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Regular Polytopes

Jonathan Comes

In the last proposition of the Elements Euclid proved that there are only five regular
polyhedra, namely the tetrahedron, octahedron, icosahedron, cube, and dodecahedron. To
show there can be no more than five he used the fact that in a polyhedra, the sum of
the interior angles of the faces which meet at each vertex must be less than 360. For if
these angles sum to 360 the faces would tile in two dimensions. Since the interior angles
of a p-sided polygon are 180 − 360/p, the only possible polyhedra have the property that
q(180 − 360/p) < 360 where q > 2 is the number of faces which meet at each vertex. With
this in mind the only possible regular convex polyhedra are given in table 1.

p q q(180 − 360/p) name
3 3 180 tetrahedron
3 4 240 octahedron
3 5 300 icosahedron
4 3 270 cube
5 3 324 dodecahedron

Table 1. Possible regular polyhedra

In order to generalize the idea of this proof to n-dimensional polytopes we need some new
terminology. We define the n-dimensional angle between two (n− 1)-dimensional figures X
and Y with (n−2)-dimensional intersection S, as the angle between the line segments x and
y, where x ∈ X, y ∈ Y and x and y are perpendicular to S with the nonempty intersection
of x and y in S. For example the 3-dimensional angle (also referred to as the platonic angle)
between any two intersecting faces of an icosahedron as seen in figure 1 is
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Figure 1. Properties of the icosahedron

Because of the symmetry of regular polytopes we can define the interior n-angle of a regular
n-dimensional polytope to be the n-dimensional angle between any two intersecting (n− 1)-
dimensional figures in the polytope. Now just as before with 3-dimensional polyhedra, we
know that in an n-dimensional polytope the sum of the interior (n−1)-angles of the (n−1)-
dimensional polytopes meeting at an (n− 2)-polytope must be less than 360. For if the sum
of these interior (n − 1)-angles was 360 then the (n − 1)-dimensional polytopes would tile
in n − 1 dimensions. An example of this sort of tiling is three hexagons intersecting at one
point in two dimensions. Another is four cubes intersecting at on edge as shown in figure 2.
This occurs because the interior 3-angle of a cube is easily seen to be 90.
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Figure 2. cubes tiling in three dimensions

Now we can find a short list of the possible four dimensional polytopes by simply finding
the interior 3-angles of all the three dimensional polyhedra. We already know the interior
3-angles for the icosahedron and the cube. For the dodecahedron, using figure 3, we see the
interior 3-angle is
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Figure 3. Properties of the dodecahedron

The interior 3-angles for the tetrahedron and octahedron will be calculated later, but it is not
hard to show that they are 2 arcsin(

√
3/3) ≈ 70.5 and 2 arcsin(

√
6/3) ≈ 109.5 respectively.

Instead of naming the four dimensional polytopes, we will use what is known as the “Shläfli
symbol.” The “Shläfli symbol” can be used to denote regular polytopes of any dimension
as follows. The symbol {p} denotes the p-sided polygon. The symbol {p, q} denotes the
polyhedron whose faces are {p}, and there are q faces meeting at each vertex. Similarly the
“Shläfli symbol” {a1, a2, ..., an−1} represents an n-dimensional regular polytope made up of
(n − 1)-dimensional regular polytopes {a1, a2, ..., an−2} of which there are an−1 meeting at
each (n−2)-dimensional regular polytope {a1, a2, ..., an−3}. For example the four dimensional
regular polytope known as the hypercube is made of cubes, and three cubes meet at each
edge. Therefore it is represented by {4, 3, 3}. Now if we let φ{p,q} denote the interior 3-angle
of the polyhedron {p, q}, the only possible regular 4-dimensional polytopes have the property
that rφ{p,q} < 360, where r > 2 is the number of polyhedra {p, q} meeting at each edge.
With this in mind table 2 lists all possible 4-dimensional regular polytopes.

p q r φ{p,q} rφ{p,q} “Shläfli symbol”
3 3 3 70.5 211.5 {3, 3, 3}
3 3 4 70.5 282 {3, 3, 4}
3 3 5 70.5 352.5 {3, 3, 5}
3 4 3 109.5 328.5 {3, 4, 3}
4 3 3 90 270 {4, 3, 3}
5 5 3 116.6 349.8 {5, 3, 3}
Table 2. Possible 4-dimensional regular polytopes
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In order to find all the possible 5-dimensional regular polytopes we must calculate the
interior 4-angles of all the 4-dimensional regular polytopes. As before we let φ{p,q,r} denote
the interior 4-angle of the polytope {p, q, r}. Then it is easy to see that φ{4,3,3} = 90. Also
it will be shown later that φ{3,3,3} ≈ 75.5 and φ{3,3,4} = 120. To calculate φ{5,3,3} we need to
find the “angle” that two dodecahedrons meet at a pentagonal face. To do this we first let
P be a pentagonal face of {5, 3, 3}. Also let O,N , and M be vertices of {5, 3, 3} such that
O is on P , N and M are not on P , but NO and MO are edges of {5, 3, 3} as in figure 4a.
If we let a be the perpendicular distance from M (and therefore N) to P , then

a = sin(72) sin(180 − φ{5,3})

as can be seen in figure 4b. But the distance from M to N is (
√

5 + 1)/2 since M and N
are vertices of a pentagon. Therefore, as shown in figure 4c, we have

