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Improving rehabilitative practice following anterior cruciate ligament injury 
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Despite consistent resolution of knee laxity and return to physical activity following ACL 

reconstruction, a growing body of evidence implicates impaired weight acceptance 

strategies as frequent primary drivers in a host of poor long-term outcomes. Most 

egregiously, the majority of the people with ACL reconstruction will show radiographic 

evidence of knee osteoarthritis within 15 years of surgery. Abnormal compression of the 

knee joint due to impaired knee flexion during weight acceptance is exacerbated by a 

tendency toward concomitant co-contraction of the knee musculature. Despite a plethora 

of proposed training paradigms, performance deficits after ACL reconstruction prove 

particularly resistant to enduring change. The studies included in this dissertation 

examine the mechanical and neuromuscular impairments in weight acceptance during 

landing from a jump that underlie the limitations to success following ACL 

reconstruction. A path toward improving functional recovery by treating impairments in 

landing is suggested and a novel training approach is tested. First, a cross-sectional study 

examines both the impaired patterns of neuromuscular recruitment in people who have 

returned to sporting activity following ACL reconstruction and their relationship to 

mechanics in landing. A pre-test/post-test laboratory study further examines the 

relationship between imposed changes in landing mechanics and co-contraction between 

the hamstrings and the quadriceps musculature. Clarification of neuromuscular activation 

and coordination impairments allows development of specific treatment techniques. To 

address limitations in current practice, a new device, the Bodyweight Reduction 

Instrument to Deliver Graded Exercise (BRIDGE), is validated in a third study, in which 

the effects of body weight support on the mechanics of repetitive single leg hopping are 

tested. The use of the BRIDGE is then described in a clinical case study. Finally, a 

randomized clinical trial determines whether high volume jump training with reduced 

loading intensity via body weight support will preferentially enhance motor learning for 

improved coordination of the neuromuscular system during high demand tasks such as 

single leg landing. This dissertation thereby advances the science of rehabilitation to 

more effectively target mechanical and neuromuscular impairments that devastatingly 

contribute to the risk of re-injury and early onset osteoarthritis following ACL 

reconstruction.  
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INTRODUCTION 

 

The anterior cruciate ligament (ACL) is the most commonly injured ligament in the 

knee with hundreds of thousands of ACL tears each year;
1
 indeed it is one of the most 

commonly injured ligaments in the human body.
2
 The ACL is part of the ligamentous 

network maintaining weight-bearing 

stability between the femur and tibia 

(Figure 1). The ACL provides up to 

80% of the resistance to anterior 

tibial shear on the femur during 

weight-bearing movement.
3
 Its 

orientation dictates its function. 

From its proximal attachment along 

the posteromedial wall of the lateral 

femoral condyle, deep within the 

femoral notch, the ACL runs 

anteriorly and medially, attaching on the anterior aspect of the intercondyloid eminence 

of the tibial plateau, blending with the anterior horn of the medial meniscus.  

Approximately 70% of ACL injuries occur without contact with another person, 

while landing on a single leg.
4
 Retrospective video analyses of injuries have shown that 

the position of highest risk occurs in the first moments of deceleration, when the foot is 

planted, the knee not yet fully flexed, and the tibia externally rotated in relation to the 

thigh. Due to the positioning during injury as well as the attachment points of the ACL, 

concomitant injuries to the medial meniscus, medial collateral ligament, and articular 

cartilage are common.
5,6

 Athletes that participate in sports that involve cutting and 

pivoting, such as soccer, basketball, and lacrosse, are at higher risk.
4
 The highest 

prevalence of ACL injury is in young athletes between 12 and 24 years of age.
6
 The risk 

of ACL injury is also higher in young women, though the reasons behind the elevation in 

risk are contested.
7
 Regardless, the incidence of ACL injury is higher in young men, 

because they are more likely to participate in cutting and pivoting sports, as well as 

contact sports such as football.
6
 

Cimino, 2010 
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While some people are able to return to activity and competitive sport without 

surgery, most require surgical reconstruction of the ligament in order to maintain stability 

of the knee during the physically demanding tasks associated with sport.
6,8

 Most patients 

experience a relatively rapid return to physical activity after undergoing ACL 

reconstructive surgery.
9,10

 For example, patients can walk without crutches within two 

weeks, and some patients return to running approximately three months following 

surgery.
11

 However, many of the thousands of patients who have surgery each year are 

plagued by three key limitations to success: low rates of full return to pre-injury levels of 

participation, alarmingly high risk for another ACL tear, and an accelerated incidence of 

secondary knee osteoarthritis within 15 years following surgery. Given the 

disproportionately young and active population affected by ACL injury, the long-term 

consequences of ACL injury, even with surgical reconstruction, can be devastating.  

The return to athletic activity at the pre-injury level is a primary motivation ACL 

reconstruction after injury. Within a year of surgery, it has been reported that 33% of 

patients achieve their goal to return to competitive sport.
12,13

 However, by 2-7 years 

following surgery, less than 50% of patients have returned to their pre-injury level of 

competitive sport.
12

 Interestingly, over 90% of patients have attempted return within 3 

years following surgery or have participated in sport at a lower level than prior to their 

injury.
12

 The reasons for the decrease in activity vary, and have only recently become a 

research priority. There is evidence that perceived function of the operated knee factors 

into the decision to alter or cease sports participated for at least half of those patients who 

do not return to competitive activity.
12

 

The rate of initial ACL injury has been reported as 1 in 60 to 100 in female athletes 

participating in pivoting and cutting sports, and 1 in 500 in male athletes. Following ACL 

reconstruction, the risk for a second injury, whether the same or opposite side, increases 

to 1 in 4 female athletes who are participating in sports, and 1 in 7 male athletes.
14,15

 

Knee osteoarthritis is one of the leading causes of disability worldwide, with a 

lifetime risk of 44.7%.
16

 Risk factors for knee osteoarthritis include increased BMI, being 

female, aging to 50-75 years of age, and sustaining a previous knee injury,
17

 the latter of 

which increases lifetime risk to 56.8%.
16

 An estimated 5.1% of new knee osteoarthritis 

diagnoses are related to a previous injury.
17

 The prevalence of symptomatic knee 
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osteoarthritis in people who have had ACL reconstruction has been reported as between 

42% and 90%.
18

 Radiographic knee osteoarthritis has been found in 62% of patients with 

isolated ACL tears within 15 years of surgical reconstruction.
18

 To be clear, a 15-year old 

athlete who sustains an ACL injury and has surgical reconstruction is more likely than 

not to present with radiographic osteoarthritis by the age of 30. 

All three limitations in outcome have mechanical and neuromuscular components to 

their etiology. Athletes who undergo ACL reconstruction consistently show a pattern of 

mechanical and neuromuscular activation deficits in their operated limb in comparison to 

their healthy peers.
19-21

 Acting as the fulcrum for the longest levers in the human body 

(the femur and tibia), the knee joint is the primary contributor to dissipation of load 

during landing tasks.
22,23

 The quadriceps muscle, on the anterior thigh, shortens to 

straighten the knee, while the hamstring muscles, on the posterior thigh, flex the knee and 

extend the hip. Knee bending effectively creates a powerful torsion spring, storing 

mechanical energy within the quadriceps musculature.
24

 Following ACL reconstruction, 

patients chronically avoid bending their operated knee when bearing weight, negating the 

ability of the knee to dissipate forces through the body.
25

 

Patients’ characteristic mechanical difficulties in accepting weight and attenuating 

load with the operated limb during movement patterns have clear negative functional 

consequences. Patients commonly exhibit a slow and incomplete restoration of normal 

knee motion utilized even in low demand tasks.
23,25

 Restricted knee motion and small 

knee torques compared to the uninjured limb and healthy peers are hallmark findings in 

patients who exhibit activity limitations in walking speed and stair climbing ability in the 

first 8 weeks following surgery.
23

 In physically demanding tasks, such as single leg 

landing from a hop, patients restrict knee flexion during deceleration, with reduced knee 

moments and increased rates of limb loading observed in comparison to the uninvolved 

limb.
26,27

 Reduced knee flexion excursion and limited external knee flexion moments 

during landing are both correlated to reduced distance with a single leg hop.
28

 Stiff 

landings with restricted knee motion also increase strain on the ACL as compared to soft 

landings with more knee flexion and larger moments, raising the risk of re-injury.
29

  

The involved limb also responds to unanticipated movements or physically 

demanding tasks with an apparently protective co-activation of the knee flexors 
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(hamstrings) and extensors (quadriceps) compared to the uninvolved side and healthy 

peers.
21,30

 In vivo knee modeling suggests the movements and muscle recruitment 

patterns in the limb following ACL reconstruction are associated with increased knee 

compressive forces compared to healthy limbs.
21

 Excessive compression is known to play 

a causative role in knee osteoarthritis.
31,32

 

The relationship of co-contraction of the knee flexors and extensors to mechanics, 

function, and secondary risk factors is, however, debated in the literature, particularly in 

that pertaining to risk factors for initial injury. The hamstrings are described as one of the 

primary active restraints for anterior tibial translation during weightbearing activities. 

Renstrom et al.
33

 published a seminal cadaveric study that demonstrated the line of pull 

of the hamstrings as being parallel to and protective of the passive restraint of the ACL at 

knee flexion angles greater than 30 degrees. A dominant theoretical construct is, 

therefore, that co-contraction of the hamstrings with the quadriceps during landing is a 

protective response to injury, and a normal and desirable outcome following ACL 

reconstruction.
34,35

 

The studies included in this dissertation examine the mechanical and neuromuscular 

impairments underlying the limitations to success following ACL reconstruction, and 

suggest a path toward improving functional recovery by treating said impairments. First, 

a cross-sectional study examines both the impaired patterns of neuromuscular recruitment 

in people who have returned to sporting activity following ACL reconstruction and their 

relationship to mechanics in landing. A pre-test/post-test laboratory study further 

examines the relationship between imposed changes in landing mechanics and co-

contraction between the hamstrings and the quadriceps musculature. Clarification of 

neuromuscular activation and coordination impairments allows development of specific 

treatment techniques. To address limitations in current practice, a new device is 

developed and validated in a third study, in which the effects of body weight support on 

the mechanics of repetitive single leg hopping are tested. The use of this particular 

device, dubbed the Bodyweight Reduction Instrument to Deliver Graded Exercise 

(BRIDGE), is then described in a clinical case study. Finally, a randomized clinical trial 

determines whether high volume jump training with reduced loading intensity via body 

weight support will preferentially enhance motor learning for improved coordination of 
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the neuromuscular system during high demand tasks such as single leg landing. In so 

doing, this dissertation advances the science of rehabilitation to more effectively target 

mechanical and neuromuscular impairments that so devastatingly contribute to the risk of 

re-injury and early onset osteoarthritis following ACL reconstruction. The following 

sections provide additional introduction for each study, organized by chapter and 

question. 

 

Chapter 2 

How does muscle recruitment patterning differ between athletes with a contact vs. a 

non-contact mechanism of injury? 

 

Nearly 70% of all ACL injuries occur without contact with another player.
4
 

Underlying neuromuscular deficits in coordination of the thigh musculature are thought 

to increase the risk of these ―non-contact‖ injuries.
29,36

 The extent to which the 

mechanism of injury of a patient with ACL reconstruction affects the muscle activation 

patterns during sport-specific tasks after surgery is unknown. Certainly, co-contraction 

has also been associated with elevated compression within the knee joint,
21

 elevating the 

risk of osteoarthritis.
31

 The pattern of co-contraction between the quadriceps and 

hamstrings has also been associated with athletes who lack the ability to dynamically 

stabilize their knee, elevating the risk of re-injury.
30

 People with ACL-deficient knees 

(following injury, but prior to surgery) who are able to return to all pre-injury activity, 

including sports, for at least one year are defined as ―copers.‖
37

 People with a non-contact 

mechanism of injury are less likely to be classified as copers,
38

 and those classified as 

non-copers tend to have higher levels of co-contraction between the hamstrings and 

quadriceps than copers during hop landing and walking.
39

 The potential pre-surgical 

relationship between mechanism of injury and co-contraction has not been explored 

further, but suggests that differences in coordination of the thigh musculature between 

people with a contact vs. a non-contact injury may play into expected outcomes following 

ACL reconstruction.  
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Purpose: To determine whether mechanism of ACL injury affects co-contraction of the 

hamstrings with the quadriceps following ACL reconstruction. 

 

Hypothesis 1: Individuals with a non-contact mechanism of injury will exhibit more co-

contraction than individuals with a contact mechanism of injury. 

Hypothesis 2: There will be coordination differences between limbs, with the operated 

limb exhibiting higher co-contraction. 

 

Chapter 3 

What is the neuromuscular response to improved mechanics in landing? 

 

Pre-surgically, potential copers who are trained to more effectively stabilize their 

knee during movement demonstrate decreased co-contraction.
40

 Co-contraction is 

therefore a potentially modifiable risk factor for post-surgical osteoarthritis. Further, the 

mechanical deficits observed after ACL reconstruction appear amenable to training.
41,42

 

Landing instruction can promote softer landings with greater knee flexion and external 

knee moments, decreasing the risk of re-injury.
42

 Training of landing mechanics is 

recommended as a final step in return-to-sport rehabilitation in recently published 

practice guidelines for ACL reconstruction rehabilitation.
9,10

 The effect of landing 

instruction on hamstrings and quadriceps co-contraction after surgery is, however, 

unknown. If co-contraction is a modifiable risk factor for osteoarthritis, it is imperative to 

understand the effects of landing instruction on the coordination of the thigh musculature. 

 

Purpose: To determine changes in the neuromuscular control of the quadriceps and 

hamstrings following instructions aimed at improving knee flexion during a single limb 

landing task in persons who have undergone ACL reconstruction. 

 

Hypothesis 1: Landing performance of the operated limb will improve following 

instruction in landing technique, as measured by increased knee flexion angle and 

increased external knee flexion moments, and decreased peak vertical ground reaction 

forces compared to pre-instruction values. 
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Hypothesis 2: Co-contraction of the hamstrings and quadriceps will decrease following 

instruction in landing technique. 

 

Chapter 4 

Can intensity of landing be modified while maintaining task-specificity? 

 

Although landing instruction results in a transient effect on mechanics, and training of 

landing mechanics is recommended as a final step in return-to-sport rehabilitation 

following ACL reconstruction, the retention of the positive effects of training is 

unknown. Plyometric, or jump, training seems to be the one commonality in successful 

ACL injury risk reduction programs and is included in all current ACL reconstruction 

rehabilitation recommendations.
9,10,43

 It is unknown, however, how much training is 

necessary following injury. Further, given that ―training‖ encompasses parameters such 

as intensity, repetition, and duration, the relationship between these parameters as they 

influence motor learning, and thereby retention of the positive effects of training, is 

unclear. 

Plyometric training involves higher joint loads than most other activities, and so is 

generally performed with low repetition.
44

 For example, the body generally absorbs 

approximately 1.2 body weights of vertical ground reaction force while walking.
24

 In 

contrast, the body regularly absorbs over 3 body weights of vertical force during a jump 

landing.
41

 Elite uninjured athletes normally perform fewer than 100 repetitions per 

training session, with only 1-2 training sessions per week.
45-47

 Injury and surgical status 

provide further limitations. Financial and motivational issues at the end of a long 

rehabilitation process may limit the time available for plyometric training, but intrinsic 

issues with the training paradigm itself may be the primary limiting factors to repetition 

of the landing task. Clinicians will commonly limit practice of jumping tasks to avoid 

potential harm to the joint surfaces and exacerbation of osteoarthritic effects.
44,48

 

Retraining efforts may also be self-limited by athletes who restrict their knee loading 

during jump landing due to fear of injury or lack of confidence in the operated limb.
49

  

Limiting practice is understandable when patients are fearful and is prudent for safety 

reasons. However, restricting retraining starkly contrasts with the current literature on 
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motor learning after injury, which emphasizes high repetition to reestablish normal 

movement patterns.
50

 In studies of interventions aimed at creating habitual movement 

patterns in the arm and hand, as well as in studies examining programs to restore gait 

following neurological injury, extensive training has been needed to solidify changes.
51,52

 

In one study examining the effects of jump training on healthy athletes, dosages as high 

as 270-690 repetitions per session were needed to see changes in motor recruitment 

patterning.
45

 

Increased repetition is generally accompanied by decreased intensity during training. 

However, attempting to reduce intensity during jump landing is challenging. Current 

recommendations are to lower the height of the jump,
44

 but large and rapid limb loading 

occurs even when landing from a single leg hop or even when jumping up to a surface. 

The primary problem in returning injured athletes to optimal performance and decreasing 

the risk of re-injury and the long-term risk of osteoarthritis potentially lies within the 

relationship between intensity and repetition during plyometric training. 

Body weight support has been used in gait retraining as a remedy to the problem of 

limited repetition due to fear and high relative intensity, particularly following 

neurological insult.
52

 A recent systematic review found that body-weight supported 

treadmill walking improved walking speed and endurance in patients with stroke more 

than training without support. Compared with people who trained without support, 

patients improved their walking speed by 0.07 m/s and were able to walk approximately 

60 meters further.
53

 Prior efforts to mitigate excessive loading with sporting tasks have 

used three methods: aquatic therapy, plyometric leg press, or commercial body weight 

support systems such as the AlterG or ZeroG.  

The aquatic environment does support the center of mass and provide effective 

mitigation of load. However, the level of body submersion defines the level of body 

weight support. When the level of body submersion changes drastically, as when 

performing a jump from a full squat, the level of body weight support changes as well.
54

 

Further, speeds of movement differ dramatically from land-based exercise due to 

hydraulic forces, which can also create abnormal shear torques through joints due to 

turbulence and pressure gradients.
54

 Alternatively, a plyometric leg press can allow 

patients to practice jumping or hopping in place with reduced load. However, 



 9 

gravitational forces continue to be felt by the body, and the athlete must utilize additional 

muscles to maintain the leg in a position for landing. A plyometric leg press is also 

confined to a small landing platform, disallowing sport specific training. Body weight 

support systems such as the AlterG are bound over a treadmill. More importantly, the 

unweighting force is provided by lifting the center of mass to a specified height, which 

does not allow for more than 2-5 cm of horizontal or vertical translation of the center of 

mass. As such, jump training is not an option with these systems. 

The BRIDGE unweighting system, in contrast, allows athletes to complete sporting 

tasks such as jumping and hopping with unrestricted joint motion while receiving a 

consistent unweighting force. There is significant evidence, though, that body weight 

support can substantially modify the intrinsic mechanics of weight-bearing tasks, 

particularly walking and running.
55,56

 As plyometric tasks conform to a bouncing, or 

elastic, gait pattern, such as running, the effects of body weight support on repetitive 

hopping are important to elucidate when considering body weight support as a treatment 

option. 

 

Purpose: To examine the effects of progressive body weight support on the mechanical 

characteristics of a repetitive single leg plyometric task within a rehabilitative context. 

 

Hypothesis 1: The body weight support system will provide consistent support 

throughout the hopping task. 

Hypothesis 2: As body weight support increases, overall ground reaction forces and joint 

moments will progressively decrease, while kinematics will remain unchanged, thereby 

preserving the task specificity of training. 

 

Chapter 5 

Can the modifications to training dosage made possible by body weight support 

result in effective treatment? 

 

The BRIDGE body weight support system may allow the freedom to prescribe the 

high repetition practice hypothesized to be necessary to the development of more 
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responsive biomechanical and neuromuscular patterns in landing. Theoretically, as 

desired patterns become habitual, the unweighting force can be weaned away to 

encourage use of the new patterns under normal loading requirements. In this way, higher 

repetition with lower intensity can overcome the major limitation to plyometric 

training—excessive intensity that limits task practice. 

A potential problem with the use of body weight support when training an 

intrinsically high intensity task, however, may be that lowering the intensity of the task 

may not provide a high enough stimulus for motor adaptation and learning to affect 

performance in sports-related tasks. A description of possible adaptation of a plyometric 

training program adapted to the body weight support environment is necessary for further 

study. Further, an initial description of the clinical experience of training with body 

weight support is necessary to develop further examination of the effectiveness of body 

weight support as an intervention strategy. 

 

Purpose: To report the outcomes of a patient with a previous history of ACL 

reconstruction treated with high repetition jump training coupled with body weight 

support as a primary intervention strategy. Changes in landing mechanics, psychological 

readiness for activity, and functional outcomes are detailed. 

 

Chapter 6 

Are the mechanical and neuromuscular coordination effects of a high-repetition 

training intervention superior to those of a best-practice training intervention with 

relatively lower repetitions of practice? 

 

Whether the changes in mechanics and function made within the confines of the 

described case report are similar to or better than what would have been possible with 

standard plyometric training is, by the nature of the case study design, unknown. Indeed, 

outcomes to standard plyometric training programs in a population with ACL 

reconstruction are themselves unknown, providing a poor comparison. Elucidating the 

overall beneficial effects of a best-practice plyometric training program on the 

neuromuscular, mechanical, and functional qualities of an injured population is therefore 
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important and, in and of itself, advances the treatment of athletes with ACL 

reconstruction. Relatively few studies have examined the effects of jump training 

following ACL reconstruction, only one study has examined mechanical effects, and 

there are no studies to date that have examined the neuromuscular effects of jump 

training.  

Neuromuscular behaviors, in particular, are difficult to detect in a clinical setting. The 

relatively easily seen mechanical behaviors must serve as informational proxies, and 

potentially allow inference of the level of co-contraction within the operated limb during 

landing. The retention of neuromuscular coordination following landing training is 

therefore of particular interest, and may be the outcome most affected by the relationship 

between intensity and repetition that is modulated with body weight supported jump 

training. Only one study to date has compared the effects of high and low volume 

plyometric training following ACL reconstruction.
57

 Participants in the higher volume 

training group demonstrated greater improvements in functional performance measures 

such as single leg hop for distance.
57

 Biomechanical and neuromuscular performance 

measures such as knee flexion, VGRF, and co-contraction were not measured, however. 

Additionally, the volumes in the high volume training group were much lower than what 

is theorized to generate lasting change, and retention of improvements was not measured. 

 

Purpose 1: To examine the impact of an extended plyometric training program on 

patient-reported function and biomechanical measures 

Purpose 2: To determine whether a high repetition program with decreased intensity via 

BWS will improve functional, mechanical, and neuromuscular outcomes 

 

Hypothesis 1: Plyometric training, whether low or high repetition, will improve 

functional, mechanical, and neuromuscular outcomes. 

Hypothesis 2: High repetition training will result in improved retention of functional, 

mechanical, and neuromuscular gains. 

 

In sum, the series of studies included in this dissertation advance the understanding of 

the neuromuscular and mechanical deficits and coalesce to increase the risk of secondary 
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problems following ACL reconstruction. Despite consistent resolution of knee laxity and 

return to physical activity following ACL reconstruction, a growing body of evidence 

implicates commonly impaired weight acceptance strategies as primary drivers in a host 

of poor long-term outcomes. Most egregiously, the majority of the people with ACL 

reconstruction will show radiographic evidence of knee osteoarthritis within 15 years of 

surgery. Abnormal loading is exacerbated by a tendency toward protective co-contraction 

of the knee musculature, leading to even greater joint compression. Despite a plethora of 

proposed training paradigms, performance deficits after ACL reconstruction prove 

particularly resistant to enduring change. After exploring mechanical and neuromuscular 

performance factors, their relationship to each other, and the effects of conscious changes 

in landing technique, a novel treatment approach adhering to sound motor learning 

principles is proposed. The treatment approach is developed through a case study 

description, and, finally, pilot testing of the intervention compares outcomes to a best 

practice model. By effectively targeting neuromuscular impairments, the goal of this 

dissertation is to develop a treatment paradigm to induce substantial and persistent 

changes in muscle recruitment patterns while safely restoring normal force absorption 

performance of the knee.  
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Purpose: To determine whether mechanism of anterior cruciate ligament (ACL) injury 

affects co-contraction of the hamstrings with the quadriceps during jump landing 

following ACL reconstruction. Increased co-contraction has been implicated in an 

increased risk for knee osteoarthritis following ACL reconstruction. Also, those athletes 

with poor potential for success with non-operative treatment after ACL injury exhibit 

marked co-contraction during hop landing. We hypothesized that co-contraction during 

hop landing would be increased in those athletes with a non-contact mechanism of injury. 

