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ABSTRACT

Let R be the polynomial ring k[x,,z2,...,%,] where k is a field, and let M and
N be finitely generated R-modules. In this expository paper, we use the theory of
Groebner bases to compute the R-modules Ext’z (M, N}. We start by computing a
presentation of the syzygy module, Syz{f},f2,..., ), for fi,f2,... ,f; € R™. Next we
use the syzygy module to compute free resolutions of M and N. Finally, we compute
a presentation of Homgr(M, N) and we use this to compute a presentation of
Exth (M, N).
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1. INTRODUCTION

The theory of Groebner bases provide algorithms for a variety of important computations regarding mod-
ules over a ring. For example, the use of Groebner bases for computations involving ideals in the polynomial
ring R = k[x;,z2,...,Z,] where k is a field yields a solution to the ideal membership problem, and plays a
prominent role in elimination theory [3]. The purpose of this expository paper is to use the theory of Groeb-
ner bases to compute a presentation for the R-module Extﬁg(M , IN) for finitely generated R-modules M and
N. The R-module Ext’%(M, N} has a wide range of applications. For instance Ext%(M, N} = Homg(M, N).
Furthermore Ext} (M, N) parameterizes the set of all extensions of M by N. More precisely we have the
following:

Definition 1.1. For R-modules M and N, an extension of M by N is an exact sequence
00— N-—FE—s M —0.

Two extensions £ and £’ of M by N are equivalent if there is a commutative diagram

E: 0 N E M 0
1, ¢ 1,,'
&: 0 N E' M 0

where ¢ is an R-module homomorphism. An extension is split if it is equivalent to
(0,1)
0 —=N-"SM®ON — M —0.

Theorem 1.2.{7, Theorem 7.19, Corollary 7.20] For R-modules M and N, there is an R-module Exth(M, N),

and a one-to-one correspondence
{equivelence classes of extensions of M by N} &L Extp(M, N)

in which split extensions correspond to 0 € Exty (M, N).
The modules Ext% (M, N) for i > 1 encode more subtle properties of the modules M and N [7].

We now give a summary of the contents of this paper. In Section 3 we give the definition of a Groebner
basis for submodules of R™, as well as some properties of Groebner bases which we will need. In Section 4 we
define the syzygy module, and given fy,f,...,f; € R™, we find a presentation for Syz(fy,fz,...,£). We will
use the syzygy module to compute a free resolution of certain classes of R-modules in Section 5. In Section
6 we use the syzygy module to compute a presentation of Homg(M, N} for certain R-modules M and N.
In the process of computing this presentation of Homg(M, N}, we will state two lemmas. We will use these
lemmas, along with our knowledge of free resolutions, to compute Ext%,(M, N) in Section 7. Throughout this
paper we will give examples of our main results. In Appendix A we show how the computer algebra system
Macaulay 2 has been used in our computations. The results in this paper can be found in -[1] and [4], with
some passages almost identical. The computations in this paper are new.

Groebner basis over other rings have also been studied. One can define Groebner bases in the ring
Alzy,z3,...,2,] where A is a Noetherian commutative ring, see [1, chapter 4]. Furthermore there exists a

notion of Groebner bases in noncommutative polynomial rings, see (2] and [6, chapter 8]. The development

1
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of algorithms employing Groebner bases in the latter case are an active area of research, but the description

of such algorithms lies beyond the scope of this paper.

2. PRELIMINARIES

Before we define Groebner bases for modules, we give a few definitions which we will need. For the

remainder of this paper, unless otherwise noted, we let
R =klx1,22,...,2a]

be the polynomial ring in n variables where k is a field.

Definition 2.1. A monomial order on R is a relation < on the monomials in R which satisfies the following

conditions:

e < is a total order.
o If monomials z* and 2f in R are such that z® < 2%, then £®z" < zPz” for any monomial 7 in R.

e < is a well-ordering.

We now define the monomial orderings we will be using. These orderings can also be found in [3].
Definition 2.2. Let a = (a1,02,...,an),8 = (b1,b2,...,bn) € Z5,. Also let @ = z{*z5%-- -z~ and
zf = :1':2‘ a:lz’2 ---z8 be monomials in R. We define the lex (lexicographic) order with z; > z2 > --- > z, as

follows:
I <jeg ° <=> the leftmost nonzéro entry of § — « is positive.

Definition 2.3. Let a = (a1,a2,...,an),8 = (b1,b2,...,by) € Z%,. Also let x* = z7'x3? - -z~ and xh =

m?’mgz .- -zl be monomials in R. We define the grlex (graded lexicographic) order with z; > z3 > --- > zp,

as follows:
D10 < X b
z* <grlex zf <= or
Y ai =0 b and 2% <jor zP.
Definition 2.4. Let o = (a1,02,...,a4),8 = (b1,b2,...,b,) € Z%,. Also let z® = x7'x5?---z%* and

8 = z'l"xgz ---z8n be monomials in R. We define the grevlex (graded reverse lexicographic) order with

Ty > xy > --- > T, as follows:
n n
Zi:} a; < Zizl b;
z% <griex -'Lﬁ = or

S, ai =) 1, bi and the leftmost nonzero entry of 8 — « is negative.

Example 2.5. Let R = R(z,y, z]. Using grlex order on R with z > y > z, we have zy*z > %22, but using
grevlex order on R with z > y > 2, we have zy'z < y4z2. Also using lex order on R with z > ¥ > z, we have

z > y°2!0, but using grevlex order on R with > y > z, we have z < y®2!0. O
We will be working mainly with submadules of R™. Although we will think of elements of R™ as columns

with m entries from R, we will often write these elements as rows to save space. In symbols, for f € R™ such

2
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that
h
f:
i=| |,

fm
we write f = (f1, fa,..., fm)-

3. GROEBNER BASES FOR MODULES

In this section we will introduce Groebner bases for modules and give some properties of Groebner bases

which we will need. Before introducing Groebner bases we will need the notions of term ordering and division.
Let

er = (1,0,...,0),e2 = (0,1,0,...,0),...,em = (0,0,...,0,1)
be the usual basis of R™. We define a monomial in E™ to be an element of the form Xe; forsomel1 < i< m,
where X = z*z3? --- 22~ € R for some q; € {0,1,2,...}.