φ{5,3,3} = 2 arcsin(

√
5 + 1

4a
) = 144.

L

K

N
M

O

P

L

K

M
a

φ
{5 , 3}

aa

N M

2

√5 +1

(a) (b) (c)
Figure 4. Properties of {5, 3, 3}

To calculate φ{3,3,5} we need to find the “angle” that two tetrahedrons meet at a triangular
face. Let T be a triangular face in {3, 3, 5}. And let R and S be vertices of {3, 3, 5} which
are not in T , but are connected by an edge to every vertex of T as in figure 5a. The distance
between R and S is (

√
5 + 1)/2 since R and S are vertices of a pentagon, and if we let b be

the perpendicular distance between R (and therefore S) and T , then

b =

√
3

2
sin(φ{3,3})

as can be seen in figure 5b. Therefore, as shown in figure 5c,

φ{3,3,5} = 2 arcsin(
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) ≈ 164.5.
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Figure 5. Properties of {3, 3, 5}

To calculate φ{3,4,3} we need to find the “angle” that two octahedrons meet at a triangular
face. So let U be a triangular face in {3, 4, 3}. And let V and W be vertices of {3, 4, 3}
which are not contained in U , but are connected by edges to the same two vertices of U as
in figure 6a. The distance between U and V is

√
2 since U and V are vertices of a square,

and if we let c be the perpendicular distance from V (and therefore W ) to T , then

c =

√
3 sin(180 − φ{3,4})

2

as can be seen in figures 6b and 6c. Therefore, as seen in figure 6d,

φ{3,4,3} = 2 arcsin(
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) = 120.
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Figure 6. Properties of {3, 4, 3}

So now we have all the 4-angles of the regular 4-dimensional polytopes. It is interesting to
notice that since φ{3,3,4} = φ{3,4,3} = 120, the polytopes {3, 3, 4} and {3, 4, 3} will tile in
four dimensions. Now if we let s > 2 denote the number of 4-dimensional polytopes of the
form {p, q, r} meeting at each 3-dimensional polytope {p, q}, we know that the only possible
5-dimensional regular polytopes have the property that sφ{p,q,r} < 360. With this in mind
table 3 lists all the possible 5-dimensional polytopes.
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p q r s φ{p,q,r} sφ{p,q,r} “Shläfli symbol”
3 3 3 3 75.5 226.5 {3, 3, 3, 3}
3 3 3 4 75.5 302 {3, 3, 3, 4}
4 3 3 3 90 270 {4, 3, 3, 3}

Table 3. Possible 5-dimensional regular polytopes

Now we will show that for all n > 4 there can be no more than three regular polytopes.
These polytopes are of the form {3, 3, . . . , 3}, {3, 3, . . . , 3, 4}, and {4, 3, 3, . . . , 3}. The n-
dimensional polytope of the form {4, 3, 3, . . . , 3} is the n-dimensional cube or n-cube, and
will always have interior n-angle of 90. Because of this we can never fit four n-cubes about
an (n − 1)-cube without tiling in n-dimensions. Therefore it is not possible for an (n + 1)-
dimensional polytope of the form {4, 3, 3, . . . , 3, 4} to exist. The n-dimensional polytope of
the form {3, 3, . . . , 3} is the n-dimensional simplex or n-simplex. Let φn denote the interior
n-angle of of the n-simplex. To find φn we first look at one of the properties of a simplex.
Given an n-simplex we can create an (n + 1)-simplex by placing a new vertex in our new
dimension such that it is at distance one from all the vertices of our n-simplex as shown in
figure 7.