Methods: Nineteen athletes with contact and 36 with non-contact injuries underwent 

biomechanical and electromyographic analysis of a single-leg landing task nearly two 

years after surgery. Differences between groups and between limbs in lower extremity 

sagittal joint angles, moments, and co-contraction were compared. 

Results: The non-contact group had significantly higher co-contraction than the contact 

group in the uninvolved limb (p=0.04). The contact group had significantly higher co-

contraction in the involved limb (p=0.004). The co-contraction of the involved limb of 

the contact group was not significantly different from that of either limb of the non-

contact group (p>0.08). There were no significant differences in kinematic or kinetic 

variables between the contact and non-contact groups (p>0.1). There was a significant 

difference in peak knee moment between the involved and non-involved limbs in both 

groups (p<0.001). 

Conclusions: Athletes with a non-contact mechanism of ACL injury demonstrate higher 

co-contraction in both limbs during hop landings long after surgery. Excessive co-

contraction could have important negative implications for osteoarthritis development 

and future second ACL injury risk.  

Key Words: co-contraction, osteoarthritis risk, ACL outcomes, EMG 

Level of Evidence: Level II Prognostic Study 
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The anterior cruciate ligament (ACL) is the most frequently injured ligament of 

the knee 
1
, with the highest prevalence in young athletes.

2
 The majority of people who 

injure their ACL intend to return to their previous level of activity.
3
 Those people that 

choose to return to sports that include tasks such as jumping, hopping, cutting, and 

pivoting frequently choose to surgically restore ligamentous stability of the knee joint. Of 

the hundreds of thousands of injured athletes each year, more than 60% undergo surgical 

ACL reconstruction.
4
  

While a variety of mechanisms of injury (MoI) have been identified, an estimated 

70% of ACL injuries are non-contact in nature,
5
 defined as injury in the absence of 

player-to-player contact.
6
 In contrast, a contact ACL injury occurs as a result of either a 

direct blow to the knee (direct) or during player-to-player contact such as during a tackle 

(indirect).
5
 Intrinsic faults in the coordination of the thigh musculature are thought to 

contribute to the risk of a non-contact ACL injury.
5,7,8

 Kinematic faults in jump landing, 

such as decreased knee flexion angle and external flexion moments, are also considered 

risk factors for non-contact ACL injury, and may be related to muscle coordination 

deficits.
5
 It is unknown whether pre-injury neuromuscular faults in muscle activation 

patterning present prior to injury persist following surgery. It is reasonable to postulate 

that the neurological control of the thigh musculature in those athletes with a non-contact 

MoI may influence their postoperative outcomes. 

In particular, muscle activation patterns of the thigh muscles during sports tasks 

may play a role in important shortcomings in long-term surgical outcomes. An estimated 

50% of people with ACL reconstruction will present with radiographic evidence of early-

onset osteoarthritis of the knee within 10-15 years following surgery.
9,10

 Many factors 

contribute to the risk of knee osteoarthritis following ACL reconstruction, but excessive 

mechanical compression through the knee joint during movement may increase the risk 

of joint breakdown.
11

 In vivo modeling has demonstrated increased joint compression 

directly related to the amount of co-contraction of the hamstring musculature with the 

quadriceps in the surgical knee during a single leg countermovement activity.
12

 The 

compressive effects of co-contraction of the quadriceps and hamstring muscle groups 

have important implications to the development and progression of knee osteoarthritis 

following ACL injury.  



 20 

Another important shortcoming after ACL reconstruction is that the risk of second 

ACL injury in athletes who return to sport increases more than 5-fold over that of their 

uninjured peers.
13-15

 The same risk factors that contributed to the original ACL injury 

may continue to increase the risk for a second ACL injury following surgery.
16-18

 

Impairments in muscle activation patterning that contributing to the initial non-contact 

ACL injury may persist after surgery and contribute to increasing risk for a second ACL 

injury.   

Potential differences in co-contraction between people with contact and non-

contact MoI may play into the design of post-operative rehabilitative plans of care or 

perhaps the decision making scheme for return to sport. The relative contribution of co-

contraction between the hamstring and quadriceps muscle groups to ACL injury risk is a 

matter of debate in the current literature. Co-contraction of the thigh musculature has 

been postulated to decrease risk of ACL injury by allowing the hamstrings to generate a 

posterior tibial force, controlling the forces from the quadriceps.
19

 In contrasting findings, 

co-contraction of the quadriceps and hamstrings during functional tasks has been 

associated with athletes who lack the ability to dynamically stabilize their knee following 

ACL injury.
20

 People with ACL- deficient knees who are able to return to all pre-injury 

activity, including sports, without symptoms of knee instability for at least 1 year have 

been called ―copers‖.
21

 Extended work with copers and non-copers has demonstrated that 

people with a non-contact MoI are less likely to be classified as copers.
22

 Copers also 

tend to have lower levels of co-contraction than non-copers.
23

 Further, training potential 

copers to dynamically stabilize their knee on unstable support surfaces (perturbation 

training) induces a reduction in co-contraction.
24

 Post-surgically, decreased co-

contraction has been demonstrated following instruction for optimal kinematics during 

both countermovement jumps and absorptive jump landings.
25,26

 Lower levels of co-

contraction have thus been associated with enhanced neuromuscular control and 

improved dynamic stability, all of which could decrease risk of ACL re-injury.  

Co-contraction is therefore a potentially modifiable risk factor for post-surgical 

osteoarthritis. Improved understanding of the nature of the relationship between MoI and 

co-contraction of the thigh muscles will lead to a more effective estimation of injury risk 

and appropriate prioritization of neuromuscular retraining following surgery. The purpose 
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of this study is to examine the activation patterning of the quadriceps and hamstrings 

muscles during hop landing for both the involved and uninvolved limbs of those people 

with non-contact and contact injuries. Our primary hypothesis is that those individuals 

with non-contact MoI will exhibit more co-contraction than those individuals with a 

contact MoI. Secondarily, we hypothesize that there will be differences between limbs 

with the involved limb exhibiting higher co-contraction.  

METHODS 

Subjects 

Fifty-five athletes were sampled by convenience from a population of 12-35 year 

old recreational or competitive athletes (Tegner Activity Scale ≥4)
27

 who had undergone 

ACL reconstruction between 6 and 

48 months previously and had been 

cleared for and returned to their 

normal activities (TABLE 1).  The 

dataset is in continuous 

development; as a result, data from 

28 of these athletes has been 

included in previous work.
25

 Their 

injuries were classified as contact 

or non-contact according to their 

description of the incident. Subjects 

were excluded if they had 1) more 

than two ACL surgeries on the 

same leg, or bilateral ACL injuries, 2) history of a posterior cruciate ligament injury, 3) a 

lower extremity of trunk injury that prevented normal activities of daily living within the 

6 months prior to testing.  Subjects were also excluded if their injury was not classifiable 

as contact or non-contact. This criterion predominantly excluded those potential subjects 

injured through skiing or snowboarding accidents. All subjects provided signed informed 

consent as approved by the University of Montana Institutional Review Board. 

Testing Procedures 
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Subjects initially completed the International Knee Documentation Committee 

Subjective Knee Form (IKDC)
28,29

 as a measure of subjective function before undergoing 

a one-time testing session using protocols previously described.
25

  Testing consisted of, in 

order, a five-minute treadmill walking warm-up, surface electromyography (sEMG) 

electrode placement, maximal voluntary isometric contraction (MVIC) testing, placement 

of reflective markers, standing kinematic data calibration, and motion analysis 

assessment of a single leg landing task.  

 

Single-Leg Landing Task 

We chose to investigate a single-leg landing task as previously described.
25,30

 The 

mechanism of a non-contact ACL injury typically involves a single leg landing from a 

hop,
5
 and we hoped to use this task to highlight compensatory patterning that might 

otherwise be missed in a double-leg task.  Subjects stood approximately 10 cm from the 

edge of a 20 cm box with their hands on their hips, and were instructed to gain their 

balance on a single leg before hopping forward off the box with their eyes looking 

forward (FIGURE 1). A successful trial required maintaining single leg stance for at 

least two seconds upon landing, and regaining dual stance in a controlled manner.  

Subjects performed five successful recorded trials 

of the task following at least 4 practice repetitions 

for task familiarization. 

Biomechanical Analysis 

Kinematic and kinetic analysis was 

performed using an 8-camera VICON system (F40 

cameras, Oxford Metrics, Ltd., London, UK) using 

their Nexus software with video data sampled at 

200 Hz.  A 400 x 600 mm force plate (AMTI, 

Watertown, MA) captured tri-planar ground 

reaction forces during landing with data sampled at 

1200 Hz.  Retro-reflective markers (14 mm 

diameter) were attached to bilateral bony 

landmarks to identify the joint centers of the ankle, 
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knee, and hip.  Markers were placed at the top of the iliac crest to define the height of the 

pelvis. Additional noncollinear tracking cluster markers were placed on the lateral 

shanks, lateral thighs, and sacrum. Markers on the 1
st
 and 5

th
 metatarsal heads and the 

superior and inferior heel counter of the shoe tracked foot movement.  A standing 

calibration was performed prior to testing to identify joint centers with respect to each 

segment’s coordinate system.  Joint center anatomical markers were then removed.  

Marker trajectories and force plate data were respectively low pass filtered at 12 and 50 

Hz with 4
th

 order phase-corrected Butterworth filters.  The peak vertical ground reaction 

forces (VGRF) and joint moments were normalized to each individual’s body mass.  Joint 

kinematics were calculated using Euler angles, and joint kinetics were calculated with 

inverse dynamics using rigid body analysis through custom applications with Visual3D 

software (Visual3D, Version 4.75.29, C-Motion Inc., Rockville, MD). Joint angles and 

moments were time normalized to 100 increments from 100 milliseconds prior to initial 

contact on the force plate to peak knee flexion during landing (ie, the weight acceptance 

phase).
18,31,32

 The normalization enables the calculation of an ensemble average across 

trials for each subject, as the time taken to complete weight acceptance varies slightly 

within and between subject trials. 

Muscle activation levels were recorded from the vastus lateralis (VL) and biceps 

femoris (BF) via a Bagnoli sEMG system (Delsys Inc., Boston, MA) interfaced with the 

VICON system with a 16-bit analog-digital converter.  Differential surface electrodes 

with a 10 mm long x 1mm diameter silver bar contacts with a 10 mm spacing distance 

were placed mid-muscle belly and oriented along the muscle fibers, taped in place, and 

wrapped with elastic wraps to ensure minimal movement artifact. Signals were 

preamplified at the interface, amplified at the system level with a gain of 1000, and 

sampled at 1200 Hz. Using Visual3D software as above, signals were bandpass filtered at 

20-350 Hz and full-wave rectified before a linear envelop was created with a 10 Hz low-

pass phase corrected Butterworth filter.  Prior to testing, sEMG signals from each muscle 

were obtained from maximum voluntary isometric contraction (MVIC) testing as 

described below for normalization purposes, and signal normalized to peak signal during 

MVIC was used during all subsequent analyses. 
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Muscle activation levels of the knee flexor and extensor muscles during MVIC 

were determined with a Kin-Com 125AP dynamometer (Chattanooga Group, Inc., 

Chattanooga, TN) utilizing previously published methods.
25,33

  The uninvolved limb was 

tested first. Patients were seated and secured in place with the knee placed at 90° (vastus 

lateralis) and 60° (biceps femoris) of flexion for testing.  Visual force trace data and 

vigorous verbal encouragement were used during testing to elicit a three second maximal 

contraction.  After progressive warm-up contractions, testing was repeated with 60-90 

seconds rest between trials until maximum force increased by less than 5% or decreased 

between trials.  The forces generated were sampled at 200 Hz utilizing a BIOPAC MP 

150 (BIOPAC Systems Inc., Santa Barbara, CA) data acquisition workstation with 

Acqknowledge v.3.7 software and processed with a 6 Hz low pass filter prior to 

determining MVIC.  The trial with the greatest torque produced was used to obtain the 

maximal signal intensity for normalization of the sEMG during dynamic hop trial.   The 

highest muscle activation levels recorded during the selected MVIC trial were utilized for 

normalization for each respective muscle as detailed above. 

Data Processing and Analysis 

Instantaneous co-contraction was defined as the weighted ratio between hamstring 

and quadriceps activation, and the co-contraction index (CoI) as the integral of that 

function across the weight acceptance phase of landing: 

∫
    

    
            

              

                  

 

where EMGL is the normalized activation of the less active muscle and EMGH is the 

normalized activation of the more active muscle. This method combines estimations of 

the magnitude of co-contraction as well as relative muscle recruitment.
20

 

Descriptive statistics were prepared for all variables of interest and clinical 

measures of outcomes.  No significant outliers were found.  Kinematic and kinetic 

variables were compared by two-way ANOVA with main effects of limb and group for 

VGRF, peak joint angles, and peak joint moments. Post-hoc independent t-tests compared 

means between groups, while paired t-tests compared between limbs. However, equal 

variance and sample size assumptions between groups were not met with the EMG data 

(Bartlett’s K-squared = 8.66, p = 0.003). While balanced sampling can mitigate unequal 



 25 

variance, with unbalanced sampling the results of ANOVA testing can confound 

statistical interpretation due to the sensitivity of the F-statistic to the variance of the larger 

sample.
34

  One-sided independent t-tests with a Welch approximation of the degrees of 

freedom were therefore utilized to compare muscle activation patterns via mean CoI 

between groups (contact v. non-contact MoI). Effect sizes by group and limb 

involvement were determined by Cohen’s d. Statistical tests were performed in R 

(version 3.1.3) with an alpha level of P≤0.05.  

 

Results 

Descriptive 

characteristics of the 55 

subjects can be found in 

Table 1. Thirty-two 

were female; 23 were 

male. Nineteen had 

sustained contact 

injuries; 36 had non-

contact injuries.  

Preferred sports most 

frequently included 

basketball, soccer, 

volleyball, and football. 

The average IKDC score 

of the entire cohort was 

84.3±10.0 (mean±SD). 

 

Neuromuscular 

A significant difference was found in the CoI of the uninvolved limb between the 

contact and non-contact groups (P = 0.04), with an effect size of d = 0.49 (FIGURE 2). 

However, the difference between the contact and non-contact groups in the involved limb 

only approached significance (P = 0.08; d = 0.35; TABLE 2). A significant difference 
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between the involved and uninvolved 

limbs of the contact group, with an 

effect size of d = 0.61, was also 

found (P = 0.004;  

TABLE 3). In contrast, in the non-

contact group the difference between 

the involved and uninvolved limbs 

again only approached significance  

(P = 0.07; d = 0.39). Further, there 

was no significant difference between 

the involved limb of the contact group and either limb of the non-contact group (P > 0.1). 

 

Kinematics & Kinetics 

There were no statistically significant differences between the contact and non-

contact groups in any of the measured kinematic or kinetic variables (TABLE 4). 

However, in both groups 

the involved limb had 

significantly lower peak 

ankle dorsiflexion (P < 

0.001) and peak knee 

moment (P< 0.001) 

compared to the 

uninvolved limb 

(TABLE 5). In the 

contact group, the 

involved limb had 

significantly lower peak 

knee flexion compared 

to the uninvolved limb 

(P=0.02). 
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Discussion 

The purpose of the study was to examine the motor patterning of the quadriceps 

and hamstrings during single-leg landing following ACL reconstruction. People with a 

non-contact MoI tend to have higher co-contraction during a single leg landing as 

compared to people with a 

contact MoI, verifying our 

first hypothesis. The co-

contraction index, our 

primary measure of interest, 

differed significantly 

between people with a 

contact versus a non-contact 

MoI on the non-surgical 

limb. The difference in co-

contraction by MoI 

approached significance on 

the surgical limb. We also 

hypothesized an increase in 

co-contraction within the involved limb. A significant difference in co-contraction 

between the involved and un-involved limbs was found in the contact MoI group, and 

approached a significant difference in the non-contact MoI group. Interestingly, while 

there were consistent decreases in peak ankle angles and external knee moments on the 

involved limb, we did not find a significant difference in sagittal plane kinematic or 

kinetic measures between MoI groups.  

The difference between the uninvolved limb of the contact group and both limbs 

of the non-contact group highlights the potential difference in neuromuscular behavior 

according to the mechanism of injury. In essence, the neuromuscular behavior profile of 

the uninvolved limb of a person with a non-contact injury mirrors that of the involved 

limb of a person with a contact injury. While the p-value of the difference between 

groups for the involved limb only approaches significance, the pattern shown in 

FIGURE 2 suggests that injury and reconstruction to the limb of a person with a non-
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contact injury increases co-contraction beyond that of a person with a contact injury. 

Such a difference has potential implications for prognosis in rehabilitation. 

The bilateral nature of greater co-contraction in both limbs of the non-contact MoI 

group suggests an intrinsic, central source of the difference in neuromuscular control that 

is present despite surgical correction of knee laxity. The results of the current study are 

consistent with findings demonstrating a decreased likelihood of pre-surgical coper status 

in those athletes with a non-contact MoI.
22

 It is thought that copers are able to perform in 

high-intensity activities without the physical restraint of the ACL due to distinct 

neuromuscular coordination differences from non-copers, specifically decreased co-

contraction of the hamstrings with the quadriceps.
23,35,36

 The current results also suggest 

that reducing co-contraction is a preferred neuromuscular strategy to enhance dynamic 

control of the lower extremity joints, which might decrease the risk of second injury or 

osteoarthritis.  

Co-contraction of the thigh musculature during landing may increase the risk of 

early-onset osteoarthritis of the knee, one of the most functionally debilitating long-term 

outcomes following ACL reconstruction, by increasing compression within the 

tibiofemoral joint.
12

 While several other factors are involved, co-contraction is a 

modifiable risk factors for osteoarthritis following ACLR, and thus is ripe for 

intervention. Perturbation training after injury but before surgery has been found to both 

decrease co-contraction and increase the likelihood of people with ACL injury to attain 

coper status.
24

 Instruction for increased knee flexion and softer landings during a single 

leg absorptive landing also decreases co-contraction in landing, thereby decreasing 

compression following ACL reconstruction.
25,26

 The results of the current study 

underscore the importance of prioritizing landing retraining efforts during rehabilitation 

of athletes with non-contact MoI. Clinically, visually estimating knee bending during 

landing and listening for loudness of landing are the most convenient indicators of 

performance.
16,37

 That there was no difference in peak knee flexion and VGRF between 

people with contact or non-contact injuries suggests that the movement patterns and 

performance would present similarly in the clinic. The neuromuscular differences 

between them may not be detectable without specialized EMG equipment. However, 

consideration of MoI and therefore potentially increased co-contraction may prioritize 
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perturbation or plyometric training to ameliorate risk for secondary osteoarthritis as well 

as second injury risk reduction in return-to-sport rehabilitation. 

The current study is a laboratory-based assessment, and habitual movement in 

sport may differ from that seen in the laboratory. While the validity of the findings may 

be compromised, at this time we currently do not have the means to collect EMG and 

kinetic data in the field. Further limitations lie within the cross-sectional design. Because 

of the higher prevalence of non-contact injury, there is a demographic difference in 

available subjects, which leads to the disparity in sample size between groups in the 

current study. Additionally, while a central mechanism is suggested for increased co-

contraction in those athletes with a non-contact MoI, we cannot infer pre-injury co-

contraction status from this study. The neuromuscular behaviors of the uninjured side 

could be affected by the injury, surgery, and rehabilitative process of the injured side. 

After ACL reconstruction, injury of the contralateral side is more common than re-injury 

of the surgical knee.
15

 At this time, there is no research suggesting the phenomenon of 

increased contralateral injury risk differs by MoI.  

Prospective longitudinal studies utilizing EMG as part of injury risk screening are 

therefore merited, to determine whether elevated co-contraction is present prior to non-

contact injury, to determine whether elevated co-contraction following surgery increases 

re-injury or contralateral injury risk, and to determine whether elevated co-contraction 

following surgery increases the risk of early-onset knee osteoarthritis. However, such 

studies would require initial sample sizes in the thousands, a clear logistical challenge. 

However, given the possibility of poorer outcomes for those patients with non-contact 

injury, consideration of contact v. non-contact MoI is also warranted in further study into 

the long-term functional outcomes of ACL reconstruction.  

 

Conclusions 

Following ACL reconstruction, muscle activation patterns of the thigh 

musculature during sport simulated tasks differ depending on MoI. The increases in co-

contraction occur bilaterally, suggesting a central source of neuromuscular coordination 

differences. Future studies of long-term postoperative return-to-sport, second ACL injury, 

and secondary knee OA development should include consideration of MoI, as there may 
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be a differential outcome in those individuals who have a non-contact injury. Clinically, 

patients with a non-contact MoI may benefit from specific and bilateral perturbation or 

plyometric training to decrease further risk of early-onset knee osteoarthritis. 
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STUDY DESIGN:  Pre-test/post-test controlled laboratory study. 

OBJECTIVES: To determine changes in the neuromuscular activation of the quadriceps 

and hamstrings following instructions aimed at improving knee flexion during a single-

limb landing task in persons who have undergone anterior cruciate ligament 

reconstruction (ACLR).  

BACKGROUND:  Clinicians advise patients who have undergone ACLR to increase 

knee flexion during landing tasks to improve impact attenuation.  Another long-standing 

construct underlying such instruction involves increasing co-contraction of the 

hamstrings with the quadriceps to limit anterior shear of the tibia on the femur.  The 

current study examined whether co-contraction of the knee musculature changes 

following instruction to increase knee flexion during landing. 

METHODS: Thirty-four physically active subjects with unilateral ACLR participated in 

a 1-time testing session. The kinetics and kinematics of single-leg landing on the surgical 

limb were analyzed before and after instruction to increase knee flexion and reduce the 

impact of landing.  Vastus lateralis and biceps femoris activities were analyzed using 

surface electromyography and normalized to a maximal voluntary isometric contraction 

(MVIC). Co-contraction indices were integrated over the weight-acceptance phase of 

landing. 

RESULTS:   Following training, peak knee flexion increased (pre-instruction mean ± 

SD, pre: 56°±11°; post-instruction, 77°±12°; P<.001) and peak vertical ground reaction 

forces decreased (pre-instruction, 3.50±0.42 body mass; post-instruction, 3.06±0.44 body 

mass; P<.001).  Co-contraction also decreased following instruction (pre-instruction, 

30.88±17.68 %MVIC; post-instruction, 23.74±15.39 %MVIC; P<.001). The change in 

co-contraction was correlated with a decrease in hamstring activity (pre-instruction, 

23.79±12.88 %MVIC, post-instruction, 19.72±13.92 %MVIC; r = 0.80, P<.001). 

