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Fontaine, Joseph J., PhD, May 2006 Fish and Wildlife Biology

Physiological, life history, and behavioral responses of a breeding bird community to 
experimentally reduced nest predation risk.

Chair: Thomas E. Martin

The role of nest predation in shaping avian life history strategies remains conspicuously 
untested by broad experiments that alter environmental risk of nest predation; despite the 
fact that nest predation is a major source of reproductive failure. We examined whether 
parents preferentially settle in safer nesting environments and adjust their reproductive 
strategies to local risk. We experimentally reduced nest predation risk and show that 8 
species of migratory passerines prefer to nest in areas with reduced risk of nest predation. 
Parents of 12 species of passerines nesting in these safer environments increased 
investment in their young through increased egg size, clutch mass, and the rate they fed 
nestlings, and also increased investment in female condition by increasing the rates that 
males fed incubating females at the nest, and decreasing the time that females spent 
incubating. Although nest predation risk decreased with predator reduction, it did not 
decrease as significantly as predicted. We show that reproductive potential was not 
limited by the increased expression of risky behaviors as theory may have predicted, and 
suggest compensatory mortality as a likely alternative. Despite clear changes in 
reproductive strategies, we failed to find any influence of nest predation risk on baseline 
corticosterone levels either between treatments or across species that differ in risk. These 
results demonstrate that birds can assess nest predation risk at large and that nest 
predation plays a key role in the expression of avian habitat selection and reproductive 
strategies, but the physiological mechanisms regulating these changes remain unclear. 
Finally, in hope of imparting our understanding of the natural world to the next 
generation we designed an innovative lesson plan to teach children about microclimate, 
an important abiotic influence on natural communities.
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CHAPTER 1

PARENT BIRDS ASSESS NEST PREDATION RISK AND ADJUST THEIR 

REPRODUCTIVE STRATEGIES
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Abstract

Avian life history theory has long assumed that nest predation plays a minor role 

in shaping reproductive strategies. Yet, this assumption remains conspicuously untested 

by broad experiments that alter environmental risk of nest predation, despite the fact that 

nest predation is a major source of reproductive failure. Here, we examined whether 

parents can assess experimentally reduced nest predation risk and alter their reproductive 

strategies. We experimentally reduced nest predation risk and show that in safer 

environments parents increased investment in young through increased egg size, clutch 

mass, and the rate they fed nestlings. Parents also increased investment in female 

condition by increasing the rates that males fed incubating females at the nest, and 

decreasing the time that females spent incubating. These results demonstrate that birds 

can assess nest predation risk at large and that nest predation plays a key role in the 

expression of avian reproductive strategies.
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Introduction

Past attention to putative causes of variation in avian reproductive strategies has 

focused extensively on variation in the abundance of food (Lack 1948, Martin 1987). 

Indeed, experimental tests of food limitation abound in the literature (see Martin 1987). 

Yet, food does not explain considerable variation in reproductive strategies within and 

among species (Martin 1995, Martin et al. 2000a, Ferretti et al. 2005). As a result, the 

environmental causes of broadly differing reproductive strategies observed in nature 

remain unclear.

Nest predation is the primary cause of reproductive failure for most birds and, 

thus, represents an important source of natural selection (Ricklefs 1969, Martin 1995). 

Correlative evidence suggests that this source of selection can influence the expression of 

reproductive strategies (Lack 1948, Slagsvold 1982, Martin 1995, Martin et al. 2000a). 

Yet, the causal influence of nest predation risk on the expression of reproductive 

strategies by diverse species remains largely untested experimentally. Moreover, the 

ability of birds to assess variation in nest predation risk in the environment at large and 

adjust their reproductive strategies remains untested and unknown. Here we reduce nest 

predator populations to directly test the ability of 12 coexisting passerine species (Table 

1) to assess variation in background levels of nest predation risk and whether they alter 

their reproductive strategies in response.

If individuals can assess nest predation risk in the environment, phenotypic 

responses to varying risk can shed light on the role of nest predation in the expression of 

reproductive strategies (West-Eberhard 1989; Ghalambor and Martin 2001, 2002). For 

example, greater risk of nest predation may favor reduced investment in current clutches
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as a means of bet-hedging to allow increased energy for re-nesting (Slagsvold 1984, Roff 

1992, Martin 1995). As a result, clutch size, egg mass, and clutch mass, all o f which 

contribute directly to fitness (Roff 1992, Williams 1994, Saino et al. 2004), might be 

reduced in the face of high nest predation risk. Similarly, nest attentiveness (percentage 

of time females spend incubating) is a major energetic investment (Williams 1996), and 

might also be reduced under elevated nest predation risk as a means of bet-hedging. 

Alternatively, greater nest predation risk may favor increased attentiveness because of the 

potential benefits from camouflaging the nest contents or being present to deter predators 

that discover the nest (Marzluff 1985, Montgomerie and Weatherhead 1988, Kleindorfer 

and Hoi 1997). Finally, nest predation can favor reduced activity at the nest to reduce the 

probability of nest detection by predators (Skutch 1949; Martin et al. 2000a, b;

Ghalambor and Martin 2002). Thus, rates of mate-feeding (males feeding incubating 

females at the nest) and nestling feeding (both parents feeding young) might decrease 

under high nest predation risk. The potential consequences of nest predation risk for this 

broad suite of traits that comprise an individual’s reproductive strategy remain untested 

experimentally. We experimentally tested all of the above predictions by removing the 

primary nest predators of a community of passerine birds to study the reproductive 

response of birds nesting in reduced nest predation environments.
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Methods

Study Area and Species

From 2001-2004, we studied a bird community breeding in snowmelt drainages 

along the Mogollon Rim in central Arizona at approximately 2,300m in elevation. The 

habitat in these drainages is typical of a western mixed conifer forest (Martin 1998).

Our study included 12 species of coexisting passerines representing four nesting 

guilds that experience different nest predation risk (Table 1, Martin 1995). Nesting 

begins in early May and extends into July. Species were included in analyses only when 

we could obtain samples (Table 1); for example, we could not obtain samples of egg 

mass and clutch mass for cavity-nesting birds.

Field Techniques

Nests were located using long-standing techniques (Martin and Guepel 1993). 

Incubating females were not flushed from nests to limit human disturbance, which birds 

may perceive as a predation threat. Instead, nests were either checked lfom afar by 

parental behavior, or contents were checked when females were off during normal 

foraging bouts.

We measured egg mass for nests located during nest building or egg-laying, and 

measured all eggs within two days of clutch completion using a calibrated digital scale 

accurate to 0.001 g. We only included nests know to be first attempts. These nests were 

also used in determining clutch mass (sum of total egg mass for a nest). Clutch size was 

taken from all nests found prior to hatching because partial loses are virtually never 

observed in this system. Again we only included nests known to be first attempts.
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Clutch size did not differ between the limited sample used for mass determination where 

we observed the complete clutch being laid and the broader sample in an analysis of 

variance that included species as a random factor (Fi; 638 = 1.867, p = 0.172).

We assessed parental behaviors by videotaping nests starting within 30 minutes of 

sunrise for four to six hours (Martin et al. 2000a). When ever possible we recorded nests 

once in early incubation and once in late incubation and averaged to determine incubation 

behaviors. Tapes were scored for behaviors including: percentage of time females spent 

on the nest (nest attentiveness), the rate that males visited the nest to feed incubating 

females (mate-feeding rate) and the rate that both parents feed the young (nestling 

feeding rate) (Martin et al. 2000a). Nestling feeding rates were measured only once at 

nests videotaped within one day of nestlings breaking primary pinfeathers to control for 

the influence of nestling development on feeding rates.

Nest Predator Removals

Based on population densities and video evidence of nest predation events the 

primary predator community in this system is limited to five species: red squirrel 

(Tamiasciurus hudsonicus), gray-collared chipmunk (Tamias cinereicollis), deer mouse 

(Peromyscus maniculatus), white-footed mouse (P. leucopus), and Steller’s Jay 

(Cyanocitta stelleri) (Martin 1998). Additional nest predators exist within the 

community, but at such low densities that their effect on nesting productivity is likely 

minimal.

We removed nest predators from 10 plots (removal plots) to compare with 10 

neighboring plots with intact predator communities (control plots). We primarily
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removed mammalian predators from selected drainages through live trapping and 

translocation, but supplemented these efforts with lethal removals when necessary. 

Sherman and Tomahawk live-traps were baited with peanut butter and sunflower seeds 

and checked daily. All captures were transported 10 km to similar habitats separated 

from the study area by large canyons. Because of their increased mobility it was 

necessary to lethally removal all Steller’s jays. All removal methods followed national 

guidelines and were approved and monitored under permits from the Arizona Game and 

Fish Department (SP635085), the U.S. Fish and Wildlife Service (MB791101-3), and 

The University of Montana Institutional Animal Care and Use Committee (01-04- 

TMCWR-033105-01). Removals for all predator types began the second week of April, 

before the arrival of female migrant birds to the study site, and because plots were not 

fenced, we continued removal efforts through mid July each year to offset immigration 

from surrounding source populations. We assessed the effectiveness of removals by 

comparing capture rates throughout the season.

To control for additional sources of variation in habitat quality we paired control 

and removal plots based on data from previous years that suggested similar bird, nest 

predator, and plant assemblages. We removed nest predators from ten, 5-10 hectare 

drainages. Control and removal plots were spatially paired (within 1 km) to minimize 

possible spatial influences, but separated by at least one intervening drainage to buffer 

against possible carryover effects of removals on control plots. We removed predators 

from the same plots each of the four years to maximize effect size.

We conducted aural surveys for jays and squirrels throughout the season as a 

index of predator abundance. Sampling consisted of a one-minute survey to determine
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the presence or absence of each predator. Tape recorders were paired and randomly 

placed on both control and removal plots every fourth day of the season for a total o f 23 

sampling days per year. Because squirrels and jays, as well our study species are most 

active in the morning, tapes were sampled starting at sunrise and every half-hour after for 

a total of 6 samples. Thus, we sampled 6 times per day for 23 days each year across all 

four years.

Analyses

We examined capture rates of nest predators across the season using a simple 

linear regression. For nest predator surveys, we paired data by date and compared 

between treatments using a paired t-test. Mayfield estimates of daily predation rates were 

compared between treatments by species and year using a paired t-test (Mayfield 1961, 

1975; Hensler and Nichols 1981). In examining parental responses, individual pairs and 

their nests were used as independent sample points for the analysis of behavioral and life 

history data. We used an analysis of covariance that included species as a random factor 

to test for overall differences between treatments in life history and parental care 

behaviors while controlling for potentially confounding effects. We excluded non­

significant variables or interactions from trial models. Analyses were conducted on raw 

data, but differences represented in graphs are percent change [(removal- 

control)/control*100)] to standardize changes for ease of visual comparison.
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Results

Over four years we removed 3791 predators from removal plots (769 -  red 

squirrel, 45 -  Steller’s jay, 531 -  gray-collared chipmunk, 2446 -  mice spp.), and found 

and monitored 410 nests on removal plots and 850 nests on control plots. Differences in 

nest numbers reflect differences in renesting rates after nest failure between treatments 

and not increased densities on control plots (Chapter 2). Experimental removals resulted 

in a reduction in capture rates on removal plots across the breeding season (Fig la; F i,84— 

81.969, p < 0.001), which foreshadowed the change in nest predator detections between 

treatments (Fig. lb; red squirrel tss -  -7835, p < 0.001; Steller’s jay tss = -6.058, p < 

0.001). The reduction in vocalizations of two major predators is important because it 

reflects a reduction in predator cues and activity that might be key for assessment of risk 

by birds, but also telegraphs a strong reduction in actual nest predation rates (Fig. lc; t44 

= -2.02, p = 0.025).

The reduction in actual and perceived nest predation risk yielded significant 

changes in reproductive strategies by the diverse array of species that we studied. Parents 

increased investment in offspring. Mean egg mass was larger on plots with reduced nest 

predation risk, as predicted (Fig. 2a; Treatment: Fi; 249 = 54.205, p < 0.001; Initiation 

date: Fi,249 -  16.772, p < 0.001; Species: Fg,249 = 1475.825, p < 0.001; Treatment by 

species: Fg, 249 = 12.622, p < 0.001). Yet, clutch size, a trait that other studies have found 

can be influenced by variation in nest predation risk (Julliard et al. 1997, Ferretti et al. 

