
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1998

Ordered attribute grammar for the Ecosystem Information System Ordered attribute grammar for the Ecosystem Information System

Trish Duce
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Duce, Trish, "Ordered attribute grammar for the Ecosystem Information System" (1998). Graduate Student
Theses, Dissertations, & Professional Papers. 5545.
https://scholarworks.umt.edu/etd/5545

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5545?utm_source=scholarworks.umt.edu%2Fetd%2F5545&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike

MANSFIELD LIBRARY

The University of MONTANA

Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

** Please check "Yes" or "No" and provide signature **

Yes, I grant permission
No, I do not grant permission

Author's Signature ' " rd 'A A <u ,.

Date I l f " ? I
Any copying for commercial purposes or financial gain may be undertaken only with
the author's explicit consent.

An Ordered Attribute Grammar for the

Ecosystem Information System

by

TrishDuce

B.S. The University of Montana, 1993

presented in partial fulfillment of the requirements

for the degree of

Master of Science

The University of Montana

October 1998

Approved by:

Dean, Graduate School

Date

UMI Number: EP41009

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissert&tkn P bl h rg

UMI EP41009

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Duce, Trish, M.S., October 1998 Computer Science

An Ordered Attribute Grammar for the Ecosystem Information System (116 pp.)

Director: Ray Ford

Attribute grammar methodology is used to formally specify the syntactic and static semantic
aspects of a language. In his original description of attribute grammars, D.E. Knuth states
that semantic rules are well-defined if they are formulated in such a way that all attributes can
always be defined at all nodes in any conceivable derivation tree [D.E. Knuth, Semantics of
context-free languages, Math. Syst. Theory 2, 1968, 127-145], Uwe Kastens introduces
“ordered attribute grammars” as a subclass of well-defined attribute grammars, such that
grammars of this class satisfy the following condition: for each symbol of the grammar a
partial order over the associated attributes can be defined, such that in any context of the
symbol in any derivation the attributes are evaluable in that order [U.Kastens, Ordered
Attribute Grammars, Acta Informatica, Berlin; New York : Spinger-Verlag, Vol 13, 1980,
229-256], Kastens developed an algorithm to determine if an attribute grammar is “ordered”.
An implementation of this algorithm exists, but it contains errors and significant performance
constraints. The work described here begins with debugging and reimplementing the
algorithm in the programming language Java. As a major example, an attribute grammar for
the Ecosystem Information System (EIS) is developed and analyzed for the “orderness”
property. EIS is a network-accessible repository containing various types of information of
interest to natural resource modelers and managers. Included in this repository are meta-data
descriptions for various data sources, datasets, and modeling components. As such, the EIS
description language involves a number of complex constraints on the use of identifiers, which
represents a significant test of the use of attribute grammars in the specification of such
constraints, and on the use of the new implementation of Kastens’ algorithm in the analysis
of such grammars.

Table of Contents

1 Introduction... 1
1.1 Overview...1
1.2 P u rp o se .. 2
1.3 Attribute Grammar Background... 3
1.4 Visit Sequences... 9
1.5 Spencer’s Implementation of Kastens’ Algorithm..10
1.6 Converting to J a v a 11
1.7 Thesis Overview ... 12

2 Kastens’ A lgorithm ... 14
2.1 Attribute Grammar Notation ... 14
2.2 The “orderness” property ..16
2.3 Constructing partial orders for symbols IS
2.4 Visit Sequences... 22

3 Kastens’ Implementation ..23
3.1 Attribute Grammar...23
3.2 Data S tuctures.. 23
3.3 Implementation 29

4 The EIS Attribute Grammar ... 44
4.1 Overview of EIS ...44
4.2 The EIS Language............................. 48

4.2.1 EIS C lasses...................................... 48
4.2.1.1 Class Attributes ... 48
4.2.1.2 Class Interface ..51
4.2.1.3 Class Parameter Declarations ...52
4.2.1.4 Inherited Parameter Bindings ...52
4.2.1.5 State Variable Bindings ..52
4.2.1.6 Documents and Keywords ... 53

4.3 Semantic Checking in EIS ..53
4.4 The EIS Attribute Grammar.......................... 57

5 Execution Results..67
5.1 A Simple Exam ple................. 67
5.2 A More Complicated Exam ple...68
5.3 The EIS Attribute Grammar...................... 69
5.4 Dividing the EIS Attribute Grammar ..71

in

6 Analysis of R esults.. 72
6.1 The EIS Attribute Grammar... 72

6.2 Attribute Evaluator ..72
6.3 Conclusion 77

Appendix A - .. 78
An attribute grammar of a simple expression language and the visit sequences
produced from the analysis of this attribute grammar

Appendix B 82
A very simple attribute grammar and the visit sequences produced from the
analysis of this attribute grammar

Appendix C ...85
The EIS attribute grammar and the visit sequences produced from the analysis of
the EIS attribute grammar

References ...116

iv

List of Figures

1.1 Example Attribute Grammar ...6
1.2 Example Derivation T r e e 7
1.3 Example Attribute Grammar 8

2.1 Elements of an Attribute Gram m ar..15
2.2 Derivation Tree ... 17
2.3 Dependency graph IDS ... 20

3.1 Example Symbol Table, Attribute Table, 27
Occurrence Map 1 and Occurrence Map2

3.2 Example Production T a b le 29
3.3 Dependency graphs TDP and T D S ... 33
3.4 Disjoint Partitions and F values ..35
3.5 Example Occurrence Map 1 after visit values and condition are a d d e d 38

4.1 Example of EIS Interface..................................... 46
4.2 An EIS Hierarchy... 47
4.3 Production rule for a class definition ...49
4.4 Interface for creating a Class .. 50
4.5 Interface for creating an Instance..54
4.6 Interface for creating a Method .. 55
4.7 EIS Hierarchy ...59
4.8 Attributed Tree for class “A” .. 60
4.9 Attribute Grammar Specification for a “classdef’ ...62
4.10 Attributed Tree for class “B” .. 63
4.11 Attributed Tree for class “C” .. 64
4.12 Attributed Tree for upper Part of EIS Hierarchy... 66

5.1 Summary of Executions R esu lts ...70

6.1 Evaluation of class “A”......... ...73
6.2 Evaluation of class “B”...74
6.3 Evaluation of class “C” 75
6.4 Evaluation of Upper Part of EIS Hierarchy... 76

v

Chapter 1

Introduction

1.1 Overview

The Ecosystem Information System (EIS) is a network-accessible repository

containing various types of information of interest to natural resource modelers and managers.

Included in this repository are meta-data descriptions for various data sources, datasets, and

modeling components. The EIS data repository is organized hierarchically using an object-

oriented framework to order the myriad collection of components used in ecosystem

modeling. In collaboration with other ecosystem modeling laboratories, the repository is

being populated with information from important ecosystem modeling and management

applications.

EIS needs a specification language to allow users to define EIS meta-data

descriptions, datasets, and modeling components. The EIS language could be specified with

a context free grammar. The context-free grammar would provide a parser/analyzer a formal

description of the language's syntax, but give no corresponding formal definition of the

language's “static semantics”. A more complete specification of the EIS language can be

formalized using an attribute grammar. An attribute grammar gives both a syntactic and static

semantic language description, which can also be used as the basis for the implementation of

both the parsing and the static semantic checking. This thesis uses the concepts of attribute

grammars, attribute analysis algorithms, and attribute evaluation algorithms to provide a more

rigorous approach to the EIS language specification and implementation.

2

1.2 Purpose

The thesis has several purposes. First, it describes a well-formed attribute grammar

that defines the syntactic and semantic checking that must be done to process the EIS object

description language. This attribute grammar formalizes the ad hoc checking currently

embedded in the parser/analyzer. The attribute grammar is also well-formed, corresponding

to an ordered attribute grammar as defined by Uwe Kastens [2].

Second, the thesis describes the effort required to mechanically prove the orderness

property for a non-trivial attribute grammar, using an attribute analysis algorithm developed

by Uwe Kastens [2], the implementation of that algorithm by Patricia Spencer [5], and the

EIS attribute grammar. The analyzer must first guarantee that the attribute grammar has the

critical “orderness” property and then produce what are known as “visit sequences” for the

given attribute grammar. Testing with Spencer's implementation shows that her program

does not work correctly on large grammars. Thus, a major portion of the project described

here is to debug and revise the original analysis code. Ultimately the decision was made to

rewrite the code in the portable programming language Java. The new implementation of the

attribute analysis algorithm can be used successfully with any attribute grammar; however,

for our illustration purposes we focus on only the EIS attribute grammar.

The third purpose of this project is to demonstrate, with simple examples of the EIS

language, that the attribute grammar and the analysis program are “correct” in the sense that

the grammar specifies semantic constraints intended for the EIS language, and that attribute

evaluation identifies strings that violate the EIS semantic restrictions.

The final purpose of this thesis is to provide enough information for a future student

to implement an efficient attribute evaluation algorithm. That is, the analysis currently ends

with the ability to produce “visit sequences” from the analysis of any attribute grammar and

an informal discussion of how evaluation would proceed. An attribute evaluation algorithm

would use the visit sequences and a derivation in the same attribute grammar, and construct

an attributed derivation tree which contains values for all appropriate attributes in the

derivation.

1.3 Attribute Grammar Background

A language can be defined in terms of what legal strings it includes (the syntax of the

language) and what meaning is attached to any string (the semantics of the language). When

it comes to writing a standard definition of a language, a formal method must be used if there

is any hope of the language's specification having one or more of the following qualities:

completeness, consistency, precision, absence of ambiguity, conciseness, understandability,

and usefulness [4].

Backus-Naur form (BNF) is a formal metalanguage that can be used to write a

description or specification of a language. Basically, it is a notation that one can use to

specify a generative grammar which defines the set of all possible strings of symbols that

constitute programs in the subject language, together with a syntactic structure that reflects

the generation process. Grammars expressible in BNF constitute the class of context-free

grammars [4],

A BNF grammar has a set of production rules. Each production rule has a left side

and a right side separated by some metasymbol. The left side consists of a nonterminal

symbol. The right side of a rule consists of a sequence of terminal symbols and/or

nonterminal symbols, where a terminal symbol is a token of the subject language.

For example, consider the following production rules; where “ :” is the metasymbol

used to separate left and right sides and “|” is used to separate multiple right sides with the

same left side:

numeral: numeral digit | digit
digit : 'O' | '1' I '2'

The nonterminal “numeral” consists of either the nonterminal “numeral” followed by the

nonterminal “digit” or just the nonterminal “digit”. The nonterminal “digit” consists of the

terminal 'O', '1', or '2'. The use of recursion in the first production rule allows an infinite

number of terminal strings to be generated by a finite number of production rules. The rule

for “numeral”, together with the rules for the nonterminals it references and the rules for the

nonterminals referenced in those rules, etc., determines the set of all strings of terminal

symbols that constitute programs in the subject language.

An attribute grammar is a well-known language specification technique that extends

a context free specification to allow one to formally specify aspects of the language's

semantics. An attribute grammar is a context-free grammar augmented with finite state

machine-like formal devices. These formal devices include “attributes” or variables associated

with instances of non-terminal symbols, and “evaluation rules” associated with production

rules. There is a finite set of attributes associated with each distinct symbol of the context-

free grammar. The variables are typed, i.e., a domain of values is associated with each

distinct attribute.

Each node of the syntax tree of a valid program has a set of attributes associated with

the symbol represented by that node. Boolean attributes can be used to indicate whether or

not “extra-grammatical” aspects of the derivation are correct, i.e., to impose conditions on

the derivation that lie outside normal context-free specification. The evaluation rules

associated with the grammar's production rules determine the values of all attribute

occurrences. That is, when a production rule is applied to generate a step in a language string

derivation, its corresponding evaluation rules are also (logically) applied to define the values

of attributes at that point in the derivation.

There are two kinds of attributes, inherited and synthesized. Inherited attributes have

values defined totally in terms of attribute values of the ancestor of the nonterminal symbol.

Synthesized attributes have values defined in terms of attribute values of the descendants of

the corresponding nonterminal symbol. Examples of an attribute grammar and a derivation

tree with a synthesized attribute are given in Figures 1.1 and 1.2 respectively.

For each production rule, there must be an evaluation rule for each synthesized

attribute of the symbol on the left (the symbol being defined) and for each inherited attribute

of each symbol on the right. In general, a given grammatical symbol may have both

synthesized and inherited attributes, and a given attribute may be synthesized with respect to

one symbol and inherited with respect to another. An example of an attribute grammar with

an inherited attribute is given in Figure 1.3.

6

end

numeral: digit; < --------------production rule
semantic

numeral.'Val.-digit.Val,^. _ a^ rjbute evaluation rule with dependency:
numeral.Val depends on digit.Val

numeral: numeral digit;
semantic . ____ - attribute

numeral 1.Val := K)^numeral2.Val + digit.Val;*^
condition ^

numeral.Val <= 2,147,483,647;
end;

\

digit: ‘O';
semantic

digit.Val ;= 0;
end;

\

/

nonterminal with which
attribute is associated

special boolean attribute

digit: ‘9';
semantic

digit.Val. := 9;
end;

Figure 1.1 Example Attribute Grammar

7

Nonterminal
instance

Synthesized
attribute

<numeral>
Val:

Integer attribute
instance

Cond:-<------ Boolean attribute
instance

<numeral>
Finit§_ £Val:
set ^ ^ ^ P o n d :

<numeral>
Val:

<digit>
Val:

<digit>
Val:

<digit>
Val:
I
9

0
Note that nonterminal and attribute
instances have been defined by the
derivation, but attribute values have
yet to be computed.

Figure 1.2 Example Derivation Tree

string: char;
semantic
condition

string.Size = 1 ;

en£*’ ^Inherited Attribute
string : string2 char; ̂ -
semantic -SC

string2.Size := string.Size -1;
end;

ch ar: ‘A’;

char : ‘B’;

Figure 1.3 Example Attribute Grammar

1.4 Visit Sequences

In his original description of attribute grammars, D.E. Knuth states that semantic

rules are well-defined if they are formulated in such a way that all attributes can always be

defined at all nodes in any conceivable derivation tree [3], Kastens introduces “ordered

attribute grammars” as a subclass of well-defined attribute grammars, such that grammars of

this class satisfy the following condition: for each symbol of the grammar a partial order over

the associated attributes can be defined, such that in any context of the symbol in any

derivation the attributes are evaluable in that order [2], Furthermore, Kastens shows that for

attribute grammars of this type, “visit sequences” can be derived that can drive a general

purpose attribute evaluation algorithm to correctly evaluate all attributes for any valid

derivation tree.

A visit sequence for an ordered attribute grammar simply formalizes the intuitive

notation that if the value of attribute x depends on the value of attribute y, then attribute y

must be evaluated before attribute x. The evaluation order defined by a visit sequence reflects

all such dependencies. Kastens formulates his algorithm in somewhat vague, set-theoretic

terms. Spencer describes an implementation of Kastens' attribute analysis algorithm that

produces the visit sequences as one of its several outputs [5],

To understand what information a visit sequence must encode, consider the following.

Evaluation of attributes proceeds as “control” is applied to a particular node. As part of the

evaluation, control may be passed from the current node to its parent or one of its children.

In this manner a node may receive control several times. When it receives control, it must

resume execution where it left off, so it needs to remember its prior state. The purpose of

10

passing around control like this is to allow the evaluation of complex sets of dependencies.

If node x is a parent of node y, when control is initially passed down to node x, it should

calculate as many of x's synthesized attributes as possible. However, some attributes ofx may

depend on attributes not yet determined. So x passes control to node>> and other descendants

which eventually calculate the values of upon which x ’s synthesized attributes depend. Thus

y may return control to x, or pass control to one of^y's children, or halt if all attributes have

been computed. The critical points are that when control is passed from one node to another,

enough attributes have been evaluated so the node with newly granted control can proceed,

and that the exchange of control eventually terminates in a state where all attributes have been

assigned a value. This must be true for all possible derivations.

1.5 Spencer’s Implementation of Kastens’ Algorithm

In [5] Spencer describes the details of the implementation of Kastens' attribute

grammar analysis algorithm, along with her design details for input/output for grammar

specification and visit sequences. It is very difficult to translate Kastens' abstract algorithm

design into an implementation. Kastens' algorithm describes a construction based on large

abstract sets of data, different types of set operations, and multiple passes over the data. The

size of the sets is determined by the number of grammar symbols, productions and

symbol/attribute occurrences. As grammars increase in size, constructing and manipulating

these data objects efficiently is extremely important, and is highly dependent on the data

structures used to represent the sets. Spencer's implementation attempts to reduce time and

space requirements by using a carefully selected sequence of set representations during

different phases of the algorithm.

Spencer's original work demonstrates the correct processing of several small attribute

grammars. However, excessive compute time and space requirements of her original

implementation prevents the analysis of larger attribute grammars. Furthermore, recent

testing of her program on larger attribute grammars reveals that it contains bugs — for some

attribute grammars it produces visit sequences that obviously are incorrect. Thus, Spencer's

program has to be fixed so it executes properly.

1.6 Converting to Java

“Java is: A simple, object-oriented, distributed, interpreted, robust, secure,

architecture neutral, portable, high-performance, multithreaded, and dynamic language” [10].

Spencer's original implementation of analysis algorithm is in the programming language Ada.