CONCLUSIONS:   Landing instruction produced both a statistically and clinically 

significant change in landing mechanics in persons post-ACLR. Conscious improvement 

of the absorptive power of the surgical limb was marked by decreased hamstrings activity 

and co-contraction during single limb landing.   

KEY WORDS: biomechanics, EMG, knee, lower extremity, motor control/learning 
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Most of the nearly 200,000 individuals who injure their anterior cruciate ligament 

(ACL) in the United States each year will undergo ACL reconstruction (ACLR).
1
  

Despite resolution of knee laxity and a relatively rapid return to physical activity,
2,3

 a 

growing body of evidence suggests that these individuals avoid normal weight 

acceptance and force attenuation in their operative knee during high-demand activities.
4-7

  

Specifically, patients who have undergone ACLR have been reported to exhibit decreased 

peak knee flexion, decreased external knee flexion torque, and increased ground reaction 

forces during single-leg landing compared to healthy peers
7
. These differences also have 

been observed in the uninvolved side in persons with unilateral injury.
4
   

Kinetic asymmetries during landing have been reported to be associated with  

poor long-term outcomes.
8
  Fewer than 50% of patients who undergo ACLR return to 

their pre-injury performance levels 2 to 7 years postsurgery.
9,10

  Patients also face a 

significantly increased risk of early-onset knee osteoarthritis, wherein over half of 

patients who undergo ACLR show radiographic evidence of osteoarthritis 10 to 15 years 

after surgery.
11

 

The abnormal movement patterns observed post-ACLR appear amenable to 

training.
12,13

 Recently published practice protocols have recommended training in landing 

as the final step of a return-to-sport rehabilitation program.
2,3

  Interestingly, these 

protocols highlight discordant messages present in the literature on ACLR rehabilitation.  

While recommending similar general progressions of rehabilitation, the theories 

underlying each protocol are dichotomous with respect to the role of the hamstring 

musculature.   

The hamstrings are described as one of the primary active restraints for anterior 

tibial translation during weight-bearing activities.
14

  Renstrom et al
14

 published a seminal 

cadaveric study that demonstrated the line of pull of the hamstrings as being parallel to 

and protective of the ACL at knee flexion angles greater than 30°.  In a prospective study, 

female athletes who went on to sustain noncontact ACL injuries exhibited a higher ratio 

of quadriceps strength to hamstring strength when compared to matched uninjured male 

and female athletes.
15

 This asymmetry in strength provides additional evidence that 

relative hamstring strength plays a role in ACL injury risk. The prevailing theoretical 

construct is that co-contraction of the hamstrings with the quadriceps is normal and a 
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desirable outcome of ACLR rehabilitation.
16-19

 For example, Hewett et al
3
 recommend 

increasing co-contraction of the hamstrings and quadriceps during landing tasks.   

However, research undertaken on healthy, well-trained jumping athletes has not 

conclusively shown elevated hamstring activity during landing.
20,21

  It appears that in 

healthy populations, the knee absorbs large impact loads during jump-landing tasks 

through significant flexion and eccentric quadriceps activity, with relatively modest 

hamstring activity.
21-23

  A recently published study by Tsai and Powers
13

 found increased 

co-contraction of the ACLR knee in female athletes during a single-limb landing task 

compared to healthy peers. These authors also reported that these individuals exhibited 

elevated tibiofemoral compressive loads, possibly increasing the risk for premature 

osteoarthritis.
7
  Interestingly, Tsai and Powers

13
 found a reduction in co-contraction of 

the knee flexors and extensors and tibiofemoral joint compression following  instruction 

for increased hip and knee flexion during the stretch-shortening cycle of single-leg 

hopping.   

The findings of Tsai and Powers
35

 complement work on the protective strategies 

used by ACL-deficient copers versus non-copers. In a series of studies, individuals who 

were able to return to high-demand tasks after ACL rupture without giving-way episodes 

(copers) used less co-contraction in physically challenging tasks than non-copers, who 

were defined as those who required surgery for knee joint stabilization.
5,24,25

 

Additionally, Chmielewski et al
26

 reported that perturbation training in ACL deficient 

patients classified as ―potential copers‖ resulted in a reduction in quadriceps-hamstring 

co-contraction while adapting movement patterns to more closely match research 

participants without injury (e.g., increased knee flexion during weight acceptance).  

Recently published post-operative clinical guidelines from the same laboratory offer no 

recommendations regarding hamstring strength as part of clinical milestones for 

treatment progression. 
2
 Instead, these authors advocated increasing quadriceps strength 

to within 90% of the contralateral side and incorporating sport-specific perturbation 

training and jump training into late-stage rehabilitation, with the goal of increasing knee 

flexion. 

Clinicians may be understandably confused by the apparently disparate, yet 

equally compelling, emphases on hamstring muscle activity during dynamic activities. 
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Such dichotomy in the literature may manifest in an inappropriate preference for muscle 

strengthening or targeted muscle activation patterning during landing, which limits 

athletes from efficient achievement of their goals.   

 The purpose of the current study was to examine training-induced changes in 

quadriceps and hamstring muscle activity following instruction for what has been 

reported as a preferred strategy for impact attenuation during a single-leg landing task in 

persons who have undergone ACLR.  Previous studies have examined muscle activity 

during gait and countermovement tasks in female athletes. Neuromuscular demands may 

differ between countermovement tasks, which require elastic return of potential energy, 

and landing tasks, in which ground reaction forces are fully absorbed by the 

musculoskeletal system. The neuromuscular responses to single-leg landings have not 

been fully explored. In addition, the response of male athletes to landing training post-

ACLR has not been examined. This is important, as augmenting knee flexion during 

landing appears to decrease tension on the ACL,
27

 whereas landing with limited knee 

flexion appears to be a significant risk factor for ACL injury.
28

  We hypothesized that (1) 

landing performance of the ACLR knee would improve following instruction in landing 

technique, as evident by an increase in knee flexion and knee extensor moment and 

decreased peak vertical ground reaction forces (VGRFs) compared to pre-instruction 

values; and that (2) co-contraction of the quadriceps and hamstrings would decrease, with 

a concomitant reduction 

in overall hamstring 

recruitment and an 

increase in quadriceps 

recruitment. 

 

METHODS 

Subjects 

Twenty female 

and 14 male athletes 

were recruited from a 

population of 12 – 35-
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year-old recreational and competitive athletes who had undergone ACLR between 6 and 

48 months previously. All athletes had returned to recreational activity (TABLE 1). 

Preferred sports included basketball (10 subjects), alpine skiing (3 subjects), soccer (9 

subjects), volleyball (2 subjects), football (3 subjects), and other (7 subjects).  Surgical 

procedures varied and are detailed in TABLE 1.  Subjects were excluded if they had (1) 

more than 2 ACLR surgeries on the same leg or ACL injuries in both knees, (2) a history 

of a posterior cruciate ligament injury, (3) a lower extremity or trunk injury that 

prevented normal activities of daily living within the previous 6 months, or (4) a Tegner 

Activity Scale score less than 4.  The Tegner scale is a validated tool used to describe 

physical activity level in persons with ACLR.
29

  All subjects provided signed informed 

consent, and the study was approved by the University of Montana Institutional Review 

Board. 

 

Testing Protocol 

Prior to testing, subjects completed the International Knee Documentation 

Committee Subjective Knee Form (IKDC) as a measure of subjective function.
9
 Testing 

consisted of, in order, a 5-minute treadmill-walking warm-up, surface electromyography 

(EMG) electrode placement,  maximal voluntary isometric contraction (MVIC) testing of 

the knee flexors and extensors, placement of reflective markers, standing kinematic data 

calibration, and biomechanical assessment of a single-leg landing task.  This was 

followed by a brief instruction in landing technique, followed by biomechanical re-

assessment of the single-leg landing task.  

 

Single-Leg Landing Task 

 We chose a single-leg landing task
30

 because the mechanism of a noncontact ACL 

injury typically occurs during single-leg impact.
28

   Subjects performed 5 successful test 

trials of a single-leg landing task following at least 5, but no more than 10, practice 

repetitions for task familiarization.  Subjects stood approximately 10 cm from the edge of 

a 20-cm box with their hands on their hips, and were instructed to gain their balance on a 

single leg before hopping forward off the box with their eyes looking forward.  A trial 
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was deemed successful if the subject maintained single-leg stance for at least 2 seconds 

upon landing and regaining the dual-leg stance in a controlled manner.  

 

Motion Analysis 

 Kinematic data  were obtained during the single-leg landing task using an 8-

camera Vicon Nexus system at 200 Hz (OMG plc, Oxford, UK). Retroreflective markers 

(14-mm diameter) were placed on bilateral landmarks to identify the joint centers of the 

ankle, knee, and hip, as well as the top of the iliac 

crest to define the pelvis (FIGURE 1).  Rigid 

thermoplastic shells with 4 markers affixed to their 

surfaces were attached bilaterally to the shank and 

thigh using elastic wraps (SuperWrap; Fabrifoam 

Products, Exton, PA). This allowed tracking of the 3-

D position of each segment.  A shell was also affixed 

over the sacrum to track the pelvis.  Four markers 

placed on the superior and inferior heel counters of the 

shoe and the first and fifth metatarsal heads tracked 

foot movement.  A standing calibration was performed 

prior to completing the landing trials to identify joint 

centers with respect to each segment’s coordinate 

system.  Joint center anatomical markers were then 

removed, with the shells indicating position of the 

aforementioned segments throughout testing. 

A 400 x 600-mm force plate (Advanced Medical Technology, Inc, Watertown, 

MA) interfaced with the Vicon Nexus system captured ground reaction forces during 

landing.  Force plate data were sampled at 1200 Hz.  Marker trajectories and force plate 

data were respectively low-pass filtered at 12 and 50 Hz with fourth-order, phase-

corrected Butterworth filters.  The peak VGRFs and joint moments were normalized to 

each individual’s body mass.  Joint kinematics were calculated using Euler angles, and 

joint moments (internal) were calculated with inverse dynamics, using rigid-body 

analysis through custom applications with Visual 3D version 4.75.29 software (C-motion 
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Inc., Germantown, MD).  All data were time normalized to 100 increments, from 150 

milliseconds prior to initial contact on the force plate
21,31,32

 to peak knee flexion during 

landing (the weight-acceptance phase), to enable the calculation of an ensemble average 

across trials for each subject, as the time between these events varied slightly within 

subject trials. 

Muscle activation levels were recorded from the vastus lateralis and biceps 

femoris,
25

 using a Bagnoli surface EMG system (Delsys Inc, Natick, MA) interfaced with 

the Vicon Nexus system with a 16-bit analog-digital converter.  Differential surface 

electrodes, with 10 x 1 mm diameter silver bar contacts, spaced at a distance of 10 mm, 

were placed at the mid muscle belly and oriented parallel to the muscle fibers, taped in 

place, and wrapped with elastic wraps to ensure minimal movement artifact.  The skin 

was cleaned with alcohol prior to placement.  The electrode common-mode rejection 

ratio was 92 dB, and the system noise was less than 1.2 µV.  

Electromyographic signals were preamplified at the interface, amplified at the 

system level with a gain of 1000, and sampled at 1200 Hz. Using Visual3D software, 

signals were band-pass filtered at 20 to 350 Hz and full-wave rectified before a linear 

envelope was created with a 10-Hz, low-pass, phase corrected Butterworth filter. Knee 

flexor and extensor maximal voluntary isometric contractions were performed using a 

Kin-Com 125AP dynamometer (Isokinetic International, Harrison, TN) utilizing 

previously published methods.
12,33

  Patients were seated and secured in place, with the 

knee positioned in 90° and 60° of knee flexion for knee extension and knee flexion 

testing, respectively.  Peak muscle activation levels during the trial with the greatest 

torque production were recorded and used for normalization purposes.  

Co-contraction and a co-contraction index were calculated according to the 

method used by Rudolph et al,
25

 which combines estimations of the magnitude of co-

contraction as well as relative activity.  Instantaneous co-contraction was defined as the 

weighted ratio between instantaneous hamstring and quadriceps activation. The co-

contraction index was defined as the integral of that function across the weight-

acceptance phase of landing: 
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∫
    

    
            

              

                  

 

 

where EMGL is the normalized activation level of the less active muscle and EMGH is 

the normalized activation level of the more active muscle. Maximal quadriceps and 

hamstring activations during the weight acceptance phase were recorded. Additionally, 

the quadriceps and hamstring instantaneous activations were respectively integrated over 

the weight acceptance phase. 

 

Landing Instruction 

After completing the first set of single-leg landing trials, subjects were given a 

brief set of verbal landing instructions based on prior publications by Hewett et al
34

 and 

McNair et al.
35

 The scripted instructions asked the subjects to land as softly and quietly as 

possible by hitting toes first and bending their knees during landing.  Participants were 

instructed to keep their chest over their knees and their knees over their toes during 

landing. The investigator demonstrated poor landing technique, which included limited 

knee flexion and an abrupt halt to the weight-acceptance phase of landing. The 

demonstration was followed immediately by a demonstration of the desired technique, 

with accentuated knee 

flexion to absorb impact 

forces.  Verbal and visual 

instruction was followed by 

a period of blocked practice 

that did not exceed 5 

minutes. During this time, 

subjects performed at least 6 

practice trials.  Verbal 

feedback was provided to 

reinforce a quiet landing and 

increased knee bending.  

After the practice period, 
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another 5 successful trials (as defined above) of single-leg landing on the operative leg 

were recorded. 

 

Data Analysis 

Descriptive statistics were prepared for all variables of interest. Quantile-quantile 

plots confirmed normality and equal variance assumptions for statistical testing, and no 

significant outliers were found. Kinematic and kinetic changes (peak VGRF, peak knee 

flexion, and peak knee extensor moment) taken before and after instruction were 

compared using paired t tests. Ankle and hip kinematics and kinetics were also examined 

as a preliminary assessment of instruction on global lower extremity function. Paired t 

tests also were used to compare pre-instruction and post-instruction co-contraction 

indices, as well as means of both peak and integrated normalized quadriceps and 

hamstring activity, providing measures of peak and overall demand, respectively. Cohen 

d was generated as a measure of effect size for all variables of interest.  Pearson 

correlation coefficients were generated to estimate the strength of the relationships 

between the change in co-contraction index and the change in either hamstring or 

quadriceps activity.   Statistical tests were performed with SPSS Statistics Version 20.0 

(IBM Corporation, Armonk, NY) with an alpha-level set to P≤0.05.   
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RESULTS 

 Kinematic, kinetic, muscle activity, and muscle strength data are reported in 

TABLE 2.  Every subject displayed an increase in ankle, knee, and hip joint flexion 

following training (FIGURE 2).  On average, peak knee flexion increased by 38% (95% 

confidence interval (CI): 

32.8%, 47.9%; P<0.001), 

peak hip flexion increased 

by 43% (95% CI: 39.5%, 

60.3%; P<0.001), and 

peak ankle dorsiflexion 

increased by 51% (95% 

CI: 44.5%, 75.3%; 

P<0.001).  Mean VGRF in 

landing decreased by 13% 

following training (95% 

CI: 8.3%, 14.8%; 

P<0.001). There was no 

significant change in peak 

knee or hip extensor 

moment (knee 95% CI: -

6.31%, 0.69%; hip 95% 

CI: -2.84%, 9.46%; 

P>0.05), though the 8% 

change in ankle moment 

was significant (95% CI: 

4.6%, 10.2%; P<0.001).  

Prior to instruction, the 

weight-acceptance phase 

averaged 0.35 ± 0.07 

seconds; following 

instruction, this time 
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period averaged 0.53 ± 0.12 seconds.  

The co-contraction index decreased by 24% following instruction (95% CI: 

17.8%, 31.9%; P<0.001) (FIGURES 3 and 4).  There was also an 18% significant 

decrease in integrated hamstring activity (95% CI: 11.7%, 27.7%; P<0.001) (FIGURE 

4).  Hamstring activity was found to be correlated with the CI (r = 0.80, P<0.001), as was 

the nonsignificant 2% increase in integrated quadriceps activity (r = 0.34, P<0.05). 

Maximal instantaneous co-contraction also decreased 15% with instruction (95% CI: 

7.0%, 23.8%; P<0.05), though neither maximum hamstrings nor maximal quadriceps 

activity decreased significantly (hamstrings 95% CI: -5.4%, 19.4%; quadriceps 95% CI: -

13.1%, 7.0%; P>0.05).  

 

DISCUSSION 

The primary results of our study revealed improved performance in landing 

kinematics and kinetics following instruction and changes in muscular activity.  Short 

bouts of instruction have previously been reported to change landing mechanics in both 

healthy and injured populations, 
13,35,36

 and our brief instruction session also affected 

landing performance. To consciously accomplish a soft landing task, subjects 

significantly increased peak knee flexion and lowered peak ground reaction forces. 

Interestingly, the change in knee kinematics and ground reaction forces did not affect the 

peak knee extensor moment.  

The mechanical changes induced by instruction for a softer landing were 

accompanied by a substantial modification of the neuromuscular activity of the 

quadriceps and hamstring muscles.  In support of our hypothesis, co-contraction of the 

quadriceps and hamstrings decreased in all but 4 subjects, with a mean difference of 27%. 

These results are consistent with recent studies demonstrating decreased co-contraction 

with instruction for improved landing in both healthy and injured populations.  Co-

contraction levels dropped 43% when healthy athletes were trained in single-leg landings 

from at 10.5-cm box using a 0°-to-25° knee flexion target first and then advancing to a 

50°-to-75° target knee flexion range.
23

  Finally, Tsai and Powers
13

  reported that co-

contraction decreased by 36% following training for increased knee bending during the 

countermovement phase of a single-leg drop-vertical hop in females with ACLR.  The 
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tendency of decreasing co-contraction with increasing knee flexion holds true in lower-

intensity tasks (ie, gait) as well.
5,25

  Furthermore, perturbation training following acute 

ACL injury in potential copers induces decreased co-contraction and increased knee 

flexion in normal and disturbed walking tasks.
20,26

   

The change in muscle activity also involved relative maintenance of both 

maximum and integrated quadriceps activation, with a significant decrease in integrated 

hamstrings activity.  The hamstrings may not contribute to knee flexion throughout 

controlled landing tasks, as long as the quadriceps allows eccentric knee flexion.  Podraza 

and White
23

 also describe a decrease in hamstring activity with increased knee flexion in 

landing, though the EMG signals were converted to muscle moments in their analysis. 
23

 

The hamstrings also play a role in the control of hip flexion, but we did not see an 

increase in hamstring activity corresponding to the increased hip flexion in landing. 

There was no statistically significant increase in quadriceps activity post-training.  

With increased knee flexion, the entire center of mass lowers and maintains vertically 

above the center of pressure, requiring modulations in moment and concomitant muscular 

activation around all 3 primary lower extremity joints.  The details of these modulations 

remain controversial.
37,38

  Indeed, our sample of muscles was limited, and other muscle 

groups likely play an important role in the controlled lowering of the lower extremity. 

Tsai and Powers
13

 argue that increasing hip and knee flexion may reduce external knee 

flexion torque, thereby decreasing demand on the quadriceps and hamstrings and 

potentially increasing reliance on the single joint hip extensors (gluteals) and ankle 

plantarflexors (soleus) as decelerators.  In contrast, we found maintenance of knee 

moment, as well as hip moment, from which we can infer the demand on the quadriceps 

did not change. This is supported by our EMG results. Additionally, Podraza and White
23

 

found little change in soleus activity during similar landing adaptation .     

The current investigation provides data that may clarify the confusion surrounding 

the role of the hamstrings and quadriceps activation during safe landing strategies post-

ACLR.  Our results suggest that providing patients with cues for co-contraction of the 

quadriceps and hamstrings with jump training is inconsistent with adaptations that occur 

with desired landing modifications.  Furthermore, instruction to increase knee flexion in a 
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landing task softens the impact forces while decreasing co-contraction, with an associated 

reduction in hamstring activity.   

It must be noted that causal inferences cannot be made based on the results of this 

study.  Furthermore, technique changes are outside each subject’s standard motor plan; 

the activity patterns seen in this study represent motor adaptation rather than motor 

learning.  The changes in muscle activity patterns that may occur with increasing task 

familiarity may be quite different and are the subject of future investigation.  

Additionally, subjects were rather heterogeneous, consisting of both males and females 

with varied injury mechanisms and surgical types.  While these factors may be seen as 

potentially confounding variables, the strength of our results across a relatively 

heterogeneous population implies universality to the effects of surgery and training,
39

 and 

in fact allows a broader applicability than would otherwise be possible. 

 

CONCLUSIONS 

 Co-contraction between the quadriceps and hamstrings was found to decrease 

with improved single-leg landing in subjects with ACLR.  Reduced co-contraction was 

primarily correlated with a decrease in hamstring activation, whereas quadriceps activity 

remained relatively consistent after landing instruction.  Subjects were able to 

substantially change their landing technique with brief instruction, but it is unknown how 

these neuromuscular effects will change with prolonged training.  While current 

rehabilitation protocols appropriately advocate for training patients to increase knee 

flexion during weight acceptance when landing, our findings suggest that the changes 

with instruction will not induce increased hamstring activity or a corresponding increase 

in quadriceps-to-hamstring co-contraction. 

Key Points 

Findings: Co-contraction between the quadriceps and hamstrings was found to decrease 

when adopting a single-leg landing technique with increased joint flexion and a softened 

landing in persons who have undergone ACLR.  Decreased co-contraction was associated 

with reduced hamstring activity.   
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Implications: Short-term instruction can successfully change landing performance to 

induce increased knee flexion, enhance impact attenuation, and limit muscle co-

contraction in persons post-ACLR. 

Caution: Causality in the relationships between knee flexion, co-contraction, and 

hamstrings activity cannot be inferred from this study. The subject pool for this study 

involved a heterogeneous population.  Additionally, immediate changes in technique and 

neuromuscular coordination were seen as a result of a single training session.  The long-

term effects of training are unclear. 
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Though essential to athletic performance, the ability to land from a jump often remains 

limited following injury. While recommended, jump training is difficult to include in 

rehabilitation programs due to inherently high impact forces. Body weight support 

(BWS) is frequently used in rehabilitation of gait following neurological and orthopedic 

injury, and may also allow improved rehabilitation of high-impact tasks. There is a 

differential effect of BWS on walking and running gaits, and the effect of BWS on 

movements with relatively large vertical displacement is unknown. The current study 

evaluates the effect of BWS on a replicable single leg hopping task. We posited that 

progressive BWS would decrease limb loading while maintaining the joint kinematics of 

the task. Twenty-eight participants repetitively hopped on and off a box at each of four 

BWS levels. Peak vertical ground reaction forces decreased by 22.5% between 0% and 

30% BWS (P<.001). Average hip, knee, and ankle internal moments decreased by 0.5 

BW each. Kinematics remained consistent across BWS levels (P≤.05). The high level of 

task specificity evidenced by consistent kinematics coupled with a similar reduction of 

internal moment at each joint suggests that BWS may be a useful strategy for 

rehabilitation of jumping tasks. 

