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Applying Ant Colony Optimization (ACO) Metaheuristic to Solve Forest Transportation 
Planning Problems with Side Constraints 

Chairperson: Dr. Woodam Chung 

Timber transportation is one of the most expensive activities in forest operations. 
Traditionally, forest transportation planning problem (FTPP) goals have been set to find 
combinations of road development and harvest equipment placement to minimize total 
harvesting and transportation costs. However, modem transportation problems are not 
driven only by economics of timber management, but also by multiple uses of roads and 
their social and ecological impacts. These social and environmental considerations and 
requirements introduce side constraints into the FTPP, making the problem larger and 
much more complex. We develop a new problem solving technique using the Ant colony 
optimization (ACO) metaheuristic, which is able to solve large and complex 
transportation planning problems with side constraints. A 100-edge hypothetical FTPP 
was created to test the performance of the ACO metaheuristic. We consider the 
environmental impact of forest road networks represented by sediment yields as side 
constraints. Results show that transportation costs increase as the allowable sediment 
yield is restricted. Four cases analyzed include a cost minimization, two cost 
minimization with increasing level of sediment constraint, and a sediment minimization 
problem. The solutions from our algorithm are compared with solutions obtained from a 
mixed-integer programming (MIP) solver used solve a comparable mathematical 
programming formulation. For the cost minimization problem the difference between the 
ACO solution and the optimal MIP is within 1%, and the same solution is found for the 
sediment minimization problem. The current MIP solver was not able to find a feasible 
solution for either of the two cost minimization problems with a sediment constraint. 

Key words: Forest transportation planning, ant colony optimization metaheuristic, forest 
road networks. 
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PREAMBLE 

This thesis is composed of two parts. Part I introduces forest transportation planning 

problems and the ant colony optimization metaheuristic. Part II is a manuscript prepared 

for publication. Part I consists of; i) a more detailed introduction to various forest 

transportation planning problems and the optimization techniques that have been used to 

solve such problems, ii) the type of forest transportation planning problems addressed in 

this thesis, and Hi) a detailed description of the ant colony optimization metaheuristic. 

Part II is in the format of a manuscript for submission to a scientific journal describing 

the research under a number of subheadings. The abstract at the beginning of this thesis 

will be submitted as part of the publishable paper. 

PARTI. FOREST TRANSPORTATION PLANNING PROBLEMS 

AND THE ANT COLONY OPTIMIZATION METAHEURISTIC. 

Introduction 

Problems related to forest transportation planning have been an important concern since 

the beginning of the last century, due to the fact that timber transportation is one of the 

most expensive activities in forest operations (Greulich 2002). The cost of timber 

transportation activities may reach 30-40% of the total forest operation costs, and 50-60% 

of the total manufacturing cost of finished forest products (Neuenschwander 1998). 
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In general forest transportation planning problems (FTPP) can be divided into; off-road 

and on-road phases, which are heavily dependent on each other (Heinimann 2001). Off-

road activities are related to wood transportation from the stump location to either road

side or to centralized landings. On-road activities refer to wood transportation on ground 

vehicles to final destinations. 

Two different approaches have been applied to solve FTPP: exact algorithms and 

approximation algorithms. Exact algorithms use mathematical programming techniques, 

such as Linear Programming (LP), Integer Programming (IP) and Mixed-Integer 

Programming (MIP). Approximation algorithms, generally called heuristics, consist 

basically of evaluating a large number of feasible solutions and selecting the best. The 

most important advantage of exact algorithms is that they provide optimal solutions. 

However, they are limited to small scale problems. Contrarily, heuristic techniques, 

although they may not provide optimal solutions, have successfully been applied to solve 

large scale problems and are relatively easy to formulate compared with exact algorithms 

(Jones 1991; Weintraub 1994, 1995; Martell et al 1998; Falcao 2001; Olsson 2003). 

Since integer and mixed integer models can represent transportation problems in a better 

way than continuous variable models, due to the discrete nature of FTPP variables such 

as road building, IP and MIP have received attention in the past years. On the other hand, 

IP and MIP models are restricted to solve small to medium scale problems due to their 

relatively large computational complexity (Weintraub 1995; Olsson 2003). Since real 

world problems are usually large scale problems with thousands of variables, heuristic 
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techniques have been the focus of a large number of researchers (Zeki 2001; Boyland 

2002). In addition, advances in Geographic Information Systems (GIS) have made 

possible the creation and manipulation of data representing large areas, facilitating the 

creation of large scale problems. Besides, since some FTPP do not have a formal 

mathematical formulation derived, exact algorithms cannot be applied (Murray 1998). An 

example is the problem of building a road network in a forested region that provides 

access to identified timber sales while minimizing overall road building costs. This 

problem has been defined by Dean (1997) as the multiple target access problem (MTAP), 

which have only been solved by heuristic approaches (Murray 1998). 

Some approaches combining MI? with heuristic techniques have also been developed 

(Martell et al 1998; Boyland 2001). Although these approaches intend to capture the 

advantages of both techniques, they improve the efficiency of exact algorithm while 

providing only partial optimal solutions, thus making a trade-off between efficiency 

(given by heuristics) and solution quality (given by exact algorithms). 

Most FTPP considering fixed and variable costs are complex optimization problems that 

to date can often only be solved using heuristic approaches, mainly because of two 

reasons. First, there is not a formal mathematical formulation that can adequately 

represent the complexity of the problem, which is heavily dependent on the type of 

variables and objectives. Second, real world problems often become too large to 

efficiently solve using exact solution techniques that are currently available. In order to 

overcome the limitation of exact techniques, several programs using heuristics have been 
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developed to solve FTPP with fixed and variable transportation costs (Chung and 

Sessions 2003). Road construction costs for proposed segments in the road network are 

considered fixed costs, while transportation costs themselves are considered variable 

costs. NETWORK II (Sessions 1985) and NETWORK 2000 (Chung and Sessions 2003), 

which use a heuristic approach combined with the shortest path algorithm (Dijkstra 

1959), have been widely used for the last twenty years. NETWORK 2000 can solve 

multi-period, multi-product, multi-origin and -destination transportation planning 

problems, but it considers only either profit maximization or cost minimization without 

taking into account other attributes of road links. 

Traditionally, FTPP goals have been set to find combinations of road development and 

harvest equipment placement to minimize total harvesting costs. However, modern FTPP 

are not driven only by economic of timber management, but also multiple uses of roads 

and their social and ecological impacts such as recreation, soil erosion, wildlife and fish 

habitats among others. For that reason, FTPP have evolved from single-objective (only 

cost minimization) to multi-objective problems (economic, environmental and social 

aspects). These environmental and social considerations and requirements introduce side 

constraints to the FTPP, making the problems larger and much more complex. 

NETWORK 2001 (Chung and Sessions 2001) was developed to solve multiple objective 

transportation planning problems by combining a k-shortest path algorithm with a 

simulated annealing heuristic. NETWORK 2001 provides the function for the users to 
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modify the objective function that evaluates solution for multiple objectives, but currently 

does not allow having side constraints. 

Since there is no guarantee for the optimal solution when using these heuristic 

approaches to solve large scale problems, testing different heuristic techniques has been a 

constant effort for numerous researchers because a very small increment in the solution 

quality can be translated into large monetary savings in forest management. Moreover, 

heuristics developed to solve a specific problem can be modified relatively easy to solve 

other similar problems. Consequently, new heuristics and hybrids of existing heuristics 

are continually being developed, and yet many promising algorithms have not been 

applied to FTPP with fixed and variable costs with side constraints. 

The objective of this study is to develop a new approach using the Ant Colony 

Optimization (ACO) metaheuristic to efficiently solve these challenging multi-objective 

FTPP with side constraints. The Ant Colony Optimization (ACO) metaheuristic is a 

recently developed optimization technique (Dorigo 1999a) which has not been applied to 

solving FTPP. Up to date there have been numerous successful applications of ACO 

metaheuristic developed to solve a number of different combinatorial optimization 

problems (Dorigo 2002, Dorigo 1999a). The ACO metaheuristic approach is promising 

for solving FTPP with fixed and variable costs due to the following reasons: i) the 

inspiring concept of ACO metaheuristic is based on a transportation principle, and it was 

f i rs t  in tended to  solve  t ranspor ta t ion problems that  can be  modeled through networks ,  i i )  

its effectiveness in finding very good solutions to difficult problems, as introduced in the 
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literature, and Hi)  the nature of the FTPP, which allows the problem to be modeled as a 

network problem. 

Problem Statement 

In this study a new problem solving technique based on the AGO metaheuristic is 

developed to solve FTPP considering fixed and variable costs with side constraints. The 

problem under consideration is to find the set of least cost routes from multiple timber 

sales to the selected destination mills, while considering environmental impacts of forest 

road networks represented by sediment yields. Like most other transportation problems, 

this particular problem can be modeled as a network programming problem. 

The road network system is represented by a graph G, where vertices represent 

destination points (i.e. mill locations), entry points (i.e. log landing locations) and 

intersections of road segments, and edges represent the road segments connecting these 

different points. The graph G has variables associated with each edge. These variables 

may represent distance, cost or some other edge attributes. Thus, a network N is formed 

representing the transportation planning problem. For this particular FTPP under 

consideration, there are three variables associated with every edge; variable cost, fixed 

cost, and the amount of sediment yield. Variable costs are proportional to the traffic 

volume. On the other hand, fixed costs are one time costs that occur when the road is 

used for the first time. Like fixed costs, we assume sediment is produced when roads are 

in use regardless of the traffic volume. Consequently, this transportation problem 
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considers not only an economic factor, represented by the fixed and variable cost, but 

also an environmental factor, represented by the sediment yields to be delivered from the 

road segment. 

Therefore, the problem is to find the set of routes from multiple timber sales to the 

selected destination mills, which minimizes the total variable and fixed costs subject to 

the maximum allowable sediment delivered from the road network. In other words, the 

problem is to find a set of best routes connecting multiple pairs of vertices in a given 

network while considering the three mentioned variables associated to every edge. Figure 

1 illustrates an example of the described transportation problem. 

Edges on the 
shortest routes 

Network edges 

Timber 
Sale 2 

Figure 1. Example of the transportation problem with three timber sales and one mill location. 

