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Duce, Trish, M.S., October 1998 Computer Science

An Ordered Attribute Grammar for the Ecosystem Information System (116 pp.)

Director: Ray Ford

Attribute grammar methodology is used to formally specify the syntactic and static semantic 
aspects of a language. In his original description of attribute grammars, D.E. Knuth states 
that semantic rules are well-defined if they are formulated in such a way that all attributes can 
always be defined at all nodes in any conceivable derivation tree [D.E. Knuth, Semantics of 
context-free languages, Math. Syst. Theory 2, 1968, 127-145], Uwe Kastens introduces 
“ordered attribute grammars” as a subclass of well-defined attribute grammars, such that 
grammars of this class satisfy the following condition: for each symbol of the grammar a 
partial order over the associated attributes can be defined, such that in any context of the 
symbol in any derivation the attributes are evaluable in that order [U.Kastens, Ordered 
Attribute Grammars, Acta Informatica, Berlin; New York : Spinger-Verlag, Vol 13, 1980, 
229-256], Kastens developed an algorithm to determine if an attribute grammar is “ordered”. 
An implementation of this algorithm exists, but it contains errors and significant performance 
constraints. The work described here begins with debugging and reimplementing the 
algorithm in the programming language Java. As a major example, an attribute grammar for 
the Ecosystem Information System (EIS) is developed and analyzed for the “orderness” 
property. EIS is a network-accessible repository containing various types of information of 
interest to natural resource modelers and managers. Included in this repository are meta-data 
descriptions for various data sources, datasets, and modeling components. As such, the EIS 
description language involves a number of complex constraints on the use of identifiers, which 
represents a significant test of the use of attribute grammars in the specification of such 
constraints, and on the use of the new implementation of Kastens’ algorithm in the analysis 
of such grammars.
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Chapter 1

Introduction

1.1 Overview

The Ecosystem Information System (EIS) is a network-accessible repository 

containing various types of information of interest to natural resource modelers and managers. 

Included in this repository are meta-data descriptions for various data sources, datasets, and 

modeling components. The EIS data repository is organized hierarchically using an object- 

oriented framework to order the myriad collection of components used in ecosystem 

modeling. In collaboration with other ecosystem modeling laboratories, the repository is 

being populated with information from important ecosystem modeling and management 

applications.

EIS needs a specification language to allow users to define EIS meta-data 

descriptions, datasets, and modeling components. The EIS language could be specified with 

a context free grammar. The context-free grammar would provide a parser/analyzer a formal 

description of the language's syntax, but give no corresponding formal definition of the 

language's “static semantics”. A more complete specification of the EIS language can be 

formalized using an attribute grammar. An attribute grammar gives both a syntactic and static 

semantic language description, which can also be used as the basis for the implementation of 

both the parsing and the static semantic checking. This thesis uses the concepts of attribute 

grammars, attribute analysis algorithms, and attribute evaluation algorithms to provide a more



rigorous approach to the EIS language specification and implementation.

2

1.2 Purpose

The thesis has several purposes. First, it describes a well-formed attribute grammar 

that defines the syntactic and semantic checking that must be done to process the EIS object 

description language. This attribute grammar formalizes the ad hoc checking currently 

embedded in the parser/analyzer. The attribute grammar is also well-formed, corresponding 

to an ordered attribute grammar as defined by Uwe Kastens [2].

Second, the thesis describes the effort required to mechanically prove the orderness 

property for a non-trivial attribute grammar, using an attribute analysis algorithm developed 

by Uwe Kastens [2], the implementation of that algorithm by Patricia Spencer [5], and the 

EIS attribute grammar. The analyzer must first guarantee that the attribute grammar has the 

critical “orderness” property and then produce what are known as “visit sequences” for the 

given attribute grammar. Testing with Spencer's implementation shows that her program 

does not work correctly on large grammars. Thus, a major portion of the project described 

here is to debug and revise the original analysis code. Ultimately the decision was made to 

rewrite the code in the portable programming language Java. The new implementation of the 

attribute analysis algorithm can be used successfully with any attribute grammar; however, 

for our illustration purposes we focus on only the EIS attribute grammar.

The third purpose of this project is to demonstrate, with simple examples of the EIS 

language, that the attribute grammar and the analysis program are “correct” in the sense that 

the grammar specifies semantic constraints intended for the EIS language, and that attribute



evaluation identifies strings that violate the EIS semantic restrictions.

The final purpose of this thesis is to provide enough information for a future student 

to implement an efficient attribute evaluation algorithm. That is, the analysis currently ends 

with the ability to produce “visit sequences” from the analysis of any attribute grammar and 

an informal discussion of how evaluation would proceed. An attribute evaluation algorithm 

would use the visit sequences and a derivation in the same attribute grammar, and construct 

an attributed derivation tree which contains values for all appropriate attributes in the 

derivation.

1.3 Attribute Grammar Background

A language can be defined in terms of what legal strings it includes (the syntax of the 

language) and what meaning is attached to any string (the semantics of the language). When 

it comes to writing a standard definition of a language, a formal method must be used if there 

is any hope of the language's specification having one or more of the following qualities: 

completeness, consistency, precision, absence of ambiguity, conciseness, understandability, 

and usefulness [4].

Backus-Naur form (BNF) is a formal metalanguage that can be used to write a 

description or specification of a language. Basically, it is a notation that one can use to 

specify a generative grammar which defines the set of all possible strings of symbols that 

constitute programs in the subject language, together with a syntactic structure that reflects 

the generation process. Grammars expressible in BNF constitute the class of context-free 

grammars [4],



A BNF grammar has a set of production rules. Each production rule has a left side 

and a right side separated by some metasymbol. The left side consists of a nonterminal 

symbol. The right side of a rule consists of a sequence of terminal symbols and/or 

nonterminal symbols, where a terminal symbol is a token of the subject language.

For example, consider the following production rules; where “ :” is the metasymbol 

used to separate left and right sides and “|” is used to separate multiple right sides with the 

same left side:

numeral: numeral digit | digit 
digit : 'O' | '1' I '2'

The nonterminal “numeral” consists of either the nonterminal “numeral” followed by the 

nonterminal “digit” or just the nonterminal “digit”. The nonterminal “digit” consists of the 

terminal 'O', '1', or '2'. The use of recursion in the first production rule allows an infinite 

number of terminal strings to be generated by a finite number of production rules. The rule 

for “numeral”, together with the rules for the nonterminals it references and the rules for the 

nonterminals referenced in those rules, etc., determines the set of all strings of terminal 

symbols that constitute programs in the subject language.

An attribute grammar is a well-known language specification technique that extends 

a context free specification to allow one to formally specify aspects of the language's 

semantics. An attribute grammar is a context-free grammar augmented with finite state 

machine-like formal devices. These formal devices include “attributes” or variables associated 

with instances of non-terminal symbols, and “evaluation rules” associated with production 

rules. There is a finite set of attributes associated with each distinct symbol of the context-



free grammar. The variables are typed, i.e., a domain of values is associated with each 

distinct attribute.

Each node of the syntax tree of a valid program has a set of attributes associated with 

the symbol represented by that node. Boolean attributes can be used to indicate whether or 

not “extra-grammatical” aspects of the derivation are correct, i.e., to impose conditions on 

the derivation that lie outside normal context-free specification. The evaluation rules 

associated with the grammar's production rules determine the values of all attribute 

occurrences. That is, when a production rule is applied to generate a step in a language string 

derivation, its corresponding evaluation rules are also (logically) applied to define the values 

of attributes at that point in the derivation.

There are two kinds of attributes, inherited and synthesized. Inherited attributes have 

values defined totally in terms of attribute values of the ancestor of the nonterminal symbol. 

Synthesized attributes have values defined in terms of attribute values of the descendants of 

the corresponding nonterminal symbol. Examples of an attribute grammar and a derivation 

tree with a synthesized attribute are given in Figures 1.1 and 1.2 respectively.

For each production rule, there must be an evaluation rule for each synthesized 

attribute of the symbol on the left (the symbol being defined) and for each inherited attribute 

of each symbol on the right. In general, a given grammatical symbol may have both 

synthesized and inherited attributes, and a given attribute may be synthesized with respect to 

one symbol and inherited with respect to another. An example of an attribute grammar with 

an inherited attribute is given in Figure 1.3.
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end

numeral: digit; < --------------production rule
semantic

numeral.'Val.-digit.Val,^. _  a^ rjbute evaluation rule with dependency: 
numeral.Val depends on digit.Val

numeral: numeral digit;
semantic . ____  -  attribute

numeral 1.Val := K)^numeral2.Val + digit.Val;*^
condition ^  

numeral.Val <= 2,147,483,647; 
end;

\

digit: ‘O'; 
semantic 

digit.Val ;= 0; 
end;

\

/

nonterminal with which 
attribute is associated

special boolean attribute

digit: ‘9'; 
semantic 

digit.Val. := 9; 
end;

Figure 1.1 Example Attribute Grammar
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Nonterminal
instance

Synthesized
attribute

<numeral>
Val:

Integer attribute 
instance

Cond:-<------  Boolean attribute
instance

<numeral> 
Finit§_ £Val: 
set ^ ^ ^ P o n d :

<numeral>
Val:

<digit> 
Val:

<digit> 
Val:

<digit>
Val:
I
9

0
Note that nonterminal and attribute 
instances have been defined by the 
derivation, but attribute values have 
yet to be computed.

Figure 1.2 Example Derivation Tree



string: char; 
semantic 
condition 

string.Size = 1 ;

en£*’ ^Inherited Attribute
string : string2 char; ̂  -  
semantic -SC 

string2.Size := string.Size -1; 
end;

ch ar: ‘A’; 

char : ‘B’;

Figure 1.3 Example Attribute Grammar



1.4 Visit Sequences

In his original description of attribute grammars, D.E. Knuth states that semantic 

rules are well-defined if they are formulated in such a way that all attributes can always be 

defined at all nodes in any conceivable derivation tree [3], Kastens introduces “ordered 

attribute grammars” as a subclass of well-defined attribute grammars, such that grammars of 

this class satisfy the following condition: for each symbol of the grammar a partial order over 

the associated attributes can be defined, such that in any context of the symbol in any 

derivation the attributes are evaluable in that order [2], Furthermore, Kastens shows that for 

attribute grammars of this type, “visit sequences” can be derived that can drive a general 

purpose attribute evaluation algorithm to correctly evaluate all attributes for any valid 

derivation tree.

A visit sequence for an ordered attribute grammar simply formalizes the intuitive 

notation that if the value of attribute x depends on the value of attribute y, then attribute y  

must be evaluated before attribute x. The evaluation order defined by a visit sequence reflects 

all such dependencies. Kastens formulates his algorithm in somewhat vague, set-theoretic 

terms. Spencer describes an implementation of Kastens' attribute analysis algorithm that 

produces the visit sequences as one of its several outputs [5],

To understand what information a visit sequence must encode, consider the following. 

Evaluation of attributes proceeds as “control” is applied to a particular node. As part of the 

evaluation, control may be passed from the current node to its parent or one of its children. 

In this manner a node may receive control several times. When it receives control, it must 

resume execution where it left off, so it needs to remember its prior state. The purpose of
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passing around control like this is to allow the evaluation of complex sets of dependencies. 

If node x is a parent of node y, when control is initially passed down to node x, it should 

calculate as many of x's synthesized attributes as possible. However, some attributes ofx may 

depend on attributes not yet determined. So x passes control to node>> and other descendants 

which eventually calculate the values of upon which x ’s synthesized attributes depend. Thus 

y  may return control to x, or pass control to one of^y's children, or halt if all attributes have 

been computed. The critical points are that when control is passed from one node to another, 

enough attributes have been evaluated so the node with newly granted control can proceed, 

and that the exchange of control eventually terminates in a state where all attributes have been 

assigned a value. This must be true for all possible derivations.

1.5 Spencer’s Implementation of Kastens’ Algorithm

In [5] Spencer describes the details of the implementation of Kastens' attribute 

grammar analysis algorithm, along with her design details for input/output for grammar 

specification and visit sequences. It is very difficult to translate Kastens' abstract algorithm 

design into an implementation. Kastens' algorithm describes a construction based on large 

abstract sets of data, different types of set operations, and multiple passes over the data. The 

size of the sets is determined by the number of grammar symbols, productions and 

symbol/attribute occurrences. As grammars increase in size, constructing and manipulating 

these data objects efficiently is extremely important, and is highly dependent on the data 

structures used to represent the sets. Spencer's implementation attempts to reduce time and 

space requirements by using a carefully selected sequence of set representations during



different phases of the algorithm.

Spencer's original work demonstrates the correct processing of several small attribute 

grammars. However, excessive compute time and space requirements of her original 

implementation prevents the analysis of larger attribute grammars. Furthermore, recent 

testing of her program on larger attribute grammars reveals that it contains bugs — for some 

attribute grammars it produces visit sequences that obviously are incorrect. Thus, Spencer's 

program has to be fixed so it executes properly.

1.6 Converting to Java

“Java is: A simple, object-oriented, distributed, interpreted, robust, secure, 

architecture neutral, portable, high-performance, multithreaded, and dynamic language” [10]. 

Spencer's original implementation of analysis algorithm is in the programming language Ada. 

Java is the programming language chosen for the new version of Spencer’s implementation 

of Kastens’ algorithm. How to represent data is critical in the design of the attribute analysis 

algorithm. Java supports the object-oriented concept of class, consisting of a collection of 

data and methods that operate on that data [10]. Java also provides several pre-defined 

classes, including a class “Vector” which is basically a dynamic array. This type of data 

structure is ideal to represent and manipulate the large abstract sets of data in Kastens’ 

algorithm. At runtime, the standard implementation of Vector almost completely eliminates 

wasted space due to the dynamic growth of the Vector. More importantly, use of a standard, 

predefined class and its operations helps avoid subtle programming bugs.



1.7 Thesis Overview

As noted above, EIS requires a well-formed language that defines EIS meta-data 

descriptions, datasets, and modeling components. The goal is to formally specify the EIS 

language using an attribute grammar, then use the formal specification as the basis for 

implementation of EIS language processing tools. Currently, a parser and semantic analyzer 

perform all syntactic and semantic checking. The semantic analysis done for the EIS object 

description language is embedded in the parser/analyzer. The purpose of constructing an 

ordered attribute grammar for EIS, is (a) to formalize the specification of syntactic checking, 

(b) to formalize analysis of the static semantics specification, and (c) to formalize 

implementation of static semantic specification [5],

Chapter 2 discusses Kastens' algorithm, including basic notation, how the algorithm 

logically works, and it's inputs/outputs. This method of semantic analysis is time efficient, in 

the sense that the evaluation order of the attributes only needs to be determined once for a 

given grammar. It is space efficient because the visit sequences, which can be subsequently 

used to evaluate the attributes for any derivation in that attribute grammar, are also 

constructed only once. Chapter 3 discusses the Java implementation of Kastens algorithm, 

including details borrowed from Spencer's program and specific features new in the Java 

version. Chapter 4 discusses the EIS language specification and defines the EIS language 

using an attribute grammar. This attribute grammar formally defines the syntactic and 

semantic checking that must be done for the EIS object description language. Chapter 5 

analyzes the EIS attribute grammar via Kastens' algorithm implementation in Java. It also 

discusses a second and third version of the analysis code that was written to meet memory



requirements of large attribute grammars such as the EIS attribute grammar.

Finally, Chapter 6 discusses the correctness of the overall language design, in the 

sense of matching the syntactic/semantic intent for EIS. Examples are used to argue 

informally that the EIS attribute grammar produces computations that match the intent for 

object-oriented class, instance, and method specification. Chapter 6 also describes how an 

attribute evaluation algorithm could be constructed so that when the visit sequences 

produced from the analyzer with the EIS attribute grammar as input, and example derivations 

of meta-data descriptions, datasets, or modeling components are run through the evaluator, 

the results are evaluated EIS attributes.



Chapter 2 

Kastens’ Algorithm

2.1 Attribute Grammar Notation

The notation for attribute grammars used by Kastens is described in the following. An 

attribute grammar is a context-free grammar which is augmented by attributes. Semantic 

functions define the value of an attribute occurrence. Boolean attributes can be used to 

indicate whether or not “extra-grammatical” aspects of the derivation are correct, i.e., to 

impose conditions on the derivation that lie outside normal context-free specification.

An attribute grammar AG is defined as AG  = (G, A, VAL, SF, SC). G = (N, T,S,P) 

is a context-free grammar, where N  is the set of nonterminal symbols, T is the set of terminal 

symbols, V = N  VTis  the vocabulary of the grammar, S e N  is the start symbol, and P  is the 

set of syntactic rules. Each syntactic rule p  c P  has the form: 

p  = X 0: Xj,...Xni for n > = 0.

