climatology that spatially extrapolates meteorological conditions into 

complex terrain, and the diurnal climatology that derives additional meteorological 

information from the input data (Hungerford et al., 1989). In the topographic section of 

MT-CLIM daily data from primary NWS weather stations is extrapolated to nearby sites, 

adjusting for the differences in aspect, elevation, slope, and vegetation type between the 

site of interest and one or two base weather stations.

A key assumption in the development of the MT-CLIM logic, and one that 

distinguishes it from other meteorological models, is the concept of operational 

environment whereby important environmental variables are defined on the basis of plant 

physiology rather than only meteorologically (Mason and Lagenheim, 1957; Waring and
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Schlesinger, 1985; Waring et al., 1972). For example, day length can be defined in the 

MT-CLIM model in terms of the period when the light compensation point (70 W/m^) for 

conifer needles is exceeded — the point at which conifer stomatal opening, transpiration, 

and positive net photosynthesis begins. In irregular or complex topography, this 

definition of day length may be 20% shorter than the full period from sunrise to sunset 

(Running et al., 1987). This threshold may be adjusted for other species as well.

The diurnal climatology in MT-CLIM generates two particularly problematic 

climatological parameters required by ecosystem process models — incident solar 

radiation (Running et al., 1987), and a humidity measure useful from a plant physiology 

standpoint (Grantz, 1990). For this study, our objectives are to test key assumptions in 

the MT-CLIM model diurnal climatology logic by comparing incident solar radiation and 

relative humidities measured at five Oregon Transect Terrestrial Ecosystems Research 

(OTTER) sites against MT-CLIM estimations of these parameters.

Methods

This study was conducted as part of the NASA Oregon Transect Ecological 

Research (OTTER) project (Peterson and Waring, 1993). The OTTER project includes 

six primary sites along a 200 km east-west transect through central Oregon at 44 degrees 

North latitude, with elevations ranging from sea level to 1500 m. A timely opportunity to 

further validate basic assumptions in the MT-CLIM model was presented since each of
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the OTTER sites (except the Juniper site) were equipped with a portable weather station 

(Campbell Scientific, Logan, Utah). Incident solar radiation was recorded at each 

OTTER site meteorology station using a Licor LI220S pyranometer, sensitive to radiation 

at 400-2500 nm wavelengths. Relative humidity was recorded using a PCRC-55 

Humidity sensor from Phys-chemical Research Corp. At each site during 1989 and 1990 

hourly measurements of 13 meteorological variables were collected, including minimum 

and maximum temperature, relative humidity, and incident solar radiation; the daily 

dataset we used was prepared from this hourly dataset.

Table 2.2: OTTER Site Summary

Site Name Met.
Station

Elevation
(meters)

Met. Station Location Physiographic
Province

Mean 
Leaf Area 
Index 
(LAI)

Cascade Head 49 4 4 “3'0" N, 123°57'30" W Western coast range 6.4

Corvallis 60 44''360" N, 123° 160" W Interior valley 5.3

Scio 335 44"40'30N , 122°36'40" W Low elev. west 
cascades

8.6

Santiam Pass 1500 44°25'20 N, 121° 50*20" W High Cascades 
summit

2.8

Metolius 1027 44°25*0 N, 121°40'0" W Eastern high Cascades 2.0

In this dataset, daylight is defined as the full period from sunrise to sunset. Key 

site parameters for the five OTTER sites used in this study are presented in Table 2.2. 

Only sites with meteorology stations were used for this study; the eastern most site
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(Juniper) relied on the meteorology station at the Metolius site. For a more complete 

description of OTTER site characteristics, refer to Runyon et al. (1993) and Go ward et al. 

(1993).

The observed data for this study was obtained from the Forest Science Data Base 

(FSDB) maintained by Oregon State University as part of the Long Term Ecological 

Research (LTER) data holdings. Daily observation data from 1989 and 1990 were 

extracted from the daily meteorological dataset. Our goal was to assemble as close to a 

full annual data sequence as possible, both to ensure an adequate sample size and to 

reveal any trends in the data that might have been phenologically driven. Several date 

ranges of observed data were excluded for 4 of the 5 sites (all sites but Santiam Pass) due 

to known calibration problems with the RH sensors. Table 2.3 contains a description of 

the date ranges and total number of days used in this analysis. Daylight is defined within 

the LTER database as the time from sunrise to sunset, and so the model was set to match 

this definition of day length. The site variables used were 24 hour minimum and 

maximum air temperature (°C), daylight average relative humidity (%), total incident 

solar radiation (kJ/mVday), and precipitation (mm/day).
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Table 2.3: Seasonal Distribution of Dav Analyzed Bv Site

Site 1989 Days 1990 Days Total Days

Cascade Head Jun 07 - Dec 31 Jan 1 - May 31 359

Corvallis May 28 - Dec 31 Jan 1 - Mar 31 308

Scio May 28 - Dec 31 Jan 1 - Mar 3 1 308

Santiam Pass Jun 26 - Nov 05 May 9 - Nov 25 334

Metolius Jun 05 - Dec 31 Jan I - Mar 31 299

Humidity and Vapor Pressure Deficit

There are several common ways of expressing humidity, including vapor density, 

relative humidity (RH), and vapor pressure deficit (VPD). Vapor density is simply the 

mass of water vapor in a unit volume of air, and is also known as absolute humidity (Oke, 

1987). The most commonly collected humidity measure, relative humidity, is defined as 

the actual moisture content of a parcel of air as a percentage of that contained in the same 

volume of saturated air at the same temperature (Barry and Chorley, 1987). Dew point 

temperature, another index of humidity, is the temperature at which saturation occurs if 

air is cooled at constant pressure without addition or removal of vapor (Barry and 

Chorley, 1987). The relative humidity varies inversely with temperature during the day, 

tending to be lower in the early afternoon and higher at night. When the RH is 100%, the 

air temperature and dew point temperature are equal. Vapor pressure is a measure of the 

partial pressure exerted by water vapor molecules in the air (Oke, 1987). The VPD of an 

air parcel is the difference between the saturation vapor pressure and the actual vapor
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pressure. In an ecological context, VPD may be the most useful measure of humidity, as 

it represents a measure of the drying power of air, playing an important part in 

determining the relative rates of transpiration in plants (Monteith and Unsworth, 1990).

To test the MT-CLIM diurnal humidity logic, VPD was chosen as a humidity 

measure as opposed to relative humidity (RH) since plants physiologically respond more 

readily to fluctuations in VPD than to changes in RH (Grantz, 1990). Ecological process 

variables dependent on VPD include évapotranspiration (ET), stomatal conductance and 

photosynthesis (PSN) dynamics, and plant water relations. VPD also plays a key role in 

stomatal conductances (Gates, 1980; Jarvis and Mori son 1981) and in plant water flow 

resistances (Hunt et al., 1991). Running et al. (1987) reported an R  ̂coefficient of 0.85 

for the relationship between dew point temperature and 24- hour minimum temperature 

for three stands in the Lubrecht Experimental Forest in Western Montana; in the same 

study, he also reported R  ̂coefficients for relative humidity algorithms of 0.59, 0.43, and 

0.60 for 3 western Montana drainages.

Measuring humidity dependably over time has always been a challenge to 

meteorologists, due to the calibration, reliability, and longevity problems humidity
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instruments are subject to. When a given set of meteorological data are obtained, it is 

helpful to know the type of humidity sensing instrument used; unfortunately, this 

information is not always available in the dataset documentation. In general, laboratory 

quality dew point hygrometers are more accurate (Oke, 1987). Unfortunately their 

expense, power requirements, and the necessity for periodic calibration tends to limit 

their use to primary NWS weather stations. The less expensive humidity instruments are 

based on chemical or electrical sensors where the humidity is measured on the basis of 

changes in chemical substrate or electrical properties due to moisture absorption; these 

types tend to be the most prone to degradation problems. In the OTTER study, for 

example, within several months of initial installation the digital RH sensors at all sites 

except the Santiam site exhibited a

premature signal degradation, 

seriously compromising the data’s 

usefulness (Coward et al., 1993). 

The degradation problem was 

diagnosed in terms of RH trends at 

the affected sites increasingly 

departing from expected diurnal 

recovery levels. Field conditions

, Cascade
WaringsylTscIo

Sant la iny  ' y \  y  m .y  y —^ r  ,r\  ̂ a a m ia
/ . /  /  /  /  /  / Metolius

Figure 2.1 Frequencies o f days sampled by month for two 
sample years (1989 and 1990), by OTTER site.

apparently caused some physical loss of the RH sensor substrate over time, resulting in a 

systematic reduction in sensitivity and signal gain. This problem necessitated additional
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screening and verification of the measured relative humidity data from all sites but the 

Santiam Pass site.

For this analysis, we used daylight average relative humidity; only contiguously 

sequenced days with no missing values for temperature, radiation, or precipitation 

qualified for inclusion in the analysis dataset. We specifically excluded observations 

where the day fell within a time period where the RH sensor for the site was known to 

have degraded. Adequate samples sizes were thus obtained by using qualifying data from 

both 1989 and 1990 (Figure 2.1); as a result of these exclusions, contiguous 365 day 

sequences for each site were not possible.

The MT-CLIM model estimates site relative humidity and vapor pressure deficits 

using a scheme whereby dew point temperature is used in Murray’s (1967) formulation;

esd = 6.1078 * e
17269

2373  + (2.1)

where esd is saturated vapor pressure, in (kPa), 7 -̂  ̂ average daylight site temperature, 

in °C, and

es =  6.1078 • e
17 269 • 

237 3 * (2.2)
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where es is ambient vapor pressure, in kPa, is dew point temperature, in °C, and

es
esd

100 (2.3)

where RHsne is the daylight average site relative humidity, in percent. Two forms of these 

equations were used to produce the "observed" VPD vs. the "estimated" VPD, differing 

only in the way that ambient vapor pressure (es) was computed. To produce the 

"observed" VPD, saturated vapor pressure (esd) was computed exactly as shown in 

equation (I) and the site ambient vapor pressure was computed using a simple algebraic 

transform of the RH equation (2.3):

es = • esd  (2 .4 )

where RHobs is the measured daylight average RH (%) at the base station. Vapor pressure 

deficit is defined simply as the difference between saturated and ambient vapor pressures, 

VPD = esd - es (Oke, 1987; Monteith and Unsworth, 1990). To compute the "estimated" 

VPD for each site, ambient vapor pressure (es) was computed using equation (2), 

substituting the night minimum temperature for dew point temperature. Saturated vapor 

pressure (esd) was computed for the "estimated" VPD in the usual way as in equation (I).
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Incident Solar Radiation

The method MT-CLIM uses for computing solar radiation on the site is adapted 

from the methods of Bristow and Campbell (1984) and is driven solely by diurnal 

temperature amplitude, freeing it from the requirement of historically questionable cloud 

cover estimates. Our hypothesis that diurnal air temperature amplitude relates directly to 

incident solar radiation loading assumes a horizontally stable atmosphere over the region 

of interest, with no significant advective exchange (Figure 2.2) To the extent that stable 

conditions dominate, the model should perform fairly well. One implication of this 

diurnal temperature approach is that the performance of our model in estimating solar 

radiation is critically dependent on the 

many ways in which air masses may 

be horizontally modified; an air mass 

may be heated from below either by 

passing from a cold to a warm surface 

or by solar heating of the ground over 

which the air is located (Barry and 

Chorley, 1987). When significant 

horizontal air movement does occur, 

the differing temperatures and energy 

exchange properties of these masses

Tmax

Dtfyltght Avg. Temperafqre CO

SunsetSunrise
Daylength

Or

Dew Point 
TemperatureTmln

Figure 2.2 Diagram of MT-CLIM diurnal logic 
illustrating the relationship o f diurnal minimum and 
maximum temperature, incoming solar radiation, and the 
truncated period defining daylight average temperature.

can disproportionately control air temperatures and thus mask or override the more direct
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influence of solar radiation, weakening the models performance. Topographically driven 

phenomena such as cold air drainages, frost pockets, and physiographic formations that 

generate or amplify local winds can exert a similar effect. Synoptic scale frontal 

systems, local temperature inversions, and extremely mesic environments where latent 

heat exchange dampens the diurnal temperature amplitude present additional 

meteorological phenomena that the Bristow and Campbell (1984) based approach cannot 

accommodate well.

The daily 24 hour average incident solar radiation values measured at each of the 

five OTTER sites were compared directly against the MT-CLIM estimated values, using 

the total incident solar radiation (24 hour) as the observed data. Incident solar radiation at 

each site was computed in MT-CLIM using the algorithms documented in Running et al. 

(1987) requiring only observed daily minimum and maximum temperatures. Clear sky 

transmissivity is first computed, assuming a value of 0.60 for mean sea level, increasing 

by 0.008m ' with elevation. Final atmospheric transmissivity is then computed as a 

function of diurnal temperature amplitude, following the method of Bristow and 

Campbell (1984). The logic behind this relationship is that the total transmittance for a 

given day includes both direct and diffuse components incident on a horizontal surface, 

and therefore integrates the atmospheric attenuation coefficients implicitly (Bristow and 

Campbell, 1984). Next, a potential radiation model adapted from Gamier and Ohmura 

(1968) and Swift ( 1976) is used to calculate direct and diffuse solar radiation, adjusting 

for slope and aspect and truncating the direct beam solar irradiance by the east and west
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horizon of the site. The final estimate of incoming solar radiation to the site is then 

computed as the above-atmosphere radiation reduced by the atmospheric transmittance. 

The diurnal temperature range, AT, is calculated by the equation;

AT} = (2.5)

where J  is the Julian day index ( I ..365), is the daily maximum temperature (°C),

is the daily minimum temperature (°C), and is range in daily temperature 

extremes. The relationship between diurnal temperature amplitude and atmospheric 

transmittance is calculated using the Bristow and Campbell (1984) formulation:

7} = .4-[ 1 - ] (2.6)

where T, is the daily total transmittance, Â T  \s the daily range of air temperature, and A is 

the maximum clear sky transmittance, B (-0.0030), and C (2.4) are empirical constants 

that determine how soon T, is achieved as AT increases. The B and C constants represent 

the partitioning of energy characteristic of the modelled site. Although these have 

historically been fixed at the above values for all sites, future revisions of MT-CLIM 

should incorporate a better strategy for determining the seasonal site characteristics 

driving this relationship. The equation used to compute potential incoming radiation is:



&  = Is, + D
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(2.7)

where G, is the total incoming radiation on a slope (kJ/m^) at the earth's surface, Is  ̂ is the 

direct beam radiation on a slope at the earth's surface, and is the diffuse radiation at the 

surface; the direct beam radiation Is  ̂at the surface is calculated by:

Is, = cos 4) ( RN-T^'^  ) (2.8)

where is the solar constant (kW/m^) above the atmosphere as a monthly average, N  is 

the time interval for calculation in seconds, is the daily total transmittance from 

equation (6); and AM  is the optical air mass, calculated using the equation:

AM  = 1.0
CO S0

+  1.0 • 10 -7 (2.9)

where cos 0 is  the cosine of the zenith angle (see Running et ai., 1987 for more details).
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Simulations and Analysis

Two sets of MT-CLIM simulations were run to generate observed and predicted 

values using versions of MT-CLIM in which the humidity algorithms were modified as 

discussed above. The observed solar radiation values (as 24 hour averages) used were the 

original values measured at each of the 5 sites with the LI220S pyranometer mounted on 

portable weather stations. The first set of simulations produced the observed VPD values 

for each of the 5 sites, and the second set of simulations produced the estimated VPD 

values and estimated incident solar radiation values for each of the 5 sites.

Several statistics were used to evaluate algorithm performance, including the 

coefficient of determination, the beta and y-intercept linear regression coefficients, and 

the root mean square error, RMSE. The RMSE provides an indication of curve fit 

accuracy, with observed values close to estimated values resulting in a lower RMSE. The 

RMSE is a conservative error measure that tends to penalize large individual errors 

heavily (Reicosky at al, 1989). Standard two-tailed hypothesis tests of the model beta 

(Bj) coefficients (Hg: B, =0, B  ̂ not equal 0) and y-intercepts (using the same two- 

tailed tests) were employed to further investigate the strength of the fitted models. Lastly, 

F statistic and T statistic probability values were calculated to evaluate the overall quality 

of the linear regression models. All statistics were computed using the SPSS/PC+ 

statistical software package (Norusis, 1988).
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Results and Discussion

Humidity

coefficients of determination for the observed vs. predicted VPD models 

ranged from 0.66 to 0.84, with F statistics significant at the 0.001 probability level, with 

three of the five sites R  ̂coefficients above 0.80. This suggests that the VPD approach 

yields acceptable results overall, particularly in light of a pooled site VPD R  ̂of 0.72. An 

examination of Normal P-P plots indicated no serious departures from normality, and 

plots of casewise standardized residuals vs. fitted values indicated no obvious patterns in 

error trends. There was a slight clustering trend in R  ̂coefficients with the wetter, more 

productive sites (Cascade Head and Scio) having the lower correlations (0.66 and 0.68 

respectively) and the other sites’ R  ̂values ranging from 0.80 to 0.83 ( Table 2.4). The 

distribution of point values for most sites was slightly skewed, due in part to a slightly 

asymmetric sampling distribution seasonally (Figure 2.1). Regression model slopes for 

the VPD models ranged from a low slope of 0.72 at the mid elevation, productive Scio 

site to a high slope of 1.5 at the cool, moist Cascade Head site (Figure 2.3). VPD 

regression y-intercepts ranged from 0.13 to 0.31 kPa, which in conjunction with the 

positive slopes contributed to a slight trend towards overprediction.
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The Santiam Pass VPD regression model, where observed data did not require screening, 

may represent a useful average case of MT-CLIM s humidity performance; the regression 

slope for this site was 1.001 with a y-intercept of 0.31 kPa (Figure 2.4).