The transportation network may be composed of existing roads and/or proposed roads 

which are planned to be built. Fixed costs for existing road segments could either be zero 

or an assigned fixed maintenance cost. In the case of proposed roads, the construction 
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cost of the road segment plus the fixed maintenance cost will represent the fixed cost 

associated to the road segment. The fixed cost associated to a road segment can be 

expressed either in dollars per road segment or in dollars per unit of length. On the other 

hand, variable cost refers to the hauling cost, which is expressed in dollars per unit of 

volume per edge (i.e. $ / vol - edge). Although there are several ways to estimate this 

variable cost, in most cases it is a function of the road length and driving speed (Byrne at 

al 1960, Moll and Copstead 1996). Since every road segment has different conditions, 

there exists a different variable cost associated with every edge. Depending on how 

detailed the calculations of the variable and fixed costs are, a road segment can be 

divided into sub-segments, which results in adding more vertices and edges to the 

network that have different variable and/or fixed costs. The sediment yield associated 

with every edge represents the amount of sediment eroding from that road segment. This 

sediment amount can be expressed either in tons per edge or in tons per unit of length. 

The WEPP model (Elliot et al 1999) can be used to estimate average annual sediment 

yields from each road segment. 

In addition to these three variables associated to every edge, it is also required to know 

the total volume of timber per product to be harvested in each timber sale or harvest unit 

and delivered to the selected mill locations. In the case of having multiple harvest 

periods, the harvest year should also be specified. 
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Ant Colony Optimization Metaheuristic 

Inspiring Concept 

The Ant Colony Optimization (ACO) is a metaheuristic approach to solve difficult 

combinatorial optimization problems. Motivated by its success, ACO metaheuristic was 

proposed as a common framework for existing applications and algorithmic variants. 

Thus, algorithms which follow the ACO metaheuristic are called ACO algorithms 

(Dorigo 2002). 

ACO algorithms are inspired by the observation of the foraging behavior of real ant 

colonies, and in particular, the question of how ants find the shortest path between the 

food source and the nest. When walking, ants deposit on the ground a chemical substance 

called phewmone, ultimately forming a pheromone trail. An isolated ant moves 

essentially at random, but an ant that encounters a previously laid pheromone trail can 

detect it and decide with a high probability to follow it, therefore reinforcing the trail with 

its own pheromone. This indirect form of communication is called autocatalytic 

behavior, which is characterized by a positive feedback, where the more ants following a 

trail, the more attractive that trail becomes for being followed (Dorigo 1999). 

Consider the example shown in Figure 2. Ants are walking along a path between the nest 

and a food source or vice versa (Fig.2a). Suddenly, an obstacle appears cutting off the 

path. At position B, for the ants walking from the nest N to the food source F, or at 
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position D for the ants walking from the food source to the nest, both have to decide 

whether to turn left or right (Fig.2b). Since there is no previously laid pheromone trail 

around the obstacle, and the choice is influenced by the intensity of pheromone trials left 

by preceding ants, the first ant reaching point B or D have the same probability of turning 

right or left. The ants choosing path BCD will arrive at D earlier than the ants choosing 

path BHD, because it is shorter. Therefore, ants returning from F to D will find a stronger 

pheromone trail on path DCB, caused by half of all the ants that by random decided to 

take path DCBN and by the already arrived ones coming via BCD; thus they will prefer 

in probability path DCB to path DHB. As a consequence, the number of ants per unit of 

time following path BCD will be higher than the number of ants following BHD. This 

causes the amount of pheromone on the shorter path to grow faster than on the longer 

one. Consequently, the final result is that very quickly all ants will choose the shorter 

path BCD. (Example and explanation taken from Dorigo 1996). 

& 
& 9 
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a) 

& 9 
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b) 
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I. 

d 
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a 
& 
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N 

c) 

I Obstacle 

Figure 2. An example with real ants (Dorigo 1999). 
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d) 

Several experiments have been carried out with laboratory colonies of real ants 

(Argentine ants - Iridomyrmex humilis), where the colony is given access to a food 
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source in an arena linked to the colony's nest by a bridge with two branches. The 

experiments include branches of different length, as well as single and multiple bridges 

(Figure 3). Dorigo (1999b) observed that, after a transitory phase of apparently a few 

minutes, most ants use the shortest branch. He also observed that the colony's probability 

of selecting the shortest branch increases with the difference in length between the two 

branches. 

The ability of ant colonies to find the shortest path can be viewed as a certain kind of 

distributed optimization mechanism, where each ant contributes to form a solution. This 

ant's behavior can be modeled as an artificial multi-agent system applied to the solution 

of difficult optimization problems. 

a) Single bridge with 
same leiis  ̂branches 

b) Single bridge >vitli 
differait teugtlr branches 

c) Multiple bridge 

Figure 3. Different experimental apparatus for the bridge experiment. 
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ACO Approach 

The concept of ACO metaheuristic is to set a colony of artificial ants that cooperate to 

find good feasible solutions to combinatorial optimization problems. Cooperation is one 

of the most important components of ACO algorithms. Computational resources are 

allocated to relatively simple agents - artificial ants. These artificial ants have a double 

nature. On one hand, they are the abstraction of those behavioral traits of real ants, which 

seem to control the shortest path finding ability. On the other hand, they are enriched 

with some capabilities not present in their natural counterpart (Dorigo 1999a). 

There are four main ideas taken from real ants that have been incorporated into ACO 

metaheuristic (Dorigo 1999a, 1999b); the use of: 

i) Colony of cooperating individuals. Ant algorithms are composed of a colony of ants 

which globally cooperate to find "good solutions" to the given problem. Although, each 

artificial ant is capable of finding a feasible solution, high quality solutions can only 

emerge as a result of the collective interaction among the entire ant colony. 

ii) Pheromone trail and indirect communication. Artificial ants change some numerical 

information stored in the problem's stage they visit, just as real ants deposit pheromone 

on the path they visit on the ground. This numerical information is called artificial 

pheromone trail. These pheromone trails are communication channels among ants and 

their main effect is to change the way the environment (problem landscape) is locally 

perceived by ants as a function of the past history of the whole ant colony. 
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Hi)  Shortes t  path  searching and local  moves .  Artificial ants as real ones have a common 

purpose: to find the shortest (minimum cost) path connecting the nest (any origin vertex) 

to the food source (a destination vertex). Similar to real ants, artificial ants move step by 

step through adjacent states (adjacent vertices in a graph). 

iv )  S tochast ic  and myopic  s ta te  t ransi t ion pol icy .  Artificial ants, as real ones, move 

through adjacent states applying a probabilistic decision policy. This policy employs only 

local information, not utilizing look-ahead to predict future states. Consequently, the 

artificial ants transition policy is a function of both, the information represented by the 

problem specifications (terrain conditions for real ants) and the local modifications in the 

problem states (by pheromone trails) induced by previous ants. 

To increase the efficiency and efficacy of the colony, some enriching characteristics have 

been given to artificial ants, although not corresponding to any capacity of their real 

counterparts, some of these characteristics are; 

i) Artificial ants live in an environment where time is discrete, moving from discrete 

states to discrete states. 

i i )  Artificial ants have an internal state, which contains the memory of the ants' previous 

actions. 

Hi)  Artificial ants deposit an amount of pheromone proportional to the quality of the 

solution found. 

iv) Artificial ants are not completely blind and can incorporate look-ahead information, 

local optimization, and backtracking to improve overall system efficiency. 
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The ACO Metaheuristic 

In ACO algorithms, a finite colony of ants concurrently and asynchronously move 

through adjacent states of the problem (through adjacent vertices in a graph), applying a 

stochastic transition policy, which considers two parameters called trail intensity and 

visibility. Trail intensity refers to the amount of pheromone in the path, which indicates 

how proficient the move has been in the past, representing a posteriori indication of the 

desirability of the move. Visibility is usually computed as some heuristic value indicating 

the a priori desirability of the move (Maniezzo 2004). 

Therefore, ants incrementally build a feasible solution to the optimization problem being 

solved. Once an ant has found a solution, or during the construction phase, the ant 

evaluates the solution and deposits pheromone on the connections it used, proportionally 

to the goodness of the solution. 

Ants deposit pheromone in various ways. They can deposit pheromone on a connection 

(an edge in a graph) directly after the move is made without waiting for the end of the 

solution. This is called online step by step pheromone update. Ants also can deposit 

pheromone after a solution is built by retracing the same path backwards and updating the 

pheromone trail of the used connections. This is called online delayed pheromone update 

(Dorigo 2002). 
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In addition to the ants' activity that uses an incremental constructive approach, ACO 

algorithms include two more mechanisms, namely pheromone trail evaporation and 

daemon activities (Dorigo 1999b, 2002; Maniezzo 2004) . Pheromone trail evaporation 

refers to the process of decreasing the pheromone intensity on all connections (the entire 

set of edges E in a graph) over time to avoid unlimited accumulation of pheromone over 

some components. It is to say, pheromone evaporation avoids a too rapid convergence of 

the algorithm towards a sub-optimal solution, thus allowing the exploration of other areas 

of the solution space. Daemon activities can be used to implement centralized actions, 

which cannot be performed by single ants. Examples include the activation of local 

optimization procedures (such as 2-opt, 3-opt move or Lin-Kernigham) and the update of 

global information to decide whether to bias the search process. 

Figure 4 shows a description of ACO metaheuristic reported in pseudo-code. Some of the 

components are optional (daemon actions) and implementation dependent, such as when 

and how pheromone is deposited (taken from Dorigo 1999a). 
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J procedure ACC-FTPP() 
2 wliile (stopFing_criteria_ncrt_satisf ied) 
3 sc]iediile_activities 
4 ssttiyigjYiitidjf^^omonej'aiue (); 
J ayasjillocanan Q; 

6 ant5_activity (), 
7 pheromonej^dcte (); 
8 end sc]iediile_activities 
9 enl while 
JO end procedure 

J J procedure settiiig;_iiiitial_pheromone_value Q 
12 wMle (ex i s't_ an_ e dg e_without _phe r omor.e) 
13 d€pozitJyiUa\jmourt_ofjph&rom.on& (^; 
14 enl wliile 
15 end procedure 

16 procedure an.ts_allocation() 
J 7 while (exist_an_t inib;r_ sal e_vithout_ select ed_i:oute) 
IS ramdomly_select_a_pmber_5de (); 
19 enl while 
20 end procedure 

21 procedure ants_activity(]; 
22 mittahzejsri (); 
23 while (current_verteK ^ des":ination_verteK) 
24 compiite_jrcmsit}anj?robabi!ity (), 
25 next_vertex= apply_decision_policy(), 
2 6 move_to_next_vertex ( ); 
27 enl while 
28 end procedure 

29 procedure pheromone_update 0 
30 evaluate_s olution ( ); 
31 dep 0 sit_pherDmone_on_all_visited_adge s (); 
32 end procedure 

Figure 4. The ACO metaheuristic in pseudo-code. Comments are enclosed in braces. All the procedures are 
the first level of indentation in the statement in_parallel and are executed concurrently. The procedure 

daemon_actions() at line 6 is optional and refers to centraUzed actions executed by the daemon 
processing global knowledge. The target_state (line 19) refers to a complete solution built by the ant. The 

step-by-step and delayed pheromone updating procedures at lines 24-27 and 30-34 are often mutually 
exclusive. When both of them are absent the pheromone is deposited by the daemon. 