X t denotes an occurrence of a symbol of N, for i = 0 and V  for i > 0. A represents a set of 

attributes. Ax is the set of attributes associated to symbol X. X-a, X-h,... denote the elements 

of Ax. AIX and ASX are subsets of Ax that represent inherited and synthesized attributes 

respectively. SF is the set of semantic functions associated with rule p  e  P. Each semantic 

function defines the value of an attribute occurrence in p. These occurrences defined by 

semantic functions make up the set of defining occurrences, A F . Figure 2.1 demonstrates 

the elements of an attribute grammar.

14
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vocabulary (F )
second syntactic rule (p e  P)

nonterminals (N)
terminals (J)

p 2 : rule primary : ‘(’ declaration assignment ‘) ’ 
semantic

■ declaration.access := primary, access; 
assignment.access := include (primary.access, declaration.description); 
primary.primode := assignment.primode; 
assignment.postmode := primary.postmode; 
primary, evaluable := false;

— primary.value := undefined; 
end

semantic functions (SFP)

the set of defining occurrences 
for this production are: (AFp) 
declaration, access 
assignment, access 
primary.primode 
assignment.postmode 
primary, evaluable 
primary.value

inherited attributes: (AT) 
declaration, access 
assignment, access 
assignment, postmode

synthesized attributes: (AS) 
primary.primode 
primary, evaluable 
primary.value

Figure 2.1 Elements o f an Attribute Grammar
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2.2 The “orderness” property

D. E. Knuth proposes the concept of well-defined attribute grammars, and states that 

an attribute grammar is well-defined if and only if there is no sentence of the language with 

circularly dependent attributes [3]. Kastens goes on to introduce “ordered attribute 

grammars” as a subclass of well-defined attribute grammars. Grammars of this class meet the 

following condition: “For each symbol of the grammar a partial order over the associated 

attributes can be defined, such that in any context of the symbol the attributes are evaluable 

in that order” [2], Further, Kastens demonstrates that one can automatically construct 

algorithms to evaluate the attributes of any sentence of an ordered attribute grammar.

The problem of deciding whether a given attribute grammar is ordered is solved by 

projection of the attribute dependencies into dependency relations associated with production 

rules and symbols. The basic idea for ordered attribute grammars is: for each symbol of a 

given attribute grammar, construct a partial order over the attributes. This order determines 

the evaluation order for the attributes of a symbol, in any derivation context in which that 

symbol occurs. The evaluation order must reflect all direct and indirect dependencies, which 

may be derived from any possible context of that symbol. The evaluation order is used to 

construct “visit-sequences” that describe the control flow of an efficient attribute evaluation 

algorithm. Elements of the visit-sequence give instructions to move up to the ancestor, move 

down to a certain descendant, or evaluate a certain attribute.

The syntactic structure of a given terminal string generated by a grammar is depicted 

in Figure 2.2. During a visit to node Ky some attributes of AFp are evaluated according to 

semantic functions of SFp. Several visits to each node are generally needed until all
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symbol instance

rule p

nonterminal rule q

Figure 2.2 Derivation Tree
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attributes are evaluated. The partial order constructed for each symbol is used to assure that 

the visit-sequences for a tree node and for its descendants fit together. A move down from 

Ky to Kx is made in order to evaluate a certain subset of synthesized attributes of symbol X. 

Any move back up to Ky is used to evaluate a certain subset of inherited attributes of symbol 

X. Therefore the partial order for symbol A  must define a linear order over subsets of Ax, 

which contain alternating inherited and synthesized attributes. The order is partial because 

the evaluation order within each subset is not relevant.

2.3 Constructing partial orders for symbols

An attribute grammar is ordered if a partial order DS (dependencies between symbols) 

with the properties discussed above can be constructed according to the following definitions 

[2], Examples from the simple expression language given by Kastens’ [2], listed in Appendix 

A, are given in bold in the cases below.

Definition 1. Let DPp be the relation of direct dependencies between attribute occurrences

associated to production rules, where

DPp = {(Xj.a, Xj.b)| there is a semantic function in SFp defining Xf b in terms ofX,.a}

DP2 = {(primary.access,declaration.access), (primary.access,assignment.access), 
(declaration.access, assignment.access), (assignment.primode,primary.primode), 
(primary.postmode, assignment.postmode)}

DP2 is the set of dependencies given directly by the semantic functions.
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Definition 2. Let IDPp be the relation of induced dependencies between attribute 

occurrences, where

IDPp = DPp V {(Xea, X f b)\ X i occurs in rule /?, Y} occurs in rule q, X i = Yj and 

(Yf a,Yj.b) e 1DP*}.

ID P1 = {(primary.access, primary.postmode), (primary.access, primary.primode), 
(primary.access, primary.value),(primary.primode, primary.postmode), 
(primary.postmode, primary.value),(primary.primode, primary.value),}

IDP} contains all the direct dependencies of rule 1 and those induced by attributes of similar

symbol occurrences in other productions.

Definition 3. Let IDSx be the relation of induced dependencies between attribute of symbols, 

where

IDSX ={(X.a, X.b)| there is an X x. = X in a rulep  and (Xt.a,Xt. b) e IDPp) .

ID Sprimary = {(primary.access, primary.postmode), (primary.access, primary.primode), 
(primary.access, primary.value),(primary.primode, primary.postmode), 
(primary.postmode, primary.value),(primary.primode, primary.value),}

IDSprimary contains direct and induced dependencies of attributes of symbol occurrence

primary found in some production/?. Figure 2.3 gives a graphical representation ofIDSprimary.

If IDS is cyclic, the grammar is not “ordered”. In the next steps IDS is completed to DS.

DSX defines a linear order over disjoint alternating subsets of synthesized and inherited

attributes of symbol X. Each subset, denoted by Axk consists of those attributes (synthesized

or inherited) whose values are additionally available after a move up or down in the syntax

tree. The evaluation order corresponds to the decreasing value of k. Therefore, AXJc contains

attributes that need to be evaluated before attributes in Axk_j.
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IDSprimary* access primode postmode evaluable value

Figure 2.3 Dependency graph IDSprimary
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Definition 4. Let IDS be acyclic. For each X  e  V:

AXi = { X.a e AS  | there is no X.b such that (X.a, X.b) e IDS*},

AX2n ~ { X.a e A I  | for allXZ) e Ax  : {X.a, X.b) e /DiS* implies 

X.b e A Xw, m <  2n} \A X1 U.. .U  AX2n.h 

Ax, 2 f l + 1 = { X-a f A S  I for allXZ> e Ax : (X.a, X.b) e IDS+ implies 

X.b eA Xm, m < 2n+1} \A X>1 U.. .U  AX2n,

This is done until each attribute X.a eAx is in a disjoint partition Axk. The subsets are defined 

such that the values o£Axk are needed to compute the values of Axk_Li the values ofAXrlk are 

needed to compute the values of Ax>k_2, etc. Let mx  equal the largest k value for symbol X. 

Aprimary,! = {value, evaluable}
A p r i m a r y . 2  = {pOStmode}

A p r im a r y i3  = { primode}
Aprimary 4  — {access}
^prim ary ^

Definition 5. Let IDS be acyclic.

DSx = IDSx y  {(X.a, X.b)\ X.a EAxk ,X .b  e Axm  2<k<mx}.

DSX defines a linear order over the subset Axk oL4x. For each two attributes X.a E A f X . b  e  

AS, either (X.a, X.b) e DSXor (X.b, X.a) e DSX.

Definition 6.

EDPp = DPp V {(Xt a, X f b)\(X. a, X. b)eDSx , X t = X for each Xthat is contained inp).  

EDPp extends the dependencies of a production to reflect all dependencies (direct, induced 

and linearly ordered) between attributes of symbols, for the symbols contained in p.
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Definition 7. A given attribute grammar is “ordered” if the dependency relationship DS 

exists and the extended dependency relationship EDP is acyclic.

2.4 V isit Sequences

Just because an attribute grammar is ordered does not imply that a predefined strategy 

for attribute evaluation exists. An algorithm that produces such a strategy can be constructed 

based on the attribute' dependencies as discussed above, in the form of what are known as 

visit sequences. Visit sequences are independent of the compilation of any particular sentence 

of the language; therefore they can be constructed once for a given attribute grammar as part 

of its analysis.



Chapter 3 

Kastens’ Implementation

3.1 A ttribute G ram m ar

The first decision Spencer makes when implementing Kastens’ algorithm is, how to 

represent the attribute grammar. An example of her syntax for specifying the attribute 

grammar is given in Appendix A. Attributes and their corresponding types are listed first, 

terminated with a “%”. Function names follow, terminated by a “%”. The grammar is then 

listed, in BNF form, with some minor syntactic rules. Each production begins with the word 

“rule”. A follows the lefthand symbol of a production, and a follows the left hand 

side of a semantic function. Each production, semantic function and semantic condition must 

termintate with a The word “semantic” must proceed the list of semantic functions, the 

word “condition” must proceed the list of semantic conditions, and the word “end” must 

terminate each production. All nonterminals must be enclosed by single quotes. 

Symbol/attribute occurrences are represented by “symbol.attribute” .

3.2 D ata Structures

Data is constantly being manipulated throughout Kastens’ algorithm. How to 

represent this data is critical. Spencer uses the programming language Ada and data 

structures including: arrays, records, and pointers. These data structures are easy to 

manipulate, but the size of datasets places maximum values on the number of symbols, 

attributes, productions and symbol/attribute occurrences allowed in the grammar. This

23
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creates a problem in attempting to analyze very large grammars. In addition, since Spencer’s 

program uses statically allocated arrays, allocated space is wasted on smaller grammars. Due 

to the uncertain size of the grammar ahead of time, Spencer’s implementation [5] is not as 

efficient as we would like it to be. In addition, Ada programming environments are becoming 

somewhat rare, so the decision was made to re-implement Kastens’ algorithm in the more 

portable language Java.

Java is an object-oriented programming language. A class is a collection of data and 

methods that operate on that data. Java comes with a large number of predefined classes. 

One of those predefined classes is Vector, which implements a variable sized list of objects. 

In this case, an object is some instance of another class. The methods associated with the 

class Vector allow you to store and retrieve objects of any type, as well as to easily manipulate 

and keep track of the size of the Vector. Thus, our reimplementation is based on Spencer’s 

implementation, but with data structures converted into more appropriate Java forms.

Java also has many other nice features. It is relatively easy to learn. It is an 

interpreted language. The Java compiler generates byte-codes for the Java Virtual Machine 

(JVM) ( instead of the native machine code) which executes the compiled byte-codes. Java 

byte-codes are platform independent. Therefore Java programs can run on any platform that 

the JVM has been ported to. Java is designed for writing robust software. There are no 

pointers, which eliminates one of the most bug-prone aspects of other programming 

languages. There is extensive compile-time type checking. There are many more advantages 

to using Java; however, those listed above are the most important in why the language was 

chosen for this project.
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A symbol table, attribute table, production table, and symbol/attribute occurrence 

maps are the initial data structures created to implement Kastens’ algorithm. The Java 

version is based on the following class definitions. The class symbol represents a grammar 

symbol:

public class symbol {
String sym_name; 
int symbase;

}

The variable symbol, sym name holds the string representation of the lexical token. A Vector 

sym table represents a symbol table. A unique integer is associated with each symbol that 

is given by the index of sym jable . Production rules can be recursive, i.e., numeral : 

numeral2 ‘+ ’ digit. For those symbols that have an integer attached at the end, 

symbol sym base holds the unique integer representation of the symbol without the integer 

attached. For those symbols without an integer attached to the end, symbol sym base holds 

the unique integer representation of that symbol.

The class attribute represents an attribute:

public class attribute {
String att_name;
String att_type;
public boolean check_type() {... }

}

The variable attribute, a ttnam e  holds the string representation of the lexical token that 

represents the attribute name. The variable attribute.att type holds the string representation 

of the lexical token that represents the attribute type. The Vector att table represents an 

attribute table. A unique integer is associated with each attribute that is given by the index 

of att table. The method attribute. check typeQ determines if a particular attribute type is
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legal or not.

Symbol/attribute occurrences are represented in two maps. As a semantic function 

is being parsed, if the symbol/attribute occurrence did not previously exist it is assigned a 

unique integer value (starting at 1). mapl is a one dimensional array of maprec. maprec is 

the following class:

public class maprec { 
int sym; 
int att;

}

The index of mapl represents a unique integer for a particular symbol/attribute occurrence. 

maprec contains the unique integer representation of the symbol for that occurrence in the 

variable maprec. sym, and the unique integer representation of the attribute for that occurrence 

in the variable maprec.att. m apl is a two dimensional array whose indices (the integer 

representation of a symbol, and the integer representation of an attribute) yield the unique 

integer representation for that occurrence. These are the only two arrays used in the Java 

implementation of Kastens’ algorithm. There is a maximum limit of 500 symbol/attribute 

occurrences. The ease of manipulating these arrays became more of a priority than the small 

amount of wasted space allocated. Figure 3.1 shows the symbol table, attribute table, 

occurrence map 1, and occurrence map 2 for the simple attribute grammar listed in Appendix 

B.

The class prod represents a production:

public class prod { 
int llis;
Vector syin_list = new VectorO;
Vector occur_list = new VectorQ;
Vector cond_list = new VectorO;
Vector vis seq = new VectorO;

}
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Symbol Table

NUMERAL 0

DIGIT 1

NUMERAL2 0

7 “ \

^  symsymbol 2

symname sym_base

Attribute Table

VAL STRING ■ attribute 0

r \
att_name att_type

Occurrence Map 2

Occurrence Map 1

symbol 0

occurrence 1 ^  
occurrence 2 ^

attribute 0

0 0

1 0

2 0

attribute 0 (attribute 1 if existed) 

*  /
symbol 0 

symbol 1 

symbol 2

occurrence 1

Figure 3.1 Example Symbol Table, Attribute Table, 
Occurrence Mapl and Occurrence Map2
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The variable prod. Ihs holds the integer for the nonterminal symbol representing the left hand 

side of the production, prod, sym list is a Vector containing the integer representation of all 

the symbols in the production, prod.occur list is a Vector containing "occur”(s) (holds the 

occurrence arguments for the function definition of an occurrence), prod, condlistis  a Vector 

containing ”cond”(s) (holds the occurrence arguments for a condition). And finally, 

prodvis seq is a Vector containing ”seq"(s) (holds an action for the visit sequence). The 

Vectorprod table is created to represent a production table. Figure 3.2 shows the production 

table for the attribute grammar listed in Appendix B immediately after the grammar has been 

parsed.

The main data structure in Kastens’ algorithm represents dependency relations. 

Dependencies are easily represented in adjacency matrices. Logically, matrix(ij) = 1 

indicates that j depends on i, where as matrix(ij) = 0, indicates that there is no dependency. 

In the Java version, Vectors are used to simulate and replace Spencer’s adjacency matrices. 

A Vector of Vectors takes the place of a two-dimensional matrix.

3.3 Im plem entation

Before we actually begin implementing Kastens’ algorithm we must take an attribute 

grammar with the correct syntax as input and create a symbol table, attribute table, 

production table and occurrence maps as discussed above. Additionally, a function table, lists 

of all attributes (A), inherited attributes (AI), and synthesized attributes (AS) for each symbol 

must be defined as well as defining occurrences (AF) for each production. These data 

structures are referred to throughout the entire program.
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production

0

0  1

1 2

empty

empty

0

0 2  1

1 3 2

empty

empty
empty

left h^nd nonterminal symbol 

Vector of symbols

ector o f arguments for semantic function

^  "Vector o f semantic functions

Vector of conditions 

Vector of actions for visit sequences

■Vector o f arguments for condition

Figure 3.2 Example Production Table
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The class grammar was created to hold all of the data structures associated with an 

attribute grammar. .

public class grammar {
Vector att_table = new VectorO; // attribute table
Vector sym_table = new VectorO; // symbol table
Vector prod_table = new VectorO; // production table
Vector fun_table = new VectorO; H function table
occmaps omaps = new occmapsO; // contains maps for occurrences
attsets aset = new attsetsO; // contains A, AI and AS as well as AF
Vector tdp = new VectorO; // contains dependencies for each production
Vector tds = new VectorO; // contains dependencies for each symbol
Vector mark = new VectorO; // temporary variable
Vector partition = new VectorO: // contains disjoint partitions of occurrences
Vector f  = new VectorO; // contains the smallest even number >=k (partion for each symbol)
Vector vseq = new VectorO; //contains the visit sequences for each production

}

Values in the variables tdp, tds, mark, partition, f, and vseq are constructed in the rest of the 

algorithm to hold dependency relations, partitions and visit sequences.