Java is the programming language chosen for the new version of Spencer’s implementation

of Kastens’ algorithm. How to represent data is critical in the design of the attribute analysis

algorithm. Java supports the object-oriented concept of class, consisting of a collection of

data and methods that operate on that data [10]. Java also provides several pre-defined

classes, including a class “Vector” which is basically a dynamic array. This type of data

structure is ideal to represent and manipulate the large abstract sets of data in Kastens’

algorithm. At runtime, the standard implementation of Vector almost completely eliminates

wasted space due to the dynamic growth of the Vector. More importantly, use of a standard,

predefined class and its operations helps avoid subtle programming bugs.

1.7 Thesis Overview

As noted above, EIS requires a well-formed language that defines EIS meta-data

descriptions, datasets, and modeling components. The goal is to formally specify the EIS

language using an attribute grammar, then use the formal specification as the basis for

implementation of EIS language processing tools. Currently, a parser and semantic analyzer

perform all syntactic and semantic checking. The semantic analysis done for the EIS object

description language is embedded in the parser/analyzer. The purpose of constructing an

ordered attribute grammar for EIS, is (a) to formalize the specification of syntactic checking,

(b) to formalize analysis of the static semantics specification, and (c) to formalize

implementation of static semantic specification [5],

Chapter 2 discusses Kastens' algorithm, including basic notation, how the algorithm

logically works, and it's inputs/outputs. This method of semantic analysis is time efficient, in

the sense that the evaluation order of the attributes only needs to be determined once for a

given grammar. It is space efficient because the visit sequences, which can be subsequently

used to evaluate the attributes for any derivation in that attribute grammar, are also

constructed only once. Chapter 3 discusses the Java implementation of Kastens algorithm,

including details borrowed from Spencer's program and specific features new in the Java

version. Chapter 4 discusses the EIS language specification and defines the EIS language

using an attribute grammar. This attribute grammar formally defines the syntactic and

semantic checking that must be done for the EIS object description language. Chapter 5

analyzes the EIS attribute grammar via Kastens' algorithm implementation in Java. It also

discusses a second and third version of the analysis code that was written to meet memory

requirements of large attribute grammars such as the EIS attribute grammar.

Finally, Chapter 6 discusses the correctness of the overall language design, in the

sense of matching the syntactic/semantic intent for EIS. Examples are used to argue

informally that the EIS attribute grammar produces computations that match the intent for

object-oriented class, instance, and method specification. Chapter 6 also describes how an

attribute evaluation algorithm could be constructed so that when the visit sequences

produced from the analyzer with the EIS attribute grammar as input, and example derivations

of meta-data descriptions, datasets, or modeling components are run through the evaluator,

the results are evaluated EIS attributes.

Chapter 2

Kastens’ Algorithm

2.1 Attribute Grammar Notation

The notation for attribute grammars used by Kastens is described in the following. An

attribute grammar is a context-free grammar which is augmented by attributes. Semantic

functions define the value of an attribute occurrence. Boolean attributes can be used to

indicate whether or not “extra-grammatical” aspects of the derivation are correct, i.e., to

impose conditions on the derivation that lie outside normal context-free specification.

An attribute grammar AG is defined as AG = (G, A, VAL, SF, SC). G = (N, T,S,P)

is a context-free grammar, where N is the set of nonterminal symbols, T is the set of terminal

symbols, V = N VTis the vocabulary of the grammar, S e N is the start symbol, and P is the

set of syntactic rules. Each syntactic rule p c P has the form:

p = X 0: Xj,...Xni for n > = 0.

X t denotes an occurrence of a symbol of N, for i = 0 and V for i > 0. A represents a set of

attributes. Ax is the set of attributes associated to symbol X. X-a, X-h,... denote the elements

of Ax. AIX and ASX are subsets of Ax that represent inherited and synthesized attributes

respectively. SF is the set of semantic functions associated with rule p e P. Each semantic

function defines the value of an attribute occurrence in p. These occurrences defined by

semantic functions make up the set of defining occurrences, A F . Figure 2.1 demonstrates

the elements of an attribute grammar.

14

15

vocabulary (F)
second syntactic rule (p e P)

nonterminals (N)
terminals (J)

p 2 : rule primary : ‘(’ declaration assignment ‘) ’
semantic

■ declaration.access := primary, access;
assignment.access := include (primary.access, declaration.description);
primary.primode := assignment.primode;
assignment.postmode := primary.postmode;
primary, evaluable := false;

— primary.value := undefined;
end

semantic functions (SFP)

the set of defining occurrences
for this production are: (AFp)
declaration, access
assignment, access
primary.primode
assignment.postmode
primary, evaluable
primary.value

inherited attributes: (AT)
declaration, access
assignment, access
assignment, postmode

synthesized attributes: (AS)
primary.primode
primary, evaluable
primary.value

Figure 2.1 Elements o f an Attribute Grammar

16

2.2 The “orderness” property

D. E. Knuth proposes the concept of well-defined attribute grammars, and states that

an attribute grammar is well-defined if and only if there is no sentence of the language with

circularly dependent attributes [3]. Kastens goes on to introduce “ordered attribute

grammars” as a subclass of well-defined attribute grammars. Grammars of this class meet the

following condition: “For each symbol of the grammar a partial order over the associated

attributes can be defined, such that in any context of the symbol the attributes are evaluable

in that order” [2], Further, Kastens demonstrates that one can automatically construct

algorithms to evaluate the attributes of any sentence of an ordered attribute grammar.

The problem of deciding whether a given attribute grammar is ordered is solved by

projection of the attribute dependencies into dependency relations associated with production

rules and symbols. The basic idea for ordered attribute grammars is: for each symbol of a

given attribute grammar, construct a partial order over the attributes. This order determines

the evaluation order for the attributes of a symbol, in any derivation context in which that

symbol occurs. The evaluation order must reflect all direct and indirect dependencies, which

may be derived from any possible context of that symbol. The evaluation order is used to

construct “visit-sequences” that describe the control flow of an efficient attribute evaluation

algorithm. Elements of the visit-sequence give instructions to move up to the ancestor, move

down to a certain descendant, or evaluate a certain attribute.

The syntactic structure of a given terminal string generated by a grammar is depicted

in Figure 2.2. During a visit to node Ky some attributes of AFp are evaluated according to

semantic functions of SFp. Several visits to each node are generally needed until all

17

symbol instance

rule p

nonterminal rule q

Figure 2.2 Derivation Tree

18

attributes are evaluated. The partial order constructed for each symbol is used to assure that

the visit-sequences for a tree node and for its descendants fit together. A move down from

Ky to Kx is made in order to evaluate a certain subset of synthesized attributes of symbol X.

Any move back up to Ky is used to evaluate a certain subset of inherited attributes of symbol

X. Therefore the partial order for symbol A must define a linear order over subsets of Ax,

which contain alternating inherited and synthesized attributes. The order is partial because

the evaluation order within each subset is not relevant.

2.3 Constructing partial orders for symbols

An attribute grammar is ordered if a partial order DS (dependencies between symbols)

with the properties discussed above can be constructed according to the following definitions

[2], Examples from the simple expression language given by Kastens’ [2], listed in Appendix

A, are given in bold in the cases below.

Definition 1. Let DPp be the relation of direct dependencies between attribute occurrences

associated to production rules, where

DPp = {(Xj.a, Xj.b)| there is a semantic function in SFp defining Xf b in terms ofX,.a}

DP2 = {(primary.access,declaration.access), (primary.access,assignment.access),
(declaration.access, assignment.access), (assignment.primode,primary.primode),
(primary.postmode, assignment.postmode)}

DP2 is the set of dependencies given directly by the semantic functions.

19

Definition 2. Let IDPp be the relation of induced dependencies between attribute

occurrences, where

IDPp = DPp V {(Xea, X f b)\ X i occurs in rule /?, Y} occurs in rule q, X i = Yj and

(Yf a,Yj.b) e 1DP*}.

ID P1 = {(primary.access, primary.postmode), (primary.access, primary.primode),
(primary.access, primary.value),(primary.primode, primary.postmode),
(primary.postmode, primary.value),(primary.primode, primary.value),}

IDP} contains all the direct dependencies of rule 1 and those induced by attributes of similar

symbol occurrences in other productions.

Definition 3. Let IDSx be the relation of induced dependencies between attribute of symbols,

where

IDSX ={(X.a, X.b)| there is an X x. = X in a rulep and (Xt.a,Xt. b) e IDPp) .

ID Sprimary = {(primary.access, primary.postmode), (primary.access, primary.primode),
(primary.access, primary.value),(primary.primode, primary.postmode),
(primary.postmode, primary.value),(primary.primode, primary.value),}

IDSprimary contains direct and induced dependencies of attributes of symbol occurrence

primary found in some production/?. Figure 2.3 gives a graphical representation ofIDSprimary.

If IDS is cyclic, the grammar is not “ordered”. In the next steps IDS is completed to DS.

DSX defines a linear order over disjoint alternating subsets of synthesized and inherited

attributes of symbol X. Each subset, denoted by Axk consists of those attributes (synthesized

or inherited) whose values are additionally available after a move up or down in the syntax

tree. The evaluation order corresponds to the decreasing value of k. Therefore, AXJc contains

attributes that need to be evaluated before attributes in Axk_j.

20

IDSprimary* access primode postmode evaluable value

Figure 2.3 Dependency graph IDSprimary

21

Definition 4. Let IDS be acyclic. For each X e V:

AXi = { X.a e AS | there is no X.b such that (X.a, X.b) e IDS*},

AX2n ~ { X.a e A I | for allXZ) e Ax : {X.a, X.b) e /DiS* implies

X.b e A Xw, m < 2n} \A X1 U.. .U AX2n.h

Ax, 2 f l + 1 = { X-a f A S I for allXZ> e Ax : (X.a, X.b) e IDS+ implies

X.b eA Xm, m < 2n+1} \A X>1 U.. .U AX2n,

This is done until each attribute X.a eAx is in a disjoint partition Axk. The subsets are defined

such that the values o£Axk are needed to compute the values of Axk_Li the values ofAXrlk are

needed to compute the values of Ax>k_2, etc. Let mx equal the largest k value for symbol X.

Aprimary,! = {value, evaluable}
A p r i m a r y . 2 = {pOStmode}

A p r im a r y i3 = { primode}
Aprimary 4 — {access}
^prim ary ^

Definition 5. Let IDS be acyclic.

DSx = IDSx y {(X.a, X.b)\ X.a EAxk ,X .b e Axm 2<k<mx}.

DSX defines a linear order over the subset Axk oL4x. For each two attributes X.a E A f X . b e

AS, either (X.a, X.b) e DSXor (X.b, X.a) e DSX.

Definition 6.

EDPp = DPp V {(Xt a, X f b)\(X. a, X. b)eDSx , X t = X for each Xthat is contained inp).

EDPp extends the dependencies of a production to reflect all dependencies (direct, induced

and linearly ordered) between attributes of symbols, for the symbols contained in p.

22

Definition 7. A given attribute grammar is “ordered” if the dependency relationship DS

exists and the extended dependency relationship EDP is acyclic.

2.4 V isit Sequences

Just because an attribute grammar is ordered does not imply that a predefined strategy

for attribute evaluation exists. An algorithm that produces such a strategy can be constructed

based on the attribute' dependencies as discussed above, in the form of what are known as

visit sequences. Visit sequences are independent of the compilation of any particular sentence

of the language; therefore they can be constructed once for a given attribute grammar as part

of its analysis.

Chapter 3

Kastens’ Implementation

3.1 A ttribute G ram m ar

The first decision Spencer makes when implementing Kastens’ algorithm is, how to

represent the attribute grammar. An example of her syntax for specifying the attribute

grammar is given in Appendix A. Attributes and their corresponding types are listed first,

terminated with a “%”. Function names follow, terminated by a “%”. The grammar is then

listed, in BNF form, with some minor syntactic rules. Each production begins with the word

“rule”. A follows the lefthand symbol of a production, and a follows the left hand

side of a semantic function. Each production, semantic function and semantic condition must

termintate with a The word “semantic” must proceed the list of semantic functions, the

word “condition” must proceed the list of semantic conditions, and the word “end” must

terminate each production. All nonterminals must be enclosed by single quotes.

Symbol/attribute occurrences are represented by “symbol.attribute” .

3.2 D ata Structures

Data is constantly being manipulated throughout Kastens’ algorithm. How to

represent this data is critical. Spencer uses the programming language Ada and data

structures including: arrays, records, and pointers. These data structures are easy to

manipulate, but the size of datasets places maximum values on the number of symbols,

attributes, productions and symbol/attribute occurrences allowed in the grammar. This

23

24

creates a problem in attempting to analyze very large grammars. In addition, since Spencer’s

program uses statically allocated arrays, allocated space is wasted on smaller grammars. Due

to the uncertain size of the grammar ahead of time, Spencer’s implementation [5] is not as

efficient as we would like it to be. In addition, Ada programming environments are becoming

somewhat rare, so the decision was made to re-implement Kastens’ algorithm in the more

portable language Java.

Java is an object-oriented programming language. A class is a collection of data and

methods that operate on that data. Java comes with a large number of predefined classes.

One of those predefined classes is Vector, which implements a variable sized list of objects.

In this case, an object is some instance of another class. The methods associated with the

class Vector allow you to store and retrieve objects of any type, as well as to easily manipulate

and keep track of the size of the Vector. Thus, our reimplementation is based on Spencer’s

implementation, but with data structures converted into more appropriate Java forms.

Java also has many other nice features. It is relatively easy to learn. It is an

interpreted language. The Java compiler generates byte-codes for the Java Virtual Machine

(JVM) (instead of the native machine code) which executes the compiled byte-codes. Java

byte-codes are platform independent. Therefore Java programs can run on any platform that

the JVM has been ported to. Java is designed for writing robust software. There are no

pointers, which eliminates one of the most bug-prone aspects of other programming

languages. There is extensive compile-time type checking. There are many more advantages

to using Java; however, those listed above are the most important in why the language was

chosen for this project.

25

A symbol table, attribute table, production table, and symbol/attribute occurrence

maps are the initial data structures created to implement Kastens’ algorithm. The Java

version is based on the following class definitions. The class symbol represents a grammar

symbol:

public class symbol {
String sym_name;
int symbase;

}

The variable symbol, sym name holds the string representation of the lexical token. A Vector

sym table represents a symbol table. A unique integer is associated with each symbol that

is given by the index of sym jable . Production rules can be recursive, i.e., numeral :

numeral2 ‘+ ’ digit. For those symbols that have an integer attached at the end,

symbol sym base holds the unique integer representation of the symbol without the integer

attached. For those symbols without an integer attached to the end, symbol sym base holds

the unique integer representation of that symbol.

The class attribute represents an attribute:

public class attribute {
String att_name;
String att_type;
public boolean check_type() {... }

}

The variable attribute, a ttnam e holds the string representation of the lexical token that

represents the attribute name. The variable attribute.att type holds the string representation

of the lexical token that represents the attribute type. The Vector att table represents an

attribute table. A unique integer is associated with each attribute that is given by the index

of att table. The method attribute. check typeQ determines if a particular attribute type is

26

legal or not.

Symbol/attribute occurrences are represented in two maps. As a semantic function

is being parsed, if the symbol/attribute occurrence did not previously exist it is assigned a

unique integer value (starting at 1). mapl is a one dimensional array of maprec. maprec is

the following class:

public class maprec {
int sym;
int att;

}

The index of mapl represents a unique integer for a particular symbol/attribute occurrence.

maprec contains the unique integer representation of the symbol for that occurrence in the

variable maprec. sym, and the unique integer representation of the attribute for that occurrence

in the variable maprec.att. m apl is a two dimensional array whose indices (the integer

representation of a symbol, and the integer representation of an attribute) yield the unique

integer representation for that occurrence. These are the only two arrays used in the Java

implementation of Kastens’ algorithm. There is a maximum limit of 500 symbol/attribute

occurrences. The ease of manipulating these arrays became more of a priority than the small

amount of wasted space allocated. Figure 3.1 shows the symbol table, attribute table,

occurrence map 1, and occurrence map 2 for the simple attribute grammar listed in Appendix

B.

The class prod represents a production:

public class prod {
int llis;
Vector syin_list = new VectorO;
Vector occur_list = new VectorQ;
Vector cond_list = new VectorO;
Vector vis seq = new VectorO;

}

27

Symbol Table

NUMERAL 0

DIGIT 1

NUMERAL2 0

7 “ \

^ symsymbol 2

symname sym_base

Attribute Table

VAL STRING ■ attribute 0

r \
att_name att_type

Occurrence Map 2

Occurrence Map 1

symbol 0

occurrence 1 ^
occurrence 2 ^

attribute 0

0 0

1 0

2 0

attribute 0 (attribute 1 if existed)

* /
symbol 0

symbol 1

symbol 2

occurrence 1

Figure 3.1 Example Symbol Table, Attribute Table,
Occurrence Mapl and Occurrence Map2

28

The variable prod. Ihs holds the integer for the nonterminal symbol representing the left hand

side of the production, prod, sym list is a Vector containing the integer representation of all

the symbols in the production, prod.occur list is a Vector containing "occur”(s) (holds the

occurrence arguments for the function definition of an occurrence), prod, condlistis a Vector

containing ”cond”(s) (holds the occurrence arguments for a condition). And finally,

prodvis seq is a Vector containing ”seq"(s) (holds an action for the visit sequence). The

Vectorprod table is created to represent a production table. Figure 3.2 shows the production

table for the attribute grammar listed in Appendix B immediately after the grammar has been

parsed.