2005) showed a clear lack of response among the diverse array of species that we studied 

(Fig 2b; Treatment: Fi>74s = 0.745, p = 0.388; Initiation date: Fi,74g = 65.831, p < 0.001; 

Species: F n ,249 = 75.283, p < 0.001). Nonetheless, the increase in egg mass led to an
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increase in clutch mass (Fig. 2c; Treatment: Fi^so = 13.106, p < 0.001; Species: Fg;25o = 

350.804, p < 0.001; Treatment by species: Fg, 250 = 5.267, p < 0.001). Moreover, parents 

also increased investment in hatched young by feeding nestlings at a higher rate on 

removal plots (Fig. 2d; Treatment: Fi, igg = 14.458, p < 0.001; Number of nestlings: Fj;

1 gg = 18.722, p < 0.001; Species: Fg, ig9 = 15.842, p < 0.001; Treatment by species: Fg; i89 

= 2.277, p = 0.031).

The reduced risk of nest predation also caused parents to invest in traits that 

enhance female condition. The rate that males fed incubating females increased on 

removal plots (Fig. 3a; Treatment: Fi, 598 = 162.429, p < 0.001; Species: Fn, 59g = 

360.612, p < 0.001; Treatment by species: F12 ,598 = 53.428, p < 0.001), as predicted. 

Increased mate-feeding (Fig. 3 a) is known to reduce the energy constraints placed on 

females by the time and energy costs of incubation, and previous studies have found an 

increase in nest attentiveness with increased mate-feeding (von Haartman 1958, Lyon and 

Montgomerie 1985, Smith et al. 1989, Halupka 1994). However, we found the opposite 

pattern of decreased nest attentiveness (Fig. 3b; Treatment: F^sgi = 6.284, p = 0.012; 

Year: Fi.sgi = 10.489, p < 0.001; Species: F^.sgi = 18.896, p < 0.001) despite increased 

mate-feeding. Females on removal plots reduced nest attentiveness and accepted the 

double benefits of increased mate-feeding and increased time off the nest caring for 

themselves when nest predation risk was low.

Discussion

The influence of food abundance on investment in eggs and reproductive 

behaviors like mate-feeding and nest attentiveness has been studied extensively (von
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Haartman 1958, Lyon and Montgomerie 1985, Martin 1987, Smith et al. 1989, Halupka

1994, Sanz 1996). While food is obviously important, nest predation is the primary 

source of reproductive mortality in many systems (Ricklefs 1969, Martin 1995) and 

therefore may impose strong direct selection on the expression of reproductive traits. We 

found such direct effects for a broad array of traits including the first experimental 

demonstration that nest predation risk may play a pivotal role in determining maternal 

investment in eggs, which may yield significant fitness benefits to young (Tinbergen et 

al. 1990, Williams 1994, Smith et al. 1995, Styrsky et al. 1999, Pelayo and Clark 2003). 

Furthermore, the fact that this increased investment was not limited to egg laying, but 

was maintained throughout the nesting cycle emphasizes the importance of nest predation 

in shaping many aspects of reproductive investment.

Equally as interesting as change in egg size was the lack of response in clutch 

size. Clutch size is known to correlate with nest predation risk across species (Martin

1995, Martin et al. 2000a), and has been shown to change with differences in nest 

predation risk across habitat gradients (Ferretti et al. 2005) and among years (Julliard et 

al. 1997). However, increases in clutch size represent an incremental increase in 

investment (i.e. from 1 to 2 to 3 eggs) that may require females to invest more in a clutch 

than small, continuous changes in individual eggs. Increases in clutch size also require 

continued investment throughout the nesting cycle (i.e. more eggs to heat, and more 

nestlings to feed), whereas increased egg size does not require such clear increases in 

future investment. Clutch size increases, therefore, require considerably more investment 

than egg size increases, which may be particularly important if  females make mistakes in 

assessing nest predation risk or if risk can change within a nesting cycle. Changes in egg
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size rather than clutch size may represent a conservative response to relatively small 

changes in a strong and rapidly variable selection agent, nest predation.

In addition to showing the direct effects of nest predation risk, we also show that 

nest predation risk can create an indirect effect of food limitation by restricting the ability 

of adults to acquire food resources for themselves and their young. In particular, the 

reduction in nest attentiveness by incubating females despite increased mate-feedings 

highlights the complex indirect effects of nest predation on food limitation in these 

systems. These results imply that females on control plots increase incubation effort in 

response to greater nest predation risk even when energy is more limited by reduced 

mate-feeding. Such responses are opposite to those expected by bet-hedging. Although 

initially surprising, these results follow theory that suggests females should increase 

investment in themselves and enhance opportunities for future reproduction when the 

cost to current young is minimal (Roff 1992), as can be expected in low offspring 

mortality environments.

The fitness consequences of both direct and indirect effects of nest predation risk 

are clearly substantial, and emphasize the importance of considering responses to 

variation in nest predation risk in a relatively complete array of traits comprising 

reproductive strategies (Ferretti et al. 2005). Previous experiments that have attempted to 

explore the influence of nest predation risk on reproductive strategies have provided 

useful information on the short-term reactions of parents to the immediate threat imposed 

by a predator at the nest in a restricted subset of traits (Ghalambor and Martin 2001,

2002). However, when a predator is at the nest, the primary concern of the parents is 

deterring a predation event. Such studies do not address whether birds can assess
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variation in nest predation risk in the environment at large and modify their broader 

reproductive strategies based on such assessments. We have demonstrated here for the 

first time that parents can assess risk in the environment at large and adjust their 

reproductive strategy as a function of environmental risk of juvenile mortality. These 

findings highlight the importance of nesting mortality in shaping reproductive strategies 

both within and among species well beyond anything appreciated previously.
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Figure Legends

Figure 1 | Predator removals resulted in a reduction in nest predators and 

ultimately nest predation rates. Capture rates (a) on removal plots fell across the 

season and (b) vocalization rates of red squirrels and Steller’s Jays, as well as (c) nest 

predation rates were substantially reduced on removal plots when compared to control 

plots. Error bars indicate s.e.m. across years.

Figure 2 | Life history traits and parental care behaviors affecting offspring were 

altered by predator removals. Responses are illustrated by percent change [(removal- 

control)/control*100]. Females nesting on plots with reduced nest predation risk (a) laid 

larger eggs, (b) did not change their clutch size, but (c) increased clutch mass. Both 

parents (d) increased the rate they fed nestlings. Error bars indicate s.e.m. across years.

Figure 3 | Behaviors affecting female parents were altered by predator removals.

Responses are illustrated by percent change [(removal-control)/control* 100], Females 

nesting on plots with reduced nest predation risk (a) were fed more at the nest by their 

mates, and (b) reduced the percentage of time they spent incubating. Error bars indicate 

s.e.m. across years.
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CHAPTER 2

HABITAT SELECTION RESPONSES OF PARENTS TO OFFSPRING PREDATION

RISK: AN EXPERIMENTAL TEST
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Abstract

Habitat preferences are generally inferred from correlations between 

environmental cues presumed to indicate habitat quality and some component of 

population size or density. The causal relationship between agents of selection and 

habitat choice is rarely tested experimentally. In birds, the ability of nest predation to 

influence habitat settlement decisions is widely debated, despite the importance of nest 

predation in limiting fitness. Here, we experimentally manipulated nest predation risk 

across a landscape and asked the question: Do migratory birds assess and respond to 

spatial variation in nest predation risk when choosing breeding habitats? We examined 

preference for safer nesting habitat by quantifying the density of breeding pairs that 

settled in areas with and without intact nest predator communities and by examining the 

timing of habitat choice by nesting females. We found consistently more individuals 

nesting in areas with reduced nest predation risk than in areas with intact predator 

assemblages, although predation risk had no influence on settlement or breeding 

phenology. Additionally, those individuals occupying safer nesting habitats exhibited 

increased singing activity. These findings support a causal relationship between habitat 

choice and nest predation risk, and suggests the importance of nest predation risk in 

shaping avian community structure and breeding activity.
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Introduction

Habitat decisions by females of all taxa preparing to rear offspring can influence 

individual reproductive success as well as population dynamics and community structure 

(Martin 1992, 1998; Smith et al. 2000; Kessler and Baldwin 2002; Blaustein et al. 2004; 

Tschanz et al. 2005). Resource limitation, predation, competition, and unfavourable 

climate can all influence offspring quality and survival (Casey 1976; Martin 1998, 2001; 

Kessler and Baldwin 2002). Theory predicts that females should choose sites to rear 

offspring that minimize these costs (Fretwell 1972; Jaenike and Holt 1991; Martin 1992, 

1998; Morris 2003). Studies of oviposition and nest site selection suggest that females 

are particularly sensitive to predation risk to their offspring, and alter placement o f their 

nests to minimize this risk (Martin 1998, 2001; Kessler and Baldwin 2002; Blaustein et 

al. 2004). Predation risk at particular oviposition and nest sites, however, is highly 

influenced by variation in risk at larger spatial scales (Martin 1992, Rieger et al. 2004, 

Lloyd et al. 2005). Although theory predicts that females should assess risk at these 

larger spatial scales to maximize the potential for safe nesting locations locally (Fretwell 

1972; Jaenike and Holt 1991; Martin 1992, 1998; Morris 2003), few empirical studies 

have tested this prediction.

Variation in avian nest predation risk at the landscape, territory, and nest site 

level, for example, can have profound effects on population demographics and individual 

fitness, and thereby influence habitat choice (Martin 1992, 1998, 2001; Donovan et al. 

1995; Lloyd et al. 2005). While there are clear examples of the influence of nest 

predation risk on decisions by females of where to nest locally (Martin and Martin 2001, 

Forstmeier and Weiss 2004), the influence of nest predation on habitat decisions at larger
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spatial scales (i.e. territory choice) remains unclear, in part because direct experimental 

tests of its importance are conspicuously lacking.

Here, we examine whether individuals from twelve passerine species assess and 

choose habitats based on variation in nest predation risk across a landscape. Specifically, 

we experimentally reduced nest predation risk and measured subsequent settling patterns 

of returning migrants compared to resident species that settle prior to predator 

manipulations. We asked whether migratory birds make settlement decisions based on 

reliable cues such as nest predator abundance and /or vocalizations of predators 

independent from other agents of selection such as food availability or microclimate 

(Cody 1985, Martin 1995, Roos and Part 2004).

We utilized two metrics of habitat preference: order of occupation and population 

density (Fretwell 1972, Cody 1985, Petit and Petit 1996; but see Van Home 1983). Each 

of these measures addresses different components of choice and may therefore enhance 

our understanding of habitat selection. Theory predicts that the first individuals to arrive 

in a landscape will choose to settle in areas of highest quality (Fretwell 1972). Thus, we 

assessed habitat choice by comparing the relative date that areas with and without nest 

predators were first occupied. This enabled us to determine the influence of nest 

predation risk on settlement choice independent of the confounding influences of 

conspecifics. Conspecifics may affect settlement decisions both positively (i.e. 

conspecific attraction; Ward and Schlossberg 2004) and negatively (i.e. territory defense, 

nest site limitation, food limitation; Fretwell 1972, Cody 1985, Martin 1995, Martin and 

Martin 2001, Richardson and Burke 2001), and obscure the importance of nest predation 

in determining where an individual would choose to settle given no other constraints or
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biases. By examining settlement date of the first individuals to arrive in an area, we 

removed the potentially confounding effects of conspecifics. We predicted that 

individuals would settle first in areas with reduced nest predation risk to maximize their 

potential nest success.