Definition 3.1. A term order on R™ is a relation < on the monomials in R™ which satisfies the following

conditions:

e < is a total order.

e If X and Y are monomials in R™ such that X <Y, then ZX < ZY for every monomial Z in R.

e < is a well-ordering.

Now we define two different term orders on the monomials of B™,
Definition 3.2. Fix a monomial order < on R, and fix a linear order < on {e;,ez2,...,e,}. Let X, Y € R™

be monomials such that X = Xe; and Y = Ye;. We define the order TOP (term over position) as follows:

X<Y
X<TOPY<=> or

X =Y and ¢; < e;.
Definition 3.3. Fix a monomial order < on R, and fix a linear order < on {ej,es,...,en}. Let X, ¥ € R™

be monomials such that X = Xe; and Y = Ye;. We define the order POT (position over term) as follows:
¢ < €y
X<por Y <= { or
e;=e;and X <Y,
Example 3.4. Let R = Q[z,y]. With lex order on R with z > y and e; > ez, TOP order on R? gives us

(0,z%y) > (zy,0).

Whereas POT order gives us

(zy,0) > (0,z%y). o

Now that we have a notion of term order, given f € R™, we can define the leading monomial of f, Im(f),

the leading coefficient of f, Ic(f), and the leading term of f, 1t(f).

3
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Definition 3.5. Let f € R™ such that f = a;X; + a2Xs + ...+ a;X,, where for all 1 <i < s, a; € k with
a; # 0 and X, is a monomial such that X; > X;;,. We define

Im(f) = X3, le(f) =ay, ) =a1X;.
Example 3.6. Let R = Q|z,y, 2] and let
f = (2222 — 2x,52°%y + 2z, xyz) € R®.
With lex order on R with > y > z, and with TOP order with e; > ez > e3, we have
Im(f) = z2yes, le(f) =5, It(f) = 5x’yes.
With lex order on R with z > y > 2z, and with POT order with e; > e; > e3, we have
Im(f) = 222%1, le(f)=1, () =2>22%,. O

We now define division of monomials in R™. With this definition, we can formulate a notion of remainders
and thus a division algorithm.
Definition 3.7. Let X = Xe; and Y = Ye; be monomials in R™. We say that X divides Y if i = j and
X divides Y. Furthermore if X divides Y we define

Y Y
")-(-—--)-{-GR.

Example 3.8. Let R = Q[z,y, z]. The monomial (0, zy?z,0) € R® divides (0, z2y222, 0), but does not divide
(z%y%22,0,0) or (0,7yz,0). And
(0,z2y222,0) _ z%y?2?
0,zy%2,0) zy2z

= xz. (W

Definition 3.9. Given f, g h € R™, we say that f reduces to h modulo g if there exists a term, X, in f
such that Im(g) divides X and h = f — m%g. We write

f-£ h.

Example 3.10. Let R = Q[z,y], and f, g, h € R? such that f = (z%y +z,v),g = (zy,z), and h = (z,y — z?).
Using grlex order on R with z > y, and with POT order with e; > ez, we have Im(g) = xye;. Therefore

z?y 2
f— E(wy’m) - (x,y—m ) - h:

so f -5 h. O
Definition 3.11. Given F = {f;,f,,...,f;} C R™ and f,h € R™, we say that f reduces to h modulo F if
there exist some hy,hg,...,h,_; € R™ such that for some f;,f;,,...,f; € F the following occurs:
) £, )
f&h]f&hz_fi,... ..':.}hr_l.f‘_',h_
‘We write
£ h

Definition 3.12. Givenr € R™ and F C R™, we say that r is reduced with respect to F if either r = 0

or r cannot be reduced module F. If h € R™ is such that
h £, T

4
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where r is reduced with respect to F', then we say that r is a remainder of h with respect to F' and we write

Notice that given f € R™ and F C R™, a remainder of f with respect to F is not necessarily unique as can
be seen in the following example.
Example 3.13. Let R = Q[z,y] and let f € R? such that f = (2% + z, 2zy). Also let F' = {f;,f2} C R? where
fi = (z2 + 1,2y) and f; = (22, y). Using lex order on R with £ > y and with POT order on R? with e; > e»
we have Im(f;) =Im(f;) = x2%e;. Thus f 1, 050 that ¥ = 0 since 0 is reduced with respect to F. But also
we have f 25 (z,zy) so that = (x, zy) since (z, zy) is reduced with respect to F. O
Theorem 3.14. There erists a division algorithm which given f € R™, and F = {f;,f5,...,f;} ¢ R™, will
yield a1,a3,...,a; € R and r € R™ such that

f=aify +asfo+ ---+afs+r

where T =r.

As the example above illustrates, this algorithm may give different remainders. It is natural to ask how
helpful this division algorithm is, since it does not give unique remainders. When the set by which we are
dividing is a Groebner basis, we get unique remainders. Below is the definition of a Groebner basis for a
submodule of R™ followed by some important properties of a Groebner basis. For a proof of Theorem 3.16
we refer the reader to {1, Section 3.5](see also [4, Section 5.2]).

Definition 3.15. Given a submodule M C R™, the set G = {g;,85,.-.,8,} C M is a Groebner basis for
M if for every £ € M, lm(f) is divisible by lm(g;) for some 1 < ¢ < s.
Theorem 3.16. For a submodule M C R™ and a set G = {g,,95,-..,9:} C M the following are equivalent:

¢ G is a Groebner basis for M.

cfeMoF =0

o Vfe R™, if ?G =ry, and = ry,, we have ry = rp.

o (1t(8y), t(82), - - -, 16(,)) = (16(M))

o Vf€ M :3hy, hy, ..., hs € R such that f=3;_, hig; and Im(f) = max; {Im(h;)Im(g;)}.