The main data structure in Kastens’ algorithm represents dependency relations.

Dependencies are easily represented in adjacency matrices. Logically, matrix(ij) = 1

indicates that j depends on i, where as matrix(ij) = 0, indicates that there is no dependency.

In the Java version, Vectors are used to simulate and replace Spencer’s adjacency matrices.

A Vector of Vectors takes the place of a two-dimensional matrix.

3.3 Im plem entation

Before we actually begin implementing Kastens’ algorithm we must take an attribute

grammar with the correct syntax as input and create a symbol table, attribute table,

production table and occurrence maps as discussed above. Additionally, a function table, lists

of all attributes (A), inherited attributes (AI), and synthesized attributes (AS) for each symbol

must be defined as well as defining occurrences (AF) for each production. These data

structures are referred to throughout the entire program.

29

production

0

0 1

1 2

empty

empty

0

0 2 1

1 3 2

empty

empty
empty

left h^nd nonterminal symbol

Vector of symbols

ector o f arguments for semantic function

^ "Vector o f semantic functions

Vector of conditions

Vector of actions for visit sequences

■Vector o f arguments for condition

Figure 3.2 Example Production Table

30

The class grammar was created to hold all of the data structures associated with an

attribute grammar. .

public class grammar {
Vector att_table = new VectorO; // attribute table
Vector sym_table = new VectorO; // symbol table
Vector prod_table = new VectorO; // production table
Vector fun_table = new VectorO; H function table
occmaps omaps = new occmapsO; // contains maps for occurrences
attsets aset = new attsetsO; // contains A, AI and AS as well as AF
Vector tdp = new VectorO; // contains dependencies for each production
Vector tds = new VectorO; // contains dependencies for each symbol
Vector mark = new VectorO; // temporary variable
Vector partition = new VectorO: // contains disjoint partitions of occurrences
Vector f = new VectorO; // contains the smallest even number >=k (partion for each symbol)
Vector vseq = new VectorO; //contains the visit sequences for each production

}

Values in the variables tdp, tds, mark, partition, f, and vseq are constructed in the rest of the

algorithm to hold dependency relations, partitions and visit sequences.

Dependency relations between attribute occurrences in productions as well as between

attributes of symbols are the basis for computing the visit sequences for a given attribute

grammar. If at any point a dependency relationship is found to be cyclic, that particular

attribute grammar is not ordered. Each rule in the attribute grammar is represented by a

dependency relation TDPp over attribute occurrences in that production. Each symbol is

represented by a dependency relation TDSX over ‘attributes Ax . Several functions are used

in the next steps for updating dependency relations.

add_arc_trans(Vector am, int size, int vl, int v2)

adds the dependency “v2 depends on v/" to the adjacency matrix am, and then adds

any additional dependancies needed to implement the closure on am.

31

add arc induce(Vector mark, Vector tdp, Vector am, Vector tds, int vl, int v2,

occmaps occ, Vector sym table)

adds the dependency “v2 depends on v l , " and then adds any additional dependencies

needed to implement the closure on am. This function is applied to the relation TDPp.

Additionally, each new dependency added is also added to TDSX, along with

additional dependancies needed to reach the transitive closure on TDSX, if the

symbols of symbol/attribute occurrence v l and v2 are the same.

The following steps convert the recursive definitions of DPp0 IDPp and EDPp listed

in Chapter 3 into iterative algorithms that compute their transitive closures. The first step

computes DP+. Below is an outline of the method create tdp and tds.

create_tdp_and_tds(grammar g) {
for each production p
loop

for each semantic function / eSFp defining Xf b
loop

for each arguement X t. a o f /
loop

if (Xra, Xj.b) $TDPp
then add_arc_induce(TDPp,Xl. aJCj. b)
fi

repeat
repeat

repeat
}

After the completion of this method TDP = DP+ and TDS currently contains the transitive

closure of direct dependencies between attributes of symbols.

The second step computes the relations IDP+ and DS+.

32

create_idp(grammar g) {
while there is a dependency (X.a, X.b) in TDS not marked
loop

mark(X.a, X.b)
for each occurrence X t of X in any rule p
loop

if (X ,a ,X ,b) $TDPp
then add arcJnduce(TDPpfXt.a^XPb)
fi

repeat
repeat

Each dependency in TDS which is not marked is induced at each occurrence of the symbol

in TDP. If new dependencies are found that need to be induced, they are added to TDS by

add arc induce. When the algorithm is completed TDP = IDP+ where IDP is the set of all

induced dependencies (including direct dependencies) between attribute occurrences. IDP+

ensures that all attribute dependencies for a symbol X are obtained for any context of X.

Marking the dependency in TDS ensures that no dependency is unnecessarily induced more

than once. TDS = IDS+ where IDS is the set of all induced dependencies (including direct

dependencies) between attributes of symbols. The variables tdp and tds in the Java

implementation hold the dependency relations for a given attribute grammar. Figure 3.3

shows the dependencies graphs TDP and TDS at this point for the example attribute grammar.

The third step computes the disjoint partitions of Ax. Starting with symbol 0 and

k=l, the algorithm loops until all attributes^ are assigned to some Axk. Partitions with odd

k contain only synthesized attributes. Partitions with even k contain only inherited attributes.

create_partition(grammar g) {
for each symbol X
loop

k= 1;
not assigned - Ax
while {not assigned t empty)

TDP
production 0

production 1

occurrence 1 depends on
occurrence 2

occurrence 1 depends on
occurrence 2
occurrence 1 depends on
occurrence 3

TDS

symbol 0 000
000
000

symbol 1 000
000
000

symbol 2
000
000
000

Figure 3.3 Dependency graphs TDP and TDS

34

loop
foundone - false;
for each attribute X.a g {not assigned && if odd k then ASX else AIX fi)
loop

condition holds = true;
for each X. b e not assigned
loop

if {X.a, X.b) e TDSX
then condition holds = false;

break;
fi

repeat
if condition holds
then partition{X.a) = k\

not assigned = not assigned \ {X.a};
found one = true;
break;

fi

repeat
if (!found_one && not_assigned ^0)
then£ = £ + l ;
fi

repeat
mx = k ;
fx = if {odd k) then k+l else k fi

repeat
}

The algorithm loops for each symbol of the attribute grammar, k is initially 1. The variable

not assigned contains all the attributes associated with symbolX If k is odd and an attribute

X a is synthesized and an element of not assigned, then the algorithm determines if any other

element in not assigned depends on X.a. In the actual Java implementation a Vector

partition, whose index is the integer representation of that occurrence is assigned the value

of k. A Vector / , whose index is the integer representation of a symbol is assigned the

smallest even number >= k. Figure 3.4 shows the variables partition and / for the attribute

grammar in Appendix B.

The next step computes the relationEDP+. The algorithm adds dependencies to TDP

according to the relation given by the disjoint partitions of the attribute occurrences for each

partition f

occurrence 1 1 symbol 0 - > 2

occurrence 2 1 symbol 1 2

occurrence 3 0 symbol 2 2

NOTE: All occurrences with symbols whose base
value differs from the integer representation are given
the value of 0

Figure 3.4 Disjoint Partitions and F values

36

symbol, Axk.

create_edp(grammar g) {
for each production p
loop

for each symbol X in p
loop

X = X t
for each X.a
loop

for each X. b
loop

if partition(X.a) > partition(X.b)
then add arc transiTDPpyX,. a^Xr b)
fi

repeat
repeat

repeat
repeat

}

When the algorithm is completed TDP = EDP+. If each TDPp is acyclic, then the attribute

grammar is ordered.

The final step of Kastens’ algorithm constructs the visit-sequences. Consider

evaluating the attributes of symbol X where f x = 4 and the largest value of k = 4. AX4 are

those inherited attributes evaluated first. A move to a descendant must be made and then the

synthesized attributes AX3 are evaluated and so forth.

A x , 4 A x , 2

11 11 12 1 2
Ax,3 Ax>1

The number of ancestor and descendant visits are both f x div 2.

An occurrence is created to represent a visit. This makes it easy to keep track of

dependencies between occurrences and visits. If a production contains the symbol in the

example above, two occurrences would be created to represent the two visits needed. The

37

integer representation of the symbol (of the occurrence), represents the symbol to be visited.

The integer representation of the attribute represents the value of k (in the form of k + number

of attributes). Due to the fact the value of the attribute of the occurrence is greater than the

total number of attributes, we know the occurrence is a visit.

Conditions are also represented as an additional occurrence. The integer

representation of the symbol (of the occurrence) represents the number of the condition (in

the form of cond + number of symbols). Due to the fact the value of the symbol of the

occurrence is greater that the total number of symbols, we know the occurrence is a

condition. The integer representation of the attribute has no relevant value. Figure 3.5 show

the occurrences maps of the attribute grammar in Appendix B after the visit values and

conditions have been added.

3.3.1 Creating Visit Sequences

The following algorithm presented by Kastens and implemented by Spencer is

intended to construct the visit sequences:

create_visseq(grammar g) {
for each production p
loop

for each (X,a,Xf b) e TDPp
loop

mi = partitionfX'.a);
mj = partition(Xf b)\
ki = (fxi - mi + l)div 2;
kj = (fxi - mi + l)div 2;
if (ki > 0 && kj > 0)

then add_arc trans(VSp,(\iXr a e AFp then X t. a else vku fi),(ifX,,6 e AFp then A",. 6 else
Vki.i fi))

fi
repeat
add_cond_vertices_tojvs();
for each g e Avp

Occurrence Map 1

symbol 0

k .
occurrence 1

occurrence 2
occurrence 3

occurrence 4 visit symbol 0 0
occurrence 5 visit symbol 1 l
occurrence 6 visit symbol 2 ► 2

occurrence 7
*

attribute 0

^ t-k = 1 (2 - # o f attributes)

k = 1 (2 - # of attributes)

k = 1 (2 - # o f attributes)

not relevant

condition 1 (4 - # of symbols)

Figure 3.5 Example Occurrence Map 1 after visit values and condition are added

39

loop
for each h e A Vp
loop

if (g,h), (h,g) (f VSP
then if (g = vh 0 && k = nvx, X=X0)

then add_arc_trans(VSp,h, g)
else add_arc_trans(VSp,g,h)
fi

fi
repeat

repeat
repeat

}

The algorithm takes the relation TDP, and for each dependency determines whether the

occurrences for that dependency are inherited and can be evaluated immediately, i.e; if (ki >

0 && kj > 0). If the occurrences can be, this dependencies is not added to the new

dependency relation VS. If they can’t, the dependency is added to the new dependency

relation VS. If an occurrence is not in the defining occurrence set AFp, then the occurrence

value of visiting the given symbol with the given k value is determined. Therefore, VS

contains dependencies between occurrences of the defining occurrence set, and dependencies

between occurrences of the defining occurrence set and visit values (which are represented

by occurrence values).

A couple of changes were made to the above algorithm in the Java implementation.

The statement if (ki > 0 && kj > 0) implies if two occurrence’s k values are not greater than

zero they can be evaluated immediately and there is no need to add the dependency to the

relation VS. This isn’t correct. The second occurrence depends on the first occurrence

regardless of the k value. Therefore, the first occurrence must be evaluated before the second

occurrence and this dependency must show up in the list of visit sequences unless the first

40

occurrence has a k value less than or equal to zero. The Java implementation changed the

statement to if (ki > 0), meaning if the occurrence that is depended on has a value less than

or equal to zero, its occurrence value is available immediately so the occurrence that

depended on it can be evaluated immediately also and the dependency does not need to be

added to VS.

The second change was the positioning of the procedure addcondverticesjovs.

a d d co n d vertices jo vs adds the dependencies found in conditions to VS. As mentioned

before, conditions are represented as occurrences. The occurrence value of the condition

depends on the occurrence values of the arguments of the condition. Therefore

add cond vertices j o vs was moved to the beginning of create visseq and conditions are

treated just like any other occurrences. If a condition depends on an occurrence with a k

value equal to zero, the dependency does not need to be added to VS because the occurrence

value is available immediately and the condition can be evaluated immediately.

The final part of the algorithm arbitrarily adds dependencies to VS until it is linearly

ordered, ensuring that the last move to the ancestor is the last element of the visit sequence

by making it depend on all other occurrences (regular or visit). The final change made to

Kastens5 algorithm has to do with evaluating occurrences after a move up or down a

derivation tree. All dependencies are reflected in the dependency relation VS. However when

a move is made up or down the tree there is nothing to indicate that available attributes

should be evaluated at that moment before any other move takes place. The available

attributes and the move may not depend on one another but attributes in the node visited may

depend on evaluated previous attributes. The Java implementation corrects this problem by

41

comparing occurrences in the defining, visit, and condition occurrence set of a production.

If two occurrences have no dependency and one of them is a visit, a dependency is added to

VS where the visit depends on the other occurrence. This ensures all available attributes and

conditions will be evaluated before a move up to an ancestor or down to a descendant. The

rest of the occurrences that have no dependencies between them are evaluated arbitrarily.

3.4 Problems with Spencer’s Implementation

Spencer did an excellent job of creating data structures and manipulating them

throughout her implementation of Kastens’ algorithm. However, the excessive compute time

and space required by the data structures in the analysis algorithm prevent her implementation

from use with larger attribute grammars. In fact, Spencer’s implementation has one major

mistake that is easily overlooked with smaller attribute grammars.

The problem occurs in the creation of the dependency relation TDS. As mentioned

before, the procedure a d d a rc in d u ce adds the dependency “v2 depends on v l ” and then

updates TDPp and TDSX appropriately. Spencer’s implementation of add arc induce calls

a procedure ADD TO TDS.

1 procedure ADD_TO_TDS
2 (TDS : in out ADJ MATRIX PTR TYPE;
3 VI,V2 : in OCCURRENCE.OCCUR VALUES) is
4
5 ATT1,ATT2 : INTEGER;
6 SYM1,SYM2 : INTEGER;
7 TEMP PTR : ADJ MATRIX PTR TYPE;
8 TEMP_V1,TEMP_V2 : INTEGER;
9
10 begin
11
12 SYM1 := OCCURRENCE.LOOKUP_SYM(OCCURRENCE.MAPl,VI);
13 SYM2 := OCCURRENCE.LOOKUP_SYM(OCCURRENCE.MAPl,V2);

42

14 SYM1 := SYMBOLS. SYM_TABLE(SYM1).BASE;
15 SYM2 := SYMBOLS.SYM_TABLE(SYM2).BASE;
16 if SYM1 = SYM2 then
17 ATT1 := OCCURRENCE.LOOKUP_ATT(OCCURRENCE.MAPl,Vl);
18 ATT2 := OCCURRENCE. LOOKUP_ATT(OCCURRENCE.MAPl,V2);
19 if ATT1 /= ATT2 then
20 TEMP_V1 := OCCURRENCE.LOOKUP2(ATTl,SYMl,OCCURRENCE.MAP2);
21 TEMP V2 := OCCURRENCE.LOOKUP2(ATT2,SYM1,OCCURRENCE.MAP2);
22 if TEMP V l = 0 then
23 0CCURRENCE.MAP_0CCUR(ATT1,SYM1,0CCURRENCE.MAP1,

OCCURRENCE.MAP2,SIZE);
24 TEMP V l := SIZE;
25 end if;
26 if TEMP_V2 = 0 then
27 OCCURRENCE.MAP_OCCUR(ATT2,SYMl,OCCURRENCE.MAPl,

OCCURRENCE.MAP2,SIZE);
28 TEMP V2 := SIZE;
29 end if;
30 TEMPPTR := TDS;
31 for I in 1..SYM1-1 loop
32 TEMP PTR := TEMP PTR.NEXT;
33 end loop;
34 A D D A R C T R A N S(TEMP_PTR. AM, SIZE,TEMP_V 1 ,TEMP_V2);
35 end if;
36 end if;
37 end A D D T O T D S ;

In Spencer’s procedure ADD TO TDS occurrence values VI and V2 are to be added to the

adjacency matrix TDS if the occurrences share the same symbol. However, a problem occurs

in lines 12 - 16. In lines 12 and 13 the symbol for occurrence VI and occurrence V2 are

found. Lines 13 and 14 determine the base values of the symbols found in lines 12 and 13.

If the base values are the same and the attributes are not the same the dependency is added

to TD S .

This procedure will produce circular dependencies when two occurrences have

different symbols yet share the same base symbol, e.g., expression2.postmode : =

expression.primode. TDS is supposed to contain dependencies between attributes of symbols.

expression2 and expression share the same base symbol, expression, but do not share the

same instance of the symbol expression, so no such dependency should get added to the

relation TDSexpressiort. This mistake is easily overlooked, because many grammars do not have

constructs like one discussed above, especially small grammars. This problem is easy to

correct once it is discovered and traced back, by making sure two occurrences share the same

symbol, not the same base symbol, when creating the dependency relation TDS.

Chapter 4

The EIS Attribute Grammar

4.1 Overview of EIS

The Ecosystem Information System has two major components. First, EIS is a

software system that supports a particular set of operations that are used to create, access,

and share a distributed data repository. The database is partitioned among a number of host

machines. The potential database user does not need to be concerned with which machine

the data is physically located. He or she only needs to be aware that there exists a database

“out there” somewhere in the global information space accessible via the network, and that

the EIS software system is the tool that permits access to this database. The second

component of EIS is that it is a data repository organized hierarchically using an object-

oriented framework. The object-oriented approach is relatively simple, inherently

hierarchical, and easily extensible.