While settlement order may indicate the importance of nest predation in shaping 

settlement decisions under ideal conditions, these conditions are rare. Individuals 

arriving after the settlement of the first individual must also weigh the costs of settling 

with other conspecifics, including costs from competition for food, mates and nest sites, 

all known to increase with increasing density (Fretwell 1972, Cody 1985, Martin 1995, 

Martin and Martin 2001, Richardson and Burke 2001). Ultimately, individuals must 

balance nest predation risk against other costs in their choice of breeding habitats. To 

reduce other sources of environmental variation that could confound settlement decisions, 

we applied our predator removal treatment to ten plots paired with ten additional plots of 

historically similar bird and plant assemblages but with intact predator communities. We 

then tested whether birds would accept increased competition in favor of reduced nest 

predation risk by preferentially settling earlier and at higher densities in areas of reduced 

nest predation risk.

Methods

Study area and species

We studied the influence of nest predation risk on habitat preference of migratory 

birds breeding in 20 snowmelt drainages located along the Mogollon Rim in central 

Arizona from 2001-2004. Vegetation is typical of a western mixed conifer forest (Martin
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1998). This system is particularly appropriate for examining habitat preference in 

relation to nest predation risk because nest predation accounts for 98% of nest failure 

(Martin 1998). Returning migrants are easily detected to measure settlement date, and 

densities are easily measured (Martin 2001). In addition, the predator community is 

simple making manipulation of nest predation risk feasible (Chapter 1).

We examined habitat preference for eight neotropical migrants that returned after 

nest predators had been experimentally reduced in portions of the landscape. These 

species represent a diverse continuum of ecological and behavioral characteristics, and 

are known to differ in nest predation risk (Martin 1995, 1998; Chapter 1). In all figures 

species will be referenced by their four-letter American Ornithological Union code:

OCWA — Orange-crowned warbler (Vermivora celata), YIWA -  Virginia’s Warbler 

( Vermivora virginiae), RFWA -  Red-faced Warbler (Cardellina rubrifrons), GHJU 

Gray-1 leaded Junco (Junco hyemalis caniceps), HETH -  Hermit Thrush (Catharus 

guttatus), AMRO -  American Robin (Turdus migratorius), COFL — Cordilleran 

Flycatcher (Empidonax occidentalism, and HOWR -  House Wren (Troglodytes aedon).

We also examined the response of four resident species that chose nesting habitats prior 

to experimental reductions of nest predators and therefore should not respond to the 

experiment. This enabled us to use the density of these species as a control independent 

of our treatment. These species included: WBNU -  White-breasted Nuthatch (Sitta 

carolinensis), RBNU -  Red-breasted Nuthatch (Sitta Canadensis), MOCH -  Mountain 

Chickadee (Poecile gambeli), and BRCR -  Brown Creeper (Certhia Americana).
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Nest predator removals

We conducted a predator removal experiment to alter nest predation risk across 

the landscape (see Chapter 1 for detailed description). We removed predators from 10 

drainages (hereafter plots), 5-10 ha in size (removal plots) to compare with 10 

neighboring and similarly sized drainages with intact predator communities (control 

plots). We paired plots based on 20 years of prior data that permitted us to match plots 

with similar bird, predator, and plant assemblages (Chapter 1). Control and removal plots 

were spatially paired to minimize possible spatial influences, but separated by at least one 

intervening drainage to buffer against possible carryover effects of removals on control 

plots. We removed predators from the same plots all four years of the study to maximize 

effect size.

Removals began before the arrival of any female migrant birds to the study site, 

and continued throughout the breeding season. The primary nest predators for which 

removals were conducted included: red squirrel (Tamaiasciurus hudsonicus), gray-neck 

chipmunk (Eutamias cinereicollis), deer mouse (Peromyscus maniculatus), white-footed 

mouse (P. leucopus), and Steller’s Jay (Cyanocitta stelleri) (Martin 1992). Additional 

predators exist within the community, but at very low densities. To determine the 

effectiveness of removals we measured nest predation rates and assessed nest predator 

abundance throughout the breeding season by conducting aural surveys for jays and 

squirrels (Chapter 1).
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Nest finding and monitoring

We located and monitored nests to determine nest initiation dates (day the first 

egg is laid in a nest) and nest predation rates. Nests on both control and removal plots 

were located using standard techniques (Martin and Guepel 1993). We determined the 

exact initiation dates for all nests found prior to clutch completion. Incubation periods 

are well established for all study species (Martin 2002), allowing us to increase our 

sample size by backdating nests found during the incubation period for which exact hatch 

date was observed. We used Mayfield estimates of nest predation rates (Mayfield 1961, 

1975; Hensler and Nichols 1981), which we compared between treatments and across 

years using a repeated measures ANOVA.

Response Variables

We assessed habitat preference by comparing order of occupation and density 

(Fretwell 1972, Cody 1985, Petit and Petit 1996). Specifically we examined the date that 

the first female of each species arrived on each study plot and the density of breeding 

pairs for each species. We focused on female habitat preference because the risk of nest 

predation is greatest during the egg laying and incubation periods (Martin et al. 2000) 

when the majority of reproductive investment is by females. Selection should act 

strongly on females to choose nesting habitats that limit the risk of nest predation during 

these critical periods (Martin 1998, Martin et al. 2000).

We monitored plots daily from before any females arrived at the study site and 

recorded the date that the first female settled on each study plot. We considered females 

to have settled on a plot if a previously single male was verified to have paired with a
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female and maintained that pairing for three consecutive days. Females that arrived on 

plots were easily detected because they are not particularly cryptic prior to nesting and 

males exhibit distinct changes in singing and courtship behaviors indicating the presence 

of a female (pers obs., Gibbs and Wenny 1993). Because of the intensity of these surveys 

we focused on two species, which we chose because they arrived early (OCWA) and late 

(COFL) at the study site. We also compared the nest initiation date of the first nest for 

each female on a plot as an indicator of when she arrived, settled and initiated breeding. 

These data may be particularly important because in passerines earlier nest initiation 

generally increases fitness (Arcese and Smith 1988, Nilsson 2000). We did not include 

the resident species in this analysis because of the difficulty in accessing cavity nests and 

determining exact nest initiation dates for these species. The arrival and nest initiation 

dates allow us to examine preference based on priority of settlement and breeding 

decisions, although both measures are potentially affected by issues of female site 

fidelity. Older females are usually the first to arrive in this system and are the most likely 

to be site faithful (pers obs., Switzer 1993). Thus, our examination of habitat choice is 

potentially conservative because of constraints from site fidelity.

We also assessed the density of breeding pairs as an index of habitat choice. 

Density may not always be a proper indicator of habitat quality, but it is a good indicator 

of preference (Van Home 1983). In this experiment, density may indicate both 

preference and habitat quality because we altered an environmental factor known to 

affect fitness. We created territory maps for each species on each plot by intensively 

surveying the plots throughout the breeding season to assess breeding density. Maps 

included pairs of each species known to be breeding throughout the breeding season.
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As another index of density and breeding activity, we also randomly sampled 

plots for singing males throughout the breeding season. Tape recorders were paired and 

randomly placed on both control and removal plots every fourth day of the season for a 

total of 23 days and sampled starting at sunrise and every half-hour after for a total of six 

samples per day. Sampling consisted of a one-minute survey to determine the presence 

or absence of each species. We did not sample White-breasted Nuthatches or Brown 

Creepers for this comparison because they were rare and difficult to census accurately.

For all of the response variables we tested for differences between treatments across 

years using a repeated measures ANOVA.

Results

Experimental nest predator removals resulted in a dramatic reduction in nest 

predator vocalization (Chapter 1). The reduction in vocalizations of the main predator 

community is important because it reflects a reduction in predator cues and activity that is 

likely used for risk assessment by birds. Moreover, it also foreshadows a strong 

reduction in actual nest predation rates for resident and migratory species (Fig. la, b; Fi;

22 = 5.092, p < 0.034).

As expected, the density of resident species did not differ between treatments 

since residents established territories every year prior to our predator manipulations (Fig. 

lc; F lt 8 -  0.014, p = 0.909). However, nesting densities of migratory species were 

significantly greater on removal versus control plots (Fig. Id; Fi, n  -  6.629, p < 0.024).

In addition, the singing activi ty of males of all species, both resident and migratory, was 

greater on removal plots (Fig. le, f; Fi, is = 17.166, p -  0.001).
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While predator removals influenced the density of nesting migrants, there were no 

differences between treatments for arrival dates of orange-crowned warblers and 

cordilleran flycatchers (Fj, 22 = 0.006, p = 0.939). In addition, there were no clear 

treatment affects across all migrants for the date that the first nest of each species was 

initiated on each plot (Fig. 2a; Fi, 27 = 0.458, p = 0.504), or the mean nest initiation date 

for each species on each plot (Fig. 2b; Fj, 26 = 0.732, p = 0.400).

Discussion

Habitat selection studies in birds are generally correlational, often relating 

vegetation indices to timing of nest initiation or breeding density. These types of studies 

are useful for understanding habitat selection, but include at least two inherent problems. 

First, variation in vegetation at local and landscape levels is often associated with 

variation in a multitude of selection agents, including but not limited to: microclimate, 

food availability, adult predation risk, and nest predation risk. Distinguishing which of 

these is driving habitat selection can be nearly impossible using only vegetation 

correlates. Second, although vegetation may correlate with important sources of 

selection, this does not mean it is a perfect indicator given that food, predators, and 

microclimate can all vary within and among years independent of vegetation. Here we 

controlled these potential confounding effects by experimentally manipulating one 

particularly important agent of selection, nest predation, and testing its influence on 

habitat selection.

One of the most important components of selecting a habitat is using a cue that is 

readily available and reliably indicates habitat quality (Doligez et al. 2003, Danchin et al
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2004). In this system, vocal cues of red squirrels and Steller’s Jays are readily available 

and easy to assess. A reduction in frequency of these cues (Chapter 1) corresponded to a 

reduction in actual nest predation risk (Fig. la, b). This finding is important because it 

gives us a reasonable expectation that birds may distinguish between habitats of different 

quality based on such cues and choose habitats with reduced risk of nest predation.

Indeed, birds did respond to the experimentally induced landscape-level changes 

in nest predation risk. Although we failed to find any consistent patterns of settlement 

priority and nest initiation on removal plots (Fig. 2a, b), the strong increase in density of 

migratory species clearly suggests preference for plots with reduced nest predation risk 

(Fig. lc, d), despite potentially increased costs of competition (Martin and Martin 2001). 

So why might we find a density response but no changes in when individuals settle and 

begin breeding? First, older and more successful individuals tend to arrive and settle first 

and are generally faithful to sites they occupied in previous years, especially if  they were 

successful (pers obs., Switzer 1993, Haas 1998, Pomeluzi 2003). Second, many 

individuals in this system arrive nearly synchronously, quickly exceeding the capacity of 

the removal plots and necessarily spilling into control plots (pers obs.). These natural 

patterns limit our ability to detect difference in arrival date and nest initiation date 

between treatments. Measures of density are not sensitive to these problems and 

therefore may better indicate true preference in this system.

The large increase in density of migratory species on plots with reduced nest 

predation risk (Fig. Id) clearly indicates that birds are able to assess nest predation risk 

and modify habitat choice. As we expected, resident species (Fig. lc) did not respond to 

the reduction in nest predation risk because they had already made habitat decisions prior
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to the initiation of the experiment every year. The fact that we found no difference in 

resident abundance between treatments suggests that we chose well-paired study plots 

that eliminated many potential confounding variables. The lack of response to the 

treatment by resident species might also reflect a key difference between resident and 

migrant species in their nesting guilds. All of the resident species are cavity nesters, and 

may face greater limitation in nest site availability than the migratory species, which are 

mostly open-cup nesters (Martin 1993, but see Martin and Martin 2001). Nest site 

availability may ultimately constrain breeding density of cavity nesters even in desirable 

habitats (Martin 1993), because we know cavity nesters perceive and respond to variation 

in nest predation risk (Ghalambor and Martin 2002, Chapter 1).

