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Cook, Bradley J., M.S., December 1994 Forestry 

Developing a Field Test for Measuring Unconfined Compressive Strength of 
Indurated Materials (38 pp.) 

- f jp 
Director: Thomas J. Nimlos 

This paper presents field techniques for cutting, forming, and strength 
testing of indurated materials. Measuring unconfined compressive strength 
of blocks pf*is the standard strength test of indurated materials. However, 
field techniques for obtaining quantified measurements of unconfined 
compressive strength have never been described. These techniques for 
cutting and forming blocks apply equally to either laboratory or field 
situations. Testing indurated volcanic-ash blocks, at various moisture 
contents, has important ties to reclamation where this induration is exposed. 
A modified hydraulic jack was used to obtain quantified measurements of 
unconfined compressive strength of ash-flow tuff (tepetate), fine sandstone, 
coarse sandstone, and chalk in the field. The techniques described in this 
paper are inexpensive, precise, and testing shows them to have a nearly 
perfect linear relationship to standard laboratory techniques. 
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INTRODUCTION 

Indurated volcanic-ash materials are common wherever volcanism has 

occurred; they are ash-flow tuffs, air-fall ash or reworked ash (Vera and Lopez, 

1986 and Nimlos, 1991). Pedocementation by silica, carbonates and iron oxides, 

especially at the surface of the materials, has augmented their induration. 

The nomenclature of indurated volcanic-ash materials is vague and 

confusing for two reasons. In the first place, at least one local name, usually of 

indigenous dialect, has been applied to these materials in each country (Nimlos, 

1987). Moreover, the nomenclature is obscure because the lower limit of 

pedologic development is difficult to identify, so it is not clear whether these 

materials are soil or rock. 

Indurated volcanic-ash materials are widespread throughout the Pacific 

Rim portion of Latin America. In many areas, the porous overlying soil has been 

completely eroded leaving the indurated material exposed. Two-thirds of the 

land area in some watersheds in the Valley of Mexico, the basin that contains 

Mexico City, have had all soil eroded and the induration (locally called tepetate) 

exposed (Nimlos and Ortiz., 1987). Near Quito, Ecuador, exposure of indurated 

material (locally called cangahua) is so extensive that one can walk for two miles 

without touching soil. 

Reclaiming these lands is necessary if the countries of Latin America are to 

meet their agricultural production needs. Historically, campesinos (farmers) 

have reclaimed indurated materials by breaking chunks of the material loose 

from the matrix and building some type of structure; usually terraces with them. 

The most famous complex of terraces are those built by the Incas at Machu 

Picchu. 
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Reclamation programs have been instituted more recently in Mexico 

(Nimlos and Ortiz, 1987) and Ecuador (Nimlos and Savage, 1991 and Nimlos, 

1991). The type of reclamation procedure depends on the indurations' strength. 

In some areas, the strength is low and terraces are built manually (Nimlos, 1991). 

More commonly large crawler tractors are used to rip the induration. 

Unconfined compressive strength has been measured in the laboratory on 

a number of samples from Mexico and Ecuador (Nimlos, 1989 and Nimlos and 

Hillery, 1990). The resulting data show that strength declines rapidly with 

increasing moisture content and is higher in samples cemented pedogenetically 

with carbonates. Strength varies from 0 psi in some saturated samples that slake 

in water to 650 psi (4.485x 106 Pa) in oven-dry samples with dispersed 

carbonates. 

This study began in search of a quantitative field method for determining 

the unconfined compressive strength of indurated volcanic-ash materials. 

However, shortly after starting, I realized that this work can be applied to all 

indurated materials. Subsequently, the methods described within are not limited 

to volcanic-ash materials. The techniques developed here are valuable because 

they can provide accurate quantitative data in the field and are very inexpensive 

compared to standard laboratory techniques. 

This thesis presents the development of a field method in four distinct 

parts : 1) the techniques for cutting, forming, and moisture adjustment of 

sampling materials (i.e. blocks); 2) strength tests and the development and 

calibration of our modified hydraulic jack; 3) the application and results of field 

testing the Modified Jack; and 4) conclusions. 



PART ONE: 

TECHNIQUES OF CUTTING, FORMING, AND MOISTURE ADJUSTMENT 

OF SAMPLING MATERIALS 

Unconfined Compressive Strength and Blocks 

Unconfined compressive strength is the standard strength test for soil 

materials; the comparable test used by geologists for rock is tensile strength. 

Since the surface of indurated volcanic-ash materials is in the gray zone between 

rock and soil, the choice of strength tests is subject to question. Ripping is the 

most common method of reclamation and entails both compressive and tensile 

strength; the indurated material is compressed as the ripper enters, and the ease 

of pulling the bar through the material is a function of the tensile strength. 

Compressive strength is a more common test; there are more data for 

comparisons, sample preparation is much easier, and measuring tensile strength 

in the field would be extremely difficult. Further, Farrell et al. (1967) have shown 

a very close correlation between the two parameters on soil samples with 

moisture contents between 2% and 14%. Most tepetate have a field moisture 

content within this range. 

Procedures for testing unconfined compressive strength are established by 

AASHTO (American Association of State Highway and Transportation Officials, 

1984). These procedures call for the measurement of the pressure required to 

crush blocks of the indurated material; blocks are shaped as right parallelepipeds 

(i.e. a six-sided right angled prism with parallelogram faces). Block dimensions 

can vary, but the long axis of the blocks must measure between two and three 

times the length of the short axes. (Blocks made from homogeneous substances 

commonly break at angles 30° to the long axis plane. Blocks having shorter long 

axis measurements can have higher strength readings.) Most of the blocks tested 

were about 1x1x2.5 in (2.5x2.5x6.25 cm). 