The theorem above specializes, when m = 1, to results about Groebner bases in polynomial rings, see e.g.,
[3, Section 2.6]. The following Corollaries of Theorem 3.16 are not hard to prove.

Corollary 3.17. If G = {g,,8,,---,8,} is a Groebner basis for the submodule M < R™, then M =
(81,82, -1 8s)-
Corollary 3.18. Bvery nonzero submodule of R™ has a Groebner basis.

Given generators for a submodule M ¢ R™, there exists an algorithm, known as Buchberger’s algorithm
for modules, which gives g,,g,,...,8, € R™ such that G = {g;,g,,... ,gs}‘ is a Groebner basis for M. The
division algorithm and Buchberger’s algorithm give us the following relationship between a submodule M of
R™ and a Groebner basis for M.

Proposition 3.19. Given a Groebner basis {g,,€,,...,8,} for the submodule {f;,f;,...,£) C R™, let F be

the m x t matriz with columns f1,f3,..., % and let G be the m x s matriz with columns g,,g,,- . . 18- There

5
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exist a t X s matriz S with entries in R and an s x t matriz T with entries in R such that
FS=G and GT =F.

Proposition 3.19 follows easily from Corollary 3.17, so the proof is omitted. Note that the entries of S can
be obtained by keeping track of reductions during Buchberger’s algorithm, and entries of T" are obtained by
applying the division algorithm on each f; by {g;,g5,...,8,}-

4. THE SyZzyGgy MODULE

In this section we will introduce the syzygy module, and give a method for finding a presentation of certain
syzygy modules.
Definition 4.1. Given F = {f;,f,,...,f;} ¢ R™ we say that h = (hy,h3,...,h;) € R is a syzygy of F if

hifiy + hofo + -+ -+ hefy = 0.
We define the set of all such syzygies to be the syzygy module of F, and we write
Syz(F) or Syz(fy,fa, ..., §;).
Notice that Syz(f,fz,...,f;) is the kernel of the B-module homomorphism
Rt — R™
(A1 ha, ... g} — hafy + hofa + - + hefy.

It is not hard to show that for any f,f5,...,f; € R™, Syz(fy,fa,...,f;} is in fact a submodule of Rt. For
all 1 €1 <t,setf; = (fir, fiz,---, fim) € R™. Then by the definition of Syz{fy, f;,...,f;) we can view the

syzygy module as the set of all polynomial solutions k € R to the following system of equations:
Xihij+Xefej+-+Xefy; =0, foralll1<j<m.

Given F = {fi,f5,...,f;} C R™, we wish to find generators for Syz(F). That is we want to find
hi,ha,...,hs € R? such that (hy,hs,..., hs) = Syz(F). We will start with a special case of this prob-
lem, and find generators for Syz(X,,Xa,...,X,) where X; is a monomial in R™ for each 1 <i <t Todoso
we will need to define the least common multiple of two monomials.

Definition 4.2. Let X = Xe; and Y = Ye; be monomials in R™. We define the least common multiple
of X and Y ( LCM(X,Y) ) as follows:

LCM(X,Y)e;, ifi=j;
0, if i # j.

Example 4.3. Let R = Q[z,y, z] and let X,Y,Z € R? such that

LCM(X,Y) = {

X = (z%y,0), Y = (222%,0), Z = (0,z°2%).
Then

LCM(X,Y) = (z%y2%,0), and LCM(Y,Z)=LCM(Z,X) = (0,0). O

6
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Now we return to the problem of finding generators for the syzygy module of monomials in R™. Let

X,,Xs,...,X; be monomials in R™. If for all 4,j € {1,2,...,t} we let
X,; = LOM(X,, X;),

then we have the following proposition.
Proposition 4.4. If X;,X,,..., X, are monomials in R™, then

Xy Xy i
{Téj—ei——xjej:l_<_1<]£t}

is a generating set for Syz{X;, Xa2,..., X¢).

Proof. First we prove the Proposition in the case m = 1. Let X3, Xo,..., X € R. We need to show
Xij Xij
SyZ(Xl,Xg,.. .,Xt) = <-—)—élei - -5—(-:6_, 1<i<3< t>

It is easy to see

<X" X’J -:1§i<j5t>CSyz(X,,Xz,...,Xt).

So we must show the converse. Let (ul,uz, eooyty) € Syz{X1,Xa,...,X;:). If we fix a monoemial X € R, we
know that the coefficients of X in w3 X; + wpXs + - -+ + uX; must sum to 0. Therefore it suffices to prove
the case where for each 1 < i < i, u; = ¢; X{ where either ¢; = 0 or X; X[ = X. Let ¢;; denote the nonzero
¢;'s. Then we have

(uy,uz,...,u) =1 Xjer +caXpea + -+ + e X{ey = ¢;, X] e;, + ¢, X[ ey, + -+ ¢, X] e,

+ e .

= €, ——€;, + Ciy——2©€i, + -+ + Cj,—€

iy Xh 11 ia th iz T+ is Xi, i

X (X KXy iz X Xz, Xia ig
T X ( Xy 27 X 2 + (on + %)Xz‘z,is X, 27 Xip B M
X Xioo1 i Kigor,is
+(ciy, e, +-- + Cis—l)Xi,_l,i, ( Xi: €y — X_,':ei’ +
X
(ciy + iy +--- + Ci,)j(:-
But ¢, +¢i, +---+¢;, =1 +ca2+---+ ¢ =0, so we have written (u1,ua,...,us) as a linear combination

of elements from the set {%%f—ei - }J(C',J ej 1 1 <14 < j <t}. Thus, the proposition is true for m = 1.