We also found that male singing activity was higher on plots with reduced nest 

predation risk (Fig. le, f). Increased singing activity may simply reflect increased density 

and therefore increases in territory defense costs as males are forced to sing more in 

response to increased interactions between males (Penteriani 2003, Goretskaia 2004, but 

see Terof et al. 1998), but it may also reflect increased activity in safer environments 

(Martin et al. 2000). This latter possibility is further supported by the fact that singing 

activity increased for resident species that did not increase in density on removal plots 

(i.e. Fig. lc, e), as well as species that increased in density (Fig. 3d, f). Alternatively, 

changes in singing activity by species that did not increase in density may reflect 

increased signaling of high quality territories, the importance of singing in limiting 

conspecific density in quality habitats (see above), or the potential for heterospecific 

competition with species that did increase in density. Regardless, increases in singing
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activity signify the importance of nest predation in shaping community interactions, even 

among species that have limited overlap in nest sites or nest predation risk.

Our study has shown that the risk of nest predation can have profound effects on 

habitat selection decisions made by migrating birds. Moreover, the significant decrease 

in actual nest predation rates on individuals settling on predator removal plots suggests 

that these decisions represent adaptive responses to local variation in an important agent 

of selection. These findings reinforce the importance of variation in nest predation risk in 

shaping avian community structure and function through the process of habitat selection.
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Figure Legends

Figure 1 | Predator removals resulted in a reduction in nest predation rates which 

led to an increase in breeding density and singing rates. Responses are illustrated by 

percent difference [(removal-control)/control*100]. Predator removals resulted in a 

reduction in daily mortality rates for both resident (a) and migratory (b) species.

Resident species (c) did not differ in density between treatments, but migratory (d) 

species preferentially settled on removal plots. Male song frequency was greater on 

removal plots than controls for both resident (e) and migratory (f) species. Data was not 

collected for all species for all variables as indicated by (n/a). Error bars represent s.e.m. 

across years.

Figure 2 | Predator removals did not lead to changes in phenology. Average relative 

date (removal -  control) of first nest initiation (a) and mean nest initiation (b) did not 

differ between treatments. Error bars represent s.e.m. across years.
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CHAPTER 3

TESTING ECOLOGICAL AND BEHAVIORAL CORRELATES OF NEST

PREDATION
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Abstract

Differences in nest predation rates among species in different nesting guilds or 

different habitats are generally assumed to result from inherent differences in risk that are 

specific to particular nest sites. Theoretical and empirical studies suggest that parental 

care behaviors evolve in response to nest predation risk and thereby differ among 

ecological conditions that vary in inherent risk. However, parental care also can 

influence nest predation risk. Separating the effects of nest predation risk inherent to a 

nest from the risk imposed by parental strategies is difficult, but imperative if  we are to 

understand the evolution of parental care strategies. We used artificial nests to 

experimentally remove the effects of parental behavior, enabling us to assess inherent 

differences in nest predation risk across nest types and between habitats that differed in 

the abundance of nest predators. Risk of nest predation increased across nest types and 

between predator treatments in the same order for real and artificial nests. Thus, inherent 

differences in nest predation risk related to nest type and predator abundance influence 

nest predation rate independent of parental care behavior. However, despite similar 

patterns of nest predation, artificial nests experienced greater predation rates than real 

nests for all nest types and in both predator communities. Greater predation rates on 

artificial nests could reflect lower quality of nest sites chosen by investigators compared 

to birds. Yet, the extent to which predation rates on artificial nests exceed rates for real 

nests differed among nest types and predator treatments, suggesting that additional 

factors (i.e. functional or numerical responses of predators, or parental care behaviors) 

influence predation risk.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

Introduction

Predation is a major evolutionary and ecological process that can shape both 

individual behaviors and community structure and function (Reznick and Endler 1982; 

Martin 1988, 1996; Begon et al. 1996; Pianka 2000). Understanding causes of variation 

in predation rates therefore is necessary to advancing our understanding of phenotypic 

traits. Predation risk is influenced by predator abundance, habitat structure, and predator 

and prey behavior (Lima and Dill 1990, Begon et al. 1996, Soderstrom et al. 1998, 

Chalfoun et al. 2002). While predation risk is influenced by prey behavior, it also shapes 

the evolution of prey behavior. This complex dynamic between predation risk and prey 

behavior makes the generalization of predation processes across different habitats or 

different species complicated, because causes of predation risk are difficult to isolate 

from changes in prey behavior. Understanding ecological sources of variation in 

predation risk, independent from prey behavior, is imperative to understanding the 

evolutionary pressures that have shaped predator-prey dynamics.

Nest predation, for example, can impose major limitations on individual fitness 

and demographics in birds (Martin 1988, 1992, 1998, 2001; Donovan et al. 1995;

Chalfoun et al. 2002; Fletcher and Koford 2004; Lloyd et al. 2005; Fletcher et al. 2006). 

Therefore, understanding causes of variation in nest predation rates is important to 

understanding the evolution of phenotypic attributes of bird species. Still, despite 

evidence that both habitat features and parental care behaviors can influence nest 

predation outcomes (Skutch 1949; Martin 1995, 1996; Martin et al. 2000a, b), we do not 

know their relative importance in determining nest predation rates. The issue remains 

unclear because parental care behaviors can change across habitats or among nest types

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

that differ in inherent predation risk and thereby alter measured rates of nest predation 

and mask the ecological sources of predation risk (Martin and Ghalambor 1999, 

Ghalambor and Martin 2000, Martin et al. 2000b, Ferretti et al. 2005, Chapter 1). Here 

we attempt to separate how parental care behaviors, background predator abundance, and 

nest type independently influence nest predation risk. We did this by conducting two 

artificial nest experiments.

Researchers have long assumed that nest type (i.e. cavity versus open-cup) is the 

major ecological factor driving differences in nest predation rates among species nesting 

in different nesting guilds (Lack 1948, Nice 1957, Martin 1995, Owens and Bennett 

1995, Martin and Ghalambor 1999). Patterns of increasing nest site safety from open-cup 

to secondary cavity to primary cavity are well established, and generally explained by 

differences in predation risk inherent to each nest type (Lack 1948, Nice 1957, Martin 

1995). However, species occupying different nesting guilds also differ in parental care 

behaviors that can influence predation risk (Skutch 1949, Marzluff 1985, Montgomerie 

and Weatherhead 1988, Martin 1992, Kleindorfer and Hoi 1997, Martin and Ghalambor 

1999, Martin et al. 2000a, Tewksbury et al. 2002). In particular, mate-feeding rates are 

higher at safer nests, and are associated with higher nest attentiveness (Martin and 

Ghalambor 1999). This relationship could suggest that safe nest sites allow high rates of 

mate-feeding, which facilitates high nest attentiveness (Skutch 1949, Martin and 

Ghalambor 1999, Martin et al. 2000a); or, conversely, the causal arrows could be 

reversed where increased nest attentiveness reduces predation risk but requires higher 

mate-feeding rates (Marzluff 1985, Montgomerie and Weatherhead 1988, Martin 1992, 

Kleindorfer and Hoi 1997, Tewksbury et al. 2002). In the latter case, nest types with low
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nest predation risk may result from parents exhibiting high nest attentiveness rather than 

from some inherent influence of the nest type. Direct tests of these alternative directions 

of causality and the assumption that different nest types have inherent differences in risk 

are lacking because no tests have separated the influence of parental care behaviors from 

the influence of nest type. Here, we tested for inherent differences in nest site safety 

across four nest types known to differ in predation rates by using artificial nests to 

remove the potentially confounding effects of parental care behaviors.

Differences in predator abundance are also often assumed to explain differences 

in nest predation rates, particularly between different habitats or among years (Skutch 

1949, Chalfoun et al. 2002). However, direct tests of the influence of predator abundance 

on predation risk independent of habitat structure and parental behavior are lacking. 

Parental care behaviors can change with predator abundance (Chapter 1) and may affect 

predation risk and confuse the influence of predator abundance on predation rates.

Recent experimental manipulation of a predator community demonstrates that predator 

abundance alone cannot predict predation outcomes (Chapter 1, 2). Nest predation rates 

on predator treatment plots only decreased by 30-50 percent across a diverse suite of 

breeding birds (Chapter 2), despite a 90-95 percent decrease in predator abundance 

(Chapter 1). This contrast raises the question of why we fail to see similar changes in 

actual nest predation rates despite apparent changes in environmental risk of nest 

predation as reflected by predator abundance?

An increase in mate-feeding rate and a decrease in nest attentiveness coincided 

with a decrease in predator abundance (Chapter 1), and may have increased nest 

predation rates beyond that predicted by predator abundance alone. In other words,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

predation rates were inflated on removal plots because those predators that remained 

were more successful at finding and depredating nests because parent birds expressed 

more risky behaviors. Alternatively, other predators may have switched to this food 

resource because of increased nest density (Chapter 2). To separate between these 

alternatives we conducted another artificial nest experiment overlaid on a predator 

removal experiment to examine how changes in predator abundance affect predation 

outcomes independent of the influences of parental care.

We used artificial nests to test: 1) if the pattern of increasing nest predation rates 

from primary cavity < secondary cavity < ground < shrub nests observed in real nests 

(see Martin 1995) existed independent of parental behaviors, and 2) if predator 

abundance determined nest predation risk independent of parental behaviors or if  the 

expression of risky parental behaviors changed nest predation risk.

Methods

Study area and species

We studied nest predation in a community of birds breeding in a series of 

snowmelt drainages located along the Mogollon Rim in central Arizona from 1998-2004. 

This system is particularly appropriate for examining the effects of nest predation on 

breeding birds because nest predation accounts for 98% of nest failure (Martin 1998) and 

is known to influence both population trends and individual behaviors (Martin and 

Ghalambor 1999, Martin 2000a, Chapter 1). The vegetation and climate are typical of 

western mixed conifer forests (Martin 1998). Study species included thirteen species of
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passerine birds representing a diverse continuum of ecological and behavioral 

characteristics and known to differ in nest predation risk and nest type (Table 1).

From video and photo documentation as well as personal observation we have 

determined that the primary nest predators in this system include: red squirrel 

(Tamaiasciurus hudsonicus), gray-neck chipmunk (Eutamias cinereicollis), deer mouse 

(Peromyscus maniculatus), white-footed mouse (P. leucopus), and Steller’s Jay 

(Cyanocitta stelleri) (Martin 1998). Additional nest predators exist within the 

community but have been documented depredating nests in this system so rarely (Martin 

1998, pers obs) that their effect on nesting productivity is likely minimal under normal 

conditions.

Nest Type Experiment

From May to July of 1998 and 1999, we created four nest types known to differ in 

nest predation rates: primary cavity, secondary cavity, ground, and shrub (see Martin 

1995). We chose all artificial nest sites based on characteristics typical of the species 

they represented (from Martin 1998). To begin we established sampling points for 

artificial nests by locating naturally occurring secondary cavities typically preferred by 

House Wrens. To control for spatial and temporal variation in predation risk we placed 

nests representing all other nest types within 25 m of these natural secondary cavities and 

baited (see below) all the nests at the same time. We modeled primary cavities after 

Red-breasted Nuthatches created in a different tree of the same species and at the same 

height as our artificial House Wren nest. Using a power drill, we excavated cavities to a 

depth and width of approximately 7-15 cm, with an entrance diameter of 2.5 cm. We
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created shrub nests modeled after Hermit Thrushes from small wicker baskets covered 

with lichen and placed at a height of 0.5-2.5m. Finally, we modeled ground nests after 

Orange-crowned Warblers by creating a depression at the base of a stem and lining it 

with dried grasses.

Twenty replicate nests representing each nest type were set out in the last week of 

May of each year. Due to high variation in nest predation within open-cup nests, an 

additional forty pairs of ground and shrub nests were set out in the second week of June 

1999 in the same series of drainages. We baited each nest with one Zebra Finch 

(Poephila gullata), and one Buttonquail (Turnix sp.) egg. We checked nests every 2 days 

for a period of 13 days, a typical incubation period for these species (Martin 2002), to 

determine nest fate. Nests in which any of the eggs were disturbed or removed were 

considered depredated and monitoring was discontinued.