Table 2.4: Solar Radiation and VPD Analysis Summary

Incident Solar Radiation (kJ/m“) Relationships

Site R: Std. Error 
Y'

RSME Regression Model N

Cascade Head 0.83 2878.5 3267.5 y=0.792(x>- 657.4 359

Corvallis 0.89 3033.9 997.9 y= 1.054(x) - 1499.8 308

Scio 0.88 2736.5 4498.3 y = 0 .8 0 6 (x )-  1763.8 308

Santiam Pass 0.84 3881.4 1619.4 y= 1 .048(x>-2302.1 334

Metolius 0.84 4134.6 1667.5 y= l.OIO(x)- 1804.8 299

All Sites Pooled 0.85 3691.9 2733.0 y= 0.959(x) - 1678.6 1608

Vapor Pressure Deficit (VPD, in kPa) Relationships

Cascade Head 0.68 0.192 0.38 y= 1.537(x)+0.2706 359

Corvallis 0.82 0.242 0.43 y= 1.293(x)+ 0.2953 308

Scio 0.66 0.205 0.11 y= 0.727(x)+ 0.1345 308

Santiam Pass 0.84 0.213 0.33 y= 1.001(x)+0.3143 334

Metolius 0.81 0.236 0.38 y= 1.409(x)+0.1671 299

All Sites Pooled 0.72 0.269 0.36 y= 1.104(x)+0.2634 1608

R‘ is the coefficient o f determination for the least-squares model fits.
N is the number of data points
RMSE is the root mean squared error
SEE Y is Standard error of the estimate (for fitted Y values)
T statistic significant at <= 0.001 for all model beta coefficients and Y-intercepts 
F statistic significant at <= 0.001 for all regression models.
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In general, MT-CLIM somewhat 

overpredicted VPD across all sites 

except Scio. In this study where the 

emphasis was on testing the diurnal 

logic of MT-CLIM, the "base 

station" site characteristics were 

identical to the "extrapolated" sites; 

corrections for changes in aspect, 

elevation, or slope were therefore not
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Figure 2.3 Comparative plot of vapor pressure deficit 
(VPD) regression lines for the five sites, illustrating the 
ranking o f the regression slopes across the site gradient.

required. When the extrapolated site does markedly differ in aspect, elevation and slope 

from the base station site, it is possible for the MT-CLIM model to slightly over or under 

estimate air temperatures at the target site, due to the way the algorithms extrapolate the 

base station daily T̂ ^̂ x and temperatures to the new site characteristics. Such errors 

in estimated air temperature, if present, would naturally affect the VPD estimates.

For process models depending on these humidity estimates, this would likely 

result in somewhat higher transpiration rates and altered soil water dynamics. Limited 

availability of dependable humidity or dew point temperature data for ecosystem research 

applications appears to justify further efforts to strengthen the MT-CLIM approach.

Better correction logic, however, still needs to be developed to accommodate the 

meteorological conditions described earlier that MT-CLIM currently doesn’t handle well. 

As a wider geographic test of the basic relationship between dew point temperature and



29

24 hour minimum temperature, we 

fitted linear regression models for 

daily weather data from six NWS 

sites across the continental US 

equipped with higher quality dew 

point hygrometers. An annual 

sequence of 365 days for 1984 was 

used for each of the following sites: 

Fairbanks, Alaska, Seattle, 

Washington, Knoxville, Tennessee,

2.5
y=1.001(x)*0.314 
R2= 0.84

1.5 Regression

0.5
Santiam Pass1:1 Line

0.5 2.51 1.5
Observed VPD (kPa)

Figure 2.4 Scatterplot and regression line of the vapor 
pressure deficit (VPD) model for the Santiam Pass 
(Oregon) OTTER site using 1989 and 1990 LTER (Long 
Term Ecological Research) data. This regression model 
provides a representative example o f average humidity 
performance since data from this site did not require 
screening.

Madison, Wisconsin, Tucson, Arizona, and Jacksonville Florida. values for these 

regression models ranged from 0.83 to 0.96, with the exception of the drier Tucson site, 

whose was 0.55. Model slopes ranged from 0.80 to 1.02, and y intercepts ranged from 

-6.95 to 1.05°C. While

acknowledging the climatological 

limitations of these relationships in 

drier environments, we believe these 

correlations suggest the basic 

soundness of the dew point- 

minimum temperature relationship. 

Particularly in more arid 

environments with lower absolute

36000
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Figure 2.5 Comparative plot o f incident solar regression 
lines for the five sites, illustrating the division o f the lines 
into two basic groups.



30

humidities, lower LAI levels, and greater clear sky re-radiation, the dew point 

temperature may often be lower than the reported 24 hour minimum temperature, and 

thus may never be reached (Lee 1978; Monteith and Unsworth, 1990). A positive 

correlation between dew point and daily minimum temperature also depends in part on 

dew point remaining fairly constant throughout the day; significant changes in air mass 

moisture from advective exchange are expected to alter this basic relationship. We 

generally feel, however, that the correlation between dew point temperature and 24 hour 

minimum temperature is strong enough on average to be of use in many ecological 

modelling applications, particularly since RH sensors are so undependable. The dew 

point temperature—24 hour minimum temperature correlation we observed may be 

particularly useful for studies employing larger spatial and temporal scales, where the 

higher variance in diurnal humidity and temperatures may be smoothed out at larger 

scales.
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Incident Solar Radiation

Correlations between predicted and observed incident solar radiation were 

generally consistent and high, ranging from 0.83 to 0.89 (Table 2.4), with F statistics 

significant at the 0.001 level for all regression models. Regression slope T statistics 

testing the two-tailed null hypotheses, Hq, that the beta coefficient equals 0 and that the y- 

intercepts equals 0 were all significant at the 0.001 level, indicating the null hypotheses 

should be rejected. The regression model beta coefficients for the sites tended to split 

into two groups, with Cascade Head and Scio beta coefficients at 0.79 and 0.80 

respectively, and Metolius, Santiam Pass and Corvallis beta coefficients ranging from 

1.01 to 1.05 (Figure 2.5). This division did not seem to occur on a clear environmental 

gradient, and could therefore relate to local advection conditions, inversions, or random 

error from sampling noise.

Model y-intercept values were all negative, ranging from -657 kJ/m^ at the 

Cascade Head site to -2352 kJ/m^ for Santiam Pass; the y-intercept two-tailed T statistical 

significance for all radiation regression models was 0.01 or better. This statistic tests the 

Hq that the y-intercept equals 0, vs. a H  ̂that the y-intercept is not equal to 0. The 

scatterplot and regression line fitted for the incident solar regression (Corvallis site.

Figure 2.6) shows a dense point cluster around the lower radiation range (ca 1000-4000 

kJ/mVday) with a fairly balanced cluster for higher values; again, the slight pattern here
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could be due to the presence of 

advection effects on sampled days. 

RMSE values for the incident solar 

relationships ranged from 997.0 kJ to 

4498.0 kJ, with no apparent trend 

following the west-east transect 

gradient.

Normal P-P plots for the
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Figure 2.6 Scatterplot and regression line o f the incident 
solar radiation model for the Waring's Woods (Corvallis, 
Oregon) OTTER site using 1989 and 1990 LTER data.

radiation data showed no serious departures from normality, and casewise plots of 

standardized radiation model residuals vs. fitted values indicated no obvious patterns in 

error trends. As a check on how regression VPD and solar radiation residuals might 

CO vary, plots of VPD residuals vs. incident solar residuals were examined, both by site 

and by pooling data for all sites; no trends were observed for either type of plot. Overall, 

the consistent strength of the incident solar relationships suggests this method may be 

sufficiently robust under a typical range of meteorological conditions (Ryan, pers. comm; 

Barron, pers. comm).

Conclusions

The comparisons made here between observed and estimated radiation and 

humidity suggest that MT-CLIM can provide the climatology acceptable inputs for many
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hydrologie and ecosystem models. This approach may prove particularly useful for 

coarser spatial scale applications where absolute precision at higher spatial resolutions 

may not be as important as an adequate characterization of incident solar radiation, 

diurnal temperature variations, and humidity dynamics over larger regions. The problems 

with humidity instruments and the current lack of incident solar radiation data archived 

daily at NWS weather stations further supports the value of this approach. Two projects 

in the International Geosphere-Biosphere Program have identified the need for a "weather 

generator" that takes standard climatological data and estimates additional meteorological 

variables needed by ecological research. The GCTE (Global Change and Terrestrial 

Ecosystems), and the BAHC (Biospheric Aspects of the Hydrologie Cycle) projects are 

collaborating on developing these weather generator tools to improve both the temporal 

and spatial utility of climate datasets for ecological studies. We think that MT-CLIM 

may be a useful precursor model for this new work.

Aside from problems relating to the quality of input data, a revision of MT-CLIM 

should attempt to redress current limitations in the model extrapolation logic. Areas 

needing improvement include a provision for adjusting between sites with significantly 

different air mass moisture properties (e.g. low coastal vs. dry inland sites), and a better 

way to generally address horizontal advection influences. Addressing estimation error 

due to cold air drainage influences and other topographically driven phenomena would 

probably require more radical changes, extending the model from a ID point model to a 

2D spatially connected model. The term spatially connected as used here implies that the
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modelled point may be influenced, at the very least, by selected landscape characteristics 

of neighboring areas. If a more spatially connected approach was pursued, a more 

explicit treatment of the topography directly influencing to the modelled site could then 

be taken into account. The question of landscape scale becomes a critical one here, as a 

treatment of micro-topography effects would likely differ from drainage-level or even 

mesoscale topographic influences. An additional but related challenge involves how 

valley and katabatic diurnal wind patterns might be treated in the model, if at all.

Relative to the current more simplistic MT-CLIM logic, such approaches would likely 

involve some conscious tradeoffs in model complexity and parameterization.

The VPD relationships observed in this study, particularly for the Cascade Head 

and Scio sites were not as conclusive as we would have liked, probably due to a 

combination of meteorological conditions not handled well in MT-CLIM as well as the 

selection of observed days (Figure 2.1 and Table 2.3). Nonetheless, they may be 

sufficiently useful for larger scale modelling efforts for the reasons indicated above for 

solar radiation. Quality and maintenance of humidity sensors routinely used in the field 

were also important issues this study confronted, suggesting that it may be more 

advantageous to extrapolate from more distant but arguably higher quality NWS primary 

weather stations using dew point hygrometers than to rely on less expensive and more 

problematic electro chemical based RH instruments with shorter operational lifespans.
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Chapter 3

Validating Topographic Climatology Logic of the 

MT-CLIM Model Across A Seasonal Gradient

Introduction

Ecological simulation modelling represents an increasingly useful approach for 

estimating landscape carbon and water budgets at various spatial scales (Peterson and 

Waring, 1994; Running, 1990; Band et al. 1991). Accurate characterizations of site 

hillslope temperature are critically linked to the usefulness of these models (Schimel et 

al., 1991; Barry, 1987; Nemani et al., 1993), due to the key role temperature plays in 

partitioning a sites energy balance (Heilman and Brittin, 1989; Nemani and Running, 

1985). To the extent that climate defines the composition and geographical distribution 

of biomes, climatological data also represents a key requirement of global scale land 

classification schemes (Pierce, 1994; Running, 1993; Woodmansee, 1988). As a 

generalized variable, environmental temperature plays a key role in a diverse array of 

ecosystem dynamics, driving plant biochemical responses (Fitter and Hay, 1987), 

photosynthesis rates (Gates, 1980), as well as the pattern and timing of plant development 

(Good, 1974), carbon balance (Running and Nemani, 1991; Running and Gower, 1991) 

and humidity and évapotranspiration dynamics (Running et al. 1989: Running, 1991 ; 

Grantz, 1990).

39
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The limited availability of adequate quality meteorological data continues to 

motivate the development of numerical meteorology codes such as MT-CLIM that 

provide the needed climatological variables (Running et al., 1987; Hungerford et al., 

1989). The NASA Earth Observing System (EOS) distributed information system 

(EOSDIS) currently plans to distribute a global climatology dataset at 1° by \° (-100 

km) scale; this is too coarse a resolution for regional or even mesoscale studies. 

Meteorological variables required as inputs to climatology models typically include a 

measure of site temperature, humidity, precipitation, and incident shortwave radiation. 

Validating climatology models is best facilitated by observed data sets that closely match 

the model logic's temporal and spatial scales. Various point data sets are generally 

available from the National Weather Service (NWS), National Oceanic Atmospheric 

Agency (NCAA), or commercial providers, yet few are available in spatially gridded 

form at stand level scales, let alone for mesoscale or regional scale work. While such 

data are occasionally available in the context of narrowly focused studies, investigators 

most often rely on point based climatology datasets that are limited both in the variables 

included and in their spatial coverage. Agricultural crop meteorology studies have 

employed tower micro-meteorology techniques to derive high resolution meteorological 

descriptions (Heilman and Kanemasu, 1976; Kustas et al. 1989; Verma et al. 1989). For 

these studies, full energy balances are typically calculated using Bowen ratio (Fritschen 

and Qian, 1992), aerodynamic (Monteith and Unsworth, 1990), or eddy correlation 

(Moncrieff et al. 1992). These methods are generally considered too expensive and
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impractical for multiple scale ecology studies, in addition to imposing serious logistical 

constraints on investigators. The increased emphasis on regional and global scale 

ecosystem research has thus encouraged various remote sensing based approaches, to 

which models like MT-CLIM play a complementary role.

The MT-CLIM authors provided a preliminary validation in an examination of 

three sites in Western Montana — Ambrose Creek, Ninemile, and Schwartz Creek 

(Running et al., 1987). The topographic analysis of the original study was restricted to a 

north vs. south slope comparison, where observed vs. predicted seasonal average air 

temperature, relative humidity, and incoming shortwave radiation were compared. 

Regressions of predicted vs. observed air temperature yielded r̂  values of 0.88, 0.88 and 

0.90 for the Ambrose, Ninemile, and Shwartz Creek sites respectively. The original study 

emphasized the temporal portion of the logic, however, since a daily data set was 

modeled for an annual period at only three points (N= 204, 146, and 202 days 

respectively for the three sites). This study emphasizes a more detailed topographic 

treatment, and examines the models seasonal performance for three samples throughout 

the 1990 year; March 21, June 25, and August 13. The seasonal aspect of this study was 

undertaken to reveal possible subtleties in the hillslope temperature relationships due to 

sun-angle differences.
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Objectives

This validation of MT-CLIM topographie logic addresses the following question: 

"how well do MT-CLIM estimated hillslope temperatures (T J compare with surface 

temperatures (T^) derived from thermal infrared data (TIR,=8-14//m wavelength) across 

diverse topographic and canopy closure gradients?" Critical controls on T  ̂and T̂  

temperature patterns include both physiographic (elevation, aspect, slope) and biophysical 

(canopy properties, primarily canopy cover fraction) factors (Moran et ah, 1989; Huband 

and Monteith, 1985). The comparison of surface temperature with air temperature trends 

in this study are therefore made in the context of these gradients.

An immediate complication with this type of comparison involves differences in 

the basic dimensionality inherent in the two measures. T̂  derived from the Daedalus 

Thematic Mapper Simulator (TMS) instrument represents an instantaneous quantity 

integrated over a considerable spatial extent. Conversely, MT-CLIM estimated T  ̂

represents a time-averaged signal, governed by somewhat different physics over 

essentially a single point in space. As such, these two measures represent somewhat 

asymmetric concepts with different statistical variance structures; averages (i.e. T^) by 

definition encapsulate population variation, whereas a set of spatially distributed (TJ 

values represent individual random variâtes. While this conceptual inconsistency cannot 

be readily mitigated, awareness of the biophysical implications of each should help clarify 

an interpretation of differences between them.
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In addition to more thoroughly evaluating the original MT-CLIM algorithm for 

estimating site hillslope temperatures, a secondary objective of this study was to try to 

develop a site temperature algorithm better suited to spatial modeling applications. Tests 

across the topographic gradients described above for the three TMS scene sample dates 

(March 21, June 25, and August 13) for a new site temperature algorithm are reported.

Background

Any comparison of surface temperature with air temperature should be predicated 

by a discussion of the important characteristics that distinguish the two quantities. Heat 

is defined as the total kinetic energy of the atoms or molecules composing a substance, 

whereas temperature is the average kinetic energy of a substance's atoms or molecules 

(Moran and Morgan, 1989). As a form of mechanical energy at a submicroscopic scale, 

heat may be interpreted as a kinetic energy translation within a body, or bodies in contact, 

as a radiative, conductive, or convective energy transfer process (Lee, 1978). Surface 

temperature is defined as the true kinetic temperature measured at a given surface (Oke, 

1987). It integrates several complex energy fluxes, including incident, reflected and 

absorbed solar fluxes (W m )̂, as well as moisture energy exchanges between the soil, 

vegetation, and atmosphere. Surface temperature is therefore modified by physiographic 

and biophysical site attributes such as slope, aspect, and elevation, as well as by the 

radiative properties of the site's canopy and soil. Heat energy may be transferred via 

convection, conduction or radiation, and is biophysically partitioned between two
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controls: sensible heat and latent heat. Sensible heat refers to the energy transfer 

associated with a measurable temperature change; latent heat refers to energy transfer 

associated with a phase change (latent heat of vaporization, latent heat of fusion), in the 

absence of a temperature change. An example of latent heat exchange is the energy state 

transformation that occurs whenever free water changes from a liquid to a gaseous state, 

or from a gas to a liquid or solid state. Through this partitioning, surface temperature is 

intimately tied to a sites overall radiation and water energy balance.