Now we prove the result in the case m > 1. Notice that for X;,X,,...,X; € BR™, Syz(X,,Xa,...,Xy)
is the intersection of the syzygy modules of the Ith coordinates of X;,X,,...,X; foreach 1 <[ < m. Let
J; = {i : the nonzero entry of X; is in the lth coordinate}. Uéing the result of the proposition when m = 1

we know the syzygy module of the lth coordinate of X,;,X,,..., X, is

<x'3 - "' i< g i,j€Ja>€B(€iii¢J1)-

Therefore the intersection of the syzygy module of the first coordinate of X;,X,,..., X, and the syzygy

module of the second coordinate of X;,Xs,..., X, is

< 1.3 _ ’ i< g 1,J€J1>@<%ei—~iﬂej:i<jZi,j€J2>®(€,'2i¢J1UJ2).
i ]
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For all i € J;,j € J» we know X;; = 0 which implies XY""-e,— - -))%?ej = 0. Therefore

X, Xii . X5 Xij o
<3(1ilei——)—é—ej:z<_7:z,_7€.]1>69<)£:e,-—i—’fej.z<3.z,]€.]2>

Xij Xij C >
— ——.—-——i—_.——__»: :7 J 3
_<X¢e XjeJ i<y, jehUJz

which implies the intersection of the syzygy module of the first coordinate of X;,X3,..., X, and the syzygy

module of the second coordinate of X;,X,,..., X, is

ijei—Xij({,‘Zi(in,jEJ]UJQ @(EZZ¢J1UJ2)
X; XJ'

If we continue in this process we see that the intersection of the syzygy modules of the Ith coordinates of

X1,X3,.-., X, foreach 1 <[ <mis

X.. X.. m m
<)£:€-1~*"il;1—€j:i<jii,j€UJ1>®<ei:i¢UJg>

=1 =1

> I o o
o [N AP S — :1< <t .
<J{i€1 J{jeJ Si1<71<

O

With the above proposition, given f1,f3,...,f; € R™ we can now compute Syz(fi,f2,...,f;). We will do so
in two steps. First we compute Syz(g,,8,,...,8,) where {g,,8,-- ., &,} is a Groebner basis for {fi,f,,... ).
Let G = {g;,82,-- ., 8, }- Note that we can assume lc(g;) = 1 for all 1 < i < s, for if we divide each element
of the Groebner basis by its leading coefficient we will still have a Groebner basis. Let Im(g;) = X; and let
LCM(X;, X;) = X;;. Now for all g; and g; in G we define
5(gi.8;) = %gi - ‘))((—i;g,--

Since 5(g;,g;) € (G), by Theorem 3.16 we have for some h;;, € R
&
S(gig;) = Z hijvg,,

v=1

where

lrgggs{lm(hij,,)lm(g,,)} = lm(S5(g;, gj))'
Now for all 1 < i < j < s we define
' X.. X,
8ij = —)(L:ei - i:%ej — (hijl,hij2, he :hijs) e R°.

Theorem 4.5. With the notation above, the set {s; : 1 <i < j < s} is a generating set for Syz(G).

Proof. Let G’ denote the m X s matrix with columns g;,g,,...,8,. Forall 1 < i < j < s we know
s;; € Syz(G) since
8
GIS,;J' = S(g“gj) - Zhijygu =0.
vzl

Therefore {8;; : 1 £i < j < s) C Syz(G). We prove the converse by contradiction. Assume there exists some

('U.l,U2,...,us) € Syz(G)\(sU 11<i< i< S).

8
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Because we are implicitly using a term order on R™, which ié a well ordering, we can choose a (uj,ug, ..., us)
so that
X = max {Im(u;)lm(g;)}

is least. Let

A = {i: Im(u;)lm(g,;) = X},
and set

, U4, ifi ¢ A;

o { wi —lt(w), ifie A
If we let 1t(u;) = ¢; X] where ¢; € k and X is a monomial in R, then we can write {u;,ua,...,u;) as follows:
(1) (w1, vz, .., Uug) = (u'l,u’2,..‘,u's)+§:ciX{ei.

i€A
Now, since {u;,us,..., 45} € Syz{G) we know

ZC,;X;X,; =0

i€A

since X;X; = X iff i € A. In other words }_,. 4 c; X{e; € Syz(X; : i € A). So Proposition 4.4 tells us that for

some a;; € R we have

Xy Xy
Sexie= ¥ e (Ra-le).
i J

icA Li€A <]

Notice that each coordinate in the left-hand side of the equation above is homogeneous. Also for all i € A4,

X!X; = X, so we can assume each a;; is a constant multiple of <X-. Substituting into equation (1) we get
i ¥ Xj

X, X,
o ’ if ij

(ur,u2,...,us) = (uy,us,..., uy) + E aij (__et. ~ e,
£, FEAI<F J

E 7 f
= (up'uz, “e ,'U-s) + E ;354 + E Orij(hijl,hijz, ‘.- 1hijs)-

i,jEA i< i,JEAH
3 — /
Now if we let (U]_, Vo,... ,‘Us) == (‘ul,u’z, P .,’u;) ~+ Zi,jEA,i<j a,-j(ht-jl, h;‘jg, ey h'ijs) then we have
(2) (vi,v2,...,05) = (U1, ug,...,Us) — E Qi85
i,jEA,ILI

Since the right side of equation (2} is an element of Syz(G) \ {s;; : 1 < i < j < s) we have that
(v1,v2,...,05) €Syz(G)\ (8;; 1 1 <i < j< 8).

Also, the definition of (vy, vs,...,u;) tells us

Im{v, ) im(g,) = Im(u], + z ai;hij )X,
i,jEA <]

’ e Iy
< max{lm(u,)X,, i,jrenﬁ)zgq{lm(a,_,)lm(h.,_,,,)}x,,}.

By construction of (u},u5, ..., u}) we know that Im(u/,)X, < X. Also since a;; is a constant multiple of

we have

X X
Im(a;)im(h;, )X, = "_"X_.lm(hiju)xv = x -Im(5(gi, g5)) < X.
if ij
The last inequality follows from Im(5(g;, g;)) = lm(%gl— - }X-;’—gj) < X;;. Thus

max {Im(v), Im(g;)} < X

9
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which contradicts our original choice of X. o
Example 4.6. Let R = Q[z,y, 2] and (f1, f2) C R be such that
fi=2—y, and fo=azyz®

Then using grevlex order on R with z > y > z one can show {z% — v, %22, xy2%} is a Groebner basis for
(f1, f2)- So let

n=z~y, g2=y%2%, and gs=azy

Then we find o 22 . 2n

5(g1,92) = %z-(mz -y - :z:ygz;z;' ¥’z = —y°2% = —ygs,

S(g1,93) = x?:z (z® —y) - 3:5:22 xyz® = —y?2% = —gs,
5(g92,93) = %%f;yzzz - ?::22 zyz? = 0.