 

Key Words: body weight support, single leg hop, rehabilitation, plyometrics 
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Body weight support (BWS) plays an important role in motor learning during 

retraining following both neurological and orthopedic injuries.  A recent Cochrane 

Review found early ambulation training following stroke with BWS, either over ground 

or on a treadmill, improved gait speed and efficiency.
1
 By providing task specific practice 

with graded intensity, BWS training improved bilateral coordination and gait symmetry 

in patients with chronic stroke.
2
 Similar results have been found following incomplete 

spinal cord injury.
3,4

 Evidence for use of BWS in orthopedic patient populations is 

limited, but several recent case reports have described success utilizing BWS to minimize 

exposure to physical stress during functional training while in the acute recovery stage 

following lumbar disk herniation,
5
 Achilles tendon repair,

6
 and multiple lower extremity 

fractures.
7
 

While BWS is primarily used during tasks with a narrow variance of translation 

of a participant’s center of mass, such as walking on a treadmill, BWS may also be 

effective for early retraining of tasks that require more dynamic movements involving 

sizable changes in vertical and horizontal position such as hopping or jumping. Such 

BWS could be particularly helpful for retraining patients following injuries or surgeries 

involving ligament reconstruction or cartilage repair.  Athletes returning to jumping, 

landing, and other high-impact activities after knee surgeries, such as ACL 

reconstruction, frequently display abnormal landing mechanics and concomitant 

increased joint compression.
8
 Chmielewski et al

9
 found increased concentration of 

cartilage degradation markers in the first 16 weeks following ACL reconstruction and 

early knee osteoarthritis has been reported in up to 48% of patients 10 to 15 years 

following ACL reconstruction.
10

 The neuromuscular impairments underlying the 

performance deficits in jump landing that may lead to cartilaginous degradation can be 

transiently affected by instruction.
11,12

 Additional benefits of jump or plyometric training 

may include greater stimulation of Golgi tendon organs and muscle spindles.
13

 The 

resulting enhancement of length feedback and force feedback reflex mechanisms may 

improve coordination and neuromuscular control.
14

 As such, jump or plyometric training 

is consistently recommended in end-stage rehabilitation programs.
15,16

 The increased risk 

of injury in single leg decelerations and rapid changes of direction
17,18

 makes 

rehabilitation of single leg landing tasks particularly important. 
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Putting recommendations for plyometric training after injury into practice may be 

problematic, however. Plyometric exercise has been defined as activity which utilizes the 

stretch-shortening cycle to increase efficiency of force production or performance.
14

 

Examples include drop vertical jumps, in which an athlete drops off a box and 

immediately jumps into the air upon landing. A continuous transition between the 

eccentric control of landing and concentric push from the ground is necessary to take 

advantage of the elastic energy stored during the stretch-shortening cycle.
14

 However, the 

high joint loads intrinsic to plyometric training
19

 necessitate low repetition to avoid 

injury, a situation unfavorable toward motor learning.
20

  As in gait retraining following 

neurological injury, BWS may allow increased repetition of plyometric tasks by 

mitigating large impact loads, thereby inducing improved carryover to daily tasks and 

activities. 

In order to be viable as a treatment strategy for plyometric tasks, BWS must 

decrease ground reaction forces and loading through the kinetic chain while maintaining 

the relative loading relationships between joints during large multi-planar excursions of 

the center of mass.  In walking and running, the dose of BWS can modify the kinematics 

and efficiency of a patient’s typical gait pattern, particularly at high levels of BWS.
21

 The 

mechanical effect of reducing gravitational forces via BWS during plyometric activities 

is unknown.
22

 Ackermann and van den Bogart
23

 found profound changes in locomotion 

strategy while simulating gait in gravitational conditions mimicking those on Mars 

(g=3.72 m/s2) and the Moon (g=1.63 m/s2), with skipping preferred for its efficiency.  

Donelan and Kram
22

 found that the effect on mechanics of reducing gravity is different 

for gaits utilizing elastic motion (running) versus pendular motion (walking). It is 

unknown whether plyometric activities such as hopping and jumping will respond 

similarly.  

Thus, our objective in this study is to examine the effects of instruction and 

progressive BWS on the mechanical characteristics of a repetitive single leg plyometric 

task. The current study was designed to provide preliminary results to evaluate the 

potential of BWS as a therapeutic adjunct during retraining of dynamic tasks like 

plyometric training. We hypothesize that as BWS increases, overall ground reaction 
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forces (GRF) and joint moments will progressively decrease, while kinematics will 

remain unchanged, thereby preserving the task specificity of training. 

 

METHODS 

BWS System 

The BWS system (FIGURE 

1) consists of an array of long elastic 

rubber tubes with graduated spring 

constants strung in parallel through a 

system of pulleys. These tubes are 

attached to a single thick elastic 

element that is drawn through a final 

conjoined double pulley. One part of 

the conjoined pulley tracks along a 

tensioned 2.44 m steel tube that is 

suspended from the ceiling 3 m from 

the ground in an orientation that is 

orthogonal to the tube array.  A 

second pulley is suspended from the first, and redirects the thick elastic element to 

culminate on an aluminum yoke.  A harness of customized neoprene shorts attaches to 

the yoke with nylon strapping, which slides freely thereby allowing trunk motion. The 

system provides near constant vertical force at the center of mass of the participant while 

they move within the 0.5 x .05 x 1 m volume used to complete the box hop task.  A small, 

lightweight (57 g) analog load cell (Futek, Inc., Irvine, CA) placed inline where the tube 

attaches to the yoke allowed precise titration of the vertical force. The maximum vertical 

force allowed by the system was 90 pounds.  We sampled at 1200 Hz throughout each 

trial to determine the variability of load during the box hops task. The difference between 

the maximal and minimal vertical forces, or load variability, was expressed as a ratio of 

the target force by the following equation: 

||         ||
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where Ft is the target vertical force, Fmax is the maximal force observed, and Fmin 

is the minimal force observed within a single trial. 

 

Participants 

Thirteen male and fifteen female 

athletes were recruited from a population of 

healthy, active adults (TABLE 1).  

Participants were excluded if they had a 

history of lower extremity or back injury that 

had limited their activities of daily living in 

the past (e.g., fracture) or if they had a Tegner 

Activity Scale score <4.  The Tegner Scale is a tool used to describe activity levels that 

has been validated in prior studies of people with ACLR,
24

 as well as in populations with 

uninjured knees.
25

  In order to provide the maximal target dose of BWS (30%), 

participants were also excluded if their weight exceeded 300 pounds.  All participants 

provided signed informed consent as provided by the University of Montana Institutional 

Review Board. 

Testing Protocol 

In a single session, participants completed a randomized repeated measures 

testing protocol. Testing included, in order: measurement of height and weight; a warm-

up consisting of a 5 minute treadmill walk at 3.5 mph followed by dynamic preparatory 

exercises (high-knee running, heel-to-gluteals running, lateral shuffles, carioca running, 

heel walking, and toe walking); placement of reflective markers; standing kinematic data 

calibration; and motion analysis assessment of a single leg box hops task at four levels of 

BWS (0%, 10%, 20%, and 30%) in random order determined prior to testing.   A single 

limb was tested (dominant or non-dominant), also randomly determined prior to testing 

(TABLE 1). Limb dominance was determined by asking which leg would be used to kick 

a ball for distance.   

 

Box Hop Task 
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Despite their strong relation to injury,
17,18

 studies exploring single leg plyometric 

hop tasks are particularly rare. Bobbert and Richard Casius
26

 attempted to examine 

repetitive hopping at four height 

levels (maximal, 75% maximal 

height, 50% maximal height, and 

25% maximum height) but had 

difficulty in both ensuring 

consistency within maximal and 

submaximal levels and in defining 

those levels. Their hop conditions 

were eventually defined as 

maximal, high intermediate (lower 

than maximal on average), low 

intermediate (lower than high 

intermediate on average), and low 

(lower than low intermediate on average). In our preliminary testing, maximal hop height 

tended to increase with BWS, confounding our kinetic results with the effects of 

momentum. We therefore chose a box hops task in order to create consistency in jump 

height between repetitions and BWS levels, as well as between subjects.  The single leg 

hopping task consisted of two separate counter-movements (FIGURE 2).  Subjects 

gained their balance in single leg stance, hopped up onto a 13 cm box that was 400 mm 

by 600 mm in area, and then immediately reversed to hop back down.  The task of 

hopping on and off the box was repeated 10 times continuously without pause.  The 

counter-movement on the lower surface (landing from the box and immediately hopping 

back up) involved greater force absorption and power development, and was the focus of 

our analysis. The task was described verbally and demonstrated prior to initial testing. 

Subjects were cued to avoid pausing between hops and to land with their foot fully on the 

box, rather than on the edge, to maintain task consistency between BWS levels. Prior to 

collecting data for analysis at each level of BWS, participants practiced until they 

verbally confirmed they were comfortable with performing the task at each level of BWS.   
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Motion Analysis 

Kinematic and kinetic analysis of the box hops task was performed using a 

VICON Nexus motion capture system with 8 MXF40 cameras (Oxford Metrics, Ltd., 

London, UK) and a 400x600 mm force plate (AMTI, Watertown, MA) capturing tri-

planar ground reaction forces.  Video data were sampled at 200 Hz; force plate data were 

sampled at 1200 Hz.  Each countermovement from the box to the ground and back up 

was analyzed separately with the first and last hops excluded, resulting in 8 repetitions 

per BWS level averaged together for analysis. 

Retro-reflective markers (14 mm 

diameter) were placed as in FIGURE 3 and 

per previous work
12,27

 to identify the joint 

centers of the ankle, knee, and hip of the 

tested limb, as well as to define the pelvis. 

Rigid, thermoplastic shells with 4 markers 

affixed to their surfaces were attached  to the 

shank and thigh of the tested limb using elastic 

wraps (SuperWrap TM, Fabrifoam, Inc. 

Exton, PA), which allowed tracking of the 

three-dimensional position of each segment.  

A shell was also affixed over the sacrum to 

track the pelvis.  Four markers placed on the 

superior and inferior heel counter of the shoe 

and the 1st and 5th metatarsal heads tracked foot movement.  A standing calibration was 

performed prior to completing the landing trials to identify joint centers with respect to 

each segments coordinate system.  Joint center anatomical markers were then removed, 

with the shells and remaining markers indicating position of the aforementioned 

segments throughout testing. 

Marker trajectories and force plate data were respectively low pass filtered at 12 

and 50 Hz with 4
th

 order phase-corrected Butterworth filters.  The vertical ground 

reaction forces (VGRF) and internal joint moments were normalized to each individual’s 

body weight (BW), and the loading rate for each trial was expressed as peak VGRF 
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divided by the time from initial contact to peak knee flexion.  Joint kinematics were 

calculated using Euler angles, and joint kinetics were calculated with inverse dynamics 

using rigid body analysis through custom applications with Visual 3D software 

(Visual3D, Version 4.75.29, C-motion Inc., Rockville, MD).   

 

Data Analysis 

Peak joint angles and moments between initial contact on the force place to take-

off were averaged between the 8 repetitions and within levels of BWS for each subject.  

A total support moment was generated by summing the peak moments of the hip, knee, 

and ankle.  The relative contribution of each joint was assessed through the ratio of the 

individual joint moment to the total support moment (percentage support moment). 

Descriptive statistics (mean, SD) were developed for all variables of interest, including 

BWS load variability. A repeated-measure ANOVA between BWS level and each 

dependent variable of peak hip, knee, and ankle flexion; peak hip, knee, and ankle 

moment; peak VGRF; and loading rate were performed to screen for differences in 

means.  If the ANOVA achieved significance by BWS Level, then post-hoc pairwise 

comparisons between BWS levels were performed via single tailed t-tests with a 

Bonferroni adjustment.  All statistical analyses were performed with SPSS Statistics 20.0 

(IBM Corp, Armonk, NY) with an alpha level set to P=.05. 

 

RESULTS 

Consistency of Unloading Force 

At 10% BWS, the vertical force varied by a mean 19% (SD=5%) of the target 

force. At 20% BWS, the variation in force averaged 10% (SD=3%), and at 30%, the 

variation was 7% (SD=4%) of the target force.  For example, in a representative subject 

with a target 20% BWS of 16.7 kg, the vertical load at the top of the jump was 15.9 kg, 

and the load at the bottom of the jump was 17.5 kg.  

 

Kinematics and kinetics at 0% BWS 
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Peak VGRF during the countermovement averaged 3.2 BW (SD=0.5), with an 

average peak loading rate of 28.2 BW/s (SD=8.3). Peak sagittal plane angles and 

moments at the hip, knee, and ankle are reported in TABLE 2. The hip contributed 24% 

(SD=5%), the knee 37% (SD=5%), and the ankle 39% (SD=5%) to the total sagittal 

support moment. 

 

Effects of Progressive BWS on Kinetics 

From their 

respective initial peaks at 

0% BWS described 

above, the peak VGRF 

and peak loading rate 

decreased significantly 

(P<0.001) with each 

increase in BWS 

(FIGURE 4).  Individual 

joint moments at each 

BWS level are reported in 

TABLE 2.  There was a 

statistically significant 

decrease in both hip and knee moment with each increase of BWS, as well (P<0.001).  

The average hip moment decreased by 0.25 BW from 0% to 10% BWS, 0.11 BW from 

10% to 20% BWS, and an additional decrease of 0.11 BW from 20% to 30% BWS. The 
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knee moment decreased by 0.16 BW, 0.23 BW, and 0.15 BW, respectively with each 

10% addition of BWS.  There was no significant decrease in the ankle moment from 0% 

to 10% BWS (P=0.18), though there was a significant decrease of 0.21 BW between 10% 

and 20%, and another of 0.29 BW from 20% to 30% (P<0.001).  However, there was no 

statistically or clinically significant change in percent support moment at any joint with 

increasing BWS. At 10% and 20% BWS respectively the hip contributed 22% (SD=5%) 

the knee contributed 37% (SD=5%) and 37% (SD=6%) and the ankle contributed 41% 

(SD=5%) and 41% (SD=5%).  At 30% BWS, the hip contributed 22% (SD=5%), the 

knee 38% (SD=6%), and the ankle 40% (SD=8%) to the total support moment. 

 

Effects of progressive BWS on kinematics 

There was a statistically significant decrease in peak ankle dorsiflexion from 0% 

to10% BWS (0.91°; P=0.002) and an increase from 20% to 30% BWS (0.3; P=0.05), 

but no change in dorsiflexion between 0% and 30% BWS. Similarly, there was a 

statistically significant decrease in hip flexion from 0% to 10% BWS (1.3°; P=0.02) and 

an increase from 20% to 30% BWS (0.9°; P=.04), but no change in hip flexion from 0% 

to 30% BWS. Knee flexion, however, increased by 2.8° (P<0.001) between 20% and 

30% BWS, for a total increase of 3.6° from 0% to 30% BWS (P<0.001). 

 

 

DISCUSSION 

Our first step was to describe the biomechanical characteristics of a repetitive 

single leg countermovement task, or hop.  A sagittal plane hurdle hop has been described 

in the context of plyometric training programs,
28,29

 but relatively little information is 

available on the kinematic and kinetic behaviors that compose repetitive single leg hops 

in the sagittal plane.  Utilizing a box hop, rather than a maximal or sub-maximal hop,
26

 

allowed task consistency between subjects and between BWS trials. In our sample, the 

box hops task is primarily an ankle-dominant movement in terms of torque demand, with 

the ankle representing approximately 40% of the total support moment regardless of 

BWS status.  The hip, knee, and ankle all displayed markedly decreased peak flexion 

angles and increased loading rates compared with previously described dual-stance 
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plyometric tasks, such as a drop vertical jump (DVJ) or countermovement jump.  For 

instance, Malfait et al.
30

 found a mean of 96 knee flexion and 75 hip flexion during a 

0.3 meter DVJ.  Further, Zhang et al.
31

 demonstrated a shift in landing strategy toward 

one dominated by the ankle, rather than the hip or knee, as landing stiffness increased. 

Our data are also consistent with those of Wang,
32

 who found decreased hip and knee 

flexion in a single leg versus double-leg countermovement task.  

The application of BWS effectively mitigates impact loading during a box hop 

task, though not via a 1:1 relationship.  Increasing the level of BWS to 30% resulted in an 

average 22.5% decrease in peak VGRF.  Additionally, there appears to be a differential 

adaptation in sagittal joint moment to BWS.  The peak hip moment decreases with the 

addition of 10% BWS then changes very little with added support. The peak knee 

moment decreases somewhat less at this level, with a greater decrease at 20% BWS, and 

similarly to the hip changes very little at 30% BWS.  In contrast, the ankle moment is less 

responsive to lower levels of BWS, changing more at 20% and 30% BWS.  The plantar 

flexors may be preferentially affected at high speeds.  Lewek
33

 found a significant 

interaction between gait speed and BWS in decreasing ankle moment and propulsive 

power, with a greater effect of BWS with increasing gait speed, though neither the knee 

nor hip moments were concurrently examined.  

The potential for BWS as an adjunct to training in plyometric or other tasks with 

relatively large excursions of the center of mass is high.  The minimal kinematic change 

and a similar relative apportionment of load across the kinetic chain, regardless of BWS 

level, indicate maintenance of task specificity. The presumed high total loads inherent to 

plyometric activity prevent high repetition and limit training with patient populations to 

end-stage rehabilitation.
14

 Healthy athletic populations limit plyometric activity as well. 

Indeed, the box hops task generated an average peak VGRF of 3.2 body weights.  In 

comparison, Kluitenberg
34

 recently reported an average VGRF of 2.5 BW in slow 

running and 2.7 BW in fast running Increasing BWS to 20% decreased average loading 

of the box hops task to within this range.   

We did not examine the neuromuscular behaviors underlying the box hops task 

via electromyography, nor their response to BWS.  Preferential changes in recruitment 

may well be present, given the changes in external moment. However, neither Franz et 
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al.
35

 nor Lewek
33

 found significant changes in plantarflexor recruitment with increasing 

BWS during a walking task, contrary to expectations. While the kinematics and kinetics 

of the ankle joint certainly change, the passive elements of the plantar flexor musculature 

may play such a large role in energy return that the effect of BWS on contractile tissue is 

negligible.  Indeed, such a schema is described as a key difference between walking and 

running gaits, with walking gaits deriving most of their efficiency from the pendular 

conservation of mechanical energy between potential and kinetic states.
36

  Running gaits, 

in contrast, rely on elastic elements to store and return mechanical energy, and as such do 

not conform to many theoretical models of walking.
22

  The different mechanisms of 

energy storage and return also create different responses to BWS.  Walking with BWS 

frequently increases metabolic demand due to a disruption of the mechanical energy 

exchanges,
37

 while running with BWS necessitates increased speed to maintain metabolic 

demand.
38

 As repetitive hopping conforms more to the elastic construct of energetic 

exchange, we may expect similar responses to BWS between repetitive hopping and 

running with regard to muscle recruitment and demand. 

The current study was focused on examining the response of healthy subjects, 

rather than that of subjects with injury, and there may be a differential effect of BWS on 

the kinematics and kinetics of plyometric tasks within an injured population.  However, 

the description of a replicable, repetitive plyometric task and validation of BWS was 

deemed of greater importance at this time. Given the difficulty the healthy, athletic 

participants had completing the task at 0% BWS, we felt that injured participants would 

have provided an incomplete comparison.   

In summary, the box hops task typically involves decreased hip and knee 

excursion from that seen in double-leg countermovement tasks, as well as increased joint 

torques and VGRF as expected.  The addition of BWS at dose at or below 30% of body 

weight had little to no effect on the kinematics of the lower extremity.  While BWS did 

decrease joint moments, the relative support moment of each joint was preserved across 

BWS levels.  BWS may therefore mitigate joint loads to safe levels for high repetition 

training while maintaining the kinematic and relative kinetic specificity of a plyometric 

or countermovement task. 
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Background and Purpose: Patients frequently experience long-term deficits in 

functional activity following anterior cruciate ligament reconstruction, and commonly 

present with decreased confidence and poor weight acceptance in the surgical knee. 

Adaptation of neuromuscular behaviors may be possible through plyometric training. 

Body weight support decreases intensity of landing sufficiently to allow increased 

training repetition. The purpose of this case report is to report the outcomes of a patient 

with anterior cruciate ligament reconstruction treated with high repetition jump training 

coupled with body weight support (BWS) as a primary intervention strategy. 

Case Description: A 23-year old female who had right anterior cruciate ligament 

reconstruction seven years prior presented with anterior knee pain and effusion following 

initiation of a running program. Following visual assessment of poor mechanics in single 

leg closed chain activities, landing mechanics were assessed using 3-D motion analysis of 

single leg landing off a 20 cm box. She then participated in an eight-week plyometric 

training program using a custom body weight support system. The International Knee 

Documentation Committee Subjective Knee Form (IKDC) and the ACL-Return to Sport 

Index were administered at the start and end of treatment as well as at follow-up testing. 

Outcomes: The subject’s IKDC and ACL-Return to Sport Index scores increased from 

68% and 43% to 90% and 84% respectively with training and were retained over time. 

Knee and hip flexion angles increased from 47° and 53° to 72° and 80° respectively. 

Vertical ground reaction forces in landing decreased with training from 3.8 N/kg to 3.2 

N/kg. All changes were retained two months following completion of training. 

Discussion: The subject experienced meaningful changes in overall function. Retention 

of mechanical changes suggests that her new landing strategy had become a habitual 

pattern.  Success with high volume plyometric training is possible when using BWS.  

Clinical investigation into the efficacy of body weight support as a training mechanism is 

needed. 

 

Level of Evidence: Level 4 

Key Words: plyometrics, biomechanics, training volume  
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BACKGROUND AND PURPOSE 

More than 200,000 people injure the anterior cruciate ligament (ACL) of their knee 

annually in the United States. Of these, approximately 65% undergo surgical ACL 

reconstruction.
1
 Initial outcomes following ACL reconstruction are quite good, with 

resolution of knee laxity and return to independent activities of daily living within three 

months.
2-4

 

Although current post-operative protocols allow return to normal athletic activity 

within six months of surgery, a preponderance of recent evidence has shown that many 

patients have functional outcomes that are poorer than expected in the years following 

surgery.
5-11

 Patients who have undergone ACL reconstruction often experience chronic 

impairment in mechanical performance of the operated limb.
12

 Specifically, deficits in 

eccentric knee flexion have been demonstrated during the weight acceptance phase of 

gait as well as in higher intensity tasks such as stair descent and jump landing.
13-16

 

Decreased knee flexion during weight acceptance may also contribute to a decreased 

ability to absorb ground reaction forces, leading to higher vertical ground reaction forces 

(VGRF) when compared to the uninjured side and healthy controls.
15,16

 Additionally, 

people with ACL reconstruction frequently demonstrate high levels of fear of movement, 

or a lack of confidence in the knee.
5,17,18

 

Ardern et al
18

 and Chmielewski
17

 have both demonstrated that psychological 

impairments such as fear of movement and lack of confidence correlate with poor return 

to activity outcomes. Recent data
19

 have demonstrated a negative correlation between 

psychological impairments and absorption of vertical forces in the surgical knee. 

Specifically, increased fear of movement correlates with decreased ability to absorb 

vertical forces. Together, mechanical and psychological impairments have been 

associated with a 63% rate of return to pre-injury levels of physical activity, a 14% to 

25% re-injury rate, and a 50% risk of early-onset osteoarthritis.
5,20-23

 Despite the high 

prevalence of difficulty returning to full function, there has been relatively little research 

performed exploring interventions designed to address chronic post-surgical 

psychological and mechanical impairments. 