All radiant energy from the sun must be absorbed (a), transmitted (t), or reflected 

(r). An expression of this law of energy conservation defines the energy partitioning as 

a+r+t = 1. A black body is defined as a perfect absorber and emitter (Monteith and 

Unsworth, 1990); for a theoretical blackbody, a=l, and so r = t = 0 (Campbell, 1977).

The concept of instantaneous surface temperature may also be considered in terms of the 

continuity equation (Oke, 1987) which describes the net conservation of energy, in W/m^ 

at the earth's surface:

R^-H-G-XE^-  p = 0 (3.1)

where is the net radiation including solar and thermal wavelengths, H  is the sensible 

heat exchange with the atmosphere, G is heat transfer due to conduction, where 

downward flow is a loss (heat storage, with a temporal lag) and upward flow is 

considered a gain to the earth’s surface, k  is the latent heat of vaporization (J/g), is the
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rate of évapotranspiration (g m ŝ '), the product of k  and E, (g hjO) is the rate of 

évapotranspiration (W/m^), and p represents the sum of complex chemical energy 

conversions involved in photosynthesis and respiration (Hewlett, 1982). is also 

commonly expressed as [S(l*a)-L„], where 5 is the incoming short-wave radiation, a is 

the fractional albedo of the surface, and L„ is the net outgoing long-wave radiation; 

collectively this is the sum of all incoming short and long wave radiation from the sun 

and sky, less reflected short wave radiation and emitted long wave radiation (Barry and 

Chorley, 1992). Surface temperature is related to the long wave irradiance emitted and 

reflected by a grey body at a given temperature by the general equation;

R = e o r ;  + ( l - e )* 5 ;  (3.2)

where R is the long wave (thermal) irradiance emitted and reflected, e is the emissivity 

of the surface (typically =0.97), o the Stefan-Boltzmann constant (5.67-10'^ W m  ̂K*̂ ), 

B* is a measure of long-wave irradiance received by the surface from its surroundings (in 

W m^), and is the surface temperature on site, C

Air temperature, T ,̂ represents the average instantaneous temperature of an air 

mass at screen height (=1.4 meters). Air temperature typically cycles on a diurnal basis, 

and is coupled to (but lags behind) the daily radiation flux. Air temperature is controlled 

not only by the on-site net radiation loading and energy partitioning between sensible and 

latent heat, but also by diurnal wind patterns and relative air mass stability. Sensor view
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angles (McGuire et al. 1989) and canopy structural properties (roughness length, 

buoyancy, and fetch) also attenuate the temperature signal (Oke, 1987; Monteith and 

Unsworth, 1990). A number of approaches in modelling hourly air temperatures have 

been suggested; Reicosky et al. (1988) reviewed several methods for estimating hourly air 

temperatures from daily minima and maxima, including the method of Parton and Logan 

(1981) used in MT-CLIM. Reicosky (1988) emphasized methods used to estimate air 

temperature within crop growth models and found that all the methods reviewed worked 

best on clear days, with more limited success on cloudier days. Reicosky et al. (1988) 

found that the Parton and Logan (1981) method calculated a higher temperature earlier in 

the daylight hours. In estimating daily average air temperature, MT-CLIM makes a 

number of assumptions, including basic vertical stability in the air mass, moderately 

good vertical mixing throughout the canopy, and no significant horizontal advection.

From this brief background, the complex interactions between surface temperature 

and air temperature dynamics are more easily envisioned. In the context of Bowen ratios, 

air temperature tracks sensible heat more closely, so T  ̂more closely approximates the 

energy budget and T  ̂whenever the sensible heat flux dominates the ratio. T  ̂and T  ̂are 

more coupled on sites with generally higher canopy densities, higher cloud cover 

conditions, and better ventilation (e.g. generally taller trees, smaller leaves, and higher 

windspeeds) — whenever environmental conditions collectively act to dampen the diurnal 

net radiative flux and surface temperature amplitude (Oke, 1987). Conversely, T  ̂and T̂  

tend to increasingly diverge on sites where conditions depart from those described above



47

— with more heterogenous structural features. In a study involving vegetation 

regeneration of coal mining sites, Lee (1978) reports differences between mean air and 

surface temperatures varying from 1.9 °C for light colored, natural surfaces to 16.3 C for 

dark toned, natural surfaces. Linacre (1992) cites an example at Pune, India where the 

ground surface maximum and minimum temperatures differed by 34 °C, whereas at 1.5 

m, the difference was only 22 °C. These examples illustrate the large potential 

differences between and for a given site at one point in time, and in diurnally. 

Goward et al. (1994) and Nemani and Running ( 1989) also show the direct role that 

canopy fraction (via NDVI in these studies) plays in the coupling of and air

temperature; the results of both studies suggest that approximates on sites with

higher NDVI indices, and departs the most from on sparsely vegetated sites.

Direct quantitative comparisons of surface temperatures to air temperatures are 

therefore problematic at best due to a number of potentially compensatory factors: the 

typically unknown absorbed solar fraction, the role of atmospheric and surface properties 

controlling reflectivity, as well as the natural differences in heat capacity between air at

1.4 m (0.0002 J m^ K ' at 10° C) and the typically larger heat capacities of a diverse array 

of ground surfaces. Acknowledging these constraints should therefore temper our 

expectations on how well and might correlate.
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Methods

This study adopted a remote sensing orientation though its participation in the 

National the Aeronautics and Space Administration (NASA) Oregon Transect Ecological 

Research (OTTER) project. The primary OTTER project objective was to study 

ecosystem function in coniferous forests using computer modeling, experimental and 

theoretical remote sensing, and ecological field and laboratory experiments (Peterson and 

Waring, 1994). The project included

a coordinated, multiple-aircraft field 

campaign, and included six primary 

sites along a 200 km east-west 

transect through central Oregon at 44° 

north latitude, with elevations ranging 

from sea level to 1500 m. (Figure 3.1).
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Figure 3.1 OTTER project and study site location.

Among the remote sensing platforms carrying thermal sensors deployed in the 

OTTER study were C-130 aircraft based NSOOl and ER-2 aircraft based Daedalus 

Thematic Mapper Simulator (TMS) sensors. When spatially distributed surface 

temperature datasets are required, deriving these measures from Daedalus thermal 

infrared (TIR) channels (8-14/^m wavelength) can sometimes represent a more practical 

alternative than an intensive field sampling program. The major tradeoffs in using TMS

data seem to be the indirect physical relationship of T  ̂to T ,̂ and the sometimes



49

considerable preprocessing effort required to calibrate and correct the remotely sensed 

imagery for research applications. The site air temperature variable estimated by MT- 

CLIM was selected as the most practical topographic validation parameter, since 

topographic trends in air temperature could be compared with the highly resolved (~25 

m), spatially distributed TIR datasets. The Daedalus TMS scenes taken during the 

OTTER project were also temporally well distributed over the 1990 year, allowing a 

seasonal evaluation.

The topographic validation area defined in this study is located =1.5 km from the

Metolius OTTER 

site near Sisters, 

Oregon just east of 

the crest of the 

Oregon Cascade 

Range near Santiam 

Pass. The study 

area comprises a 

10.8 km^ area 

centered on Black 

Butte, a symmetric

3 l a c  k B u t t e

Figure 3.2 Black Butte cinder cone 10.8 km’ study site, rendered from the 
u s e s  Bend West 3 arc-second DMA digital elevation model.

shaped volcanic cinder cone (Figure 3.2). This site was chosen for its inclusion of a full

range of topographic attributes, as well as for its proximity to the OTTER Metolius
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weather station located several kilometers from the base of the butte. Since Black Buttes 

shape is nearly symmetric, all aspects were represented, and a suitable elevation relief 

was present, extending from a base of 940 m to the top at 1892 m. A more detailed 

statistical summary of study site attributes appears in Appendix 3.1 .

Forest vegetation types present on Black Butte range from Ponderosa pine (Pinus 

ponderosa) dominated stands on the drier aspects and lower elevations, to mixed stands 

of varying densities of Douglas Fir [Pseudotsuga menziesii (Mirbel) Franco] at the 

middle elevations, to alpine fir [Abies lasiocarpa] communities at the upper reaches of 

Black Butte. The climate at Black Butte, although in a transition zone at the interface of 

the east slope of the Cascades and the drier, warmer Oregon steppe is considered more 

continental than maritime.

Description of the MT-CLIM Model

The MT-CLIM model evolved from the H20TRANS and DAYTRANS (Running, 

1984) models, which evaluated the ecosystem level significance of stomatal control 

mechanisms (transpiration and water stress) at hourly and daily time steps respectively. 

MT-CLIM began as a point based model used to extrapolate key base station weather data 

parameters to nearby adjacent hillslopes. One of its primary advantages is that it is driven 

by more easily obtained climatology variables: daily average maximum and minimum 

temperature (°C), relative humidity (%) and precipitation (mm). If availabile, dew point
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temperatures may be used to directly parameterize the humidity algorithm; otherwise, 

night minimum temperature may be used as a surrogate for the dew point temperatures 

routinely taken only at primary NWS sites. Glassy and Running (1994) examined the 

dew point temperature/night minimum temperature equivalence across the five OTTER 

project sites. They found that night minimum temperature served reasonably well as a 

substitute for dew point temperatures subject to certain acknowledged limitations. 

Parameters estimated by MT-CLIM include minimum and maximum air temperature 

CC), relative humidity (%), incident solar radiation (W m^), and precipitation (mm). 

Refer to Appendix 3.2 for a complete listing of the inputs MT-CLIM requires.

This topographic study did not independently model or analyze daily minimum 

and maximum temperatures, since the observed variable (TJ used in this study was most 

comparable to site air temperatures estimated by MT-CLIM. Incident solar, relative 

humidity and precipitation trends were also not examined in this study, due to the lack of 

a sufficiently dense, spatially distributed observed dataset. Estimating spatial 

precipitation patterns with any accuracy is a significant and separate challenge currently 

being pursued by a number of investigators (Daly et al., 1994; Phillips et al. 1991; 

Thornton and Running, 1994).

MT-CLIM estimates daylight average air temperature using an assumption that 

the diurnal temperature trace approximately follows a sine form (Parton and Logan,
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1981), with the maximum and minimum points provided by base weather station records 

(Running et al., 1987).

= TEMPCF- (3.3)

where T̂ vg is the weighted average daily temperature, T^ean is arithmetic mean - 

T^in)/2 for the day, and TEMPCF is the coefficient (typically 0.45) used to adjust daylight 

average temperature (Running et al., 1987; Hungerford et al., 1989). This daylight 

average synoptic temperature is then corrected using an environmental lapse rate, 

resulting in a daily average air temperature measure for the site. Lapse rates used to 

parameterize the model runs in this study were estimated from observed temperature 

differences between the Santiam Pass (1460 m elevation) and Metolius (1027 m 

elevation) weather stations; a rate of 6° cooling per 1 km rise was used.

The site daily average air temperature is then corrected for slopes receiving 

different amounts of radiation loading, using a scale factor calculated as the ratio of 

sloped to flat absorbed solar radiation (Equations 3.4, 3.5). As a result, north slope 

temperatures are dampened, and south slope temperatures are given a boost. The LAI 

adjustment attempts to account for the way that sensible vs. latent heat energy is 

partitioned at the site. The original MT-CLIM site temperature algorithm was tailored to 

produce site temperatures that supported reasonable snow-melt dynamics within 

ecosystem process models (Nemani, pers. comm.). A T^^j factor is added to the daily
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average, environmental lapse-rate adjusted air temperature whenever the sites absorbed 

radiation load exceeds the radiation load for a hypothetical, flat slope equivalent at the 

same elevation (e.g. whenever the radiation ratio is > l.O):

= &  • i \ . 0 - {L A I /M L A I ) )  (3.4)

where is the factor in °C, added to the daily average synoptic temperature to produce

the adjusted estimate, is the ratio of flat to sloped absorbed radiation, LAI is the 

sites estimated leaf area index (LAI), and MLAI is the theoretical maximum leaf area 

index. Conversely, a factor is subtracted from the daily average air temperature 

whenever the ratio of flat to sloped radiation is less than 1.0:

= (1.0//?,,) *(1.0 + {LAI/MLAI)) (3.5)

here ihe factor in ° C subtracted from the lapse rate adjusted synoptic temperature

to derive the estimate of T^, Rfj. is the ratio of flat slope absorbed radiation to the actual 

slopes radiation, LAI is the site leaf area index and MLAI is the theoretical maximum leaf 

area index for the site. Selection of one of these two correction subfunctions (T^jd or 

is determined solely by the absorbed radiation ratio calculated for the site. The 

expression used to set the air temperature is:

T'a = [ r ^ - ( F  AEW)]  + { T ^  ..or. T^,) (3.6)
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where is the synoptic air temperature (°C), F is the environmental lapse rate (°C 

cooling per 1000 m rise), AElev

S.0 D # g c

Radiation Ratio

is the elevation difference

between the base weather station

the and site elevation/1000 (m),

and Tjj is the final adjusted air

temperature (°C). The factor

is applied when the radiation ratio

is > 1.0, and the Tĝ y factor is
Figure 3.3 adjusted air temperature response surface,

, , . . . as a function of the flat-to-sloped radiation ratio andapplied when the radiation ratio is , ^LAI/MLAI.

( 1.0. The Tadd and T̂ ŷ functions

each produce quite different functional responses. The T̂ ŷ adjustment function 

generates a negative exponential response surface (Figure 3.3). The T̂ dd adjustment 

function produces a monotonically 

increasing planer response surface 

with increases in the and 

(LAI/Maximum LAI) ratios 

(Figure 3.4). In the original MT- 

CLIM code, there are no bounds 

placed on either the Tĝ y or T̂ dd

function values, the steeply rising Figure 3.4 adjusted air temperature function,
showing planar response surface as a function o f radiation 

portion of the Tĝ y response surface ratio and (LAI/MLAI) ratio.

D *0C

10 1.20
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in Figure 3.3 indicates that artificially high temperature correction factors could 

inadvertently be applied with radiation ratios below =0.30. The data from this study 

indicates the radiation ratios typically cluster about 1.0. Note that with average 

LAI/MLAI (0.4 to 0.6) and radiation ratios ( = 1.0), the actual adjustment added or 

subtracted from the lapse rate adjusted air temperature is often only about 2-4 degrees, 

with the Tjub function somewhat more sensitive than the function.

Description of the MTNTEMP Model

The original MT-CLIM model is defined strictly as a point based model and was 

therefore not well suited to the spatial and remote sensing orientation of this study. 

Consequently, a variant of MT-CLIM called MTNTEMP was developed to better address 

some of this studies characteristics. By point based, I refer to both the model's conceptual 

basis and to the way inputs are specified and introduced to the model. In a point based 

model, each "point" (or site) represents an independent entity that is modelled in isolation 

from all other points. Spatially connected models, on the other hand, explicitly treat the 

problem spatially by defining outputs for a given point as necessarily influenced by the 

values at neighboring points (Tomlin, 1990). Under this definition, MTNTEMP is still 

considered a point based model, though it does incorporate some attributes of spatially 

connected models such as reading and writing multiple raster data structures. The 

MTNTEMP model is written on top of (and is heavily dependent on) a larger science 

model application programming interface (API) currently in development^ The
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on the Sisters, Oregon 15" USGS topographic quadrangle, registering these points to the 

Universal Trans Mercator (UTM) rectilinear map projection with a false color composite 

image (digital channels 4,5,3} using ERDAS version 7.5 image processing software. The 

ARC/INFO GIS project command was used to translate the DMA registered in the 

geodetic projection to the rectilinear UTM (Zone 10) map projection. The NAD 27 

datum and Clark 1866 spheroid were used as the geodetic reference. Gridded aspect and 

slope layers were derived from the digital elevation data layer using the ARC/INFO GIS 

GRID function slope and aspect. The elevation layer was coded in decimal meters (890 

m < e < 1890 m), the aspect layer was coded in decimal degrees, {1 < a < 360}, and the 

slope layer was expressed as percent slope ( 1 < s < 100}.

To use the elevation, aspect and slope variables as grouping variables for 

partitioning the variation of T  ̂vs T^, categorical proxy variables were developed using a 

linear contrast stretch (Lillesand and Kiefer, 1987) to level slice them into 6, 8, and 4 

equal-width classes respectively. Partitioning the scene-wise variation of T  ̂and T  ̂into 

broader environmental classes enabled a more focused comparison of temperatures at 

pixels sharing underlying physiographic properties. Appendix 3.1 provides a statistical 

summary of these key study site variables. Random variâtes analyzed with parametric 

statistical methods should possess a linear rather than periodic scale; consequently, the 

aspect values originally in decimal degrees were transformed using a conversion function 

(a'= cos(ar)+l .0) forcing all transformed aspect values positive (where â  is aspect in 

radians, and a' is the transformed aspect, bounded by the range (0.0 < a' < 2.0}.
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meteorology algorithms in the MTNTEMP model closely follow those in the original 

MT-CLIM model, with the exceptions of the new site temperature algorithm and the 

other minor changes documented in this paper. Appendix 3.3 lists the full input script 

files used to parameterize the model runs for this paper, and Appendix 3.4 details the 

major differences between MT-CLIM and the MTNTEMP model implementation.