3 
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Block Cutting 

Cutting blocks out of the matrix is very rapid in some samples but time-

consuming and frustrating in others. Samples of low strength (less than 15 psi or 

10.35xl04 Pa) often break while being cut, and samples of high strength (more 

than 150 psi or 10.35x105 Pa) are so hard they cut slowly by hand. Samples with 

carbonate lamellae are especially vexing because the interface between the 

lamellae and matrix is a natural plane of weakness. These samples frequently 

crumble while being cut. Cutting is easiest in massive materials without 

carbonate lamellae. 

At least three types of saws can be used to cut rough blocks from the 

matrix: 

1) Quick saw. A quick saw is a gas-powered, 2-cycle saw that resembles 

a chain saw with the tung and chain replaced with a 12- or 14-inch cutting disc 

(See Photo 1.). The discs or blades employ cutting teeth for use on wood or an 

abrasive for use on masonry or metal. I used a Stihl TS360 with a 12-inch 

masonry blade; I found the metallic blade to be less effective. Cutting through 

four inches of indurated material is quick and easy. The saw's power is more 

than adequate and the time spent cutting is reduced exponentially when 

compared with manual methods of cutting. Parallel cuts are made in the 

material to form the planes of the long axis. Then cuts are made at right angles 

and the blocks are gently broken from the matrix. All cuts are made slightly over 

the desired dimensions so that the blocks can be formed to specific size later. 

However, cutting blocks too large requires excessive time forming them later. 

One disadvantage of this saw and the chop saw is that they create clouds 

of dust. Cutting outside with a strong wind is preferred. It is best the user wear 

a mask and that the saw's air filter be cleaned periodically. 



Photo 1. Quick Saw. A gas-powered saw used for cutting and forming samples in the field. 

Plywood frame with fence beneath the saw is used when forming blocks. Block in photo is in 

position to be formed; perpendicular to the blade and against the fence. 

2) Chop saw. A chop saw is an AC-powered (110 volt) circular saw 

mounted on its own base and can use the same blades as the quick saw (See 

Photo 2.). I used a Makita (model No. 2414) with a 14-inch masonry blade which 

had a cutting platform on the base and a fence along the back to ensure right 

angle cuts. To use the chop saw, samples of indurated material must be removed 

from the matrix and cut where electricity is available. 

3) Hacksaw. Initially I used a standard hacksaw with cutting blades 

having 12 teeth per inch. This proved cheap hut very slow on samples with high 

strength and the blades wore out rapidly; it took four hours to cut a block from a 

sample with strength of 650 psi (4.485x lO6 Pa). The advantage of this saw lies 

with cutting samples of low strength; samples break less frequently because the 

blades are relatively thin and make a narrow cut. To overcome the rapid dulling 

of the blades I switched to carbide-coated blades. These blades abrade the 

material rather than cut it, leaving a wider, less precise cut. Although carbide-
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coated blades wear out more slowly, they are more apt to cause breakage in low-

strength samples. 

Photo 2. Chop Saw. The chop saw can only be used to cut and form blocks where electricity is 

available. Access to a portable generator could make this saw a useful piece of field equipment. 

Block Forming 

Once the blocks are cut they must be formed before testing. The forming 

method is a two-step process. Initial forming is done in the field along the side of 

the quick saw disk, much like using a disk-sander. I constructed a plywood 

frame that holds the quick saw in a rigid position while forming blocks (See 

Photo 1.). Samples of high strength can be formed to near-perfect dimensions in 

the field and require little additional effort. Blocks of low strength require much 

more care when forming; corners can be easily rounded or even break during 
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formation. For the more refined formation I used 50 to 80 grit sandpaper or a 

mill bastard file. Good blocks can be formed if the sandpaper or file is placed 

along a square inside corner, such as the inside of a tool box. The corner is used 

to keep the long and short axis planes of the block perpendicular. Oven drying 

low-strength samples increases their strength and makes them easier to cut and 

form. The most important aspect of cutting and forming blocks is to keep the 

short axis planes both flat and parallel. 

Moisture Adjustment 

Strength declines with increasing moisture content. Below are the 

techniques used to establish four moisture levels as a means to obtain 

measurements throughout the full range of the Modified Jack's pressure gauge 

(Cook et al., 1992). 

Moisture 

level 

Oven dried 

Moisture 

content(%) 

0 

Air dried 

Humid 

Saturated 

1-7 

3-11 

10-25 

Procedure 

Dry in oven at 110°C for 

at least 6 hours. 

In situ moisture content of 

samples from the field. 

Store in humidity chamber for 

at least 10 days. 

Immerse in water for 

10 minutes. 

Virtually all moisture loss in blocks occurs within the first six hours of 

oven drying. There is some difference between samples in how long they take to 

become completely oven dried, but all blocks measured had moisture contents 

below 1% after six hours. 
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In order to create a moisture level intermediate between saturated and air-

dried, I made a humidity chamber using a covered plastic container with free 

water in the bottom. Samples were placed on an inverted standard sieve used as 

a rack inside the container above the water line. I added paper towels, loosely 

rolled and rising out of the water to wick moisture, increasing the surface area of 

the water surface and maintaining a saturated atmosphere. Most samples 

reached a near constant weight in the chamber in less than 10 days. I assume this 

moisture content corresponds to hygroscopic moisture content. It is not essential 

that the hygroscopic moisture content be reached, but that the moisture content 

be at some level above air-dried. 

When removing samples from the humidity chamber for testing or 

weighing, moisture content decreases instantly in dry labs or any atmosphere 

less than 100% relative humidity. 

Samples immersed in water reached saturation in less than 10 minutes. I 

assume the difference in saturation moisture contents between samples is due to 

differences in texture, type of cementation and chemical composition. Low-

strength samples often slake when saturated, and it is not possible to use this 

method to determine the unconfined compressive strength of these samples 

when saturated. 