Dependency relations between attribute occurrences in productions as well as between 

attributes of symbols are the basis for computing the visit sequences for a given attribute 

grammar. If at any point a dependency relationship is found to be cyclic, that particular 

attribute grammar is not ordered. Each rule in the attribute grammar is represented by a 

dependency relation TDPp over attribute occurrences in that production. Each symbol is 

represented by a dependency relation TDSX over ‘attributes Ax . Several functions are used 

in the next steps for updating dependency relations.

add_arc_trans(Vector am, int size, int vl, int v2)

adds the dependency “v2 depends on v/" to the adjacency matrix am, and then adds 

any additional dependancies needed to implement the closure on am.



31

add arc induce(Vector mark, Vector tdp, Vector am, Vector tds, int vl, int v2, 

occmaps occ, Vector sym table)

adds the dependency “v2 depends on v l , " and then adds any additional dependencies 

needed to implement the closure on am. This function is applied to the relation TDPp. 

Additionally, each new dependency added is also added to TDSX, along with 

additional dependancies needed to reach the transitive closure on TDSX, if the 

symbols of symbol/attribute occurrence v l and v2 are the same.

The following steps convert the recursive definitions of DPp0 IDPp and EDPp listed 

in Chapter 3 into iterative algorithms that compute their transitive closures. The first step 

computes DP+. Below is an outline of the method create tdp and tds.

create_tdp_and_tds(grammar g) { 
for each production p  
loop

for each semantic function /  eSFp defining Xf b 
loop

for each arguement X t. a o f /  
loop

if (Xra, Xj.b) $TDPp
then add_arc_induce(TDPp,Xl. aJCj. b)
fi

repeat
repeat

repeat
}

After the completion of this method TDP = DP+ and TDS currently contains the transitive 

closure of direct dependencies between attributes of symbols.

The second step computes the relations IDP+ and DS+.
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create_idp(grammar g) {
while there is a dependency (X.a, X.b) in TDS not marked 
loop

mark(X.a, X.b)
for each occurrence X t of X  in any rule p  
loop

if (X ,a ,X ,b) $TDPp
then add arcJnduce(TDPpfXt.a^XPb)
fi

repeat
repeat

Each dependency in TDS which is not marked is induced at each occurrence of the symbol 

in TDP. If new dependencies are found that need to be induced, they are added to TDS by 

add arc induce. When the algorithm is completed TDP = IDP+ where IDP is the set of all 

induced dependencies (including direct dependencies) between attribute occurrences. IDP+ 

ensures that all attribute dependencies for a symbol X  are obtained for any context of X. 

Marking the dependency in TDS ensures that no dependency is unnecessarily induced more 

than once. TDS = IDS+ where IDS is the set of all induced dependencies (including direct 

dependencies) between attributes of symbols. The variables tdp and tds in the Java 

implementation hold the dependency relations for a given attribute grammar. Figure 3.3 

shows the dependencies graphs TDP and TDS at this point for the example attribute grammar.

The third step computes the disjoint partitions of Ax. Starting with symbol 0 and 

k=l, the algorithm loops until all attributes^ are assigned to some Axk. Partitions with odd 

k  contain only synthesized attributes. Partitions with even k contain only inherited attributes.

create_partition(grammar g) {
for each symbol X  
loop

k=  1;
not assigned -  Ax
while {not assigned t  empty)



TDP
production 0

production 1

occurrence 1 depends on 
occurrence 2

occurrence 1 depends on 
occurrence 2
occurrence 1 depends on 
occurrence 3

TDS

symbol 0 000
000
000

symbol 1 000
000
000

symbol 2
000
000
000

Figure 3.3 Dependency graphs TDP and TDS
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loop
foundone -  false;
for each attribute X.a g {not assigned && if odd k then ASX else AIX fi) 
loop

condition holds = true; 
for each X. b e  not assigned 
loop

if {X.a, X.b) e TDSX 
then condition holds = false; 

break;
fi

repeat
if condition holds 
then partition{X.a) = k\

not assigned = not assigned \ {X.a};
found one = true;
break;

fi

repeat
if (!found_one && not_assigned ^0) 
then£ = £ + l ;  
fi

repeat
mx = k ;
fx = if {odd k) then k+l else k fi 

repeat
}

The algorithm loops for each symbol of the attribute grammar, k is initially 1. The variable 

not assigned contains all the attributes associated with symbolX If k is odd and an attribute 

X  a is synthesized and an element of not assigned, then the algorithm determines if any other 

element in not assigned depends on X.a. In the actual Java implementation a Vector 

partition, whose index is the integer representation of that occurrence is assigned the value 

of k. A Vector / ,  whose index is the integer representation of a symbol is assigned the 

smallest even number >= k. Figure 3.4 shows the variables partition and /  for the attribute 

grammar in Appendix B.

The next step computes the relationEDP+. The algorithm adds dependencies to TDP 

according to the relation given by the disjoint partitions of the attribute occurrences for each



partition f

occurrence 1 1 symbol 0 - > 2

occurrence 2 1 symbol 1 2

occurrence 3 0 symbol 2 2

NOTE: All occurrences with symbols whose base 
value differs from the integer representation are given 
the value of 0

Figure 3.4 Disjoint Partitions and F values
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symbol, Axk.

create_edp(grammar g) { 
for each production p  
loop

for each symbol X  in p  
loop

X = X t
for each X.a
loop

for each X. b 
loop

if partition(X.a) > partition(X.b) 
then add arc transiTDPpyX,. a^Xr b) 
fi

repeat
repeat

repeat
repeat

}

When the algorithm is completed TDP = EDP+. If each TDPp is acyclic, then the attribute 

grammar is ordered.

The final step of Kastens’ algorithm constructs the visit-sequences. Consider 

evaluating the attributes of symbol X  where f x  = 4 and the largest value of k = 4. AX4 are 

those inherited attributes evaluated first. A move to a descendant must be made and then the 

synthesized attributes AX3 are evaluated and so forth.

A x , 4 A x ,  2

11  11  12  1 2
Ax,3 Ax>1

The number of ancestor and descendant visits are both f x  div 2.

An occurrence is created to represent a visit. This makes it easy to keep track of 

dependencies between occurrences and visits. If a production contains the symbol in the 

example above, two occurrences would be created to represent the two visits needed. The
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integer representation of the symbol (of the occurrence), represents the symbol to be visited. 

The integer representation of the attribute represents the value of k (in the form of k + number 

of attributes). Due to the fact the value of the attribute of the occurrence is greater than the 

total number of attributes, we know the occurrence is a visit.

Conditions are also represented as an additional occurrence. The integer 

representation of the symbol (of the occurrence) represents the number of the condition (in 

the form of cond + number of symbols). Due to the fact the value of the symbol of the 

occurrence is greater that the total number of symbols, we know the occurrence is a 

condition. The integer representation of the attribute has no relevant value. Figure 3.5 show 

the occurrences maps of the attribute grammar in Appendix B after the visit values and 

conditions have been added.

3.3.1 Creating Visit Sequences

The following algorithm presented by Kastens and implemented by Spencer is 

intended to construct the visit sequences:

create_visseq(grammar g) {
for each production p 
loop

for each (X,a,Xf b) e TDPp 
loop

mi = partitionfX'.a); 
mj = partition(Xf b)\ 
ki = (fxi - mi + l)div 2; 
kj = (fxi - mi + l)div 2; 
if (ki > 0 && kj > 0)

then add_arc trans( VSp,(\iXr a e AFp then X t. a else vku fi),(ifX,,6 e AFp then A",. 6 else
Vki.i fi))

fi
repeat
add_cond_vertices_tojvs(); 
for each g e Avp



Occurrence Map 1

symbol 0

k .
occurrence 1 

occurrence 2 
occurrence 3

occurrence 4 visit symbol 0 0
occurrence 5 visit symbol 1 l
occurrence 6 visit symbol 2 ► 2

occurrence 7
*

attribute 0

^ t-k  = 1 (2 - # o f attributes) 

k = 1 (2 - # of attributes) 

k = 1 (2 - # o f attributes) 

not relevant

condition 1 (4 - # of symbols)

Figure 3.5 Example Occurrence Map 1 after visit values and condition are added
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loop
for each h e A Vp 
loop

if (g,h), (h,g) (f VSP 
then if (g = vh 0 && k = nvx, X=X0) 

then add_arc_trans( VSp,h, g) 
else add_arc_trans(VSp,g,h) 
fi

fi
repeat

repeat
repeat

}

The algorithm takes the relation TDP, and for each dependency determines whether the 

occurrences for that dependency are inherited and can be evaluated immediately, i.e; if (ki > 

0 && kj > 0). If the occurrences can be, this dependencies is not added to the new 

dependency relation VS. If they can’t, the dependency is added to the new dependency 

relation VS. If an occurrence is not in the defining occurrence set AFp, then the occurrence 

value of visiting the given symbol with the given k value is determined. Therefore, VS 

contains dependencies between occurrences of the defining occurrence set, and dependencies 

between occurrences of the defining occurrence set and visit values (which are represented 

by occurrence values).

A couple of changes were made to the above algorithm in the Java implementation. 

The statement if (ki > 0 && kj > 0) implies if two occurrence’s k values are not greater than 

zero they can be evaluated immediately and there is no need to add the dependency to the 

relation VS. This isn’t correct. The second occurrence depends on the first occurrence 

regardless of the k value. Therefore, the first occurrence must be evaluated before the second 

occurrence and this dependency must show up in the list of visit sequences unless the first
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occurrence has a k value less than or equal to zero. The Java implementation changed the 

statement to if (ki > 0), meaning if the occurrence that is depended on has a value less than 

or equal to zero, its occurrence value is available immediately so the occurrence that 

depended on it can be evaluated immediately also and the dependency does not need to be 

added to VS.

The second change was the positioning of the procedure addcondverticesjovs. 

a d d co n d vertices jo vs  adds the dependencies found in conditions to VS. As mentioned 

before, conditions are represented as occurrences. The occurrence value of the condition 

depends on the occurrence values of the arguments of the condition. Therefore 

add cond vertices j o  vs was moved to the beginning of create visseq and conditions are 

treated just like any other occurrences. If a condition depends on an occurrence with a k 

value equal to zero, the dependency does not need to be added to VS because the occurrence 

value is available immediately and the condition can be evaluated immediately.

The final part of the algorithm arbitrarily adds dependencies to VS until it is linearly 

ordered, ensuring that the last move to the ancestor is the last element of the visit sequence 

by making it depend on all other occurrences (regular or visit). The final change made to 

Kastens5 algorithm has to do with evaluating occurrences after a move up or down a 

derivation tree. All dependencies are reflected in the dependency relation VS. However when 

a move is made up or down the tree there is nothing to indicate that available attributes 

should be evaluated at that moment before any other move takes place. The available 

attributes and the move may not depend on one another but attributes in the node visited may 

depend on evaluated previous attributes. The Java implementation corrects this problem by
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comparing occurrences in the defining, visit, and condition occurrence set of a production. 

If two occurrences have no dependency and one of them is a visit, a dependency is added to 

VS where the visit depends on the other occurrence. This ensures all available attributes and 

conditions will be evaluated before a move up to an ancestor or down to a descendant. The 

rest of the occurrences that have no dependencies between them are evaluated arbitrarily.

3.4 Problems with Spencer’s Implementation

Spencer did an excellent job of creating data structures and manipulating them 

throughout her implementation of Kastens’ algorithm. However, the excessive compute time 

and space required by the data structures in the analysis algorithm prevent her implementation 

from use with larger attribute grammars. In fact, Spencer’s implementation has one major 

mistake that is easily overlooked with smaller attribute grammars.

The problem occurs in the creation of the dependency relation TDS. As mentioned 

before, the procedure a d d a rc in d u ce  adds the dependency “v2 depends on v l ” and then 

updates TDPp and TDSX appropriately. Spencer’s implementation of add arc induce calls 

a procedure ADD TO TDS.

1 procedure ADD_TO_TDS
2 (TDS : in out ADJ MATRIX PTR TYPE;
3 VI,V2 : in OCCURRENCE.OCCUR VALUES) is
4
5 ATT1,ATT2 : INTEGER;
6 SYM1,SYM2 : INTEGER;
7 TEMP PTR : ADJ MATRIX PTR TYPE;
8 TEMP_V1,TEMP_V2 : INTEGER;
9
10 begin
11
12 SYM1 := OCCURRENCE.LOOKUP_SYM(OCCURRENCE.MAPl,VI);
13 SYM2 := OCCURRENCE.LOOKUP_SYM(OCCURRENCE.MAPl,V2);
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14 SYM1 := SYMBOLS. SYM_TABLE(SYM1).BASE;
15 SYM2 := SYMBOLS.SYM_TABLE(SYM2).BASE;
16 if SYM1 = SYM2 then
17 ATT1 := OCCURRENCE.LOOKUP_ATT(OCCURRENCE.MAPl,Vl);
18 ATT2 := OCCURRENCE. LOOKUP_ATT(OCCURRENCE.MAPl,V2);
19 if  ATT1 /= ATT2 then
20 TEMP_V1 := OCCURRENCE.LOOKUP2(ATTl,SYMl,OCCURRENCE.MAP2);
21 TEMP V2 := OCCURRENCE.LOOKUP2(ATT2,SYM1,OCCURRENCE.MAP2);
22 if TEMP V l = 0 then
23 0CCURRENCE.MAP_0CCUR(ATT1,SYM1,0CCURRENCE.MAP1,

OCCURRENCE.MAP2,SIZE);
24 TEMP V l := SIZE;
25 end if;
26 if TEMP_V2 = 0 then
27 OCCURRENCE.MAP_OCCUR(ATT2,SYMl,OCCURRENCE.MAPl,

OCCURRENCE.MAP2,SIZE);
28 TEMP V2 := SIZE;
29 end if;
30 TEMPPTR := TDS;
31 for I in 1..SYM1-1 loop
32 TEMP PTR := TEMP PTR.NEXT;
33 end loop;
34 A D D A R C T R A N  S(TEMP_PTR. AM, SIZE,TEMP_V 1 ,TEMP_V2);
35 end if;
36 end if;
37 end A D D T O T D S ;

In Spencer’s procedure ADD TO TDS occurrence values VI and V2 are to be added to the 

adjacency matrix TDS if the occurrences share the same symbol. However, a problem occurs 

in lines 12 - 16. In lines 12 and 13 the symbol for occurrence VI and occurrence V2 are 

found. Lines 13 and 14 determine the base values of the symbols found in lines 12 and 13. 

If the base values are the same and the attributes are not the same the dependency is added 

to TD S .

This procedure will produce circular dependencies when two occurrences have 

different symbols yet share the same base symbol, e.g., expression2.postmode : = 

expression.primode. TDS is supposed to contain dependencies between attributes of symbols. 

expression2 and expression share the same base symbol, expression, but do not share the



same instance of the symbol expression, so no such dependency should get added to the 

relation TDSexpressiort. This mistake is easily overlooked, because many grammars do not have 

constructs like one discussed above, especially small grammars. This problem is easy to 

correct once it is discovered and traced back, by making sure two occurrences share the same 

symbol, not the same base symbol, when creating the dependency relation TDS.



Chapter 4 

The EIS Attribute Grammar

4.1 Overview of EIS

The Ecosystem Information System has two major components. First, EIS is a 

software system that supports a particular set of operations that are used to create, access, 

and share a distributed data repository. The database is partitioned among a number of host 

machines. The potential database user does not need to be concerned with which machine 

the data is physically located. He or she only needs to be aware that there exists a database 

“out there” somewhere in the global information space accessible via the network, and that 

the EIS software system is the tool that permits access to this database. The second 

component of EIS is that it is a data repository organized hierarchically using an object- 

oriented framework. The object-oriented approach is relatively simple, inherently 

hierarchical, and easily extensible.

The EIS data repository is represented by a hierarchical structure known as a class 

hierarchy. At each primary point in the hierarchy is a class definition, which represents a 

meta-description of a particular type of dataset. The meta-description includes both the 

description of data attributes and the description of operational components that are used to 

access, give values to, and manipulate the data attributes. Also included in the hierarchy, 

attached to particular class nodes, are class instances that represent datasets of that type. 

Finally, also attached to class nodes are class methods that represent program components

44
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that implement an operation defined for that class. Figure 4.1 shows an example of a class 

hierarchy through the EIS interface.

This object-oriented approach to data modeling places primary emphasis upon the 

data objects in terms of the attributes of those objects that are most relevant in the application 

domain [8], Identifying critical relationships between classes allows the development of the 

class hierarchy. Figure 4.2 represents an EIS hierarchy. Class A is the root of the hierarchy. 

Class A is extended by the subclasses B, and C. B and C have all the properties of their 

parent class, A, plus one or more new properties. Class B and class C are specializations of 

class A, while class A is a generalization of classes B and C.