Applications of ACO Algorithm 

ACO algorithms, as a consequence of their concurrent and adaptive nature, can be 

applied to solve numerous problems that can be modeled through graphs. Several 
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implementations of AGO metaheuristic have been developed to solve a number of 

different NP-hard combinatorial optimization problems. These problems can be classified 

in two classes: static and dynamic combinatorial optimization. Static problems are those 

in which the conditions of the problem are given once and do not alter while the problem 

is being solved. On the other hand, dynamic problems have conditions that change over 

time such as communication networks. 

Most of the AGO algorithms applied to solve static problems are strongly inspired by the 

first work on ant colony optimization. Ant System (AS) (Dorigo 1991). Many of the 

successive applications of the original idea are relatively straightforward applications of 

AS to specific problems (Dorigo 1999a). The first application of an AGO algorithm was 

developed for solving the traveling salesman problem (TSP), due to the fact that the TSP 

is one of the most studied NP-hard problems and the easiness to adapt the ant colony 

metaphor. Table 1 shows some of the most important AGO applications for the TSP and 

other important static combinatorial optimization problems. More detailed description 

and other AGO applications can be found in Dorigo and Stutzle (2002). 
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Table 1. Applications of ACO algorithms to static combinatorial optimization problems. 
Problem name Authors Algorithm name 
Traveling salesman Dorigo (1991) AS 

Gambardella & Dorigo (1995) Ant-Q 
Dorigo & Gambardella (1996a) (1996b) ACS & ACS-3-opt 
(1997) 
Stutzle & Hoos (1997a) (1997b) MMAS 
Bullnheimer et al (1997) AS rank 
Cordon et al (2000) BWAS 
White at al (2003) ACS-LBT 

Scheduling problems Colorni at al (1994) AS-JSP 
Stutzle (1998) AS-FSP 
Bauer at al (1999) ACS-SMTTP 
den Besten et al (2000) ACS-SMTWTP 
Merkle et al (2000) ACO-RCPS 
Dowsland & Thompson (2005) 

Quadratic Assignment Maniezzo et al (1994) AS-QAP 
Gambardella et al (1999) HAS-QAP 
Maniezzo (1999) ANTS-QAP 
Maniezzo & Colorni (1999) AS-QAP 
Stutzle & Hoos (20(X)) MMAS-QAP 

Vehicle routing Bullnheimer et al (1999) AS-VRP 
Gambardella et al (1999) HAS-VRP 
Gambardella et al (2003) AntRoute 

Sequential ordering Gambardella & Dorigo (1997) (2000) HAS-SOP 
Graph Coloring Costa & Hertz (1997) ANTCOL 

Bui (2005) ABAC 

Most of the research on the application of ACO algorithms to dynamic combinatorial 

optimization problems has been centered on communication networks, in particular to 

routing problems. Implementations of ACO algorithms for communication networks are 

grouped into two categories: a) connection-oriented networks, where data follow a 

common path selected by a preliminary setup phase, and b) connection-less networks, 

where data can follow different paths (Dorigo et al 1999a). Connection-oriented networks 

are modeled through directed graph, where only one direction is considered for each 

edge. On the other hand, connection-less networks are modeled through graph where both 

directions are considered for each edge. Table 2 shows some of the main implementations 

of ACO algorithms for dynamic problems. 
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Table 2. Applications of ACO algorithms to dynamic combinatorial optimization problems. 

Problem name Reference Algorithm name 
Connection-oriented Schoonderwoerd et al. (1996) ABC 
network routing White etal. (1998) ASGA 

Di Caro & Dorigo (1998a) AntNet-FS 
Bonabeau et al. (1998) ABC-smart ants 
Sim & Sum (2002) MACO 
Walkowiak (2005) ANB 

Connection-less Di Caro & Dorigo (1997) (1998b) (1998c) AntNet & AntNet-FS 
network routing Subramanian at al. (1997) Regular ants 

Heusse et al. (1998) CAP 
van der Put & Rothkrantz (1999) ABC-backward 
Di Caro (2004) ACR 

Based on the introduced ACO metaheuristic, a new AGO algorithm for solving FTPP 

with side constraints was developed, ACO-FTPP. In order to validate the performance of 

the algorithm, a 100-edge hypothetical FTPP considering five timber sales and one mill 

destination was developed. The results of ACO-PTPP were compared with the results of 

a MIP solver. In the next section, ACO-FTPP is described in detail and the results are 

presented. 

Literature Cited 

Bauer, A.; Bullnheimer, B.; Hartl, R.; Strauss, C. 1999. An ant colony optimization 

approach for the single machine total tardiness problem. In Proceedings of the 1999 

Congress on Evolutionary Computation (CEC'99), pages 1445- 1450. IEEE Press, 

Piscataway, NJ. 

den Besten, M.; Stutzle, T.; Dorigo, M. 2000. Ant colony optimization for the total 

weighted tardiness problem. In Schoenauer, M.; Deb, K.; Rudolph, G.; Yao, X.; Lutton, 

E.; Merelo, J.; Schwefel, H. editors. Proceedings of PPSN-VI, Sixth International 

19 



Conference on Parallel Problem Solving from Nature, volume 1917 of Lecture Notes in 

Computer Science, pages 611-620. Springer Verlag, Berlin, Germany. 

Bonabeau, E.; Henaux, F.; Guerin, S.; Snyers, D.; Kuntz, P.; Theraulaz, G. 1998. Routing 

in telecommunications networks with "Smart" ant-like agents telecommunication 

applications. In Proceedings of I ATA '98, Second International Workshop on Intelligent 

Agents for Telecommunications Applications. Lectures Notes in AI vol. 1437, Springer 

Verlag. 

Boyland, M. 2001. Simulation and optimization in harvest scheduling models. Contract 

report for the ATLAS/SIMFOR project, www.forestry.ubc.ca/atlas-simfor .lip 

Boyland, M. 2002. Hierarchical planning in forestry. Contract report for the 

ATLAS/SIMFOR project, www.forestry.ubc.ca/atlas-simfor . 7p. 

Bui, T.; Nguyen, T.; Patel, C.; Phan, K-A. 2005. An ant-based algorithm for coloring 

graphs. Computer Science Program, Penn State Harrisburg, Middletown PA. 

http://www.geocities.com/nguyenthanhvuh/tex/Files/Papers/Pub/bnpp_graphcolor.pdf 

Bullnheimer, B.; Hartl, R.; Strauss, C. 1997. A new rank-based version of the ant system: 

a computational study. Technical Report POM-03/97, Institute of Management Science, 

University of Vienna. Accepted for publication in the Central European Journal for 

Operations Research and Economics. 

Bullnheimer, B.; Hartl, R.; Strauss, C. 1999. An improved ant system algorithm for the 

vehicle routing problem. Annals of Operations Research, 89:319-328. 

Byrne, J.; Nelson, R.; Googins, P. 1960. Logging Road Handbook: The Effect of Road 

Design on Hauling Costs. Agriculture Handbook No 183, U.S. Department of 

Agriculture. 

20 



Chung, W.; Sessions, J. 2001. NETWORK 2001 - Transportation planning under 

multiple objectives. In Schiess, P.; Krogstad, F. editors. Proceedings of the International 

Mountain Logging and 11th Pacific Northwest Skyline Symposium, December 10-12, 

Seattle, WA. 

Chung, W.; Sessions, J. 2003. NETWORK 2000: A program for optimizing large fixed 

and variable cost transportation problems. In Arthaud, G.; Barrett, T editors. Systems 

Analysis in Forest Resources, Kluwer Academic Publishers, pp. 109-120. 

Colorni, A.; Dorigo, M.; Maniezzo, V.; Trubian, M. 1994. Ant System for jobshop 

scheduling. JORBEL - Belgian Journal of Operations Research, Statistics and Computer 

Science, 34(l):39-53. 

Cordon, O.; Fernandez de Viana, I.; Herrera, F.; Moreno, L. 2000. A new ACO model 

integrating evolutionary computation concepts: The best-worst ant system. In Dorigo, M.; 

Middendorf, M.; Stutzle, T. editors. Abstract proceedings of ANTS2000 - From Ant 

Colonies to Artificial Ants: A Series of International Workshops on Ant Algorithms, pages 

22-29- Universite Libre de Bruxelles. 

Costa, D.; Hertz, A. 1997. Ants can colour graphs. Journal of the Operational Research 

Society, 48:295-305. 

Dean, D. 1997. Finding optimal routes for networks of harvest sites access roads using 

GIS-based techniques. Canadian Journal of Forest Research 27 (1), 11-22 

Dijkstra, E. 1959. A note on two problems in connection with graphs. Numerische 

Mathematikl:269-271. 

Di Caro, G.; Dorigo, M. 1997. AntNet: A mobile agents approach to adaptive routing. 

Technical Report 97-12, IRJDIA, Universit'e Libre de Bruxelles. 

21 



Di Caro, G.; Dorigo, M. 1998a. Extending AntNet for the best-effort quality-of-service 

routing. Unpublished presentation at ANTS'98 - From Ant Colonies to Artificial Ants: 

First International Workshop on Ant Colony Optimization. October 15-16. 

http ://iridia.ulb. ac .be/ ants98/ants98 .html. 

Di Caro, G.; Dorigo, M. 1998b. Two ant colony algorithms for best-effort routing in 

datagram networks. In Proceedings of the Tenth lASTED International Conference on 

Parallel and Distributed Computing and Systems (PDCS'98), pages 541-546. 

lASTED/ACTA Press. 

Di Caro, G.; Dorigo, M. 1998c. AntNet: Distributed stigmergetic control for 

communications networks. Journal of Artificial Intelligence Research (JAIR), 9:317-365, 

December, http://www.jair.org/abstracts/dicaro98a.html. 

Di Caro, G. 2004. Ant colony optimization and its application to the adaptive routing in 

telecommunication networks. PhD thesis, IRIDIA, Artificial Intelligence research 

laboratory of the Universite Libre de Bruxelles, Belgium.' 

Dorigo, M. 1991. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis, 

Dipartimento di Elettronica, Politecnico di Milano, IT. 