PART TWO: 

STRENGTH TESTS AND THE DEVELOPMENT AND CALIBRATION OF A 

MODIFIED HYDRAULIC JACK 

Strength Tests 

Strength can be measured in the laboratory with sophisticated, expensive 

equipment, approximated in the field with simple manual techniques, or 

measured in the field with the Modified Jack. 

Measuring with Laboratory Equipment: 

Many commercial testing machines are available. The standard, most 

sophisticated testing machine is the Tinius Olsen. I used the Super L model. This 

machine is not too dissimilar to a large hydraulic vise; crushing block samples 

between two large steel plates (See Photo 3.). The upper steel plate is made to 

pivot and allows adjustment of the plane of the plate to fit flush against the 

upper planer surface of the block. One feature that makes the Tinius Olsen so 

sophisticated is that it applies the desired load evenly at the desired rate (e.g. 6 

lbs sec-1). These machines are expensive; usually costing over $40,000. 

Proving rings are also commonly used in the laboratory. Proving rings are 

simply stainless steel rings set into a frame. A dial indicator is mounted to the 

rings to measure the amount of deformation in the rings as the load increases. 

Loads are applied using a geared mechanical jack. A correction factor is used to 

calculate pressure (measured in psi or Pa) from deformation readings (measured 

in 0.001 in). I used a 1500 pound capacity, double ring type made by Soil Test, 

Inc. (Evanston, 111.). The double ring type allows for a greater range of 

measurements. Commonly, single rings are used for measuring specific ranges 

of strength. This may require the use of several rings for measuring materials 

with wide ranging strengths. One consequence of using proving rings is that 

9 
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they too, like the Modified Jack, need to be calibrated. Those 1 used were 

calibrated with the Tinius Olsen. Prices vary (between $500 and $700) depending 

on ring size and sophistication of the dial indicator. 

Photo 3. The Tinius Olsen. The laboratory standard for measuring unconfined compressive 

strength. New machines cost in excess of $40,000. 

Measuring with Manual Field Techniques: 

The U.S. Soil Conservation Service (Grossman, 1991) has developed a 

simple procedure that soil mappers can use in the field to measure rupture 

resistance (strength). A 1-inch (2.54 cm) cube sample, at various moisture 

contents, is compressed by a series of tests (of increasing pressures) until the 

sample is crushed: squeezed between the fingers, crushed under one's foot or 

subjected to a dropped geologic hammer from a given height. I feel this test is 

inadequate for many reasons; it does not provide quantitative data, it is highly 
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subjective, and the units of force/energy applied to samples differs between 

techniques. Samples that break between the fingers or under foot are placed in 

strength classes by measured force in newtons, whereas the energy of a falling 

hammer is measured in joules. However, this method does have the advantage 

of a simple field technique that requires very little equipment. 

Measuring with the Modified Jack Field Equipment: 

We have developed a simple, inexpensive technique for measuring 

strength in the field. A 1.5-ton hydraulic jack, modified with a 1000 psi pressure 

gauge and fit into an angle-iron frame, is used to crush blocks (See Figure 1.). 

Modification of the hydraulic jack with the pressure gauge is simple. A hole is 

drilled and tapped into the jack's reservoir. A short nipple connects the pressure 

gauge to the jack. Total cost for materials is less than $50. The pressure gauge 

makes up 80% of the price and will vary with the range of measurement needed 

and the incremental accuracy desired. Readings at the extreme low and extreme 

high ranges of most pressure gauges can be less accurate, especially with lower 

quality gauges (Calcaterra, 1994). 

Blocks are placed on the jack piston and squeezed against the frame by 

pumping the jack arm. It is of utmost importance that the interface between the 

sample and the frame or jack be clean and have a flush fit. A poor fit, leaving air 

space between the sample and frame or jack, will apply pressure to a smaller area 

of the block and cause premature failing and erroneous measurements. I used a 

2x2 inch plate of three-eighths inch steel between the sample and the jack piston 

to provide this smooth interface. I also modified the steel plate by welding a 1 /4 

inch ball bearing to the center of the underside. This allows the plate to pivot on 

top of the jack piston and ensures a flush fit between the block and the frame. 

Blocks of very high strength may top-out the pressure gauge and are cut 

proportionally smaller to be tested in the jack. Strength measurements are then 

corrected to a per unit standard (psi or Pa). To standardize testing with the 



Figure 1. The Modified Jack and steel frame. A 1.5 ton hydraulic jack modified with a 1000 psi 

pressure gauge. The steel frame is made from light gauge channel and angle iron. 

jack, each block is fitted into place as described above, and the jack arm is then 

raised to the full upright position. Pumping the jack arm increases pressure on 

the sample; the operator standardizes the application of pressure by coordinating 

a mental count of five seconds with every increase of 100 psi. Theoretically, a 
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sample tested to have a strength of 200 psi would have taken 10 seconds to fail. 

The strength of a sample is recorded as the pressure gauge reading at the time of 

failure. 

Calibration of the Modified Jack 

I calibrated the Modified Jack with the Tinius Olsen, proving rings, and by 

dead loading. A calibration curve was developed for each to demonstrate the 

relative ease of calibration. This also provides options for laboratories with 

varying technological capabilities. 

Photo 4. Calibration of the Modified Jack using the Tinius Olsen. Paired direct readings were 

taken by centering the Modified Jack snugly between the vise-like steel plates of the Tinius Olsen 
and applying pressure by pumping the jack arm. 