Class B and class C inherit the operations “read” and “display” from their parent class 

A. Inherited properties need not be defined in a class specification; only newly defined 

properties need to be specified in the class interface. Instance X is an instance of “B” and any 

ancestor of “B”, including “A”. Therefore, the principle of attribute inheritance provides an 

effective means to organize data on the basis of shared properties. Dataset instances that are 

similar to one another will be found closer together in the hierarchy, while instances that are 

dissimilar will be located further apart.

Data transformations or operations, have two components: an operation specification 

(i.e., its name, argument types and return type), and an operation method (i.e., program). 

Only the operation specification is part of the class interface. The operation specification in 

the interface of class “A” indicates that “read” takes no arguments, returns no value, and that 

is defined for all the classes shown. Two operation methods provide implementation for this 

operation specification -- one implementation for each subclass. Therefore, clients need not



Figure 4.1 Example of EIS Interface
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C L A S S  A
Services:

read()
display()

C L A S S  C
Services:

labelO
get_state(

C L A S S  B
Services:

filterO
mergeQ

I N S T A N C E M E T H O D

read 0

I N S T A N C E M E T H O D

read 0

Figure 4.2 An EIS Hierarchy
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be aware of low-level details of operation execution. The implementation of “read” can be 

changed without affecting clients that use instances of “A” [8].

4.2 The EIS Language

Each node in an EIS hierarchy has its own description in a syntax specified by the EIS 

language. The syntax is different for a class, method or instance. The EIS language also 

describes the syntax of the whole hierarchy, which mainly consists of the concatenation of the 

syntax of the nodes in the hierarchy in an ordered form.

4.2.1 EIS Classes

The production rule for a class definition is shown in Figure 4.3. “class”, “o f’ and 

“end class” are terminals or tokens of the EIS language. “class_defn”, “id 1", “id2", 

“interface_uses_section”, ... etc. are all nonterminals. As implied by the production rule, the 

class specification allows for much more information than just a class name. Figure 4.4 shows 

the EIS interface for constructing a class.

4.2.1.1 Class Attributes

The EIS class specification syntax allows the definition of one or more properties 

within a class definition. These properties denote characteristics of the class, and can be 

categorized as state variables, constants, types or functions. These properties are specified 

by the EIS user by clicking on the “Class Attributes” button. (See Figure 4.4) State variables 

represent the data associated with any instance of the class. Every state variable has a



rule classdefn : ‘class’ idl ‘o f  id2
interface_uses_section
forw arddeclsection
bind_param_section
decl_param_section
description
m ix ed d ec llis t
b indstvarsection
keywordssection
documentsection
‘endclass’

Figure 4.3 Production rule for a class definition
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Figure 4.4 Interface for creating a Class
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particular type, for example:

V A R varl OF integer 
VAR var2 OF char

Constants can be defined by the EIS user to provide alternative names for values. For

example:

CONST conl : string := “Trish”
CONST con2 : boolean := false

The EIS language supports several data types and type constructors. The predefined

simple types are “integer”, “real”, “char”, “string”, and “boolean”. The type constructors are

“array”, “record”, “set” and “enumeration”. The EIS user can construct a structured type

from the simple types or structured types themselves. For example:

TYPE typel := integer 
TYPE type2 := (idl, id2, id3)
TYPE type3 := array [1..10] OF real

As mentioned before, data transformation functions, have two components: a function 

specification (i.e., its name, argument types and return type), and a function method (i.e., 

executable program). Only the function specification is part of the class interface. For 

example:

FUNCTION fund (char, rea l): integer

4.2.1.2 Class Interface

The EIS user can specify classes in the interface-uses section by clicking on the “Class 

Interface” button. (See Figure 4.4) This section lists all the classes upon which the definition 

of the current class relies. Ancestor class properties are automatically inherited, so interface-
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uses is generally used to list only non-ancestor class dependencies.

4.2.1.3 Class Parameter Declarations

Class parameterization allows the EIS user to formulate meaningful class hierarchies,

in a manner analogous to formal argument declarations in function specification. The formal

parameters for a class can be of type class, type, constant or function. The EIS user can

declare parameters by clicking on the “Class Parameter Declarations” button. (See Figure

4.4) The following is an example of some parameter declarations:

paraml : class 
param2 : type

4.2.1.4 Inherited Parameter Bindings

Once a parameter has been declared, it must eventually be bound to an actual class,

type, function or constant. We can specify an actual parameter value for a formal parameter

in an instance or subclass of a parameterized class. The EIS user can assign parameters by

clicking on the “Inherited Parameter Bindings” button. (See Figure 4.4) The following is an

example of some parameter assignments:

paraml := Erdas_Lan_Class 
param2 := char

4.2.1.5 State Variable Bindings

State variables defined in a parent can also be bound in an instance or subclass. This 

binding is interpreted as providing an initial value for the state variable in question. The EIS
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user can bind state variables by clicking on the “State Variable Bindings” button. (See

Figure 4.4) The following is an example of binding state variables:

flag := true 
a := 15.02

4.2.1.6 Documents and Keywords

The EIS user can specify the location of documents related to the current EIS object, 

or put short documentation information within the object specification itself by clicking on 

the “Documents” button. (See Figure 4.4) The “Keywords” button is used to specify 

keywords for EIS entities to support more ambitious network search functionality.

Figures 4.5 and 4.6 show the EIS interface for creating an instance and method 

repectively. The components of the instance and method differ from the components of the 

class, so the syntax of the description of EIS instances and EIS methods differs from that of 

EIS classes. However, most of the components listed in the instance or method description 

can be found as components in the class description. Therefore, the syntax of these individual 

components is the same as those found in the class description but the syntax for the instance, 

method, and class objects as a whole are not the same.

4.3 Semantic Checking in EIS

We have just seen what the EIS language looks like, the syntax of the language. Now 

lets take a look at what it means, the semantics of the language. As mentioned above, the EIS 

language supports the definition o f properties, interface-use, class parameterization,
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Figure 4.5 Interface for creating an Instance



Figure 4.6 Interface for creating a Method
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parameter and state variable binding, property inheritance, etc. In order to use the EIS

language appropriately, constraints must be satisfied. Below is a list of the semantic checking

that must be done to construct a well-formed class hierarchy in EIS [6],

1. All class instance and method names should be unique within a class hierarchy.

2. Each property defined locally within a class Cx must be locally unique, i.e., defined 
only once in Cx.

3. A formal class parameter P, declared in class Cx must be of type class, type, function 
or const.

4. In function definition F} within a class Cx, the arguments and the return value must be 
a class, a basic type or constructed type.

5. A class parameter Pt must be bound to an identifier of the same type (i.e., class, type, 
function, or const).

6. Each class name C, used in the definition of class Cx should be listed in the “forward 
declarations”, listed in the “interface uses”, locally defined within C„ or be defined on 
the path from Cx to the hierarchy root (i.e., an ancestor class name).

7. Each class C; named in the “interface uses” of class Cx should exist as a class in the 
same hierarchy as Cx, be named in the “forward declarations” of C„ or if Ct exists in 
another hierarchy Hp then it should be defined as in the “interface uses”.

8. Including the class name C; in the “interface uses” or “forward declarations” of class 
Cx makes Ct visible in Cx, but does not make any properties of Ct visible in Cx. Thus, 
a reference to property “g” of C, in Cx must be written in a qualified form as “C;,g”. 
In contrast, properties of ancestor classes of Cx are visible in Cx , and can be written 
without qualification.

9. A formal class parameter P, declared in class Cx , must be unique along the path from 
Cx to the class hierarchy root.

10. A formal class parameter name Pi assigned in class Cx must be declared in an ancestor 
class C of Cx, where C *CX, and cannot be assigned in any class on the path from Cx 
to C y

11. A formal class parameter name P, assigned in instance Ix must be declared in an 
ancestor class Cy of Ix and cannot be assigned in any class on the path from Ix to Cy.
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12. For an instance definition /x, all formal class parameters defined on the path from the
hierarchy root to Ix must be assigned on that path or in Ix.

In the current version of EIS, a parser and semantic analyzer performs all the syntactic 

checking in an ad hoc manner. Initially, there was no formal definition of the conditions listed 

above. An attribute grammar was created to formalize the condition checking, and replace 

the ad hoc implementation embedded in the parser/analyzer.

4.4 The EIS Attribute Grammar

The first attribute grammar for EIS was built several years ago as part of this thesis. 

Vijayant Palaiya did an implementation based on that language specification [6], He also 

implemented a few grammatical changes, due to request by EIS users for modified syntactic 

and semantic aspects. The EIS language has thus evolved into a language with a more 

complete syntactic structure and a more extensive specification of static semantics. 

Description of the newest EIS language specification, based on the newest EIS attribute 

grammar completes the thesis project presented here.

As background each semantic constraint in the EIS language can be formally specified 

by a boolean attribute and evaluation rules defined by the attribute grammar. Whether or not 

a semantic condition is met is determined by the evaluation of a boolean attribute during a 

derivation, true indicates the constraint is met, and false indicates that the constraint is not 

met.

The EIS Attribute Grammar is divided into an upper part and a lower part. The upper 

part of the attribute grammar defines attributes appropriate to the structure of a whole class
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hierarchy, and uses global attributes to perform the semantic checking based on parent-child, 

ancestor-descendant, and interface-uses relationships. The lower part of the attribute 

grammar defines attributes appropriate to the structure of individual hierarchy nodes, and uses 

local attributes to perform semantic checking on local uses of identifiers. Key local values are 

also passed to the upper part of the attribute grammar. Figure 4.7 is an EIS hierarchy that 

is used as an example throughout the rest of this chapter.

The lower part of the attribute grammar constructs a symbol table (the attribute 

SymTab) for each node, storing the name of all identifiers defined within the node, their type, 

and other relevant information. Identifiers include the names of classes, instances, methods, 

state variables, constants, types, functions and parameters. Figure 4.8 shows the attributed 

derivation tree for the node that represents class “A” in our example. The tree illustrates the 

computation of attribute values, as well as those values that are used to check the semantic 

constraints specified by the grammar. Every attribute in the derivation is synthesized.

The nonterminal “classdefn” has a key attribute called SymTab. SymTab represents 

the symbol table for the class node “A” in the EIS hierarchy. SymTab contains the identifier 

definitions for that node. The values of SymTab are computed by semantic rules in the 

descendants of “classdefn”.

The nonterminal “functiondefn” has an attribute called SymRec. SymRec represents 

a symbol table record, and consists of a 4-tuple {Name, Type, TypeDenoter, InList). Name 

is the name o f the identifier in the symbol table. In our example Name has the value 

“compute”, which is the name of the function. Type is the type of property the identifier 

represents. The identifier represents a function so Type has the value of FUNC. TypeDen
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class A of null 
Class A
function compute() : real 

end class

class C of A
Class C
const c : string 

end class

class B of A
Class B
variable i of integer 

end class
= Tree

Figure 4.7 EIS Hierarchy
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Cg&liti/Mi: 

um<mesymfabefatries(-, -, (’’conipute”, 
null := null ->/true

descnption • • • mixecdecllist

“Class A

SymRecList := <(’ compute , FUNC, REAL, -)>

nmctiondefnClass A

C CO npu
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’comi ute

compute
SymRecList := <>

function id ( arg_list)

compute real

Figure 4.8 Attributed Tree for class “A”
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represents the return type of the function, which can either be a primitive type or a 

constructed type. In the case of a constructed type, this attribute refers to a symbol table 

record, which contains information of the constructed type. InList refers to the list of 

argument types, which can also be a primitive type or a constructed type. If the return type 

is not a primitive or constructed type, the condition istype(id2. Tag), evaluates to false which 

indicates the function definition is not legal. If the name of the function is qualified, the 

condition notqualified(idl. Tag), evaluates to false which also indicates the function definition 

is not legal.

Eventually symbol table records from different property definitions of class “A” are 

combined to form the Sym Tab attribute as shown in Figure 4.9. Each property defined locally 

within class “A” must be locally unique. The condition uniquesymtabentries(SymTab), 

checks for uniqueness of names of the identifiers. The attributed trees for classes “B” and 

“C” are shown in Figures 4.10 and Figure 4.11 respectively.

The upper part of the attribute grammar has an important synthesized attribute SynST. 

SynST is associated with every node in the hierarchy, containing the symbol table of the node 

itself and the symbol tables of all descendant nodes. Each symbol table in SynST is 

represented by (Name, Type, SymTab), where Name is the name of the node, Type is the type 

of the node (“class”, “instance”, or “method”), and SymTab is the symbol table of that node 

in the hierarchy. The lower part of the attribute grammar computes the values for individual 

SymTab entities. Only the root node of the hierarchy contains the attribute GbST. GbST 

contains the symbol tables of all the objects in the hierarchy. The condition validateQ uses 

the global symbol table to check the semantic correctness of the whole hierarchy definition.
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rule classdefn : 'class' idl 'of id2
interfaceusessection
forwarddeclsection
bindparamsection
declparamsection
description
mixeddecllist
bindstvarsection
keywordssection
documentsection
'endclass';

semantic
classdefn.Name := idl.Tag; 
classdefn.Desc := description.Tag;
classdefn.SymTab append((bindparamsection. SymRecList, declparamsection,

SymRecList),forwarddeclsection. SymRecList, interfaceusessection. SymRec 
List,
mixeddecllist. SymRecList,bindstvarsection. SymRecList); 

classdefn.KeyList := keywordssection.KeyList; 
classdefn.DocList := documentsection.DocList; 
classdefn.Info :=

(classdefn.Name,C,(classdefn.Parent,classdefn.Desc,classdefn.KeyList, 
classdefn.DocList)); 

condition
uniquesymtabentries(classdefn. SymT ab); 
classdefn.Parent = id2.Tag;

Figure 4.9 Attribute Grammar Specification for a “classdefn”
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classdefn

Name

CQlidiM i: I
/ onicmesymtabentries(-, 

/  “A / : = “A” - >  true
INTEGER, -), -) --> true

mixeddecllistdescnption

;B” Tag :=Tag — Tag ‘Class B5

SymRecList := <(’ i”, VAR, INTEGER, -)>
string

Tag := ‘Class B’

vardem
Class B

Condition: \
notqualified(”i”) - >  true

identifierlist of typedenoter
SymRec := INTEGER

var
IdList: = “i’

Tag — Tag := ‘integer”

integer

Figure 4.10 Attributed Tree for class “B’
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classdefti

t^onditif>n: \ \_  \
/ummiesymtabentries(-, 1 (”c”, CONST, STRING, “Tree”), -) -> tru e  

/  “A / := “A” —f- true \ \  \

mixeddecllistdescnptionclass

Tag := C” Tag := ‘Class C’Tag

SymRecList := <(”c”, C ONST, STRING, -”Tree”)>
string

‘Class CJTag :=

constde:
Class C

SymRecList:: 
Condition:

ONST, ST] r, “Tree”)>

- >  TR1

valueconst
Tag := “ Tree” 
Type := STRINGTag := Tag := “string”

stringstring

Tag := ‘Tree1

Tree

Figure 4.11 Attributed Tree for class “C”
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Figure 4.12 shows the attributed derivation tree for the upper part of the EIS hierarchy in our 

example.
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rootnode
C’compute”, FUNC, REAL, -), -), 

/ AR, INTEGER, -), -)), 
pNST,STRING, “Tree”-)-))> 

‘Class A, -)),
'’Clafes B”, -, -)),
’Cl; ss C”, -))>

rootnode. GbSt := <(”A”, C, (-, ■
C’B”, C, C’i’W i  
C’C”, c ,  (-, -,C’c” CF 

rootnode.Info := <C’A”, C, (”root,:
C’B”, C, C’A”,
C’C”, C, ("A” 

rootnode. Parent := null 
classlist.Parent := “root”
Condition: c l a s s l i s t

validale(GbST) —> true
classlist.Svi T :=\<(”A”, C, (-, -, -, C’compute”, FUNC, REAL, -), -), 

’B”, C, (-, -, -,C’i”, VAR, INTEGER, -), -)),
C’C”, G  (-, -, -,C’c”,CONST,STRING, “Tree”-)-))> 

classl t&Info := <(”AP, C, (’’root”, “Class A, -, -)),
C’B”, C, (’’A”,’’Class B”, -)),
C’C”, q , C’A”,’’Class C”, -, -))>

/classlist2.Parent := “roc
classnode.Parent := ‘ 
Condition:

disjointC’A”,”B”,”C: true

classlist
classlist.S /nST := <>
classlist. It fo := <>

classdefn

Figure 4.8

classnode
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instancelist
instancelist.I

INTEGER^-)

:= O  methodlist.! lynST := O classlistS  /nST := O  
O  methodlist.] nfo := O  classlist.h fo := O

instancelist methodlist classhst

instancelist.Info:
instancelist.SynS f  := <> methodlist. S; mST := <> classlist.