Dorigo, M.; Maniezzo, V.; Colomi, A. 1996a. The ant system: optimization by a colony 

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 

26(1):29-41. 

Dorigo, M.; Gambardella, L. 1996b. A study of some properties of Ant-Q. In 

Proceedings of PPSN-IV, Fourth International Conference on Parallel Problem Solving 

From Nature, pages 656-665. Berlin: Springer-Verlag. 

22 

http://www.jair.org/abstracts/dicaro98a.html


Dorigo, M.; Gambardella, L. 1997. Ant colonies for the traveling salesman problem. 

BioSystems, 43:73-81. 

Dorigo, M.; Di Caro, G.; Gambardella, M. 1999a. Ant algorithms for discrete 

optimization. Proceedings of Artificial Life, 5(2): 137-172. 

Dorigo, M.; Di Caro, G. 1999b. The ant colony optimization meta-heuristic. In Corne, D.; 

Dorigo, M.; Glover, F.; editors. New Ideas in Optimization, pp 11-32, McGraw-Hill, 

London, UK. 

Dorigo, M.; Stutzle, T. 2002. The ant colony optimization metaheuristic: Algorithms, 

applications, and advances. In Glover, F., Kochenberger, G., editors. Handbook of 

Metaheuristics. Kluwer Academic Publishers, Norwell, MA, pp 251-285. 

Dowsland, K.; Thompson, M. 2005. Ant colony optimization for the examination 

scheduling problem. Journal of Operational Research Society, 56 (4):426-438(13). 

Elliot, W.; Hall, D.; Scheele, D. 1999. WEPP interface for predicting forest road runoff, 

erosion and sediment delivery. Technical Documentation WEPP: Road (Draft 12/1999). 

USDA Forest Service Rocky Mountain Research Station and San Dimas Technology and 

Development Center, http://forest.moscowfsl.wsu.edu/fswepp/docs/wepproaddoc.html 

Falcao, A.; Borges, J. 2001. Designing an evolution program for solving integer forest 

management scheduling models: An application in Portugal. Forest Science 47 (2), 158-

168. 

Gambardella, L.; Dorigo, M. 1995. Ant-Q: A reinforcement learning approach to the 

traveling salesman problem. In Proceedings of the Twelfth International Conference on 

Machine Learning, ML-95, pages 252-260. Palo Alto, CA: Morgan Kaufmann. 

23 



Gambardella, L.; Dorigo, M. 1997. HAS-SOP: An hybrid Ant System for the sequential 

ordering problem. Technical Report IDSIA-11-97, IDSIA, Lugano, Switzerland. 

Gambardella, L.; Taillard, E.; Dorigo, M. 1999. Ant colonies for the quadratic 

assignment problem. Journal of the Operational Research Society, 50(2): 167-176. 

Gambardella, L.; Taillard, E.; Agazzi, G. 1999. MACS-VRPTW: A multiple ant colony 

system for vehicle routing problems with time windows. In Corne, D.; Dorigo, M.; 

Glover, F., editors. New Ideas in Optimization, pages 63-76. McGraw Hill, London, UK. 

Gambardella, L.; Dorigo, M. 2000. Ant Colony System hybridized with a new local 

search for the sequential ordering problem. INFORMS Journal on Computing, 

12(3);237-255. 

Gambardella, L.; Rizzoli, A.; Oliverio, F.; Casagrande, N.; Donati, A.; Montemanni, R.; 

Lucibello, E. 2003. Ant colony optimization for vehicle routing in advanced logistic 

systems. IDSIA, Dalle Molle Institute for Artificial Intelligence, Switzerland. 

http://www.idsia.ch/~luca/MAS2003_18.pdf 

Greulich, F. 2002. Transportation networks in forest harvesting: early development of the 

theory. Proceedings in International Seminar on New Roles of Plantation Forestry 

Requiring Appropriate Tending and Harvesting Operations. 

Heinimann, H. 2001. Forest operations under mountainous conditions. Forests in 

Sustainable Mountain Development - a State of Knowledge Report for 2000. Price, M., 

Butt, N. editors. CABI publishing: Wallingford, UK. Vol. lUFRO Research Series No. 5: 

p. 224-230. 

Heusse, M.; Guerin, S.; Snyers, D.; Kuntz, P. 1998. Adaptive agent-driven routing and 

load balancing in communication networks. Technical Report RR-98001-IASC, 

24 



Department Intelligence Artificielle et Sciences Cognitives, ENST Bretagne. Accepted 

for publication in the Journal of Complex Systems. 

Jones, G.; Weintraub, A.; Meacham, M.; Magendzo, A. 1991. A heuristic process for 

solving mixed-integer land management land and transportation problems planning 

models. United States Department of Agriculture. Intermountain Research Station. 

Research Paper INT-447. 

Maniezzo, V.; Colorni, A.; Dorigo, M. 1994- The Ant System applied to the quadratic 

assignment problem. Technical Report IRIDIA/94-28, IRIDIA, Universite Libre de 

Bruxelles, Belgium. 

Maniezzo, V. 1999. Exact and approximate nondeterministic tree-search procedures for 

the quadratic assignment problem. INFORMS Journal on Computing, 11(4):358-369-

Maniezzo, V.; Colorni, A. 1999- The Ant System applied to the quadratic assignment 

problem. IEEE Transactions on Data and Knowledge Engineering, 11(5):769-778. 

Maniezzo, V.; Gambardella, M.; de Luigi, F. 2004. Ant colony optimization. In 

Onwubolor, G.; Babu, V., editors. New Techniques in Engineering. Springer-Verlog. 

Berlin Heidelberg, pp 101-117. 

Martell, D.; Gunn, E.; Weintraub, A. 1998. Forest management challenges for operational 

researchers. European Journal of Operational Research 104:1, pp 1-17. 

Merkle, D.; Middendorf, M.; Schmeck, H. 2000. Ant colony optimization for resource-

constrained project scheduling. In Proceedings of the Genetic and Evolutionary 

Computation Conference (GECCO-2000), pages 893-900. Morgan Kaufmann 

Publishers, San Francisco, CA. 

25 



Moll, J.; Copstead, R. 1996. Travel time models for forest roads: a verification of the 

Forest Service logging road handbook. 9677-1202-SDTC, USDA Forest Service. 

Murray, A. 1998. Route planning for harvest site access. Canadian Journal of Forest 

Research 28 (7), 1084-1087. 

Olsson, L.; Lohmander, P. 2003. Optimal forest transportation with respect to road 

investments. Forest Policy and Economics. Article in Press, xx (2003) xxx-xxx. 

Sim, K.; Sum, W. 2002. Multiple ant-colony optimization for the network routing. In 

First International Symposium on Cyber World, page 0277. 

Schoonderwoerd, R.; Holland, O.; Bruten, J.; Rothkrantz, L. 1996. Ant-based load 

balancing in telecommunications networks. Adaptive Behavior 5 (2), 169-207. 

Stutzle, T.; Hoos, H. 1997a. The MAX-MIN ant system and local search for the traveling 

salesman problem. In Baeck, T.; Michalewicz, Z.; Yao, X. editors. Proceedings oflEEE-

ICEC-EPS'97, IEEE International Conference on Evolutionary Computation and 

Evolutionary Programming Conference, pages 309-314. IEEE Press. 

Stutzle, T.; Hoos, H. 1997b. Improvements on the ant system: Introducing MAX- MIN 

ant system. In Proceedings of the International Conference on Artificial Neural Networks 

and Genetic Algorithms, pages 245-249. Springer Verlag, Wien. 

Stutzle, T. 1998. An ant approach to the flow shop problem. In Proceedings of the 6'^ 

European Congress on Intelligent Techniques & Soft Computing (EUFIT'98), volume 3, 

pages 1560-1564 Verlag Mainz, Aachen. 

Stutzle, T.; Dorigo, M. 1999. ACO algorithms for traveling salesman problem. In 

Meittinen, K.; Makela, P.; Neittaanmaki, P.; Periaux, J., editors. Evolutionary Algorithms 

In Engineering and Computer Science: Recent Advances in Genetic Algorithms, 

26 



Evolution Strategies, Evolutionary Programming, Genetic Programming and Industrial 

Applications. John Wiley & Sons. 

Stutzle, T.; Hoos, H. 2000. MAX-MIX Ant System. Future Generation Computer 

Systems, 16(8):889-914. 

Subramanian, D.; Druschel, P.; Chen, J. 1997. Ants and reinforcement learning: A case 

study in routing in dynamic networks. In Proceedings of I JCAI-97, International Joint 

Conference on Artificial Intelligence, pages 832-838. Morgan Kaufmann. 

van der Put, R. 1998. Routing in the faxfactory using mobile agents. Technical Report 

R&D-SV-98-276, KPN Research. 

van der Put, R.; Rothkrantz, L. 1999. Routing in packet switched networks using agents. 

Simulation Practice and Theory, in press. 

Walkowiak, K. 2005. Ant algorithm for flow assignment in connection-oriented 

networks. International Journal of Applied Mathematics and Computer Science 15 (2), 

205-220. 

Weintraub, A.; Jones, G.; Magendzo, A.; Meacham, M.; Kirby, M. 1994. A heuristic 

system to solve mixed integer forest planning models. Operations Research 42 (6), 1010-

1024 

Weintraub, A.; Jones, G.; Meacham, M.; Magendzo, A.; Magendzo, A.; Malchauk D. 

1995. Heuristic procedures for solving mixed-integer harvest scheduling-transportation 

planning models. Canadian Journal of Forest Research 25 (10), 1618-1626. 

White, T.; Pagurek, B.; Oppacher, F. 1998. Connection management using adaptive 

mobile agents. In Arabnia, H., editor. Proceedings of the International Conference on 

27 



Parallel and Distributed Processing Techniques and Applications (PDPTA '98), pages 

802-809. CSREA Press. 

White, T.; Kaegi, S.; Oda, T. 2003. Revising cHtism in ant colony optimization. School of 

Computer Science, Carleton University. http://terri.zonel2.eom/doc/academic/GECCO-

2003-ACS-LBT.pdf 

Zeki, E. 2001. Combinatorial optimization in forest ecosystem management modeling. 

Turk Journal of Agriculture and Forestry 25 (2001) 187-194. 

28 



PART 11. 

Applying Ant Colony Optimization (ACO) Metaheuristic to Solve Forest 

Transportation Planning Problems with Side Constraints 

Marco A. Contreras S. 