Plyometric or jump training has been recommended to improve mechanical 

deficits seen in the lower extremity following ACL reconstruction.
4,24

 However, the 
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evidence supporting this recommendation has primarily been from the literature on 

primary injury prevention in healthy athletes,
25-33

 and as such the specifics of exercise 

dosage may not translate to an injured population. Chmielewski
34

 reviewed 

considerations for dosing plyometric exercise following injury, and recommended low 

repetition due to high ground reaction forces and rapid loading rates. In two recently 

published clinical commentaries describing optimal post-ACL reconstruction 

rehabilitation, plyometric training is advised when specific strength and functional 

criteria are met (generally after 12 weeks), but no specific repetition recommendations 

are made.
4,24

 Recommendations for healthy athletes range from 20 contacts per session to 

120 contacts per session.
26,30,35,36

 The inherently high intensity of plyometric activity may 

cause clinicians to further reduce repetition during training, so as to avoid further injury 

to an already at-risk knee joint.
23,34

 Unfortunately, given the complexity and potential 

chronicity of the mechanical deficits involved post-surgically, low repetition training may 

not provide sufficient neuromuscular stimulus to allow modification of habitual 

movement patterns.
37

 While the literature regarding ways to optimize motor learning can 

be contradictory, it does seem that higher training volumes in the form of increased 

repetition of a task improves retention of that skill.
38

 

High levels of fear and low confidence common after ACL reconstruction may 

also unduly influence a patient’s ability to complete effective plyometric training. The 

phenomenon of fear avoidance in chronic pain literature
39

 bears a marked resemblance to 

the phenomenon of psychological impairment limiting physical activity following ACL 

reconstruction. Given this similarity, effective treatment of psychological impairment 

following surgery may follow the treatment paradigm most successfully associated with 

fear avoidance. 
40,41

 Kinesiophobia in athletes following ACL reconstruction may 

therefore be effectively treated through graded exposure to the fear-inducing stimulus. In 

the case of plyometric training, landing from a jump may be considered a fear-inducing 

stimulus. However, as Chmielewski
34

 states, landing on a single leg is inherently high 

intensity, and there are very few mechanisms by which the intensity of the landing task 

can be reduced while maintaining specificity of motion. 

One method of reducing landing intensity is via body weight support (BWS), 

which may decrease intensity enough to allow higher repetition plyometric training than 
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normally recommended and to accurately grade exposure to landing tasks. Forms of 

BWS have been used extensively in rehabilitation of neurological injury
42,43

 and for 

orthopaedic rehabilitation
44-46

 as well. Unfortunately, aquatic training, plyometric leg 

press, and treadmill-bound systems do not allow for specificity of movement or sport-

specific training. The natural hydraulics of the aquatic environment can result in 

abnormal shear forces through the joints.
47

 A plyometric leg press requires activation of 

the hip flexors to maintain the feet in the line of fall, and only allows for sagittal plane 

movement, without the ability to move freely in three-dimensional space. A treadmill-

bound system works by raising the center of mass, disallowing relatively large vertical 

excursions such as those seen in a jump or hop. To date, BWS systems primarily support 

walking and running tasks, as the vertical speed of jumping is generally too high for even 

motorized BWS systems to maintain constant levels of BWS. However, for this study, a 

novel BWS system was developed to allow specificity of movement during tasks 

involving vertical excursion, as well as sport specific training including cutting and 

pivoting motions. Appropriate utilization of this novel BWS system during plyometric 

training may improve mechanical and psychological, and thereby functional, outcomes 

following ACL reconstruction. 

The purpose of this case report is to report the outcomes of a subject with a 

previous history of ACL reconstruction treated with high repetition jump training coupled 

with BWS as a primary intervention strategy. The changes in landing mechanics, 

psychological readiness for activity, and functional outcomes are detailed. 

 

CASE DESCRIPTION 

Patient History and Systems Review 

The subject 

was a 23 year-old 

female (BMI: 22.5) 

who presented with 

right anterior knee 

pain of gradual onset 

following initiation 
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of a running program for fitness eight months previously. At the time of her initial 

evaluation (FIGURE 1), the subject was unable to run >1 mile due to pain rated at 5/10 

on a visual analog scale. Additionally, she had discontinued playing intramural basketball 

due to pain. She was able to participate in all activities of daily living without pain with 

the exception of ascending and descending stairs, and had a Lower Extremity Function 

Scale (LEFS) score of 71/80. The subject had an unremarkable past medical history with 

the exception of a right ACL reconstruction with hamstring autograft seven years 

previously (FIGURE 1). Her history was otherwise negative for other lower extremity 

injuries or conditions. A systems review was unremarkable, and the subject otherwise 

healthy. The subject reported that magnetic resonance imaging two months prior to 

evaluation demonstrated a ―bone bruise‖ to the tibial plateau, but further detail was 

unavailable. Her goals were to progress to running at least three miles without pain, and 

to play intramural basketball without concern for her knee. The subject was initially 

examined and treated by a licensed physical therapist and Fellow of the American 

Academy of Orthopaedic Manual Physical Therapists. 

 

 Examination  

Passive range of motion (PROM) was limited to 137 degrees of flexion and 0 

degrees of hyperextension, compared to 147 degrees of flexion and 5 degrees of 

hyperextension on the left. She also reported deep joint pain at end range in both 

directions. Tibiofemoral joint mobility testing revealed normal end-feel and mobility with 

anterior/posterior glides and distraction, but decreased pain with distraction. Her knee 

flexion strength was rated at a 4+/5 as compared to 5/5 on the left; knee extension 

strength in manual muscle testing was symmetrical side to side for a grade of 5/5.
48

 

However, she was unable to perform a single leg squat on the right without femoral 

adduction and internal rotation, and the depth of her single leg squat was limited 

compared to the left side. Single leg stance on the right was notable for excessive use of a 

hip strategy to maintain balance compared to the left. Excessive lumbar extension and 

poor control of hip adduction were observed during walking and running gait, resulting in 

excessive pelvic drop during the stance phase of both gaits.  
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The subject was diagnosed with internal derangement of the knee with effusion, 

decreased PROM, and decreased functional capacity. She also displayed dysfunctional 

biomechanics in closed kinetic chain activities. Due to her work and school schedule, she 

underwent six sessions of physical therapy over a 10-week period (Figure 1). Treatment 

consisted of manual therapy for joint and soft tissue mobility to increase PROM and 

decrease effusion, single leg squats on a Total Gym® (Total Gym Global Corp., San 

Diego, CA) with cueing for knee, hip, and lumbar control, and running gait training on a 

treadmill to reduce pelvic drop during stance and lessen frontal plane valgus knee 

alignment. 

 

 

Clinical Impression 1 

After 10 weeks of physical therapy as described above, the subject’s PROM and 

gross strength deficits by manual muscle testing were equal to the contralateral side.  She 

was progressing in a walk/jog program without pain, with a LEFS score of 77/80 at the 

end of the 10-week period. However, her dysfunctional movement patterns in closed 

kinetic chain activities persisted. Her continued inability to single leg squat on the 

surgical side led her physical therapist to refer the subject for biomechanical testing in the 

University of Montana Movement Science Laboratory (FIGURE 1). Due to academic 

scheduling constraints, the subject was unable to complete laboratory testing for another 

three months (FIGURE 1). At the time of laboratory testing (FIGURE 1) as described 

below, she reported she had been unable to progress in running without pain, and 

continued to experience effusion after running >one mile. Her history, inclusive of the 

initial evaluation and treatment described above and considering her history of a non-

contact ACL injury, indicated a persistent problem in movement coordination in closed-

chain tasks, particularly those involving a single leg and/or impact. The subject was 

informed that data concerning her evaluation and treatment would be submitted for a case 

report, and she consented to submission. 

 

Examination 
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The full laboratory examination consisted of, in order, administration of the 

International Knee Documentation Committee Subjective Knee Form (IKDC) and the 

ACL-Return to Sport Index (ACL-RSI); height and body mass measurement with a 

standard physician’s scale; a five-minute treadmill walking warm-up; PROM 

measurement and effusion grading; knee flexion and extension strength testing with force 

dynamometry; application of retroreflective markers; and biomechanical analysis of a 

single leg landing from a 20 cm box as previously described.
49,50

 Testing and further 

intervention described below were performed by a licensed physical therapist with board 

certification as an orthopaedic specialist and certification for plyometric training for ACL 

prevention through SportsMetrics ™. 

Outcome Measures and Clinical Tests 

The IKDC was administered as a validated measure of patient-reported function for 

athletes, which avoids ceiling effects seen in other functional outcome measures, 

including the LEFS.
51,52

 The ACL-RSI, a validated tool which measures confidence on a 

0-100 scale, was administered to provide a measure of psychological readiness for return 

to activity.
53,54

 Effusion was tested using the stroke test.
55

 Passive ROM was measured 

with a standard long arm goniometer as previously described.
56

 

 MVIC Testing 

Knee flexor and extensor isometric strength was tested in sitting using a Kin-Com 125AP 

dynamometer (Chattanooga Group, Inc., Chattanooga, TN) utilizing previously published 

methods.
49,57

 The more precise measure of strength afforded by dynamometry was 

considered important given the relatively poor sensitivity of manual muscle testing to 

side-to-side differences.
58

 The knee was strapped into 60 degrees of flexion for flexor 

testing and 90 degrees of flexion for extensor testing. The uninvolved limb was tested 

first to provide the subject with a target force as well as to develop task familiarity. 

Visual and verbal encouragement were provided during trials. At least 1 minute of rest 

was allowed between trials. When force production decreased or failed to increase more 

than 5% from the previous trial, the testing was complete and the trial with the highest 

force production was utilized for analysis. Force data were sampled at 200 Hz utilizing a 

BIOPAC MP 150 (BIOPAC Systems, Inc., Santa Barbara, CA) data acquisition 
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workstation with Acqknowledge v.3.7 software and processed with a 6 Hz low pass filter 

prior to determining maximal force production.  

 Biomechanical Analysis of Single Leg Landing 

A single leg landing from a 20 cm box as previously described
49,57

 was chosen for testing, 

as the primary mechanism of continued pain for the subject was running, which consists 

of multiple single leg landings. Her difficulty with maintaining desired dynamic postures 

during closed kinetic chain single leg squat activities also played into this decision. 

Further, her history of non-contact ACL injury suggested potential neuromuscular 

faults,
27,59

 and the most frequent mechanism of non-contact ACL injury is a single leg 

landing.
50

 The subject stood approximately 10 cm from the edge of a 20 cm high box, 

hands on hips, and was instructed to gain her balance on a single leg before hopping off 

the box onto a force plate with her eyes looking forward. She performed five successful 

test trials of the single-leg landing task after five practice trials on each leg. A trial was 

deemed successful if she maintained a single leg stance for at least 2 seconds upon 

landing, and regained dual leg stance in a controlled manner. 

 Kinematic data were obtained during the single-leg landing task using an eight-

camera VICON Nexus system at 200 

Hz (Oxford Metrics, Ltd., London, 

UK). Retro-reflective markers (14 

mm diameter) were placed in a 

Cleveland Clinic model per 

previously published methods
49,57

 to 

allow tracking of the three-

dimensional position of bilateral feet, 

shanks, thighs, pelvis, and trunk. A 

standing calibration was performed 

prior to completing the landing trial 

to identify joint centers with respect 

to each segment’s coordinate system. 

A 400 x 600 mm force plate 

(AMTI, Watertown, MA) interfaced 
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with the VICON Nexus system captured ground reaction forces during landing. Force 

plate data were sampled at 1200 Hz. Marker trajectories and force plate data were filtered 

at 12 and 50 Hz respectively with fourth-order phase-corrected Butterworth filters. The 

peak vertical ground reaction forces (VGRF) and joint moments were normalized to the 

subject’s body mass. Joint kinematics were calculated using Euler angles, and joint 

kinetics were calculated with inverse dynamics using rigid body analysis through custom 

applications with Visual 3D software (Visual3D, Version 4.75.29, C-motion Inc., 

Rockville, MD). Joint angles and moments were time normalized to 100 increments from 

initial contact on the force plate to peak knee flexion during landing to allow calculation 

of an ensemble average across trials, as the time between those events varied slightly 

between trials. 

 

Clinical Impression 2 

Patient-reported outcome measures obtained during the laboratory testing showed 

moderate to severe decreases in self-reported function and confidence (FIGURE 2), with 

an initial IKDC score of 67.8% and an ACL-RSI score of 42.5%. Anderson et al
60

 

reported an average IKDC score for people with a history of any right knee surgery 

(median of five to 10 years prior) of 56.3%. The mean score for 18-24 year old women 

inclusive of those with and without knee injury was reported as 86%. The subject’s IKDC 

score put her in the 15
th

 percentile of 18-24 year old women with or without injury.
60

 

Initial validation of the ACL-RSI scale showed a mean ACL-RSI score of 39.1% for 

athletes who have given up sport following ACL reconstruction. Athletes who planned to 

return but had not yet done so scored a mean of 54.9%.
53

 Further, an ACL-RSI score of 

52.3% has been found to be a cut-off point between those athletes that eventually return 

to sport and those that 

do not.
54

 The 

subject’s initial ACL-

RSI score of 42.5% 

predicted that she 

would not return to 

sport, but had not yet 
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given up sporting activities. 

Her PROM was symmetrical side-to-side, with 145 degrees of knee flexion and 5 

degrees of hyperextension. She presented with trace effusion. Her side-to-side strength 

symmetry, as a ratio of the involved to uninvolved torque production during isometric 

strength testing, was 76.8% for the quadriceps and 73.2% for the hamstrings (TABLE 1).  

These values are below suggested side-to-side strength ratios typically advised for return 

to sport after ACL injury, which range from 85% to 90%.
4
  

Her kinematic and kinetic measures (FIGURE 3) illustrated a hard, stiff landing, 

with a relatively high VGRF and relatively little knee flexion and small internal knee 

extension moment. Mean VGRF, knee flexion, and knee extension moment during single 

leg landing in patients who have returned to activity after ACL reconstruction have been 

reported previously as approximately 3.5 Nm/kg body weight, 56°, and 2.5 Nm/kg body 

weight, respectively.
49

  

The subject was deemed appropriate for a high repetition jump training 

intervention to target her 

chronic difficulties in 

absorbing load through the 

involved knee and her poor 

functional state. Augmenting 

the intervention with BWS 

allowed training even with the 

limiting factors of decreased 

strength and decreased 

confidence in her knee. All 

training was undertaken to 

directly address the subject’s 

goal of returning to running 

and playing basketball. 
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Intervention 

The subject participated in an individualized jump training program twice weekly 

for eight weeks. Each session took approximately one hour as detailed in TABLE 2. She 

did not participate in any other strengthening, training, or other physical therapy 

intervention during this period, with the exception of occasional intramural basketball 

games. 

 The jump training treatment progression is outlined in TABLE 3. Although the 

task progression is similar to recently published neuromuscular training protocols,
4,24,30,31

 

BWS allowed decreased intensity and higher repetition than the 20-120 contacts per 

session currently recommended for healthy athletes.
26,30,35,36

 For the first six weeks, the 

subject performed her training in a custom BWS system designed to allow freedom of 

movement within a 1.5 x 3 x 

4 m volume with a consistent 

vertical force (FIGURES 4 & 

5), thereby providing 

movement and sport 

specificity.
61

 Elastic tubing is 

stretched around a 75-meter 

pulley system and connected 

to a custom harness made of 

neoprene shorts. The final 

pulley is directly overhead 

and slides on a near-

frictionless steel track bolted 

into the ceiling, allowing 

movement in any direction 

along a 1.5 x 3 m area on the floor. Taking advantage of the relationship between elastic 

recoil force and percent strain, the system is able to generate a vertical force at the center 

of mass that varies by less than 10% through the 3-D movement of jumping up to 1.5 

m.
61

 As such, the subject was able to perform high volume, sport-specific, jump landing 

training with decreased impact loads.
61
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 The initial training was begun at 

a BWS level of 30%, wherein a near-

constant vertical force equal to 30% of 

the subject’s body weight was exerted at 

the center of mass. Previous work 

determined that between 20% and 30% 

BWS, VGRF decreased to levels 

approximately those of distance running 

without intrinsically changing lower 

extremity kinematics or relative joint 

kinetics.
61

 The level of BWS was 

decreased every two weeks, from 30% 

to 20% to 10%, per tolerance to activity. 

The final two weeks of training were 

performed without BWS. 

Training volume was tracked via 

contacts, defined as the number 

of times the involved leg hit the 

ground and/or generated a 

directional change as in cutting. 

With BWS, higher contact 

counts were appropriate given 

the decreased VGRF. 

Interestingly, the subject was 

able to complete more contacts 

at the 20% and 10% BWS levels. 

During the initial phases of training, even with 30% BWS, she required extensive cueing 

to perform each task correctly. She also required more rest between sets in the first two 

weeks. 

 All other training parameters progressed over time as well. Feedback progressed 

from immediate visual, verbal, and tactile specific knowledge of results, to delayed 
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verbalization of perceived performance. Cueing was geared toward positive reward 

throughout training, to reinforce desired behaviors (increased knee flexion, soft landing, 

upright posture)
36,62

 rather than punishing undesired behaviors (straight knee, stiff 

landing, bending at the waist). The subject was cued primarily with an external 

attentional focus (eg, "try to sit down in a chair during landing"), with an internal focus as 

needed but not preferred (eg, "land with your knees bent").
63,64

 Practice patterning 

progressed from blocked practice of each skill (vertical, lateral, sagittal, rotational 

jumping, and vertical, lateral, sagittal hopping) to serial practice and then random 

practice over time. Sport specific activities were introduced in week five and continued to 

progress through week eight, emphasizing dual task performance. For example, initially 

the subject performed jumps while holding a basketball. She progressed to catching and 

throwing the ball during landing, and then to dribbling during cutting and hopping, as 

well as performing a layup and landing appropriately. 

Outcome 

 The subject underwent re-testing mid-training, post-training, and again after eight 

weeks without supervised training for retention testing (FIGURE 1). All parts of the 

initial examination were performed, including administration of the IKDC and ACL-RSI, 

effusion testing, knee flexor and extensor strength testing, and biomechanical analysis of 

the single leg landing task. 

 The subject’s subjective functional level as measured by the IKDC improved 

throughout training to 95% (FIGURE 2). A change score of more than 20 points has a 

specificity of 0.84 for perceived improvement.
65

 Since the change in the subject's IKDC 

score was 28 points, it is likely that she considered her condition improved. Her 

confidence in her knee’s performance as measured by the ACL-RSI increased to 84% 

(FIGURE 2). Muller et al
54

 found that people that returned to sport had an average ACL-

RSI score of 76.8%. She maintained her increased level of function and improved 

psychological readiness for sport over the two-month retention period. Six months 

following the conclusion of BWS training, the subject reported that she had progressed to 

running over six miles without knee pain. At the end of the training period, she reported 

that she had been playing basketball without consideration of her knee. 
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The subject’s strength symmetry improved slightly throughout the training period. 

Further improvements in strength symmetry were made through the retention period; at 

the retention testing session, she demonstrated equal strength compared with the 

nonsurgical side (TABLE 2). She presented without effusion at all follow-up testing 

sessions, and her PROM remained symmetrical. Her VGRF in landing decreased by 0.5 

BW through the training and retention periods (FIGURE 3). Her peak knee flexion in 

landing increased by 31° within the first four weeks, then maintained at the same 

approximate level 

of peak flexion. 

Peak hip flexion 

also increased 

through training, 

and continued to 

increase over the 

retention period. 

Ankle dorsiflexion 

during landing 

remained 

approximately the 

same with 

training.  

 

DISCUSSION 

In this case report, BWS was used to modify an evidence-based jump training 

protocol to mitigate the inherently high intensity of jump training, allowing the subject to 

both increase training volume and target movement deficits in accordance with motor 

learning principles. Additionally, BWS decreased the perceived threat of landing, thereby 

decreasing apprehension. The current findings demonstrate that successful retraining of 

athletic tasks is possible in a subject with a history of ACL reconstruction and knee 

dysfunction. In particular, high volume training with BWS improved subjective 

outcomes, strength symmetry, and mechanical performance. Retention of these 
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improvements after 8 weeks without training suggests that the new landing strategy had 

become a habitual pattern.  

Chmielewski et al
17

 have documented high fear of movement (or kinesiophobia) 

in people who have injured their ACL and undergone ACL reconstruction. Recent 

reviews by Ardern et al
18,66

 have shown that psychological factors such as fear of 

movement and lack of confidence in the surgical knee play large roles in whether an 

athlete returns to their original level of activity after ACL reconstruction. However, no 

previous studies have demonstrated the ability to decrease post-surgical fear and increase 

confidence with physical training. This subject's gains in confidence and function with 

gradually increasing exposure to plyometric activity are consistent with those of graded 

exposure for psychologically driven activity limitation.
41

 

Following ACL reconstruction, many patients are released to sport based solely 

on the elapsed time since surgery.
67

 However, the intensity of the fear stimulus in 

returning to play may be psychologically traumatic.
5,18

 Repeated exposure to the high 

intensity stimulus may not be enough to counteract fear behaviors. The current subject 

had undergone a six-month period of rehabilitation following her ACL reconstruction 

seven years previously, and had returned to playing recreational basketball. Regardless, 

she was unable to regain functional mechanics and confidence in her knee. However, by 

gradually performing sport-specific activities in a safe environment, she was able to 

increase in confidence and function simultaneously. Her success demonstrates that 

interventions for motor skill re-training can be effective and even necessary, regardless of 

the time since surgery. 

 As expected, the subject increased peak knee flexion and decreased peak VGRF 

during landing, and continued to improve in these measures over the entire training 

period. She demonstrated relative retention of her improvement in mechanics after eight 

weeks without training or contact with the investigators. Her strength symmetry also 

improved, which may have contributed to her mechanical improvements. Recent 

evidence has shown an effect of plyometric training on maximal volitional strength.
68

 

However, Herman et al
69

 found no significant differences in kinematic and kinetic 

variables during a stop jump task before and after a nine-week strengthening program. 

Therefore, rather than strength gains affecting habitual mechanics, the opposite effect is 
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posited. As the subject’s mechanics improved, her strength increased. Indeed, her 

continued increase in strength over the retention period without any training intervention 

further supports the hypothesis that habitual changes in mechanics led to strength gains.  

Further contribution to her mechanical improvements may have come from 

healing of the subject’s reported bone bruise, which had been demonstrated by MRI two 

months prior to her initial examination. The treating therapist was unable to obtain an 

imaging report to differentiate between subperiosteal hematoma or bone marrow edema. 

However, the time from the subject reported MRI to her laboratory examination was 7.5 

months, during which time either problem would be likely to heal. At the time of 

laboratory examination, her mechanics in single leg landing remained demonstrably poor. 

Improvements in her mechanics in the next to months are most likely due to intervention, 

rather than healing of the bone bruise. The presence of a bone bruise does suggest a 

chronically insufficient use of the muscular shock absorbers and inappropriate impact 

force transmission and trauma to bony structures. The subject had previously been unable 

to modify her movement patterns without direct intervention into her mechanical 

behaviors, in keeping with evidence demonstrating a high risk for poor long-term 

outcomes following ACL reconstruction.
7-10,12,20

 The current case report demonstrates 

that chronically dysfunctional movement patterns can be changed through direct 

intervention in the form of task-specific training, even with extensive time since the 

original injury and rehabilitation. 