Calibration with the Tinius Olsen 

Paired direct readings were taken by centering the Modified Jack snugly 

between the vise-like steel plates of the Tinius Olsen and applying pressure by 

pumping the jack arm (See Photo 4.). The jack arm was pumped until the jack 

pressure gauge read 50 psi and a paired reading was taken by reading the Tinius 
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Olsen pressure gauge. This was repeated at intervals of 50 psi until the Modified 

Jack's pressure gauge was topped out at 1000 psi. Figure 2 displays the linear 

relationship between these paired readings. A regression of these data was made 

with a statistical software program. A R-squared value of 1.0 was computed (See 

Appendix 1.). Direct paired readings were taken twice more (at 100 psi intervals) 

to test repeatability of the process. Readings between these tests are nearly 

identical (See Appendix 2.). This method of applying pressure with the Modified 

Jack, rather than increasing the load using the Tinius Olsen, was used to simulate 

field conditions (i.e. those described in the preceding section). 
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Figure 2. Calibration curve of the Modified Jack using the Tinius Olsen. This graph 

demonstrates the near perfect linear relationship between direct paired readings (n=20). 

Calibration using Proving Rings 

Paired direct readings were taken using the same method as that with the 

calibration using the Tinius Olsen. The proving rings were placed on top of the 

Modified Jack's piston and both were then centered snugly within the vise-like 

steel plates of the Tinius Olsen (See Photo 5). The Tinius Olsen was then shut off 
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and used simply as a vise to hold the other equipment. A simple steel frame, 

similar to that used with the Modified lack, could be constructed and used here 

to replace the Tinius Olsen. The remainder of the calibration methodology with 

regard to readings and repeatability was the same as that used with the Tinius 

Olsen described in the preceding paragraph (See Appendix 2.). 

Photo 5. Calibration of the Modified Jack using proving rings. Paired direct readings were 

taken by centering the proving rings and Modified Jack snugly between the vise-like steel plates 

of the Tinius Olsen and applying pressure by pumping the jack arm. 

Figure 3 is the graphic representation of the linear relationship between 

these paired readings. A regression of these data was done using a statistical 

software program; again, a R-squared value of 1.0 was computed (See Appendix 

1.). 
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Figure 3. Calibration curve of the Modified Jack using proving rings. This graph demonstrates 

the near perfect linear relationship between paired direct readings (n=20). 

Calibration by Dead Loading 

Dead weights were stacked and balanced at 50 lbs increments to establish 

a calibration curve for the Modified Jack. (All dead weights were first weighed 

on a Toledo scale for accuracy.) The weights were cribbed to a height just above 

the height of the jack's piston. Centering the jack beneath the weights for 

balancing was the most difficult step in the process. The jack was then pumped 

to a snug fit under the weights and the jack arm was raised to the full upright 

position. The jack was then pumped until the weights were lifted clear of the 

cribbing and a reading was made from the jack's pressure gauge. This test was 

performed only once (See Appendix 2.). Figure 4 demonstrates the linear 

relationship between these paired readings. The computed R-squared value was 

again 1.0 (See Appendix 1.). 
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Figure 4. Calibration curve of the Modified Jack using dead weights. This graph demonstrates 

the near perfect linear relationship between paired direct readings (n=13). 

All three calibration methods demonstrate a near perfect linear 

relationship between the Modified Jack and the respective testing equipment. 

Each technique is quick, relatively simple, and establishes the Modified Jack as a 

precise instrument for obtaining quantified measurements in the field. 



PART THREE: 

APPLICATION AND RESULTS OF FIELD TESTING 

THE MODIFIED JACK 

Field Testing the Modified Jack 

Four samples of indurated materials were collected, cut, and shaped 

following the techniques described in Part One. Indurated volcanic-ash (tepetate) 

was taken from the Valley of Mexico. Two sandstone samples (fine and coarse 

textured) were then taken locally. The fourth was chalk (magnesium carbonate) 

purchased at a local athletic equipment retailer. The testing of each will be 

discussed below. 

Tepetate 

Eight blocks were cut and formed in the field at each of seven locations. 

Although very little is known of the spatial distribution of tepetate or individual 

ash flows, there were significant differences in color and bedding patterns to 

suggest seven different samples. The eight blocks from each location were 

randomly paired to be tested in the Tinius Olsen and the Modified Jack. To 

obtain measurements throughout the full range of the jack's pressure gauge, the 

moisture content of each pair was adjusted using the techniques described in the 

last section of Part One. Figure 5 is a graph of these data (See Appendix 3.). The 

Modified Jack readings have been corrected using the calibration equation from 

Figure 2. 

Tepetate was the original focus for testing the jack, but I felt two reasons 

justified expanding the study to other indurated materials. First, the Modified 

Jack, like other strength tests, has wider applicability. Second, several of the 

tepetate samples had many natural planes of weakness (i.e. laminar carbonates, 

bedding planes,vesicles) or were so weak that forming good blocks was difficult. 

18 
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I thought the heterogeneous tepetate blocks would have a high variation that 

could be reduced using a more homogeneous substance when testing the 

Modified Jack. Both sandstone samples and the chalk were selected for their 

homogeneity and varied strengths. I assumed these three samples would 

individually represent the high, middle, and low testing range of the Modified 

Jack. 
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Figure 5. Graph of readings from paired tepetate blocks. Paired samples were crushed at four 

moisture contents to test the Modified Jack at a full range of scale. Note the y-axis scale is twice 

that of the x-axis. 

Fine Sandstone 

Twelve, fine textured, sandstone blocks were cut and formed using the 

field methods described in Part One. Bedding plains were common in each, but 
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blocks formed easily. Bedding planes were a change in color, not texture, and 

did not show any sign of being a natural plane of weakness. 

The fine sandstone was selected to test the high range of the Modified 

Jack. Preliminary testing of 1x1x2.5 in (2.5x2.5x6.25 cm) blocks showed the fine 

sandstone to have very high strength (the pressure gauge on the jack was topped 

out). Each block was resized several times, eventually to approximately 

0.5x0.5x1.5 in (1.25xl.25x3.8cm). Each block was measured along its three axes 

(x,y, and z; z being the long axis). Blocks having equal or most similar xy values 

were then paired and tested in either the Tinius Olsen or the Modified Jack (See 

Appendix 3.). 