MTNTEMP Model Inputs

The spatial nature of this study required a number of two dimensional data layers: 

elevation, slope, aspect, canopy closure fraction, albedo, and a relative solar loading 

raster. These were all spatially co-registered to the 10.8 km^ study area. The MT-CLIM / 

MTNTEMP model logic employ a series of scalar initialization parameters for each "site" 

modeled, as well as a table of daily average climatological data from at least one weather 

station covering the temporal period modeled. Daily average climatology variables 

required by the MT-CLIM model in this table are: 24 hour daily average minimum and 

maximum temperatures (°C), and total daily precipitation (mm). The original MT-CLIM 

requires the following physiographic variables to be expressed as single values: elevation, 

aspect, slope, albedo, canopy closure, and relative solar loading. In this application, each 

of these vary spatially enough to warrant their definition as separate 2D data layers. A 

spatial resolution of 93.7 m was chosen for this study primarily to match the resolution of

' A complete description o f  the science model framework and API underlying the MTNTEMP 
implementation is beyond the scope o f this paper. Technical documentation for this software is in preparation.
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the elevation layer — a 3 arc-second Defense Mapping Agency (DMA) digital elevation 

model. A variety of undesirable geostatistical artifacts appear in rasters derived from the 

DMA (e.g. slope, aspect, and relative solar loading) if the DMA is first resampled up to 

match the 20.3 m resolution of the Daedalus TMS data. To avoid these artifacts (i.e. 

lattice pattern noise) the 20.3 m Daedalus TMS scenes were each resampled to the 

DMA s 93 m original resolution using a bilinear convolution algorithm (via the 

resampleO function) in the ARC/INFO GRID GIS. This resampling approach is more 

geostatistically defensible, although it did slightly smooth the original 20.3 m TMS 

scenes.

Due to the limited spatial extent of the study area (10.8 km^), a single nearby 

weather station was chosen — the OTTER project Metolius weather station. Appendix

3.5 includes a statistical summary of the Metolius weather station data for 1990. Model 

runs for each of the three sample days (March 21, June 25, and August 13) evaluated the 

entire spatial extent of the study area on a (58 x 58) pixel by pixel basis for just these 

sample days.

Elevation and Derived Layers

Elevation data for the study site was extracted from the Bend West USGS 3 arc- 

second Defense Mapping Agency (DMA) digital elevation product. Georegistration of 

the Daedalus TMS imagery to the DMA was done using 15 ground control points located
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Canopy Closure Layer

A site’s collective canopy properties represent an important control on the energy 

balance and thus on the surface moisture and temperature regimes (Nemani et al., 1993). 

A number of studies have examined the relationships of remotely sensed spectra to 

various aspects of canopy structure. While some have concentrated on establishing 

associations between stand species composition and age structure (Leprieur et al., 1988), 

others have included an analysis of basal area (Peterson et al., 1986; Peterson et al. 1987), 

cover type (Dottavio and Williams, 1982), canopy closure (Butera, 1986) and soil thermal 

properties (Huete and Jackson, 1988). Several of these studies concluded that canopy 

closure fraction (percent of vertically projected coverage) may be directly or indirectly 

inferred from various Thematic Mapper channel combinations (Butera, 1986; Peterson et 

al., 1986) with reasonable precision. Butera (1986) found that TMS bands 1,5, and 7 

proved most significant in relating forest percent canopy closure to spectral response.

The investigators differed considerably on which bands or band conveyed the most 

information about stand structure, but most included the bands identified by Butera 

(1986).

Using this basic logic, a canopy closure (percent canopy fraction) classification 

image for the Black Butte study site was subjectively developed on the basis of a number 

of different TMS instrument bands. This classification was prepared using a supervised
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maximum likelihood classification procedure {maxlike) contained in the ERDAS version

7.5 image processing software package. A discrete rather than continuous classification 

was developed because this approach met the general precision requirements of the 

application while approximately balancing the 93 m precision of the other data layers.

The goal of the classification was to divide a ratio level canopy closure variable, 

bounded by the range {0.0 < c < 100.0} into one of five discrete classes of equal width, 

matching the USDA Forest Service traditional 5-class canopy closure classes (Pfister et 

al., 1977). Several different band combinations were evaluated for defining the canopy 

closure classification^, including: Bands 4,5,3 from the August sample date, August Band 

5 alone. Bands 4,5,3 from the June 25 sample date, and June Band 5. Color infrared (IR) 

photography ( ~ 1:62000 scale) covering the study area was used to subjectively evaluate 

the quality of each trial classification. Ideally, field verification plots would be used to 

verify the classification but due to logistical problems this could not be done in this study. 

The resulting canopy closure class mid points were: Class 1=0.01, Class 2=0.15, Class 

3=0.38 Class 4=0.63, and Class 5 = 0.85. All visible and IR bands were terrain corrected 

using the trigonometric methods detailed in Smith et al. (1980). The classification based 

on the August TMS band 5 (1.55 - 1.75 pm) was Judged as representing canopy closure 

best for this study area. Appendix 3.6 illustrates the canopy closure data layer used for all 

model runs.

 ̂ Note that the channel ID numbers used here refer to the subset o f TMS channels retained from the original set 
of 12 as defined in Table 3.2.
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Albedo Layer

An albedo data layer was developed by subjectively matching literature albedo 

values (Oke, 1987; Barry and Chorley 1992; Linacre, 1992) visually to the study site 

using color IR photography and the canopy cover classification mask layer described 

above. Albedo was defined as a spatial variable to avoid the potential bias resulting from 

the use of a single average albedo for the entire study area. Openings and scree patches 

were scaled to the higher albedos (0.40), while the densest canopies were given the lower 

albedos (0.11). While admittedly a coarse albedo classification, I felt it adequately 

balanced the precision of the other environmental gradient variables (slope, canopy 

closure, and elevation all resolved at 90 m). To investigate the relative sensitivity of (T^) 

model output to changes in albedo, an informal sensitivity analysis was conducted. Seven 

trials were run with a baseline value of 0.15, and alternative albedo levels set increased 

and decreased by 5, 10, and 15 percent. The MTNTEMP model appeared to be only 

moderately sensitive to the range of albedo values felt to be present on the Black Butte 

study site (=0.11 - 0.40).
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Relative Solar Loading Layer

M arch 21 1990 R ela tive  S o la r  L oading , 
B lack Butte S ite

The term relative solar loading refers to the spatial partitioning of incident solar 

radiation on a site at a given pixel relative to its peers. It is calculated solely on the basis 

of the sites latitude, time of day and year, and the slope geometry (aspect and slope) 

derived from the digital elevation model. No microsite biophysical attributes are 

accounted for in this measure. A relative 

solar loading raster was prepared for each 

Daedalus TMS scene day — March 21,

June 25, and August 13 (Figure 3.5).

The method used to generate the relative 

solar loading images is the same as the 

method commonly used in GIS software 

to produce shaded relief maps ; it is 

based on light ray-tracing theory 

(Burrough, 1986) The digital elevation 

model landscape is represented as if it 

were composed of a material of uniform 

reflectance illuminated from a user 

defined position in 3D space (Aronoff,

100
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Figure 3.5 March 21 relative solar loading image showing 
the topographic distribution of the loading across the 
study area.

1989). Rather than positioning the illumination source — in this case the sun— at the 

"standard cartographic position" of 45° above the horizon in the northwest, the actual
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solar elevations and azimuths at the time of the three TMS sample dates (March, June, 

and August) were used. Solar zenith (90°- solar elevation angle) and azimuth angles 

(Table 3.1) corresponding to the study sample date were calculated using standard sun- 

earth geometry algorithms (Oke, 1987; Monteith and Unsworth, 1990).

The ARC/INFO GIS GRID function hillshade was used to produce the actual 

relative solar loading rasters. The result for each flight day was a byte encoded raster {0 

< Sg < 255, where Sg is the relative solar loading score) whose pixel values represented 

the hillslope solar loading "score" relative to the other pixels for that time and location. 

These scores were then stretched using a linear contrast algorithm to a numeric range of 

{1 < Sg < 100). The resulting scores served as standardized weighting coefficients in the 

new site temperature estimation algorithm described later in this paper. Since both the 

flat-slope and sloped relative solar loading rasters were stored as byte encoded data 

products, the MTNTEMP software internally divided the values in the range {0 < Sg < 

100) by 100 to scale them to the final desired range, {0.0 < Sg < 1.0).

Table 3.1 : Sun-Earth Geometry Parameters Used To Generate Relative Solar Loading Images

Sample Date Solar Elevation Zenith Angle Solar Azimuth Flat Slope Score 
0 .0 <  f <  1.0

March 21 45" 45" 181" 0.640

June 25 59" 31" 123" 0.744

August 13 60" 30" 169" 0.742

Note: the fla t slope scores shown above represent the incident solar radiation loading at a sites flat slope 
equivalent position.
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Derivation of Surface Temperatures from TMS Imagery

M mm

The Daedalus TMS instrument, mounted on a NASA ER-2 high altitude aircraft 

provided the remote sensing imagery 

from which surface temperatures were 

derived (Figure 3.6). The normal 

operating altitude of the ER-2 jet 

aircraft is -20 km mean sea level 

(MSL) which generally results in a 

stable, distortion free signal. The 

TMS instrument is a 12 channel

multispectral scanner supporting 8 bit
Figure 3.6 TIR (TJ high gain thermal channel from the 

radiometry with a spatial resolution of ,^*6 25. 1990 Daedalus TMS scene.

=25 m at nadir (Table 3.2). A total of

four Daedalus TMS scenes flown throughout 1990 were originally selected for this study: 

March 21, June 25, August 13, and October 19. Actual flight altitudes were 19,500 m, 

resulting in a measured actual pixel size of 20.31 m. The October 19 scene was 

subsequently disqualified after discovering corrupted at-sensor calibration data in the 

scene's line headers. Overflight times taken from the mission flight summary reports (at 

the center of the imaging swaths) were 12:18:00, 10:16:00, and 11:46:00 FST for the 

March, June and August scenes, respectively. The TMS instrument on the Daedalus 

package carries two separate thermal sensors, a low gain and a high gain unit, both
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sensitive to wavelengths ranging from 8.5-14.0/um. The low gain channel is useful if the 

high gain channel exhibits marked signs of saturation — a right skewed distribution. 

Examination of histograms from both channels indicated no saturation in the high gain, 

so the high gain channel was selected to represent the surface temperature TIR signal. 

Only a subset of the original TMS channels were retained throughout the analysis, 

corresponding to those found on the satellite borne TM instrument (Table 3.2, rightmost 

column) For the reminder of this discussion, high gain TMS channel 12 is referred to as 

the TIR channel.

Thermal infrared (TIR) studies using the Daedalus TMS and similar instruments 

(Cooper and Asrar 1989; Price 1985) typically correct the signal for atmospheric 

attenuation effects (Price, 1983; Slater et al., 1987; Holbo and Luvall, 1989) to account 

for Rayleigh and Mie optical scattering (Campbell, 1987). Normally, radiosonde 

profiles from physically adjacent areas are required to supply appropriate atmospheric 

correction coefficients to a radiative transfer model such as LOWTRAN vers. 6.5 (Pierce 

and Congalton, 1988; Price 1983); these data are infrequently available for many remote 

areas, however, due to the expense and logistics of deploying them and maintaining the 

data. The source nearest to the Black Butte study area for radiosonde data was Salem, 

Oregon; this Willamette valley source was considered impractical for this study since it is 

on the west side of the Cascade range and experiences a considerably more maritime 

climate than does Black Butte. Consequently, the TIR dataset for this study could not be
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atmospherically corrected due to the lack of optical depth data at the site for the overflight 

times.

Table 3,2: Daedalus TMS Channel Characteristics

TMS
Channel

TM
Equivalent

Wavelength
|im

Spectrum ID for bands 
retained in this 
study

2 1 0.45 - 0.52 Blue-green 1

3 2 0.52 - 0.60 green 2

5 3 0.63 - 0.69 red 3

7 4 0.76 - 0.90 near-infrared 4

9 5 1.55- 1.75 mid infrared 5

10 7 2.08 - 2.35 mid infrared 6

11 lo-gain 6 8.5 - 14.0 far infrared 
(thermal)

12 hi-gain 6 8.5 - 14.0 far infrared 
(thermal)

7

A software utility (TMSUTIL) written in the ANSI C language was developed to 

radiometrically correct the TIR channel of the Daedalus TMS scenes, converting this to 

atmospherically uncorrected surface temperatures (T^) in °C. TMSUTIL was used to 

retrieve the 50 byte header block of data on each image line containing the at-sensor 

calibration coefficients. These coefficients included two site and time-specific black 

body reference temperatures in °C, and two black body radiance calibration coefficients.
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Atmospherically uncorrected surface temperatures were generated by fitting each pixel, 

t| j, to the scaling equation (Pierce and Congalton, 1988) shown below:

(6r, - br)

where t̂  j is the calculated temperature of a pixel (°C) at row i, column j of the image, bt, 

and bt2  are the first and second black body reference temperatures (°C), respectively, br, 

and br2  are the first and second black body radiance counts, respectively, and dn^ is the 

reflectance data number (DN) for a pixel at row i, column j of the image.

Description of the new MTNTEMP model air temperature algorithm

The new site temperature algorithm described here separately accounts for two 

kinds of environmental controls on air temperature — percent canopy closure, and 

topographic effects. Somewhat similar in overall logic to the original method, it is based 

on two dimensionless indices that integrate potentially complex microsite interactions.

The method trades off some precision for ease of parameterization, and neglects any 

treatment of katabatic and valley winds, cold air drainage, or advection. Its underlying 

conceptual basis assumes that the two integrating indices (canopy cover fraction to 

represent overall canopy influences, and relative solar loading to treat topographic 

influences) adequately encapsulate the aggregate influences of the underlying phenomena.
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At best, this simplistic empirical-statistical approach is only an evolutionary advance 

relative to the original formulation. Since its application is currently limited to the spatial 

application of this study, it could probably be improved with more experience and testing 

under wider conditions.

The new site temperature method works by adjusting a daily average synoptic air 

temperature on the basis of two separate, algebraically summed temperature factors. The 

first is a canopy closure influence factor, and the second is a topographic influence factor. 

The sign of the separate canopy and topography adjustments may be positive or negative 

so they are able to counteract each other. In northern temperate ecosystems, vegetation 

on a given site (and thus canopy structure) is only indirectly related to its diurnal radiation 

loading. As a broad generality, the moisture and edaphic regimes on warmer, drier 

aspects tend to favor more open canopy, shade intolerant species (e.g. Ponderosa pine 

communities on this site), versus the typically denser coniferous stands (Douglas fir, 

grading to Alpine fir and Spruce at the higher elevations) on less exposed and more mesic 

microsites. This phytosociological heuristic is routinely contradicted in the field, 

however, due to stand influences that collectively override these "expected" associations 

(e.g. local fire and pathogen history, local seed dispersal patterns, anthropogenic effects, 

etc). The original site temperature method based the addition or subtraction adjustment to 

the synoptic temperature entirely on the sites radiation ratio; the new site temperature 

formulation described here consciously departs from that logic by adopting a more 

numerically continuous scaling logic. The algebraic sum mechanism used here allows the
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two generalized influences (canopy and topography) to act more independently» and 

provides for more subtle gradations in the combined influences. The final form of the 

algorithm is:

r ;  = [r^-(r*A £:/ev)]  + ( r  + r,) (3.8>

where is the estimated daily average site air temperature, in °C, Tsy„ is the synoptic 

daily average (in °C), F is the lapse rate C cooling per 1000 m rise), AElev is the 

change in elevation from base weather station to site (m), represents the net gain or 

loss in temperature (in '"C) attributed to the sites percent canopy closure, and represents 

the net gain or loss in temperature attributed to the sites combined topographic (aspect, 

slope) attributes. The separate scaling terms, and T̂ , in Equation 3.8 emphasize that 

the net adjustment as an algebraic sum represent two potentially compensatory effects. 

The temperature correction term, T̂ ., due to canopy closure is defined as:

3T = r_ [ ( l - G C J - ( l - x ) l  (3 .9 )

where T„ represents a maximum theoretical temperature by which the simple lapse rate 

adjusted temperature may be expected to vary as a function of the sites combined percent 

canopy closure and topography (slope, aspect) influence. GC^ ̂  is the percent canopy 

closure (ground cover) coefficient {0.0  ̂ GC^ 1.0} at the site (e.g. pixel at raster address 

row, column), and t  is an optional, user assigned percent canopy closure value above
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which the algorithm actively dampens the synoptic temperature, rather than providing a 

(weak) positive boost inversely proportional to its magnitude. This term was set at 0.70 

for all analyses in this study. To specify no canopy dampening effect, x may be set to 1.0. 

The Tj term represents the (signed) temperature influence ('’C) attributed to differences in 

topography (aspect, slope) between the site and the base weather station(s):

(3.10)r, = r_

where is the sloped relative solar 

loading score, scaled to the range {0.0 

< Sj < 1.0}, Sf is the flat slope relative 

solar loading score (0.0 < Sf < 1.0), 

and T„ is defined as above. A cursory 

look at the statistical characteristics

.„d  bocmtary of .ho now - T.,
resulting from the new site temperature algorithm.

algorithm suggests that it produces

reasonably well distributed dependent terms over the range of values in the independent

d eg  C

term (Figure 3.7).
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An important criteria in 

designing scaling algorithms is that 

the dependent terms should exhibit 

statistical properties and a variance 

structure closely approximating those 

of the measure modelled. The binary 

decision logic used in the original site 

temperature algorithm that adds or 

subtracts a factor (e.g. in

d#* C.

Figure 3.8 Histogram illustrating the bimodal distribution 
of the air temperature adjustment (Ty„ - T J resulting from 
the original site air temperature algorithm.