O  methodlist. Ir fo := O  classlist. hfo := <>
JynST : = 0

Figure 4.12 Attributed Tree for Upper Part of EIS Hierarchy
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Execution Results

5.1 A Simple Example

The simple attribute grammar listed in Appendix B was taken from Pagan [4], The

grammar defines an integer constant. With the single attribute “val”, the attribute grammar

ensures that no syntactically correct numeral can exceed 32 bits. The grammar has twelve

productions, two symbols, one attribute, and three symbol/attribute occurrences.

The visit sequences for the attribute grammar are listed below. For each production

in the grammar, a visit sequences is given. There are three possible actions in a visit

sequence, move to a nonterminal, evaluate a symbol/attribute occurrence, or evaluate a

condition. Moving to a nonterminal is indicated by the word “MOVE” followed by the

nonterminal to be visited, followed by the number of times that nonterminal has been visited

within that particular sequence. Evaluating a symbol/attribute occurrence is indicated by the

word “EVAL” followed by the symbol/attribute occurrence. Evaluating a condition is

indicated by the word “COND” followed by the number of the condition to be evaluated.

Sat Sep 12 19:39:46 PDT 1998 
***V1SIT SEQUENCES***
Production: 0 
MOVE DIGIT 1 
EVAL NUMERAL. VAL 
MOVE NUMERAL 1 
Production: 1 
MOVE DIGIT 1 
MOVE NUMERAL2 1 
EVAL NUMERAL. VAL 
COND 1
MOVE NUMERAL 1 
Production: 2 
EVAL DIGIT. VAL 
MOVE DIGIT 1 
Production: 3 
EVAL DIGIT. VAL

67
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MOVE DIGIT 1 
Production: 4 
EVAL DIGIT. VAL 
MOVE DIGIT 1 
Production: 5 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 6 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 7 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 8 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 9 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 10 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 11 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Sat Sep 12 19:39:47 PDT 1998

It is easy to look at this grammar and the results and determine the visit sequences are

correct. That is, they provide away to correctly evaluate all attributes for any valid derivation

tree. The runtime for this particular attribute grammar was approximately 1 second.

5.2 A More Complicated Example

The attribute grammar listed in Appendix A was taken directly from Kastens [2]. The

grammar is a simple expression language with nine productions, eight attributes, eight

symbols, and twenty-three symbol/attribute occurrences. This grammar provides us a means

to verify that our implementation is correct, since the visit sequences (listed after the attribute

grammar in Appendix A) match up with those derived by Kastens [2], The runtime for this

particular attribute grammar was approximately one minute and twenty seconds, a significant

increase over the attribute grammar in Appendix B . This is due to the greater number of

symbol/attribute occurrences. As the number of symbol/attribute occurrences increase the
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time to manipulate the datasets increases exponentially.

5.3 The EIS Attribute Grammar

The EIS Attribute Grammar (listed in Appendix C) contains twenty-one attributes, 

seventy-nine symbols, one hundred productions, and one hundred twenty-nine 

symbol/attribute occurrences. A machine with one hundred twenty-eight megabytes of RAM 

could not meet the memory requirements of running the analyzer with the EIS attribute 

grammar.

A second version of the analyzer was written to accommodate very large attribute 

grammars. In the new version, data originally stored in three-dimensional Vectors in memory 

is now written as a group of files, where each file contains a two-dimensional Vector. This 

version of the analyzer works correctly, however the runtime increases dramatically. For 

example, the simple attribute grammar listed in Appendix B took one minute and twenty 

seconds to run with this version, i.e., approximately one minute and nineteen seconds longer 

than the first version.

The more complex attribute grammar listed in Appendix A took eight hours, forty-one 

minutes and fifty-one seconds with the new version, approximately eight hours, forty minutes 

and thirty-one seconds longer than the original version. By looking at the results it was 

obvious the EIS attribute grammar would take weeks to run through the analyzer. The time 

to produce the needed visit sequences was not practical. Therefore a third version of the 

analyzer was written.

As mentioned before, version 2 stores data as a two dimensional Vector in file. To
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reduce the amount of time needed to maintain a two dimensional Vector, version 3 stores data 

as a one dimensional Vector. All the information is still maintained, just in a different data 

structure. The simple attribute grammar listed in Appendix B took one minute and two 

seconds to run. The more complex attribute grammar listed in Appendix A took seven 

hours, thirty-three minutes and fifty seconds to run. The performance of version 3 is 

significantly better than that of version 1, yet not enough to be used for practical purposes on 

large attribute grammars. Figure 5.1 summarizes the execution results.

Version 1 Version 2 Version 3

Appendix B 1 sec. 1 min. 20 sec. 1 min. 2 sec.

Appendix A 1 min. 20 sec. 8 hours 41 min. 51 sec. 7 hours 33 min. 50 sec.

Figure 5.1 Summary of Execution Results 

Due to time constraints, a fourth implementation was never written. After analyzing 

the dependency relations of several attribute grammars it is noted that only a small portion 

of the dependency graphs are marked with a dependency. A possible solution to the memory 

problem could be to just keep track of the marked dependencies. A large portion of the 

analyzer would have to be rewritten if a new data structure was used. Most of the procedures 

in the analyzer access or manipulate the data structures that represent the dependency 

relations.
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5.4 Dividing the EIS Attribute Grammar

The EIS attribute grammar was divided into four sections. Each section was run 

through the analyzer individually. The break points were productions that contained only 

sythesized attributes and control only needed to be passed to descendants once. Dividing a 

grammar up in such a way has no affect on the final visit sequences, decreases the run time 

exponentially, and allows us to analyze a large attribute grammar. Each section of the EIS 

attribute grammar was successfully run through the analyzer. The visit sequences for each 

section are listed after the attribute grammar in Appendix C.



Chapter 6 

Analysis of Results

6.1 The EIS Attribute Grammar

The EIS hierarchy in Figure 4.7 was derived and attributes were evaluated according 

to the visit sequences produced by the analysis algorithm. Figures 6.1, 6.2, 6.3, and 6.4 show 

the evaluation order from left to right. For example, in Figure 6.1a move is made from the 

symbol classdefn to it’s descendant id. Another move is made from id  to the terminal A . 

When id  receives control again attribute id. Tag is evaluated and a move is made up to it’s 

ancestor classdefn. The attribute classdefn.Name is evaluated and control is passed down 

to the nonterminal mixeddecllist. Attributes listed in the figures without a symbol are 

assumed to be synthesized.

Every attribute and condition in the derivation tree is evaluated correctly. All 

dependencies are reflected in the visit sequences. All constraints (listed in section 4.3) 

intended for the hierarchy are met: all class names are unique, each property defined locally 

within a class is locally unique, the arguments and return value of a function is a class, basic 

type or constructed type.

6.2 Attribute Evaluator

An attribute evaluator must be implemented to efficiently evaluate the attributes for 

any given derivation. The work from this thesis provides a critical piece of data for an

72



classdefn

Name:

SymTap := (-, (’’compute 
REAL, -), -)

Com ^
quesymtabentries(-, 

/compute”, FUNC, REAL, 
-), -) - >  true

id mixeddecllist

SymRecList := <(”compute”,
FUNC, REAL, -)>

fimctiondefn

Condition

descnption
ag := “null

Tag := Class A

Class A’

Condition: >
istype(”real”) 

- >  true

Condition:
notqualified 

(”compute”) —> true

Class A

SymRecList := <(”compute , 
FUNC, REAL, -)>

Tag :=j Teal Tag := e impute

compute

arg list

SymReqList := <>

real

Figure 6.1 Evaluation of class “A”
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classdefn

Condition:►esc := “Class B’
W Tab \
/  (”i”, VAR, INTEGER, -), -) '
Condition:
uniquesyiMtabentries{-,

(”i”, VAR, INTEGER, -), -) - >  true

‘A” —> true
‘Class B”, -))

description A

J ATag := “Class B” |

string

I Tag : = “Class ^

mixeddecllist

Tai :=

SymRecList Nf <(”i”,
S. VAR, INTEGER, -)>

vardefn

X'onditij;
5ualified(”i”) —> true

Syn kRecList := <(”i”, 
\A R , INTEGER,-)>■t

Class B

identifierlist

i AIdList := “1”

' I
id

i '

typedenoter

SymRec : j= INTEGER

idia a

I Tag := 1 integer” |rr  T I  I
integer

Figure 6.2 Evaluation of class “B”



classdefn

Condition
A” := “A” --> trueDesc := “Class C 

Info := (”G”, C, (”A’\  
Class C , -, -))

ab := (-,
CONST, STRING, “Tree”), -) 

ondiiion
uniquesymtabentries(-, -, -, (”c”, 

CONST, STRING, “Tree”), - ) - >  true

description

t JrTag :4 “Class C’

mixeddecllist

tTag := C
Class C

ecList
CONST, STRING, -”Tree”)>

Class C
constdem

SymRecList := <( c , CONS 
STRING, “Tree”)> 

dition:
ofcspjalifiedf’c”) --> true

Condition: yC^n ill | |on *
isprim itive^^’sting’l l  , snuNQ

- > ! K U b  /  —> TRUE

tType := 
STRING Taj \ := Tree‘string:Tag :=

T a g : = “Tree

Tree

Figure 6.3 Evaluation of class “C”
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rootnode.Parent := null 
classlist.Parent := “root”

rootnode
rootriode.GbSt := <(”A”, C, (-, -, ("compute”, FUNC, REAL, -), -),

C’B”, C, (-, -, -,(”i”, VAR, INTEGER, -), -))>
(”C”, C, (-, -, CONST, STRING, “Tree”- » ) >  

rootr ode.Info := <(”A”, C, (”root”, “Class A  - ’))>C’B”, C, (”A”,’’Class B’ 
(”C”, C, C’A”,’’Class C”, -))>

(  Con lition:
va lidate(GbST) —> true

classlist

classnode.Parent := “root”

classdefiLParent := “root

\classlist.SynST := <(”A”, C, (-, -, -, (’’compute”, FUNG, REAL, -), -),
(”B’\  C, (-, -,(”i”, VAR, INTEGER, -), -)),
(”C”, C, (-, -, -,(”c”,CONST,STRING, “Tree”-)-))> 

classlist.Info := <(”A”, C, (’’root”, “Class A, -)),(”B”, C, (”A”,’’Class B”, -)), 
(”C”, C, (”A”,’’Class C”, -, -))>

Condition: 
disjoint(’’A”,’’B”,’’C”)-> tr u e

classnode.SynST := <(”A”, C, (-, -, (’’compute”, FUNC, REAL, -), -), A
C’B”, C, (-, VAR, INTEGER, -), -)), ^
(”C”, C, (-, -, -,(”c”,CONST,STRING, “Tree”-)-))>

^lassnode.Info := <(”A”, C, (’’root”, “Class A, -)),
(”B”, C, (”A”,’’Class B”, -)),

(”C”, C, (”A”,’’Class C”, -, -))> 
ondition:

disjoint(”A”, “B”, “C”) - >  true

I

classnode.Parent

classnode

classlist

classlist2.Parent := “A  
classnode.Parent := “A

classlist
classlist , C, (-, 

GER, -),-))>  
C, C’A”,

7

classdefii

Figure 6.1

classdefiLParent
:= “A”

Condition

classnode

ode.SynST := <(”B”, C, (-, -, -, 
f ’i”, VAR, INTEGER, -), -))> 
ode.Info := C’B”, C, (”A”, 
’’Class B”, -, -))

Condition:
disjoint(”B”) - >  true

:slist.SynST := <(”B”, C, (-, -,(”i”, VAR, * 
INTEGER, -), -)), C’C”, C, (-, -,(”c”, A  
CONST,STRING, “Tree”-)-))> ^

list.Info := <(”B”, C, (”A”,’’Class B”, -)), 
(”C”, C, C’A”,’’Class C”, -))>

Condition:
disjoint(”B”, “C”) ->  true

classnode

snode.SynST := <(”C”, C, (-, A
classdefii.Parent /  / C’c”,CONST, STRING, “Tree”-)-))>

_ I  cjaggnodejnfo := (”C”, C, (”A”,’’Class C”, -))
- Condition:

/ disjointC’C”)->true

classdefii 

Figure 6.3

classdefii

y  Figure 6.2

Figure 6.4 Evaluation of Upper Part of EIS Hierarchy
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attribute evaluator, the visit sequences. Kastens [2] explains four ways an attribute evaluator 

could be implemented: using coroutines, recursive procedures, stack automaton, or finite 

automaton. Constructing an attribute evaluator can be a possible thesis project for a future 

computer science student.

6.3 Conclusion

In conclusion, the EIS attribute grammar gives a formal definition of both the 

syntactic and semantic checking that must be done to process the EIS object description 

language. With an efficient attribute evaluator the formal specification can be used for 

implementation of EIS language processing tools. The EIS attribute grammar is well-defined, 

ordered, and meets the intent of the EIS user.



Appendix A

access set
description strseq
primode string
postmode string
evaluable boolean
value string
id string
val string
%

include
identify
isdefined
widen
add
%

rule program : primary; 
semantic

primary.access := 0; 
primary.postmode := primary.primode;

end;

rule primary : '(' declaration assignment 
semantic

declaration.access := primary.access;
assignment.access := include(primary.access,declaration.description);
primary.primode := assignment.primode;
assignment.postmode := primary.postmode;
primary.evaluable := false;
primary.value := undefined;

end;

rule primary : identifier; 
semantic*

primary.primode := identify(identifier. id,primary, access); 
primary.evaluable := false; 
primary.value := undefined; 

condition
isdefined(identifier. id,primary. access);

end;

rule primary : intconstant; 
semantic

primary.primode := int;
primary.evaluable := true;
primary .value := if primary.postmode = real

then widen(intconstant.value) else intconstant.value fi;
end;
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rule primary : realconstant; 
semantic

primary.primode := real; 
primary, evaluable := true; 
primary.value := realconstant.value;

end;

rule assignment : identifier expression; 
semantic

expression.access := assignment.access;
assignment.primode := identify(identifier.id, assignment.access); 
expression.postmode := assignment.primode; 

condition
isdefined(identifier.id, assignment.access) and not (expression.primode = real and 

expression.postmode = int); 
end;

rule expression : expression2 '+' primary; 
semantic

expression2.access := expression.access; 
primary.access := expression.access;
expression.primode := if expression2.primode = int and primary.primode = int then int else real

fi;
expression2.postmode := expression.primode; 
primary.postmode := expression.primode;
expression.evaluable := expression2.evaluable and primary.evaluable; 
expression.value := if  expression.evaluable then add(expression2.value, primary.value) else 

undefined fi; 
end;

rule expression : primary; 
semantic

primary.access := expression.access; 
primary.postmode := expression.postmode; 
expression.primode := primary.primode; 
expression.evaluable := primary.evaluable; 
expression.value := primary.value;

end;

rule declaration : 'new' identifier expression; 
semantic

expression.access := declaration.access;
declaration.description := (identifier.id, expression.primode);
expression.postmode := expression.primode;

end;



Sat Sep 12 19:40:51 PDT 1998 
***VISIT SEQUENCES*** 
Production: 0
EVAL PRIMARY.ACCESS 
MOVE PRIMARY 1 
EVAL PRIMARY.POSTMODE 
MOVE PRIMARY 2 
MOVE PROGRAM 1 
Production: 1
EVAL DECLARATION.ACCESS 
MOVE DECLARATION 1 
EVAL ASSIGNMENT.ACCESS 
MOVE ASSIGNMENT 1 
EVAL PRIMARY.PRIMODE 
MOVE PRIMARY 1 
EVAL ASSIGNMENT.POSTMODE 
EVAL PRIMARY. EVALUABLE 
EVAL PRIMARY.VALUE 
MOVE ASSIGNMENT 2 
MOVE PRIMARY 2 
Production: 2 
MOVE IDENTIFIER 1 
EVAL PRIMARY.PRIMODE 
COND 1
MOVE PRIMARY 1 
EVAL PRIMARY.EVALUABLE 
EVAL PRIMARY.VALUE 
MOVE PRIMARY 2 
Production: 3
EVAL PRIMARY.PRIMODE 
MOVE PRIMARY 1 
EVAL PRIMARY. EVALUABLE 
MOVE INTCONSTANT 1 
EVAL PRIMARY.VALUE 
MOVE PRIMARY 2 
Production: 4
EVAL PRIMARY.PRIMODE 
MOVE PRIMARY 1 
EVAL PRIMARY. EVALUABLE 
MOVE REALCONSTANT 1 
EVAL PRIMARY.VALUE 
MOVE PRIMARY 2 
Production: 5
EVAL EXPRESSION.ACCESS 
MOVE IDENTIFIER 1 
EVAL ASSIGNMENT.PRIMODE 
MOVE EXPRESSION 1 
EVAL EXPRESSION.POSTMODE 
COND 1
MOVE ASSIGNMENT 1 
MOVE EXPRESSION 2