The EIS data repository is represented by a hierarchical structure known as a class

hierarchy. At each primary point in the hierarchy is a class definition, which represents a

meta-description of a particular type of dataset. The meta-description includes both the

description of data attributes and the description of operational components that are used to

access, give values to, and manipulate the data attributes. Also included in the hierarchy,

attached to particular class nodes, are class instances that represent datasets of that type.

Finally, also attached to class nodes are class methods that represent program components

44

45

that implement an operation defined for that class. Figure 4.1 shows an example of a class

hierarchy through the EIS interface.

This object-oriented approach to data modeling places primary emphasis upon the

data objects in terms of the attributes of those objects that are most relevant in the application

domain [8], Identifying critical relationships between classes allows the development of the

class hierarchy. Figure 4.2 represents an EIS hierarchy. Class A is the root of the hierarchy.

Class A is extended by the subclasses B, and C. B and C have all the properties of their

parent class, A, plus one or more new properties. Class B and class C are specializations of

class A, while class A is a generalization of classes B and C.

Class B and class C inherit the operations “read” and “display” from their parent class

A. Inherited properties need not be defined in a class specification; only newly defined

properties need to be specified in the class interface. Instance X is an instance of “B” and any

ancestor of “B”, including “A”. Therefore, the principle of attribute inheritance provides an

effective means to organize data on the basis of shared properties. Dataset instances that are

similar to one another will be found closer together in the hierarchy, while instances that are

dissimilar will be located further apart.

Data transformations or operations, have two components: an operation specification

(i.e., its name, argument types and return type), and an operation method (i.e., program).

Only the operation specification is part of the class interface. The operation specification in

the interface of class “A” indicates that “read” takes no arguments, returns no value, and that

is defined for all the classes shown. Two operation methods provide implementation for this

operation specification -- one implementation for each subclass. Therefore, clients need not

Figure 4.1 Example of EIS Interface

47

C L A S S A
Services:

read()
display()

C L A S S C
Services:

labelO
get_state(

C L A S S B
Services:

filterO
mergeQ

I N S T A N C E M E T H O D

read 0

I N S T A N C E M E T H O D

read 0

Figure 4.2 An EIS Hierarchy

48

be aware of low-level details of operation execution. The implementation of “read” can be

changed without affecting clients that use instances of “A” [8].

4.2 The EIS Language

Each node in an EIS hierarchy has its own description in a syntax specified by the EIS

language. The syntax is different for a class, method or instance. The EIS language also

describes the syntax of the whole hierarchy, which mainly consists of the concatenation of the

syntax of the nodes in the hierarchy in an ordered form.

4.2.1 EIS Classes

The production rule for a class definition is shown in Figure 4.3. “class”, “o f’ and

“end class” are terminals or tokens of the EIS language. “class_defn”, “id 1", “id2",

“interface_uses_section”, ... etc. are all nonterminals. As implied by the production rule, the

class specification allows for much more information than just a class name. Figure 4.4 shows

the EIS interface for constructing a class.

4.2.1.1 Class Attributes

The EIS class specification syntax allows the definition of one or more properties

within a class definition. These properties denote characteristics of the class, and can be

categorized as state variables, constants, types or functions. These properties are specified

by the EIS user by clicking on the “Class Attributes” button. (See Figure 4.4) State variables

represent the data associated with any instance of the class. Every state variable has a

rule classdefn : ‘class’ idl ‘o f id2
interface_uses_section
forw arddeclsection
bind_param_section
decl_param_section
description
m ix ed d ec llis t
b indstvarsection
keywordssection
documentsection
‘endclass’

Figure 4.3 Production rule for a class definition

50

. . . . ■

■ ■ - '■ .. : ■ i - ... :• • '

v-‘: V1, ̂o.t̂ ̂ ^

Class Components Description

Figure 4.4 Interface for creating a Class

51

particular type, for example:

V A R varl OF integer
VAR var2 OF char

Constants can be defined by the EIS user to provide alternative names for values. For

example:

CONST conl : string := “Trish”
CONST con2 : boolean := false

The EIS language supports several data types and type constructors. The predefined

simple types are “integer”, “real”, “char”, “string”, and “boolean”. The type constructors are

“array”, “record”, “set” and “enumeration”. The EIS user can construct a structured type

from the simple types or structured types themselves. For example:

TYPE typel := integer
TYPE type2 := (idl, id2, id3)
TYPE type3 := array [1..10] OF real

As mentioned before, data transformation functions, have two components: a function

specification (i.e., its name, argument types and return type), and a function method (i.e.,

executable program). Only the function specification is part of the class interface. For

example:

FUNCTION fund (char, rea l): integer

4.2.1.2 Class Interface

The EIS user can specify classes in the interface-uses section by clicking on the “Class

Interface” button. (See Figure 4.4) This section lists all the classes upon which the definition

of the current class relies. Ancestor class properties are automatically inherited, so interface-

52

uses is generally used to list only non-ancestor class dependencies.

4.2.1.3 Class Parameter Declarations

Class parameterization allows the EIS user to formulate meaningful class hierarchies,

in a manner analogous to formal argument declarations in function specification. The formal

parameters for a class can be of type class, type, constant or function. The EIS user can

declare parameters by clicking on the “Class Parameter Declarations” button. (See Figure

4.4) The following is an example of some parameter declarations:

paraml : class
param2 : type

4.2.1.4 Inherited Parameter Bindings

Once a parameter has been declared, it must eventually be bound to an actual class,

type, function or constant. We can specify an actual parameter value for a formal parameter

in an instance or subclass of a parameterized class. The EIS user can assign parameters by

clicking on the “Inherited Parameter Bindings” button. (See Figure 4.4) The following is an

example of some parameter assignments:

paraml := Erdas_Lan_Class
param2 := char

4.2.1.5 State Variable Bindings

State variables defined in a parent can also be bound in an instance or subclass. This

binding is interpreted as providing an initial value for the state variable in question. The EIS

53

user can bind state variables by clicking on the “State Variable Bindings” button. (See

Figure 4.4) The following is an example of binding state variables:

flag := true
a := 15.02

4.2.1.6 Documents and Keywords

The EIS user can specify the location of documents related to the current EIS object,

or put short documentation information within the object specification itself by clicking on

the “Documents” button. (See Figure 4.4) The “Keywords” button is used to specify

keywords for EIS entities to support more ambitious network search functionality.

Figures 4.5 and 4.6 show the EIS interface for creating an instance and method

repectively. The components of the instance and method differ from the components of the

class, so the syntax of the description of EIS instances and EIS methods differs from that of

EIS classes. However, most of the components listed in the instance or method description

can be found as components in the class description. Therefore, the syntax of these individual

components is the same as those found in the class description but the syntax for the instance,

method, and class objects as a whole are not the same.

4.3 Semantic Checking in EIS

We have just seen what the EIS language looks like, the syntax of the language. Now

lets take a look at what it means, the semantics of the language. As mentioned above, the EIS

language supports the definition o f properties, interface-use, class parameterization,

\̂ "% -. s~-.. ̂ ^ X̂ &̂ v̂ -% * §K?$ Ŝ :&%$ V̂x̂V §• XX X->̂ ' %

' p :■:!■; m..-
W&M.

$£$&$&# v\yX>w.X-Mj!
!ii!i

:X X X :: '::X -x ; >::' :' ' • ' . * ' X X X ^ X X ' .•:•■•■.•':•

H M P K
.......... •'. ...

Figure 4.5 Interface for creating an Instance

Figure 4.6 Interface for creating a Method

56

parameter and state variable binding, property inheritance, etc. In order to use the EIS

language appropriately, constraints must be satisfied. Below is a list of the semantic checking

that must be done to construct a well-formed class hierarchy in EIS [6],

1. All class instance and method names should be unique within a class hierarchy.

2. Each property defined locally within a class Cx must be locally unique, i.e., defined
only once in Cx.

3. A formal class parameter P, declared in class Cx must be of type class, type, function
or const.

4. In function definition F} within a class Cx, the arguments and the return value must be
a class, a basic type or constructed type.

5. A class parameter Pt must be bound to an identifier of the same type (i.e., class, type,
function, or const).

6. Each class name C, used in the definition of class Cx should be listed in the “forward
declarations”, listed in the “interface uses”, locally defined within C„ or be defined on
the path from Cx to the hierarchy root (i.e., an ancestor class name).

7. Each class C; named in the “interface uses” of class Cx should exist as a class in the
same hierarchy as Cx, be named in the “forward declarations” of C„ or if Ct exists in
another hierarchy Hp then it should be defined as in the “interface uses”.

8. Including the class name C; in the “interface uses” or “forward declarations” of class
Cx makes Ct visible in Cx, but does not make any properties of Ct visible in Cx. Thus,
a reference to property “g” of C, in Cx must be written in a qualified form as “C;,g”.
In contrast, properties of ancestor classes of Cx are visible in Cx , and can be written
without qualification.

9. A formal class parameter P, declared in class Cx , must be unique along the path from
Cx to the class hierarchy root.

10. A formal class parameter name Pi assigned in class Cx must be declared in an ancestor
class C of Cx, where C *CX, and cannot be assigned in any class on the path from Cx
to C y

11. A formal class parameter name P, assigned in instance Ix must be declared in an
ancestor class Cy of Ix and cannot be assigned in any class on the path from Ix to Cy.

57

12. For an instance definition /x, all formal class parameters defined on the path from the
hierarchy root to Ix must be assigned on that path or in Ix.

In the current version of EIS, a parser and semantic analyzer performs all the syntactic

checking in an ad hoc manner. Initially, there was no formal definition of the conditions listed

above. An attribute grammar was created to formalize the condition checking, and replace

the ad hoc implementation embedded in the parser/analyzer.

4.4 The EIS Attribute Grammar

The first attribute grammar for EIS was built several years ago as part of this thesis.

Vijayant Palaiya did an implementation based on that language specification [6], He also

implemented a few grammatical changes, due to request by EIS users for modified syntactic

and semantic aspects. The EIS language has thus evolved into a language with a more

complete syntactic structure and a more extensive specification of static semantics.

Description of the newest EIS language specification, based on the newest EIS attribute

grammar completes the thesis project presented here.

As background each semantic constraint in the EIS language can be formally specified

by a boolean attribute and evaluation rules defined by the attribute grammar. Whether or not

a semantic condition is met is determined by the evaluation of a boolean attribute during a

derivation, true indicates the constraint is met, and false indicates that the constraint is not

met.

The EIS Attribute Grammar is divided into an upper part and a lower part. The upper

part of the attribute grammar defines attributes appropriate to the structure of a whole class

58

hierarchy, and uses global attributes to perform the semantic checking based on parent-child,

ancestor-descendant, and interface-uses relationships. The lower part of the attribute

grammar defines attributes appropriate to the structure of individual hierarchy nodes, and uses

local attributes to perform semantic checking on local uses of identifiers. Key local values are

also passed to the upper part of the attribute grammar. Figure 4.7 is an EIS hierarchy that

is used as an example throughout the rest of this chapter.

The lower part of the attribute grammar constructs a symbol table (the attribute

SymTab) for each node, storing the name of all identifiers defined within the node, their type,

and other relevant information. Identifiers include the names of classes, instances, methods,

state variables, constants, types, functions and parameters. Figure 4.8 shows the attributed

derivation tree for the node that represents class “A” in our example. The tree illustrates the

computation of attribute values, as well as those values that are used to check the semantic

constraints specified by the grammar. Every attribute in the derivation is synthesized.

The nonterminal “classdefn” has a key attribute called SymTab. SymTab represents

the symbol table for the class node “A” in the EIS hierarchy. SymTab contains the identifier

definitions for that node. The values of SymTab are computed by semantic rules in the

descendants of “classdefn”.

The nonterminal “functiondefn” has an attribute called SymRec. SymRec represents

a symbol table record, and consists of a 4-tuple {Name, Type, TypeDenoter, InList). Name

is the name o f the identifier in the symbol table. In our example Name has the value

“compute”, which is the name of the function. Type is the type of property the identifier

represents. The identifier represents a function so Type has the value of FUNC. TypeDen

59

class A of null
Class A
function compute() : real

end class

class C of A
Class C
const c : string

end class

class B of A
Class B
variable i of integer

end class
= Tree

Figure 4.7 EIS Hierarchy

classdefn

, REAL, -), -)

REAL, -), -) - > true

class id of id

Name

(-/-, -,C/compute

’A”, C, C’jnuU” ‘\Class A \, -))
Cg&liti/Mi:

um<mesymfabefatries(-, -, (’’conipute”,
null := null ->/true

descnption • • • mixecdecllist

“Class A

SymRecList := <(’ compute , FUNC, REAL, -)>

nmctiondefnClass A

C CO npu

—> u u
’comi ute

compute
SymRecList := <>

function id (arg_list)

compute real

Figure 4.8 Attributed Tree for class “A”

61

represents the return type of the function, which can either be a primitive type or a

constructed type. In the case of a constructed type, this attribute refers to a symbol table

record, which contains information of the constructed type. InList refers to the list of

argument types, which can also be a primitive type or a constructed type. If the return type

is not a primitive or constructed type, the condition istype(id2. Tag), evaluates to false which

indicates the function definition is not legal. If the name of the function is qualified, the

condition notqualified(idl. Tag), evaluates to false which also indicates the function definition

is not legal.

Eventually symbol table records from different property definitions of class “A” are

combined to form the Sym Tab attribute as shown in Figure 4.9. Each property defined locally

within class “A” must be locally unique. The condition uniquesymtabentries(SymTab),

checks for uniqueness of names of the identifiers. The attributed trees for classes “B” and

“C” are shown in Figures 4.10 and Figure 4.11 respectively.

The upper part of the attribute grammar has an important synthesized attribute SynST.

SynST is associated with every node in the hierarchy, containing the symbol table of the node

itself and the symbol tables of all descendant nodes. Each symbol table in SynST is

represented by (Name, Type, SymTab), where Name is the name of the node, Type is the type

of the node (“class”, “instance”, or “method”), and SymTab is the symbol table of that node

in the hierarchy. The lower part of the attribute grammar computes the values for individual

SymTab entities. Only the root node of the hierarchy contains the attribute GbST. GbST

contains the symbol tables of all the objects in the hierarchy. The condition validateQ uses

the global symbol table to check the semantic correctness of the whole hierarchy definition.

62

rule classdefn : 'class' idl 'of id2
interfaceusessection
forwarddeclsection
bindparamsection
declparamsection
description
mixeddecllist
bindstvarsection
keywordssection
documentsection
'endclass';

semantic
classdefn.Name := idl.Tag;
classdefn.Desc := description.Tag;
classdefn.SymTab append((bindparamsection. SymRecList, declparamsection,

SymRecList),forwarddeclsection. SymRecList, interfaceusessection. SymRec
List,
mixeddecllist. SymRecList,bindstvarsection. SymRecList);

classdefn.KeyList := keywordssection.KeyList;
classdefn.DocList := documentsection.DocList;
classdefn.Info :=

(classdefn.Name,C,(classdefn.Parent,classdefn.Desc,classdefn.KeyList,
classdefn.DocList));

condition
uniquesymtabentries(classdefn. SymT ab);
classdefn.Parent = id2.Tag;

Figure 4.9 Attribute Grammar Specification for a “classdefn”

63

classdefn

Name

CQlidiM i: I
/ onicmesymtabentries(-,

/ “A / : = “A” - > true
INTEGER, -), -) --> true

mixeddecllistdescnption

;B” Tag :=Tag — Tag ‘Class B5

SymRecList := <(’ i”, VAR, INTEGER, -)>
string

Tag := ‘Class B’

vardem
Class B

Condition: \
notqualified(”i”) - > true

identifierlist of typedenoter
SymRec := INTEGER

var
IdList: = “i’

Tag — Tag := ‘integer”

integer

Figure 4.10 Attributed Tree for class “B’

64

classdefti

t^onditif>n: \ _ \
/ummiesymtabentries(-, 1 (”c”, CONST, STRING, “Tree”), -) -> tru e

/ “A / := “A” —f- true \ \ \

mixeddecllistdescnptionclass

Tag := C” Tag := ‘Class C’Tag

SymRecList := <(”c”, C ONST, STRING, -”Tree”)>
string

‘Class CJTag :=

constde:
Class C

SymRecList::
Condition:

ONST, ST] r, “Tree”)>

- > TR1

valueconst
Tag := “ Tree”
Type := STRINGTag := Tag := “string”

stringstring

Tag := ‘Tree1

Tree

Figure 4.11 Attributed Tree for class “C”

65

Figure 4.12 shows the attributed derivation tree for the upper part of the EIS hierarchy in our

example.