Equation 3.6) from the lapse rate adjusted air temperature results in an undesirable 

bifurcated statistical distribution (Figure 3.8). The degree of bifurcation occurs roughly 

in proportion to the kurtosis of the adjustment factors distribution. The additional noise 

added by the correction mechanism is probably not attributable to the underlying 

phenomena it represents. In contrast, the weighting scheme using in the new site air 

temperature algorithm produces a more unimodal, continuous response pattern (Figure 

3.7) that eliminates the discontinuous, step function "noise" introduced by the original 

methods bimodal distribution.

Development of the Canopy (T„ and t ) Temperature Adjustments

The T„ temperature scaling factor represents an idealized maximum temperature 

(in ^C) about which the synoptic temperature might be expected to vary due to changes in
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percent canopy closure and topographic variables (aspect, slope) relative to the base 

weather station. Although two factors could have been separately defined for the 

canopy and topography influences, I choose this more streamlined approach 

acknowledging that over-precision here would probably be artificial. In practice, the 

magnitudes of the temperature differentials attributed to canopy and topography 

influences are controlled by complex, instantaneous energy exchanges on the site that are 

very difficult to precisely parameterize within time-averaged methods (McNaughton and 

Jarvis, 1983). To establish an initial "best guess" estimate of for each of the three 

sample dates, I performed a linear optimization analysis^. The solution criteria (e.g. the 

objective function) was set such that the coefficient of determination, r ,̂ was maximized 

for a pairwise examination (N=3364) of T  ̂vs remotely sensed T  ̂for each of three sample 

days (March 21, June 25, August 13). The solution converged after only a few iterations 

for each sample (Table 3.3).

The method used to set T„ should eventually be expressed in terms of commonly 

available climatological parameters (e.g. 24 average T̂ ax» T^i„) since it is obviously 

impractical to perform an optimization analysis with each model run.

3 The linear optimization was performed using the QuattroPRO/Win version 5.0 software
package.
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Table 3.3: Comparison of Methods To Assign T . Coefficients for the three Sample 
Dates (March 21, June 25, and August 13, 1990)

Sample Date "Optimum" T_ 
Factor, °C

T„ (in °C) using heuristic model.

March 21 6.98 8.41

June 25 10.05 8.56

August 13 12.66 12.70

where:
the "optimum" factor was determined using an empirical, linear optimization method, 
and the "heuristic" factor was determined using Equation 3 11..

As an illustration and a simplistic first approximation, I fit a linear function using as 

the dependent term, and the daily temperature amplitude as the independent

term for each the three sample dates available to the study. The simple straight line 

function relating to the daily observed temperature amplitude did agree with the basic 

trend of the "optimum" T„ value, but it must be emphasized that this crude function 

should not be interpreted as a "regression" equation since the sample size is ridiculously 

small (the d f for 3 samples is only 1). The heuristic correction function was:

r  = -0.47-(T - +18.83 (3.11)

The applicability and sensitivity of this heuristic for assigning T , was not tested 

in this study due to the small (seasonal) sample size. It is reported here only to illustrate
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how the "optimum" factors determined here might eventually be related to common 

available (daily) meteorology variables. Further analysis is obviously needed to refine 

this approach, where additional controls on beyond daily temperature amplitude could 

also be evaluated. In the MTNTEMP software, the function used to assign the T_ factor 

(Equation 3.11) may be overridden at runtime by a site-specific value. The determination 

of T„ is somewhat complicated by the fact that synoptic air temperature adjustments are 

based on relative differences between base weather station(s) and the site of interest. 

Linacre (1992) suggests that "...the pattern of (weather) stations should be most dense in 

the direction of right angles to 'isopleths' of contour, rainfall, temperature..." and further 

that "...the climate station should be located on level, open ground with a clear horizon, 

and not be in a hollow or on a steep slope". These criteria theoretically arise from the 

requirement to establish reliable long term, statistically comparable climatological 

records.

In practice, field experience indicates that many NWS and USDA Forest Service 

weather stations are indeed located in canopy openings, meadows, or fields. These 

stations probably yield temperature readings comparable with more "open" canopy 

conditions. Though the actual instrument enclosures (i.e. Stevenson screen) must be 

shaded and include fans to circulate the air in the enclosure (Oke, 1992; Furman and 

Brink 1975), these valley bottom sites often have weakly defined aspects and slopes. If 

the base weather station(s) used to parameterize MT-CLIM possesses either weakly 

defined or unknown topography (e.g. sited on essentially flat, openings), a correction
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logic based on relative topographic differences rests on somewhat ill-defined premises. I 

suspect that at least part of the expected error in MT-CLIM temperature estimates 

originates in this uncertainty. Linacre (1992) goes on to infer that canopy geometry (in 

particular, percent canopy closure) may represent a more important control on air 

temperature than traditional topographic gradients per se; this notion is corroborated by a 

study on surface moisture status (Nemani et a!., 1993) and by the author's field 

experience.

I felt that the lapse rate adjusted temperatures (Tsy„ - F*AElev) values on average 

did not represent a symmetric middle "balance point" about which a boost or dampening 

factor might be evenly distributed, due to the common practice discussed above of , 

locating weather stations in openings and meadows that represent more "open" canopy 

conditions relative to radiation loading and microsite ventilation. The assumption here is 

that the siting policy for locating weather stations (even accounting for buffering by the 

Stevenson screen) could favor slightly "warmer" recorded temperatures than might 

actually occur. The ( 1-x) term in equation 3.9 is an optional, user assigned percent canopy 

closure value above which the algorithm actively dampens the synoptic temperature. By 

definition, weighting functions of the form w = a(l-x) : {0.0 < x < 1.0} return only 

positive results. Including the (1-x) term in this algorithm allows it to return weighted 

negative values (°C) in proportion to the difference between x and GC when ground 

cover (GC) values meet or exceed those of x. The net effect of this term is to allow 

increasingly closed canopies to weakly suppress the resulting T^ in proportion to the
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amount of closure. Consequently, for all model runs the x coefficient was assigned a 

value of 0.70. This has the effect of shifting the in-situ distribution of slightly 

downward. The x parameter is set to 1.0 to specify no explicit canopy dampening effect; 

this is the MTNTEMP software default. I have not yet, however, performed a separate 

analysis of T  ̂sensitivity to relative changes in the x parameter.

Development of the topographic temperature adjustment

The topographic adjustment term, T,, is defined on the assumption that slope and 

aspect driven attenuation of air temperature (T^') can be adequately represented by a 

single integrating index. This index is the simple difference between the sites (sloped) 

relative solar loading, scaled (0.0 < Sg < 1.0) and a hypothetical fla t slope equivalent 

solar loading score, also scaled (0.0 < f < 1.0). T, is thus defined by multiplying the T_ 

factor by the difference between the sites sloped (Sg) and flat slope (Sf) relative solar 

loading scores. The "flat slope" solar loading scores were generated from the same 

algorithm as the sloped solar loading score, except that a value of "0.0" was input as the 

site slope, negating any aspect effect. The algebraic difference of the sloped minus the 

flat-slope equivalent relative solar loading score (A), scaled to the range (1 < A < 100) 

was then assigned as the normalized solar loading score for each pixel. The difference 

between the flat and sloped relative solar loading scores was used rather than Just the 

sloped relative solar loading to better account for the full heterogeneity in the loadings.
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Analysis Design

One set of MTNTEMP model runs were defined to evaluate the original MT- 

CLIM site temperature algorithm for each of three TMS scene sample dates (Table 3.4) 

and one set for evaluating the new site temperature algorithm for the three samples. Note 

that since leaf area index (LAI) was not determined for the Black Butte study site, the 

ratio of canopy closure to maximum canopy closure was substituted as a surrogate for the 

(LAI/MLAI) term in the original MT-CLIM site temperature T^^j (Equation 3.4) and T̂ t̂, 

(Equation 3.5) adjustment functions. As a point based model, the original MT-CLIM was 

not equipped to accept input parameters on a distributed spatial basis. MTNTEMP 

addresses this limitation through its ability to read and write spatial data layers in their 

native ERDAS v.7.5 or IDRISI4.1 image formats. Input variables that significantly 

varied on a spatial basis (albedo, canopy cover, relative solar loading, elevation, aspect, 

and slope) were therefore maintained as single band, 8 or 16 bit image raster files, 

eliminating the need to maintain redundant, intermediate generations of the imagery.

Each MTNTEMP run was defined on the basis of a unique input data mix that included 

the standard scalar inputs and the set of 58 x 58 (93.8 m pixel resolution) rasters listed 

above.
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Table 3.4: MTNTEMP Model Run Matrix

"Baseline": used original MT-CLIM site temperature 
algorithm: T̂  = f(radiation ratio, canopy closure)

"New Method": used new site temperature 
algorithm, T̂  = f(canopy closure,relative solar 
load)

Stratification Level Samples: Stratification Level Samples

(none - unstratified) March, June, August none - unstratified March, June, August

Between Class 
(partition wise 
averages)

March, June, August Between Class 
(partition wise 
averages)

March, June, August

Within Class March, June, August Within Class March, June, August

Appendix 3.3 lists the full set of inputs used for all model runs. The output from 

each MTNTEMP model run consisted of a database table (in xBASE^ ”.dbf" format) with 

one record per pixel, with each requested output variable in a database field. Appendix 

3.7 shows a database table structure list of a typical MTNTEMP output database table. 

The database output table scheme was adopted primarily due to convenience for 

subsequent statistical analysis. Each database record included the raster cell row and 

column index, allowing all spatial variables to be grouped into a single geocoded file.

For preliminary trial runs, single band raster images (of T  ̂and/or T )̂ were also output in 

ERDAS v.7.5 or IDRISI 4.1 GIS formats for visual verification of model results (Figure 

3.9).

The term "XBASE" used here refers to the generic collection o f database management software packages 
conforming to the binary database table format originally developed by the Ashton Tate Inc. dBASE specification.
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The temperature data layers, and T ,̂ were maintained as continuous, ratio 

levels variables. A number of ratio level variables were chosen as candidate categorical 

variables on the basis of their 

perceived influence on temperature 

processes: elevation, slope, aspect, 

relative solar loading, and canopy 

closure fraction. Each of these

variables was level sliced using a

standard linear contrast stretch

algorithm (Lillesand and Kiefer, 

1987). As a categorical variable, 

aspect was divided into eight (45  ̂

arc) classes, slope into 4 classes.

Figure 3.9 Example of the output verification raster 
produced for the August 13 1990 sample using the new 
site temperature algorithm.

with canopy closure and relative solar loading each divided into 5 equal width classes. 

These class breakdowns were then used as discrete indexes for statistical sample 

partitions.

The justification for partitioning T  ̂and T̂  came after an examination of the 

distributions and variance structure of individual T  ̂and Tg values, and unstratified T  ̂vs. 

Tg correlation trends (N=3364). I felt that if the population was partitioned using 

categorical variables controlling much of the temperature variation, more relevant

comparisons between the T  ̂and Tg trends could be made. This assumption was tested by
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performing a series of one way analysis of variance using SPSS ONEWAY tests 

(Norusis, 1993), setting the variable as the dependent term and each of several 

candidate categorical variables (slope, aspect, elevation, canopy closure, relative solar 

load, and incident shortwave solar radiation) as the independent terms. Using a Scheffe’s 

multiple comparison range test at the a  =0.05 level, a significant number of these 

variables thus categorized had significantly different classwise means. This is the same 

basic experimental design logic used when performing stratified random sampling (Levy 

and Lemshow, 1991; Ott, 1977).

MTNTEMP model T  ̂outputs were statistically compared with T  ̂using several 

analytical approaches. The primary statistical hypothesis tested was; Hq "there is no 

positive correlation between predicted T  ̂and observed Tg " at the a  =0.05 significance 

level, vs. Ha : "there is a positive correlation between T  ̂and Tg". The correlation 

hypothesis is tested via a standard F-statistic at the a  =0.05 level (Wonnacott and 

Wonnacott, 1977) and is somewhat analgous to a standard equal-means hypothesis test, 

Hg: yuTa - /uTg = 0, (e.g. no statistically significant difference exists between mean 

predicted T  ̂and mean observed Tg estimates). For further diagnostic purposes, a series of 

linear regressions of T^ vs. Tg were run, producing model slope, intercept, r ,̂ as well as 

the F-statistic described above (95% confidence level). Statistical analyses were 

conducted using the SPSS version 5.02 and 6.0 statistical software packages and custom 

FoxPr o  database routines.
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Pooled Comparisons

Pooled (e.g. unstratified) regressions of dependent (T^) vs independent (T^) 

variables were calculated by considering all pixels in the (58* 58) pixel study area 

(N=3364) as a single population. The analysis was repeated for the three 1990 sample 

days (March 21, June 25, and August 13) using both the original MT-CLIM site 

temperature algorithm (Equation 3.6) and the new MTNTEMP site temperature algorithm 

(Equation 3.8). The regression model coefficients and error estimates listed above were 

calculated for each trial. While this type of comparison provided the benefit of 

illustrating the T  ̂and Tg trends across the entire study area, the environmental causes of 

the (considerable) temperature

variation across the area were 

essentially ignored by this pooling.

Across-Category Comparisons

To examine the 

relationships of T  ̂vs. T, across 

different pairs of environmental 

gradients, partition cell averages of 

the T and T values were regressed
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Figure 3.10 Defining T̂  vs T  ̂as partition cell-w ise averages 
represents variation in a partition cell as a single value; in this 
example, 9 pairs o f temperatures would be regressed.
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against each other. This sample partition scheme is illustrated here for a hypothetical 3x3 

matrix of category pairs (Figure 3.11). The environmental category pairs were chosen on 

the basis of how they represented continuums in temperature variation. Category variable 

pairs examined were: {canopy closure class and relative solar loading class}, (elevation 

class and aspect class}, and (aspect and slope class}. The across-category partition 

scheme resulted in regressions whose degrees of freedom {df) equaled the products of the 

numbers of classes between the two categories, while there were sufficient numbers of 

pixels (e.g. >= 5) in the given partition cell (e.g. "...Partition on aspect classes (8 levels) 

and elevation classes (5 levels), to yield a sample size of N=40 pairs of T  ̂vs. T , ..."). 

While this approach tended to dramatically reduce the regression sample size, it also 

provided a helpful look at the T  ̂vs. T  ̂trends across broader environmental gradients. 

Note that in some cases, the shown in the results section below is slightly less than this 

product; this is due to some partition combinations being excluded due to too small ( < 5) 

a sample size.

Within-Category Comparisons

In this stratification scheme, raw T^ vs. Tg values for several category pairings 

were regressed. The same categorical variable pairings were defined as described above 

for the across-category comparisons. This analysis approach attempted to address the 

question: "how well do Tg and Tg. correlate within more narrowly defined environmental 

gradients (e.g. "...regress all the Tg vs. Tg. (pixels) sharing membership in aspect class 4
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and slope class 3", or, "...regress all vs. T̂ . pixels in canopy closure class 5 (85% 

closed) and relative solar class 5"). This analysis also indirectly tests how well a given 

pair of grouping variables (e.g. {elevation, aspect} or (canopy closure, relative solar 

load) ) partitions the natural variation in hillslope temperatures. Again, the assumption 

was that if the categorical variables partitioned the variance well, regression datasets 

constrained to these sub-populations should yield more actual information about the 

underlying relationships and spatial trends. Output from this analysis consisted of a 

series of linear models and error coefficients, one for each unique combination defined by 

the joint categorical class values. Since a separate model was generated for each unique 

partition cell (e.g. 40 linear models for the (8) aspect and (5) slope class pairing) this 

made a classic model-by-model interpretation of the output somewhat cumbersome.

These results are consequently reported using 3D "pseudo" surfaces where the model 

coefficient of determination (r^) is shown on the Z axis, and the two category class 

variables form the X and Y axes. These are "pseudo" surfaces because the surfaces were 

interpolated from a series of discrete independent "points", where each regression model 

represents one point on the surface. They are thus meant to convey a more qualitative 

than quantitative illustration of the "best" and "worst" correlations of T  ̂vs. T  ̂across the 

selected environmental gradient space.
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Multiple Regressions

The Tg air temperature variable is of course driven by more than just surface 

temperature. To examine the relative contribution made to the relationship by different 

environment variables (in ratio level form) several forward-stepwise multiple linear 

regressions were run using SPSS (Norusis, 1993). Surface temperature (T^), canopy 

closure fraction, elevation, percent slope, and transformed aspect (cosine of aspect+1) 

were set as the independent terms, and T  ̂was set as the dependent term. The surface 

temperature (Tg) term was forced into the equation first since I was most interested in the 

contribution of this term to the model. Again, these models were developed more for 

their diagnostic value than as traditional descriptive models, to help assess the relative 

contribution of each independent term in explaining the total variation in the relationship. 