Now we compute 5 2.2 ’ s 22

S12 == :32 er— Iyng ez — (0,—y,0) = (y°2%, —z° +4,0),

513 = 3;3xy33261 - f:;:es - (0,-1,0) = (y2°,1,-z?%),
Sg3 == ;c;zzz: €3 — :g::; es — (0,0,0) = (0,z, —y).

Therefore we have

Syz(91,92,93) = ((¥*2°, —2° +4,0), (y2°,1, 2%}, (0, z, —y))- o

Example 4.7. Let R = Q[z,y, z] and {fi,fs, f5) C R® be such that

f, = ('Tz —y+ z,0, _"':2 + 2’,‘), f; = (—st:yz —yrnLy—z2- 1,$y2),

and f3=(-2’z+zyz+yz—2%,r—y+2,2%°2—zyz — x2).

Then using lex order in R with z > y > 2 and using TOP order on R?® with e3 > e, > e; one can show

{g1,82,83} is a Groebner basis for {f;,f2,f3} where
g1 = (—-yz,z - 1,0), g2 = f2a and g3 = _fl'

Then we find

S(g1.82) = 5(@1,83) =0,
riyz z?yz
—zyz — —z—1 Yy — 200~
myz( 2yz —yz,y — 2= 1,7yz) — ——(=2" +y — 2,0,2" - 7)

= (~zyz — yzz +y2? 2y — xz -z, zyz) = (y— 2z — 1)g1 + g2-

S(g2.83) =

Now we compute

s12 = 813 = 0,
x2yz x2yz
€g — )

TYZ T

Soz = ea—(y—2—1,1,0)=(—y+z+1,z—1,—yz).

Therefore we have

Syz(g1,g2,83) = ((—y+ 2+ 1,z — 1,—yz)). O

10
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Using Theorem 4.5, we can now find generators for Syz(fy,fs,...,f;) for any f,f5,...,f, € R™.
Theorem 4.8, Let f1,f;,....f; € R™ and let {g;,85,---,8s} be a Groebner basis for (fi,f2,...,f). Also
let the matrices S and T be as in Proposition 3.19. If (s1,sg,...,Sr) = Syz(g,.82,. .., &) and if we let r;

denote the ith column of the matriz I, — ST where I, is the t x t identity matriz, then

Syz(fl,fg, . ’ft) = (SSl,SSQ,.. . ,SST,I'l,l'z,. . ,l‘t).

Proof. Let matrices F' and G have columns f;,f;,...,f; and g,,8g2,...,8s as in proposition 3.19. Now
notice that for each s; € Syz(g,,g,,...,g,} we have FSs; = Gs; = 0. Therefore {Ss;, Sss,...,Ss¢} C
Syz(f,f2,. .. ,f). Also notice that

F(L,-STY)=F—-F8T=F-GI'=F—-F=0.
Therefore {ry,ra,...,r¢} C Syz(f1,f2,...,f). So we have
(SSl.,SSz,...,SS,-,I'l,l‘g,...,I't> CSyz(fl,fg,...,ft).

To show the converse we first notice that for all h € R* such that h € Syz(fi,f>,...,f;) we know GTh = Fh =
0 which implies Th € Syz(g;,8,,...,8;). Therefore we have Th = Z:__.l h;s; for some hy,hy,...,h, € R,

and left multiplication by S gives us

T
STh = }: h;Ss;.
=]

Now we have

bl
h=h-STh+S5Th= (I, - ST)h+>_ h:Ss;.
i=1

Thus we have shown

Syz(flaf21~ . 7ft) - (85115527 .- ,SS,-,I']_,I’Q, s ,I't).

Example 4.9. Let R = Q[z,y, 2] and (f1, f2) C R be such that
fi=z*—y, and fo=azy’

Using grevlex order on R with z > y > z one can show {z3 — y,y?22, zy2?} is a Groebner basis for (fi, f2).

So let
g=x-y, g=y%2% and g3=myz’

The desired matrices S and T from Proposition 3.19 can be verified to be

1
1 —y22 0

S= and T=| 0
o =z 1

0

In Example 4.6 we found Syz(glig27 93) = ((y‘222’ "—$3 + ?J»O)v (yz27 11 _zZ), (OI x, “y))' So let

§; = (y222’ "'wa + y,O), 82 = (y221 1) _m2)’ and 853 = (01 x, '_y)‘

11
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Then we have
Ssy = (z3y22, —2% + z%y), Ssz=(0,0), and Ssz=(-zyz®z°—y).
Also we compute Iz — ST = 0. Thus Syz(fy, fo) = {(x3y2?, — 2% + 2y), (—zy22, 2% — y)). Since (z3y2?, —2°+
x%y) = —z?(—zy2?,2% — y) we have
Syz(f1, f2) = {(—zyz?,2° — v)). ]
Example 4.10. Let R = Q[z,y, 2] and (f;, 2, f3) C R3 be such that

f, = (:L'2 -y+2z2,0, —z? +x), f2=(-zyz-—yz,y— z— 1l,zyz),

2 2

and f3 = (—z?z+ zyz +yz — 2%, x — y + 2, 2%z — xyz — x2).

Using lex order in R with £ > y > z and using TOP order on R® with e3 > e, > e; one can show {g;,82,83}

is a Groebner basis for (fy, fa, f3) where

g1 = (""yzsm - 110)‘) g2 = f2s and B3 = _fl-

The desired matrices S and T from Proposition 3.19 can be verified to be

z 0 -1 g 0 1
S = 11 0 and T = 0 1 -1
1 0 0O -1 0 =z

In Example 4.7 we found
Syz(g1,82,83) = ((—y + 2+ 1,z — 1, —y2)).
So let
s=(~y+z+1l,z—1,~yz)
Then we have
Ss=(2+z,x—y+z,~y+z+1).