Coarse Sandstone 

Fourteen, coarse textured, sandstone blocks were cut, formed, and paired 

using the same methods described for the fine sandstone. No difficulties were 

encountered cutting and forming blocks. Bedding planes were originally 

observed in the coarse sandstone but were uncommon in blocks. The coarse 

sandstone was selected to test the mid-range of the Modified Jack (See Appendix 

3.). 

Chalk 

Chalk (magnesium carbonate of this type is used by gymnasts to increase 

their grip) was selected to test the low range of the Modified Jack and for its 

greater homogeneity than the sandstones. It was purchased in factory-made 

blocks approximately 1.75x3.5x3.5 in (4.5x9x9 cm). Seven blocks were cut in half 

to approximately 1.75x1.75x3.5 in (4.5x4.5x9 cm). Blocks easily crumbled when 

cut; hence the large size. Each pair of halves was considered a matched pair and 

tested in either the Tinius Olsen or the Modified Jack (See Appendix 3.). 
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Figure 6 is a graph of the data obtained from testing the paired blocks 

made from the fine sandstone, coarse sandstone, and chalk. The Modified Jack 

readings have been corrected using the calibration equation from Figure 2. 
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Figure 6. Graph of readings from paired blocks made from fine sandstone, coarse sandstone, 
and chalk. This graph shows the relative distribution of each material at the high, middle, and 

low range of the Modified Jack's testing range. 

The fine sandstone, coarse sandstone, and chalk samples effectively tested 

the high, middle, and low ranges of the Modified Jack (See Figure 6.). Figure 6 

also provides some insight to the variation within each sample. The chalk data 

points are nearly on top of each other; the fine sandstone are widely scattered; 

and the coarse sandstone spread falls somewhere between the other two. At this 

scale, the graph suggests an increasing variation among samples as sample 
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strength increases. The standard deviation is a measure of the degree of 

variability within a sample. However, it is of limited value when comparing the 

variability of samples whose means are appreciably different. In this instance the 

coefficient of variation, a ratio of the standard deviation to the mean, is used to 

compare variability in samples from populations having different means. Below 

are the mean and coefficient of variation values for each sample. 

Sample Mean 

chalk 36 

coarse sandstone 414 

fine sandstone 1648 

Coefficient of Variation 

6.25 

10.91 

22.10 

Each sample has a different mean by an order of magnitude, thus 

establishing the coefficient of variation as the appropriate statistic to compare 

variability. Coefficient of variation values are also different for each sample; 

therefore the relative variability of each sample is different. The source of this 

variation is now the question at hand. 

Variation in block readings may come from imperfectly formed blocks, 

from malfunctions of the Modified Jack, and/or as natural variation within the 

indurated material. Block samples tested in both the Tinius Olsen and the 

Modified Jack were cut and formed using the same technique. Samples were 

paired by having nearly identical dimensions, and then selected at random to be 

tested in either the Tinius Olsen or the Modified Jack. Any variation that may 

come from imperfectly formed blocks will be equal between samples and is not 

the cause for the differences in coefficient of variation values. 

The Modified Jack is not a likely source of variation in block readings. In 

Part Two, I established three calibration curves using three different techniques 

(and tested these techniques three times with two of them); each demonstrated a 



23 

nearly perfect linear relationship throughout the full range of the Modified Jack. 

If these had not been linear relationships or if there had been variation among 

readings when the tests were repeated, the Modified Jack would then be suspect. 

These situations were not present. Therefore the Modified Jack is not a source of 

significant variation. However, the pressure gauge on the Modified Jack is 

graduated at increments of 10 psi and that of the Tinius Olsen at increments of 2 

psi. Readings can only be roughly estimated between the values of ten. I assume 

this "reader error" to be a real but minor source of variation. Since it will be 

most significant for low strength readings, "reader error" may be minimized by 

cutting blocks large enough to utilize the middle range of the pressure gauge. 

Using a more sophisticated pressure gauge would also reduce "reader error". 

Eliminating the blocks and the Modified Jack as significant sources of 

variation, leads to the conclusion that the source to the variation must lie in the 

natural variation of the indurated materials. This is consistent with my 

observations above regarding the homogeneity and bedding planes for each 

sample. 



PART FOUR: 

CONCLUSIONS 

The following conclusions are presented in three sections. Each section 

concludes the information presented in the previous three parts of this thesis. 

Techniques for Cutting, Forming, and Moisture Adjustment of Materials 

The techniques for cutting and forming indurated materials, described in 

Part One, enabled me to produce the blocks needed for testing all four indurated 

materials (tepetate, fine sandstone, coarse sandstone, and chalk). Each material 

tested, presented unique features (i.e. differences in strength, bedding planes) 

that required preliminary testing and experimenting with different saws, files or, 

sandpaper until the desired block was formed. I assume this will be required for 

any and all materials to be tested. 

In Part One I stated, "The most important aspect of cutting and forming 

blocks is to keep the short axis planes both flat and parallel." Testing imperfectly 

formed blocks can introduce error in measurements or increase variation within 

a population sample. However, techniques for cutting and forming laboratory 

samples have not been described. I feel my field techniques have equal 

application for field and laboratory use. I assume the conscientious person will 

form the best blocks possible and any error or variation introduced to either the 

laboratory or field tests (paired samples) would be equal. 

The techniques describing the moisture adjustment of materials have 

already been established (Cook et al., 1992) and were effective for testing a wider 

range of strength in tepetate samples. However, this sample set provides only 

two replicates for each tepetate sample at each moisture content and prevents me 

from making any other inferences with regard to these data. However, these 

techniques may also be helpful in coordinating reclamation with moisture 

content. 