Model coefficients, significance statistics at the a=0.05 confidence level, and r̂  

coefficients of determination are reported for these multiple regressions to further test the 

new method for estimating site temperature.
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Results and Discussion

Pooled and Across-Category Partition Results

The topographic validation was performed with two major sets of MTNTEMP 

model runs: a baseline run using the original MT-CLIM site temperature algorithm, and a 

"new method" run with the new site air temperature algorithm. These are hereafter 

referred to as the "original" and "new methods" runs. Linear regressions of T^ vs. T  ̂for 

the "original" run with all pixels pooled (e.g. unstratified) were only moderately 

conclusive (r  ̂of 0.60, 0.25 and 0.42 for the March, June, and August samples 

respectively). This is at least partly a function of sites with very different environmental 

qualities being pooled into the same analysis population, and due to the diminished 

temperature amplitude resulting from use of the T̂ dd (Equation 3.4) and (Equation 

3.5) functions. As discussed earlier in this paper, expressing T  ̂solely as a function of T̂  

is a gross over simplification of the underlying physics; this simplified analysis does 

however provide a useful view of the relative shifts in the relationships. When 

partitioned by selected pairs of topographic/canopy variables, the strength of the basic 

relationships consistently improved (Table 3.5). Linear regressions of T  ̂vs. T  ̂ for the 

pooled sample "new methods" resulted in consistently better relationships (r  ̂of 0.69, 

0.56, and 0.83 for the March, June and August samples respectively) than those obtained 

using the original air temperature estimation method. Partitioning by topographic and
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canopy variables improved the relationships still further (Tables 3.5, 3.6) for both the 

original and new air temperature methods. F statistics for all regressions were significant 

at the a=  0.05 level or better, and the null hypothesis of equal mean Y' terms (predicted 

vs. observed T )̂ was rejected at the a =0.5 level for all sample dates and both site 

temperature estimation methods.

Of the three samples, regression models from the June sample consistently 

reported the weakest relationships between and regardless of how or if the samples 

were partitioned along environmental gradients, or whether the original or new method 

site temperature algorithm was used. This general effect is probably due to the 

domination of the ÀE term in the Bowen ratio associated with the lush spring/early 

summer green up pattern and higher moisture levels on site. Conversely, the August 

sample regression models were consistently more definitive, also showing improvement 

from the new site temperature algorithm method vs. the original method. At this point in 

the season, the higher Bowen ratios associated with warmer, drier conditions resulted in 

a closer coupling of T  ̂with the energy budget and thus with T .̂ Regression model 

slopes were generally lower and y intercepts higher for the original method (pooled) 

regressions, indicating more diffuse relationships in T  ̂vs. T̂  across all sample dates.

This was likely due to the relative lower temperature amplitudes resulting from the 

original methods flatter response characteristics at radiation ratios close to 1.0 (Figures 

3.3 and 3.4). Slopes for the across-category partitioned models varied from about 0.23 to 

0.52, with the higher slopes associated with the June sample.
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1 Table 3.5: Original Method Run Regression Results For Pooled and Across-Category Partitioning

Sample Control 
Variable 1

Control 
Variable 2

N R2 Model
Slope

Y Intercept Y Std Error

March Pooled (Unstratified) 3364 0.609 0.252 6.0316 1.071

Elevation Aspect 47 0.769 0.358 4.2229 1.002

Closure Rel Solar 17 0.704 0.242 5.5418 0.970

Aspect Slope 28 0.861 0.386 4.0045 0.659

June Pooled (Unstratified) 3364 0.257 0.208 12.070 1.508

Elevation Aspect 47 0.457 0.455 5.390 1.573

Closure Rel Solar 17 0.525 0.224 10.768 1.029

Aspect Slope 28 0.731 0.521 4.321 0.940

August Pooled (Unstratified) 3364 0.414 0.231 15.891 1.291

Elevation Aspect 47 0.549 0.394 10.440 1.360

Closure Rel Solar 17 0.666 0.231 15.580 0.939

Aspect Slope 28 0.873 0.412 10.490 0.600

Samples: Jun =June 21 TMS flight, Mar =March 25 TMS Flight, Aug =August 13 TMS flight 
Control Variable 1 is the first categorical variable.
Control Variable 2 is the second categorical variable.
Y' Std Error is the standard error o f  the model dependent variable
All regression model slopes and y intercepts were significant at the a=0.05 level.

The y intercept of these vs linear models may be generally interpreted as 

the influence of the numerator term of the Penman-Monteith equation (Monteith and 

Unsworth, 1990) — the contribution to the relationship essentially due to atmospheric 

forcing. Y intercepts varied from 4.2 to 15.0 °C for the original method models, with 

standard errors for the predicted terms varying closely about 1.0. Higher y intercepts 

between the and Tg represent differences at lower surface temperatures driven by 

underlying environmental conditions.



88

Table 3.6: New Method Regression Results from For Pooled and Across-Category Partitioning

Samples Control 
Variable 1

Control
Variable
2

N Rz Model
Slope

Y Intercept Y' Std. Error

March Pooled (unstratified) 3364 0.693 0.372 4.761 1.314

Elevation Aspect 47 0.826 0.448 3.526 1.051

Closure Rel Solar 17 0.745 0.472 3.525 1.706

Aspect Slope 28 0.869 0.561 1.858 0.927

June Pooled (unstratified) 3364 0.564 0.561 3.194 2.040

Elevation Aspect 47 0.829 0.972 -7.161 1.399

Closure Rel Solar 17 0.891 0.948 -7.415 1.598

Aspect Slope 28 0.880 0.950 -6.384 1.042

August Pooled (unstratified) 3364 0.827 0.727 0.798 1.558

Elevation Aspect 47 0.904 0.904 -4.576 1.119

Closure Rel Solar 17 0.970 0.847 -3.388 0.927

Aspect Slope 28 0.950 0.922 -4.981 0.804

Samples: Jun =June 21 TMS flight. Mar =March 25 TMS Flight, Aug ^August 13 TMS flight
Control Variable 1 is the first categorical variable
Control Variable 2 is the second categorical variable
Y' Std Error is the standard error for the models dependent variable,
All regression model slopes and y intercepts were significant at the a=0.05 level.

Partitioning across-categorical variables tended to increase the regression slopes, 

decrease the y intercepts, and lower the standard error of the predicted terms relative to 

the pooled analyses. These effects are partly due to the apparent reduction in variance 

gained by .averaging the and pixels on a partition cell-wise basis. Of course, the
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intrinsic variance in these models is 

still present so the reduction is only 

apparent, masked somewhat through 

the expression of the raw regression 

data points as averages. These 

regression models are useful more in 

a diagnostic sense than as 

prescriptive models, providing a 

relative comparison between the
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Figure 3 .1 1 Scatterplot and regression model for the 
{Canopy Closure, Relative Solar Loading} across- 
category partition for the August, 1990 sample using the 
new site air temperature algorithm.

original and new methods and between sample dates. The generally improved 

correlations between T  ̂and Tg for both the unstratified and stratified analyses suggests 

that the new dual-weighted canopy

closure and relative solar loading 

scheme could possibly represent the 

underlying spatial air temperature 

dynamics somewhat better than the 

original scheme.

For the "new site air 

temperature method" regression
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Figure 3.12 Scatterplot and regression model for 
(Elevation, Aspect) across-category partition for the June 
25 sample using the new site air temperature algorithm.

models, slopes were generally higher, with lower y intercepts across the board for the new
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site temperature method analyses. 

The model for the August 13 sample 

exemplifies this improvement (Figure

3.11).

Note that both the August 13 

and June 25 model slopes are
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Figure 3.13 Comparison of the original and new air
approximately parallel to the 1:1 line, temperature method regression slopes for the June sample.

These lines illustrate the effect o f increased temperature
with y intercepts offset by amplitude on the sensitivity o f the relationship.

approximately 16-18°C reflecting different levels of atmospheric forcing (Figure 3.11 and

3.12). The new site air temperature method produced a particularly noticeable 

improvement in the June sample, in part through a boost in sensitivity associated higher 

temperature amplitudes (Figure 3.13). Seasonally, both the magnitude and direction of 

these trends appear consistent given 

the relative changes in sun angle 

between the March, June, and August 

sampled dates (Table 3.1, solar 

elevation column).

A#p#ct Cl### Cwsa

Figure 3.14 r* surface for the within-category regression 
models using the (Elevation, Aspect class} pairings for 
the August sample, new air temperature algorithm.
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The within-category variance 

in the vs. relationships was 

examined by running regression 

models partitioned by different 

combinations of categorical 

variables: elevation class (4 levels), 

canopy closure class (5 levels), slope 

class (4 levels) and aspect class (8 

levels). The {elevation class, aspect
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Figure 3.15 surface for the {relative solar load, canopy
closure} pairing for the June sample, using the new air 
temperature method.

class) pairings yielded generally uneven surfaces for all sample dates for both the 

"original" and new methods runs, with a general improvement in r  ̂values for the "new 

method" models (Figure 3.14). The overall correlation level of the surface however 

suggests moderately good agreement. A number of factors may be contributing to the 

heterogeneity here, including canopy influences not accounted for in this simplistic 2D 

pairing. Also note that the scaling of the aspect class variable places the two northern 

most aspect classes at opposite ends of the y axis, resulting in a physical split of this 

naturally periodic index. With that in mind, the upturned comers of the surface at either 

end of the aspect scale are more easily interpreted (Figures 3.14 and 3.16).
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The {relative solar loading 

class, canopy closure class} pairing 

tended to produce somewhat more 

evenly varying r̂  surfaces with a 

more definitive overall gradient. 

Lower r̂  values generally occurred at 

higher relative solar loadings, and 

higher r̂  values were more associated 

with higher canopy closures and
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Figure 3.16 surface for the {slope, aspect) pairing for
the March sample using the new air temperature method.

lower relative solar loadings (Figure 3.15). This effect is likely due to better T  ̂and T, 

coupling at the typically moderated temperatures present under more closed canopies.

In the {Slope, Aspect} class pairings, several features appeared for all three 

samples dates in the r̂  surfaces. Noticeable "pits" or local depressions in the surface 

seemed to consistently occur around west aspects (aspect class 6, or 202.5 to 247.4° ) and 

the lower slope classes, and minor depressions also occurred in mid slope and aspect 

class categories (Figure 3.16). In general, the best fits within the {slope,aspect} pairings 

tended to occur at lower slopes and north facing aspects.
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Multiple Regression Results

As an additional verification of the basic vs. relationships across 

environmental gradients using the new method, multiple linear regressions were fit for 

each sample date setting as the dependent variable, and ratio level forms of T ,̂ the 

canopy closure, elevation, slope, and cosine-transformed aspect as the independent 

variables. All regression models Y', slopes, and y intercepts were significant at the 

a  =0.05 probability level. The seasonal trends detected in the other analyses are 

reinforced here as well; the June sample had the least definitive r̂  coefficient (with 

0.785), and had a higher standard error of Y than the other two dates (Table 3.7). 

Regression coefficients for these models were predominantly negative, indicating an 

expected inverse response in T  ̂to increased values in most of the independent variables. 

The low magnitudes of some of the fitted term coefficients (e.g. elevation in all samples, 

and transformed aspect in March and August), suggests these contribute only weakly to 

the model fit. The canopy closure and aspect variables had consistently higher coefficient 

levels across the seasonal samples, indicating a more direct influence on air temperature. 

The higher canopy closure variable coefficients in particular reinforce the importance of 

including this or a proxy parameter in the air temperature algorithm.
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Table 3.7; Multiple Linear regression models for vs T  using the new site temperature estimation 
method

Sample Multiple regression model R' Y'
standard
error

March T 3 = (0.06 1 )T , - (6.678) C - (0.005) E - (1.43) A '-(0 .0 2 ) S + 
22.619

0.940 0.58

June T 3  = (0.157) T, - (7.49) C - (0.002) E - (1.0) A* - (0.123) S + 25.097 0.785 1.43

August T 3  = (0.200) T, - (9.520) C - (0.004 )E - (2.289) A’ - (0.074) S + 
32.454

0.932 0.97

where:
T 3  = air temperature estimated by MTNTEMP model using new site temperature method 
T, = surface temperature derived from TIR, in °C  
C = percent canopy closure
A’ = transformed aspect in degrees [ cosine(aspect)+l ], all values forced positive to {0.0 < a' < 2.0} 
S = percent slope 

1 E = elevation, in meters.
1 = adjusted multiple linear regression coefficient of determination.

Nemani and Running (1989) and Coward et al. (1994) both found that canopy 

properties (in this case, NDVI) play a similarly influential role, where the 

approximated at the highest NDVI values, and departed the most from over bare 

soil.

Note that although these multiple linear regression models ultimately suggest 

fairly good correlation between and the independent variables examined, their 

application beyond this study would require local validation. Gaugh (1982) summarized 

the application of other multivariate analysis methods to meteorology, including principle 

components analysis (PCA) as well as direct ordination. These and techniques such as 

detrended correspondence analysis (DCA) may prove useful in future investigations into
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the relationships between spatially important environmental variables and the key 

diagnostic meteorology variables identified in this study.
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Conclusions

In lieu of a much more rigorous modeling approach representing a full energy 

balance within multiple nested grids such as RAMS (Pielke et al., 1992), the approach 

taken by MT-CLIM/MTNTEMP appears to meet the broader climatology needs of 

ecosystem process models. For larger scale (e.g. 500 m, I k) ecosystem modelling 

applications, an array of assumptions must be made about the distribution of topographic 

variables that the MT-CLIM and MTNTEMP models are presumably sensitive to. The 

microsite level study described here thus leaves some unanswered questions about how 

well this model approach would work when such influences are defined more coarsely. 

Larger scale test datasets taken from a geographically widespread network of remote area 

weather stations, RAWS, (Warren and Vance, 1981) could play a key role in investigating 

these scale questions.

The strength of the relationship between T ,̂ and the TIR based T, appears to be at 

least partially based on there being sufficient amplitude in the diurnal temperature signal. 

This amplitude (e.g. measurability) in turn is linked to sufficient spatial heterogeneity in a 

sites surface properties and energy balance dynamics. The June TMS dataset had the 

most damped temperature amplitude of the three samples and resulted in regression 

models that did not match the MTNTEMP model results nearly as well as the other two 

dates. The early spring green-up conditions of June probably contributed to this. The 

regression model slopes for all sample dates were consistently lower than the 1:1 line,
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reflecting the atmospheric forcing influence between and discussed earlier. These 

slope trends agreed with those found by Nemani and Running (1989) who examined 

vs. a normalized difference vegetation index (NDVI) on a seasonal basis and found that 

Tg dropped with increases in NDVI. Coward et al. (1994) found similar patterns, stating 

that extrapolation of NDVI to an "infinitely thick" canopy provides an estimate of foliar 

temperature generally comparable to air temperature. Regressions for the August sample 

reflected improved correlations between and Tg where the drier conditions resulted in 

increased temperature amplitudes. The (more conclusive) regressions from the March 

sample were more similar to those from the August sample than the June sample, 

probably due to the fact that cooler soil temperatures in March prevented the vegetation 

canopy from transpiring at June levels.

Appropriate caution must be taken in interpreting the statistical relationships 

between T  ̂and Tg since these are only indirectly physically related. In denser stands with 

higher aerodynamic roughness, we observe a generally closer coupling of T  ̂with Tg, as 

the majority of scatter plots (Figure 3.12, Figure 3.13) indicate at lower ranges of Tg In 

general, the new site temperature algorithm for adjusting synoptic air temperature 

introduced in this paper produced better correlations of T  ̂and Tg across the 

environmental gradients of elevation, aspect and slope than did the original MT-CLIM 

algorithm (Equation 3.3).
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In general, parititioning the spatial study site by various environmental gradients 

universally improved the basic agreement in topographic trend between the observed 

and the estimated T .̂ This is due at least in part to the effect of minimizing within-class 

variance relative to between-class variance. The breadth and consistency of the trends 

evident from this study do suggest some robustness in the underlying relationships, 

particularly in light of the consistency of these results between sample dates, and between 

pooled vs. stratified samples. To the extent that the topographic heterogeneity at Black 

Butte approximates typical ‘Teal world" conditions, the results obtained here might apply 

to a broader range of site conditions. The performance of the new site temperature 

estimation algorithm on a wider range of sites should be examined however, to further 

establish its applicability. In particular, examination of model performance on sites with 

a greater overall elevation relief and a more diverse mix of micro-topography (including 

minor swales, hanging valleys, etc) would be useful. The heuristic method used to 

determine T_ for a given run (Equation 3.11) could be further explored as a practical way 

to implement the new site temperature estimation algorithm reported here. More work 

also needs to be done to independently validate the precipitation variable not addressed in 

this study.

This study probably did suffer somewhat from the lack of atmospherically 

corrected Daedalus TMS imagery; in the future, an improved experimental design should 

include vertical atmospheric profiles, either from radiosondes or a better elevation- 

distributed observed temperature dataset. More rigorous atmospheric corrections,
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however, would likely have altered the magnitude of the observed but not the basic 

correlation patterns found here.

A suggested follow-on to this study might be to establish a stratified random 

sample of field plots on a mountain slope with diverse topography, where the following 

variables would be collected at each plot: a) several replicates of measurements 

obtained using a hand held radiometer, b) aspect, slope, elevation, and canopy closure 

measurements, and c) precise spatial location determined via a hand held global 

positioning system (GPS). A series of MTNTEMP model runs would then be 

parameterized, one to match each field plot taken, to establish model T  ̂estimates 

associated with the T  ̂at each field plot. A potential advantage of this type of study is that 

although the T  ̂signal would require routine calibration, it would probably not require the 

same type of atmospheric correction as would a remotely sensed signal, and the logistics 

of when the samples were taken (time of day, time of year, environmental gradients) 

could be more closely controlled. This ground based study design could be extended to 

larger scales through an analysis based on a geographically widespread RAWS network, 

or could also be coordinated with a denser set of remotely sensed thermal imagery. If the 

sample error rates were kept sufficiently low (e.g. through sufficient sampling density, 

etc), such a study could help fine tune the MT-CLIM approach and further contribute to 

the development of meteorology models useful in ecosystem research.
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Chapter 4 

Conclusions

This diumal and topographic validation of the MT-CLIM model found moderately 

good agreement between observed data and model outputs for the humidity, incident solar 

radiation, and site temperature variables examined. In the diurnal component of the 

model, incident solar was generally estimated better than humidity; this is probably at 

least partly due to the more explicit algorithmic treatment of radiation relative to the 

methods used to extrapolate humidity, given the complex physical controls on diurnal 

humidity flux. In the topographic component of the model, the new site temperature 

algorithm introduced here appeared to generate universally stronger correlations between 

air and surface temperatures, subject to the limitations and constraints of the observed 

surface temperature data.