Prior efforts to mitigate loading during sporting tasks have utilized three basic 

methods: aquatic therapy, plyometric leg press, and treadmill mounted systems such as 

the AlterG.
44,45,47,70

 Indeed, the subject in this case study was initially treated via a 

plyometric leg press (the Total Gym®) to avoid excessive compression due to her verbal 

report of a bone bruise. All of these methods suffer from a lack of specificity to task 

training. The aquatic environment does support the center of mass and provides effective 

mitigation of load according to the level of body submersion. However, speeds of body 

and limb movement differ substantially from standard exercise due to hydraulic and drag 

forces, which can also create abnormal shear torques through joints due to turbulence and 

pressure gradients.
47

 Additionally, while jump landing is primarily an eccentric task, the 

aquatic environment allows nearly exclusive concentric activity.
47

 Alternatively, a 
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plyometric leg press can allow patients to practice jumping or hopping in place. While 

this does, again, reduce the amount of compression load through the limb, gravitational 

forces continue to be felt by the body. During a jump on a plyometric leg press positioned 

at 45 degrees or parallel to the ground (as with a Pilates Reformer), for example, a person 

must utilize the hip flexors to maintain the leg in a position for landing. Again, specificity 

is lost. These applications are also confined to a small, solid landing platform, 

disallowing any sport specificity. The BWS system utilized in this case allows near total 

specificity of movement as well as support during cutting, pivoting, and other sport 

specific tasks.  

While this case study focused on a young athlete with chronic deficits in 

absorption of VGRFs in landing, BWS may be useful at earlier times in the healing 

process and in the treatment of other functional deficits in other populations. For 

example, BWS may allow early and intensive retraining of landing mechanics following 

ACL reconstruction prior to return to sport. Athletes returning to closed-chain activity 

following cartilage or meniscal repair may also benefit from a more specific training 

environment. Performance of a full squat or sit to stand involves complex weight shifting 

and balance along with force production. Performance of a full squat in an aquatic 

environment changes the amount of support offered by the water, and a leg press machine 

does not challenge the balance component of the squat task. Stair climbing and descent 

frequently remain problematic for people with total knee arthroplasty,
71

 including many 

older athletes. It is difficult to decrease the intensity of the activity without decreasing the 

height of the stair and thereby reducing task specificity.  

The current case report also provides an example of the relative importance of 

volume and intensity in retraining complex movement patterns. As when retraining gait 

patterns following neurological insult,
42,43

 high training volume may be necessary to 

attain appropriate neuromuscular adaptation. In rats with spinal cord transection, 1000 

steps per training session improved stepping quality more than 100 steps per session.
72

 In 

healthy humans performing upper extremity reaching task, 600 repetitions were required 

for learning.
73

 The degree to which the training intensity must be specific to single limb 

jumping and landing is unknown and should be explored further. The training protocol as 

developed accounted for specificity of training intensity by gradually weaning the subject 
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from BWS, but it is unknown whether she would have been able to make equivalent 

changes in her movement patterns through high-intensity training with the requisite lower 

training volumes. 

The outcomes of this case study are not generalizable to other patients due to the 

nature of the single subject design. Further studies are needed to elucidate the differences 

in outcomes between high-intensity/low-repetition and high-repetition/low-intensity 

training paradigms in larger samples. Additionally, the measurement and treatment 

methods described may not be available in a typical outpatient physical therapy clinic. 

The eight-camera motion analysis system utilized here is able to capture and visualize 

kinetic outcomes, allowing improved identification of specific functional impairments. 

While kinetic analysis is generally unavailable in most clinics, video analysis may 

provide adequate kinematic information. Further, though the space requirements and 

expense of a seated dynamometer may be prohibitive to its clinical use, handheld 

dynamometry may allow improved testing of strength. Tests and measures adequately 

sensitive to the specific patient population should be more consistently used in clinic. The 

BWS system is also not currently available for widespread use due to its custom design. 

However, the components of the BWS system are inexpensive and relatively easily 

installed, given the potential for safe ceiling suspension. 

 

CONCLUSIONS 

In sum, a low-intensity, high-volume training intervention using BWS during 

plyometric training was able to generate positive changes in both mechanical and 

psychological impairments in a single subject with chronic dysfunction following ACL 

reconstruction. Further research into the mechanical, neuromuscular, psychological, and 

functional changes possible with plyometric training is needed, particularly in a 

population with poorer-than-expected long-term outcomes. 

 

REFERENCES 

1. Mall NA, Chalmers PN, Moric M, et al. Incidence and trends of anterior cruciate 

ligament reconstruction in the United States. The American journal of sports 

medicine. 2014;42(10):2363-2370. 



 86 

2. Wilk KE, Reinold MM, Hooks TR. Recent advances in the rehabilitation of 

isolated and combined anterior cruciate ligament injuries. The Orthopedic clinics 

of North America. 2003;34(1):107-137. 

3. Fitzgerald GK, Piva SR, Irrgang JJ. A modified neuromuscular electrical 

stimulation protocol for quadriceps strength training following anterior cruciate 

ligament reconstruction. The Journal of orthopaedic and sports physical therapy. 

2003;33(9):492-501. 

4. Adams D, Logerstedt DS, Hunter-Giordano A, Axe MJ, Snyder-Mackler L. 

Current concepts for anterior cruciate ligament reconstruction: a criterion-based 

rehabilitation progression. The Journal of orthopaedic and sports physical 

therapy. 2012;42(7):601-614. 

5. Ardern CL, Taylor NF, Feller JA, Webster KE. Fear of re-injury in people who 

have returned to sport following anterior cruciate ligament reconstruction surgery. 

J Sci Med Sport. 2012;15(6):488-495. 

6. Ardern CL, Taylor NF, Feller JA, Webster KE. Return-to-sport outcomes at 2 to 7 

years after anterior cruciate ligament reconstruction surgery. The American 

journal of sports medicine. 2012;40(1):41-48. 

7. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to the preinjury level of 

competitive sport after anterior cruciate ligament reconstruction surgery: two-

thirds of patients have not returned by 12 months after surgery. The American 

journal of sports medicine. 2011;39(3):538-543. 

8. Holm I, Oiestad BE, Risberg MA, Aune AK. No difference in knee function or 

prevalence of osteoarthritis after reconstruction of the anterior cruciate ligament 

with 4-strand hamstring autograft versus patellar tendon-bone autograft: a 

randomized study with 10-year follow-up. The American journal of sports 

medicine. 2010;38(3):448-454. 

9. von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after 

an anterior cruciate ligament tear in male soccer players: a study of radiographic 

and patient relevant outcomes. Ann Rheum Dis. 2004;63(3):269-273. 

10. Oiestad BE, Holm I, Aune AK, et al. Knee function and prevalence of knee 

osteoarthritis after anterior cruciate ligament reconstruction: a prospective study 

with 10 to 15 years of follow-up. The American journal of sports medicine. 

2010;38(11):2201-2210. 

11. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of 

contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary 

ACL reconstruction and return to sport. Clin J Sport Med. 2012;22(2):116-121. 

12. Ernst GP, Saliba E, Diduch DR, Hurwitz SR, Ball DW. Lower extremity 

compensations following anterior cruciate ligament reconstruction. Phys Ther. 

2000;80(3):251-260. 

13. Chmielewski TL, Hurd WJ, Rudolph KS, Axe MJ, Snyder-Mackler L. 

Perturbation training improves knee kinematics and reduces muscle co-

contraction after complete unilateral anterior cruciate ligament rupture. Phys 

Ther. 2005;85(8):740-749; discussion 750-744. 

14. Deneweth JM, Bey MJ, McLean SG, Lock TR, Kolowich PA, Tashman S. 

Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee 



 87 

during a single-legged hop landing. The American journal of sports medicine. 

2010;38(9):1820-1828. 

15. Gokeler A, Hof AL, Arnold MP, Dijkstra PU, Postema K, Otten E. Abnormal 

landing strategies after ACL reconstruction. Scand J Med Sci Sports. 

2010;20(1):e12-19. 

16. Orishimo KF, Kremenic IJ, Mullaney MJ, McHugh MP, Nicholas SJ. Adaptations 

in single-leg hop biomechanics following anterior cruciate ligament 

reconstruction. Knee Surg Sports Traumatol Arthrosc. 2010;18(11):1587-1593. 

17. Chmielewski TL, Zeppieri G, Jr., Lentz TA, et al. Longitudinal changes in 

psychosocial factors and their association with knee pain and function after 

anterior cruciate ligament reconstruction. Phys Ther. 2011;91(9):1355-1366. 

18. Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Psychological 

responses matter in returning to preinjury level of sport after anterior cruciate 

ligament reconstruction surgery. The American journal of sports medicine. 

2013;41(7):1549-1558. 

19. Mizner R, Mahlum BT. Clinical Utility of an Injury Specific Psychological 

Survey for Long-Term ACLR Outcomes. Combined Sections Meeting of the 

APTA. Platform Presentationin the Sports Section. San Diego, CA. Journal of 

Orthopaedic and Sports Physical Therapy. 2013;Jan 43(1):Supplement. 

20. Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K. Incidence and 

risk factors for graft rupture and contralateral rupture after anterior cruciate 

ligament reconstruction. Arthroscopy. 2005;21(8):948-957. 

21. Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing 

and postural stability predict second anterior cruciate ligament injury after 

anterior cruciate ligament reconstruction and return to sport. The American 

journal of sports medicine. 2010;38(10):1968-1978. 

22. Ratzlaff CR, Koehoorn M, Cibere J, Kopec JA. Is lifelong knee joint force from 

work, home, and sport related to knee osteoarthritis? Int J Rheumatol. 

2012;2012:584193. 

23. Chmielewski TL, Trumble TN, Joseph AM, et al. Urinary CTX-II concentrations 

are elevated and associated with knee pain and function in subjects with ACL 

reconstruction. Osteoarthritis and cartilage / OARS, Osteoarthritis Research 

Society. 2012;20(11):1294-1301. 

24. Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in 

athletes after anterior cruciate ligament reconstruction. The American journal of 

sports medicine. 2013;41(1):216-224. 

25. Alentorn-Geli E, Myer GD, Silvers HJ, et al. Prevention of non-contact anterior 

cruciate ligament injuries in soccer players. Part 2: a review of prevention 

programs aimed to modify risk factors and to reduce injury rates. Knee Surg 

Sports Traumatol Arthrosc. 2009;17(8):859-879. 

26. Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of Plyometric Training 

on Muscle-Activation Strategies and Performance in Female Athletes. J Athl 

Train. 2004;39(1):24-31. 

27. Dai B, Herman D, Liu H, Garrett WE, Yu B. Prevention of ACL injury, part II: 

effects of ACL injury prevention programs on neuromuscular risk factors and 

injury rate. Res Sports Med. 2012;20(3-4):198-222. 



 88 

28. Sugimoto D, Myer GD, Bush HM, Klugman MF, Medina McKeon JM, Hewett 

TE. Compliance with neuromuscular training and anterior cruciate ligament injury 

risk reduction in female athletes: a meta-analysis. J Athl Train. 2012;47(6):714-

723. 

29. Hurd WJ, Chmielewski TL, Snyder-Mackler L. Perturbation-enhanced 

neuromuscular training alters muscle activity in female athletes. Knee Surg Sports 

Traumatol Arthrosc. 2006;14(1):60-69. 

30. Lephart SM, Abt JP, Ferris CM, et al. Neuromuscular and biomechanical 

characteristic changes in high school athletes: a plyometric versus basic resistance 

program. Br J Sports Med. 2005;39(12):932-938. 

31. Myer GD, Ford KR, Brent JL, Hewett TE. An integrated approach to change the 

outcome part II: targeted neuromuscular training techniques to reduce identified 

ACL injury risk factors. Journal of strength and conditioning research / National 

Strength & Conditioning Association. 2012;26(8):2272-2292. 

32. Myer GD, Sugimoto D, Thomas S, Hewett TE. The influence of age on the 

effectiveness of neuromuscular training to reduce anterior cruciate ligament injury 

in female athletes: a meta-analysis. The American journal of sports medicine. 

2013;41(1):203-215. 

33. Sugimoto D, Myer GD, McKeon JM, Hewett TE. Evaluation of the effectiveness 

of neuromuscular training to reduce anterior cruciate ligament injury in female 

athletes: a critical review of relative risk reduction and numbers-needed-to-treat 

analyses. Br J Sports Med. 2012;46(14):979-988. 

34. Chmielewski TL, Myer GD, Kauffman D, Tillman SM. Plyometric exercise in the 

rehabilitation of athletes: physiological responses and clinical application. The 

Journal of orthopaedic and sports physical therapy. 2006;36(5):308-319. 

35. Vaczi M, Tollar J, Meszler B, Juhasz I, Karsai I. Short-term high intensity 

plyometric training program improves strength, power and agility in male soccer 

players. J Hum Kinet. 2013;36:17-26. 

36. Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female 

athletes. Decreased impact forces and increased hamstring torques. The American 

journal of sports medicine. 1996;24(6):765-773. 

37. Kerr AL, Cheng SY, Jones TA. Experience-dependent neural plasticity in the 

adult damaged brain. Journal of communication disorders. 2011;44(5):538-548. 

38. Luft AR, Buitrago MM. Stages of motor skill learning. Molecular neurobiology. 

2005;32(3):205-216. 

39. Wertli MM, Rasmussen-Barr E, Weiser S, Bachmann LM, Brunner F. The role of 

fear avoidance beliefs as a prognostic factor for outcome in patients with 

nonspecific low back pain: a systematic review. The spine journal : official 

journal of the North American Spine Society. 2014;14(5):816-836 e814. 

40. Wertli MM, Rasmussen-Barr E, Held U, Weiser S, Bachmann LM, Brunner F. 

Fear-avoidance beliefs-a moderator of treatment efficacy in patients with low 

back pain: a systematic review. The spine journal : official journal of the North 

American Spine Society. 2014;14(11):2658-2678. 

41. George SZ, Wittmer VT, Fillingim RB, Robinson ME. Comparison of graded 

exercise and graded exposure clinical outcomes for patients with chronic low 



 89 

back pain. The Journal of orthopaedic and sports physical therapy. 

2010;40(11):694-704. 

42. Mehrholz J, Pohl M, Elsner B. Treadmill training and body weight support for 

walking after stroke. The Cochrane database of systematic reviews. 

2014;1:CD002840. 

43. Wessels M, Lucas C, Eriks I, de Groot S. Body weight-supported gait training for 

restoration of walking in people with an incomplete spinal cord injury: a 

systematic review. Journal of rehabilitation medicine. 2010;42(6):513-519. 

44. Moore MN, Vandenakker-Albanese C, Hoffman MD. Use of partial body-weight 

support for aggressive return to running after lumbar disk herniation: a case 

report. Archives of physical medicine and rehabilitation. 2010;91(5):803-805. 

45. Saxena A, Granot A. Use of an anti-gravity treadmill in the rehabilitation of the 

operated achilles tendon: a pilot study. The Journal of foot and ankle surgery : 

official publication of the American College of Foot and Ankle Surgeons. 

2011;50(5):558-561. 

46. Takacs J, Leiter JR, Peeler JD. Novel application of lower body positive-pressure 

in the rehabilitation of an individual with multiple lower extremity fractures. 

Journal of rehabilitation medicine. 2011;43(7):653-656. 

47. Haupenthal A, Ruschel C, Hubert M, de Brito Fontana H, Roesler H. Loading 

forces in shallow water running in two levels of immersion. Journal of 

rehabilitation medicine. 2010;42(7):664-669. 

48. Hislop H, Montgomery J, Connolly B, Daniels L. Daniels and Worthingham's 

muscle testing: Techniques of manual examination. Philadelphia, PA: W.B. 

Saunders; 1995. 

49. Elias AR, Hammill CD, Mizner RL. Changes in Quadriceps and Hamstring Co-

contraction Following Landing Instruction in Patients With Anterior Cruciate 

Ligament Reconstruction. The Journal of orthopaedic and sports physical 

therapy. 2015:1-27. 

50. Harty CM, DuPont CE, Chmielewski TL, Mizner RL. Intertask comparison of 

frontal plane knee position and moment in female athletes during three distinct 

movement tasks. Scand J Med Sci Sports. 2011;21(1):98-105. 

51. Grevnerts HT, Terwee CB, Kvist J. The measurement properties of the IKDC-

subjective knee form. Knee Surg Sports Traumatol Arthrosc. 2014. 

52. Ebrahimzadeh MH, Makhmalbaf H, Golhasani-Keshtan F, Rabani S, 

Birjandinejad A. The International Knee Documentation Committee (IKDC) 

Subjective Short Form: a validity and reliability study. Knee Surg Sports 

Traumatol Arthrosc. 2014. 

53. Webster KE, Feller JA, Lambros C. Development and preliminary validation of a 

scale to measure the psychological impact of returning to sport following anterior 

cruciate ligament reconstruction surgery. Physical therapy in sport : official 

journal of the Association of Chartered Physiotherapists in Sports Medicine. 

2008;9(1):9-15. 

54. Muller U, Kruger-Franke M, Schmidt M, Rosemeyer B. Predictive parameters for 

return to pre-injury level of sport 6 months following anterior cruciate ligament 

reconstruction surgery. Knee Surg Sports Traumatol Arthrosc. 2014. 



 90 

55. Sturgill LP, Snyder-Mackler L, Manal TJ, Axe MJ. Interrater reliability of a 

clinical scale to assess knee joint effusion. The Journal of orthopaedic and sports 

physical therapy. 2009;39(12):845-849. 

56. Mizner RL, Petterson SC, Snyder-Mackler L. Quadriceps strength and the time 

course of functional recovery after total knee arthroplasty. The Journal of 

orthopaedic and sports physical therapy. 2005;35(7):424-436. 

57. Mizner RL, Kawaguchi JK, Chmielewski TL. Muscle strength in the lower 

extremity does not predict postinstruction improvements in the landing patterns of 

female athletes. The Journal of orthopaedic and sports physical therapy. 

2008;38(6):353-361. 

58. Bohannon RW. Manual muscle testing: does it meet the standards of an adequate 

screening test? Clin Rehabil. 2005;19(6):662-667. 

59. Myer GD, Ford KR, Brent JL, Hewett TE. An integrated approach to change the 

outcome part I: neuromuscular screening methods to identify high ACL injury 

risk athletes. Journal of strength and conditioning research / National Strength & 

Conditioning Association. 2012;26(8):2265-2271. 

60. Anderson AF, Irrgang JJ, Kocher MS, Mann BJ, Harrast JJ, International Knee 

Documentation C. The International Knee Documentation Committee Subjective 

Knee Evaluation Form: normative data. The American journal of sports medicine. 

2006;34(1):128-135. 

61. Elias AR. The effect of body weight support on kinetics and kinematics of a 

repetitive plyometric task. Journal of Applied Biomechanics. 2015;IN REVIEW. 

62. McNair PJ, Prapavessis H, Callender K. Decreasing landing forces: effect of 

instruction. Br J Sports Med. 2000;34(4):293-296. 

63. Benjaminse A, Gokeler A, Dowling AV, et al. Optimization of the anterior 

cruciate ligament injury prevention paradigm: novel feedback techniques to 

enhance motor learning and reduce injury risk. The Journal of orthopaedic and 

sports physical therapy. 2015;45(3):170-182. 

64. Gokeler A, Benjaminse A, Welling W, Alferink M, Eppinga P, Otten B. The 

effects of attentional focus on jump performance and knee joint kinematics in 

patients after ACL reconstruction. Physical therapy in sport : official journal of 

the Association of Chartered Physiotherapists in Sports Medicine. 

2015;16(2):114-120. 

65. Irrgang JJ, Anderson AF, Boland AL, et al. Responsiveness of the International 

Knee Documentation Committee Subjective Knee Form. The American journal of 

sports medicine. 2006;34(10):1567-1573. 

66. Ardern CL, Taylor NF, Feller JA, Webster KE. A systematic review of the 

psychological factors associated with returning to sport following injury. Br J 

Sports Med. 2012. 

67. Petersen W, Zantop T. Return to play following ACL reconstruction: survey 

among experienced arthroscopic surgeons (AGA instructors). Archives of 

orthopaedic and trauma surgery. 2013;133(7):969-977. 

68. Behrens M, Mau-Moeller A, Mueller K, et al. Plyometric training improves 

voluntary activation and strength during isometric, concentric and eccentric 

contractions. J Sci Med Sport. 2015. 



 91 

69. Herman DC, Weinhold PS, Guskiewicz KM, Garrett WE, Yu B, Padua DA. The 

effects of strength training on the lower extremity biomechanics of female 

recreational athletes during a stop-jump task. The American journal of sports 

medicine. 2008;36(4):733-740. 

70. Kluitenberg B, Bredeweg SW, Zijlstra S, Zijlstra W, Buist I. Comparison of 

vertical ground reaction forces during overground and treadmill running. A 

validation study. BMC musculoskeletal disorders. 2012;13:235. 

71. Zeni JA, Jr., Snyder-Mackler L. Early postoperative measures predict 1- and 2-

year outcomes after unilateral total knee arthroplasty: importance of contralateral 

limb strength. Phys Ther. 2010;90(1):43-54. 

72. Cha J, Heng C, Reinkensmeyer DJ, Roy RR, Edgerton VR, De Leon RD. 

Locomotor ability in spinal rats is dependent on the amount of activity imposed 

on the hindlimbs during treadmill training. Journal of neurotrauma. 

2007;24(6):1000-1012. 

73. Fine MS, Thoroughman KA. Motor adaptation to single force pulses: sensitive to 

direction but insensitive to within-movement pulse placement and magnitude. 

Journal of neurophysiology. 2006;96(2):710-720. 

 

 

  



 92 

 

 

 

 

CLINICAL EFFECTIVENESS OF JUMP TRAINING AUGMENTED WITH BODY 

WEIGHT SUPPORT FOLLOWING ACL RECONSTRUCTION: A RANDOMIZED 

PRAGMATIC TRIAL 

 

 

 

 

Audrey R.C. Elias, DPT
 

Kari J. Harris, PhD, MPH
 

Paul C. LaStayo, PT, PhD
 

Ryan L. Mizner, PT, PhD 

 

 

 

 

 

 

The project was reviewed and approved by the  

Institutional Review Board of the University of Montana. 

  



 93 

Background: Abnormally limited knee flexion and increased co-contraction of the 

quadriceps and hamstrings during jump landing are thought to contribute to decreased 

functional outcomes following anterior cruciate ligament (ACL) reconstruction. The 

effective dosage of jump training to improve mechanical and neuromuscular deficits 

following ACL reconstruction is unknown. 

Hypothesis/Purpose: We hypothesize that jump training will improve patient-reported 

function and biomechanical outcomes, and that higher repetition training augmented by 

body weight support (BWS) will result in improved retention of functional, mechanical, 

and neuromuscular gains. 

Study Design: Randomized Pragmatic Clinical Trial 

Methods: Nineteen subjects, averaging 18 months post-ACL reconstruction, with 

impaired function as measured by the International Knee Documentation Committee 

(IKDC) questionnaire, poor performance as measured by limb symmetry in a single leg 

hop for distance (SLHD), poor landing mechanics as measured by knee flexion during 

single leg landing, and poor neuromuscular coordination as measured by a surface 

electromyography-generated co-contraction index in single leg landing were randomly 

assigned to one of two training groups: jump training with normal body weight (JTBW), 

and jump training with BWS (JTBWS). BWS allowed higher repetition of training 

activities over the 8 week training period. Effusion grading throughout training assessed 

joint tolerance. Outcomes were compared pre- and post-training. Retention of gains was 

measured 8 weeks following completion of training. Patient-reported outcomes, SLHD, 

kinetic, and kinematic data were analyzed with two-way ANOVAs with effects of time 

and group. Co-contraction indices were compared utilizing mixed-effects modeling with 

random effect of subject. 

Results: There were significant effects of time during the training phase (weeks 0-8) for 

all outcome measures, but no effect of group. All measures were retained over time in 

both groups. The JTBW group had a higher probability of effusion over the training 

period.  