Artificial nests may not adequately replicate real nests, and their utility for 

examining questions relative to nest predation is unclear (Major and Kendal 1996, Moore 

and Robinson 2004). However, when artificial nests are coupled with studies of real 

nests, as we do here, they can be a useful experimental tool, but care must be paid to 

design and assumptions. The nests we used were specifically designed to replicate actual 

nests in size, shape, substrate, and material (Martin 1987). Although we likely did not 

choose nesting locations as well as real birds, we based our decisions on more than 35 

years of combined experience searching for these nests, and any biases were likely 

systematic across all nest types allowing us to eliminate this error when comparing 

among types. The nest predator community in this system is simple (see below), limiting 

potential differences between nest predators of real and artificial nests (Moore and
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Robinson 2004). Additionally, our nests included eggs typical of eggs found in real nests 

and therefore did not limit our predator community (Major and Kendal 1996). Finally, 

we are not suggesting that artificial nests represent real nests (Sievings and Willson 

1998). Indeed, we specifically used artificial nests to remove many of the confounding 

factors present at real nests, particularly parental behaviors, to test general patterns of 

predation risk across environmental gradients.

We located and monitored real nests (see Martin and Guepel 1993) in drainages 

adjacent to experimental sites for use in comparing relative nest predation rates. Only 

nests monitored during incubation are considered here. We grouped all nests by nest type 

to compare to artificial nests (Table 1).

Daily nest predation rates were calculated for both real and artificial nests using 

the Mayfield method (Mayfield 1961, Mayfield 1975, Hensler and Nichols 1981). We 

pooled data across years because both years showed a similar pattern of nest predation.

We compared the patterns of nest predation among nest types between real and artificial 

nests using a Kendall’s Tau signed ranks test to determine if nest type could explain 

known differences in nest predation rates among types (Martin 1995).

Behavioral Correlations

We measured parental care behaviors at real nests of all four nest types to 

determine whether parental care behaviors could explain additional variation in nest 

predation risk among nest types. We assessed parental behaviors by videotaping nests for 

approximately six hours starting within 30 minutes of sunrise (Martin and Ghalambor 

1999, Martin et al. 2000a, Martin 2002). Whenever possible we video recorded nests
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once in early incubation and once in late incubation and averaged these samples to 

determine incubation behaviors. We scored tapes for both nest attentiveness and mate- 

feeding rates (Martin and Ghalambor 1999, Martin et al. 2000a). Behavioral data 

gathered in the study years did not differ from a much broader sample gathered from 

1987 to 2004 (F = 0.698, p = 0.404). Consequently, we used behavioral data pooled from 

all years because we were interested in the most robust estimates of behaviors for the nest 

types examined here. We tested if  patterns of behavioral data were explained by nest 

type using a standard ANOVA with a LSD Post Hoc test.

Predator Removal and Artificial Nest Experiment

We created artificial nests in sites typical of Orange-Crowned Warblers (see 

above for details) on plots undergoing predator removals (removal plots) and plots with 

intact predator communities (control plots) from May to July of 2002, 2003, and 2004,

(see Chapter 1 for a detailed description of predator removal experiment). Twenty nests 

were set out on a series of four removal and four control plots in the last week of May of 

each year, for a total of 240 nests for each treatment. Again, we baited each nest with 

one Zebra Finch, one Buttonquail egg and checked nests every 2 days for a period of 13 

days to determine their fate. Nests in which any of the eggs were broken or removed 

were considered depredated and monitoring was discontinued. We also monitored real 

nests on these plots (see above) to compare relative nest predation rates.

We predicted that if changes in parental care behaviors lead to elevated nest 

predation rates on removal plots then the difference in predation rates on artificial nests 

between treatments would be significantly greater than the difference in predation rates of
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real nest between treatments. Alternatively, if the difference in predation rates of 

artificial nests between treatments resembles that of real nests then it is unlikely that 

parental care behaviors can explain the slight decline in predation rates on removal plots 

considering the decline in predator numbers. Instead, prey switching by alternative 

predators may have limited nest success on removal plots. To determine which 

hypothesis was best supported, we calculated daily nest predation rates for real Orange- 

crowned Warbler nests and artificial nests that simulated this species on both treatments 

(see above for detailed descriptions). We then used these data to calculate the percent 

difference between the two treatments [((removal -  control)/control)*1 0 0 ] for both nest 

types in each year on each plot. We compared the yearly percent difference between real 

and artificial nests for each plot using a paired t-test.

Results

Real nests of all species in each guild, real nests of the representative species of 

each guild, and the artificial nests meant to simulate the nests of those species all showed 

correlated patterns of nest predation across the four nest types (Fig. la, p = 0.021). 

However, artificial nests had higher predation rates than representative real nests (t3 = - 

3.379, p = 0.043) or combined nests for the entire guild (t3 = -4.250, p = 0.024). Mate- 

feeding rate and nest attentiveness increased across species with increasing nest site 

safety (Fig. lb; F3> n  > 6.146, p < 0.015).

For both predator treatments nest predation rates were again higher for artificial 

nests (Fig. 2a, t3 = -6.762, p < 0.001). The percent change between nest predation 

treatments did not differ for real and artificial nests (Fig. 2b, t = 0.144, p = 0.888).
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Discussion

Predation is a major ecological force influencing biological systems at a multitude 

of levels. Yet, our understanding of how inherent differences in predation risk influences 

the phenotypic expression of complex sets of traits and how these traits can feedback to 

influence predation risk remains unclear. Here we attempted to distinguish between 

sources of predation risk inherent to the environment (i.e. predator density and nest type) 

and sources of predation risk imposed by prey behavior (i.e. mate-feeding rate and nest 

attentiveness).

Our data clearly demonstrate that inherent differences in nesting environments 

can readily influence nest predation risk. Real and artificial nests experienced similar 

patterns of nest predation risk across nest types (Fig la), and between predator treatments 

(Fig 2). These data support the common but previously untested assumptions that 

predation risk is strongly determined by nest type and predator abundance, independent 

of parental behaviors. Understanding differences in environmental sources of nest 

predation risk is important, because nest predation plays a critical role in the evolution of 

phenotypic expression (Martin 1992, 1995; Martin and Ghalambor 1999; Martin et al. 

2000a, b; Ghalambor and Martin 2001, 2002). Indeed, the differences in parental care 

behaviors observed among nest types (Fig. lb, lc) potentially reflect responses to these 

inherent differences in nest site vulnerability (Martin and Ghalambor 1999, Martin et al. 

2 0 0 0 a).

Differences in nest predation between real and artificial nests suggest the 

possibility that other factors beyond nest type or predator abundance may influence nest 

predation risk (Fig. la, Fig. 2a). This difference could simply reflect our inability to
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adequately simulate nest sites chosen by real birds, and certainly nest placement played 

some role. At the same time, differences in nest predation between real and artificial 

nests were greater for cavity-nesters than for open-cup nesters (Fig. la). These 

differences suggest that at least some of the increase in predation risk for artificial nests 

may be due to factors beyond our ability to choose appropriate nest sites. These factors 

may include parental care behavior, particularly behaviors that can directly influence nest 

predation risk such as mate-feeding rates and nest attentiveness (Skutch 1949; 

Montgomery and Weatherhead 1988; Martin 1992; Martin et al. 2000a, b; Tewksbury et 

al. 2002). If these parental care behaviors covary with the differences we detected 

between real nests and artificial nest by either increasing risk at open-cup nests or 

decreasing risk at cavity nests, than they may be an important cause of additional 

variation in nest predation risk between these nest types.

We failed to find any influence of parental behavior on nest predation risk 

between our predator treatments. Parents on removal plots clearly altered their parental 

care behaviors (Chapter 1), but our artificial nest study suggests that these changes did 

not lead to a significant increase in nest predation risk (Fig. 2b). Instead, prey switching 

by alternative predators may more easily explain the limited influence of the predator 

reduction on nest predation rates (Chapter 1, 2). While individuals nesting in safer nests, 

either due to nest type or predator abundance, express more risky parental care behaviors, 

these behaviors appear appropriate and do not appear to exaggerate their risk.

In summary, our experiments showed that inherent differences in nest site 

vulnerability, independent of parental behaviors, do exist among nest types and between 

habitats with different predator community assemblages. Individuals or species with
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inherently safe nests are afforded the luxury of expressing behaviors that would be costly 

if expressed in unsafe nests (Martin and Ghalambor 1999; Martin et al. 2000a, b; Chapter 

1). The extent to which parental care behaviors further influence nest predation rates still 

remains unclear, however, and deserves further experimental study. Ultimately, 

consideration of both inherent differences in nest site safety and parental care strategies is 

critical to understanding variation in nest predation and life-history traits in birds.

Acknowledgements

We thank A. Chalfoun, R. Fletcher, A. Perkins, D. Reznick, D. Emlen, for comments and 

support, and numerous field assistants for their hard work. We are indebted to J. L. 

Brunson Hadley, L. Hinojosa, and the Arizona Seed Crackers Association for kindly 

supplying the Zebra Finch eggs. We also thank C. Taylor and the Coconino National 

Forest for their support, and G. Witmer and the National Wildlife Research Center for the 

use of their equipment. This work was supported by funding to TEM from the USGS 

Climate Change Research program and the National Science Foundation (DEB-9527318, 

DEB-9707598, DEB-9981527, and DEB-0543178) and funding to JJF from the 

American Ornithological Union and Sigma Xi.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

Literature Cited

Begon, M., J. L. Harper, and C. R. Townsend. 1996. Ecology : individuals, populations, 

and communities. 3rd edition. Blackwell Science, Oxford.

Chalfoun, A. D., F. R. Thompson, and M. J. Ratnaswamy. 2002. Nest predators and 

fragmentation: a review and meta-analysis. Conservation Biology 16:306-318.

Donovan, T. M., F. R. Thompson, J. Faaborg, and J. R. Probst. 1995. Reproductive 

success of migratory birds in habitat sources and sinks. Conservation Biology 

9:1380-1395.

Ferretti, V., P. Llambias, and T. E. Martin. 2005. Life-history variation of a neotropical 

thrush challenges food limitation theory. Proceedings of the Royal Society of 

London, Series B 272:769-773.

Fletcher, R. J., Jr., and R. R. Koford. 2004. Consequences of rainfall variation for 

breeding wetland blackbirds. Canadian Journal of Zoology 82:1316-1325.

Fletcher, R. J., Jr., R. R. Koford, and D. A. Seaman. 2006. Critical demographic

parameters for declining songbirds breeding in restored grasslands. Journal of 

Wildlife Management 70: (In Press)

Ghalambor, C. K. and T. E. Martin. 2000. Parental investment in two species of nuthatch 

varies with stage-specific predation risk and reproductive effort. Animal Behavior 

60:263-267.

Ghalambor, C. K., and T. E. Martin. 2001. Fecundity-survival trade-offs and parental 

risk-taking in birds. Science 292:494-497.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

Ghalambor, C. K., and T. E. Martin. 2002. Comparative manipulation of predation in 

incubating birds reveals variability in the plasticity of responses. Behavioral 

Ecology 13:101-108.

Hensler, G. L. and J. D. Nichols. 1981. The Mayfield method of estimating nesting

success: A model, estimators and simulation results. The Wilson Bulletin 93:42- 

53.

Kleindorfer, S. and H. Hoi. 1997. Nest predation avoidance: an alternative explanation 

for male incubation in Acrocephalus melanopogon. Ethology 103:619-631.

Lack, D. 1948. The significance of clutch size. Part 3. Some interspecific comparisons.

Ibis 90:25-45.

Lima, S. L. and L. M. Dill. 1990. Behavioral decisions made under the risk of predation:

A review and prospectus. Canadian Journal of Zoology 68:619-640.

Lloyd, P., T. E. Martin, R. L. Redmond, U. Langner, and M. M. Hart. 2005. Linking 

demographic effects of habitat fragmentation across landscapes to continental 

source-sink dynamics. Ecological Applications 15:1504-1514.

Major, R. E. and C. E. Kendal. 1996. The contribution of artificial nest experiments to 

understanding avian reproductive success: A review of methods and conclusions. 

Ibis 138:298-307.

Martin, T. E. 1987. Artificial nest experiments: effects of nest appearance and type of 

predator. The Condor 89:925-928.

Martin, T. E. 1988. Processes organizing open-nesting bird assemblages: competition or 

nest predation? Evolutionary Ecology 2:37-50.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

Martin, T. E. 1992. Interaction of nest predation and food limitation in reproductive 

strategies. Current Ornithology 9:163-197.