66

rootnode
C’compute”, FUNC, REAL, -), -),

/ AR, INTEGER, -), -)),
pNST,STRING, “Tree”-)-))>

‘Class A, -)),
'’Clafes B”, -, -)),
’Cl; ss C”, -))>

rootnode. GbSt := <(”A”, C, (-, ■
C’B”, C, C’i’W i
C’C”, c , (-, -,C’c” CF

rootnode.Info := <C’A”, C, (”root,:
C’B”, C, C’A”,
C’C”, C, ("A”

rootnode. Parent := null
classlist.Parent := “root”
Condition: c l a s s l i s t

validale(GbST) —> true
classlist.Svi T :=\<(”A”, C, (-, -, -, C’compute”, FUNC, REAL, -), -),

’B”, C, (-, -, -,C’i”, VAR, INTEGER, -), -)),
C’C”, G (-, -, -,C’c”,CONST,STRING, “Tree”-)-))>

classl t&Info := <(”AP, C, (’’root”, “Class A, -, -)),
C’B”, C, (’’A”,’’Class B”, -)),
C’C”, q , C’A”,’’Class C”, -, -))>

/classlist2.Parent := “roc
classnode.Parent := ‘
Condition:

disjointC’A”,”B”,”C: true

classlist
classlist.S /nST := <>
classlist. It fo := <>

classdefn

Figure 4.8

classnode
classnod^SyhST := ^CA”, C, (-, -, -, C’compute”, FUNC, REAL, -), -),

[”B \C , (- X C ’i”, VAR, INTEGER, -), -)),
C*C’VC, (-, -, -^ X » C°NST,STRING, “Tree”-)-))>

clarfsnode.In] o := <C\A”, C, (”rocJtv, “Class A, -, -)),
(”B”, C, (”A”,”C la ssX , -, -)),
(”C”, G, (”A”,’’Class C \ -)) >

classdefhPaient := “rooi
classlist.Pare ol := “A”
instancelist.I arent := “A’
methodlist.P irent := “A”
Condition:

disjoint(”j “B”, “C”) - > true

instancelist methodlist

classlist

instancelist.S ynST := <> methodlis
instancelist.1 ifo := <> methodlis

SynST :=
Info :=

classlist.SynST := <C’B”, C, (-, -, -,C’i”, V A R ,'
classlist. Info := <C’B”, C, C’A”,’’Class B”
classlist2.Parent := “A”
classnode.Parent := “A”
Condition:

c fc jo b « C B > ^ n ,e d a s s ' o d e

classlist classde'
classli$t.Pare]

elist.Pi
classlist. SynST := o methodlist.
classlist.info := o classnode,

classnode.
Condition:

sjointC

classlist
ERr^X -))>

!ynST\= <(”B”, C, (-, -, VAR, INTEGER, -), -)),
(”C \C , (-, -, -,(”c”,CONST,STRING, “Tree”-)-))>

list.Info := < (% ’, C, C’A”,’’Class B”, -, -)),
(”C”>C, C’A”,’’Class C”, -, -))>

classlist2.Parent := “A’\
classnode.Parent := “A” \
Condition: \

disjoint(”B”, “C”) ~ > tru e \

classdefiLParent := “A” c l a s s n o d e
classlist.Parent := “C”
instancelist. Parent :=J
methodlist.Parsnff^C’
classnotJefSXnST := <CV^ C, (-, -, - / ”c”,CONST,STRING, “Tree”-)-))>
cjaesfiode.lnfo := (”p d C , (”A”,”ClAssC”, -, -))

cla^defecX“SfV - > true

Figure H insta.nCeliSt methodlist classlist

classdefii

Figure 4.10

instancelist
instancelist.I

INTEGER^-)

:= O methodlist.! lynST := O classlistS /nST := O
O methodlist.] nfo := O classlist.h fo := O

instancelist methodlist classhst

instancelist.Info:
instancelist.SynS f := <> methodlist. S; mST := <> classlist.

O methodlist. Ir fo := O classlist. hfo := <>
JynST : = 0

Figure 4.12 Attributed Tree for Upper Part of EIS Hierarchy

Chapter 5

Execution Results

5.1 A Simple Example

The simple attribute grammar listed in Appendix B was taken from Pagan [4], The

grammar defines an integer constant. With the single attribute “val”, the attribute grammar

ensures that no syntactically correct numeral can exceed 32 bits. The grammar has twelve

productions, two symbols, one attribute, and three symbol/attribute occurrences.

The visit sequences for the attribute grammar are listed below. For each production

in the grammar, a visit sequences is given. There are three possible actions in a visit

sequence, move to a nonterminal, evaluate a symbol/attribute occurrence, or evaluate a

condition. Moving to a nonterminal is indicated by the word “MOVE” followed by the

nonterminal to be visited, followed by the number of times that nonterminal has been visited

within that particular sequence. Evaluating a symbol/attribute occurrence is indicated by the

word “EVAL” followed by the symbol/attribute occurrence. Evaluating a condition is

indicated by the word “COND” followed by the number of the condition to be evaluated.

Sat Sep 12 19:39:46 PDT 1998
V1SIT SEQUENCES
Production: 0
MOVE DIGIT 1
EVAL NUMERAL. VAL
MOVE NUMERAL 1
Production: 1
MOVE DIGIT 1
MOVE NUMERAL2 1
EVAL NUMERAL. VAL
COND 1
MOVE NUMERAL 1
Production: 2
EVAL DIGIT. VAL
MOVE DIGIT 1
Production: 3
EVAL DIGIT. VAL

67

68

MOVE DIGIT 1
Production: 4
EVAL DIGIT. VAL
MOVE DIGIT 1
Production: 5
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 6
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 7
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 8
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 9
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 10
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 11
EVAL DIGIT.VAL
MOVE DIGIT 1
Sat Sep 12 19:39:47 PDT 1998

It is easy to look at this grammar and the results and determine the visit sequences are

correct. That is, they provide away to correctly evaluate all attributes for any valid derivation

tree. The runtime for this particular attribute grammar was approximately 1 second.

5.2 A More Complicated Example

The attribute grammar listed in Appendix A was taken directly from Kastens [2]. The

grammar is a simple expression language with nine productions, eight attributes, eight

symbols, and twenty-three symbol/attribute occurrences. This grammar provides us a means

to verify that our implementation is correct, since the visit sequences (listed after the attribute

grammar in Appendix A) match up with those derived by Kastens [2], The runtime for this

particular attribute grammar was approximately one minute and twenty seconds, a significant

increase over the attribute grammar in Appendix B . This is due to the greater number of

symbol/attribute occurrences. As the number of symbol/attribute occurrences increase the

69

time to manipulate the datasets increases exponentially.

5.3 The EIS Attribute Grammar

The EIS Attribute Grammar (listed in Appendix C) contains twenty-one attributes,

seventy-nine symbols, one hundred productions, and one hundred twenty-nine

symbol/attribute occurrences. A machine with one hundred twenty-eight megabytes of RAM

could not meet the memory requirements of running the analyzer with the EIS attribute

grammar.

A second version of the analyzer was written to accommodate very large attribute

grammars. In the new version, data originally stored in three-dimensional Vectors in memory

is now written as a group of files, where each file contains a two-dimensional Vector. This

version of the analyzer works correctly, however the runtime increases dramatically. For

example, the simple attribute grammar listed in Appendix B took one minute and twenty

seconds to run with this version, i.e., approximately one minute and nineteen seconds longer

than the first version.

The more complex attribute grammar listed in Appendix A took eight hours, forty-one

minutes and fifty-one seconds with the new version, approximately eight hours, forty minutes

and thirty-one seconds longer than the original version. By looking at the results it was

obvious the EIS attribute grammar would take weeks to run through the analyzer. The time

to produce the needed visit sequences was not practical. Therefore a third version of the

analyzer was written.

As mentioned before, version 2 stores data as a two dimensional Vector in file. To

70

reduce the amount of time needed to maintain a two dimensional Vector, version 3 stores data

as a one dimensional Vector. All the information is still maintained, just in a different data

structure. The simple attribute grammar listed in Appendix B took one minute and two

seconds to run. The more complex attribute grammar listed in Appendix A took seven

hours, thirty-three minutes and fifty seconds to run. The performance of version 3 is

significantly better than that of version 1, yet not enough to be used for practical purposes on

large attribute grammars. Figure 5.1 summarizes the execution results.

Version 1 Version 2 Version 3

Appendix B 1 sec. 1 min. 20 sec. 1 min. 2 sec.

Appendix A 1 min. 20 sec. 8 hours 41 min. 51 sec. 7 hours 33 min. 50 sec.

Figure 5.1 Summary of Execution Results

Due to time constraints, a fourth implementation was never written. After analyzing

the dependency relations of several attribute grammars it is noted that only a small portion

of the dependency graphs are marked with a dependency. A possible solution to the memory

problem could be to just keep track of the marked dependencies. A large portion of the

analyzer would have to be rewritten if a new data structure was used. Most of the procedures

in the analyzer access or manipulate the data structures that represent the dependency

relations.

71

5.4 Dividing the EIS Attribute Grammar

The EIS attribute grammar was divided into four sections. Each section was run

through the analyzer individually. The break points were productions that contained only

sythesized attributes and control only needed to be passed to descendants once. Dividing a

grammar up in such a way has no affect on the final visit sequences, decreases the run time

exponentially, and allows us to analyze a large attribute grammar. Each section of the EIS

attribute grammar was successfully run through the analyzer. The visit sequences for each

section are listed after the attribute grammar in Appendix C.

Chapter 6

Analysis of Results

6.1 The EIS Attribute Grammar

The EIS hierarchy in Figure 4.7 was derived and attributes were evaluated according

to the visit sequences produced by the analysis algorithm. Figures 6.1, 6.2, 6.3, and 6.4 show

the evaluation order from left to right. For example, in Figure 6.1a move is made from the

symbol classdefn to it’s descendant id. Another move is made from id to the terminal A .

When id receives control again attribute id. Tag is evaluated and a move is made up to it’s

ancestor classdefn. The attribute classdefn.Name is evaluated and control is passed down

to the nonterminal mixeddecllist. Attributes listed in the figures without a symbol are

assumed to be synthesized.

Every attribute and condition in the derivation tree is evaluated correctly. All

dependencies are reflected in the visit sequences. All constraints (listed in section 4.3)

intended for the hierarchy are met: all class names are unique, each property defined locally

within a class is locally unique, the arguments and return value of a function is a class, basic

type or constructed type.

6.2 Attribute Evaluator

An attribute evaluator must be implemented to efficiently evaluate the attributes for

any given derivation. The work from this thesis provides a critical piece of data for an

72

classdefn

Name:

SymTap := (-, (’’compute
REAL, -), -)

Com ^
quesymtabentries(-,

/compute”, FUNC, REAL,
-), -) - > true

id mixeddecllist

SymRecList := <(”compute”,
FUNC, REAL, -)>

fimctiondefn

Condition

descnption
ag := “null

Tag := Class A

Class A’

Condition: >
istype(”real”)

- > true

Condition:
notqualified

(”compute”) —> true

Class A

SymRecList := <(”compute ,
FUNC, REAL, -)>

Tag :=j Teal Tag := e impute

compute

arg list

SymReqList := <>

real

Figure 6.1 Evaluation of class “A”

74

classdefn

Condition:►esc := “Class B’
W Tab \
/ (”i”, VAR, INTEGER, -), -) '
Condition:
uniquesyiMtabentries{-,

(”i”, VAR, INTEGER, -), -) - > true

‘A” —> true
‘Class B”, -))

description A

J ATag := “Class B” |

string

I Tag : = “Class ^

mixeddecllist

Tai :=

SymRecList Nf <(”i”,
S. VAR, INTEGER, -)>

vardefn

X'onditij;
5ualified(”i”) —> true

Syn kRecList := <(”i”,
\A R , INTEGER,-)>■t

Class B

identifierlist

i AIdList := “1”

' I
id

i '

typedenoter

SymRec : j= INTEGER

idia a

I Tag := 1 integer” |rr T I I
integer

Figure 6.2 Evaluation of class “B”

classdefn

Condition
A” := “A” --> trueDesc := “Class C

Info := (”G”, C, (”A’\
Class C , -, -))

ab := (-,
CONST, STRING, “Tree”), -)

ondiiion
uniquesymtabentries(-, -, -, (”c”,

CONST, STRING, “Tree”), -) - > true

description

t JrTag :4 “Class C’

mixeddecllist

tTag := C
Class C

ecList
CONST, STRING, -”Tree”)>

Class C
constdem

SymRecList := <(c , CONS
STRING, “Tree”)>

dition:
ofcspjalifiedf’c”) --> true

Condition: yC^n ill | |on *
isprim itive^^’sting’l l , snuNQ

- > ! K U b / —> TRUE

tType :=
STRING Taj \ := Tree‘string:Tag :=

T a g : = “Tree

Tree

Figure 6.3 Evaluation of class “C”

76

rootnode.Parent := null
classlist.Parent := “root”

rootnode
rootriode.GbSt := <(”A”, C, (-, -, ("compute”, FUNC, REAL, -), -),

C’B”, C, (-, -, -,(”i”, VAR, INTEGER, -), -))>
(”C”, C, (-, -, CONST, STRING, “Tree”- ») >

rootr ode.Info := <(”A”, C, (”root”, “Class A - ’))>C’B”, C, (”A”,’’Class B’
(”C”, C, C’A”,’’Class C”, -))>

(Con lition:
va lidate(GbST) —> true

classlist

classnode.Parent := “root”

classdefiLParent := “root

\classlist.SynST := <(”A”, C, (-, -, -, (’’compute”, FUNG, REAL, -), -),
(”B’\ C, (-, -,(”i”, VAR, INTEGER, -), -)),
(”C”, C, (-, -, -,(”c”,CONST,STRING, “Tree”-)-))>

classlist.Info := <(”A”, C, (’’root”, “Class A, -)),(”B”, C, (”A”,’’Class B”, -)),
(”C”, C, (”A”,’’Class C”, -, -))>

Condition:
disjoint(’’A”,’’B”,’’C”)-> tr u e

classnode.SynST := <(”A”, C, (-, -, (’’compute”, FUNC, REAL, -), -), A
C’B”, C, (-, VAR, INTEGER, -), -)), ^
(”C”, C, (-, -, -,(”c”,CONST,STRING, “Tree”-)-))>

^lassnode.Info := <(”A”, C, (’’root”, “Class A, -)),
(”B”, C, (”A”,’’Class B”, -)),

(”C”, C, (”A”,’’Class C”, -, -))>
ondition:

disjoint(”A”, “B”, “C”) - > true

I

classnode.Parent

classnode

classlist

classlist2.Parent := “A
classnode.Parent := “A

classlist
classlist , C, (-,

GER, -),-))>
C, C’A”,

7

classdefii

Figure 6.1

classdefiLParent
:= “A”

Condition

classnode

ode.SynST := <(”B”, C, (-, -, -,
f ’i”, VAR, INTEGER, -), -))>
ode.Info := C’B”, C, (”A”,
’’Class B”, -, -))

Condition:
disjoint(”B”) - > true

:slist.SynST := <(”B”, C, (-, -,(”i”, VAR, *
INTEGER, -), -)), C’C”, C, (-, -,(”c”, A
CONST,STRING, “Tree”-)-))> ^

list.Info := <(”B”, C, (”A”,’’Class B”, -)),
(”C”, C, C’A”,’’Class C”, -))>

Condition:
disjoint(”B”, “C”) -> true

classnode

snode.SynST := <(”C”, C, (-, A
classdefii.Parent / / C’c”,CONST, STRING, “Tree”-)-))>

_ I cjaggnodejnfo := (”C”, C, (”A”,’’Class C”, -))
- Condition:

/ disjointC’C”)->true

classdefii

Figure 6.3

classdefii

y Figure 6.2

Figure 6.4 Evaluation of Upper Part of EIS Hierarchy

77

attribute evaluator, the visit sequences. Kastens [2] explains four ways an attribute evaluator

could be implemented: using coroutines, recursive procedures, stack automaton, or finite

automaton. Constructing an attribute evaluator can be a possible thesis project for a future

computer science student.

6.3 Conclusion

In conclusion, the EIS attribute grammar gives a formal definition of both the

syntactic and semantic checking that must be done to process the EIS object description

language. With an efficient attribute evaluator the formal specification can be used for

implementation of EIS language processing tools. The EIS attribute grammar is well-defined,

ordered, and meets the intent of the EIS user.