Figure 7. The n-simplex for 1 ≤ n ≤ 5

Now if we let A and B be vertices of an n-simplex. And let S denote the (n − 2)-simplex
which is contained in the n-simplex but does not contain A or B. We know that the distance
from A to B is 1. If we let t denote the perpendicular distance from A (and therefore B) to
S then we know that

φn = 2 arcsin(
1

2t
) (⋆)

as can be seen in figure 8.
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Figure 8. φn

Since A (and therefore B) is equidistant from all vertices in S, the line through A (and
therefore B) perpendicular to S contains the center of S which we denote On−2. But this
line contains the points which are equidistant to all vertices of S it will also contain the
center of the (n − 1)-simplex which we denote On−1. If we let C be any vertex in S, then
figure 9 depicts the relationship described above.
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Now if we let xn denote the distance from any vertex in an n-simplex to the center of that
n-simplex, and let yn denote the perpendicular distance from the center of an n-simplex to
any (n − 1)-simplex contained in that n-simplex, then we know that t = xn−1 + yn−1. Also
from figure 9 we obtain figure 10 which shows the relationship between xn−1, yn−1, and xn−2.
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From △On−1On−2C and △AOn−2C we have the following equations:

x2

n−2
+ y2

n−1
= x2

n−1
,

x2

n−2
+ (xn−1 + yn−1)

2 = 1.

Substituting the first equation into the second gives us

2x2

n−2
+ 2(xn−1 + yn−1) = 1

⇒ xn−1 =
1

2(xn−1 + yn−1)
.

Since t = xn−1 + yn−1, we can now rewrite (⋆) as

φn = 2 arcsin(xn−1). (1)

So we have reduced the problem of finding the interior n-angle of the n-simplex to finding
xn−1. We will find xn−1 recursively in the following way. First we let D be the midpoint of
the edge with endpoints A and C. And let s be the distance from D to On−1. Now since
△AOn−1C is isosceles, we have the similar triangles △AOn−1D and △ACOn−2 as can be
seen in figure 11.
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These similar triangle give us s = xn−1xn−2. So △ADOn−1 gives us the following relation
between xn−1 and xn−2:

x2

n−1
= (xn−1xn−2)

2 +
1

4
. (⋆⋆)

To find a recursive formula for xn−1 in terms of xn−2 we look at △AOn−2C to see that the
angle at vertex A is arcsin(xn−2). And △ADOn−1 gives us

cos(arcsin(xn−2)) =
1

2xn−1

⇒

xn−1 =
1

2 cos(arcsin(xn−2))
. (2)

From (⋆⋆) we can find the limit of xn as n approaches infinity as follows.

x2 = x4 +
1

4
⇒ x =

√
2

2
⇒ lim

n→∞
xn =

√
2

2
.

And since we know φn = 2 arcsin(xn−1) we have

lim
n→∞

φn = 90.

But xn (and therefore φn) is a strictly increasing sequence, so φn < 90 for every n. Thus
we can always fit three or four n-simplexes about an (n − 2)-simplex without tiling in n
dimensions. Therefore it is still possible for an (n + 1)-simplex and an (n + 1)-dimensional
polytope of the form {3, 3, . . . , 3, 4} to exist. But since φn is increasing, it is not possible for
an n-dimensional polytope of the form {3, 3, . . . , 3, 5} to exist when n > 4. Also equations
(1) and (2) give us a way to compute the interior n-angle for the n-simplex. Because the
one dimensional simplex is a line segment, we know x1 = 1/2. From this we can recursively
find φn for any n. Table 4 lists the interior n-angle of the n-simplex for 2 ≤ n ≤ 8.

n xn−1 φn “Shläfli symbol”
2 1/2 60 {3}
3

√
3/3 70.5 {3, 3}

4
√

6/4 75.5 {3, 3, 3}
5

√
10/5 78.5 {3, 3, 3, 3}

6
√

15/6 80.4 {3, 3, 3, 3, 3}
7

√
21/7 81.8 {3, 3, 3, 3, 3, 3}

8
√

7/4 82.8 {3, 3, 3, 3, 3, 3, 3}
Table 4. interior n-angles for the n-simplex
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If we let φ′
n

denote the interior n-angle for the n-dimensional polytope {3, 3, . . . , 3, 4}, then
one can similarly show

φ′
n

= 2 arcsin(
√

2xn−1).

Using this equation along with (2) we can find φ′
n

for all n. Table 5 lists φ′
n

for 2 ≤ n ≤ 5.

n xn−1 φ′
n

“Shläfli symbol”
2 1/2 90 {4}
3

√
3/3 109.5 {3, 4}

4
√

6/4 120 {3, 3, 4}
5

√
10/5 126.9 {3, 3, 3, 4}

Table 5. interior n-angles for the n-dimensional polytope {3, 3, . . . , 3, 4}

Since φ′
n

is an increasing sequence, φ′
n
≥ 120 for all n > 3. So the n-dimensional polytopes

of the form {3, 3, . . . , 3, 4, 3} can not exist for n > 4. Thus there can be no more than three
regular n-dimensional polytopes for n > 4.
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