MOVE ASSIGNMENT 2 
Production: 6
EVAL PRIMARY.ACCESS 
EVAL EXPRESSION2. ACCESS 
MOVE PRIMARY 1 
MOVE EXPRESSION2 1 
EVAL EXPRESSION.PRIMODE 
EVAL PRIMARY.POSTMODE 
EVAL EXPRESSION2 POSTMODE 
MOVE PRIMARY 2 
MOVE EXPRESSION 1 
MOVE EXPRESSION2 2 
EVAL EXPRESSION.EVALUABLE 
EVAL EXPRESSION.VALUE 
MOVE EXPRESSION 2 
Production: 7
EVAL PRIMARY.ACCESS 
MOVE PRIMARY 1 
EVAL EXPRESSION.PRIMODE 
MOVE EXPRESSION 1 
EVAL PRIMARY.POSTMODE 
MOVE PRIMARY 2 
EVAL EXPRESSION.EVALUABLE 
EVAL EXPRESSION.VALUE 
MOVE EXPRESSION 2 
Production: 8
EVAL EXPRESSION.ACCESS
MOVE EXPRESSION 1
EVAL EXPRESSION.POSTMODE
MOVE IDENTIFIER 1
EVAL DECLARATION.DESCRIPTION
MOVE EXPRESSION 2
MOVE DECLARATION 1
Sat Sep 12 19:42:11 PDT 1998



Appendix B

val string
%
%
rule numeral: digit; 
semantic

numeral.val := digit.val;
end;

rule numeral: numeral2 digit; 
semantic

numeral.val := 10 * numeral2.val + digit.val; 
condition

numeral.val <= 2147483647;
end;

rule d ig it: 'O'; 
semantic

digit.val := 0;
end;

rule d ig it: '1'; 
semantic

digit.val := 1;
end;

rule d igit: '2'; 
semantic

digit.val := 2;
end;

rule d ig it:'3'; 
semantic

digit.val := 3;
end;

rule d ig it: '4'; 
semantic

digit.val :=4;
end;

rule d ig it: '5'; 
semantic

digit.val := 5;
end;

rule d ig it: '6'; 
semantic

digit.val := 6;
end;
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rule d ig it: '7';
semantic

digit.val := 7;
end;

rule d ig it: '8';
semantic

digit.val := 8;
end;

rule d ig it: '9';
semantic

digit.val := 9;
end;
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Sat Sep 12 19:39:46 PDT 1998 
*** VISIT SEQUENCES*** 
Production: 0 
MOVE DIGIT 1 
EVAL NUMERAL.VAL 
MOVE NUMERAL 1 
Production: 1 
MOVE DIGIT 1 
MOVE NUMERAL 2 1 
EVAL NUMERAL.VAL 
COND 1
MOVE NUMERAL 1 
Production: 2 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 3 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 4 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 5 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 6 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 7 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 8 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 9 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 10 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Production: 11 
EVAL DIGIT.VAL 
MOVE DIGIT 1 
Sat Sep 12 19:39:47 PDT 1998



Appendix C

EIS Attribute Gramamr

GbST setseq
Info strseq
Parent string
SynST setseq
SymTab set
Name string
Desc strseq
KeyList set
Doc set
DocList setseq
SymRec set
SymRecList setseq
Tag string
IdList set
PType string
InList setseq
InPair set
Type string
Val string
SVal int
Len int
%
add
exp
div
validate
append
disjoint
unique sy mtabentries
addfwddcllist
notqualified
addintuselist
addparamdecl
addbindparams
addbindstvars
addtypedefn
addvardefn
findtype
addconstantdefn
addfunctiondefn
getentry
istype
isprimitivetype
addargdcl
addenumeratedtype
addarraytype
addrecordtype
addsettype
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addenumvalid
addidtypefromidlist
isdiscretetype
notnull
concat
lookup
%
rule rootnode : classlist; 
semantic

rootnode.GbST := classlist.SynST; 
rootnode.Info := classlist.Info; 
rootnode.Parent := null; 
classlist. Parent := root; 

condition
validate(rootnode. Gb ST);

end;

rule classlist: classlist2 classnode; 
semantic

classlist.SynST := append(classlist2.SynST,classnode.SynST); 
classlist.Info := append(classlist2.Info,classnode.Info); 
classlist2.Parent := classlist.Parent; 
classnode.Parent := classlist.Parent; 

condition
disjoint(classlist2. SynST,classnode. SynST);

end;

rule classlist: ' 
semantic

classlist.SynST := <>; 
classlist. Info := <>;

end;

rule instancelist: instancelist2 instancenode; 
semantic

instancelist.SynST := append(instancelist2.SynST,instancenode.SynST); 
instancelist.Info := append(instancelist2.Info,instancenode.Info); 
instancelist2. Parent := instancelist. Parent; 
instancenode.Parent := instancelist.Parent; 

condition
disjoint(instancelist2. SynST,instancenode. SynST);

end;

rule instancelist; ' 
semantic

instancelist. SynST := <>; 
instancelist.Info := <>;

end;

rule methodlist: methodlist2 methodnode; 
semantic

methodlist.SynST := append(methodlist2.SynST,methodnode.SynST);
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methodlist.Info := append(methodlist2.Info,methodnode.Info); 
methodlist2.Parent := methodlist.Parent; 
methodnode.Parent.-  methodlist.Parent; 

condition
disjoint(methodlist2. SynST,methodnode. SynST);

end;

rule methodlist: ' 
semantic

methodlist. SynST := <>; 
methodlist.Info := <>;

end;

rule classnode : 'classnode' classdefn instancelist methodlist classlist 'endclassnode'; 
semantic

classnode. SynST := append((classdefn.Name,C,classdefn. SymTab),
instancelist. SynST,methodlist. SynST,classlist. SynST); 

classnode.Info := append(classdefn.Info,instancelist.Info,methodlist.Info,classlist.Info); 
classdefn.Parent := classnode.Parent; 
classlist.Parent := classdefn.Name; 
instancelist.Parent := classdefn.Name; 
methodlist.Parent := classdefn.Name; 

condition
disjoint((classdefn.Name,C,classdefn. SymTab), instancelist. SynST, 

methodlist. SynST,classlist. SynST);
end;

rule instancenode : instancedefn; 
semantic

instancenode.SynST := (instancedefn.Name,I,instancedefn.SymTab); 
instancenode.Info := instancedefn.Info; 

condition
instancenode. Parent = instancedefn. Parent;

end;

rule methodnode : methoddefn; 
semantic

methodnode. SynST := (methoddefn.Name,M,-); 
methodnode.Info := methoddefn.Info; 

condition
methodnode.Parent := methoddefn.Parent;

end;

rule classdefn : 'class' id 'of id2 interfaceusessection forwarddeclsection bindparamsection 
declparamsection description mixeddecllist bindstvarsection keywordssection documentsection 'endclass'; 
semantic

classdefn.Name := id.Tag; 
classdefn.Desc := description.Tag;
classdefn.SymTab := append((bindparamsection.SymRecList,declparamsection.SymRecList), 

forwarddeclsection. SymRecList,interfaceusessection. SymRecList, 
mixeddecllist. SymRecList,bindstvarsection. SymRecList); 

classdefn.KeyList := keywordssection.KeyList;



classdefn.DocList := documentsection.DocList; 
classdefn.Info := (classdefn.Name,C,(classdefn.Parent,classdefn.Desc, 

classdefn. KeyList, classdefn. DocList));
condition

uniquesymtabentries(classdefn. SymTab); 
classdefn.Parent = id2.Tag;

end;

rule instancedefn : 'instance' id 'of id2 bindparamsection description bindstvarsection keywordssection
documentsection;
semantic

instancedefn.Name := id.Tag; 
instancedefn.Parent := id2.Tag; 
instancedefn.Desc := description.Tag;
instancedefn. SymTab := append(bindparamsection. SymRecList,bindstvarsection. SymRecList); 
instancedefn.KeyList := keywordssection.KeyList; 
instancedefn.DocList := documentsection.DocList; 
instancedefn.Info := (instancedefn.Name, I, (instancedefn.Parent,

instancedefn.Desc,instancedefn.KeyList,instancedefn.DocList));
end;

rule methoddefn : 'method' id 'of id2 description keywordssection documentsection; 
semantic

methoddefn.Name := id.Tag;
methoddefn.Parent := id2.Tag;
methoddefn.Desc := description.Tag;
methoddefn.KeyList := keywordssection.KeyList;
methoddefn.DocList := documentsection.DocList;
methoddefn.Info := (methoddefn.Name, M, (methoddefn.Parent,

methoddefn.Desc,methoddefn. KeyList, methoddefn. DocList));
end;

rule forwarddeclsection :' 
semantic

forwarddeclsection. SymRecList := <>;
end;

rule forwarddeclsection : 'forwarddecl' identifierlist 'endforwarddecl'; 
semantic

forwarddeclsection. SymRecList := addfwddcllist(identifierlist. IdList); 
condition

notqualified(identifierlist. IdList);
end;

rule interfaceusessection :' 
semantic

interfaceusessection. SymRecList := <>;
end;

rule interfaceusessection : 'interfaceuses' identifierlist 'endinterfaceuses'; 
semantic

interfaceusessection.SymRecList := addintuselist(identifierlist.IdList);



condition
notqualified(identifierlist. IdList);

end;

rule declparamsection : ' 
semantic

declparamsection.SymRecList := <>;
end;

rule declparamsection : 'paramdecl' paramdecllist 'endparamdecl'; 
semantic

declparamsection. SymRecList := paramdecllist. SymRecList;
end;

rule paramdecllist: id paramtype; 
semantic

paramdecllist.SymRecList := addparamdecl(id.Tag,paramtype.PType);
end;

rule paramdecllist: paramdecllist2 id paramtype; 
semantic

paramdecllist.SymRecList := append(paramdecllist2.SymRecList, 
addparamdecl(id. T ag,paramtype. PType));

condition
disjoint(paramdecllist2. SymRecList, addparamdecl(id.Tag,paramtype.PType));

end;

rule paramtype : 'CLASS'; 
semantic

paramtype.PType := CLASS;
end;

rule paramtype: 'TYPE'; 
semantic

paramtype.PType := TYPE;
end;

rule paramtype: 'CONST'; 
semantic

paramtype.PType := CONST;
end;

rule paramtype : 'FUNCTION'; 
semantic

paramtype.PType := FUNCTION;
end;

rule bindparamsection :' 
semantic

bindparamsection.SymRecList := <>;
end;



rule bindparamsection : 'parambind' bindparamlist 'endparambind'; 
semantic

bindparamsection. SymRecList := bindparamlist. SymRecList;
end;

rule bindparamlist: id id2; 
semantic

bindparamlist. SymRecList: = addbindparams(id.Tag, getentry(id2.'Tag));
end;

rule bindparamlist: bindparamlist2 id id2; 
semantic

bindparamlist.SymRecList := append(bindparamlist2.SymRecList, 
addbindparams(id. T ag, getentry (id2. Tag)));

end;

rule mixeddecllist:' 
semantic

mixeddecllist. SymRecList := <>;
end;

rule mixeddecllist: mixeddeclmixeddecllist2; 
semantic

mixeddecllist.SymRecList := append(mixeddecllist2.SymRecList,mixeddecl.SymRecList); 
condition

disjoint(mixeddecllist2. SymRecList, mixeddecl. SymRecList);
end;

rule mixeddecl: typedefn; 
semantic

mixeddecl. SymRecList := typedefn. SymRecList;
end;

rule mixeddecl: vardefn; 
semantic

mixeddecl.SymRecList := vardefn. SymRecList;
end;

rule mixeddecl: constantdefn; 
semantic

mixeddecl. SymRecList := constantdefn. SymRecList;
end;

rule mixeddecl: functiondefn; 
semantic

mixeddecl.SymRecList := functiondefn.SymRecList;
end;

rule bindstvarsection : 
semantic

bindstvarsection. SymRecList := <>;
end;
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rule bindstvarsection : 'bindstvar' bindstvarlist 'endbindstvar'; 
semantic

bindstvarsection. SymRecList := bindstvarlist. SymRecList;
end;

rule bindstvarlist: bindstvarlist2 id value; 
semantic

bindstvarlist.SymRecList := append(bindstvarlist2.SymRecList, 
addbindstvars(id. T ag,value. T ag, getentry (value. Type)));

end;

rule bindstvarlist: id value; 
semantic

bindstvarlist. SymRecList: = addbindstvars(id. Tag,value. Tag, getentry(value. Type));
end;

rule typedefn : 'type' id typedenoter; 
semantic

typedefn.SymRecList := addtypedefn(id.Tag,typedentoer.SymRec); 
condition

notqualified(id. Tag);
end;

rule vardefn : 'var' identifierlist 'of typedenoter; 
semantic

vardefn.SymRecList := addvardefn(identifierlist.IdList,typedenoter.SymRec); 
condition

notqualified(identifierlist. IdList);
end;

rule constantdefn : 'const' id ':' id2 ':=' value; 
semantic

constantdefn.SymRecList := addconstantdefn(id.Tag,fmdtype(id2.Tag),value.Tag); 
condition

isprimitivetype(id2Tag); 
id2.Type = value. Type; 
notqualified(idTag);

end;

rule functiondefn : 'function' id '(' arglist')'':' id2; 
semantic

functiondefn.SymRecList := addfunctiondefn(id.Tag,arglist.SymRecList,getentiy(id2.Tag)); 
condition

istype(id2.Tag); 
notqualified(id. T ag);

end;

rule arglist: ' 
semantic

arglist. SymRecList := <>;
end;
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rule arglist: argdcl; 
semantic

arglist. SymRecList := argdcl. SymRec;
end;

rule arglist: arglist2 argdcl; 
semantic

arglist.SymRecList ~  append(arglist2.SymRecList,argdcl.SymRec);
end;

rule argdcl: typedenoter; 
semantic

argdcl.SymRec := addargdcl(typedenoter.SymRec);
end;

rule typedenoter: id; 
semantic

typedenoter. SymRec := if (lookup(id.Tag) = FALSE) 
then (id.Tag,LTNRSLVD,NULL,NULL) else getentry(id.Tag) fi;

end;

rule typedenoter: newtype; 
semantic

typedenoter. SymRec := newtype. SymRec;
end;

rule newtype : enumeratedtype; 
semantic

newtype. SymRec .-  addenumemtedtype(enumeratedtype. SymRecList);
end;

rule newtype : arraytype; 
semantic

newtype.SymRec := addarraytype(arraytype.SymRec,arraytype.InList);
end;

rule newtype : recordtype; 
semantic

newtype. SymRec := addrecordtype(recordtype. SymRecList);
end;

rule newtype : settype; 
semantic

newtype. SymRec := addsettype(settype.SymRec);
end;

rule enumeratedtype : '(' identifierlist')'; 
semantic

enumeratedtype.SymRecList := addenumvalid(identifierlist.IdList); 
condition

notqualified(identiferlist. IdList);
end;



rale recordtype : 'recordstart' fieldlist 'recordend'; 
semantic

recordtype. SymRecList := fieldlist. SymRecList;
end;

rale fieldlist: recordsection; 
semantic

fieldlist. SymRecList := recordsection. SymRecList;
end;

rale fieldlist: fieldlist2 recordsection; 
semantic

fieldlist.SymRecList := append(fieldlist2.SymRecList, recordsection.SymRecList); 
condition

disj oint(fieldlist2. IdList, recordsection. IdList);
end;

rale recordsection : identifierlisttypedenoter; 
semantic

recordsection.SymRecList := addidtypefromidlist(identifierlist.IdList,typedenoter.SymRec); 
condition

notqualified(identifierlist. IdList);
end;

rale arraytype : 'array''[' indextypelist']' 'of typedenoter; 
semantic

arraytype. SymRec := typedenoter. SymRec; 
arraytype.InList := indextypelist.InList;

end;

rale indextypelist: indextype; 
semantic

indextypelist.InList := indextype.InPair;
end;

rale indextypelist: indextypelist2 ',' indextype; 
semantic

indextypelist.InList := append(indextypelist2.InList,indextype.InPair);
end;

rale indextype : lowerbound '..' upperbound; 
semantic

indextype.InPair := (lowerbound.Tag,upperbound.Tag);
end;

rale lowerbound : value; 
semantic

lowerbound.Tag := value.Tag; 
condition

isdiscretetype (value. Tag);
end;
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rule lowerbound : id; 
semantic

lowerbound.Tag := id.Tag; 
condition

isdiscretetype(id .Tag);
end;