Graduate Research Assistant 

Department of Forest Management 

College of Forestry and Conservation 

The University of Montana 

Missoula, MT 59812 

marco.contrerassalgado@umontana.edu 

Woodam Chung 

Assistant Professor of Forest Operations 

Department of Forest Management 

College of Forestry and Conservation 

The University of Montana 

Missoula, MT 59812 

woodam.chung @ umontana.edu 

29 



Introduction 

Problems related to forest transportation planning have long been an important concern 

due to the fact that timber transportation is one of the most expensive activities in forest 

operations (Greulich 2002). Traditionally, the goals of forest transportation planning 

problems (FTPP) have been set to find combinations of road development and harvest 

equipment placement to minimize total harvesting and transportation costs. However, 

modern FTPP are not driven only by the economics of timber management, but also 

multiple uses of roads and their social and ecological impacts such as recreation, soil 

erosion, wildlife and fish habitats among others. These environmental and social 

considerations and requirements introduce side constraints to the FTPP, making the 

problems larger and much more complex. 

Two different approaches have been applied to solve FTPP: exact algorithms such as 

mixed-integer programming (MIP), and approximation algorithms generally called 

heuristics (Falcao 2001; Weintraub 1994). The most important advantage of exact 

algorithms is that they provide optimal solutions. However, they are limited to small 

scale problems. Contrarily, heuristic techniques, although may not provide optimal 

solutions, have successfully been applied to solve large scale problems and are relatively 

easy to formulate compared with exact algorithms (Olsson 2003; Martell et al 1998; 

Weintraub 1995; Jones 1991). Since real world problems are usually large scale problems 

with thousands of variables, heuristic techniques have been the focus of a large number 

of researchers (Boyland 2002; Zeki 2001). 
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The case of FTPP with fixed and variable costs are complex optimization problems that 

to date have only been solved efficiently using heuristic approaches. NETWORK II 

(Sessions 1985) and NETWORK 2000 (Chung and Sessions 2003), which use a heuristic 

approach combined with the shortest path algorithm (Dijkstra 1959) have been widely 

used for the last twenty years. NETWORK 2(X)0 can solve multi-period, multi-product, 

multi-origin and -destination transportation planning problems, but it considers only 

either profit maximization or cost minimization without taking into account other 

attributes of road links. NETWORK 2001 (Chung and Sessions 2001) was developed to 

solve multiple objective transportation planning problems by combining a k-shortest path 

algorithm with a simulated annealing heuristic. NETWORK 2(K)1 allows users to modify 

the objective function in order to evaluate solutions considering multiple objectives, but 

currently does not allow having side constraints. 

Since heuristic approaches usually do not guarantee the optimality of solutions, testing 

different heuristic approaches has been a constant effort of numerous researchers. New 

heuristics and hybrids of existing heuristics are continually being developed, but only a 

few algorithms have been applied to FTPP with both fixed and variable costs. One of the 

promising algorithms that have not been applied to FTPP is the Ant Colony Optimization 

(ACO) metaheuristic, an optimization technique introduced in 1991 by Dorigo and 

colleagues (Dorigo 1999a). To date there have been numerous successful applications of 

ACO metaheuristic developed to solve a number of different combinatorial optimization 

problems. Currently, some ACO algorithms have provided the best known results for 
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solving many of the most important combinatorial optimization problems (such as the 

traveling salesman problem (TSP), quadratic assignment problem (QAP), job-shop 

scheduling problem (JSP), vehicle routing problem (VRP) among others), while others 

have matched the results of the best known algorithms (Dorigo 2002; Dorigol999a). 

The ACO metaheuristic approach is promising for solving FTPP with fixed and variable 

costs due to the following reasons: i) the inspiring concept of ACO metaheuristic is based 

on a transportation principle, and it was first intended to solve transportation problems 

that can be modeled through networks, ii) its effectiveness in finding good solutions to 

difficult problems, as introduced in the literature, and Hi) the nature of the FTPP, which 

allows the problem to be modeled as a network problem. 

In this manuscript, we introduce ACO-FTPP, a specially designed ACO algorithm for 

solving FTPP with fixed and variable costs while considering total sediment yields from 

the road network as a side constraint. To validate the performance of the algorithm, we 

developed a 100-link hypothetical FTPP and compared the results of ACO-FTPP with the 

results obtained with a mixed-integer programming solver applied to solve a comparable 

mathematical programming formulation (Weintraub et al 1994). A description of the 

algorithm and the results from the applications are presented. 
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Ant Colony Optimization Metalieuristic 

The Ant Colony Optimization (ACO) is a metaheuristic approach for solving difficult 

combinatorial optimization problems. Motivated by its success, ACO metaheuristic was 

proposed as a common framework for existing applications and algorithmic variants. 

Thus, algorithms which follow the ACO metaheuristic are called ACO algorithms 

(Dorigo 2002). 

ACO algorithms are inspired by the observation of the foraging behavior of real ant 

colonies, and in particular, by how ants can find shortest paths between food sources and 

the nest. When walking, ants deposit a chemical substance on the ground called 

pheromone, ultimately forming a pheromone trail. While an isolated ant moves 

essentially at random, an ant that encounters a previously laid pheromone trail can detect 

it and decide with a high probability to follow it, therefore reinforcing the trail with its 

own pheromone. This indirect form of communication is called autocatalytic behavior, 

which is characterized by a positive feedback, where the more ants following a trail, the 

more attractive that trail becomes for being followed (Dorigo 1999). 

The concept of the ACO metaheuristic is to set a colony of artificial ants that cooperate 

to find good feasible solutions to combinatorial optimization problems. Cooperation is 

one of the most important components of ACO algorithms. Computational resources are 

allocated to relatively simple agents - artificial ants. These artificial ants have a double 

nature. On one hand, they are the abstraction of those behavioral traits of real ants, which 
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seem to control the shortest path finding ability. On the other hand, they are enriched 

with some capabilities not present in their natural counterparts (Dorigo 1999a). 

There are four main ideas taken from real ants that have been incorporated into AGO 

metaheuristic (Dorigo 1999a, 1999b); the use of: i) colony of cooperating ants - although 

each artificial ant is capable of finding a feasible solution, high quality solutions can only 

emerge as a result of the collective interaction among the entire ant colony, ii) pheromone 

trail and indirect communication - artificial ants change some numerical information, 

called artificial pheromone trail, stored in the problem' stage they visit, just as real ants 

deposit pheromone on the path they visit on the ground, Hi) shortest path searching and 

local moves - artificial ants as real ones have a common purpose: to find the shortest path 

moving step by step through adjacent states, and iv) stochastic and myopic state 

transition policy - artificial ants move through adjacent states applying a probabilistic 

decision policy, which is a function of the information represented by the problem 

specifications (terrain conditions for real ants) and the local modifications in the problem 

states (by pheromone trails) induced by previous ants. 

To increase the efficiency and efficacy of the colony, some enriching characteristics have 

been given to artificial ants. Some of these characteristics are that artificial ants i) live in 

an environment where time is discrete, ii) have an internal state, which contains the 

memory of the ants' previous actions. Hi) deposit an amount of pheromone proportional 

to the quality of the solution found, and iv) are not completely blind and can incorporate 
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look-ahead information, local optimization and backtracking to improve overall system 

efficiency. 

In ACO algorithms, a finite colony of ants concurrently and asynchronously moves 

through adjacent states of the problem, applying a stochastic transition policy that 

considers two parameters called trail intensity and visibility. Trail intensity refers to the 

amount of pheromone in the path, which indicates how proficient the move has been in 

the past, representing a posteriori indication of the desirability of the move. Visibility is 

usually computed as some heuristic value indicating the a priori desirability of the move, 

such as cost or distance (Maniezzo 2004). Therefore, moving through adjacent steps, ants 

incrementally build a feasible solution to the optimization problem. 

Once an ant has found a solution, it evaluates the solution and deposits pheromone on the 

connections it used, proportionally to the goodness of the solution. Ants deposit 

pheromone in various ways. They can deposit pheromone on a connection (an edge in a 

graph) directly after the move is made without waiting for the end of the solution. This is 

called online step by step pheromone update. Ants also can deposit pheromone after a 

solution is built by retracing the same path backwards and updating the pheromone trail 

of the used connections. This is called online delayed pheromone update (Dorigo 2002). 
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The Forest Transportation Planning Problem 

The specific FTP? we address in this paper are finding the set of least cost routes from 

multiple timber sales to selected destination mills, while considering environmental 

impacts of forest road networks represented by sediment yields. As most of transportation 

problems, these FTPP can be modeled as network problems. The road system is 

represented by a graph G, where vertices represent destination points (i.e. mill location), 

entry points (i.e. log landing location), and intersections of road segments, and edges 

represent the road segments connecting these different points. The graph G has three 

variables associated with every edge; fixed cost, variable cost, and the amount of 

sediment. 

The transportation network may be composed of existing and/or proposed roads. Fixed 

cost for an existing road segment could either be zero or a fixed maintenance cost for the 

road segment. In the case of proposed roads, the construction cost of the road segment 

plus fixed maintenance cost will represent the fixed cost associated to that specific edge. 

Fixed cost is a one-time cost which occurs if the road segment is used. Variable cost 

refers to the hauling cost. Unlike the fixed cost, variable cost is proportional to traffic 

volumes. Although there are several ways to estimate the unit variable cost ($/vol-edge), 

in most cases it is a function of the road length, driving speed, and operating costs (Byrne 

at al 1960, Moll and Copstead 1996). Since every road segment has different conditions, 

there will be a different unit variable cost associated with each edge. The sediment 

associated with each edge represents the amount of sediment eroding from the road 

36 



segment in tons per year per edge. Like fixed cost, we assumed that sediment is produced 

when roads are open regardless of the traffic volume. The WEPP model can be used to 

estimate average annual sediment yields from each road segment (Elliot et al 1999). In 

addition to the three variables related to each edge, it is also required to have the total 

volume of wood per timber sale to be delivered to the selected mill location. 

In this context the problem under consideration becomes a minimization problem where 

the objective function is set to minimize the combination of fixed and variable costs (Eq. 

1) subject to a sediment yield restriction (Eq. 2). 

e 

Minimize ^ [(var_cosf• * vol-) + {fixed_cost- * B-)] [Eq. 1] 

Subject to 

e 

^{sediment- *B-)< allowable_sed [Eq. 2] 

where. 

fixed_costf 

sediment^ 

var cost: : variable cost for edge i in $/vol. 

: fixed cost for edge i in $. 