24 
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Strength Tests and the Development and Calibration of the Modified Jack 

The Tinius Olsen and proving rings are the established laboratory 

standards for determining unconfined compressive strength. The Tinius Olsen is 

the most sophisticated and most expensive. Proving rings are considerably less 

expensive, but require some means of calibration and various rings are needed 

for measuring a wide range of strengths. The manual field techniques developed 

by the Soil Conservation Service do not provide quantitative data and are highly 

subjective. Moreover the units of force/energy applied to samples differ between 

techniques. 

The Modified Jack is inexpensive, provides quantified data, and is easily 

carried into the field. The pressure gauge is the most expensive item to purchase, 

and cost is a function of the range of measurement needed and the incremental 

accuracy desired. 

Calibration curves were developed by making direct paired readings 

using three techniques of varying degrees of sophistication (i.e. by using the 

Tinius Olsen, proving rings, and dead weight). Paired direct readings were 

taken three times, using the Tinius Olsen and proving rings, to ensure 

repeatability and to exclude the possibility of equipment malfunction. All three 

techniques and each replicate produced a near perfect linear correlation between 

the Modified Jack and the calibration equipment. Regressions were done on data 

taken from each technique, and R-squared values of 1.0 were computed for each. 

The nearly perfect linear relationship between the Modified Jack and the 

calibration equipment establishes the jack as a means of obtaining quantified 

data on unconfined compressive strength in the field. 

Application and Results of Field Testing the Modified Jack 

Four samples of indurated materials were tested (tepetate, fine sandstone, 

coarse sandstone, and chalk). As stated above, in Part Four, the small number of 



26 

tepetate replicates prevents any further inferences from those data. In retrospect, 

it would have been best to test only three or four tepetate samples in the same 

way I did the sandstones and chalk. To utilize the seven samples in hand, I could 

have run preliminary tests to determine the relative strengths of all seven 

samples. If more than one sample had similar strengths, I could adjust all the 

blocks of one sample to a different moisture content (higher or lower), using the 

same techniques, and fill any gap throughout the pressure range of the Modified 

Jack. 

The chalk, coarse sandstone, and fine sandstone samples effectively tested 

the low, middle, and high ranges of the Modified Jack. Coefficient of variation 

values were different for each sample, thus, indicating the relative variability of 

each sample was different. I eliminated the blocks and the Modified Jack as 

significant sources of variation, and concluded that the source to the variation 

must lie in the natural variation of the indurated materials. Variations in jack 

readings due to equipment and reader error are most likely to occur at the 

extreme low range of the pressure gauge, but can be minimized with a more 

sophisticated gauge. 

The determination of strength of indurated volcanic-ash materials is 

prerequisite to reclamation. While several methods for determining strength are 

available, most are either too expensive or do not provide the reliable 

quantitative data needed in the field. My study shows that the Modified Jack is 

an inexpensive, precise instrument for determining unconfined compressive 

strength in the field and that the associated field techniques (cutting, forming, 

and moisture adjustment) have wide applicability for use with indurated 

materials. 
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Appendix 1. Regression of Paired Direct Readings from Tinius Olsen and the Modified Jack 

Tinius Olsen Modified Jack 
24 50 units= psi 
53 100 (n=20) 
94 150 

111 200 
121 250 
172 300 
207 350 
234 400 
265 450 
289 500 
323 550 
358 600 
393 650 
425 700 
462 750 
496 800 
529 850 
562 900 
595 950 
629 1000 

REGRESSION 

Dependent Variable: Tinius Olsen 

Parameter Standard T for HO: 
Variable Mean Estimate Error parameter=0 

Intercept -18.68 4.07 -4.59 
Modified Jack 525.00 0.64 0.01 94.06 

Sum of Mean 
Source DF Squares Square F-Value 

Model 1.00 680064.29 680064.29 8847.93 
Error 18.00 1383.51 76.86 
Total 19.00 681447.80 

Dependent Mean 317.10 
Root Mean Square Error 8.77 
Coefficient of Variation 2.76 
R-Square 1.00 not rounded R-Square 0.9979697 
Adjusted R-Square 1.00 
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Appendix 1. Regression of Paired Direct Readings from Proving Rings and the Modified Jack 

Proving Rings Modified Jack 
19 50 units=psi 
45 100 (n=20) 
74 150 

100 200 
126 250 
152 300 
184 350 
213 400 
248 450 
300 500 
312 550 
342 600 
381 650 
413 700 
446 750 
478 800 
515 850 
548 900 
580 950 
614 1000 

REGRESSION 

Dependent Variable: Proving Rings 

Parameter Standard T for HO: 
Variable Mean Estimate Error parameter=0 

Intercept -28.34 3.96 -7.15 
Modified Jack 525.00 0.63 0.01 95.86 

Sum of Mean 
Source DF Squares Square F-Value 

Model 1.00 668220.15 668220.15 9189.72 
Error 18.00 1308.85 72.71 
Total 19.00 669529.00 

Dependent Mean 304.50 
Root Mean Square Error 8.53 
Coefficient of Variation 2.80 
R-Square 1.00 not rounded R-Square 0.9980451 
Adjusted R-Square 1.00 
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Appendix 1. Regression of Paired Direct Readings from Dead Loading and the Modified Jack 

Dead Weight (lbs) Modified Jack (psi) 
55.1 120 

104.4 205 (n=13) 
157 287 

206.3 360 
252.1 425 
304.7 505 

354 560 
406.1 640 
455.4 705 
505.6 785 
554.3 855 
610.7 930 
660.9 998 

REGRESSION 

Dependent Variable: Deadweight (lbs) 

Parameter Standard T for HO: 
Variable Mean Estimate Error parameter=0 

Intercept -39.57 3.37 -11.74 
Modified Jack 567.31 0.70 0.01 129.95 

Sum of Mean 
Source DF Squares Square F-Value 

Model 1.00 460914.47 460914.47 16885.79 
Error 11.00 300.26 27.30 
Total 12.00 461214.73 