Also we compute I3 — ST = 0. Therefore we have
Syz(fy, f2,f3) = (22 + z,x —y + z,—y + 2z + 1)). O

One application of syzygies which we will need involves finding a presentation of M /N where N C M are
submodules of R™. That is given generators for N and M, we would like to find a submodule K C R such
that M/N = R'/K.

Theorem 4.11. Let M = (fy,f5,....f;) and N = (g,,8,,...,E,) be submodules of R™ such that N ¢ M.

Also let L = {f1,f5,...,f;,81,8,,--.,8,} and suppose Syz(L) = (hy,hs,... h,.) C R'*% If we define k; for
all 1 < i < r to be the first t coordinates of h; then we have

M/N = Rt /(ky, ks, ..., k).
Proof. We define the homomorphism
Rt % M/N
(a1,a2,...,0;) +— aifi +aofo+ - +afy + N.

12
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We know R?/ker(p) = M/N, so we need to show the elements of ker(y) are the first ¢ coordinates of all
the elements of Syz(L). Notice (b1, b2,...,b:) € ker(yp) if and only if bify + bofz +--- + bfe € N. Also
bify + bofy + --- + b, € N if and only if bify + bofy + -+ + befy = 181 + caB2 + -+ + ¢, for some
¢1,¢2,...,¢s € R. This last statement is true if and only if (by,b2,...,bs, ~C1, —C2,...,—Cs} € Syz(L) for

some ¢3,¢3,...,¢s € R. O

5. FREE RESOLUTIONS

In this section we will see how syzygies can be used to compute what is known as a free resolution of a

module. First we will need the following definitions.

Definition 5.1. In the sequence of R-modules and homomorphisms

Pi2 Pi-1 i Piy1
PR B VAR D VARLNY VAR PRE

we say the sequence is exact at M; if im(¢$;_1) = ker{¢;). We say the sequence is exact if it is exact at M;

for all i.

Definition 5.2. Let M be an R-module. An exact sequence
s ®3, g #2 o pty 91 pte % ar g,

is called a free resolution of M. If there exists an i such that R* # 0 but R'+! = R%+2 = ... = 0, then we

say the resolution is finite and of length i.
Proofs of the following theorem can be found in [1, Theorem 3.10.4], and in [4, Theorem 6.2.1].

Theorem 5.3 (Hilbert Syzygy Theorem). Let R = klz1,%2,...,2,]. Every finitely generated R-module
has a finite free resolution of length less than or equal to n.

Using syzygies we can find a free resolution of a finitely generated submodule of R™ in the following way.

Let M = (f1,f2,...,f,) C R™ and let Ly = Syz(f},f2, ..., £, ). Notice that the homomorphism

Rt ¥, M
(0,1,0,2,...,0.;0) — alfl +a'2f2+"'+a‘tofto

has kernel Lg. So if we let 1o : Ly — R be the inclusion map, we have the following short exact sequence:
0 — Ly % R 2% pr— 0.

Now we repeat this process for Lg and obtain another short exact sequence
0— L, % RhY ¥ 1o —o0.

Putting these sequences together we have -
-0 / 0
Ly
YN
- Rtl ¢| Rto

13
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where ¢o = ¥ and ¢; = 19 0 3. If we continue this process we will obtain the following sequence of

R-modules and homomorphisms:

So we have the following free resolution of M:
B4 pts $3, pe 2, pt 91 pte $0, a0 L0

Example 5.4. Let R = Q[z,y, 2] and let N = (23 — y,zyz%) C R. Now define the homomorphism

Rz ¥ N
(a,b) +— (2% —y)a+ (zyz*)b.
Then we know ker(yo) = Syz(z® — y, zy22). In Example 4.9 we found Syz(z® — y, zy2?) = ((—zy22, 2% — 3)),

so let Ly = {(~zyz?, 2% — y)) and let ¢ : Lo — R? be the inclusion map. We now have the short exact

sequence
0— Ly~ R2 ¥ N — 0.
Now we repeat this process for Ly. But since L is generated by one element, we have Syz({—zy2?%,z3—y)) = 0.
So if we define
R ¥ I,
a — (—xy2? 2% - y)a,
then we have the short exact sequence
0—R ¥, Lg — 0.
Putting these two exact sequences together and letting ¢g = 19 and ¢; = 19 0 ¥, we get the following free
resolution of N.
0-— R R2 2, N 0.
Notice that this resolution is finite of length 1. Also notice that since N is not a free module, there does not

exist a free resolution of length 0. Thus we have found a free resolution of N of minimal length. O

Example 5.5. Let R = Q[z,y,2] and let M = (z? - z,z2y2z,22 —y + 2z) C R. Now define the homomorphism

R: ¥, M
(a,b,¢) — (2% —2x2)a+ (zyz)b+ (2% — y + 2)c.

14
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Then we know ker(ig) = Syz(x? — z,ryz,7%2 — y + 2). Using Theorems 4.5 and 4.8 one can compute

Syz(z? — z,zyz, 2% — y + z) = ({f1, f2, f3) C R? where

fl = (xz -y+z 01 _x2 + x)! f2 = (—:cyz —Yy,y -z 1,113‘!}2),

2 2

and f3=(—z%z+4+xyz+yz—2°,c—y+2,2°2— Y2 - TZ).

Let Lo = {f;,f,f3) and let ¢o : Lo — R? be the inclusion map. We now have the short exact sequence
0- Lo~ R ¥4 M — 0.