Martin, T. E. 1995. Avian life-history evolution in relation to nest sites, nest predation, 

and food. Ecological Monographs 65:101-127.

Martin, T. E. 1996. Fitness costs of resource overlap among coexisting bird species. 

Nature 380:338-340.

Martin, T. E. 1998. Are microhabitat preferences of coexisting species under selection 

and adaptive? Ecology 79:656-670.

Martin, T. E. 2001. Abiotic vs. biotic influences on habitat selection of coexisting 

species: Climate change impacts? Ecology 82:175-188.

Martin, T. E. 2002. A new view for avian life history evolution tested on an incubation 

paradox. Proceedings of the Royal Society of London, Series B 269:309-316.

Martin, T. E. and C. K. Ghalambor. 1999. Males helping females during incubation. I.

Required by microclimate or constrained by nest predation? American Naturalist 

153:131-139.

Martin, T. E. and G. R. Guepel, G. R. Nest-monitoring plots: methods for locating nests 

and monitoring success. Journal of Field Ornithology 64:507-519.

Martin, T. E., P. R. Martin, C. R. Olson, B. J. Heidinger, and J. J. Fontaine. 2000a. 

Parental care and clutch sizes in North and South American birds. Science 

287:1482-1485.

Martin, T. E., J. Scott, and C. Menge. 2000b. Nest predation increases with parental 

activity: separating nest site and parental activity effects. Proceedings of the 

Royal Society of London, Series B 267:2287-2294.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

Marzluff, J. M. 1985. Behavior at a pinyon jay nest in response to predation. Condor 

87:559-561.

Mayfield, H. 1961. Nesting success calculated from exposure. The Wilson Bulletin 

73:255-261.

Mayfield, H. 1975. Suggestions for calculating nest success. The Wilson Bulletin 87:456- 

466.

Montgomerie, R. D. and P. J. Weatherhead. 1988. Risks and rewards of nest defense by 

parent birds. Quarterly Review of Biology 63:167-187.

Moore R. P. and W. D. Robinson. 2004. Artificial bird nests, external validity, and bias in 

ecological field studies. Ecology 85:1562-1567.

Nice, M. M. 1957. Nest success in altricial birds Auk 74:305-321.

Owens, I. P. F., and P. M. Bennett. 1995. Ancient ecological diversification explains life 

history variation among living birds. Proceedings of the Royal Society of 

London, Series B 261:227 232.

Pianka, E. R. 2000, Evolutionary ecology. 6 th edition. Benjamin Cummings, California.

Reznick, D. and J. A. Endler. 1982. The impact of predation on life history evolution in 

Trinidadian guppies Poecillia-reticulata. Evolution 36:160-177.

Sieving, K. E. and M. F. Willson. 1998. Nest predation and avian species diversity in 

northwestern forest understory. Ecology 79:2391-2402.

Skutch, A. F. 1949. Do tropical birds rear as many young as they can nourish? Ibis 

91:430-455.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

Soderstrom B., T. Part, and J. Ryden. 1998. Different nest predator faunas and nest

predation risk on ground and shrub nests at forest ecotones: an experiment and a 

review. Oecologia 117:108-118.

Tewksbury, J. J., T. E. Martin, S. J. Hejl, M. J. Kuehn, and J. W. Jenkins. 2002. Parental 

care of a cowbird host: caught between the costs of egg-removal and nest 

predation. Proceedings of the Royals Society of London, Series B Biological 

Sciences 269:423-429.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 1 | Species occupy different nest types.

Nest Type Common Name Scientific Name

Primary Cavity Red-breasted Nuthatch Sitta canadensis

Primary Cavity Pygmy Nuthatch Sitta pygmaea

Secondary Cavity White-breasted Nuthatch Sitta carolinensis

Secondary Cavity Mountain Chickadee Parus gambeli

Secondary Cavity House Wren Troglodytes aedon

Secondary Cavity Western Bluebird Sialia mexicana

Ground Orange-crowned Warbler Vermivora celata

Ground Virginia’s Warbler Vermivora

Ground Red-faced Warbler Cardellina

Ground Gray-headed Junco Junco hyemalis

Shrub Green-tailed Towhee Pipilo chlorurus

Shrub MacGillivray’s Warbler Oporornis tolmiei

Shrub Hermit thrush Catharus guttatus
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Figure Legends

Figure 1 | Nest success of real and artificial nests predicted parental care behaviors 

across nest types, (a) Real nests for the entire guild and a representative species from 

1998-1999, as well as the artificial nests showed the same pattern of nest predation rates 

across the four nest types: primary cavity (primary, n = 841 real, 64 rbnu, 20 artificial), 

secondary cavity (secondary, n = 1784 real, 82 howr, 20 artificial), ground (n = 2327 real, 

25 ocwa, 60 artificial), and shrub (n = 903 real, 40 heth, 60 artificial). This pattern 

corresponded with differences in (b) mate-feeding rate (rate at which males feed 

incubating females on the nest) (c) and nest attentiveness (percentage of time female is on 

the nest) across the four nest types: primary cavity (primary, n = 56), secondary cavity 

(secondary, n = 90), ground (n = 444), and shrub (n = 54). Columns denoted by the same 

letter are not significantly different. Columns denoted by different letters are 

significantly different at the 0.05 level according to an LSD Post Hoc test. All data are 

means ± s.e.m.

Figure 2 | Predator reductions lead to consistent changes in nest success for real and 

artificial nests, (a) Artificial nests experienced greater nest predation rates than real 

nests in both treatment groups (n = 103 real, 240 artificial), but (b) the percent change in 

nest predation rates between the treatment groups did not differ between real and 

artificial nests. All data are means ± SE.
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CHAPTER 4

CORTICOSTERONE RESPONSES OF INCUBATING FEMALES TO SEASONAL 

CHANGES AND EXPERIMENTALLY REDUCED NEST PREDATION RISK
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Abstract

Risk of predation to offspring can influence the expression of reproductive 

strategies, both within and among species. Appropriate expression of reproductive 

strategies in environments that differ in predation risk can have clear fitness advantages. 

Although adult predation risk appears to influence corticosteroid levels leading to 

changes in behavioral and life history strategies, the influence of offspring predation risk 

on adult corticosteroids remains unclear. We compared baseline corticosterone levels of 

adults of six species of passerine birds nesting on plots with and without experimentally 

reduced risk of nest predation. Despite clear differences between treatments in nest 

predation risk that lead to differences in reproductive strategies, we failed to find any 

differences in baseline corticosterone between treatments or among species that differed 

in nest predation risk. Corticosterone did increase across the breeding season consistent 

with other studies, but we show that these increases are independent of changes in nesting 

stage. Nest predation can impose strong selection on the expression of reproductive 

strategies, and birds can assess and respond to differences in nest predation risk, but 

corticosterone does not appear to be a key physiological mechanism regulating these 

changes.
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Introduction

The extent to which individuals invest in current reproductive attempts is 

influenced by a variety of extrinsic and intrinsic sources of selection. In particular, 

sources of mortality, either to the offspring or the parents, are known to influence the 

relative effort of parents in current reproduction (Roff 1992, Ghalambor and Martin 2001, 

Fontaine and Martin 2006). Yet the physiological mechanisms underlying these patterns 

are less well known (Sinervo and Svensson 1998, Ketterson and Nolan 1999). 

Understanding the physiological processes underlying adjustments in parental effort are 

paramount to understanding the evolution of life histories and parental care as well as the 

management and conservation of species (Clutton-Brock 1991, Sinervo & Svensson 

1998, Ketterson and Nolan 1999, Martin 2002; Ricklefs and Wikelski 2002; Barnes and 

Patridge 2003, Wikelski and Cooke 2006). The hypothalamic-pituitary-adrenal (HPA) 

axis is suggested as a potential physiological mechanism that may mediate tradeoffs 

between risk or mortality and reproductive effort (Salmon et al. 2001, Ricklefs and 

Wikelski 2002, Wingfield and Sapolsky 2003). However, broad experimental studies of 

its influence on reproductive traits in alternative predation environments are 

conspicuously lacking (Clinchy et al. 2004).

Nest predation is the primary cause of reproductive failure in avian systems 

(Ricklefs 1969, Martin 1987) and, thus, represents an important source of selection acting 

on the expression of reproductive strategies. Indeed, correlative studies (Lack 1948, 

Slagsvold 1982, Martin 1995, Martin et al. 2000, Ferretti et al. 2005), as well as recent 

experimental tests (Fontaine and Martin 2006), have shown that parents adjust 

reproductive strategies in response to risk of nest predation. Yet the physiological
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mechanism mediating these responses remains conspicuously untested. Exposure to 

adult predators can elevate baseline levels of corticosterone (Silverin 1998, Wingfield et 

al. 1998), and short-term increases in corticosterone can alter behaviors (Wingfield et al. 

1998). Indeed recent work on stonechats (Saxicola torquata axillaries) and song 

sparrows (Melospiza melodia) have demonstrated correlations between baseline 

corticosterone, predator abundance, reproductive success and parental effort (Scheuerlein 

et al. 2001, Zanette et al. 2003, Clinchy et al. 2004). Although risk of nest predation 

differed between treatments in these studies, treatments also differed in adult predation 

risk. Thus elevated corticosterone levels in high predation environments may result from 

either adult or offspring predation risk. Given the ubiquity of nest predation and its 

influence on reproductive strategies, the question remains whether corticosterone can 

mediate this response.

To answer this question we experimentally altered the risk of nest predation, 

which lead to clear changes in reproductive strategies (Chapter 1). Here we examine 

whether baseline corticosterone levels could explain these changes in reproductive 

strategies in a community of six passerine birds. Specifically, we tested whether 

circulating corticosterone levels were reduced in safer nesting environments, and whether 

differences in baseline corticosterone were associated with differences in egg mass, 

clutch size, nest attentiveness (percentage of time females are on the nest incubating), and 

mate-feeding rate (rate males feed incubating females at the nest) both within and among 

species.
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Methods

Study area and species

We studied birds breeding in 20 snowmelt drainages located along the Mogollon 

Rim in central Arizona, from 2001-2004. Vegetation at the study site is typical of a 

western mixed conifer forest (Martin 1998). This system is particularly appropriate for 

examining these questions because nest predation accounts for 98% of nest failure 

(Martin 1998), and therefore should impose direct selection on the expression of 

reproductive strategies and the proximate mechanisms that regulate them.

We examined baseline corticosterone levels for incubating females from six 

neotropical migrants that returned after nest predators were experimentally reduced in 

portions of the landscape (see next). We also compared baseline corticosterone levels for 

males from one species (GHJU) that was particularly abundant. These species represent 

a diverse continuum of ecological and behavioral characteristics and differ in nest 

predation risk (Martin 1995, 1998; Fontaine and Martin 2006). In all figures species are 

referenced by their four letter American Ornithological Union code: OCWA -  Orange- 

crowned warbler ( Vermivora celata), RFWA -  Red-faced Warbler (Cardellina 

rubrifrons), GHJU -  Gray-Headed Junco (Junco hyemalis caniceps), HETH — Hermit 

Thrush (Catharus guttatus), COFL — Cordilleran Flycatcher (Empidonax occidentalis), 

and HOWR -  House Wren (Troglodytes aedon).

Nest predator removals

We conducted a predator removal experiment to alter nest predation risk across 

the landscape (see Fontaine and Martin 2006 for detailed description). We removed
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predators from 1 0  removal plots to compare with 1 0  neighboring control plots with intact 

predator communities. Each plot is an individual drainage with similar vegetation 

composition and structure and separated from other drainages by ridges o f different 

habitat (Martin 1998). We paired plots based on 20 years of prior data that suggested 

similar bird, predator, and plant assemblages. We removed predators from ten, 5-10 

hectare drainages. Control and removal plots were spatially paired to minimize possible 

spatial influences, but separated by at least one intervening drainage to buffer against 

possible carryover effects of removals on control plots. We removed predators from the 

same plots each year to maximize effect size.