: amount of sediment eroding from edge i in tons. 

vol- : total volume transported over edge / 

: binary variable (1 if edge is used and 0 otherwise) 

e 

allowable sed 

: total number of edges in the network 

: maximum allowable sediment in tons. 
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Methodology 

ACO-FTPP algorithm 

ACO-FTPP is the specialized ACO algorithm we developed to solve the FTPP described 

above. ACO-FTPP has a finite number of ants (m) that search for r shortest paths, one 

from each timber sale-destination pair, in a network of v vertices and e edges. In ACO-

FTPP a move is defined as the transition of an ant from one vertex to another. After a 

certain number of moves, an ant arrives at its destination thus completing a route. Once 

all ants have completed their routes for one timber sale, a shortest path is found among 

the m routes. When all ants finish one timber sale they move to the next timber sale to 

find m routes for the sale. An iteration is completed when all timber sales are routed to 

the destination vertex. 

When an ant is located on a given vertex, it has to choose where to go. An ant decides 

what vertex to visit next, based on a transition probability on each edge calculated by the 

following equation (Eq. 3). 

p. (c) = — if7^ N, [Eq. 3] 

;=1 

where,/7^ (c) indicates the transition probability with which an ant, chooses the edge j in 

iteration c; I is the number of edges in the set N/ sharing the same origin vertex; a and P 
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are the parameters that control the relative importance of the pheromone trail intensity (t^) 

and the visibility {rjj) values on edge j. The visibility value is calculated by adding the 

reciprocal of the variable cost (unit variable cost on edge j multiplied by the volume (vol) 

from origin s), the reciprocal of the fixed cost and the reciprocal of the sediment amount 

associated to edge j (Eq. 4). 

T]j — {var_costj * vol^)"' + fixed_cost~^ + sediment^^ [Eq. 4] 

Consequently, by combining equations 3 and 4, the resulting transition probability 

formula for a given edge is determined as follows: 

(r, r *((var cost. *vol P + fixed cost~^ + sediment'^ ; 
P,{c)=]^' ^^^ ify-G N, [Eq.5] 

^ (^, T * ̂ ar_cost. * vo/j) ' + fixed_costT^ + sedimentj^ j 
1=1 

Based on the transition probability values of all edges in N,, accumulated transition 

probabilities for each of these edges are computed. Then, a random number between zero 

and one is selected using a random number generator. If this random number is smaller 

than the accumulated transition probability of edge i and larger than the accumulated 

transition probability of edge i-1, then edge i is selected. 

Starting from a given timber sale and ending on the selected mill destination, an ant 

incrementally builds a route, moving through adjacent edges according to the transition 

probability equation (Eq. 5). At the end the best route among the m routes generated by 

39 



the m ants is selected as the shortest path. At the end of each iteration the edges forming 

all shorest_paths (one for every sale-destination pair) are identified, the total solution 

value is computed and the solution feasibility is evaluated. If the current solution is not 

better than the best found so far or is infeasible, the solution is ignored, the pheromone 

trail intensities remain the same and another iteration starts. However, if the current 

solution is better than the best solution found so far, the current solution becomes the new 

best solution and the pheromone trail intensity of the edges forming all shortest paths is 

updated. At the same time, pheromone intensity on all edges decreases (evaporates) in 

order to avoid unlimited accumulation of pheromone. Also pheromone evaporation 

avoids a too-rapid convergence of the algorithm towards a sub-optimal solution, allowing 

the exploration of other solution spaces. Pheromone trail intensity is updated using the 

following equation (Eq. 6): 

where two components are considered; the current pheromone trail intensity on edge i at 

iteration c, indicated byT, (c), multiplied by 0 < A, < 1 which is a coefficient such that (1 -

A,) represents the pheromone evaporation rate between iteration c and c + 1; and At-

which represents the newly added pheromone amount to edge /, calculated as follows: 

where, s is total number of timber sales, andArf is the quantity of pheromone laid on 

edge i by the ants in iteration c; which is given by: 

T- {c + i)= A* Tj{c)+ At^ [Eq. 6] 

[Eq.7] 
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At: = 
Q! Lk if the ants used edge i in the shortest path 

[Eq. 8] 

0 otherwise 

where 2 is a constant and Lk is the total transportation cost over the selected route. The 

value of Q has to be chosen so the amount of pheromone added to edge i by a given ant 

slightly increases the probability of that edge during the following iterations. 

Given the definitions above, ACO-FTPP can be stated as follows (see Figure 5). At 

iteration 1 an initialization phase takes place in which ants start at a random timber sale 

location. An initial equal small amount of pheromone q is set for each edge, and 

transition probabilities for each edge are computed considering the volume of the chosen 

timber sale. Thereafter each ant can find a route by moving from edge to edge until the 

mill destination is reached. 

When an ant moves through an edge, the edge is recorded with its from- and to- vertex in 

the ant's internal memory. This memory is used to avoid ants returning to a previously 

visited vertex. When an ant is located at a vertex whose all adjacent vertices have been 

previously visited, it stops without reaching its destination and a high cost (i.e. $ 999,999) 

is assigned to the ant's route as a penalty. Likewise, if an ant has not found its destination 

after a maximum number of moves Max_moves, the ant stops and a high cost is assigned. 

For the applications used in this paper, the Max_moves is set to be the number of vertices 

in the network plus one (v + 1). 
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After each of all ants finds its own route, the least cost route is selected as the shortest 

path, and all ants move to the next randomly chosen sale (origin). The transition 

probabilities are re-calculated using the current sale volume and ants start moving 

through adjacent edges until they find the destination mill. When an shortest path is 

complete for this second sale, all ants move to the next sale and so forth. At the end of an 

iteration the objective function and total sediment values are calculated using the best 

route for each timber sale. The edges forming the r best routes (one per timber sale) are 

identified and their pheromone trail intensity is updated. This process continues until a 

stopping criterion is met. We used a maximum number of iterations Imax to stop the 

process in a reasonable time. If in a given iteration the solution found does not satisfy the 

constraints (the calculated sediment amount is greater than the maximum allowable 

sediment) or is worse that the best solution found so far, the solution is ignored, 

pheromone trail intensities remain the same as the previous iteration, and the next 

iteration starts. 
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Deposit initial plieromone amomit on eveiy et 

Locate ants on a randomly selected tirnber sale 

Compute transition probability for every edge 

No Is destination mill reached? 

Yes 

No Have all ants been sent out? 

Yes 

Do all tind:ier sales have a 
selected minimum cost route? 

No 

Yes 

No 
Is it a feasible solution? 

Yes No Is current solution better than 
the best solution found so far? 

Ignore current solution 

Save cuzreni solution as best solution found 

No Is stopping cziterion i«ached? 

Yes 

Send out an ant 

Evaluate route's cost 

Iteration »Iteration -*-1 

Stop and report best solution 

Select the znuiinium cost route 

Locate ants on the next 
randomly chosen tinker sale 

Identify edges foxming the set 
of nuninBom cost routes 

Compute total solution value and evaluate feasibility 

according to the transition prob îlity 

Deposit pheromone on identified edges, update 
pheromone trail intensity for every edge and 

compute new transition prob îlities 

Is it a feasible solution? 

Yes 

Figure 5. Flowchart of the ACO-FTPP search process 
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Hypothetical Transportation Problem 

To examine the behavior and performance of the algorithm, we applied the ACO-FTPP to 

a 100-edge hypothetical forest transportation problem (see Figure 6). This 100-edge 

problem includes five timber sale locations (indicated by the circles on the left) and one 

destination mill (indicated by the circle on the right). Appendix A contains the variable 

cost, fixed cost, and sediment amount associated to every edge as well as the volume to 

be delivered from each timber sale to the selected destination. 

21/ 

Figure 6. Hypothetical forest transportation problem with 100 edges, five timber sales and one destination 
mill. 

Although this FTPP is a hypothetical example with 100 edges, this problem is 

represented by 200 edges since we consider both directions on every edge. This 

hypothetical problem which forms a grid-shaped road network may not often exist in real 

forest road networks, but we used this example to test the algorithm since it is relatively 

more difficult to solve. Usually in real transportation problems, most road segments have 

obvious loaded-truck directions, or there are not many alternative routes from a timber 
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sale to a given destination, especially in small scale problems. In addition, there are not 

many intersections at where four or even more road segments meet in real forest road 

networks. 

An increasing number of road segments leaving an intersection point exponentially 

increases the number of alternative routes. The degree of a vertex is defined as the 

number of adjacent edges. In our hypothetical FTPP, the minimum degree is two (i.e. 

vertex 1 and 40), the maximum is seven (i.e. vertex 14 and 17), and the average degree of 

the graph representing this hypothetical FTPP is five. 

Results and Discussion 

Setting Parameters 

ACO-FTPP requires parameters such as a, p, X, q, Q, m, and Imax- The parameters a and P 

control the relative importance of the pheromone trail intensity and visibility, 

respectively. Pheromone evaporation is controlled by X. The constant q is an initial small 

amount of pheromone deposited on every edge at the first iteration. Q is also a constant 

related to the additional amount of pheromone deposited by ants on selected edges. 

Lastly, m indicates the total number of ants and Imax is the stopping criteria of the 

algorithm, which is expressed by a maximum number of iterations. 
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Since our initial test runs of ACO-FTPP confirmed the findings of previous studies in 

recognizing that different parameter combinations affect the performance of the ACO 

(Dorigo 1991), we conducted a search for the best parameter combination. Several 

parameter combinations among the many we tested could find the same best solution, 

probably because the 100-edge transportation problem constitutes a relatively small 

problem. To select one best parameter combination, we considered the number of 

iterations taken to find the best solution as well as solution quality. 

Three of the seven parameters required by ACO-FTPP {q, m, and Imax) do not affect the 

calculation of the transition probability (Eq. 3-8). Therefore these parameter values were 

fixed in our trials. Because q is an equal small amount of pheromone deposited at time 

zero,T, (0), on every edge, it does not affect the ants search (Dorigo 1991). In most ACO 

algorithm q is set to a small positive constant. For our applications, q was set to 0.001. 

Similarly, the number of ants m is usually set to be the number of vertices (Dorigo et al 

1996). Since our FTPP are complex problems that consider three variables associated 

with every edge instead of one, to diversify the search in our applications, m was set to be 

equal to the number of edges {e), which is larger than the number of vertices. Based on 

initial runs the maximum number of iterations {Imax) was set to give the algorithm enough 

time to find the best solution; in our applications Imax was set to 100. 

The parameters Q, a, P, and X,, directly affect the calculation of the transition probability 

(Eq. 3 - 8), therefore they largely affect the performance of the algorithm. The constant 

Q, related to the quantity of pheromone deposited by ants, has to be chosen so the 

46 



transition probability of an edge from one iteration to the next is slightly increased. 