Appendix A

access set
description strseq
primode string
postmode string
evaluable boolean
value string
id string
val string
%

include
identify
isdefined
widen
add
%

rule program : primary;
semantic

primary.access := 0;
primary.postmode := primary.primode;

end;

rule primary : '(' declaration assignment
semantic

declaration.access := primary.access;
assignment.access := include(primary.access,declaration.description);
primary.primode := assignment.primode;
assignment.postmode := primary.postmode;
primary.evaluable := false;
primary.value := undefined;

end;

rule primary : identifier;
semantic*

primary.primode := identify(identifier. id,primary, access);
primary.evaluable := false;
primary.value := undefined;

condition
isdefined(identifier. id,primary. access);

end;

rule primary : intconstant;
semantic

primary.primode := int;
primary.evaluable := true;
primary .value := if primary.postmode = real

then widen(intconstant.value) else intconstant.value fi;
end;

78

79
rule primary : realconstant;
semantic

primary.primode := real;
primary, evaluable := true;
primary.value := realconstant.value;

end;

rule assignment : identifier expression;
semantic

expression.access := assignment.access;
assignment.primode := identify(identifier.id, assignment.access);
expression.postmode := assignment.primode;

condition
isdefined(identifier.id, assignment.access) and not (expression.primode = real and

expression.postmode = int);
end;

rule expression : expression2 '+' primary;
semantic

expression2.access := expression.access;
primary.access := expression.access;
expression.primode := if expression2.primode = int and primary.primode = int then int else real

fi;
expression2.postmode := expression.primode;
primary.postmode := expression.primode;
expression.evaluable := expression2.evaluable and primary.evaluable;
expression.value := if expression.evaluable then add(expression2.value, primary.value) else

undefined fi;
end;

rule expression : primary;
semantic

primary.access := expression.access;
primary.postmode := expression.postmode;
expression.primode := primary.primode;
expression.evaluable := primary.evaluable;
expression.value := primary.value;

end;

rule declaration : 'new' identifier expression;
semantic

expression.access := declaration.access;
declaration.description := (identifier.id, expression.primode);
expression.postmode := expression.primode;

end;

Sat Sep 12 19:40:51 PDT 1998
VISIT SEQUENCES
Production: 0
EVAL PRIMARY.ACCESS
MOVE PRIMARY 1
EVAL PRIMARY.POSTMODE
MOVE PRIMARY 2
MOVE PROGRAM 1
Production: 1
EVAL DECLARATION.ACCESS
MOVE DECLARATION 1
EVAL ASSIGNMENT.ACCESS
MOVE ASSIGNMENT 1
EVAL PRIMARY.PRIMODE
MOVE PRIMARY 1
EVAL ASSIGNMENT.POSTMODE
EVAL PRIMARY. EVALUABLE
EVAL PRIMARY.VALUE
MOVE ASSIGNMENT 2
MOVE PRIMARY 2
Production: 2
MOVE IDENTIFIER 1
EVAL PRIMARY.PRIMODE
COND 1
MOVE PRIMARY 1
EVAL PRIMARY.EVALUABLE
EVAL PRIMARY.VALUE
MOVE PRIMARY 2
Production: 3
EVAL PRIMARY.PRIMODE
MOVE PRIMARY 1
EVAL PRIMARY. EVALUABLE
MOVE INTCONSTANT 1
EVAL PRIMARY.VALUE
MOVE PRIMARY 2
Production: 4
EVAL PRIMARY.PRIMODE
MOVE PRIMARY 1
EVAL PRIMARY. EVALUABLE
MOVE REALCONSTANT 1
EVAL PRIMARY.VALUE
MOVE PRIMARY 2
Production: 5
EVAL EXPRESSION.ACCESS
MOVE IDENTIFIER 1
EVAL ASSIGNMENT.PRIMODE
MOVE EXPRESSION 1
EVAL EXPRESSION.POSTMODE
COND 1
MOVE ASSIGNMENT 1
MOVE EXPRESSION 2

MOVE ASSIGNMENT 2
Production: 6
EVAL PRIMARY.ACCESS
EVAL EXPRESSION2. ACCESS
MOVE PRIMARY 1
MOVE EXPRESSION2 1
EVAL EXPRESSION.PRIMODE
EVAL PRIMARY.POSTMODE
EVAL EXPRESSION2 POSTMODE
MOVE PRIMARY 2
MOVE EXPRESSION 1
MOVE EXPRESSION2 2
EVAL EXPRESSION.EVALUABLE
EVAL EXPRESSION.VALUE
MOVE EXPRESSION 2
Production: 7
EVAL PRIMARY.ACCESS
MOVE PRIMARY 1
EVAL EXPRESSION.PRIMODE
MOVE EXPRESSION 1
EVAL PRIMARY.POSTMODE
MOVE PRIMARY 2
EVAL EXPRESSION.EVALUABLE
EVAL EXPRESSION.VALUE
MOVE EXPRESSION 2
Production: 8
EVAL EXPRESSION.ACCESS
MOVE EXPRESSION 1
EVAL EXPRESSION.POSTMODE
MOVE IDENTIFIER 1
EVAL DECLARATION.DESCRIPTION
MOVE EXPRESSION 2
MOVE DECLARATION 1
Sat Sep 12 19:42:11 PDT 1998

Appendix B

val string
%
%
rule numeral: digit;
semantic

numeral.val := digit.val;
end;

rule numeral: numeral2 digit;
semantic

numeral.val := 10 * numeral2.val + digit.val;
condition

numeral.val <= 2147483647;
end;

rule d ig it: 'O';
semantic

digit.val := 0;
end;

rule d ig it: '1';
semantic

digit.val := 1;
end;

rule d igit: '2';
semantic

digit.val := 2;
end;

rule d ig it:'3';
semantic

digit.val := 3;
end;

rule d ig it: '4';
semantic

digit.val :=4;
end;

rule d ig it: '5';
semantic

digit.val := 5;
end;

rule d ig it: '6';
semantic

digit.val := 6;
end;

82

83
rule d ig it: '7';
semantic

digit.val := 7;
end;

rule d ig it: '8';
semantic

digit.val := 8;
end;

rule d ig it: '9';
semantic

digit.val := 9;
end;

84
Sat Sep 12 19:39:46 PDT 1998
*** VISIT SEQUENCES***
Production: 0
MOVE DIGIT 1
EVAL NUMERAL.VAL
MOVE NUMERAL 1
Production: 1
MOVE DIGIT 1
MOVE NUMERAL 2 1
EVAL NUMERAL.VAL
COND 1
MOVE NUMERAL 1
Production: 2
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 3
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 4
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 5
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 6
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 7
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 8
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 9
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 10
EVAL DIGIT.VAL
MOVE DIGIT 1
Production: 11
EVAL DIGIT.VAL
MOVE DIGIT 1
Sat Sep 12 19:39:47 PDT 1998

Appendix C

EIS Attribute Gramamr

GbST setseq
Info strseq
Parent string
SynST setseq
SymTab set
Name string
Desc strseq
KeyList set
Doc set
DocList setseq
SymRec set
SymRecList setseq
Tag string
IdList set
PType string
InList setseq
InPair set
Type string
Val string
SVal int
Len int
%
add
exp
div
validate
append
disjoint
unique sy mtabentries
addfwddcllist
notqualified
addintuselist
addparamdecl
addbindparams
addbindstvars
addtypedefn
addvardefn
findtype
addconstantdefn
addfunctiondefn
getentry
istype
isprimitivetype
addargdcl
addenumeratedtype
addarraytype
addrecordtype
addsettype

85

addenumvalid
addidtypefromidlist
isdiscretetype
notnull
concat
lookup
%
rule rootnode : classlist;
semantic

rootnode.GbST := classlist.SynST;
rootnode.Info := classlist.Info;
rootnode.Parent := null;
classlist. Parent := root;

condition
validate(rootnode. Gb ST);

end;

rule classlist: classlist2 classnode;
semantic

classlist.SynST := append(classlist2.SynST,classnode.SynST);
classlist.Info := append(classlist2.Info,classnode.Info);
classlist2.Parent := classlist.Parent;
classnode.Parent := classlist.Parent;

condition
disjoint(classlist2. SynST,classnode. SynST);

end;

rule classlist: '
semantic

classlist.SynST := <>;
classlist. Info := <>;

end;

rule instancelist: instancelist2 instancenode;
semantic

instancelist.SynST := append(instancelist2.SynST,instancenode.SynST);
instancelist.Info := append(instancelist2.Info,instancenode.Info);
instancelist2. Parent := instancelist. Parent;
instancenode.Parent := instancelist.Parent;

condition
disjoint(instancelist2. SynST,instancenode. SynST);

end;

rule instancelist; '
semantic

instancelist. SynST := <>;
instancelist.Info := <>;

end;

rule methodlist: methodlist2 methodnode;
semantic

methodlist.SynST := append(methodlist2.SynST,methodnode.SynST);

87
methodlist.Info := append(methodlist2.Info,methodnode.Info);
methodlist2.Parent := methodlist.Parent;
methodnode.Parent.- methodlist.Parent;

condition
disjoint(methodlist2. SynST,methodnode. SynST);

end;

rule methodlist: '
semantic

methodlist. SynST := <>;
methodlist.Info := <>;

end;

rule classnode : 'classnode' classdefn instancelist methodlist classlist 'endclassnode';
semantic

classnode. SynST := append((classdefn.Name,C,classdefn. SymTab),
instancelist. SynST,methodlist. SynST,classlist. SynST);

classnode.Info := append(classdefn.Info,instancelist.Info,methodlist.Info,classlist.Info);
classdefn.Parent := classnode.Parent;
classlist.Parent := classdefn.Name;
instancelist.Parent := classdefn.Name;
methodlist.Parent := classdefn.Name;

condition
disjoint((classdefn.Name,C,classdefn. SymTab), instancelist. SynST,

methodlist. SynST,classlist. SynST);
end;

rule instancenode : instancedefn;
semantic

instancenode.SynST := (instancedefn.Name,I,instancedefn.SymTab);
instancenode.Info := instancedefn.Info;

condition
instancenode. Parent = instancedefn. Parent;

end;

rule methodnode : methoddefn;
semantic

methodnode. SynST := (methoddefn.Name,M,-);
methodnode.Info := methoddefn.Info;

condition
methodnode.Parent := methoddefn.Parent;

end;

rule classdefn : 'class' id 'of id2 interfaceusessection forwarddeclsection bindparamsection
declparamsection description mixeddecllist bindstvarsection keywordssection documentsection 'endclass';
semantic

classdefn.Name := id.Tag;
classdefn.Desc := description.Tag;
classdefn.SymTab := append((bindparamsection.SymRecList,declparamsection.SymRecList),

forwarddeclsection. SymRecList,interfaceusessection. SymRecList,
mixeddecllist. SymRecList,bindstvarsection. SymRecList);

classdefn.KeyList := keywordssection.KeyList;

classdefn.DocList := documentsection.DocList;
classdefn.Info := (classdefn.Name,C,(classdefn.Parent,classdefn.Desc,

classdefn. KeyList, classdefn. DocList));
condition

uniquesymtabentries(classdefn. SymTab);
classdefn.Parent = id2.Tag;

end;

rule instancedefn : 'instance' id 'of id2 bindparamsection description bindstvarsection keywordssection
documentsection;
semantic

instancedefn.Name := id.Tag;
instancedefn.Parent := id2.Tag;
instancedefn.Desc := description.Tag;
instancedefn. SymTab := append(bindparamsection. SymRecList,bindstvarsection. SymRecList);
instancedefn.KeyList := keywordssection.KeyList;
instancedefn.DocList := documentsection.DocList;
instancedefn.Info := (instancedefn.Name, I, (instancedefn.Parent,

instancedefn.Desc,instancedefn.KeyList,instancedefn.DocList));
end;

rule methoddefn : 'method' id 'of id2 description keywordssection documentsection;
semantic

methoddefn.Name := id.Tag;
methoddefn.Parent := id2.Tag;
methoddefn.Desc := description.Tag;
methoddefn.KeyList := keywordssection.KeyList;
methoddefn.DocList := documentsection.DocList;
methoddefn.Info := (methoddefn.Name, M, (methoddefn.Parent,

methoddefn.Desc,methoddefn. KeyList, methoddefn. DocList));
end;

rule forwarddeclsection :'
semantic

forwarddeclsection. SymRecList := <>;
end;

rule forwarddeclsection : 'forwarddecl' identifierlist 'endforwarddecl';
semantic

forwarddeclsection. SymRecList := addfwddcllist(identifierlist. IdList);
condition

notqualified(identifierlist. IdList);
end;

rule interfaceusessection :'
semantic

interfaceusessection. SymRecList := <>;
end;

rule interfaceusessection : 'interfaceuses' identifierlist 'endinterfaceuses';
semantic

interfaceusessection.SymRecList := addintuselist(identifierlist.IdList);

condition
notqualified(identifierlist. IdList);

end;

rule declparamsection : '
semantic

declparamsection.SymRecList := <>;
end;

rule declparamsection : 'paramdecl' paramdecllist 'endparamdecl';
semantic

declparamsection. SymRecList := paramdecllist. SymRecList;
end;

rule paramdecllist: id paramtype;
semantic

paramdecllist.SymRecList := addparamdecl(id.Tag,paramtype.PType);
end;

rule paramdecllist: paramdecllist2 id paramtype;
semantic

paramdecllist.SymRecList := append(paramdecllist2.SymRecList,
addparamdecl(id. T ag,paramtype. PType));

condition
disjoint(paramdecllist2. SymRecList, addparamdecl(id.Tag,paramtype.PType));

end;

rule paramtype : 'CLASS';
semantic

paramtype.PType := CLASS;
end;

rule paramtype: 'TYPE';
semantic

paramtype.PType := TYPE;
end;

rule paramtype: 'CONST';
semantic

paramtype.PType := CONST;
end;

rule paramtype : 'FUNCTION';
semantic

paramtype.PType := FUNCTION;
end;

rule bindparamsection :'
semantic

bindparamsection.SymRecList := <>;
end;

rule bindparamsection : 'parambind' bindparamlist 'endparambind';
semantic

bindparamsection. SymRecList := bindparamlist. SymRecList;
end;

rule bindparamlist: id id2;
semantic

bindparamlist. SymRecList: = addbindparams(id.Tag, getentry(id2.'Tag));
end;

rule bindparamlist: bindparamlist2 id id2;
semantic

bindparamlist.SymRecList := append(bindparamlist2.SymRecList,
addbindparams(id. T ag, getentry (id2. Tag)));

end;

rule mixeddecllist:'
semantic

mixeddecllist. SymRecList := <>;
end;

rule mixeddecllist: mixeddeclmixeddecllist2;
semantic

mixeddecllist.SymRecList := append(mixeddecllist2.SymRecList,mixeddecl.SymRecList);
condition

disjoint(mixeddecllist2. SymRecList, mixeddecl. SymRecList);
end;

rule mixeddecl: typedefn;
semantic

mixeddecl. SymRecList := typedefn. SymRecList;
end;

rule mixeddecl: vardefn;
semantic

mixeddecl.SymRecList := vardefn. SymRecList;
end;

rule mixeddecl: constantdefn;
semantic

mixeddecl. SymRecList := constantdefn. SymRecList;
end;

rule mixeddecl: functiondefn;
semantic

mixeddecl.SymRecList := functiondefn.SymRecList;
end;

rule bindstvarsection :
semantic

bindstvarsection. SymRecList := <>;
end;

91
rule bindstvarsection : 'bindstvar' bindstvarlist 'endbindstvar';
semantic

bindstvarsection. SymRecList := bindstvarlist. SymRecList;
end;

rule bindstvarlist: bindstvarlist2 id value;
semantic

bindstvarlist.SymRecList := append(bindstvarlist2.SymRecList,
addbindstvars(id. T ag,value. T ag, getentry (value. Type)));

end;

rule bindstvarlist: id value;
semantic

bindstvarlist. SymRecList: = addbindstvars(id. Tag,value. Tag, getentry(value. Type));
end;

rule typedefn : 'type' id typedenoter;
semantic

typedefn.SymRecList := addtypedefn(id.Tag,typedentoer.SymRec);
condition

notqualified(id. Tag);
end;

rule vardefn : 'var' identifierlist 'of typedenoter;
semantic

vardefn.SymRecList := addvardefn(identifierlist.IdList,typedenoter.SymRec);
condition

notqualified(identifierlist. IdList);
end;

rule constantdefn : 'const' id ':' id2 ':=' value;
semantic

constantdefn.SymRecList := addconstantdefn(id.Tag,fmdtype(id2.Tag),value.Tag);
condition

isprimitivetype(id2Tag);
id2.Type = value. Type;
notqualified(idTag);

end;

rule functiondefn : 'function' id '(' arglist')'':' id2;
semantic

functiondefn.SymRecList := addfunctiondefn(id.Tag,arglist.SymRecList,getentiy(id2.Tag));
condition

istype(id2.Tag);
notqualified(id. T ag);

end;

rule arglist: '
semantic

arglist. SymRecList := <>;
end;

92
rule arglist: argdcl;
semantic

arglist. SymRecList := argdcl. SymRec;
end;

rule arglist: arglist2 argdcl;
semantic

arglist.SymRecList ~ append(arglist2.SymRecList,argdcl.SymRec);
end;

rule argdcl: typedenoter;
semantic

argdcl.SymRec := addargdcl(typedenoter.SymRec);
end;

rule typedenoter: id;
semantic

typedenoter. SymRec := if (lookup(id.Tag) = FALSE)
then (id.Tag,LTNRSLVD,NULL,NULL) else getentry(id.Tag) fi;

end;

rule typedenoter: newtype;
semantic

typedenoter. SymRec := newtype. SymRec;
end;

rule newtype : enumeratedtype;
semantic

newtype. SymRec .- addenumemtedtype(enumeratedtype. SymRecList);
end;

rule newtype : arraytype;
semantic

newtype.SymRec := addarraytype(arraytype.SymRec,arraytype.InList);
end;

rule newtype : recordtype;
semantic

newtype. SymRec := addrecordtype(recordtype. SymRecList);
end;

rule newtype : settype;
semantic

newtype. SymRec := addsettype(settype.SymRec);
end;

rule enumeratedtype : '(' identifierlist')';
semantic

enumeratedtype.SymRecList := addenumvalid(identifierlist.IdList);
condition

notqualified(identiferlist. IdList);
end;

rale recordtype : 'recordstart' fieldlist 'recordend';
semantic

recordtype. SymRecList := fieldlist. SymRecList;
end;

rale fieldlist: recordsection;
semantic

fieldlist. SymRecList := recordsection. SymRecList;
end;

rale fieldlist: fieldlist2 recordsection;
semantic

fieldlist.SymRecList := append(fieldlist2.SymRecList, recordsection.SymRecList);
condition

disj oint(fieldlist2. IdList, recordsection. IdList);
end;

rale recordsection : identifierlisttypedenoter;
semantic

recordsection.SymRecList := addidtypefromidlist(identifierlist.IdList,typedenoter.SymRec);
condition

notqualified(identifierlist. IdList);
end;

rale arraytype : 'array''[' indextypelist']' 'of typedenoter;
semantic

arraytype. SymRec := typedenoter. SymRec;
arraytype.InList := indextypelist.InList;

end;

rale indextypelist: indextype;
semantic

indextypelist.InList := indextype.InPair;
end;

rale indextypelist: indextypelist2 ',' indextype;
semantic

indextypelist.InList := append(indextypelist2.InList,indextype.InPair);
end;

rale indextype : lowerbound '..' upperbound;
semantic

indextype.InPair := (lowerbound.Tag,upperbound.Tag);
end;

rale lowerbound : value;
semantic

lowerbound.Tag := value.Tag;
condition

isdiscretetype (value. Tag);
end;