rule upperbound : value; 
semantic

upperbound.Tag := value.Tag; 
condition

isdiscretetype(value. T ag);
end;

rule upperbound : id; 
semantic

upperbound.Tag := id.Tag; 
condition

isdiscretetype(id. T ag);
end;

rule settype : 'set' 'of basetype; 
semantic

settype.SymRec := basetype.SymRec;
end;

rule basetype : id; 
semantic

basetype.SymRec := getentry(id.Tag);
end;

rule basetype : enumeratedtype; 
semantic

basetype.SymRec := addenumeratedtype(enumeratedtype.SymRecList);
end;

rule keywordssection : 'keywords' keywordslist 'endkeywords'; 
semantic

keywordssection.KeyList := keywordslist.KeyList;
end;

rule keywordssection : ' 
semantic

keywordssection.KeyList := <>;
end;

rule keywordslist: string; 
semantic

keywordslist.KeyList := string.Tag;
end;



rule keywordslist: keywordslist2 string; 
semantic

keywordslist.KeyList := append(keywordslist2.KeyList,string.Tag); 
condition

disjoint(keywordslist2 .KeyList, string. Tag);
end;

rule documentsection : ' 
semantic

documentsection.DocList := <>;
end;

rule documentsection : 'documents' documentdefnlist 'enddocuments'; 
semantic

documentsection.DocList := documentdefnlist.DocList;
end;

rule documentdefnlist: documentdefn; 
semantic

documentdefnlist.DocList := documentdefn.Doc;
end;

rule documentdefnlist: documentdefnlist2 ';' documentdefn; 
semantic

documentdefnlist.DocList := append(documentdefnlist2.DocList,documentdefn.Doc); 
condition

disjoint(documentdefnlist2. Doclist, documentdefn .D oc);
end;

rule documentdefn : 'documentnameloc' id string; 
semantic

documentdefn.Doc := (id.Tag,string.Tag);
end;

rule documentdefn : 'documentation' string; 
semantic

documentdefn.Doc := (NULL,string.Tag);
end;

rule value : sign unsignednumber; 
semantic

value.Tag := concat(sign.Tag,unsignednumber.Tag);
value.Type := unsignednumber.Type;
value.Val := sign.SVal * unsignednumber. Val;

end;

rule value : unsignednumber; 
semantic

value.Tag := unsignednumber.Tag; 
value.Type := unsignednumber.Type; 
value.Val := unsignednumber.Val;

end;
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rule value : string; 
semantic

value.Tag := string.Tag; 
value.Type := STR;

end;

rule value : character; 
semantic

value.Tag := character.Tag; 
value.Type := CHAR;

end;

rule value : boolean; 
semantic

value.Tag := boolean.Tag; 
value.Type := BOOL; 
value.Val := boolean.Val;

end;

rule unsignednumber : unsignedinteger; 
semantic

unsignednumber.Tag := unsignedinteger.Tag; 
unsignednumber.Val := unsignedinteger.Val; 
unsignednumber.Type := INT;

end;

rule unsignednumber : unsignedreal; 
semantic

unsignednumber.Tag := unsignedreal. Tag; 
unsignednumber.Val := unsignedreal.Val; 
unsignednumber.Type := REAL;

end;

rule unsignedreal: unsignedinteger fractionalpart; 
semantic

unsignedreal.Tag := concat(unsignedinteger.Tag,concat(".",fractionalpart. Tag)); 
unsignedreal.Val := add(unsignedinteger.Val,div(fractionalpart.Val,exp(fractionalpart.Len)));

end;

rule unsignedinteger : DIGITSEQUENCE; 
semantic

unsignedinteger.Tag := DIGITSEQUENCE.Tag; 
unsignedinteger.Val := DIGITSEQUENCE.Val;

end;

rule fractionalpart: DIGITSEQUENCE; 
semantic

fractionalpart.Tag := DIGITSEQUENCE.Tag; 
fractionalpart.Len := DIGITSEQUENCE.Len; 
fractionalpart.Val := DIGITSEQUENCE.Val;

end;



rule sign : PLUS; 
semantic

sign.Tag := 
sign.SVal := 1;

end;

rule sign : MINUS; 
semantic

sign.Tag := 
sign. SVal := -1;

end;

rule identifierlist: id; 
semantic

identifierlist.IdList := id.Tag;
end;

rule identifierlist: identifierlist2 id; 
semantic

identifierlist.IdList := append(identifierlist2.IdList,id.Tag); 
condition

disjoint(identifierlist2.IdList.id.Tag);
end;

rule description: string; 
semantic

description. Tag := string. Tag; 
condition

notnull(string. Tag);
end;

rule id : id2 IDENTIFIER; 
semantic

id.Tag := concat(id2.Tag,concat(".",IDENTIFIER.Tag));
end;

rule id : IDENTIFIER; 
semantic

id.Tag := IDENTIFIER.Tag;
end;

rule string : STRINGTOKEN; 
semantic

string.Tag := STRINGTOKEN.Tag;
end;

rule character : CHARACTERTOKEN; 
semantic

character.Tag := CHARACTERTOKEN.Tag;
end;



rule boolean : TRUETOKEN; 
semantic

boolean.Tag := TRUETOKEN.Tag; 
boolean. Val := TRUE;

end;

rule boolean : FALSETOKEN; 
semantic

boolean.Tag := FALSETOKEN.Tag; 
boolean. Val := FALSE;

end;



Sat Sep 12 20:43:33 PDT 1998 
***VisiT SEQUENCES*** 
Production: 0
EVAL ROOTNODE.PARENT 
EVAL CLASSLIST.PARENT 
MOVE CLASSLIST 1 
EVAL ROOTNODE.GBST 
EVAL ROOTNODE.INFO 
COND 1
MOVE ROOTNODE1 
Production: 1
EVAL CLASSLIST2.PARENT 
EVAL CLASSNODE.PARENT 
MOVE CLASSLIST2 1 
MOVE CLASSNODE 1 
EVAL CLASSLIST. SYNST 
EVAL CLASSLIST.INFO 
COND 1
MOVE CLASSLIST 1 
Production: 2
EVAL CLASSLIST. SYNST 
EVAL CLASSLIST.INFO 
MOVE CLASSLIST 1 
Production: 3
EVAL INSTANCELIST2.PARENT 
EVAL INSTANCENODE.PARENT 
MOVE INSTANCELIST2 1 
MOVE INSTANCENODE 1 
EVAL INSTANCELIST. SYNST 
EVAL INSTANCELIST.INFO 
COND 1
MOVE INSTANCELIST 1 
Production: 4
EVAL INSTANCELIST. SYNST 
EVAL INSTANCELIST.INFO 
MOVE INSTANCELIST 1 
Production: 5
EVAL METHODLIST2.PARENT 
EVAL METHODNODE.PARENT 
MOVE METHODLIST2 1 
MOVE METHODNODE 1 
EVAL METHODLIST. SYNST 
EVAL METHODLIST.INFO 
COND 1
MOVE METHODLIST 1 
Production: 6
EVAL METHODLIST. SYNST 
EVAL METHODLIST.INFO 
MOVE METHODLIST 1 
Production: 7
EVAL CLASSDEFN. PARENT 
MOVE CLASSDEFN 1



EVAL CLASSLIST.PARENT 
EVAL INST AN CELI ST. PARENT 
EVAL METHODLIST.PARENT 
MOVE CLASSLIST 1 
MOVE INSTANCELIST 1 
MOVE METHODLIST 1 
EVAL CLASSNODE.SYNST 
EVAL CLASSNODE.INFO 
COND 1
MOVE CLASSNODE 1 
Production: 8
MOVE INSTANCEDEFN 1 
EVAL INSTANCENODE. SYNST 
EVAL INSTANCENODE.INFO 
COND 1
MOVE INSTANCENODE 1 
Production: 9 
MOVE METHODDEFN 1 
EVAL METHODNODE. SYNST 
EVAL METHODNODE.INFO 
COND 1
MOVE METHODNODE 1 
Production: 10 
MOVE ID 1
EVAL CLASSDEFN.NAME 
MOVE INTERFACEUSE S SECTION 1 
MOVE FORWARDDECLSECTION 1 
MOVE BINDPARAMSECTION 1 
MOVE DECLPARAMSECTION 1 
MOVE MIXEDDECLLIST 1 
MOVE BINDSTVARSECTION 1 
EVAL CLASSDEFN.SYMTAB 
COND 1
MOVE DESCRIPTION 1 
EVAL CLASSDEFN.DESC 
MOVE KEYWORDSSECTION 1 
EVAL CLASSDEFN.KEYLIST 
MOVE DOCUMENTSECTION 1 
EVAL CLASSDEFN.DOCLIST 
EVAL CLASSDEFN.INFO 
MOVE ID2 1 
COND 2
MOVE CLASSDEFN 1 
Production: 11
EVAL FORWARDDECLSECTION. SYMRECLIST
MOVE FORWARDDECLSECTION 1
Production: 12
MOVE IDENTIFIERLIST 1
EVAL FORWARDDECLSECTION; SYMRECLIST
COND 1
MOVE FORWARDDECLSECTION 1 
Production: 13



EVAL INTERFACEUSESSECTION.SYMRECLIST
MOVE INTERFACEUSESSECTION 1
Production: 14
MOVE IDENTIFIERLIST 1
EVAL INTERFACEUSESSECTION. SYMRECLIST
COND 1
MOVE INTERFACEUSESSECTION 1 
Production: 15
EVAL DECLPARAMSECTION. SYMRECLIST 
MOVE DECLPARAMSECTION 1 
Production: 16
MOVE PARAMDECLLIST 1 
EVAL DECLPARAMSECTION. SYMRECLIST 
MOVE DECLPARAMSECTION 1 
Production: 17 
MOVE ID 1
MOVE PARAMTYPE 1 
EVAL PARAMDECLLIST. SYMRECLIST 
MOVE PARAMDECLLIST 1 
Production: 18 
MOVE ID 1
MOVE PARAMTYPE 1 
MOVE PARAMDECLLIST2 1 
EVAL PARAMDECLLIST.SYMRECLIST 
COND 1
MOVE PARAMDECLLIST 1 
Production: 19
EVAL PARAMTYPE.PTYPE 
MOVE PARAMTYPE 1 
Production: 20
EVAL PARAMTYPE.PTYPE 
MOVE PARAMTYPE 1 
Production: 21
EVAL PARAMTYPE.PTYPE 
MOVE PARAMTYPE 1 
Production: 22
EVAL PARAMTYPE.PTYPE 
MOVE PARAMTYPE 1 
Production: 23
EVAL BINDPARAMSECTION. SYMRECLIST 
MOVE BINDPARAMSECTION 1 
Production: 24
MOVE BINDP ARAMLI ST 1
EVAL BINDPARAMSECTION. SYMRECLIST
MOVE BINDPARAMSECTION 1
Production: 25
MOVE ID 1
MOVE ID2 1
EVAL BINDPARAMLIST. SYMRECLIST 
MOVE BINDPARAMLIST 1 
Production: 26 
MOVE ID 1



MOVE ID2 1
MOVE BINDPARAMLIST2 1 
EVAL BINDPARAMLIST.SYMRECLIST 
MOVE BINDPARAMLIST 1 
Production: 27
EVAL BINDSTVARSECTION.SYMRECLIST
MOVE BINDSTVARSECTION 1
Production: 28
MOVE BINDSTVARLIST 1
EVAL BINDSTVARSECTION. SYMRECLIST
MOVE BINDSTVARSECTION 1
Production: 29
MOVE ID 1
MOVE BINDSTVARLIST2 1 
MOVE VALUE 1
EVAL BINDSTVARSECTION. SYMRECLIST
MOVE BINDSTVARLIST 1
Production: 30
MOVE ID 1
MOVE VALUE 1
EVAL BINDSTVARLIST. SYMRECLIST
MOVE BINDSTVARLIST 1
Production: 31
MOVE KEYWORDSLIST 1
EVAL KEYWORDSSECTION.KEYLIST
MOVE KEYWORDSSECTION 1
Production: 32
EVAL KEYWORDSSECTION.KEYLIST 
MOVE KEYWORDSSECTION 1 
Production: 33 
MOVE STRING 1
EVAL KEYWORDSLIST.KEYLIST 
MOVE KEYWORDSLIST 1 
Production: 34 
MOVE STRING 1 
MOVE KEYWORD SLIST2 1 
EVAL KEYWORDSLIST.KEYLIST 
COND 1
MOVE KEYWORDSLIST 1 
Production: 35
EVAL DOCUMENTSECTION.DOCLIST 
MOVE DOCUMENTSECTION 1 
Production: 36
MOVE DOCUMENTDEFNLIST 1 
EVAL DOCUMENTSECTION.DOCLIST 
MOVE DOCUMENTSECTION 1 
Production: 37
MOVE DOCUMENTDEFN 1 
EVAL DOCUMENTDEFNLIST.DOCLIST 
MOVE DOCUMENTDEFNLIST 1 
Production: 38
MOVE DOCUMENTDEFN 1



MOVE DOCUMENTDEFNLIST2 1 
EVAL DOCUMENTDEFNLIST.DOCLIST 
COND 1
MOVE DOCUMENTDEFNLIST 1
Production: 39
MOVE ID 1
MOVE STRING 1
EVAL DOCUMENTDEFN.DOC
MOVE DOCUMENTDEFN 1
Production: 40
MOVE STRING 1
EVAL DOCUMENTDEFN.DOC
MOVE DOCUMENTDEFN 1
Sat Sep 12 20:59:02 PDT 1998



Sat Sep 12 19:43:50 PDT 1998 
***VISIT SEQUENCES***
Production: 0 
MOVE ID 1
EVAL INSTANCEDEFN.NAME 
MOVE ID2 1
EVAL IN ST ANCEDEFN. PARENT 
MOVE DESCRIPTION 1 
EVAL INSTANCEDEFN.DESC 
MOVE BINDPARAMSECTION 1 
MOVE BINDSTVARSECTION 1 
EVAL INST ANCEDEFN. SYMTAB 
MOVE KEYWORDSSECTION 1 
EVAL INSTANCEDEFN.KEYLIST 
MOVE DOCUMENTSECTION 1 
EVAL INSTANCEDEFN.DOCLIST 
EVAL IN STAN CEDEFN. INF O 
MOVE INSTANCEDEFN 1 
Production: 1
EVAL BINDPARAMSECTION. SYMRECLIST 
MOVE BINDPARAMSECTION 1 
Production: 2
MOVE BINDPARAMLIST 1
EVAL BINDPARAMSECTION. SYMRECLIST
MOVE BINDPARAMSECTION 1
Production: 3
MOVE ID. 1
MOVE ID2 1
EVAL BINDPARAMLIST. SYMRECLIST 
MOVE BINDPARAMLIST 1 
Production: 4 
MOVE ID 1 
MOVE ID2 1
MOVE BINDPARAMLIST2 1 
EVAL BINDPARAMLIST. SYMRECLIST 
MOVE BINDPARAMLIST 1 
Production: 5
EVAL BINDSTVARSECTION.SYMRECLIST 
MOVE BINDSTVARSECTION 1 
Production: 6
MOVE BINDSTVARLIST 1 
EVAL BINDSTVARSECTION.SYMRECLIST 
MOVE BINDSTVARSECTION 1 
Production: 7 
MOVE ID 1
MOVE BINDSTVARLIST2 1 
MOVE VALUE 1
EVAL BINDSTVARSECTION. SYMRECLIST
MOVE BINDSTVARLIST 1
Production: 8
MOVE ID 1
MOVE VALUE 1



EVAL BINDSTVARLIST. SYMRECLIST 
MOVE BINDSTVARLIST 1 
Production: 9
MOVE KEYWORDSLIST 1 
EVAL KEYWORDSSECTION.KEYLIST 
MOVE KEYWORDSSECTION 1 
Production: 10
EVAL KEYWORDSSECTION.KEYLIST 
MOVE KEYWORDSSECTION 1 
Production: 11 
MOVE STRING 1
EVAL KEYWORDSLIST.KEYLIST 
MOVE KEYWORDSLIST 1 
Production: 12 
MOVE STRING 1 
MOVE KEYWORD SLIST2 1 
EVAL KEYWORDSLIST.KEYLIST 
COND 1
MOVE KEYWORDSLIST 1 
Production: 13
EVAL DOCUMENTSECTION.DOCLIST 
MOVE DOCUMENTSECTION 1 
Production: 14
MOVE DOCUMENTDEFNLIST 1 
EVAL DOCUMENTSECTION.DOCLIST 
MOVE DOCUMENTSECTION 1 
Production: 15
MOVE DOCUMENTDEFN 1 
EVAL DOCUMENTDEFNLIST.DOCLIST 
MOVE DOCUMENTDEFNLIST 1 
Production: 16
MOVE DOCUMENTDEFN 1 
MOVE DOCUMENTDEFNLIST2 1 
EVAL DOCUMENTDEFNLIST.DOCLIST 
COND 1
MOVE DOCUMENTDEFNLIST 1
Production: 17
MOVE ID 1
MOVE STRING 1
EVAL DOCUMENTDEFN.DOC
MOVE DOCUMENTDEFN 1
Production: 18
MOVE STRING 1
EVAL DOCUMENTDEFN.DOC
MOVE DOCUMENTDEFN 1
Production: 19
MOVE UNSIGNEDNUMBER 1 
EVAL VALUE.TYPE 
MOVE SIGN 1 
EVAL VALUE.TAG 
EVAL VALUE. VAL 
MOVE VALUE 1