Because our initial test runs showed that Q did not have a significant effect on the 

solution quality, we set Q to 0.001, The remaining parameters (a, p, and X) were 

identified to directly affect the performance of the algorithm, and therefore subject to the 

search for the best parameter combination. 

To test different values of the parameters a, fi, and X., a range for each parameter was 

defined and partitioned into ten, fifteen, and ten discrete values respectively. Table 3 

shows the range of values and the corresponding discrete values for each parameter. This 

yields 1,500 different parameter combinations. Considering the values of m and I,nax, the 

algorithm took approximately 4 hours to execute all 1500 parameter combinations. The 

algorithm was implemented in C programming language and run using a 2.66Ghz 

Pentium(R)4 CPU with 512MB of RAM. 

Table 3. Range of values for the variable parameters 

Parameter Value Range Discrete Values 

a 0 < a < 10 {0.5, 1.5,2.5 ,9.5} 

P 0 < p <  15 {0.5, 1.5,2.5, , 14.5} 
X 0 < X <  1  {0.05,0.15,0.25, ,0.95} 

The best parameter combination found after this search was a = 1.5, = 0.5 and X, = 0.65. 

It was noticed from our runs that visibility values (//,) become very large compared with 

pheromone trail intensity values (T,) (Eq. 4). Therefore, since P and a are the exponents of 

the visibility and pheromone trail intensity, respectively (Eq. 3), smaller than one 

decreases the visibility value, and a larger than one increases the trail intensity value. 
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Consequently, the relative importance of the visibility (;/,) and the pheromone trail 

intensity (r,) are more homogeneous. 

The best value of X, found (0.65) may be explained by the fact that the ants need to forget 

part of the experience gained in the past, represented by the accumulated pheromone 

amount, to better exploit new incoming pheromone information and to avoid a fast 

convergence to sub-optimal solutions. Dorigo et al (1996) observed the same behavior in 

their parameter setting procedure. 

Solutions from the Hypothetical Transportation Problem 

To evaluate the effect of the sediment constraint on solutions, four different cases for the 

hypothetical example were analyzed. Case / is a cost minimization problem without a 

sediment constraint. Cases II and III are cost minimization problems subject to increasing 

levels of sediment constraints, and Case IV is a sediment minimization problem without a 

cost constraint. While Cases I and IV address single goal transportation planning 

problems. Cases II and III address multiple goals with different levels of sediment 

restriction. 

Once Case I is solved, the minimum cost solution is obtained and the associated total 

sediment amount can be calculated. This sediment amount becomes the upper limit for 

the sediment constraint because any larger sediment constraint values would not affect 

the minimum cost solution. On the other hand. Case IV provides the lower limit for the 
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sediment constraint since requiring sediment below the limit will result in an infeasible 

solution. Consequently, Cases 11 and 111 are set with sediment constraint values within the 

range between the upper and lower limits obtained by Cases 1 and IV, respectively. The 

level of the sediment restriction is increased from Case 11 to Case 111. 

To efficiently guide ants in their search for the shortest path, the transition probability 

function (Eq. 5) was modified according to the objective function of the problem to be 

solved. For Case 1 the transition probability considered only the variable and fixed costs 

associated with each edge (Eq. 9): 

Likewise, for Case IV the transition probability considered only the sediment amount 

associated with each edge (Eq. 10): 

Because there is no guarantee for optimality when using ACO, which is a heuristic 

approach, we compared our results with a mixed-integer programming solver, MIPIII, 

which uses a branch-and-bound algorithm to solve mixed-integer programming problems. 

i f j e  N ,  [Eq .  9 ]  
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MIPIII is the mixed-integer component of the mathematical programming system MPSIII 

(Ketron 2001). 

The results from the 100-edge hypothetical FTPP obtained by ACO-FTPP and MIPIII are 

presented in Figures 7 through 10. A solution was found for each of the four cases by 

ACO-FTPP. On the other hand, MIPIII was able to find an optimal solution only for the 

single goal transportation problems. Case I (cost minimization) and Case IV (sediment 

minimization). 

For Case I the optimal solution found by MIPIII is slightly better than the best solution 

found by ACO-FTPP (Figure 7a and 7b respectively). The optimal MIP solution found 

has an objective function value of $128,057 ($33.27/vol) with an associated total 

sediment amount of 610.96 tons. The best solution found by ACO-FTPP has an objective 

function value of $129,388 ($33.62/vol) and an associated total sediment amount of 

660.46 tons. ACO-FTPP reached an optimality level of 99% since the difference between 

two solutions is only 1% or $1,281. For Case II the maximum allowable sediment value 

was set to 550 tons. Based on this sediment constraint the best solution found by ACO-

FTPP has a minimum total cost of $170,833 ($44.38/vol) reaching a total sediment 

amount of 527.70 tons (Figure 8). For Case III, where a maximum allowable sediment 

was set to 450 tons, ACO-FTPP found the best solution of $197,667 ($51.35/vol) with a 

related total sediment amount of 440.69 tons (Figure 9). MIPIII failed to find any feasible 

solution for both Cases II and III. For Case IV ACO-FTPP was able to find the same 

solution as the optimal one found by MIPIII (Figure 10a and 10b respectively). The 
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minimum objective function value is 393.67 tons with an associated total cost of 

$247,080. Although both algorithms solved this 100-edge transportation problem in a 

short time, ACO-FTPP solved it much faster than MIPIII. ACO-FTPP took 4 seconds, 

whereas MIPIII took approximately 1 minute. 

a) b) 

Variable cost 
Fixed cost 
Total cost 
Total sediment 

80,381 ($20.89/vol) 
49,007 ($12.73/vol) 

12938 ($33.62/vol) 
660.46 tons 

Variable cost 
Fixed cost 
Total cost 
Total sediment 

86,165 ($22.39/vol) 
41,892 ($10.88/vol) 

128,057 ($33J7/vol) 
610.96 tons 

Figure 7. Case I, cost minimization problem without sediment constraint, 
a) Results from ACO-FPTT, and b) Results from MIPIII. 

No feasible solution found 

Variable cost 
Fixed cost 
Total cost 
Total sediment 

109,931 
60,962 

170,833 
527.7 

($28.54/vol) 
($13.84/vol) 
($44J8/voI) 

tons 

Variable cost 
Fixed cost 
Total cost 
Total sediment 

($ /vol) 
($ /vol) 
($ /vol) 
tons 

Figure 8. Case II, cost minimization problem subject to a sediment constraint of 550 tons, 
a) Results from ACO-FPTT, and b) Result from MIPIII. 
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a) 

No feasible solution found 

Variable cost : 153,006 ($39.75/vol) Variable cost ($ /vol) 
Fixed cost : 44,661 ($U.60/vol) Fixed cost ($ /vol) 
Total cost : 197,667 ($5US/vol) Total cost : ($ /vol) 
Total sediment : 440.49 tons Total sediment : tons 

Figure 9. Case III, cost minimization problem subject to a sediment constraint of 450 tons, 
a) Results from ACO-FPTT, and b) Result from MIPIII. 

a) b) 

' ' 
/ J-4-. / / 

/' ' «r \ 

Variable cost : 200,450 ($52.09/vol) Variable cost 200.450 ($ 52.09/vol) 
Fixed cost : 46,630 ($12.11/vol) Fixed cost 46,630 ($12.11/vol) 
Total cost : 247,080 ($ 64.20/vol) Total cost : 247,080 ($64J0/vol) 
Total sediment : 393.67 tons Total sediment : 393.67 tons 

Figure 10. Case IV, sediment minimization problem without constraint, 
a) Results from ACO-FPTT, and b) Result from MIPIII. 

The total cost and total sediment values associated with the best solutions found by ACO-

FTPP for the four cases are presented in Figure 11. In Case II, when the total allowable 

sediment is restricted to 550 tons, (approximately 20% less than the associated total 

sediment for Case /), the minimum total cost obtained increased by 32% compared to 

Case I. In Case III, where we further restricted the sediment constraint to 450 tons, 

(around 47% less than the associated total sediment for Case /), the minimum total cost 

obtained increased by 53%. When the goal was to minimize total sediment. Case IV, the 
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optimal solution obtained a minimum total sediment amount of 393 tons, which is 

approximately 40% less than the sediment associated with Case I. On the other hand, the 

total cost associated with Case IV, increased by 91% from $129,399 to $247,080. This 

increment of the total cost from Case I to Case IV may be explained by the fact that edges 

that produce lower sediment amount do not necessarily have low costs. 
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Figure 11. Optimal solutions values of total cost and total sediment found 
by ACO-FTPP for the four different cases of the 100-edge hypothetical FTPP 

To have a better understanding of the algorithm's performance, the best solution found at 

every iteration for Cases I to IV are shown in Figures 12a through 15a respectively. These 

figures illustrate the solution improvement until the algorithm reached the best solution 

found, at iterations 14, 15, 16, and 12 for Cases I through IV, respectively. We also 

plotted the average transition probabilities for the edges included in the final best solution 

at the end of each iteration to see the evolution of the transition probabilities affected by 

pheromone accumulation over time. These transition probabilities for Cases I trough IV 

are shown in Figures 12b through 15b respectively. 
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From this analysis it is possible to see that after a few iterations, when the ants are 

exploring different alternative routes, the transition probabilities of the chosen edges 

rapidly increase, because these edges are more attractive than others, and selected as part 

of the solution found at every iteration. After the best solution is found, the probabilities 

of the chosen edges keep slowly increasing until they become close to one. This slow

down phase happens because the increase of the pheromone amount does not 

proportionally increase transition probability as it approaches the maximum value of one. 

 ̂ 0.7 

0:6 

11 21 31 4  ̂ 51 81 71 81 91 101 

Iteration Number 

11 21 41 SI 61 71 

Iteration number 

Figure 12. Algorithm performance from Case I. a) Solution found at each iteration, and b) average 
transition probability of all edges forming the final best solution. 

31 41 51 61 71 81 

Aeration Number 

11 21 31 41 51 61 

Iteration Number 

81 91 

Figure 13. Algorithm performance from Case II. a) Solution found at every iteration, and b) average 
transition probability of all edges forming the final best solution. 
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Figure 14. Algorithm performance from Case III. a) Solution found at every iteration, and b) average 
transition probability of all edges forming the final best solution. 
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Figure 15. Algorithm performance from Case IV. a) Solution found at every iteration, and b) average 
transition probability of all edges forming the final best solution. 

Sensitivity Analyses 

To evaluate the effects of small parameter changes on the algorithm performance, 

sensitivity analyses were carried out for a, p, and X, using Case / . Several values for each 

of a, p, and X were tested while others were held constant. The default values for a, p, and 

X, were 1.5, 0.5 and 0.65, respectively (the best parameter combination found previously). 