94
rule lowerbound : id;
semantic

lowerbound.Tag := id.Tag;
condition

isdiscretetype(id .Tag);
end;

rule upperbound : value;
semantic

upperbound.Tag := value.Tag;
condition

isdiscretetype(value. T ag);
end;

rule upperbound : id;
semantic

upperbound.Tag := id.Tag;
condition

isdiscretetype(id. T ag);
end;

rule settype : 'set' 'of basetype;
semantic

settype.SymRec := basetype.SymRec;
end;

rule basetype : id;
semantic

basetype.SymRec := getentry(id.Tag);
end;

rule basetype : enumeratedtype;
semantic

basetype.SymRec := addenumeratedtype(enumeratedtype.SymRecList);
end;

rule keywordssection : 'keywords' keywordslist 'endkeywords';
semantic

keywordssection.KeyList := keywordslist.KeyList;
end;

rule keywordssection : '
semantic

keywordssection.KeyList := <>;
end;

rule keywordslist: string;
semantic

keywordslist.KeyList := string.Tag;
end;

rule keywordslist: keywordslist2 string;
semantic

keywordslist.KeyList := append(keywordslist2.KeyList,string.Tag);
condition

disjoint(keywordslist2 .KeyList, string. Tag);
end;

rule documentsection : '
semantic

documentsection.DocList := <>;
end;

rule documentsection : 'documents' documentdefnlist 'enddocuments';
semantic

documentsection.DocList := documentdefnlist.DocList;
end;

rule documentdefnlist: documentdefn;
semantic

documentdefnlist.DocList := documentdefn.Doc;
end;

rule documentdefnlist: documentdefnlist2 ';' documentdefn;
semantic

documentdefnlist.DocList := append(documentdefnlist2.DocList,documentdefn.Doc);
condition

disjoint(documentdefnlist2. Doclist, documentdefn .D oc);
end;

rule documentdefn : 'documentnameloc' id string;
semantic

documentdefn.Doc := (id.Tag,string.Tag);
end;

rule documentdefn : 'documentation' string;
semantic

documentdefn.Doc := (NULL,string.Tag);
end;

rule value : sign unsignednumber;
semantic

value.Tag := concat(sign.Tag,unsignednumber.Tag);
value.Type := unsignednumber.Type;
value.Val := sign.SVal * unsignednumber. Val;

end;

rule value : unsignednumber;
semantic

value.Tag := unsignednumber.Tag;
value.Type := unsignednumber.Type;
value.Val := unsignednumber.Val;

end;

96
rule value : string;
semantic

value.Tag := string.Tag;
value.Type := STR;

end;

rule value : character;
semantic

value.Tag := character.Tag;
value.Type := CHAR;

end;

rule value : boolean;
semantic

value.Tag := boolean.Tag;
value.Type := BOOL;
value.Val := boolean.Val;

end;

rule unsignednumber : unsignedinteger;
semantic

unsignednumber.Tag := unsignedinteger.Tag;
unsignednumber.Val := unsignedinteger.Val;
unsignednumber.Type := INT;

end;

rule unsignednumber : unsignedreal;
semantic

unsignednumber.Tag := unsignedreal. Tag;
unsignednumber.Val := unsignedreal.Val;
unsignednumber.Type := REAL;

end;

rule unsignedreal: unsignedinteger fractionalpart;
semantic

unsignedreal.Tag := concat(unsignedinteger.Tag,concat(".",fractionalpart. Tag));
unsignedreal.Val := add(unsignedinteger.Val,div(fractionalpart.Val,exp(fractionalpart.Len)));

end;

rule unsignedinteger : DIGITSEQUENCE;
semantic

unsignedinteger.Tag := DIGITSEQUENCE.Tag;
unsignedinteger.Val := DIGITSEQUENCE.Val;

end;

rule fractionalpart: DIGITSEQUENCE;
semantic

fractionalpart.Tag := DIGITSEQUENCE.Tag;
fractionalpart.Len := DIGITSEQUENCE.Len;
fractionalpart.Val := DIGITSEQUENCE.Val;

end;

rule sign : PLUS;
semantic

sign.Tag :=
sign.SVal := 1;

end;

rule sign : MINUS;
semantic

sign.Tag :=
sign. SVal := -1;

end;

rule identifierlist: id;
semantic

identifierlist.IdList := id.Tag;
end;

rule identifierlist: identifierlist2 id;
semantic

identifierlist.IdList := append(identifierlist2.IdList,id.Tag);
condition

disjoint(identifierlist2.IdList.id.Tag);
end;

rule description: string;
semantic

description. Tag := string. Tag;
condition

notnull(string. Tag);
end;

rule id : id2 IDENTIFIER;
semantic

id.Tag := concat(id2.Tag,concat(".",IDENTIFIER.Tag));
end;

rule id : IDENTIFIER;
semantic

id.Tag := IDENTIFIER.Tag;
end;

rule string : STRINGTOKEN;
semantic

string.Tag := STRINGTOKEN.Tag;
end;

rule character : CHARACTERTOKEN;
semantic

character.Tag := CHARACTERTOKEN.Tag;
end;

rule boolean : TRUETOKEN;
semantic

boolean.Tag := TRUETOKEN.Tag;
boolean. Val := TRUE;

end;

rule boolean : FALSETOKEN;
semantic

boolean.Tag := FALSETOKEN.Tag;
boolean. Val := FALSE;

end;

Sat Sep 12 20:43:33 PDT 1998
VisiT SEQUENCES
Production: 0
EVAL ROOTNODE.PARENT
EVAL CLASSLIST.PARENT
MOVE CLASSLIST 1
EVAL ROOTNODE.GBST
EVAL ROOTNODE.INFO
COND 1
MOVE ROOTNODE1
Production: 1
EVAL CLASSLIST2.PARENT
EVAL CLASSNODE.PARENT
MOVE CLASSLIST2 1
MOVE CLASSNODE 1
EVAL CLASSLIST. SYNST
EVAL CLASSLIST.INFO
COND 1
MOVE CLASSLIST 1
Production: 2
EVAL CLASSLIST. SYNST
EVAL CLASSLIST.INFO
MOVE CLASSLIST 1
Production: 3
EVAL INSTANCELIST2.PARENT
EVAL INSTANCENODE.PARENT
MOVE INSTANCELIST2 1
MOVE INSTANCENODE 1
EVAL INSTANCELIST. SYNST
EVAL INSTANCELIST.INFO
COND 1
MOVE INSTANCELIST 1
Production: 4
EVAL INSTANCELIST. SYNST
EVAL INSTANCELIST.INFO
MOVE INSTANCELIST 1
Production: 5
EVAL METHODLIST2.PARENT
EVAL METHODNODE.PARENT
MOVE METHODLIST2 1
MOVE METHODNODE 1
EVAL METHODLIST. SYNST
EVAL METHODLIST.INFO
COND 1
MOVE METHODLIST 1
Production: 6
EVAL METHODLIST. SYNST
EVAL METHODLIST.INFO
MOVE METHODLIST 1
Production: 7
EVAL CLASSDEFN. PARENT
MOVE CLASSDEFN 1

EVAL CLASSLIST.PARENT
EVAL INST AN CELI ST. PARENT
EVAL METHODLIST.PARENT
MOVE CLASSLIST 1
MOVE INSTANCELIST 1
MOVE METHODLIST 1
EVAL CLASSNODE.SYNST
EVAL CLASSNODE.INFO
COND 1
MOVE CLASSNODE 1
Production: 8
MOVE INSTANCEDEFN 1
EVAL INSTANCENODE. SYNST
EVAL INSTANCENODE.INFO
COND 1
MOVE INSTANCENODE 1
Production: 9
MOVE METHODDEFN 1
EVAL METHODNODE. SYNST
EVAL METHODNODE.INFO
COND 1
MOVE METHODNODE 1
Production: 10
MOVE ID 1
EVAL CLASSDEFN.NAME
MOVE INTERFACEUSE S SECTION 1
MOVE FORWARDDECLSECTION 1
MOVE BINDPARAMSECTION 1
MOVE DECLPARAMSECTION 1
MOVE MIXEDDECLLIST 1
MOVE BINDSTVARSECTION 1
EVAL CLASSDEFN.SYMTAB
COND 1
MOVE DESCRIPTION 1
EVAL CLASSDEFN.DESC
MOVE KEYWORDSSECTION 1
EVAL CLASSDEFN.KEYLIST
MOVE DOCUMENTSECTION 1
EVAL CLASSDEFN.DOCLIST
EVAL CLASSDEFN.INFO
MOVE ID2 1
COND 2
MOVE CLASSDEFN 1
Production: 11
EVAL FORWARDDECLSECTION. SYMRECLIST
MOVE FORWARDDECLSECTION 1
Production: 12
MOVE IDENTIFIERLIST 1
EVAL FORWARDDECLSECTION; SYMRECLIST
COND 1
MOVE FORWARDDECLSECTION 1
Production: 13

EVAL INTERFACEUSESSECTION.SYMRECLIST
MOVE INTERFACEUSESSECTION 1
Production: 14
MOVE IDENTIFIERLIST 1
EVAL INTERFACEUSESSECTION. SYMRECLIST
COND 1
MOVE INTERFACEUSESSECTION 1
Production: 15
EVAL DECLPARAMSECTION. SYMRECLIST
MOVE DECLPARAMSECTION 1
Production: 16
MOVE PARAMDECLLIST 1
EVAL DECLPARAMSECTION. SYMRECLIST
MOVE DECLPARAMSECTION 1
Production: 17
MOVE ID 1
MOVE PARAMTYPE 1
EVAL PARAMDECLLIST. SYMRECLIST
MOVE PARAMDECLLIST 1
Production: 18
MOVE ID 1
MOVE PARAMTYPE 1
MOVE PARAMDECLLIST2 1
EVAL PARAMDECLLIST.SYMRECLIST
COND 1
MOVE PARAMDECLLIST 1
Production: 19
EVAL PARAMTYPE.PTYPE
MOVE PARAMTYPE 1
Production: 20
EVAL PARAMTYPE.PTYPE
MOVE PARAMTYPE 1
Production: 21
EVAL PARAMTYPE.PTYPE
MOVE PARAMTYPE 1
Production: 22
EVAL PARAMTYPE.PTYPE
MOVE PARAMTYPE 1
Production: 23
EVAL BINDPARAMSECTION. SYMRECLIST
MOVE BINDPARAMSECTION 1
Production: 24
MOVE BINDP ARAMLI ST 1
EVAL BINDPARAMSECTION. SYMRECLIST
MOVE BINDPARAMSECTION 1
Production: 25
MOVE ID 1
MOVE ID2 1
EVAL BINDPARAMLIST. SYMRECLIST
MOVE BINDPARAMLIST 1
Production: 26
MOVE ID 1

MOVE ID2 1
MOVE BINDPARAMLIST2 1
EVAL BINDPARAMLIST.SYMRECLIST
MOVE BINDPARAMLIST 1
Production: 27
EVAL BINDSTVARSECTION.SYMRECLIST
MOVE BINDSTVARSECTION 1
Production: 28
MOVE BINDSTVARLIST 1
EVAL BINDSTVARSECTION. SYMRECLIST
MOVE BINDSTVARSECTION 1
Production: 29
MOVE ID 1
MOVE BINDSTVARLIST2 1
MOVE VALUE 1
EVAL BINDSTVARSECTION. SYMRECLIST
MOVE BINDSTVARLIST 1
Production: 30
MOVE ID 1
MOVE VALUE 1
EVAL BINDSTVARLIST. SYMRECLIST
MOVE BINDSTVARLIST 1
Production: 31
MOVE KEYWORDSLIST 1
EVAL KEYWORDSSECTION.KEYLIST
MOVE KEYWORDSSECTION 1
Production: 32
EVAL KEYWORDSSECTION.KEYLIST
MOVE KEYWORDSSECTION 1
Production: 33
MOVE STRING 1
EVAL KEYWORDSLIST.KEYLIST
MOVE KEYWORDSLIST 1
Production: 34
MOVE STRING 1
MOVE KEYWORD SLIST2 1
EVAL KEYWORDSLIST.KEYLIST
COND 1
MOVE KEYWORDSLIST 1
Production: 35
EVAL DOCUMENTSECTION.DOCLIST
MOVE DOCUMENTSECTION 1
Production: 36
MOVE DOCUMENTDEFNLIST 1
EVAL DOCUMENTSECTION.DOCLIST
MOVE DOCUMENTSECTION 1
Production: 37
MOVE DOCUMENTDEFN 1
EVAL DOCUMENTDEFNLIST.DOCLIST
MOVE DOCUMENTDEFNLIST 1
Production: 38
MOVE DOCUMENTDEFN 1

MOVE DOCUMENTDEFNLIST2 1
EVAL DOCUMENTDEFNLIST.DOCLIST
COND 1
MOVE DOCUMENTDEFNLIST 1
Production: 39
MOVE ID 1
MOVE STRING 1
EVAL DOCUMENTDEFN.DOC
MOVE DOCUMENTDEFN 1
Production: 40
MOVE STRING 1
EVAL DOCUMENTDEFN.DOC
MOVE DOCUMENTDEFN 1
Sat Sep 12 20:59:02 PDT 1998

Sat Sep 12 19:43:50 PDT 1998
VISIT SEQUENCES
Production: 0
MOVE ID 1
EVAL INSTANCEDEFN.NAME
MOVE ID2 1
EVAL IN ST ANCEDEFN. PARENT
MOVE DESCRIPTION 1
EVAL INSTANCEDEFN.DESC
MOVE BINDPARAMSECTION 1
MOVE BINDSTVARSECTION 1
EVAL INST ANCEDEFN. SYMTAB
MOVE KEYWORDSSECTION 1
EVAL INSTANCEDEFN.KEYLIST
MOVE DOCUMENTSECTION 1
EVAL INSTANCEDEFN.DOCLIST
EVAL IN STAN CEDEFN. INF O
MOVE INSTANCEDEFN 1
Production: 1
EVAL BINDPARAMSECTION. SYMRECLIST
MOVE BINDPARAMSECTION 1
Production: 2
MOVE BINDPARAMLIST 1
EVAL BINDPARAMSECTION. SYMRECLIST
MOVE BINDPARAMSECTION 1
Production: 3
MOVE ID. 1
MOVE ID2 1
EVAL BINDPARAMLIST. SYMRECLIST
MOVE BINDPARAMLIST 1
Production: 4
MOVE ID 1
MOVE ID2 1
MOVE BINDPARAMLIST2 1
EVAL BINDPARAMLIST. SYMRECLIST
MOVE BINDPARAMLIST 1
Production: 5
EVAL BINDSTVARSECTION.SYMRECLIST
MOVE BINDSTVARSECTION 1
Production: 6
MOVE BINDSTVARLIST 1
EVAL BINDSTVARSECTION.SYMRECLIST
MOVE BINDSTVARSECTION 1
Production: 7
MOVE ID 1
MOVE BINDSTVARLIST2 1
MOVE VALUE 1
EVAL BINDSTVARSECTION. SYMRECLIST
MOVE BINDSTVARLIST 1
Production: 8
MOVE ID 1
MOVE VALUE 1

EVAL BINDSTVARLIST. SYMRECLIST
MOVE BINDSTVARLIST 1
Production: 9
MOVE KEYWORDSLIST 1
EVAL KEYWORDSSECTION.KEYLIST
MOVE KEYWORDSSECTION 1
Production: 10
EVAL KEYWORDSSECTION.KEYLIST
MOVE KEYWORDSSECTION 1
Production: 11
MOVE STRING 1
EVAL KEYWORDSLIST.KEYLIST
MOVE KEYWORDSLIST 1
Production: 12
MOVE STRING 1
MOVE KEYWORD SLIST2 1
EVAL KEYWORDSLIST.KEYLIST
COND 1
MOVE KEYWORDSLIST 1
Production: 13
EVAL DOCUMENTSECTION.DOCLIST
MOVE DOCUMENTSECTION 1
Production: 14
MOVE DOCUMENTDEFNLIST 1
EVAL DOCUMENTSECTION.DOCLIST
MOVE DOCUMENTSECTION 1
Production: 15
MOVE DOCUMENTDEFN 1
EVAL DOCUMENTDEFNLIST.DOCLIST
MOVE DOCUMENTDEFNLIST 1
Production: 16
MOVE DOCUMENTDEFN 1
MOVE DOCUMENTDEFNLIST2 1
EVAL DOCUMENTDEFNLIST.DOCLIST
COND 1
MOVE DOCUMENTDEFNLIST 1
Production: 17
MOVE ID 1
MOVE STRING 1
EVAL DOCUMENTDEFN.DOC
MOVE DOCUMENTDEFN 1
Production: 18
MOVE STRING 1
EVAL DOCUMENTDEFN.DOC
MOVE DOCUMENTDEFN 1
Production: 19
MOVE UNSIGNEDNUMBER 1
EVAL VALUE.TYPE
MOVE SIGN 1
EVAL VALUE.TAG
EVAL VALUE. VAL
MOVE VALUE 1