While encouraging, this study indicates some potential areas for future 

improvements, both in terms of phenomena not yet treated (wind, microsite air drainage, 

advection) as well as variables addressed now that could be estimated better.

Meteorology is a dynamic physical phenomena tightly woven through the dimensions of 

time and space. Open water sailors, smokejumper pilots, and chaos theorists would 

probably add a dimension of mysticism to these other dimensions, acknowledging the 

daunting unpredictability of the weather around us. Treating mountain meteorology via
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extrapolation-based computer models such as MT-CLIM or MTNTEMP thus requires a 

certain relaxation in expectations of precision found in crop micro meteorology work. A 

theoretically rigorous, first principles formulation for estimating the climatology variables 

treated in MT-CLIM would have to calculate not only an instantaneous on-site energy 

balance, but also account for local and perhaps mesoscale wind influences, as well as 

micro-topographic effects governing such phenomena as cold air drainage. These 

instantaneous controls would then have to be scaled to an appropriate time-step for the 

given application via sophisticated data reduction methods. Even if the increased 

computational costs required of such an "ideal" approach were comfortably met by higher 

performance hardware, the larger question of reaching an appropriate balance between 

model precision and the needs of ecosystem research remain. Further, the raw CPU costs 

represent only one aspect of the overall operational requirement; the labor, data storage 

and retrieval overhead required to maintain and interpret very high resolution 

meteorology data outputs is another impediment to the presumably "ideal" scheme 

outlined above. It appears that a blend of empirical, statistical, and microclimatology 

principles (such as done in MT-CLIM) remains among the few practical ways we 

currently have to produce the meteorology estimates required by multiple scale ecosystem 

models.

The strengths and reliability of any study comparing observed vs. predicted 

parameters is necessarily predicated by our confidence in the observed data. Both the 

diumal and topographic studies reported here suffered somewhat from uncertainties in the
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observed data. In the diurnal portion of this study, faulty relative humidity instruments 

maintained on the OTTER project required data to be screened temporally. In the 

topographic component of the study, the remotely sensed surface temperature dataset had 

to serve as a "soft" proxy measure only indirectly representing the underlying phenomena, 

and separated from it by several critical layers of data manipulation. Each of these 

transformations potentially introduced more experiment error. Aside from the 

attenuations to the thermal signal caused by atmospheric effects, T̂  represents a 

physically complex measure subject to a variety of potentially compensatory influences: 

atmospheric forcing, water and radiation energy balances, and physiographic influences. 

Beyond these, sensor geometry, data-stream post-processing, and calibration issues also 

play a role. Given these unknowns, the modest degree of statistical agreement found 

between T  ̂and T^ across the topographic gradients evaluated suggests a fundamental 

level of robustness in the underlying relationships. In particular, the consistency in the 

regression slopes and stability of the trend directions across seasonal spatial gradients in 

the topographic study seems to reinforce this conclusion.

As modeling objectives begin to increasingly emphasize the 250 m, 500 m and 1 

km grid cell resolutions supported by newer instruments such as NASA EOS MODIS, the 

need for modelers to potentially revise our notion of traditional physiography emerges. 

Global scale 1 km and 1® by 1° grid cells increasingly resemble complex statistical 

surfaces more than the simple and direct point measures of the past. When a MT-CLIM 

approach is scaled up to these resolutions, even more emphasis will need to be placed on
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the implicit distributions of key variables represented now within each "point” weather 

station. Generation of statistical "virtual weather stations" that adequately characterize 

the spatial properties of mesoscale and regional scale regions will need to become more 

routine; progress towards this end is underway. The MT-CLIM approach favors 

simplicity of parameterization and lower compute costs at the expense of temporal and 

spatial precision. It is possible that the efficacy of these simpler approaches may 

ultimately be decided as much on the basis of research economics as technical precision. 

The challenging data volumes proposed by the upcoming NASA EOS research program 

and others, in concert with funding limitations, seem to argue more than ever for a 

balance between compute efficiency, precision, and more tractable parameterizations, in 

spite of continual advances in computer technology. The ultimate value of the MT-CLIM 

logic is probably best seen as a cooperating tool used along with and cross-validated by 

more theoretically rigorous energy-conservative based models such as RAMS.

Lastly, while the study objectives stated earlier do not specifically address model 

software implementation issues, some of these merit a brief discussion here. Historically, 

the trend has been to develop models like MT-CLIM in an ad-hoc fashion, using software 

languages to express the science in as streamlined and succinct a form as possible. The 

down side of the ad-hoc approach is that the (proper) emphasis on the discipline science 

(meteorology) is sometimes achieved at the expense of software quality, provability, and 

extensibility. The MTNTEMP prototype implementation used in this study represents a 

conscious effort to at least partly address each of these. Significant set-backs in modeling
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projects have historically occurred due to investigators confusion over a) which inputs 

were actually used to generate a given set of outputs, b) which algorithms were actually 

present in the model used for a run, and c) missing internal documentation on the general 

goals for the run. While such issues may be dismissed by practitioners as "just common- 

sense data management" or seen as ill-afforded luxuries, they directly affect the basic 

integrity of much of our work. The science modeling software we develop can and 

should support these and other related concerns more explicitly than they do now. 

MTNTEMP includes specific facilities to promote documentation of model runs (free 

form commenting of input script files) and archive (optional, transparent "packaging" of 

all inputs and outputs into one compressed archive volume). Emerging object oriented 

data modeling and software paradigms collectively represent a significant advance in how 

meteorology software could be implemented. In the future, advances in software 

implementations that support the above concerns will likely come as the result of better 

interdisciplinary collaboration with computer scientists working with these new 

paradigms.
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Appendix 3.1

Statistical Summary of Study Site Variables

The main physiographic and canopy variables used to characterize the study site 
were elevation, slope, aspect, and percent canopy closure. Aspect was transformed to 
cosine(aspect)+1.0 to force all periodic transformed aspects positive, to the range 
( 0 .2 .0 ).

Variable Mean Std Dev Minimum Maximum N
ELEV 1255.10 211.68 940.0 1892 .0 3364
SLOPE 13 . 61 7 . 69 . 00 35 . 00 3364
CLOSURE . 73 . 18 .01 . 85 3364
ASPCOS_l 1. 09 . 74 . 00 2 - 00 3364

The discrete form of these variables are summarized below:

Variable Minimum Maximum N
ELEV_CL 1 6 3364
CLOSE_CL 1 5 3364
ASPEC_CL 1 8 3364
SLOPE_CL 1 4 3364

The sample specific, ratio level variables defined in the study include relative 
solar loading, surface temperature, site air temperature, radiation ratio, and incident 
shortwave solar radiation (kJ/mVday). These vary by sample and site temperature method 
and are reported below for the new method by sample;

Sample-Specific Continuous Variables

March Sample
Variable Mean Std Dev Minimum Maximum N
RSOL 61 . 04 19 .25 1 100 3364
TSURF 14 . 32 5.31 2 . 00 35.00 3364
TSITE 10.09 2 .37 2 .19 16 . 06 3364
TSYNOP 10.52 1.23 6.73 11.92 3364
RADRAT . 99 . 08 . 740 1. 184 3364
SOLAR 2 0154.97 1707.89 15086.61 24130.70 3364



•June Sample
Variable Mean Std Dev Minimum Maximum N
RSOL 65 .15 18 . 44 1 100 3364TSURF 24 . 58 4 . 13 16 . 00 41 . 00 3364TSITE 16 . 99 3 . 09 6 .31 25-84 3364TSYNOP 18 .20 1 . 23 14 . 41 19 . 60 3364RADRAT . 99 . 02 .919 1 . 012 3364SOLAR 33761 . 92 587.47 31318.65 34518.12 3364

August Sangle
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Variable Mean Std Dev Minimum Maximum N
RSOL 67 . 98 18 . 93 1 100 3364
TSURF 29 . 96 4 . 69 20 . 00 47 . 00 3364TSITE 22 . 58 3 .75 13 . 51 33 .19 3364TSYNOP 23 . 72 1.23 19 . 94 25 .12 3364
RADRAT . 99 . 04 .854 1. 071 3364
SOLAR 27975 .98 1158.55 24125.29 30285.43 3364

Variable Description
RSOL relative Solar Loading Score
TSURF surface Temperature, deg C.
TSITE estimated air temperature, deg C
TSYNOP synoptic site temperature, deg C 
RADRAT flat/sloped radiation ratio 
SOLAR incident shortwave radiation
ELEV Elevation (meters)
SLOPE Slope (percent)
CLOSURE Canopy Closure Percent 
ASPCOS_l cos(aspect_rad)+1.0
ELEV_CL Elevation Class
SLOPE_CL Slope Class
CLOSE_CL Canopy Closure Class
ASPEC_CL Aspect Class (45 deg arc classes)
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Appendix 3.2 

Example of MT-CLIM Model Input Requirements

Cascade Head, Site 1
NASA OTTER PROJECT MTCLIM Validation
CASC89.MTC Input data file (temperatures in deg C)
CASC8 9.CLM Output data file
S English (Temps: F and PPT: inches, or SI (CM) Units, 

[E,S]
N Dew point temperature supplied [Y or N]
1 Number of PPT stations [1 or 2]; if 2 then use 2 

isohyets below
N Use threshold radiation [Y or N]
T Total or Average radiation [T or A]
Y Use Yearday (Julian) in place of month & day [Y or

N]
208 N. days. Integer variable, all the rest are single 

precision real values.
44 . 05 Latitude, in decimal degrees.
49 .0 Site elevation (meters for si, or feet for english).
125 . 0 Site aspect 0 to 360 degrees (0 = north; 180 = 

south)
10 . 0 Site slope (Percent)
6 . 3 Site lai (all sided)
2 . 0 Site isohyet (precipitation)
2 . 0 Base isohyet station 1
0 . 0 Base isohyet station 2 (optional) see number of ppt 

stations
1. 0 Site east horizon (degrees)
1. 0 Site west horizon (degrees)
0 . 16 Site albedo (.2 = 20%)
0 . 60 Trancf (Sea level atmospheric transmissivity)
0 .45 Tempof (Temperature correction for sine approx)
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6 . 671 Environmental lapse rate (deg C cooling per 1000' m 
rise)

7 .288 Lapse rate for maximum temperature (Degrees / 1000 
m or ft)

3 . 644 Lapse rate for minimum temperature (Degrees / 1000 
m or ft)

2 .730 Dew lapse rate (Degrees / 1000 m or ft)
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Appendix 3.3 

Inputs Used for MTNTEMP Model Runs

The analyses for this study were based on two sets of MTNTEMP model runs.
The first applied the original MT-CLIM site temperature algorithm to each of the three 
sample days (March 21, June 25, and August 13, 1990), and the second applied the new 
site temperature algorithm introduced in this paper.

The inputs for a given run are comprised of several files that work on a 
heirarchical "delta” basis; all keyword named-pairs in the defaults file are processed first, 
and then a run-specific input script file is processed, over-riding any named-pairs defined 
in the defaults file. The defaults file is named mtntemp.rc and typically contains all 
inputs for the run that do not vary by sample date. The inputs that do vary by sample date 
are contained in files named by the sample.

The first set of (3) model runs are labelled "Original Method Run", and the second 
set of (3) model runs are labelled "NewMethod Ru n". Input script files used to 
parameterize MTNTEMP for both sets of runs are included in this appendix.

Original Method Run: Default Inputs
# mtntemp.rc mtntemp rev 1.51
# Inputs Revised: 05/03/1994 @ 16:55:56
# joe glassy, NTSG
#
# The goal of this analysis is to provide a BASELINE run using the
# original site temperature estimation algorithm.
#
# This mtntemp analysis uses:
# 1) a canopy cover classification based on terrain corrected Aug Band 5
# with cells coded 1,15,38,63,85 for .01,.15,.38,.63,.85 pet closure.
# 2) an albedo layer based on literature values matched to cover classes
# 3) 93.784m elevation, aspect, slope layers
# 4) standard RADRAT method for adjusting synoptic temperatures.
# 5) corrected lapse rates based on actual Santiam Pass,Metolius
# comparision.
#
START_SETUP "BASELINE run"

ECHO_TO LOG # {LOG,CLM,BOTH,NONE} to echo .imt
N_WX_DAYS 3 65 # if used should be >= PERIODS
STYLE PIXEL # POINT, PARTITION, or PIXEL
MODEL_BY TIME # Time outside loop. Space inside loops
PERIODS 1:365:1 # full period masked using TIME_MASK below
REPORT_FREQ 464 # how often...
METADATA metolius.mtc
OUT_VARS TSITE TSYNOP RELHUMD VPDHUMD TADD TSUB RADRAT SOLAR

END_SETUP
START_METEOROLOGY "Standard Meteorology and Biophysical Inputs"

TEMP_METHOD RAD_RATXO # original method...
RAD_TIME_RES 600 # {600} Default radia, timestep interval(sec
RAD_METHOD TOTAL # in kJ/mT2/day, or AVERAGE, in W/m"2
RAD_THRESHOLD FALSE # | TRUE if use 7 0 W/m^2 threshold
CALC_HUMIDITY RH # {NONE, VPD, RH} include in . d m  output
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CALC_RAIN
TRANS_COEF

# Hungerford et al
# average. 

TEMP_COEF 
TEMP_LAPSE 
MAX_LAPSE 
MIN_LAPSE 
DEW_LAPSE

END METEOROLOGY

FALSE 
0 .75 

1987 say real
0.45 
6 . 0 
9 . 5 
2 . 0 
2 . 7

# IF TRUE,output PPT (mm) to .elm
# coefficient, (0 < t < 1.0)

range is 0.30 --.60, settled on .45 as an
# coefficient, {0 < t < 1.0}
# deg C cooling for each 1 km rise
# deg C cooling for each 1 km rise
# deg C cooling for each 1 km rise
# deg C cooling for each 1 km rise

# Base Weather Station Properties (latitude required here now) 
START_BASE_WX "Metolius Base Station"

ELEVATION 1027.0 # always in meters.
LATITUDE 44.41 # in dec. degrees.
ISOHYET 16.0 # dummy value, not used (in mm) .

END_BASE_WX
# Site Properties stanza...
START_SITE "Site Properties"

EAST_HORIZON
WEST_HORIZON

# dummy isohyet, 
ISOHYET 
ELEVATION 
SLOPE 
ASPECT

# Closure coded: 
CLOSURE 
ALBEDO

END_SITE

0 . 0 
0 . 0  

not used..
35 . 0

degrees to East horizon {0 
degrees to West horizon {0

90)
90}

# in m m .
elev.img 
slope.img 
aspect.img 

1,15,38,63,85...
closebS.img 
albecano.img

Original Method Run: March Specific Inputs
# mar_5 0 3.imt mtntemp rev 1.50
# Inputs Revised: 05/03/1994 @ 16:55:56
# joe glassy, NTSG
#
# The goal of this analysis is to provide a BASELINE run using the
# original site temperature estimation algorithm for the March sample.
#
START_SETUP "March TMS, May 3 run, closebS, new albedo layer"

TIME_MASK 7 # col in .mtc where march data toggled on
OUTPUT mar_503.dbf

END_SETUP
# Site Properties stanza, supplied via defaults...

Original Method Run: June Specific Inputs
# jun_503.imt mtntemp rev 1.50
# Inputs Revised: 05/03/1994 @ 16:55:56
# joe glassy, NTSG
#
# The goal of this analysis is to provide a BASELINE run using the
# original site temperature estimation algorithm for the June sample
#
START_SETUP "June TMS, closebS, new albedo layer"

TIME_MASK 8 # col in .mtc where June data toggled on
OUTPUT jun_503.dbf

END_SETUP
# Site Properties stanza, supplied via defaults...
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Original Method Run: August Specific Inputs
# aug_503.imt mtntemp rev 1.50
# Inputs Revised: 05/03/1994 @ 16:55:56
# joe glassy, NTSG
#
# The goal of this analysis is to provide a BASELINE run using the
# original site temperature estimation algorithm for the August sample.
#
START_SETUP "August TMS, closeb5, new albedo layer"

TIME_MASK 9 # col in .mtc where August data toggled on
OUTPUT aug_503.dbf

END_SETUP
# Site Properties stanza, supplied via defaults...