Removals began before the arrival of any female migrant birds to the study site 

and continued throughout the breeding season. The primary nest predators we removed 

included: red squirrel (Tamaiasciurus hudsonicus), gray-neck chipmunk (Eutamias 

cinereicollis), deer mouse (Peromyscus maniculatus), white-footed mouse (P. leucopus), 

and Steller’s Jay (Cyanocitta stelleri) (Martin 1998). These predators significantly 

influence nest predation rates, but represent no threat to adult birds; therefore, any 

changes in adult corticosterone levels reflect risk to offspring and not adult mortality.

Nest finding and monitoring

Nests were located based on parental behaviors using long-standing techniques 

(Martin and Guepel 1993). When checking nests, we did not flush incubating females 

from nests to limit human disturbance, which birds may perceive as a predation threat. 

Instead, nests were either checked from afar by observing parental behavior or nest 

contents were checked when females were off during normal foraging bouts. Hormone
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levels are known to vary with stage of breeding; therefore we determined the exact 

initiation dates for all nests found prior to clutch completion. Incubation periods are well 

established for all study species (Martin 2002), allowing us to increase our sample size by 

backdating known incubation periods from nests for which exact hatch date was 

observed.

Life history and parental care behaviors

We measured egg mass for nests located during nest building or egg-laying, and 

measured all eggs within two days of clutch completion using a calibrated digital scale 

accurate to 0.001 g. Clutch size was taken from all nests found prior to hatching because 

partial losses are virtually never observed in this system.

We assessed parental behaviors by videotaping nests for approximately six hours 

starting within 30 minutes of sunrise (Martin et al. 2000). Whenever possible we 

recorded nests once in early incubation and once in late incubation and averaged to 

determine incubation behaviors. Tapes were scored for behaviors including: percentage 

of time females spent on the nest (nest attentiveness) and the rate that males visited the 

nest to feed incubating females (mate-feeding rate) (Martin et al. 2000).

Capture and handling techniques

We captured all individuals by setting a 6 m-net within 2m of nests. Females were 

flushed from the nests while incubating or captured while returning to incubate. Males 

were captured while returning to the nest to feed nestlings. All samples included here 

were collected within three minutes of capture. We obtained blood samples (~50 ju.1)
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from the brachial vein and using heparinized microcapillary tubes. The blood was 

centrifuged and seperated, and the plasma was removed and frozen for future analysis.

Measurement o f baseline corticosterone

We measured plasma corticosterone in plasma samples ranging from 10-20 fi\ 

(average 13 /d) by radioimmuneassay, with a sensitivity of 1 . lng/ml plasma (intra-assay 

coefficient of variation 5.7%). For the assay, tritiated corticosterone (2000 cpm) was 

added to each plasma sample for estimation of recoveries (mean 76%), and samples were 

allowed to equilibrate overnight at 4° C. Steroids were extracted with 2 X 4 ml of 

petroleum ether and diethylether (3:7 by volume) using minicolumns, and extracts were 

dried at 37° C over a stream of N2. The assay was performed following standardized 

protocol developed by Schwabl (1995) using corticosterone antibody B3-163 (Esoterix 

Endocrinology Inc.).

Analysis

We compared corticosterone levels between treatments and across species using 

analysis of covariance to test for overall differences between treatments and across 

species that differ in risk of nest predation, while controlling for date as a covariate. We 

excluded non-significant variables or interactions from final models. We then tested for 

correlations between corticosterone and life history and parental care traits using a 

multivariate analysis.
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Results

Sampling date had a significant effect on baseline corticosterone levels for 

incubating females independent of treatment (Fig. 1). This was not related to the day 

within the incubation period when samples were taken (Date: Fi, 41 = 11.291, p = 0.002; 

Day of Incubation: F i,4 i = 0.632, p = 0.432; Species: Fs;4i = 1.529, p = 0.208). Thus, we 

included date in subsequent analyses.

Although experimental nest predator removals led to changes in avian 

reproductive strategies (Fontaine and Martin 2006), baseline corticosterone levels did not 

differ between treatments for incubating females (Fig. 2a; Treatment: Fi, 41 = 0.766, p =

0.389; Date: Fis 41 = 10.786, p = 0.003; Species: Fs^i = 1.196, p = 0.337; Treatment by 

Species: F5j 41 = 0.329, p = 0.891), or for male GHJU’s feeding nestlings (Fig. 2b; 

Treatment: Fi, 9 = 0.363, p = 0.703). Differences among species in nest predation risk 

also did not correspond to differences in baseline corticosterone during incubation (Fig.

3; Species: F5;4 i = 1.419, p = 0.243; Date: Fi,4 i = 11.462, p = 0.002). Baseline 

corticosterone levels were not associated with any variation in life history or behavioral 

traits among individuals (Life history and behavioral traits: F < 0.292, p > 0.592; Species: 

F<0.735,p>0.589) although nest initiation date was weakly correlated (Trait: Fi; 70 = 

3.323, p = 0.073; Species: F5,70 = 0.544, p = 0.742).

Discussion

Predation is a major ecological and evolutionary force that can clearly shape the 

expression of behavioral and life history traits both within and among species (Roff 1992; 

Martin 1986, 1996; Begon et al. 1996; Pianka 2000). Moreover, behavioral and life
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history traits shift in response to changes in nest predation risk (Fontaine and Martin 

2006), and corticosteroids are a potential physiological mechanism mediating these 

responses However, we found no discemable effect of nest predation risk on baseline 

corticosterone levels between treatments (Fig. 2) or among species that differed in nest 

predation risk (Fig. 3). Furthermore, we failed to find any relationship between baseline 

corticosterone and the expression of any of the reproductive traits that we measured.

Thus, baseline levels of corticosterone do not appear to be the physiological mechanism 

regulating life history and behavioral modifications in response to nest predation risk.

This result is particularly surprising, not only because previous studies have found 

correlations between nest predation risk and baseline corticosterone levels (Scheuerlein et 

al. 2001, Clinchy et al. 2004, but see above), but also because of apparent differences in 

food stress. The rate that males supplied females with additional food at the nest and the 

percentage of time females spent off the nest foraging for themselves both increased on 

removal plots (Fontaine and Martin 2006). Consequently, females on removal plots were 

significantly less food limited, which should decrease baseline corticosterone levels 

(Wingfield 2003, Clinchy et al. 2004). The lack of difference in corticosterone levels 

between treatments may suggest that the costs of elevated levels of corticosterone 

(Sapolsky et al. 2000 Romero 2004) favors alternative physiological mechanisms for 

regulating reproductive responses to nest predation risk.

Selection against elevated corticosterone may be particularly high during the 

reproductive period not only because corticosteroids may suppress reproduction 

(Wingfield and Sapolsky 2003), but also because these costs may be transferred to 

offspring. Recent work demonstrates the transfer of corticosterone from females to eggs
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(Hayword and Wingfield 2004, Saino et al. 2005), and eggs with elevated levels of 

corticosterone can have reduced hatching success, take longer to hatch and produce 

smaller, lower quality offspring (Eriksen et al. 2003, Hayword and Wingfield 2004, 

Rubolini et al. 2005, Saino et al. 2005). These effects, while always bad, are further 

compounded in environments with high nest predation rates. For example, increasing 

hatching time increases risk of nest predation because nest predation risk compounds 

daily, but this risk is particularly elevated in high nest predation environments. Poor 

offspring quality is also exaggerated in high nest predation environments because parents 

tend to feed less in these environments (Fontaine and Martin 2006) and attempts to 

compensate for poor offspring quality by increasing feeding rate can lead to increased 

nest predation risk (Skutch 1949, Martin et al. 2000). Thus, the high costs of elevated 

corticosterone to offspring may favor alternative physiological mechanisms for regulating 

reproductive strategies in environments that differ in nest predation risk, independent of 

the costs to parents.

Baseline corticosterone levels did not vary with nest predation risk, but 

consistently increased across the breeding season for all species (Fig. 1). Seasonal 

changes in baseline corticosteroid levels are well known, and for birds corticosterone 

levels are generally elevated during the breeding season (see Romero 2002 for a review). 

Furthermore, both corticosterone responses and baseline corticosterone levels can vary 

within a breeding season across breeding stages (Holberton and Wingfield 2003, Adams 

et al. 2005, Raouf et al. 2006), but whether these differences are due to time of year 

effects or stage effects remains unclear. Here we control for stage and show a clear
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pattern of increasing baseline corticosterone levels across a breeding season for 

incubating females representing a diverse continuum of reproductive ecology (Fig. 1).

Why baseline corticosterone levels would increase across a breeding season 

independent of nesting stage is unclear, but here we discuss some possible explanations. 

First, seasonal increases in competition, predation risk, food limitation, or parasite 

prevalence could lead to increased chronic stress and thus elevate baseline corticosterone 

levels across the breeding season. In this case, date is simply a correlate of these 

ecological factors. Second, date itself may be of primary importance. As the breeding 

season progresses and timing for alternative life stages such as molt or migration 

approach, baseline corticosterone may be elevated either as preemptive or reactionary 

response. For example, elevated corticosterone levels may act preemptively to suppress 

the initiation of alternative life stages despite external cues (i.e. photoperiod) and thus 

allow females to continue incubation behaviors. Alternatively, corticosterone levels may 

rise to prepare individuals for a future life stage, particularly molt or migration that 

require increased fat deposition. Finally, baseline corticosterone may increase as a 

reaction to a diminishing window to successfully fledge offspring and may aid in a 

female’s ability to assimilate energy and therefore increase her reproductive effort and 

ultimately her chances of successfully rearing young.

Corticosteroids play an important role in regulating behaviors, particularly when 

environmental conditions impose a major threat to an individual (Wingfield et al. 1998). 

However the production and mobilization of corticosteroids to mediate external costs 

must be balanced against potential internal costs, and this may be particularly important 

when an individual is breeding (Wingfield and Sapolsky 2003). These data suggest such
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a balance, as corticosterone levels do not respond to nest predation risk, but do respond to 

the changing season. Ultimately, the reproductive value of the offspring and the life 

history strategy of the species may dictate this balance as in both cases the physiological 

responses of the parents may have been in the best interest of the offspring.
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Figure Legends

Figure 1 1 Baseline corticosterone levels increased with date. Across all six species 

incubating females sampled later in the breeding season had higher baseline 

corticosterone levels.

Figure 2 | Baseline corticosterone levels did not differ between nest predator 

treatments. Birds nesting on control and removal plots did not differ in circulating 

corticosterone levels for (a) incubating females and (b) males feeding nestlings. Data 

presented are marginal means evaluated for sampling date ± s.e.m.

Figure 3 | Baseline corticosterone levels were not predicted by nest predation risk 

across species. Incubating females for species differing by more than an order of 

magnitude in daily nest predation risk showed no clear pattern of baseline corticosterone 

expression. Data presented are marginal means evaluated for sampling date ± s.e.m.
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CHAPTER 5

USING MICROCLIMATE TO PREDICT PLANT DISTRIBUTION IN THE

OUTDOOR CLASSROOM
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Introduction

Subtle differences in temperature, humidity, or light often have profound effects 

on plant and animal communities (Begon et al. 1996). Although geographic variation the 

availability of light and water are used to explain broad patterns in the distribution of 

animals and plants (Pianka 2000), we often fail to recognize the importance of these same 

ecological factors in shaping local communities. This is particularly true for plants, 

because they are unable to move and thus often limited by local environmental 

conditions. For students to understand the structure and function of their local 

environments they must gain an appreciation for the potential impacts of small changes in 

local microclimate on plant distribution.

In this lesson, students measure natural variation in microclimate for different 

plant types (i.e. deciduous tree, shrub, grass, forb, coniferous tree) and use this 

information to make predictions about local plant distribution. The basis of the ideas 

presented here and the procedures described are adaptable to any natural location or plant 

community with reasonable diversity in plant types and microclimate.

Background

The natural world exhibits substantial variation in abiotic factors that influence 

the distribution, reproductive success, and survival of plants and animals. Variation in 

abiotic factors are often evoked to explain large-scale geographic patterns of plant and 

animal distribution (Pianka 2000), but even small differences in temperature, elevation, 

water availability, soil structure, or light intensity can limit local distributions of plants 

and animals (Begon et al. 1996). Microclimate, for example, can influence where birds
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place their nests (Rauter et al. 2002, Hartman and Oring 2003, Lloyd and Martin 2004), 

where insects reside (Lorenzo and Lazzari 1999, Guameri et al. 2002), and where plants 

successfully germinate (Hennenberg and Bruelheide 2003, Zaady et al. 2003, Tomimatsu 

and Ohara 2004). Thus, microclimate can have a profound effect on local community 

structure and biodiversity.