Dependent Mean 355.89 
Root Mean Square Error 5.22 
Coefficient of Variation 1.47 
R-Square 1.00 not rounded R-Square 0.9993489 
Adjusted R-Square 1.00 
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Appendix 2. Paired Direct Readings 

Modified Tack v. Tinius Olsen - Test A (n=20) 
Modified lack (psi) Tinius Olsen (psi) converted (Pa) 

50 24 165600 
100 53 365700 
150 94 648600 
200 111 765900 
250 121 834900 
300 172 1186800 
350 207 1428300 
400 234 1614600 
450 265 1828500 
500 289 1994100 
550 323 2228700 
600 358 2470200 
650 393 2711700 
700 425 2932500 
750 462 3187800 
800 496 3422400 
850 529 3650100 
900 562 3877800 
950 595 4105500 

1000 629 4340100 

Modified Jack v. Tinius Olsen - Test B (n=10) 
Modified Jack (psi) Tinius Olsen (psi) converted (Pa) 

100 53 365700 
200 111 765900 
300 173 1193700 
400 237 1635300 
500 291 2007900 
600 356 2456400 
700 424 2925600 
800 492 3394800 
900 562 3877800 

1000 630 4347000 

Modified jack v. Tinius Olsen - Test C (n=10) 
Modified Jack (psi) Tinius Olsen (psi) converted (Pa) 

100 54 372600 
200 114 786600 
300 172 1186800 
400 242 1669800 
500 294 2028600 
600 360 2484000 
700 428 2953200 
800 492 3394800 
900 564 3891600 

1000 630 4347000 
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Appendix 2. Paired Direct Readings 

Modified Jack v. Proving Rings - Test A (n=20) 
Modified Jack (psi) units=0.0001 in corrected (psi) converted (Pa) 

50 21 19 131100 
100 49 45 310500 
150 79 74 510600 
200 107 100 690000 
250 136 126 869400 
300 164 152 1048800 
350 199 184 1269600 
400 229 213 1469700 
450 266 248 1711200 
500 299 300 2070000 
550 336 312 2152800 
600 369 342 2359800 
650 410 381 2628900 
700 445 413 2849700 
750 481 446 3077400 
800 517 478 3298200 
850 555 515 3553500 
900 592 548 3781200 
950 630 580 4002000 

1000 667 614 4236600 

Modified Jack v. Proving Rings - Test B (n=10) 
Modified lack (psi) units=0.0001 in corrected (psi) converted (Pa) 

100 52 48 331200 
200 113 105 724500 
300 177 164 1131600 
400 240 224 1545600 
500 303 283 1952700 
600 373 346 2387400 
700 446 414 2856600 
800 520 482 3325800 
900 592 548 3781200 

1000 668 615 4243500 

Modified Jack v. Proving Rings - Test C (n=10) 
Modified Jack (psi) units=0.0001 in corrected (psi) converted (Pa) 

100 51 47 324300 
200 112 104 717600 
300 178 165 1138500 
400 249 233 1607700 
500 325 302 2083800 
600 394 366 2525400 
700 472 437 3015300 
800 549 509 3512100 
900 628 578 3988200 

1000 687 637 4395300 



Appendix 2. Paired Direct Readings 

Modified Tack v. Dead Loading - Test A (n=13) 
Modified Jack (psi) Dead Weight (lbs) Calibrated Jack(psi) 

120 55.1 44.4 
205 104.4 103.9 
287 157 161.3 
360 206.3 212.4 
425 252.1 257.9 
505 304.7 313.9 
560 354 352.4 
640 406.1 408.4 
705 455.4 453.9 
785 505.6 509.9 
855 554.3 558.9 
930 610.7 611.4 
998 660.9 659.0 

-
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Appendix 3. Tepetate Block Dimensions and Stren gth Measurements 

1 
Tinius Olsen Samples 
Paired Tepetate Samples at Various Moisture Contents 

block dimensions (in) uncorrected corrected 
X Y Z XY reading (psi) reading (psi) 

saturated 1 0.94 0.89 2.23 0.83 334 400 
saturated 2 0.88 0.86 2.53 0.75 137 181 
saturated 3 0.97 1.21 2.91 1.18 434 369 
saturated 4 * * * * not available 
saturated 5 1.00 1.08 2.43 1.08 64 59 
saturated 6 0.90 1.15 2.20 1.04 170 164 
saturated 7 0.84 0.93 2.22 0.78 crumbled when saturated 
humid 1 0.76 1.06 2.18 0.81 528 655 
humid 2 1.02 1.02 2.20 1.04 430 413 
humid 3 0.86 1.10 2.00 0.95 564 596 
humid 4 1.16 1.01 2.47 1.17 170 145 
humid 5 1.14 1.18 2.76 1.34 268 200 
humid 6 0.91 0.91 2.16 0.83 170 205 
humid 7 1.21 1.24 2.51 1.50 187 125 
air-dry 1 0.80 1.07 1.99 0.86 1226 1425 
air-dry 2 * * * * not available 
air-dry 3 1.04 1.07 2.58 i . i i  826 742 
air-dry 4 1.01 1.15 2.40 1.16 452 389 
air-dry 5 1.00 1.05 1.96 1.05 inherent fracture 
air-dry 6 0.97 1.16 2.41 1.13 452 400 
air-drv 7 * * * * not available 
oven-dry 1 0.89 1.08 2.12 0.96 1292 1344 
oven-dry 2 0.93 0.94 2.46 0.88 668 759 
oven-dry 3 0.99 1.00 2.52 0.99 600 606 
oven-dry 4 1.00 0.95 2.89 0 95 466 492 
oven-drv 5 0.88 1.05 2.28 0.92 174 189 
oven-dry 6 0.89 1.01 2.33 0.90 378 419 
oven-dry 7 0.95 0.91 1.89 0.86 inherent fracture 
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Appendix 3. Tepetate Block Dimensions and Stren gth Measurements 