Production: 20
MOVE UNSIGNEDNUMBER 1
EVAL VALUE. TAG
EVAL VALUE.TYPE
EVAL VALUE.VAL
MOVE VALUE 1
Production: 21
EVAL VALUE.TYPE
MOVE STRING 1
EVAL VALUE.TAG
MOVE VALUE 1
Production: 22
EVAL VALUE.TYPE
MOVE CHARACTER 1
EVAL VALUE.TAG
MOVE VALUE 1
Production: 23
EVAL VALUE.TYPE
MOVE BOOLEAN 1
EVAL VALUE.TAG
EVAL VALUE. VAL
MOVE VALUE 1
Production: 24
EVAL UNSIGNEDNUMBER.TYPE
MOVE UNSIGNEDINTEGER 1
EVAL UNSIGNEDNUMBER. TAG
EVAL UNSIGNEDNUMBER. VAL
MOVE UNSIGNEDNUMBER 1
Production: 25
EVAL UNSIGNEDNUMBER. TYPE
MOVE UNSIGNEDREAL 1
EVAL UNSIGNEDNUMBER.TAG
EVAL UNSIGNEDNUMBER. VAL
MOVE UNSIGNEDNUMBER 1
Production: 26
MOVE UNSIGNEDINTEGER 1
MOVE FRACTIONALPART 1
EVAL UNSIGNEDREAL.TAG
EVAL UNSIGNEDREAL.VAL
MOVE UNSIGNEDREAL 1
Production: 27
MOVE DIGITSEQUENCE 1
EVAL UNSIGNED INTEGER. TAG
EVAL UNSIGNEDINTEGER. VAL
MOVE UNSIGNEDINTEGER 1
Production: 28
MOVE DIGITSEQUENCE 1
EVAL FRACTION ALP ART.TAG
EVAL FRACTIONALPART. VAL
EVAL FRACTIONALPART.LEN
MOVE FRACTIONALPART 1
Production: 29

EVAL SIGN.TAG
EVAL SIGN. SVAL
MOVE PLUS 1
MOVE SIGN 1
Production: 30
EVAL SIGN.TAG
EVAL SIGN. SVAL
MOVE MINUS 1
MOVE SIGN 1
Production: 31
MOVE STRING 1
EVAL DESCRIPTION.TAG
COND 1
MOVE DESCRIPTION 1
Production: 32
MOVE ID2 1
MOVE IDENTIFIER 1
EVAL ID.TAG
MOVE ID 1
Production: 33
MOVE IDENTIFIER 1
EVAL ID.TAG
MOVE ID 1
Production: 34
MOVE STRINGTOKEN 1
EVAL STRING.TAG
MOVE STRING 1
Production: 35
MOVE CHARACTERTOKEN 1
EVAL CHARACTER.TAG
MOVE CHARACTER 1
Production: 36
EVAL BOOLEAN. VAL
MOVE TRUETOKEN 1
EVAL BOOLEAN.TAG
MOVE BOOLEAN 1
Production: 37
EVAL BOOLEAN. VAL
MOVE FALSETOKEN 1
EVAL BOOLEAN.TAG
MOVE BOOLEAN 1
Sat Sep 12 19:49:25 PDT 1998

Sat Sep 12 20:10:03 PDT 1998
VISIT SEQUENCES
Production: 0
MOVE ID 1
EVAL METHODDEFN.NAME
MOVE ID2 1
EVAL METHODDEFN.PARENT
MOVE DESCRIPTION 1
EVAL METHODDEFN. DESC
MOVE KEYWORDSSECTION 1
EVAL METHODDEFN.KEYLIST
MOVE DOCUMENTSECTION 1
EVAL METHODDEFN.DOCLIST
EVAL METHODDEFN.INFO
MOVE METHODDEFN 1
Production: 1
MOVE KEYWORDSLIST 1
EVAL KEYWORDSSECTION.KEYLIST
MOVE KEYWORDSSECTION 1
Production: 2
EVAL KEYWORDSSECTION.KEYLIST
MOVE KEYWORDSSECTION 1
Production: 3
MOVE STRING 1
EVAL KEYWORDSLIST.KEYLIST
MOVE KEYWORDSLIST 1
Production: 4
MOVE STRING 1
MOVE KEYWORDSLIST2 1
EVAL KEYWORDSLIST.KEYLIST
COND 1
MOVE KEYWORDSLIST 1
Production: 5
EVAL DOCUMENTSECTION.DOCLIST
MOVE DOCUMENTSECTION 1
Production: 6
MOVE DOCUMENTDEFNLIST 1
EVAL DOCUMENTSECTION.DOCLIST
MOVE DOCUMENTSECTION 1
Production: 7
MOVE DOCUMENTDEFN 1
EVAL DOCUMENTDEFNLIST.DOCLIST
MOVE DOCUMENTDEFNLIST 1
Production: 8
MOVE DOCUMENTDEFN 1
MOVE DOCUMENTDEFNLIST2 1
EVAL DOCUMENTDEFNLIST.DOCLIST
COND 1
MOVE DOCUMENTDEFNLIST 1
Production: 9
MOVE ID 1
MOVE STRING 1

EVAL DOCUMENTDEFN.DOC
MOVE DOCUMENTDEFN 1
Production: 10
MOVE STRING 1
EVAL DOCUMENTDEFN.DOC
MOVE DOCUMENTDEFN 1
Production: 11
MOVE ID 1
EVAL IDENTIFIERLIST.IDLIST
MOVE IDENTIFIERLIST 1
Production: 12
MOVE ID 1
MOVE IDENTIFIERLIST2 1
EVAL IDENTIFIERLIST.IDLIST
COND 1
MOVE IDENTIFIERLIST 1
Production: 13
MOVE STRING 1
EVAL DESCRIPTION.TAG
COND 1
MOVE DESCRIPTION 1
Production: 14
MOVE ID2 1
MOVE IDENTIFIER 1
EVAL ID.TAG
MOVE ID 1
Production: 15
MOVE IDENTIFIER 1
EVAL ID.TAG
MOVE ID 1
Production: 16
MOVE STRINGTOKEN 1
EVAL STRING. TAG
MOVE STRING 1
Sat Sep 12 20:10:34 PDT 1998

Sat Sep 12 20:12:01 PDT 1998
VISIT SEQUENCES
Production: 0
EVAL MIXEDDECLLIST. SYMRECLIST
MOVE MIXEDDECLLIST 1
Production: 1
MOVE MIXEDDECL 1
MOVE MIXEDDECLLIST2 1
EVAL MIXEDDECLLIST. SYMRECLIST
COND 1
MOVE MIXEDDECLLIST 1
Production: 2
MOVE TYPEDEFN 1
EVAL MIXEDDECL.SYMRECLIST
MOVE MIXEDDECL 1
Production: 3
MOVE VARDEFN 1
EVAL MIXEDDECL.SYMRECLIST
MOVE MIXEDDECL 1
Production: 4
MOVE CONSTANTDEFN 1
EVAL MIXEDDECL.SYMRECLIST
MOVE MIXEDDECL 1
Production: 5
MOVE FUNCTIONDEFN 1
EVAL MIXEDDECL. SYMRECLIST
MOVE MIXEDDECL 1
Production: 6
MOVE ID 1
EVAL TYPEDEFN. SYMRECLIST
COND 1
MOVE TYPEDENOTER 1
MOVE TYPEDEFN 1
Production: 7
MOVE IDENTIFIERLIST 1
COND 1
MOVE TYPEDENOTER 1
EVAL VARDEFN.SYMRECLIST
MOVE VARDEFN 1
Production: 8
MOVE ID2 1
COND 1
MOVE VALUE 1
COND 2
MOVE ID 1
EVAL CONSTANTDEFN.SYMRECLIST
COND 3
MOVE CONSTANTDEFN 1
Production: 9
MOVE ID2 1
COND 1
MOVE ID 1

COND 2
MOVE ARGLIST 1
EVAL FUNCTIONDEFN. SYMRECLIST
MOVE FUNCTIONDEFN 1
Production: 10
EVAL ARGLIST. SYMRECLIST
MOVE ARGLIST 1
Production: 11
MOVE ARGDCL 1
EVAL ARGLIST. SYMRECLIST
MOVE ARGLIST 1
Production: 12
MOVE ARGDCL 1
MOVE ARGLIST2 1
EVAL ARGLIST. SYMRECLIST
MOVE ARGLIST 1
Production: 13
MOVE TYPEDENOTER 1
EVAL ARGDCL. SYMREC
MOVE ARGDCL 1
Production: 14
MOVE ID 1
EVAL TYPEDENOTER. SYMREC
MOVE TYPEDENOTER 1
Production: 15
MOVE NEWTYPE 1
EVAL TYPEDENOTER. SYMREC
MOVE TYPEDENOTER 1
Production: 16
MOVE ENUMERATEDTYPE 1
EVAL NEWTYPE. SYMREC
MOVE NEWTYPE 1
Production: 17
MOVE ARRAYTYPE 1
EVAL NEWTYPE. SYMREC
MOVE NEWTYPE 1
Production: 18
MOVE RECORDTYPE 1
EVAL NEWTYPE. SYMREC
MOVE NEWTYPE 1
Production: 19
MOVE SETTYPE 1
EVAL NEWTYPE. SYMREC
MOVE NEWTYPE 1
Production: 20
COND 1
MOVE IDENTIFIERLIST 1
EVAL ENUMERATEDTYPE. SYMRECLIST
MOVE ENUMERATEDTYPE 1
Production: 21
MOVE FIELDLIST 1
EVAL RECORDTYPE. SYMRECLIST

MOVE RECORDTYPE 1
Production: 22
MOVE RECORD SECTION 1
EVAL FIELDLIST. SYMRECLIST
MOVE FIELDLIST 1
Production: 23
MOVE RECORD SECTION 1
MOVE FIELDLIST2 1
EVAL FIELDLIST. SYMRECLIST
COND 1
MOVE FIELDLIST 1
Production: 24
MOVE IDENTIFIERLIST 1
COND 1
MOVE TYPEDENOTER 1
EVAL RECORDSECTION. SYMRECLIST
MOVE RECORDSECTION 1
Production: 25
MOVE TYPEDENOTER 1
EVAL ARRAYTYPE. SYMREC
MOVE INDEXTYPELIST 1
EVAL ARRAYTYPE.INLIST
MOVE ARRAYTYPE 1
Production: 26
MOVE INDEXTYPE 1
EVAL INDEXTYPELIST.INLIST
MOVE INDEXTYPELIST 1
Production: 27
MOVE INDEXTYPE 1
MOVE INDEXTYPELIST2 1
EVAL INDEXTYPELIST.INLIST
MOVE INDEXTYPELIST 1
Production: 28
MOVE LOWERBOUND 1
MOVE UPPERBOUND 1
EVAL INDEXTYPE.INPAIR
MOVE INDEXTYPE 1
Production: 29
MOVE VALUE 1
EVAL LOWERBOUND.TAG
COND 1
MOVE LOWERBOUND 1
Production: 30
MOVE ID 1
EVAL LOWERBOUND.TAG
COND 1
MOVE LOWERBOUND 1
Production: 31
MOVE VALUE 1
EVAL UPPERBOUND.TAG
COND 1
MOVE UPPERBOUND 1

Production: 32
MOVE ID 1
EVAL UPPERBOUND.TAG
COND 1
MOVE UPPERBOUND 1
Production: 33
MOVE BASETYPE 1
EVAL SETTYPE. SYMREC
MOVE SETTYPE 1
Production: 34
MOVE ID 1
EVAL BASETYPE. SYMREC
MOVE BASETYPE 1
Production: 35
MOVE ENUMERATEDTYPE 1
EVAL BASETYPE. SYMREC
MOVE BASETYPE 1
Production: 36
MOVE UNSIGNEDNUMBER 1
EVAL VALUE.TYPE
MOVE SIGN 1
EVAL VALUE.TAG
EVAL VALUE. VAL
MOVE VALUE 1
Production: 37
MOVE UNSIGNEDNUMBER 1
EVAL VALUE.TAG
EVAL VALUE.TYPE
EVAL VALUE. VAL
MOVE VALUE 1
Production: 38
EVAL VALUE.TYPE
MOVE STRING 1
EVAL VALUE.TAG
MOVE VALUE 1
Production: 39
EVAL VALUE.TYPE
MOVE CHARACTER 1
EVAL VALUE.TAG
MOVE VALUE 1
Production: 40
EVAL VALUE.TYPE
MOVE BOOLEAN 1
EVAL VALUE.TAG
EVAL VALUE. VAL
MOVE VALUE 1
Production: 41
EVAL UNSIGNEDNUMBER.TYPE
MOVE UNSIGNEDINTEGER 1
EVAL UNSIGNEDNUMBER.TAG
EVAL UNSIGNEDNUMBER. VAL
MOVE UNSIGNEDNUMBER 1 .

Production: 42
EVAL UNSIGNEDNUMBER. TYPE
MOVE UNSIGNEDREAL 1
EVAL UNSIGNEDNUMBER. TAG
EVAL UNSIGNEDNUMBER. VAL
MOVE UNSIGNEDNUMBER 1
Production: 43
MOVE UNSIGNEDINTEGER 1
MOVE FRACTIONALPART 1
EVAL UNSIGNEDREAL. TAG
EVAL UNSIGNEDREAL. VAL
MOVE UNSIGNEDREAL 1
Production: 44
MOVE DIGITSEQUENCE 1
EVAL UNSIGNEDINTEGER. TAG
EVAL UNSIGNEDINTEGER. VAL
MOVE UNSIGNEDINTEGER 1
Production: 45
MOVE DIGITSEQUENCE 1
EVAL FRACTIONALPART.TAG
EVAL FRACTIONALPART.VAL
EVAL FRACTIONALPART.LEN
MOVE FRACTIONALPART 1
Production: 46
EVAL SIGN.TAG
EVAL SIGN. SVAL
MOVE PLUS 1
MOVE SIGN I
Production: 47
EVAL SIGN.TAG
EVAL SIGN. SVAL
MOVE MINUS 1
MOVE SIGN 1
Production: 48
MOVE ID 1
EVAL IDENTIFIERLIST.IDLIST
MOVE IDENTIFIERLIST 1
Production: 49
MOVE ID 1
MOVE IDENTIFIERLIST2 1
EVAL IDENTIFIERLIST.IDLIST
COND 1
MOVE IDENTIFIERLIST 1
Production: 50
MOVE STRING 1
EVAL DESCRIPTION.TAG
COND 1
MOVE DESCRIPTION 1
Production: 51
MOVE ID2 1
MOVE IDENTIFIER 1
EVAL ID.TAG

MOVE ID 1
Production: 52
MOVE IDENTIFIER 1
EVAL ID.TAG
MOVE ID 1
Production: 53
MOVE STRINGTOKEN 1
EVAL STRING.TAG
MOVE STRING 1
Production: 54
MOVE CHARACTERTOKEN 1
EVAL CHARACTER. TAG
MOVE CHARACTER 1
Production: 55
EVAL BOOLEAN. VAL
MOVE TRUETOKEN 1
EVAL BOOLEAN.TAG
MOVE BOOLEAN 1
Production: 56
EVAL BOOLEAN.VAL
MOVE FALSETOKEN 1
EVAL BOOLEAN.TAG
MOVE BOOLEAN 1
Sat Sep 12 20:26:17 PDT 1998

REFERENCES

1. A.V Aho, R. Sethi, and J.D. Ullman, Compilers Principles, Techniques, and Tools,
Addison-Wesley, 1986, 83-90, 105-113, 257-266.

2. U.Kastens, Ordered Attribute Grammars, Acta Informatica, Berlin; New York :
Spinger-Verlag, Vol 13, 1980, 229-256.

3. D.E. Knuth, Semantics of context-free languages, Math. Syst. Theory 2, 1968, 127-
145.

4. F. Pagan, Formal Specification of Programming Languages. Prentice-Hall, 1981, 8-
27.

5. P. Spencer, Kastens’ Attribute Evaluation Algorithm: An Implementation of a
Theoretical Model, M.S. Thesis, University of Kansas, 1986.

6. V. Palaiya: Design and construction of language processor based on attribute
grammar for EIS, M.S. Thesis, University of Montana, May 1996.

7. R. Ford, R. Righter, T. Duce, V. Hemige, D. Thompson: A Network-Based Object-
Oriented Ecosystem Information System, Proceedings o f Decision Support - 2001
Resource Technology 1994Symposium, Toronto, Ontario, Canada, September 1994.

8. R. Righter, R. Ford, T. Duce, V. Hemige, and D. Thompson: A Network-Based
Repository for GIS and Natural Resource Information, Ninth Annual Symposium on
Geographic Information Systems, Vancouver, British Columbia, Canada, 1995.

9. L. Lemay and C. Perkins: teach yourself JAVA in 21 days, Sams.net Publishing, 1996.

10. D. Flanagan: JAVA in a Nutshell, O’Reilly & Associates, Inc., 1997.

116

	Ordered attribute grammar for the Ecosystem Information System
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459808976.pdf.6uRi3