Students have an innate interest in understanding the natural world, but generally 

fail to recognize their own potential to comprehend why the world functions as it does. 

Microclimate is something that is easy for students to comprehend, easy to measure, and 

has important and tangible ecological implications. By teaching students about 

microclimate, we enrich their understanding of the natural world and empower students 

to comprehend why it appears as it does.

The Activity

Materials

•Students will require a map of the outdoor classroom. A simple hand drawn map will 

work, but ideally, all students should have the exact same map. Using the same map will 

make it easier when the students combine their data. (If GPS equipment and software is 

available, this could replace a hand drawn map and could possibly be a great extension to 

this inquiry.)

•Students need a data sheet that includes a column for plant type, temperature, relative 

humidity, wind speed, light availability, etc. The exact parameters will depend on the 

equipment available and the interest of the class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

•If students are interested in looking at the influence of microclimate on specific species, 

a book of local flora is necessary to help students identify plants.

•To measure microclimate conditions students will require specific equipment, such as a 

thermometer (temperature), hygrometer (relative humidity), anemometer (wind speed), or 

photometer (light intensity). Instruments that give instantaneous digital readings are the 

best because they take less time, and are easier for students to use. Any instrument that 

will measure relative humidity will also measure temperature and therefore, is ideal for 

this inquiry (i.e. Testo 625, by GmbH & Co.).

• Students will also require a clipboard, pencil, and set of colored pencils or markers.

Time Required

Successful completion of this inquiry requires roughly two 1-hour class periods. 

Teachers require time to establish the ecological foundation of this exercise and to 

introduce students to the vocabulary necessary to understand the inquiry. Students 

require time to gather measurements, compile data, make microclimate maps, and 

develop predictions about plant distributions.

Primary Learning Goals and Objectives

This lesson challenges students’ understanding of weather and climate, 

specifically, how climate may influence the distribution of plants globally and locally. 

Although most students are aware of local weather, their understanding of climate is 

typically less clear, especially the notion that climate can vary at small spatial scales.

Our goal is to educate students about the differences between weather and climate and
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enlighten them on the degree of natural variation in climate that exists across spatial 

scales. Once students understand climate, and how it varies, they are going to explore the 

natural variation in microclimate throughout the outdoor classroom. By having students 

measure microclimate at different plant types, they can begin to see how microclimate 

may effect where plants grow.

This curriculum is designed to address National Science Standards A (Science as 

Inquiry) and C (Life Sciences) by examining how variation in abiotic factors can lead to 

variation in the distribution of the plants. Students will observe and measure variation in 

microclimate and plant distribution and use this information to identify correlations 

between the two. Ultimately, students will use this information to generate predictions 

about the distribution of different plant types beyond where they sampled.

Introduction to the Activity

Begin the lesson by introducing the basic concepts needed to successfully 

understand and measure microclimate. Introducing the vocabulary may represent a 

significant time investment for the educator (Table 1) because much of the vocabulary is 

new for many students. Because the interest of this lesson is in teaching students through 

inquiry introducing concepts through open questioning may be the best approach.

Starting with concepts that students understand, such as weather can facilitate this 

process.

Introduce the concept of climate, by having students describe current weather 

conditions and what they think are the components of weather (i.e. temperature, rain, 

wind, snow, etc.). Then ask students to consider general trends in weather at different
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locations around the world (i.e. tropics versus polar). Use this question to help students 

define climate and distinguish it from weather. Many students will have difficulty 

distinguishing between weather and climate. A sports team can be a useful analogy for 

helping students to understand the differences. For example, if  a basketball team wins 

twelve games then loses a game, is the basketball team a poor team? In this analogy, 

each game is like a day’s weather event, and the team’s win-loss record is like an area’s 

climate. So, in the same way that a good team can lose a game but still be a good team, 

rain can fall in a desert but a desert is still a dry place.

Once students have grasped the concept of climate have them talk about the 

different climates of the world and their associated plant types (i.e. cactus in a deserts, 

rainforests in the tropics). As a result, students are introduced to the notion that the 

climate of an area can determine the plants found in that area. To ensure that students 

fully understand this relationship, talk about local features that they have experienced. In 

particular, differences between plant communities on north versus south facing slopes, or 

on valley floors versus mountainsides, are tangible concepts for students to visualize. 

After students appear to understand that climate is highly variable and that it can explain 

variation in plant communities, ask them if there is variation in climate in their outdoor 

classroom or their backyard. If they fail to recognize different microclimates in their 

schoolyard, ask them questions that will help them understand what they surely already 

know. Where is the best place in the outdoor classroom to warm up on cold mornings?

Is that the same place to cool off on a hot afternoon? After a few questions like these, 

students will soon realize that even in their outdoor classroom there are distinct areas 

with different climates. Finally, ask the students if they think the small differences in
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climate that they have felt in the outdoor classroom could lead to areas having different 

plant assemblages. They will address this question in the following lesson.

Procedure

1. Break students into groups, and give each group a data sheet and the appropriate 

instruments to measure the microclimate variables of interest.

2. Have students consider where different plant types grow (i.e. deciduous tree, shrub, 

grass, forb, coniferous tree) and what the microclimate might be in those areas.

Depending on the level of the class and their understanding of local plants, students can 

make predictions about the microclimates for different plant types.

3. Take students outside and instruct them to find 4-6 of each plant type and take 

microclimate measurements at the base of the plant. All groups should take 

measurements at nearly the same height for all samples because height can influence 

microclimate measurements. Students can inflate error if they are not consistent in where 

they take measurements and make patterns more difficult to assess.

4. Students should record microclimate readings on their data sheet, and they should 

record an associated numbered location on the map for each set of measurements.

Data Analysis

Once students have gathered all of the data, each group transfers their data to the 

blackboard or overhead along with the number signifying its location on their map. This 

enables the entire class to have access to all of the data and its associated location. Have 

students calculate a class average for each of the microclimate measurements as well as
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averages for each plant type. Simultaneously, supply all members of the class with one 

map of the outdoor classroom for each microclimate variable measured. Have students 

record the positions of all the sampling points from each group on their individual maps. 

Now using the class data and these maps, students can create microclimate maps for the 

outdoor classroom. For example, if  students are going to create a temperature map for 

the outdoor classroom they must first replace the sampling point numbers on their maps 

with the appropriate temperature measured at that position. To simplify, round 

measurements to the nearest whole number and in some cases to the nearest 5 or 10 

place. Once all of the measurements are on the map, students can use these points to 

create their own isocline map of the outdoor classroom. An isocline map is similar to a 

topographic map, but shows patterns of temperature rather than elevation. To create an 

isocline map draw colored lines between points with the same temperature, each 

temperature receiving its own color. Ultimately, students will create a map consisting of 

a series of circles indicating different temperatures (Fig. 1), although some circles may be 

incomplete as part of the circle lies off the map. Importantly, no lines of different colors 

can cross, as this would indicate that a point had two different temperatures. There are, 

however, few additional rules to creating an isocline maps, though students should 

attempt to create the simplest map possible (i.e. fewest number of circles). Students 

should feel free to be creative in designing their maps; there is no ‘right’ answer.

Discussion

One of the most difficult concepts for students to grasp is how much variation 

exists in the natural world, particularly for concepts they are unfamiliar with such as
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climate. Students can fail to comprehend broad climatic differences because they have 

never experienced them, and they can overlook local variation because it is 

commonplace. By introducing climate at a global scale and ending by measuring small 

differences in microclimate, students become acutely aware of the degree of variation 

present in the natural world. To ensure that students understand how variable climate can 

be in a natural environment, have them consider the variation in temperature readings 

obtained by the class compared to the variation in the temperatures between their 

respective homes.

From this example, students can also see that the microclimate they occupy in 

their home is not readily available across the landscape, especially true on a cold winter 

day. Plants are also limited in the areas they can occupy based on the microclimates that 

exist across the landscape. Different plants have different requirements (i.e. water, light 

availability, etc.), which influences where they can effectively germinate and grow. Have 

the students consider the ‘preferred’ microclimates of the different plant types. Graphing 

the means and extremes for each plant type is an effective method of showing students 

the extent that different plants overlap in microclimate or if  they ‘prefer’ different 

microclimates (Fig. 2). Depending on the area sampled, students may or may not find 

any differences among the different plant types in ‘preferred’ microclimate, but most 

likely, they will find that some plants differ from one another. Have the students 

consider why some plants occur in a variety of microclimates (generalists) while others 

appear more limited in where they occur (specialist).

Finally, once students have assessed the variation in microclimate and which 

microclimates different plants ‘prefer’, challenge students to use what they know to make

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

predictions about the distribution of different plant types beyond where they sampled 

(Table 2). Having students make predictions beyond where they sampled gives them the 

opportunity to assimilate all the information they have gathered and to use it in much the 

same way a research scientist might.

Assessment Strategy

Teachers should assess students based on their understanding of the content and 

the skills they developed to perform this lesson. Students must demonstrate a number of 

scientific skills (i.e. mathematical and graphical skills, attention to detail, and creativity) 

that educators can assess either formally or informally. A student’s understanding of the 

content of this exercise can be evaluated by their ability to answer simple questions about 

the ‘preferred’ habitats of different plant types or the variation in microclimates.

Ultimately, the student’s ability to integrate all of the information they have gathered and 

make predictions beyond what they have see that will truly demonstrate their level of 

understanding.
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Table 1: Vocabulary

Weather

Climate

Microclimate

Temperature 

Relative Humidity

Biodiversity

Generalist

Specialist

Biotic

Abiotic

The state of the atmosphere at a given time and place, with 
respect to variables such as temperature, moisture, wind velocity, 
and barometric pressure

The weather conditions, including temperature, precipitation, and 
wind, that prevail in a particular region

The climate of a small, specific place within an area as contrasted 
with the climate of the entire area

The degree of hotness or coldness of a body or environment

The ratio of water vapor in the air at a specific temperature to the 
maximum amount that the air could hold at that temperature, 
expressed as a percentage

The number and variety of organisms found within a specified 
geographic region

a species that can exploit a wide range of resources

a species with specific resource requirements

Produced or caused by living organisms

Factors affecting the environment produced or caused by 
nonliving influences, such as light, temperature, and wind

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

Table 2: Possible Discussion Questions

1. What were the highest and lowest temperatures (humidity, wind speed, light 
availability, etc.) for each plant type?

2. Which plant type, on average, lived in the coldest/warmest area (wettest, windiest, 
etc.)?

3. Do plants appear to differ in the microclimate they inhabit? If so, why do you think 
different plants might occur where they do (think about the biology of the plants)?
If not, why not?

4. What are the potential sources of bias and/or error in the microclimate measurements 
that we measured?

5. We said that microclimate is an abiotic factor that can influence where a plant 
grows. Can biotic factors influence microclimate? For example, can plants or 
animals influence their local microclimate or the microclimate of other organisms 
(think about shade)?

6. Based on the graphs we made showing the mean and extreme microclimates for each 
plant type, which plant type do you think might be a generalist or a specialist?

7. Using the available data and the microclimate maps, how could you predict the 
distribution of plants in the outdoor classroom beyond where we measured?

8. Based on what we know about the different plant types and looking at your 
microclimate maps, which plant types would you expect to be the most common or 
rare?
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Figure Legends

Figure 1 | Examples of two isocline maps based on the same data. Students should be 

encouraged to be creative when interpreting the data as there is no ‘correct’ answer. 

However, for these examples map (b) is more parsimonious than map (a) because it 

requires fewer separate circles. Students should consider this when developing their 

maps and attempt to make the simplest map possible.

Figure 2 | Example plot of temperature extremes for different plant types. By

plotting the extreme values for the different plant types, students can quickly see the 

extent to which different plants are found in the same microclimate.
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Figure 1
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