Modified Jack Samples 
Paired Tepetate Samples at Various Moisture Contents 

block dimensions (in) uncorrected corrected 
X Y Z XY reading (psi) reading (psi) 

saturated 1 0.91 1.00 2.23 0.91 430 473 
saturated 2 0.94 0.92 2.50 0.86 280 324 
saturated 3 * * * * not available 
saturated 4 1.00 0.98 2.47 0.98 120 122 
saturated 5 0.98 0.96 1.93 0.94 150 159 
saturated 6 1.00 1.18 2.28 1.18 280 237 
saturated 7 0.80 0.73 2.34 0.58 crumbled when saturated 
humid 1 0.85 0.95 2.30 0.81 780 966 
humid 2 0.96 1.04 2.44 1.00 930 931 
humid 3 0.92 1.07 2.21 0.98 530 538 
humid 4 0.95 1.00 2.87 0.95 200 211 
humid 5 0.93 0.96 2.10 0.90 190 212 
humid 6 1.00 1.00 2.25 1.00 440 440 
humid 7 0.83 0.73 2.15 0.61 100 165 
air-dry 1 0.91 1.06 2.03 0.96 topped-out gauge 
air-dry 2 0.86 0.97 2.45 0.83 topped-out gauge 
air-dry 3 0.93 1.08 2.69 1.00 topped-out gauge 
air-dry 4 0.79 1.03 2.10 0.81 490 602 
air-dry 5 1.03 1.03 2.09 1.06 670 632 
air-dry 6 1.04 0.92 2.24 0.96 480 502 
air-dry 7 0.90 0.86 2.20 0.77 280 362 
oven-dry 1 0.92 1.05 1.90 0.97 topped-out gauge 
oven-dry 2 1.03 0.94 2.53 0.97 970 1002 
oven-dry 3 1.00 1.05 2.58 1.05 870 829 
oven-dry 4 0.90 0.94 2.18 0.85 550 650 
oven-drv 5 0.92 1.10 2.50 1.01 230 227 
oven-dry 6 1.17 1.05 2.25 1.23 660 537 
oven-dry 7 0.79 0.87 1.78 0.69 210 306 
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Appendix 3. Coarse and Fine Sandstone Bloc < Dimensions and Strength Measurements 

Jack Testing TO=Tinius O sen MJ= Modified Jack 
uncorrecte corrected calibrated 

coarse sandstone block dimensions (in) reading reading reading 
paired samples X Y Z XY psi psi psi 

A-TO 0.855 0.879 1.671 0.752 320 426 -
A-MJ 0.827 0.910 1.647 0.753 605 804 496 -
B-TO 0.827 0.879 1.643 0.727 323 444 
B-MJ 0.812 0.890 1.592 0.723 491 679 416 ~ 
C-TO 0.922 0.926 1.832 0.854 350 410 
C-MJ 0.910 0.930 1.785 0.846 540 638 390 ~ 
D-TO 0.965 0.985 1.848 0.951 512 539 -
D-MJ 0.957 1.005 1,808 0.962 380 395 234 -
E-TO 0.894 0.926 1.757 0.828 414 500 
E-MJ 0.938 0.957 1.808 0.898 615 685 420 
F-TO 0.855 0.898 1.738 0.768 308 401 
F-MJ 0.859 0.902 1.548 0.775 442 570 346 
G-TO 0.760 0.772 1.485 0.587 251 428 • 
G-MJ 0.729 0.733 1.407 0.534 300 561 341 

uncorrecte corrected calibrated 
fine sandstone block dimensions (in) reading reading reading 
paired samples X Y Z XY psi psi psi 

A-TO 0.494 0.513 1.442 0.253 270 1065 -
A-MJ 0.493 0.516 1.417 0.254 730 2870 1818 -
B-TO 0.488 0.5 1.392 0.244 435 1783 
B-MJ 0.492 0.501 1.479 0.246 510 2069 1306 
C-TO 0.504 0.514 1.438 0.259 508 1961 
C-MJ 0.493 0.518 1.479 0.255 890 3485 2212 -
D-TO 0.499 0.5 1.407 0.250 435 1743 * 
D-MJ 0.459 0.493 1.45 0.226 520 2298 1452 • 
E-TO 0.512 0.522 1.472 0.267 396 1482 
E-MJ 0.514 0.522 1.451 0.268 780 2907 1842 h 
F-TO 0.461 0.474 1.42 0.219 328 1501 
F-MJ 0.426 0.481 1.437 0.205 520 2538 1605 „ 



Appendix 3. Chalk Block Dimensions and Strength Measurements 

Jack Testing TO=Tinius Olsen MJ=Modified Jack 
uncorrectec corrected calibrated 

chalk block dimensions (in) reading reading reading 
paired samples X Y Z XY psi psi psi 

A-TO 1.74 1.74 3.46 3.03 131 43 
A-MJ 1.73 1.74 3.46 3.01 175 58 19 -
B-TO 1.71 1.75 3.46 2.99 116 39 -
B-MJ 1.72 1.72 3.46 2.96 242 82 34 -
C-TO 1.48 1.72 3.45 2.55 114 45 
C-MJ 1.46 1.73 3.45 2.53 200 79 32 
D-TO 1.66 1.8 3.46 2.99 128 43 -
D-MJ 1.56 1.66 3.46 2.59 220 85 36 -
E-TO 1.64 1.72 3.47 2.82 113 40 -
E-MJ 1.72 1.75 3.47 3.01 255 85 36 -
F-TO 1.72 1.72 3.47 2.96 119 40 -
F-MJ 1.71 1.75 3.47 2.99 232 78 31 ~ 
G-TO 1.65 1.69 3.47 2.79 109 39 
G-MJ 1.71 1.72 3.46 2.94 220 75 29 -
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