Now we repeat this process for Ly. Define
R Iy L,
(a,b,¢) v+ afy 4+ by + cfs.
In Example 4.10 we found ((2%2 + z,2 — y + 2,~y + z + 1)) = Syz(f1,f:,f3) = ker(;). So if we let L, =
(224 z,z—y+2z,~y+2+41)) and let ¢; : L; — R3 be the inclusion map, we have the short exact sequence

0L, SR ¥ L,—o

Now we repeat this process for L;. But since L, is generated by one element, we have Syz((z% + z,z — vy +
z,—y + z+ 1)) = 0. So if we define

R & I,

a o (22+2,z—y+z,~y+2z+ 1a,
then we have the short exact sequence

0— R* Ly — 0.
Now we let ¢g = ¥, P91 = ¢¥1 0 tg, and ¢ = ¢ 0 ¢;. Then we have the following free resolution of M.
0— R R3 %, 3% 0.

Notice that this resolution is finite of length 2. [}

6. CoMPUTING HoM

In this section we will introduce Homp(M, N), and compute a presentation of Homg(M, N) for given
R-modules M and N. We will need some new notation for this section which we will introduce first. For an
s % t matrix M with entries in R we let (M) denote the submodule of R* which is generated by the columns
of M. Given matrices My, Ms,..., M, where M; is an s; X t; matrix, we let M; & M, @ -- - @ M, denote the
(s1+ 824 -+ 8p) X {ty + t2 + -- - + t;) matrix with matrices My, Ms,..., M, down the diagonal and zeros
everywhere else.

Example 6.1. If

0 Tty + 2 1

x Ty 2z

M= , N= xzy ,and L= v v s
Yy Y ) y® 0 =z

15
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then

(2 0! 0 o 0 0)
Ty Y 0 0 00
0 oiz+y: 0 0 0
MeéNeL=]| o0 05; z%y 0 0 0
0 0. 1 i o0 0 0
0 0} 0 iy+sy 20 1
\ 0 0 0 y3 0 z )

O
For an s x ¢t matrix M and the r x r identity matrix I,, we define the tensor product M ® I, to be the
s X rt matrix obtained by replacing each entry m,; of M by the matrix my;I,. ‘
Example 6.2. If

Definition 6.3. For R-modules M and N, we define
Homp(M,N)={¢: M — N | ¢ is an R-module homomorphism}.

We give Hompg (M, N) an R-module structure by defining for all ¢,9¥ € Homg(M, N) and for all r € R,
(¢ + ¥)(m) = ¢(m) + ¢(m) for all m € M and (r¢)(m) = r(¢{(m)) = ¢(rm) for all me M.

Our goal is to compute a presentation of Homg (M, N) for any R-modules M and N. In other words we
want to find a submodule K C R such that Homg(M, N) is isomorphic as an R-module to R!/K. To do so
we will first need a few properties of the functor Hom. Given R-modules L, M and N and a homomorphism
¢: L — M, we define the two hemomorphisms

Homp(N,L) 2% Homg(N,M)
¥ — gop ’
and
Homgr(M,N) =% Homg(L,N)

Y — Yoo

Lemma 6.4. Given an ezxact sequence of R-modules and homomorphisms
Y ¢
M3 — Al2 — Ml —s
and an R-module P, the sequence
Homp (Mj, P) i Hompg(M,, P) KA Hompg(M,,P) +— 0
is exact. Furthermore if P is projective, the sequence

Hompg (P, M3) L, Homp (P, My) Lo, Homg(P,M;) — 0

16
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is exact. This yields
Hompg (P, M;) = Homg(P, M2)/ker{¢o) = Homg(P, M2)/im(t).),

and
Hompg(M;, P) = ker(o%).

The proof of Lemma 6.4 is left to the reader, it follows from the definition of Hom. Now we return to
finding a presentation of Hompg{M, N) for given R-modules M and N. For the case when M and N are the
free modules R* and R°® respectively we have the following result.

Proposition 6.5.[1, pages 183, 184] Homg(R*, R®) = R**.

More generally we wish to compute Hompg (M, N) when M and N are any R-modules such that M & R*/L
and N = R®*/H for some submodules L C R* and H C R*. To do so we first find free resolutions of M and
N respectively. Notice that if M = {f),f;,...,f), then L = Syz(f,f;,...,f;), and likewise for N. Suppose

we obtain the following free resolutions of M and N:

NN - SRANG - SIS V RN}

RO A RN

To compute Hompg(M, N) we will look at the exact sequences
(3) R L pt T M0,

’

(4) R & R TN —0.

Notice, as in Section 4, that the map T is given by a ¢ x £; matrix whose columns are the generators of L.
Similarly A is given by a s x s; matrix whose columns are the generators of H. We will also abuse notation
by letting T" and A represent these matrices. Now Lemma 6.4 along with sequence (3) give us the exact

sequence
Hompg(R",N) <~ Hompg(R!, N) << Homg(M, N) «— 0
and the isomorphism
Hompg(M, N) = ker(,I).

To find a presentation of Homzr(M, N) it suffices to find a presentation of ker(.I'). To this end we first find
presentations of Homg(R?, N) and Homg(R", N). Using Lemma 6.4 along with sequence (4) we obtain the

exact sequences
Homg(R?, R®) —- Homg(R?, R*) % Homg(R', N) — 0
where 6 = A,, and
Hompg(R", R*) %' Homp(R", R®) - Hompg(R", N) —» 0
where 8’ = A,, along with the isomorphisms
Hompg(R!, N)  Homg(R?, R®)/im(4)

17
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and
Hompg(R", N) = Homg(R", R®)/im(5').

Now Proposition 6.5 tells us Homg(R?, R*) = R** and Homg(R", R®) = R*“, so to find presentations of
Hompg(R',N) and Homg(R", N) we need only describe im(§) and im(é’). Now by Proposition 6.5, J :
Hompg(R', R*') — Hompg(R', R®) corresponds to a map 6* : R*'* — R®*. And ¢* is given by a st x s;¢
matrix S, in other words §*(a) = Sa for all a € R5'*. The following lemma gives us the matrix S and thus a
presentation of Homp(R!, N). \

Lemma 6.6.{1, Lemma 3.9.3] The matriz S is given by AS@AD---® A. And therefore

t copies

Homg(R:L, N)2X R /(ADAD--- B A).