Conclusion: Jump training effectively mitigates risk factors for second injury and 

osteoarthritis in patients following ACL reconstruction. Gains in mechanical and 

neuromuscular coordination deficits are reflected in lasting improvements in function and 

performance. Higher repetition with BWS did not improve retention, but may be safer for 

articular surfaces. 

Clinical Relevance: While included in many return-to-sport recommendations, jump 

training has not to this point been investigated in a post-surgical population. Jump 

training is an effective intervention for people with poor outcomes following ACL 

reconstruction, and supporting body weight may lessen joint reactivity. 

Key Terms: Jump training, biomechanics, single leg landing, neuromuscular 

coordination 
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Introduction 

Injury of the anterior cruciate ligament (ACL) is one of the most prevalent knee 

injuries in athletes who participate in cutting and pivoting sports.
1
 Modern reconstruction 

techniques with accelerated rehabilitation protocols consistently resolve anterior knee 

laxity and rapidly return patients to physical activity.
2
 However, over half of the patients 

who undergo ACL reconstruction will show radiographic evidence of knee osteoarthritis 

within 10 to 15 years after surgery.
3
 Additionally, in those who do return to sport, the 

rates of incurring a second ACL injury are as high as 1 in 4 patients.
4
 As a result, a large 

cohort of patients who have ACL reconstruction can expect decades of arthritic pain and 

disability during their lifetime, contributing to a significant public health problem.
5
  

A growing body of evidence suggests that the ACL reconstructed knee commonly 

exhibits abnormal mechanical and neuromuscular behaviors during the tasks in which the 

knee is most frequently injured, such as landing from a jump.
6-8

 The operated knee 

generally continues to exhibit decreased knee flexion during weight acceptance with 

reduced knee flexion moments in comparison to the uninvolved limb.
7
 Landing from a 

jump with large landing forces and limited knee motion is common after ACL 

reconstruction, and musculoskeletal modeling has found it increases strain on the ACL.
9
 

The operated limb also responds to jump landing with co-contraction of the knee flexors 

and extensors compared to the uninvolved side and healthy peers.
6,10,11

 In vivo knee 

modeling suggests co-contraction during landing is associated with increased knee 

compressive forces compared to healthy limbs.
10

 Excessive loading is known to play a 

causative role in knee osteoarthritis.
12

 Thus, mechanical and neuromuscular limitations 

contribute to both re-injury and osteoarthritis risk. 

Recent work has established that brief instruction in jump landing technique 

shows promise as a means to improve force absorption and decrease co-contraction 

following ACL reconstruction on a short-term basis.
11,13

 Restoring the force attenuating 

capacity of the ACL reconstructed limb could therefore decrease re-injury rates and 

mitigate arthritic changes. The effects of extended jump training following ACL 

reconstruction, however, is not known and represents a gap in the current evidence base.  

The initiation of a jump training program following ACL reconstruction requires 

caution as possible increases in cartilage degradation can occur in an already vulnerable 
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joint.
14

 Because of this, low repetition of jump training activity in healthy athletes with 

uninjured knees is frequently recommended due to high ground reaction forces, and 

concern for the articular health of the joint.
15

 Retraining efforts may also be self-limited 

by patients who restrict their knee loading during landing due to fear of injury or lack of 

confidence in the operated limb.
16

 Collectively, these considerations can be barriers to 

effective dosing of jump training regimens and a reason for low effect sizes and poor 

retention of jump training interventions, even in healthy athletes. 

Important tenants in motor learning highlight the need for a high number of 

repetitions of a task to improve retention of a motor skill.
17

 Only one study to date has 

compared the effects of varying doses (e.g., repetition or volume) in plyometric training 

4-6 months post-ACL reconstruction.
18

 Higher volume plyometric training resulted in 

greater improvements in functional performance, such as single leg hop for distance, than 

lover volume training.
18

 Biomechanical and neuromuscular performance measures such 

as knee flexion, vertical ground reaction forces (VGRF), and co-contraction were not 

measured, however. Additionally, retention of these improvements was not measured and 

the reported training dosage in the high volume group was lower than what is theorized to 

generate lasting change.  

Managing clinically meaningful doses of jump training is challenging. For 

example, increased repetition is generally accompanied by decreased intensity. However, 

reducing intensity during jump landing is problematic as the current recommendations to 

lower the height of the jump still induce large and rapid limb loading when landing.
15

 By 

utilizing body weight support (BWS), the intensity of jump landing tasks can be 

decreased while still allowing normal kinematic and kinetic behaviors, thereby allowing 

increased repetition of training.
19

 

The purpose of this study is therefore two-fold: 1) to examine the impact of an 

extended jump training program on patient-reported function and biomechanical 

measures; and 2) to determine whether a high repetition program with decreased intensity 

via BWS will improve functional, mechanical, and neuromuscular outcomes. We 

hypothesize that jump landing training, whether relatively low or high repetition, will 

improve outcomes, but that higher repetition training will result in improved retention of 

functional, mechanical, and neuromuscular gains. Further, we posit that the group trained 
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under body weight support conditions will exhibit greater training tolerance as assessed 

by their knee effusion status. 

 

METHODS 

Trial design 

The study was designed as a randomized pragmatic parallel trial to assess the 

efficacy of high-repetition jump training with BWS as compared to a best practice jump 

training program. Participants underwent an initial screening evaluation to determine 

appropriateness for intervention following ACL reconstruction. Those individual 

participants with functional and biomechanical deficits were considered in need of 

intervention, and were randomly assigned to one of two intervention groups: jump 

training under normal body weight conditions (JTBW) and jump training augmented by a 

custom BWS system (JTBWS). Follow-up testing occurred mid-intervention and post-

intervention, and retention testing occurred at least 8 weeks post-intervention. All testing 

and intervention protocols were approved by the University of Montana Internal Review 

Board. All participants provided written informed consent to initial screening testing and 

further training. The trial is registered at ClinicalTrials.gov, registration number 

NCT02148172. Active recruitment began in February 2014 and continued through March 

2015. Training and follow-up testing continued through July 2015.  

Participants 

Participants were recruited for initial screening by flyer advertisement postings on the 

University of Montana campus, by advertising in the community outside of campus, and 

by word-of-mouth from local physical therapists and orthopedic surgeons. Participants 

were eligible for screening if they were between 6 and 48 months post-ACL 

reconstruction, between the ages of 12 and 35, had been cleared for sports participation 

by their surgeon, and actually participated in recreational or competitive sports at a 

Tegner Activity Scale level greater than 4.  
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Exclusion criteria for initial screening included bilateral ACL injury or revision to the 

original ACL reconstruction, a history of posterior cruciate ligament injury, or a history 

of lower extremity injury or health condition that limited activities of daily living within 

the previous 6 months. Potential subjects would also be excluded if they weighed more 
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than 136 kilograms as the BWS system provided a maximal dose of BWS of 40 

kilograms.  

Participants met eligibility criteria for randomization into treatment groups based 

on poor IKDC score, SLHD limb symmetry, or peak knee moment during single leg land. 

Poor scores were defined as falling further than 1 standard deviation below the mean, as 

determined by a database of athletes meeting the same inclusion and exclusion criteria 

previously tested
11

 or from previously published return to sport standards.
20

 Effectively, 

scores of <75% on the IKDC, a limb symmetry index <75% in a single leg hop for 

distance test, or a peak knee moment <2.3 body weights (BW) and <80% of the 

nonsurgical side during a single leg landing task were defined as outcomes that may 

benefit from intervention.  

Participants meeting one or more of the eligibility criteria were offered placement 

into the clinical trial. Upon acceptance, each participant was randomly allocated to one of 

two treatment groups as detailed in the CONSORT Flow Diagram (Figure 1). 

Testing procedures occurred in the following order: administration of the 

International Knee Documentation Committee Subjective Knee Form (IKDC); 5 minute 

treadmill walking warm-up; placement of electromyography electrodes; maximal 

voluntary isometric contraction and strength testing; placement of retroreflective 

markers; completion of the single leg hop for distance (SLHD) test; static standing 

subject calibration; and biomechanical analysis of hopping tasks as detailed below. 

Setting 

All testing and training took place in the Movement Science Laboratory on the 

University of Montana campus. Participants allocated to the JTBWS condition completed 

their training utilizing the custom BWS system described below. Participants allocated to 

the JTBW condition completed their training in the same location, but with the BWS 

system removed from the area. All training was completed on an individual basis with a 

licensed physical therapist.  

Outcomes 

Patient-Reported and Performance-Based Functional Outcomes 

The IKDC is a validated and frequently utilized knee-specific patient-reported 

functional outcome measure documenting symptoms as well as participation in daily 
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functional and sports activities.
21

 Normative data allows documentation of function as a 

percentile score.
22

 The IKDC is also less subject to a ceiling effect in an active 

population, and it's use is consistent with clinical practice guidelines.
21

 

The SLHD is a commonly used reliable and valid performance-based outcome 

measure.
23,24

 Testing was completed in accordance with previously published 

methodology.
24

 Limb symmetry was expressed as the ratio of the average distance 

hopped by the operated limb to the average distance hopped by the non-operated limb.
23

  

Biomechanical Outcomes 

Electromyographic, kinematic, and kinetic data were obtained during the landing 

phase of a single-leg landing task as previously described.
11

 Specific outcomes of 

particular interest included peak sagittal lower extremity joint angles and moments as 

well as co-contraction of the quadriceps and hamstrings during the weight acceptance 

phase of landing. The single-leg landing task was chosen since the mechanism of a non-

contact ACL injury typically occurs during single leg landing.
25

 Additionally, a single-leg 

task reduces the degrees of freedom available for compensatory movement patterning 

that might be possible in a double-leg task such as a drop vertical jump.  

Electromyographic Testing 

In preparation for electromyographic analysis of the single-leg landing task, knee 

flexor and extensor MVIC testing was performed in a seated position using a Kin-Com 

125AP dynamometer (Chattanooga Group, Inc., Chattanooga, TN) employing previously 

published methods.
11,26

  Muscle activation levels recorded with sEMG during the MVIC 

trial with the greatest torque produced were used for sEMG normalization during analysis 

of the single-leg landing task. 

Muscle activation levels were recorded from the vastus lateralis (VL) and biceps 

femoris (BF) using a Bagnoli sEMG system (Delsys Inc., Boston, MA) interfaced with a 

VICON Nexus system (Oxford Metrics, Ltd., London, UK) with a 16-bit analog-digital 

converter as previously described.
11

  

Using Visual 3D software (Visual 3D, Version 4.75.29, C-motion Inc., Rockville, 

Md), sEMG signals were bandpass filtered at 20-350 Hz and full-wave rectified before a 

linear envelope was created with a 10Hz low-pass phase corrected Butterworth filter. 

Electromyography signals were then normalized to the peak sEMG signal obtained 
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during the peak MVIC trial, and normalized signal was used for analysis of co-

contraction during the single leg landing task. 

Instantaneous co-contraction was defined as the weighted ratio between hamstring 

and quadriceps activation, and the co-contraction index (CoI) as the integral of that 

function across the weight acceptance phase of landing:
27

 

∫
    

    
            

              

                  

 

where EMGL is the normalized activation of the less active muscle and EMGH is the 

normalized activation of the more active muscle. This method combines estimations of 

relative recruitment of the quadriceps and hamstrings as well as the magnitude of co-

contraction.
28

 Both the co-contraction index and maximal instantaneous co-contraction 

were used as measures of muscle activation pattern. 

Biomechanical Testing 

Kinematic and kinetic data were obtained during landing tasks using the VICON 

Nexus motion capture system with 8 MXF40 cameras and a 400x600 mm force plate 

(AMTI, Watertown, MA) capturing ground reaction forces. Video data were sampled at 

200 Hz; force place data were sampled at 1200 Hz and processed via previously 

published methodology.
11

  

Retro-reflective markers (14 mm diameter) were placed per previous work to track 

the three-dimensional position of the feet, shanks, thighs, pelvis, and trunk.
11,26

 A 

standing calibration was performed prior to completing the landing trials to identify joint 

centers with respect to each segment’s coordinate system. 

Joint kinematics were calculated using Euler angles, and joint kinetics were 

calculated with inverse dynamics using rigid body analysis through custom applications 

with Visual 3D software. Joint angles and moments were time normalized to 100 

increments from 100 milliseconds prior to initial contact on the force place to peak knee 

flexion during landing (the weight acceptance phase) to enable the calculation of an 

ensemble average across trials for each subject, as the time between these events varied 

slightly within subject trials.  
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The full testing procedure was repeated after 4 weeks of training and again at 

completion of the full 8-week training course. Retention testing was performed after 8 

weeks without contact with the researchers. The definition of events during landing was 

modified in the trained state to end at peak knee flexion or when the VGRF equaled 1 

body weight, 

whichever came 

first: changes in the 

timing of knee 

bending in the 

trained state 

resulted in 

artificially 

extended landing 

phases according to 

the original 

definition of 100 

msec prior to land 

to peak knee 

flexion. This new 

definition allowed 

comparison of 

integrated EMG 

between trials. 

Participant 

Outcome Rating 

The Global 

Rating of Change 

(GROC) outcome measure was administered at each follow up testing session in addition 

to the IKDC. The GROC has been validated as a measure of patient-perceived 

outcomes.
29

 Subjects rated the overall condition of their knee from the time they began 
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treatment to each specified testing session on a 15-point scale with anchors of -7 (A very 

great deal worse), 0 (About the same), and 7 (A very great deal better).  

Intervention  

The jump training 

course, regardless of 

group assignment, 

involved 8 weeks of 

individual twice 

weekly sessions, each 

an hour long (Table 

1). Each session began 

with verbal report of 

knee joint pain and 

muscle soreness and a 

stroke test to monitor 

joint effusion.
30

 The 

participant then 

completed a 5-minute 

walking warm-up and 

a series of dynamic 

stretches to prepare 

the musculoskeletal 

and cardiovascular 

system for exercise. 

Jump training began 

immediately afterward. After completing the prescribed number of jump repetitions 

(contacts) as designated by group assignment, each participant completed a 5-minute 

walking cool-down and gentle stretching of the major muscle groups of the lower 

extremity, then reported knee joint and muscle pain again. A stroke test monitored post-

training effusion. The training protocol for each group is detailed in Table 2. The task 

progression in both groups was similar to recently published neuromuscular training 
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protocols.
31-34

 Specific exercises and training repetition were adapted from those utilized 

in published ACL injury prevention programs.
33,34

 Training repetition was tracked via 

contacts, defined as the number of times the involved leg hit the ground and/or generated 

a directional change (as in cutting). The JTBW group progressed from 80-100 contacts 

per session in the first week to 120-200 contacts per session in the 8
th

 week.
35-37

 In 

contrast, the JTBWS group had much higher repetition in the early phases of training. 

Repetition in both groups was maximized to patient tolerance within the limits set by 

each arm of the protocol as defined in Table 2. 

For the first six weeks, the JTBWS group performed jump training in a custom BWS 

system described fully in previous work.
19,38

 The system is designed to allow freedom of 

movement within a 1.5 x 3 x 4 m volume with a consistent vertical force, thereby 

providing movement and sport specificity with decreased impact loads.
19

 Training was 

initiated at a BWS level of 30%, wherein a near-constant vertical force equal to 30% of 

the patient’s body weight was exerted at the center of mass. The level of BWS was 

decreased every 2 weeks, from 30% to 20% to 10%, per tolerance to activity, with 

associated changes in repetition. The final two weeks of training were performed without 

BWS and were essentially the same as the final two weeks of training in the JTBW group 

in both exercises performed and repetition. All other training parameters, such as 

feedback, reinforcement, attentional focus, practice patterning, and introduction of sport-

specificity (e.g. dribbling a basketball) progressed over time and similarly between 

groups, and have been detailed in previous work.
38

 

In order to account for therapist belief or disbelief in treatment, cues and treatment 

progressions were scripted a priori. For example, all subjects had to correctly perform 

double leg jumping before progressing to single leg hop. Accordingly, they had to 

correctly perform a single leg squat before progressing to a single leg hop. All treatments 

were documented with a treatment log to ensure adequate procedural reliability. Four 

treatments for each subject were randomly selected for video-based fidelity analysis by 

an external physical therapist to ensure that treatments were equivalent between groups. 

Treatment logs and videos were reviewed with a standardized checklist documenting the 

number of steps in the protocol correctly completed per patient divided by the total 
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number of steps. The mean percentage of steps performed correctly was compared 

between groups.  

Randomization and Blinding 

All protocols were prepared in advance and enclosed in sealed opaque envelopes. The 

envelopes were then sorted by an external statistician into a random sequence in blocks of 

10 without stratification according to a computer generated random number sequence. 

Randomly sorted protocols were kept in a locked cabinet that the investigators were 

unable to access. A protocol was not assigned to a participant until they had signed 

informed consent documents, been determined as eligible for training and enrolled, and 

arrived for their first training session. An administrative assistant then retrieved the next 

envelope in the sequence and wrote the subject number on it prior to opening. 

The testing clinician screened and enrolled eligible subjects. After enrollment, the 

testing clinician had no further contact with the participant until follow-up testing. The 

treating clinician instigated allocation procedures and administered the intervention. The 

testing clinician performed all follow-up testing, was blinded to group allocation, and 

remained blinded to group allocation through the analysis process. 

Subjects were blinded to specific differences between treatments. Each subject was 

told that the two treatments differed in dose, but that both groups were expected to 

improve. Subjects were asked at the retention testing session whether they believed they 

were allocated to the control or experimental group, as well as whether they believed they 

performed a high or low dose of jump training.  

 

Statistical Methods 

 A priori power calculations were performed to detect differences between groups 

in the co-contraction index and peak knee flexion with a two-sided test (α=0.5, β=0.8). 

The effect size was estimated from prior research demonstrating an effect of verbal 

instruction on both increasing knee flexion (d = 1.8) and decreasing co-contraction (d = 

0.45) during single leg landing,
11

 as well as from pilot training and testing. Seven 

subjects per group were needed to adequately test the hypotheses. Anticipating an 

attrition of 20% through training, we planned to enroll 20 subjects. 
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An intention-to-treat paradigm was utilized in the case of subjects lost to follow-up, 

with the last measurement carried forward. All variables of interest including kinematic, 

kinetic, muscle activation, patient-reported, and performance-based outcomes were 

checked for normality and outliers. Outliers were re-coded to a value of one unit beyond 

the next most extreme value.
39

 All data were normally distributed after re-coding of 

outliers. Descriptive statistics were prepared for all variables of interest.  

To address the question of whether jump training had an immediate effect on 

biomechanical, patient-reported, and performance-based outcome measures, comparisons 

were made between results from weeks 0, 4, and 8. There were no missing values in the 

kinematic and kinetic data, nor in patient-reported or SLHD outcomes data. Two-way 

ANOVAs by time and group were conducted for each patient-reported, kinematic, and 

kinetic variable of interest. Any significant effects were tested post-hoc with a Bonferroni 

correction. However, EMG data were corrupted with noise (e.g. large low frequency 

movement artifact) in 3 subjects at week 0, and in 2 subjects at week 4, requiring removal 

from the data set. As the loss occurred in the initial testing sessions, we were unable to 

perform statistical imputation procedures to complete the data set. In order to allow the 

remaining data from the subjects to contribute to the analysis, we took a modeling 
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approach. Each outcome was modeled with a general linear model with an interaction of 

time and group, which was compared with a mixed effects model with interaction of time 

and group with a random effect by subject. The models were compared using AIC and 

the model with the best fit was utilized. 

To address the question of whether increased repetition improved the retention of 

motor skills, two-way ANOVAs by time (between weeks 8 and 16) and group were 

conducted for all variables of interest. No EMG data were lost in these testing sessions, 

and so were included in the two-way ANOVA testing. Post-hoc pairwise comparisons 

were made with a Bonferroni correction. Effect sizes were estimated using Cohen’s d. 

Instances of joint effusion greater than that with which each subject presented initially 

were recorded throughout training as a measure of tolerance to treatment. A two-

proportion z-test compared the probability of developing effusion through the entire 8 

weeks of training by group.  

 

RESULTS 

Thirty participants were screened for initial testing (Figure 1). Twenty-three were 

eligible to continue with training. Two declined treatment due to travel distance from the 

treatment and testing site; 1 declined treatment due to scheduling difficulties; and 1 

declined treatment for personal reasons. In total, 19 participants (5 male, 14 female) were 

randomly assigned to either the JTBW or JTBWS treatment group (Table 3). Preferred 

activities and sports included soccer, basketball, football, skiing, snowboarding, Tai 

Kwon Do, Mixed Martial Arts fighting, and dance. Attrition was lower than expected, as 

one participant declined further treatment following the week 4 follow-up testing session 

due to time and scheduling constraints. No further exclusions were made following 

randomization.  

Patient-reported functional outcomes, kinematic outcomes, and kinetic outcomes 

were available for all 19 subjects at all testing sessions. At initial testing, 16 subjects had 

EMG data available; at the 4 week testing session, 17 had EMG data; and all 19 subjects 

had EMG data at both the 8 and 16 week follow-up testing sessions. 

Of the 9 subjects allocated to the JTBW group, 5 believed they were part of the 

experimental group. Of the 9 subjects allocated to the JTBWS group that completed 
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training, 7 believed they were part of the experimental group (P = 0.62). Subjects were 

also asked whether they believed they received a high or low dose of training. Of the 9 

subjects in the JTBWS group, 7 believed they had received a high dose of training. Of the 

9 subjects in the JTBW group, 7 believed they had received a high dose (P = 1.00). 

Subjects in the JTBW group attended 91.7% of the treatment sessions, while subjects 

in the JTBWS group attended 91.9% of the treatment sessions; no subject missed more 

than 3 visits. There was no significant difference in the percentage of procedural checklist 

items performed with each group (P = 0.33; JTBW 96.1%, JTBWS 93.6%). 

Primary Outcomes 

 With 8 weeks of jump training, both the JTBW and JTBWS groups saw 

statistically significant improvements in patient-reported function, hop distance 

performance, kinematics and kinetics, and neuromuscular behaviors during landing. 

There was no statistically significant effect of group; therefore, descriptive statistics, p-

values, and effect sizes reported 

below are pooled between groups.  

Self-reported function as 

measured by the IKDC improved 

significantly from 76.1±11.5 at 

week 0 to 83.5±9.7 at week 4 

(mean±SD; P=0.001; d=0.69; 

Figure 2). IKDC score improved 

further by week 8, to 87.3±8.2 

(P=0.03; d = 0.43) for an overall 

training effect size of d=1.12. 

Participants’ GRoC scores 

improved significantly from 

4.9±0.9 at week 4 (GRoC score of 

5 = ―Quite a bit better‖) to 5.8±0.6 at week 8 (GRoC score of 6 = ―A great deal better‖)(P 

= 0.004). Limb symmetry in the SLHD did not improve significantly from 88.4±7.5 at 

week 0 to week 4 (P=0.35), but did improve significantly to 94.3±7.0 by week 8 

(P=0.02; d=0.82; Figure 2). 
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Peak hip flexion, knee flexion, and ankle dorsiflexion all increased significantly 

with training from week 0 to week 8 (P < 0.001; Table 4). Peak VGRF decreased 

significantly with training from week 0 to week 8 (P = 0.0004; Table 4). Peak hip 

moment also increased with training (P =0.0008; Table 4), though there was no 

significant effect of training on knee and ankle sagittal moments over the full 8 weeks.  