Each time only one of the parameters was changed while other parameters remained 

constant. The tested values for a, the relative importance of the pheromone trail intensity, 

were 0.5, 1.5, 2.5, 3.5, 4.5 and 5.5. Figure 16 shows how the solution quality changes 
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with the different values of a. When a was 0.5, 1.5, and 2.5, the solution found was the 

same. The solution quality, however, decreased as a became larger than 2.5, the number 

of iterations taken to reach the solution increases. When a is 1.5, the same quality 

solution was found quicker than the other values (14 iterations). 

180000 

160000 

140000 

120000 
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O 
O 
« 80000 
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0.5 1.S 2JS 3.5 4.5 5JS 

Value of the alpha parameter 

["-•••"Total Cost • Cycle numbe^ 

Figure 16. Algorithm sensitivity to alpha. 

Different values for P were also tested: 0.1, 0.5, 1.5, 2.5, 3.5, 4.5 and 5.5. Figure 17 

shows how the solution quality changes with increasing values of p. The results show that 

as P deviates from 0.5, the solution quality decreases (total cost increases). However, 

when P = 4.5 and 5.5, the solution quality improves compared with the two previous 

values of p. It seems, the probabilistic nature of the algorithm causes the inconsistent 

results. 

56 



2SOOOO • 

o u 

1.5 2.5 3.5 

Value of the beta parameter 

Figure 17. Algorithm sensitivity to beta. 

Lastly, we also tested several values for the pheromone evaporation rate (1- X,). The tested 

values for X are 0.35, 0.45, 0.55, 0.65, 0.75, 0.85 and 0.95. The best solution found was 

the same for all these values, a total minimum cost of $ 129,338. However the number of 

iterations the algorithm took to reach the solution changes (Figure 18). As X deviates 

from the best value found at 0.65, the number of iteration the algorithms increases. 

0.55 0.65 0.75 

Value of the lamda parameter (A) 

Figure 18. Algorithm sensitivity to lambda. 
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As mentioned above this 100-edge transportation problem is a relatively small problem, 

therefore the algorithm was able to reach the same solution with different levels of 

pheromone evaporation rate. However, the value of X affects the algorithm efficiency as 

shown in Figure 18, this result implies that an incorrect value of X, may need more 

iterations to find a similar quality solution than one carefully selected through initial 

algorithm trials. 

Conclusions 

In this paper, we introduced a new heuristic approach, the ant colony optimization (ACO) 

metaheuristic, and developed a specialized algorithm (ACO-FTPP) to solve forest 

transportation planning problems with fixed and variable costs considering side 

constraints. The ability to consider these constraints allow us to address various 

environmental issues in road system management decision making. 

A 100-edge hypothetical FTPP was developed to test the performance of our algorithm. 

ACO-FTPP was able to find a solution for the four cases analyzed; two single goal 

transportation problems (cost minimization and sediment minimization) and two multiple 

goal problems (cost minimization subject to an increasing level of sediment restriction). 

A detailed sensitivity analysis of the most important ACO parameters was conducted to 

better understand the impact of the parameters on the algorithm performance, and to 

obtain the best parameter combination for the hypothetical FTPP analyzed. 
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We compared the results from our ACO-FTPP algorithm with those from a mixed-integer 

programming (MIP) solver. The current MIP solver was only able to find optimal 

solutions for the two single goal transportation problems. For the cost minimization 

problem there was less than a 1% difference between the ACO-FTPP solution and the 

optimal MIP, and both methods found the same solution for the sediment minimization 

problem. 

Based on the results obtained by ACO-FTPP, we believe our approach is very promising 

for solving large, real forest transportation problems. Although the hypothetical example 

used is a relatively small scale problem, it represents a complex problem due to the grid-

shaped road network with a large number of road segment leaving each road intersection 

(an average of five), and the MIP solver could not find an optimal solution for the 

sediment constrained cases analyzed. 

ACO-FTPP can be easily modified to solve more complex transportation problems that 

consider multiple periods, products, origins and destinations. ACO-FTPP can also solve 

the problem of mills having a maximum volume capacity by including these mill 

capacities into the ACO-FTPP formulation as additional constraints. 

Further development of the algorithm will need to be done in the following three areas to 

enhance its performance. First, because the magnitudes of the three variables associated 

with each edge (fixed cost, variable cost, and sediment amount) are likely to be different. 
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it would be necessary to evaluate transition probability equations that incorporate these 

different magnitudes in order to better predict the goodness of a road segment in the 

solution. Second, local search techniques such as the 2-opt heuristic can also be 

combined with ACO-FTPP to improve solution quality, although it may likely increase 

the computing time. The 2-opt heuristic is an exhaustive search of all permutations 

obtainable by exchanging 2 edges adjacent in solution found at the end of each iteration. 

Lastly, since the algorithm parameters are heavily dependent on the nature and size of the 

problem, further evaluation of the robustness of the parameters should be done by 

applying ACO-FTPP to different problem types and sizes. As shown in the sensitivity 

analyses the right tuning of parameters can significantly improve the solution quality and 

efficiency of the algorithm. 
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APENDIXA 

INPUT INFORMATION FOR THE 100-EDGE HYPOTHETICAL 

PROBLEM 

a) Costs and sediment data per edge 

b) Volume data per timber sale 
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a) Cost and sediment information per edge 

Edge Edge identifier Variable cost Fixed cost Sediment 
number From node To node ($/vol/edge) ($/edge) (tons/edge) 

1 1 6 9.00 3368.88 43.90 

2 1 7 0.42 2211.90 6.06 

3 2 3 1.57 3405.38 30.38 

4 2 7 7.30 3955.67 68.04 

5 2 8 6.59 9858.81 84.15 

6 2 11 7.99 19568.14 75.39 

7 2 13 5.06 12616.08 171.54 

8 3 8 0.53 1686.22 64.73 

9 3 9 2.30 355.81 35.34 

10 3 14 6.50 4507.23 66.91 

11 4 5 1.63 1824.63 5.19 

12 4 9 0.75 3929.46 30.13 

13 4 10 7.23 7688.68 38.36 

14 4 14 4.47 5858.60 55.86 

15 5 10 8.22 1030.13 69.39 

16 5 12 5.95 6468.61 116.11 

17 5 22 4.23 23369.09 195.05 

18 6 7 1.68 3536.46 22.58 

19 6 11 3.13 11876.14 108.36 

20 6 15 9.70 155050.00 25.25 

21 6 19 0.35 245350.00 96.74 

22 7 11 4.22 2049.63 63.73 

23 8 13 1.70 1635.72 56.59 

24 8 14 2.71 3762.92 71.93 

25 8 18 6.95 12773.67 112.61 

26 9 14 9.67 4080.35 29.69 

27 10 12 5.02 1815.30 38.00 

28 10 14 6.66 2803.75 39.27 

29 10 17 7.76 6324.65 103.25 
30 11 13 4.75 526.45 15.50 

31 11 15 8.64 2201.17 5.63 

32 11 16 6.74 6127.96 25.57 

33 12 17 6.12 3182.62 5.30 

34 12 22 1.54 9371.39 115.06 

35 13 16 8.83 4144.32 8.28 

36 13 18 0.44 2052.65 80.56 
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37 13 20 8.28 10825.93 21.32 
38 14 17 3.89 825.88 12.03 
39 14 18 8.15 4580.60 68.64 
40 15 16 1.75 965.36 56.64 
41 15 19 8.67 102550.00 3.08 
42 16 19 8.64 4472.28 41.15 
43 16 20 6.02 1406.76 24.46 
44 16 23 4.42 8354.07 102.90 
45 17 18 0.20 3034.91 8.96 
46 17 21 8.74 2092.66 27.93 
47 17 22 8.22 7740.10 63.67 
48 17 24 0.41 8203.55 99.52 
49 18 20 8.89 1050.00 52.26 
50 18 24 1.96 4328.57 37.65 
51 18 26 3.97 3534.73 82.63 
52 19 23 9.34 7779.39 58.88 
53 19 28 8.35 118300.00 29.74 
54 19 33 4.02 178150.00 83.73 
55 20 23 3.76 1963.09 27.49 
56 20 26 6.71 3677.92 19.01 
57 21 22 3.78 4735.12 46.27 
58 21 24 4.66 2270.30 42.39 
59 21 27 8.70 6923.59 79.40 
60 22 25 9.28 3087.31 24.97 
61 22 27 0.91 6369.60 22.34 
62 23 26 0.02 1966.71 11.44 
63 23 28 5.63 2064.62 36.24 
64 23 29 5.71 2290.23 24.28 
65 23 33 7.54 3951.80 19.26 
66 24 26 1.35 2774.37 68.06 
67 24 27 3.54 7367.10 34.63 
68 24 30 6.50 2686.78 18.15 
69 24 31 6.57 13830.04 73.52 
70 25 27 5.07 1211.09 54.79 
71 25 35 0.18 5921.39 1.82 
72 26 29 2.20 1389.64 55.01 
73 26 31 1.63 4651.60 22.10 
74 27 30 2.17 2811.21 14.32 
75 27 32 3.04 2149.84 36.18 
76 27 35 9.51 4071.97 35.06 
77 28 33 2.94 65100.00 3.91 
78 29 31 1.50 3925.00 91.19 
79 29 33 6.02 4507.80 50.43 
80 29 36 9.57 3353.20 104.93 
81 30 31 1.60 2754.29 54.39 
82 30 32 7.39 660.60 48.67 
83 30 34 6.20 4624.31 91.33 
84 31 34 1.46 4421.19 65.27 
85 31 36 2.20 2951.89 54.73 
86 31 38 8.60 9217.30 57.49 
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87 32 34 9.30 6041.94 50.23 
88 32 35 7.20 2743.00 43.90 
89 32 37 4.20 2167.86 67.80 
90 33 36 5.68 8160.30 18.92 
91 33 38 3.32 11418.68 113.30 
92 34 37 2.77 1756.28 12.83 
93 34 38 6.47 6954.02 42.41 
94 34 39 6.43 4748.33 2.29 
95 35 39 1.23 5642.64 92.90 
96 36 38 4.19 1934.27 44.83 
97 37 35 7.62 1579.79 32.31 
98 37 39 5.60 2851.48 27.00 
99 38 40 9.11 0.00 19.38 
100 39 40 2.99 4858.28 50.46 

b) Volume information per timber sale 

Origin Destination 
Volume 

node node 
Volume 

1 40 671.814 
2 40 748.374 
3 40 748.374 
4 40 861.300 
5 40 819.192 
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