Production: 20
MOVE UNSIGNEDNUMBER 1 
EVAL VALUE. TAG 
EVAL VALUE.TYPE 
EVAL VALUE.VAL 
MOVE VALUE 1 
Production: 21 
EVAL VALUE.TYPE 
MOVE STRING 1 
EVAL VALUE.TAG 
MOVE VALUE 1 
Production: 22 
EVAL VALUE.TYPE 
MOVE CHARACTER 1 
EVAL VALUE.TAG 
MOVE VALUE 1 
Production: 23 
EVAL VALUE.TYPE 
MOVE BOOLEAN 1 
EVAL VALUE.TAG 
EVAL VALUE. VAL 
MOVE VALUE 1 
Production: 24
EVAL UNSIGNEDNUMBER.TYPE 
MOVE UNSIGNEDINTEGER 1 
EVAL UNSIGNEDNUMBER. TAG 
EVAL UNSIGNEDNUMBER. VAL 
MOVE UNSIGNEDNUMBER 1 
Production: 25
EVAL UNSIGNEDNUMBER. TYPE 
MOVE UNSIGNEDREAL 1 
EVAL UNSIGNEDNUMBER.TAG 
EVAL UNSIGNEDNUMBER. VAL 
MOVE UNSIGNEDNUMBER 1 
Production: 26
MOVE UNSIGNEDINTEGER 1 
MOVE FRACTIONALPART 1 
EVAL UNSIGNEDREAL.TAG 
EVAL UNSIGNEDREAL.VAL 
MOVE UNSIGNEDREAL 1 
Production: 27 
MOVE DIGITSEQUENCE 1 
EVAL UNSIGNED INTEGER. TAG 
EVAL UNSIGNEDINTEGER. VAL 
MOVE UNSIGNEDINTEGER 1 
Production: 28 
MOVE DIGITSEQUENCE 1 
EVAL FRACTION ALP ART.TAG 
EVAL FRACTIONALPART. VAL 
EVAL FRACTIONALPART.LEN 
MOVE FRACTIONALPART 1 
Production: 29



EVAL SIGN.TAG 
EVAL SIGN. SVAL 
MOVE PLUS 1 
MOVE SIGN 1 
Production: 30 
EVAL SIGN.TAG 
EVAL SIGN. SVAL 
MOVE MINUS 1 
MOVE SIGN 1 
Production: 31 
MOVE STRING 1 
EVAL DESCRIPTION.TAG 
COND 1
MOVE DESCRIPTION 1 
Production: 32 
MOVE ID2 1 
MOVE IDENTIFIER 1 
EVAL ID.TAG 
MOVE ID 1 
Production: 33 
MOVE IDENTIFIER 1 
EVAL ID.TAG 
MOVE ID 1 
Production: 34 
MOVE STRINGTOKEN 1 
EVAL STRING.TAG 
MOVE STRING 1 
Production: 35
MOVE CHARACTERTOKEN 1 
EVAL CHARACTER.TAG 
MOVE CHARACTER 1 
Production: 36 
EVAL BOOLEAN. VAL 
MOVE TRUETOKEN 1 
EVAL BOOLEAN.TAG 
MOVE BOOLEAN 1 
Production: 37 
EVAL BOOLEAN. VAL 
MOVE FALSETOKEN 1 
EVAL BOOLEAN.TAG 
MOVE BOOLEAN 1 
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Sat Sep 12 20:10:03 PDT 1998 
***VISIT SEQUENCES***
Production: 0 
MOVE ID 1
EVAL METHODDEFN.NAME 
MOVE ID2 1
EVAL METHODDEFN.PARENT 
MOVE DESCRIPTION 1 
EVAL METHODDEFN. DESC 
MOVE KEYWORDSSECTION 1 
EVAL METHODDEFN.KEYLIST 
MOVE DOCUMENTSECTION 1 
EVAL METHODDEFN.DOCLIST 
EVAL METHODDEFN.INFO 
MOVE METHODDEFN 1 
Production: 1
MOVE KEYWORDSLIST 1 
EVAL KEYWORDSSECTION.KEYLIST 
MOVE KEYWORDSSECTION 1 
Production: 2
EVAL KEYWORDSSECTION.KEYLIST 
MOVE KEYWORDSSECTION 1 
Production: 3 
MOVE STRING 1
EVAL KEYWORDSLIST.KEYLIST 
MOVE KEYWORDSLIST 1 
Production: 4 
MOVE STRING 1 
MOVE KEYWORDSLIST2 1 
EVAL KEYWORDSLIST.KEYLIST 
COND 1
MOVE KEYWORDSLIST 1 
Production: 5
EVAL DOCUMENTSECTION.DOCLIST 
MOVE DOCUMENTSECTION 1 
Production: 6
MOVE DOCUMENTDEFNLIST 1 
EVAL DOCUMENTSECTION.DOCLIST 
MOVE DOCUMENTSECTION 1 
Production: 7
MOVE DOCUMENTDEFN 1 
EVAL DOCUMENTDEFNLIST.DOCLIST 
MOVE DOCUMENTDEFNLIST 1 
Production: 8
MOVE DOCUMENTDEFN 1 
MOVE DOCUMENTDEFNLIST2 1 
EVAL DOCUMENTDEFNLIST.DOCLIST 
COND 1
MOVE DOCUMENTDEFNLIST 1 
Production: 9 
MOVE ID 1 
MOVE STRING 1



EVAL DOCUMENTDEFN.DOC 
MOVE DOCUMENTDEFN 1 
Production: 10 
MOVE STRING 1 
EVAL DOCUMENTDEFN.DOC 
MOVE DOCUMENTDEFN 1 
Production: 11 
MOVE ID 1
EVAL IDENTIFIERLIST.IDLIST 
MOVE IDENTIFIERLIST 1 
Production: 12 
MOVE ID 1
MOVE IDENTIFIERLIST2 1 
EVAL IDENTIFIERLIST.IDLIST 
COND 1
MOVE IDENTIFIERLIST 1 
Production: 13 
MOVE STRING 1 
EVAL DESCRIPTION.TAG 
COND 1
MOVE DESCRIPTION 1
Production: 14
MOVE ID2 1
MOVE IDENTIFIER 1
EVAL ID.TAG
MOVE ID 1
Production: 15
MOVE IDENTIFIER 1
EVAL ID.TAG
MOVE ID 1
Production: 16
MOVE STRINGTOKEN 1
EVAL STRING. TAG
MOVE STRING 1
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Sat Sep 12 20:12:01 PDT 1998 
***VISIT SEQUENCES***
Production: 0
EVAL MIXEDDECLLIST. SYMRECLIST
MOVE MIXEDDECLLIST 1
Production: 1
MOVE MIXEDDECL 1
MOVE MIXEDDECLLIST2 1
EVAL MIXEDDECLLIST. SYMRECLIST
COND 1
MOVE MIXEDDECLLIST 1
Production: 2
MOVE TYPEDEFN 1
EVAL MIXEDDECL.SYMRECLIST
MOVE MIXEDDECL 1
Production: 3
MOVE VARDEFN 1
EVAL MIXEDDECL.SYMRECLIST
MOVE MIXEDDECL 1
Production: 4
MOVE CONSTANTDEFN 1 
EVAL MIXEDDECL.SYMRECLIST 
MOVE MIXEDDECL 1 
Production: 5
MOVE FUNCTIONDEFN 1 
EVAL MIXEDDECL. SYMRECLIST 
MOVE MIXEDDECL 1 
Production: 6 
MOVE ID 1
EVAL TYPEDEFN. SYMRECLIST 
COND 1
MOVE TYPEDENOTER 1 
MOVE TYPEDEFN 1 
Production: 7
MOVE IDENTIFIERLIST 1 
COND 1
MOVE TYPEDENOTER 1 
EVAL VARDEFN.SYMRECLIST 
MOVE VARDEFN 1 
Production: 8 
MOVE ID2 1 
COND 1
MOVE VALUE 1 
COND 2 
MOVE ID 1
EVAL CONSTANTDEFN.SYMRECLIST 
COND 3
MOVE CONSTANTDEFN 1
Production: 9
MOVE ID2 1
COND 1
MOVE ID 1



COND 2
MOVE ARGLIST 1
EVAL FUNCTIONDEFN. SYMRECLIST 
MOVE FUNCTIONDEFN 1 
Production: 10
EVAL ARGLIST. SYMRECLIST
MOVE ARGLIST 1
Production: 11
MOVE ARGDCL 1
EVAL ARGLIST. SYMRECLIST
MOVE ARGLIST 1
Production: 12
MOVE ARGDCL 1
MOVE ARGLIST2 1
EVAL ARGLIST. SYMRECLIST
MOVE ARGLIST 1
Production: 13
MOVE TYPEDENOTER 1
EVAL ARGDCL. SYMREC
MOVE ARGDCL 1
Production: 14
MOVE ID 1
EVAL TYPEDENOTER. SYMREC 
MOVE TYPEDENOTER 1 
Production: 15 
MOVE NEWTYPE 1 
EVAL TYPEDENOTER. SYMREC 
MOVE TYPEDENOTER 1 
Production: 16
MOVE ENUMERATEDTYPE 1 
EVAL NEWTYPE. SYMREC 
MOVE NEWTYPE 1 
Production: 17 
MOVE ARRAYTYPE 1 
EVAL NEWTYPE. SYMREC 
MOVE NEWTYPE 1 
Production: 18 
MOVE RECORDTYPE 1 
EVAL NEWTYPE. SYMREC 
MOVE NEWTYPE 1 
Production: 19 
MOVE SETTYPE 1 
EVAL NEWTYPE. SYMREC 
MOVE NEWTYPE 1 
Production: 20 
COND 1
MOVE IDENTIFIERLIST 1
EVAL ENUMERATEDTYPE. SYMRECLIST
MOVE ENUMERATEDTYPE 1
Production: 21
MOVE FIELDLIST 1
EVAL RECORDTYPE. SYMRECLIST



MOVE RECORDTYPE 1 
Production: 22
MOVE RECORD SECTION 1 
EVAL FIELDLIST. SYMRECLIST 
MOVE FIELDLIST 1 
Production: 23
MOVE RECORD SECTION 1 
MOVE FIELDLIST2 1 
EVAL FIELDLIST. SYMRECLIST 
COND 1
MOVE FIELDLIST 1 
Production: 24 
MOVE IDENTIFIERLIST 1 
COND 1
MOVE TYPEDENOTER 1
EVAL RECORDSECTION. SYMRECLIST
MOVE RECORDSECTION 1
Production: 25
MOVE TYPEDENOTER 1
EVAL ARRAYTYPE. SYMREC
MOVE INDEXTYPELIST 1
EVAL ARRAYTYPE.INLIST
MOVE ARRAYTYPE 1
Production: 26
MOVE INDEXTYPE 1
EVAL INDEXTYPELIST.INLIST
MOVE INDEXTYPELIST 1
Production: 27
MOVE INDEXTYPE 1
MOVE INDEXTYPELIST2 1
EVAL INDEXTYPELIST.INLIST
MOVE INDEXTYPELIST 1
Production: 28
MOVE LOWERBOUND 1
MOVE UPPERBOUND 1
EVAL INDEXTYPE.INPAIR
MOVE INDEXTYPE 1
Production: 29
MOVE VALUE 1
EVAL LOWERBOUND.TAG
COND 1
MOVE LOWERBOUND 1 
Production: 30 
MOVE ID 1
EVAL LOWERBOUND.TAG 
COND 1
MOVE LOWERBOUND 1 
Production: 31 
MOVE VALUE 1 
EVAL UPPERBOUND.TAG 
COND 1
MOVE UPPERBOUND 1



Production: 32 
MOVE ID 1
EVAL UPPERBOUND.TAG 
COND 1
MOVE UPPERBOUND 1 
Production: 33 
MOVE BASETYPE 1 
EVAL SETTYPE. SYMREC 
MOVE SETTYPE 1 
Production: 34 
MOVE ID 1
EVAL BASETYPE. SYMREC 
MOVE BASETYPE 1 
Production: 35
MOVE ENUMERATEDTYPE 1 
EVAL BASETYPE. SYMREC 
MOVE BASETYPE 1 
Production: 36
MOVE UNSIGNEDNUMBER 1 
EVAL VALUE.TYPE 
MOVE SIGN 1 
EVAL VALUE.TAG 
EVAL VALUE. VAL 
MOVE VALUE 1 
Production: 37
MOVE UNSIGNEDNUMBER 1 
EVAL VALUE.TAG 
EVAL VALUE.TYPE 
EVAL VALUE. VAL 
MOVE VALUE 1 
Production: 38 
EVAL VALUE.TYPE 
MOVE STRING 1 
EVAL VALUE.TAG 
MOVE VALUE 1 
Production: 39 
EVAL VALUE.TYPE 
MOVE CHARACTER 1 
EVAL VALUE.TAG 
MOVE VALUE 1 
Production: 40 
EVAL VALUE.TYPE 
MOVE BOOLEAN 1 
EVAL VALUE.TAG 
EVAL VALUE. VAL 
MOVE VALUE 1 
Production: 41
EVAL UNSIGNEDNUMBER.TYPE 
MOVE UNSIGNEDINTEGER 1 
EVAL UNSIGNEDNUMBER.TAG 
EVAL UNSIGNEDNUMBER. VAL 
MOVE UNSIGNEDNUMBER 1 .



Production: 42
EVAL UNSIGNEDNUMBER. TYPE 
MOVE UNSIGNEDREAL 1 
EVAL UNSIGNEDNUMBER. TAG 
EVAL UNSIGNEDNUMBER. VAL 
MOVE UNSIGNEDNUMBER 1 
Production: 43
MOVE UNSIGNEDINTEGER 1 
MOVE FRACTIONALPART 1 
EVAL UNSIGNEDREAL. TAG 
EVAL UNSIGNEDREAL. VAL 
MOVE UNSIGNEDREAL 1 
Production: 44 
MOVE DIGITSEQUENCE 1 
EVAL UNSIGNEDINTEGER. TAG 
EVAL UNSIGNEDINTEGER. VAL 
MOVE UNSIGNEDINTEGER 1 
Production: 45
MOVE DIGITSEQUENCE 1
EVAL FRACTIONALPART.TAG
EVAL FRACTIONALPART.VAL
EVAL FRACTIONALPART.LEN
MOVE FRACTIONALPART 1
Production: 46
EVAL SIGN.TAG
EVAL SIGN. SVAL
MOVE PLUS 1
MOVE SIGN I
Production: 47
EVAL SIGN.TAG
EVAL SIGN. SVAL
MOVE MINUS 1
MOVE SIGN 1
Production: 48
MOVE ID 1
EVAL IDENTIFIERLIST.IDLIST 
MOVE IDENTIFIERLIST 1 
Production: 49 
MOVE ID 1
MOVE IDENTIFIERLIST2 1 
EVAL IDENTIFIERLIST.IDLIST 
COND 1
MOVE IDENTIFIERLIST 1 
Production: 50 
MOVE STRING 1 
EVAL DESCRIPTION.TAG 
COND 1
MOVE DESCRIPTION 1 
Production: 51 
MOVE ID2 1 
MOVE IDENTIFIER 1 
EVAL ID.TAG



MOVE ID 1 
Production: 52 
MOVE IDENTIFIER 1 
EVAL ID.TAG 
MOVE ID 1 
Production: 53 
MOVE STRINGTOKEN 1 
EVAL STRING.TAG 
MOVE STRING 1 
Production: 54
MOVE CHARACTERTOKEN 1 
EVAL CHARACTER. TAG 
MOVE CHARACTER 1 
Production: 55 
EVAL BOOLEAN. VAL 
MOVE TRUETOKEN 1 
EVAL BOOLEAN.TAG 
MOVE BOOLEAN 1 
Production: 56 
EVAL BOOLEAN.VAL 
MOVE FALSETOKEN 1 
EVAL BOOLEAN.TAG 
MOVE BOOLEAN 1 
Sat Sep 12 20:26:17 PDT 1998
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