The co-contraction 

index during landing 

decreased from 37.2±15.0 

to 18.58±6.1 over the 

training period (d = 1.26; 

Figure 3). The linear model 

without a random effect of 

subject was superior to the 

mixed effects model, with 

an AIC of 374.9 compared 

to 380.5, and was used for 

further analysis. There was 

a significant effect of time 

(βweek = -2.58, P = 0.0012; 

R
2
 = 0.29, p=0.0003), but no significant effect of group. Maximal co-contraction 

decreased from 0.81±0.29 to 0.62±0.25 over the training period. Linear modeling without 

a random effect was again superior to a mixed effects model, but there were no 

significant effects of time or group (βweek = -0.02; P = 0.29; R
2
 = 0.02).  
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After the retention period following the training intervention, both the JTBW and 

JTBWS groups demonstrated no statistically significant changes compared to 

immediately following training in any of the primary variables of interest. There were no 

significant differences between groups or interactions between group and time; therefore, 

descriptive statistics, p-values, and effect sizes reported below are pooled between 

groups. 

At the week 16 testing session, neither the IKDC score (89.1±6.1, P = 0.45; 

Figure 2), nor the GROC (5.9±1.1, P = 0.69) were different from that at the week 8 
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testing session. Kinematic and kinetic behaviors during landing were retained as well (P 

> 0.4; Table 4). Similarly, neuromuscular activation patterns were retained over the 

retention period. In both the JTBWS and JTBW groups, there was no statistically 

significant change in co-contraction index or maximal co-contraction between the week 8 

and week 16 testing sessions (P > 0.1; Figure 3).  

The stroke test for effusion was performed 32 times throughout training, before 

and after each 

session. For the 

JTBW group, the 

probability of 

effusion above 

that with which 

the subject 

presented at initial 

testing was 0.16. 

The probability of 

excessive effusion 

was significantly 

lower for the JTBWS group, at 0.05 (P < 0.0001; Figure 4). 

DISCUSSION 

 We hypothesized that jump training would improve function and decrease risk 

factors for osteoarthritis and re-injury. Additionally, we hypothesized that increased 

repetition with decreased intensity using BWS would improve retention of these effects. 

The results of the study support our first hypothesis, but do not support the second, in that 

both groups retained their improvement in all variables. Jump training, whether with or 

without BWS, improved patient reported function, hop performance, biomechanical 

measures, and neuromuscular behaviors in a patient group with previously limited 

outcomes following surgery.  

The improvements with training are likely due to exposing the knee to activity 

specific stressors over an extended period. The current trial demonstrates continued 

improvement in patient-reported functional outcomes and in VGRF at 8 weeks compared 
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with 4 weeks. Further, performance as measured by limb symmetry in the SLHD did not 

improve significantly at 4 weeks, but did improve by 8 weeks.  The use of patient 

reported Global Rating of Change corroborates these subjective findings.  All participants 

reported the condition of their knee was ―quite a bit better‖ at the 4 week mark.  By the 

conclusion of treatment at 8 weeks, the average patient report had improved even further 

to ―A great deal better‖.  The GROC is a commonly used subjective instrument to 

quantify clinically meaningful improvements over time. 
29

  Treatment duration beyond 4 

weeks was therefore required for the full training effect.  

Brief instruction in landing technique has been shown to affect landing patterns and 

neuromuscular behaviors, though the retention of the effect is unknown.
11,13,26

  In one 

study, instruction to soften landing resulted in increased hip and knee flexion from 

approximately 52° to 62° and 86° to 97° respectively in healthy athletes.
26

 Following 

ACL reconstruction, the pattern of increased hip and knee flexion is similar while the 

values are fundamentally different. The results of the current study mirror the results of 

previous work, in which hip and knee flexion during landing increased from 46° to 66° 

and 56° to 77°, respectively.
11

 

In a separate sample from the current clinical trial, we found a pre-instruction co-

contraction index of 30.8±17.7, which improved to 23.7±15.4 with brief instruction to 

improve landing mechanics.
11

 The subjects in the current study began at a higher average 

co-contraction index, concomitant with their lower than average knee flexion during 

landing. However, with extended training the subjects in the current trial decreased co-

contraction to 18.58±6.1, beyond that found previously. Given that decreased co-

contraction has been associated with decreased joint compression in landing, these 

changes in muscle activation could have a profound effect on joint compression during 

jumping tasks.
13

  

The improvements in mechanical and neuromuscular risk factors for second injury 

and osteoarthritis are mirrored by improvements in function. Average IKDC score 

increased significantly from 76.1 to 87.3 with training. People with a history of knee 

problems have an average IKDC score of 56.6, whereas people with no history of knee 

problems have an average score of 83.5.
22

 In this sample with mean age of 23 years, the 
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average IKDC score improved from the 20
th

 percentile of women 18-24 years old to the 

40
th

 percentile.  

This study is the first to our knowledge to demonstrate retention of clinically 

meaningful mechanical and neuromuscular gains in post-ACL reconstruction population. 

Several studies in the neurological rehabilitation literature have demonstrated that 

retention of skills is dependent on repetition.
17,40-42

 Studies investigating clinical practice 

patterns in neurological rehabilitation have found that in clinics patients were only 

exposed to low repetition training, even though improved skill development with 

increased repetition is well documented.
43

 As a result, we are uncertain as to whether the 

JTBW group represents normal care or a best practice scenario. There is a dearth of 

quality evidence regarding the effects of jump training in a post-surgical population. The 

lack of difference in retention of kinematic, kinetic, and neuromuscular behavior, 

contrary to our hypothesis, may be thus explained by the larger-than-anticipated effect of 

jump training itself. 

The subjects in the JTBW group did have a statistically higher probability of effusion 

with training, particularly as the intensity of training progressed in weeks 5-8. The 

current study is the first to our knowledge to examine effusion within an intervention 

study for patients with ACL reconstruction. While the improvements in impairment and 

functional level deficits were similar between groups, the higher repetition and lower 

intensity made possible by BWS may be clinically preferential to training with normal 

body weight.  

While several studies have examined the effects of jump training on healthy athletes 

as part of ACL injury prevention programs,
33,44,45

 relatively few have examined the 

effects of jump training on athletes following ACL reconstruction.
18,46,47

 No other studies 

have examined the effects of training on mechanical and neuromuscular activation 

behaviors in a post-surgical population, yielding few comparators. The current study 

represents seminal data that helps explain how risk factors for re-injury and osteoarthritis 

can be manipulated in a lasting way through a retraining intervention in a post-surgical 

population.  

A recently published study compared high and low intensity jump training 3 months 

following ACL reconstruction.
47

 That study reported a 12-point change in the IKDC, 
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similar to our 14-point change. It is notable that the average postoperative time frame of 

our subjects suggests that they had achieved more of a steady state of outcomes compared 

to those at only 3 months after surgery.
48

 The changes made by the subjects in the current 

study are therefore less likely to be due to continued healing. Recent findings reported in 

abstract form compared functional changes with a jump training intervention post-ACL 

reconstruction via the IKDC and SLHD. That study demonstrated a similar trend to the 

results of the current study, but the effect was not significant.
46

 In comparison, we 

demonstrate a profound effect on functional measures as well as risk factors for further 

problems. In that study, participants were not screened for need for training intervention 

prior to initiating training. Subjecting athletes who are already functioning optimally to 

extended plyometric training, therefore, may not be clinically efficient.  

Only one study to our knowledge has compared the effects of higher (70 contacts per 

session, twice weekly) and lower (20 contacts per session, thrice weekly) repetition in 

jump training following ACL reconstruction.
18

 Participants in the higher repetition group 

demonstrated a 20% greater improvement in the SLHD, while we show similar 

improvement in both groups.  However, with 140 contacts per week, the high repetition 

group of that study completed approximately half of the contacts completed by the lower 

repetition group of the current study.
18

  

The participants in the current trial differ from those of other recent studies primarily 

in their pre-training level of function. We utilized the initial session as a screen in order 

to avoid treating those athletes that did not require further intervention. Designating 

intervention to those patients with less than optimal outcomes represents a novel 

approach for intervention studies, but mirrors clinical reasoning for prescribing 

interventions. Because each participant self-identified as having less than optimal 

function, they may also have been more likely to adhere to the training schedule. Further, 

the participants in the current trial were, on average, 18 months post-surgical, whereas the 

participants in the other three trials have been, on average, within 3 to 6 months from 

surgery. People with poor outcomes at 1 year from surgery are unlikely to improve at 2 

years from surgery.
48,49

 The participants in the current trial, particularly given their 

heterogeneity in surgical procedure, surgeon, course of rehabilitation, age, and preferred 



 114 

activity, are therefore more likely to be representative of the population of athletes with 

poor long-term outcomes following ACL reconstruction. 

Limitations of this trial include a small sample size and unequal gender distribution. 

The sample size was determined through an initial power analysis. A limited 

understanding of the potential of the selected participant group to improve may have led 

to an underestimation of the potential effect sizes within groups, and an overestimation of 

the effect between groups. This sample thus serves as a basis for a larger cross-sectional 

or multi-group study. Further research to explore the relative effects of training intensity 

and repetitions would further expand on these results.  

There was also an unequal distribution of gender, with 5 males subjects in the JTBW 

group compared with 1 male subject in the JTBWS group, representing a failure of 

randomization on this variable. Previous investigations have demonstrated differences in 

landing performance and neuromuscular activation patterning between groups prior to 

initial injury and immediately following injury. Females are at higher risk of non-contact 

ACL injury, 
25

 and females with ACL-deficiency are less likely to be classified as copers 

following injury.
50

 Gender may therefore play a role in group differences or lack thereof. 

The effect of gender in recovery following surgery remains unknown and untested in our 

trial. 

The repetition level of the JTBW group in the current study was more than twice that 

delivered to the higher repetition group in other studies.
18

 The JTBW group may have 

received higher-than-normal repetition. Indeed, there are no studies looking at actual 

repetition of plyometric activity in the course of normal rehabilitation following ACL 

reconstruction outside the academic environment. It is therefore possible that a lower 

repetition treatment would have yielded poorer retention; however, our object was to 

pursue best practice dosage parameters based on training tolerance. 

Improved mechanical function and decreased co-contraction with training imply a 

decreased risk of osteoarthritis long-term, particularly in those athletes who retain 

decreased co-contraction in landing. Long-term prospective research is necessary to 

determine whether osteoarthritic and re-injury risk is in fact decreased in athletes who 

undergo extensive jump training. Utilization of biomarkers to evaluate cartilage 

degradation with activity may be a useful examination tool to contribute to the 
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determination of change in osteoarthritic risk with intervention.
14

 As patients with less-

than-optimal outcomes following ACL reconstruction are unlikely to improve with time 

alone and long-term sequelae can be devastating, the results of the current trial indicate a 

positive step forward in intervention. A course of directed and highly cued jump training 

is a useful intervention strategy for those patients who do not attain their functional goals 

following ACL reconstruction.  
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CONCLUSION 

 

Extensive research has been conducted into the risk factors for injury and the 

rehabilitation from injury and surgery because of the frequency of ACL injury and the 

physical, emotional, and financial devastation it can cause. However, discrepancies in the 

literature continue to exist, particularly surrounding the role of coordination of the 

hamstrings and quadriceps in the neuromuscular control of the knee. Post-surgically, the 

role of co-contraction in performance, second injury risk, and the development of 

osteoarthritis has been poorly understood. The studies included in this dissertation 

represent a comprehensive study of the mechanical and neuromuscular impairments in 

weight acceptance that underlie the limitations to success following ACL reconstruction. 

A path toward improving functional recovery by treating impairments in landing is 

suggested and a novel training approach is tested. This dissertation thereby advances the 

science of rehabilitation to more effectively target mechanical and neuromuscular 

impairments that devastatingly contribute to the risk of re-injury and early onset 

osteoarthritis following ACL reconstruction.  

 

Chapter 2: How does muscle recruitment patterning differ between athletes with a 

contact vs. a non-contact mechanism of injury? 

 

Hypothesis 1: Individuals with a non-contact mechanism of injury will exhibit more co-

contraction than individuals with a contact mechanism of injury. 

 

People with a non-contact mechanism of injury tend to have higher co-contraction 

during a single leg landing as compared to people with a contact mechanism of injury, 

particularly in the non-surgical limb. In essence, the neuromuscular activation profile of a 

person with a contact injury mirrors that of the uninvolved limb of a person with a non-

contact injury. Such results contrast with theoretical suppositions that co-contraction is a 

beneficial activation pattern. Rather, we found that co-contraction of the hamstrings with 

the quadriceps may not be an appropriate neuromuscular activation pattern. More 

importantly, these findings provide further support to the hypothesis that patients with a 



 121 

non-contact mechanism of injury may have an underlying impairment in their 

neuromuscular control, which has ramifications on major shortcomings in outcomes for 

second ACL injury risk and knee osteoarthritis.  

 

Hypothesis 2: There will be coordination differences between limbs, with the operated 

limb exhibiting higher co-contraction.  

 

Increased co-contraction was found in the involved limb of people with a contact 

injury. There is evidence that injury and reconstruction to the limb of a person with a 

non-contact injury increases co-contraction beyond that of a person with a contact injury. 

These results support findings demonstrating decreased co-contraction in people who can 

return to sport without surgical reconstruction of the injured ligament as compared to 

people who cannot.
1,2

 Further, the results are consistent with findings that mechanism of 

injury is associated with the probability of a person being able to return to sport without 

surgical reconstruction.
3
 The findings of this paper have important implications both for 

designing future studies that explore both the etiology of second ACL injury and knee 

osteoarthritis as well as for designing intervention programs to address neuromuscular 

impairments. 

 

Chapter 3: What is the neuromuscular response to improved mechanics in landing? 

 

Hypothesis 1: Landing performance of the operated limb will improve following 

instruction in landing technique, as measured by increased knee flexion angle and 

increased external knee flexion moments, and decreased peak vertical ground reaction 

forces compared to pre-instruction values. 

 

Brief instruction improved landing performance in both kinematic and kinetic 

variables, supporting previous findings in both healthy and injured populations.
4,5

 In 

order to consciously accomplish a soft landing, subjects increased knee and hip flexion, 

with concomitant reductions peak vertical ground reaction forces. Training of landing 

mechanics is recommended as a final step in return-to-sport rehabilitation in recently 
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published practice guidelines for ACL reconstruction rehabilitation,
6,7

 and our findings 

support such recommendations. 

 

Hypothesis 2: Co-contraction of the hamstrings and quadriceps will decrease following 

instruction in landing technique. 

 

The mechanical changes induced by instruction for a softer landing were associated 

with a decreased co-contraction of the quadriceps and hamstrings. The changes in co-

contraction were primarily due to a significant decrease in hamstrings activity, with 

relative maintenance of quadriceps activation. The results of this and the previous study 

clarify the role of co-contraction of the hamstrings with the quadriceps in appropriate 

landing strategies as well as in the risk of second ACL injury and early-onset 

osteoarthritis.  

 

Chapter 4: Can intensity of landing be modified while maintaining task-specificity? 

 

Hypothesis 1: The body weight support system will provide consistent support 

throughout the hopping task. 

 

We found that the custom body weight support system developed during this 

dissertation successfully provides a consistent level of body weight support. Support 

variability decreased as the amount of body weight support increased. At 20% body 

weight support, the vertical support varied by only 10% of the target load, over a vertical 

displacement of at least 13 cm, comparing favorably with over-treadmill systems.  

 

Hypothesis 2: As body weight support increases, overall ground reaction forces 

and joint moments will progressively decrease, while kinematics will remain unchanged, 

thereby preserving the task specificity of training. 

 

The application of body weight support to a repetitive plyometric task effectively 

mitigated impact loading, with decreased vertical ground reaction forces and joint 
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moments. However, kinematic changes were negligible. The minimal kinematic change 

and a similar relative apportionment of load across the kinetic chain, regardless of body 

weight support level, indicated maintenance of task specificity.  The BRIDGE allowed 

subjects in the following studies to complete sporting tasks with unrestricted joint motion 

while receiving a consistent unweighting force.  

 

Chapter 5: Can the modifications to training dosage made possible by body weight 

support result in effective treatment? 

 

Purpose: To report the outcomes of a patient with a previous history of ACL 

reconstruction treated with high repetition jump training coupled with body weight 

support as a primary intervention strategy. Changes in landing mechanics, psychological 

readiness for activity, and functional outcomes are detailed. 

 

Body weight support was used to modify an evidence-based jump training protocol to 

mitigate the high intensity of jump training, allowing the patient in the case study to both 

increase training volume and target movement deficits in accordance with motor learning 

principles. The patient saw improved function, strength symmetry, and mechanical 

performance. Retention of all improvements after 8 weeks without training suggested that 

the new landing strategy had become a habitual pattern. The case report demonstrated 

that chronically dysfunctional movement patterns can be changed through direct 

intervention in the form of task-specific training, even with extensive time since the 

original injury and surgery. 

 

Chapter 6: Are the mechanical and neuromuscular coordination effects of a high-

repetition training intervention superior to those of a best-practice training 

intervention with relatively lower repetitions of practice? 

 

Hypothesis 1: Jump training, whether low or high repetition, will improve functional, 

mechanical, and neuromuscular outcomes. 
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Jump training improved patient-reported function, performance, mechanical 

performance, and neuromuscular activation patterns in both intervention groups in our 

clinical trial. Changes continued to be made beyond the mid-point of training, suggesting 

that an extended period of training may be necessary to maximize the benefit of training. 

The group that trained without body weight support did tend to have a higher probability 

of effusion compared with the group training with body weight support.  Thus, the use of 

body weight support with higher repetitions allowed potentially safer jump training with 

a decreased impact on the articular surfaces of the knee. 

 

Hypothesis 2: High repetition training will result in improved retention of functional, 

mechanical, and neuromuscular gains. 

 

Retention of all measures was seen in both groups, with no appreciable differences in 

function, performance, mechanics, or neuromuscular activation between the end of the 

training period and 8 weeks afterward.  

 

SUMMARY 

 

The series of studies included in this dissertation advance the understanding of the 

neuromuscular and mechanical deficits that coalesce to increase the risk of secondary 

problems following ACL reconstruction. Most egregiously, the majority of the people 

with ACL reconstruction will show radiographic evidence of knee osteoarthritis within 

15 years of surgery.
8
 Abnormal loading is exacerbated by a tendency toward co-

contraction of the knee musculature, leading to even greater joint compression.
9
 Co-

contraction is demonstrated in the first two papers of this dissertation as having a 

detrimental effect on the knee joint, a paradigmatic shift from commonly accepted 

theories. Higher co-contraction is seen in people who have suffered a non-contact injury, 

and who are less likely to be able to dynamically stabilize their knee following ACL 

injury.
3
 Further, co-contraction decreases with instruction to land with what is widely 

accepted as good technique. However, the effects of instruction on habitual movement 

patterns and muscle activation patterns have been poorly understood. 
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While jump training has been advocated for rehabilitative programs following ACL 

reconstruction, the effects of such programs on immediate and habitual movement 

patterns have not been well documented.
6,7,10,11

 The ability to implement jump training 

programs with what is considered an effective dosage strategy for motor learning has 

itself been hampered by the intensity of jump landing.
12

 Utilization of both good clinical 

assessment practices to titrate repetition to activity tolerance as well as body weight 

support to decrease intensity allowed increased repetition of jump landing in Chapter 6. 

Improvements in function, mechanics, and neuromuscular activation patterns were seen 

in both training groups, marking a substantive improvement to the outcomes of patients 

who previously had not had optimal outcomes. Most importantly, we demonstrated 

retention of functional, mechanical, and neuromuscular improvements, which to our 

knowledge has not been demonstrated in a post-surgical population. Indeed, very few 

studies have demonstrated retention of motor skills even with pre-injury risk reduction 

programs for healthy athletes. 

By addressing the limitations to current practice in a novel fashion, this dissertation 

substantively improves upon clinical recommendations and thereby affects the quality of 

life for patients with ACL reconstruction. These studies should help guide clinical 

practice in the rehabilitation of athletes following ACL reconstruction. Jump training 

substantively improves outcomes on the impairment level, with improved weight 

acceptance and force attenuation, and on the functional level, with improved symmetry in 

functional performance tests as well as improve patient-reported function. Jump training 

delivered in higher repetition with reduced rate and amount of limb loading represents a 

treatment option that less chance of inducing an undesirable knee effusion. Given the 

devastating ramifications of ACL injury, effective and efficient treatment of the extensive 

neuromuscular and mechanical deficits seen following ACL reconstruction should be a 

clinical priority. 

 

Further Research 

 

The bilateral nature of the findings presented in Chapter 2 suggests a central, intrinsic 

source of the difference in neuromuscular control, present despite surgical correction of 
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knee laxity. While consistent with findings demonstrating a decreased likelihood of pre-

surgical coper status in those athletes with a non-contact mechanism of injury,
3
 we are 

still unable to infer pre-injury co-contraction status from this study. Given that 

controversy still exists around the importance of co-contraction in primary injury risk 

reduction, prospective longitudinal studies utilizing EMG as part of injury risk screening 

are needed, though logistically difficult. Additionally, consideration of contact v. non-

contact mechanism of injury is also warranted in further study into the long-term 

functional outcomes of ACL reconstruction, as well as the relative risks of re-injury and 

osteoarthritis.  

Indeed, while musculoskeletal modeling has demonstrated a decrease in joint 

compression with decreased co-contraction,
5
 the actual long-term impact of decreased co-

contraction on joint health is unknown. The results presented in Chapter 3 suggest that 

instruction for appropriate landing mechanics results in increased knee flexion and 

decreased co-contraction of the hamstrings with the quadriceps, but the details of the 

modulations in moment and concomitant muscular activation around the hip and ankle 

remain controversial. Demand on the hip and ankle musculature has been surmised, but 

remains poorly understood, even while clinical recommendations are made to 

preferentially increase hip strength and control.
10,13

 Determination of the effects of 

improved landing technique on the hip and ankle musculature is therefore of clinical 

importance. 

In Chapter 4, we demonstrate maintenance of kinematic behaviors during a repetitive 

plyometric task with body weight support, and argue that this implies maintenance of task 

specificity. An examination of the response of physiological and muscular activation 

measures to body weight support is warranted in this case. Preferential changes in muscle 

recruitment may well be present, given the changes in internal moment. The different 

mechanisms of energy storage and return may also create a differential metabolic 

response to body weight support, which may further impact dosage and recovery 

considerations in exercise prescription. 

The results of the randomized pragmatic trial in Chapter 6 demonstrate the power of 

jump training to affect functional and neuromuscular behaviors in a group with poor 

outcomes, and serve as a jumping-off point for future research. Firstly, the potential for 
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body weight support to accentuate training earlier in the rehabilitative process must be 

examined. Other studies have demonstrated minor changes in functional and mechanical 

outcomes with jump training at 3 months following surgery,
14,15

 but were hampered by 

comparatively small repetition of training due to the acuity of the surgery. Additionally, 

further research separating out low intensity/low repetition, low intensity/high repetition, 

and high intensity/low repetition will expand on the relationship between intensity and 

repetition in the learning of complex motor tasks. Most importantly, the improved 

mechanical function and decreased co-contraction found with training imply a decreased 

risk of osteoarthritis long-term. Prospective research is therefore necessary to determine 

whether the risk for osteoarthritis is in fact decreased in athletes who undergo extensive 

jump training. Utilization of serum and urine biomarkers to evaluate both articular 

cartilage synthesis and degradation with training activity may also contribute to the 

determination of change in osteoarthritic risk. 
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