New Method; Default Inputs
mtntemp.rc mtntemp revision 1.51 
Inputs Revised: 05/10/1994 @ 10:52:35 
joe glassy, NTSG
Goal: This run exercises the new synop adjust algorithm using the

optimum MAX_SYNOP_ADJUST values identified using linear optimization 
procedure in QuattroPRO/Win. All site-inspecific ‘defaults' that 
do not change reside in the mtntemp.rc defaults file, while all 
parameters that do vary by TMS flight date are contained in this 
file. Flat Solar Score scaled to {0..1.0} for august is 0.7424

# The observed base station daily temperature
# Flight ; Bmax Bmin Diurnal Range
# March 21: 18 .0 -4 . 1 22 .1
# June 2 5 25.6 3 . 8 21. 8
# August 13 28.7 15.7 13 . 0
START_SETUP 

ECHO_TO 
N_WX_DAYS 
STYLE 
MODEL_BY 
PERIODS 
REPORT_FREQ 
MET DATA

"New Synoptic Method using optimized MAX_SYNOP_ADJUST”
LOG 
365 
PIXEL 
TIME 
1:365:1 
464 # how often...
metolius.mtc

{LOG,CLM,BOTH,NONE) to echo .imt 
if used should be >= PERIODS 
choices: { POINT, PARTITION, or PIXEL}

# no. of days to model of N_WX_DAYS below

# Column 5 ; enables ALL days
# Column 6 : enables (3) TMS flight days only
# Column 7 : March flight day only
# Column 8: June flight day only
# Column 9 : August flight day only
# TIME_MASK 7
# Output variable choices: "NONE","TSITE","TSYNOP","TMIN","TMAX",
# "FLADRAT", "SOLAR", "RELHUMD", "VPDHUMD", "PPT", "TADD","TSUB"

OUT_VARS TSITE TSYNOP TADD TSUB RELHUMD VPDHUMD SOLAR RADRAT
END_SETUP
START_METEOROLOGY "Standard Meteorology and Biophysical Inputs"
# Site temp adjustment methods. Choices are:
# { RAD_RATIO, CLOSURE. RELATIVE_SOLAR, CLOSURE_SOLAR, NO_ADJUSTMENT }

TEMP_METHOD
RAD_TIME_RES
RAD_METHOD
RAD_THRESHOLD
CALC_HUMIDITY
CALC_RAIN
TRANS_COEF
TEMP COEF

CLOSURE SOLAR
600 
TOTAL 
FALSE 
RH
FALSE 
0.75 
0.45

parameters for synopt adjust in 
TEMP_LAPSE 6 . 0
MAX_LAPSE 9 . 5
MIN LAPSE 2.0

# new method...
# {600} Default radia, timestep interval(sec)
# in kJ/m''2/day, or AVERAGE, in W/m^2
# 1 TRUE to use a 70 W/m^2 threshold
# {NO,VPD,RH) include in .elm output
# IF TRUE,output PPT (mm) to .elm
# coefficient, {0 < t < 1.0}
# coefficient, {0 < t < 1.0} 

the .imt files...
# deg C cooling for each 1 km rise
# deg C cooling for each 1 km rise
# deg C cooling for each 1 km rise
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DEW_LAPSE
END_METEOROLOGY

2 . 7 # deg C cooling for each 1 km rise

# Base Weather Station Properties 
START_BASE_WX "Base WX Inputs" 

ELEVATION 1027.0
LATITUDE 44.41
ISOHYET 16.0

END_BASE WX

# always in meters.
# in d e c . degrees.
# in m m .

# Site Properties stanza...
# Note: closebS is scaled so value range {1,15,38,63,85} not {1..5}
# Albedo, rel Solar load scaled to {1..10C} (percent) range.
START_SITE

EAST_HORIZON 
WEST_HORIZON 
ELEVATION 
SLOPE 
ASPECT 

# Closure coded: 
CLOSURE 
ALBEDO 

END_SITE

"Site Inputs"
0 . 0 
0 . 0 
elev.img 
slope.img 
aspect.img 

1,15,38,63,85...
closebS.img 
albecano.img

# degrees to E.
# degrees to W.

horizon
horizon

{0
{0

90}
90}

New Method: March Specific Inputs
march.imt, mtntemp revision 1.51 
Inputs Revised: 05/10/1994 9 10:50:37 
joe glassy, NTSG
Goal : This run exercises the new synop adjust algorithm using the

optimum MAX_SYNOP_ADJUST values identified using linear optimization 
procedure in QuattroPRO/Win. All site-inspecific ‘defaults’ that 
do not change reside in the mtntemp.rc defaults file, while all 
parameters that do vary by TMS flight date are contained in this 
file. Flat Solar Score scaled to {0..1.0} for march is 0.64.

The observed base station daily temperature ranges are:
# Flight ; Bmax Bmin Diurnal Range

March 21 : 18 . 0 -4 .1 22 . 1
# J une 25 25 . 6 3 . 8 21 . 8
# August 13 28 . 7 15.7 13 . 0
# begin the SETUP stanza...
START_SETUP "March TMS, New Tsite Method, MAX_SYN0P_ADJUST=6.98"

OUTPUT mar_510.dbf
# time mask columns: 7=march, 8=june, 9 = august date 

TIME_MASK 7
END SETUP
START_METEOROLOGY 

MAX_S YNO P_ADJU ST 
CANOPY_NEGWGT 
FLAT_SOLAR 

END METEOROLOGY

"Standard Meteorology and Biophysical Inputs"
6.98 # max amplitude (deg C) to adjust synoptic
0.70 # closures >= this cause neg canopy weight
0,64 # Neutral, flat slope rel solar score {0..1}

START_SITE 
SOLAR_LOAD 

END SITE
"March TMS sample site inputs 

mar_rsol.img

New Method: June Specific Inputs
june.imt, mtntemp revision 1.51 
Inputs Revised: 05/10/1994 9 10:50:41 
joe glassy, NTSG
Goal: This run exercises the new synop adjust algorithm using the

optimum MAX_SYNOP_ADJUST values identified using linear optimization 
procedure in QuattroPRO/Win. All site-inspecific ‘defaults' that
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do not change reside in the mtntemp.rc defaults file, while all 
parameters that do vary by TMS flight date are contained in this 
file. Flat Solar Score scaled to {0..1.0} for June is 0.7440

The observed base station daily temperature ranges are:
# Flight : Bmax Bmin Diurnal
# March 21 : 18 . 0 -4 .1 22 . 1
# June 25 25 . 6 3 . 3 21. 8
# Augus t 13 28 . 7 15.7 13 . 0#
START_SETUP "June TMS, New Tsite Method, MAX_SYNOP_ADJUST=10.05"

OUTPUT jun_510.dbf
# time mask columns: 7=march, 8=june, 9 = august date 

TIME_MASK 8
END SETUP
START_METEOROLOGY 

MAX_SYNOP_ADJUST 
CANOPY_NEGWGT 
FLAT_SOLAR 

END METEOROLOGY

"Standard Meteorology and Biophysical Inputs"
10.05 # max amplitude (deg C) to adjust synoptic
0.7 0 # closures >= this cause neg canopy weight
0.74 # Neutral, flat slope rel solar score (0..1}

START_SITE
SOLAR_LOAD

END_SITE
'June TMS sample, site inputs 

jun_rsol.img

New Method: August Specific Inputs
# august.imt, mtntemp revision 1.51
# Inputs Revised: 05/10/1994 @ 10:50:46
# joe glassy, NTSG
#
# Goal
#
#
#
#
#
#
START_SETUP "August TMS, New Tsite Method, MAX_SYNOP_ADJUST=12.66"

OUTPUT aug_510.dbf
# time mask columns; 7=march, 8=june, 9 = august date 

TIME_MASK 9
END SETUP

This run exercises the new synop adjust algorithm using the 
optimum MAX_SYNOP_ADJUST values identified using linear optimization 
procedure in QuattroPRO/Win. All site-inspecific 'defaults' that 
do not change reside in the mtntemp.rc defaults file, while all 
parameters that do vary by TMS flight date are contained in this 
file. Flat Solar Score scaled to {0..1.Q} for august is 0.7424

START_METEOROLOGY
MAX_SYNOP_ADJUST
CANOPY_NEGWGT
FLAT_SOLAR

END_METEOROLOGY

"Standard Meteorology and Biophysical Inputs"
12.66 # max amplitude (deg C) to adjust synoptic
0.70 # closures >= this cause neg canopy weight
0.74 # Neutral, flat slope rel solar score (0..1)

START_SITE 
SOLAR_LOAD 

END SITE
"August TMS sample site inputs' 

aug_rsol.img
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Appendix 3.4

Major Differences Between MTNTEMP and MT-CLIM Model Implementations

The MTNTEMP revision 1.51 implementation used in this study was written in 
the ANSI C language (ANSI Standard X3.159-1989) and consists of approximately 
17,000 lines of code, while the MT-CLIM model was developed in the FORTRAN-77 
language. The MTNTEMP source codes are considerably more extensive than the 
original MT-CLIM model codes, as they are designed on top of a prototype ecosystem 
science model framework and application programming interface (API) offering a wide 
variety of generalized services not found in the original model implementation. Separate 
documentation for the ecosystem science model framework and the MTNTEMP layer is 
in preparation.

Through initial test phases, the MTNTEMP implementation has been ported to the 
IBM AIX V. 3.2 operating system using IBM’s xlc ANSI compiler, MSDOS 5.0, 6.2 using 
the Borland International v.3.1 and v. 4.0 C/C++ compilers, and the Linux v. 1.1 LGX 
unix-like operating system using the Free Software Foundation (FSF) gcc v. 2.5.4 ANSI 
C compiler.

Although the majority of meteorological algorithms are identical between these 
two implementations, MTNTEMP possesses the following characteristics or attributes 
either not found at all in the original MT-CLIM codes or implemented in a substantially 
different way:

o A stanza-oriented, script file interface provides support for free-field embedded
comments, and list and/or range based numeric and string inputs.

o Either point, partition, or pixel based data organization schemes are accomodated.
"Point" refers to a single abstract site, "partition" refers to a one dimensional array 
of sites (e.g. set of points, or spatial regions defined as a list of vector polygons), 
and "pixel" refers to a row-major ordered two dimensional array of spatially 
contiguous but functionally independent sites’ or cells.

o A run-time invertible time-space model loop organization. This means that the
temporal dimension of the model problem may be defined as either the outer-most 
or inner-most level loop process, with the spatial dimension taking the 
complementary position.

o Provisions for data input/output (I/O) facilities that read, write, and perform
primitive spatial overlay operations on multiple, native image processing raster 
format files of the same logical extent. Supported formats include ERDAS v. 7.5 
images, IDRISI v. 4.1 GIS raster images, PBMPlus byte level images, and "raw"
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binary rasters. Each contributing raster layer in a given session may consist of any 
of the following primitive data types: unsigned 8 bit characters (byte level), signed 
or unsigned 16 or 32 bit integer (big or little endian byte ordering), and 4 byte (32 
bit) IEEE single precision real.

o Run-time selection of data fields chosen from input or output variable lists, for
output image raster (for single output fields), or delimited ASCII text or xBASE 
(.dbf) database tables organized with one record per model point, pixel, or 
partition for multiple field output.

o Run-time selection of specific algorithmic sub components, subject to the natural
(logical) dependencies between sub-components. For example, if site air 
temperature outputs are required but incident solar radiation is not required, the 
user may elect to suppress the calculation of daily incident solar radiation, saving 
considerable computation time.

o Provisions for logging all session metrics for automated documentation of model
runs, and the automated generation of a compressed archive of Job inputs and 
outputs after model execution. Compressed archived are built by the user- 
selected external archive utility (the default compression tool is InfoZip's cross- 
platform (zip, unzip) suite, licensed similar to FSF software, compatible with Phil 
Katz's PkWare PkZip 2.04g compression utility.
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Appendix 3.5

Statistical Summary of the OTTER Project Metolius weather station

1990 daily dataset for 1990

The climatology variables used in the MTNTEMP analyses include maximum and 
minimum temperature (T^^x T̂ în respectively) , and precipitation (PPT, mm)

* @ (#) metodesc.sps
* rev. 06/06/1994 @ 13:14:30.
* Task: Generate descriptive variables for Metolius base weather station.
* Joe glassy, NTSG .
DESCRIPTIVES /VARIABLES TMAX TMIN PPT /STATISTICS.
Number of Valid Observations (Listwise) = 365 . 00
Variable Mean Std Dev Minimum Maximum N Label
TMAX 14.65 9.33 . 00 35 . 00 365
TMIN .25 7.08 -33.70 17 .10 365
PPT 1.51 5.69 . 00 69 . 60 365

EXAMINE /VARIABLES TMAX TMIN PPT /PLOT=HISTOGRAM /STATISTICS DESCRIPTIVES.

TMAX
Valid cases: 365.0 Missing cases: .0 Percent missing; . 0

Mean 14.6542 Std Err . 4881 Min .0000 Skewness . 2562
Median 13.9000 Variance 86 . 9656 Max 35.0000 S E Skew . 1277
5% Trim 14.4438 Std Dev 9.3255 Range 35.0000 Kurtosis . 8728

I OR 14.6500 S E Kurt . 2547

Frequency Bin Center

38 ., 00 1 ., 000
18 ., 00 3 .. 000
17 .. 00 5 ., 000
25 ., 00 7 ,. 000
30 ., 00 9 ., 000
25 ,, 00 11 ., 000
30 ., 00 13 .. 000
29., 00 15 .. 000
24 .. 00 17 .. 000
22 ., 00 19 ., 000
17 .. 00 21.,000
20 .. 00 23 ., 000
16 .. 00 25 ., 000
18 . 00 27 .. 000
12 ..00 29 .. 000
8 . 00 3 1 .. 000

13 . 00 33 .. 000
3 .00 35 .. 000

************
* * * * * * * *

* * * * * * * * * * * * *

Bin width
Each star:

2 . 0 0 0  
1 case(s)
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TMIN 
Valid cases : 365.0 Missing cases Percent missing: . 0

Mean 
Median 
5% Trim

. 2485 

. 6000 

.7011
Std Err 
Variance 
Std Dev

3707 Min -33 .7000 Skewness -1.2688
1449 Max 17 . 1000 S E Skew . 1277
0813 Range 50.8000 Kurtosis 3 .9329

IQR 8.2000 S E Kurt .2547

Frequency Bin Center
11 . 00 Extremes
3-00 -15.000
.00 -13.000

4 . 00 -11.000
8 . 00 -9 . 000

19 . 00 -7 . 000
37 . 00 -5.000
46 . 00 -3.000
38 . 00 -1.000
43 . 00 1.000
45 . 00 3 . 000
38.00 5 . 000
34 . 00 7 . 000
25 . 00 9 . 000
6 . 00 11.000
5 . 00 13.000
2 . 00 15.000
1 .00 Extremes

, width : 2 .

********

Each star; 1 c a s e (s )

PPT
Valid cases : 365.0 Missing cases Percent missing : . 0

Mean 1.5071 Std Err . 2979 Min . 0000 Skewness a . 9220
Median . 0000 Variance 32 . 3965 Max 69.6000 S E Skew . 1277
5% Trim . 6634 Std Dev 5.6918 Range 69.6000 Kurtosis 96.1473

IQR . 5000 S E Kurt .2547

Frequency
235.00 

. 00 

. 00 

. 00  
35.00 

. 00 

. 00 
5 . 0 0  

. 0 0  

. 00 
6 . 00 
. 00 
. 00 
. 00 

8 . 00  
76 . 00

Bin width
Each star:

Bin Center
. 025 
.075 
.225 
.275 
.325 
. 375 
. 475 
. 525 
.725 
. 775 
. 825 
. 875 
. 925 
. 975 

1 . 025 
Extremes

.050
5 case(s)
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Appendix 3.6 

Percent Canopy Closure Data Layer

This 58 X 58 raster depicts the percent canopy closure data layer used for all analyses.
The lighest shades represent the most closed canopies in the 5 level discrete classification 
(85% closure), and the darkest shades represent the most open canopies (1% closure). 
This classification illustrates the predominantely closed character of the 10.8 km2 study 
site, as well as the scattered openings and scree patches.

ir

É
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Appendix 3.7

Annotated MTNEMP result database table structure listing

structure for database 
Number of data records 
Date of last update

MARCH.DBF (same for JUNE.DBF, AUGUST.DBF) 
3 364

05/31/94 (Vers. 3)
lid Field Name Type Width Dec Description
1 ELEV Number 7 . 1 ; elevation (meters)
2 SLOPE Number 6 . 2 : slope (percent)
3 ASPECT Number 6 . 2 : aspect (degrees)
4 CLOSURE Number 6 . 2 : percent canopy closure
5 RSOL Number 3 . 0 : relative solar loading
6 ELEV_CL Number 1 . 0 : elevation class (1..6)
7 ASPEC_CL Number 1 . 0 : aspect class (1..8)
8 SLOPE_CL Number 1 . 0 : slope class (1..4)
9 ASPCO_CL Number 1 . 0 : transformed aspect class

10 SOLAR_CL Number 2 . 0 ; incident solar rad class
11 CLOSE__CL Number 1 . 0 : canopy closure class (1..5)
12 RSOL_CL Number 1. 0 ; relative solar load class
13 CELL Number 4 . 0 ; linear pixel index (1..3364)
14 TSURF Number 6 , 2 ;: TIR surface temperature, deg C
15 DAY Number 4 , 0 :: sample year-day {80,176,225}
16 ROW Number 4 . 0 : image row index (1..58)
17 COL Number 4 . 0 : image column index (1..58)
18 TSITE Number 6. 2 : est. site air temperature, deg C
19 TSYNOP Number 6 2 : synoptic air temperature, deg C
20 TEMPOIFF Number 6 2 : simple difference of TSITE,TSYNOP
21 RADRAT Number 7 3 : Flat/Sloped radiation ratio
22 SOLAR Number 8 2 : incident solar radiation (kJ/day)
23 RELHUMD Number 6 2 : relative humidity (percent)
24 VPDHUMD Number 8 3 : vapor pressure deficit
25 TADD Number 8 2 : synoptic temp, add factor
26 TSUB Number 8 2 synoptic temp, subtract factor
27 NET_ADJ Number 6 2 : net Synoptic temp adjustment
28 EA ID Number 2 0 : elev,Aspect combined class code
29 CR ID Number 2 0 : canopy closure,rel. solar code
30 AS_ID Number 2 0 ; aspect,Slope combined class code

Total ** 134

Bytes in Header ( 993) Record ( 134)
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