~
t copies

Likewise Homp(R*,N) = R4 /(AG AP --- ® A). So now we know the map

t; copies

oI : Homg(R*, N) ~ Homg(R™",N)
corresponds to a map

OI‘*:R“/LAGBA{B---GBA)~———+R“‘/QA€BA@"'€BA)-

t copies t; copies

Lemma 6.7.[1, Lemma 3.9.4] Let T be the transpose of the matriz T ® I,. Then for any b € R,

T b+ ABDAD--- ®A))=Th+(ADAD---DA).

t copies {1 copies

Thus we know
Homp(M,N) = ker(,I'} = ker(oI™).
Using Lemma 6.7 we can find ker(,I') as follows. First we compute the kernel of the map

Rt X RU/AGDAS - D A)
t;c:pies
b —s Tb-l-(‘AGBA@"'@A).

ty copies

By Theorem 4.11, ker(x) = (U}, where U is the matrix whose columns are the first st coordinates of the

generators of the syzygy module of the columns of T and A® A& --- ® A. Thus we have

>
£y copies

Homp(M,N) = (U)/(A©@AD-- & A).

t copies

We summarize our result in the following theorem.
Theorem 6.8. Suppose M and N are R-modules with M = Rt/L and N 2 R°/H where L C R* and H C R®

are submodules, and L = R% /L, for some submodule L, C R".

o LetT and A be the matrices whose columns are generators of L and H respectively,

e [et T be the transpose of the matriz T ® I, and

18
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o let U be the matriz whose columns are the first st coordinates of generators of the syzygy module of

the columns of T andADAD---BA.
tlco‘;n'es
Then Homg(M,N) = (U)/(AGA®---® A), and we can use Theorem {.11 to compute a presentation of

tcopies

Hompg(M, N).
Example 6.9. Let R = Q|z,y, z] and let

M= {z? -z zyz,2? —y+2)CR and N =(z%—-y,zyz?) CR
In Example 5.5 we stated Syz(z? — z,zyz, 2% — y + z) = (f}, 5, f3) where
fi=@*~y+20-22+z), fa=(-zyz—yz,y—2— 1,xyz),

2

and fa=(—z?z2+zyz+yz-22,2—y+2,2%2 — Yz — zz).

In Example 4.9 we found Syz(z® — y, zy2?) = {(—zy2?,2° — y)). So we let

22 —y+z —xyz—yz —-z?z+zTYyzr+yz—22 )
—zYyz
= 0 y—z—1 rT-y+z and A=
3~y
—z? 4z Tyz 7%z — TYyz — 12
Then the matrix T, which is the transpose of the matrix ' ® I, is
/ 22— y+z ] 0 o —z? -z 0 \
A 0 2 —y+z 0 0 0 -2tz
—Tyz — Yz 0 y—z—1 (1] Yz 4]
0 —ryz — Yz 0 y~—z—1 0 Yz
~x%z + xyz 4+ Yz — 22 0 lx—y+z 0 ' 22z - Yz — x2 0
\ 0 —x2z+zyz+yz—-—zzé 0 :t—y+z§ 0 zzz—myz——mz)
Now we compute the syzygy module of the columns of T and the columns of
( —zyz2 i 0 0o )
B-yi 0 0
0 —zyz? 0
APABA=
0 23—y 0
0 0 —zyz?
k 0 ] 2~y |
The first 6 entries of the generators of this module are
( -z 4+ \ ( 0 \ ( ?y+z? 2y -z \
0 -z 4z —3z2 + 3z
—zYz 0 zy’z — xyz? + Tyz
u; = y Ug = y g = )
0 —zyz 3 - 3zyz —y
~z2ty—z 0 Py+al—yl+yz—y+z
\ 0 } \—-1:2+y—z) \ —3z% 4+ 3y — 32 J
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( zy?2? ~ zy2® \
z2y? — 2Pyz + 2a22® — 2y — vy’ + 2z + 2zyz — 22 tay+ S —yz -y
0

W= 22?2z + 2’z — 22y2® — 2xy? 2 + 2yt + 2
oy?2? — 2y + P2 — g2 »
\ 22y® - 2%yz + 222% —- 2Py — 2y? — Y+ 2Pz + oYz + 3%z — 2 - By + Pty + oy’ — vz }
( 22y2? - zy?2? + zyz? \
2y —z?y? — 232 + 2%z — 222% — 2P+ -~ 2oy 4z 2 -yl 4 yz—z 4y
0
us =

23yz — zyiz + 2xy%2% — 2y + zyz — Y22

22y2? — 2y?2% + TY2® + wy2? — y22? 4 y2B

\ 3y —22y? - 282+ 2%z — 2?22 — 2P + P - 322+ 3y - P+ 2 -yl ryz + 2 /

[ —zyz?

3 —y

—zy23

8z — yz

and wug=

—zyz?

\ Z-v )

So we have Homg(M, N) = {u;,uz,us, uy,us,ug) /{A G AD A). Using Theorem 4.11 we have

HomR(M’ N) = R6/<k1)k29k33 k41 k57k6)

where
(o) (a1 ) (o ) ( 2 \
0 -3 z y?—2yz —222 -1
0 1 0 2
k1= ] k2= 3 k3= H k4= g ]
0 0 T—-Y-+z 0
it 0 —y+z -1
) e ) U ) U e
( 22 \ ( 2222 — 2% — x2? 4 22 \
2 + 2y + y? — 22 — 2yz + 22 3z2?
ks = z? ’ kg = 2222 + zy2? — 12327 + 22
1 ~y? +2yz 422241
0 —z? — gy — y? + z2 + 2y2 + 22°
\ zT+y—=z Y, \ 0 /

For more detail on the computations in this example see Appendix A.
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7. CoOMPUTING EXT

In this section we will be interested in computing Exth(M, N) for R-modules M and N. To do this we

start with a free resolution of an R-module M
i Rtn T g T pra o L gte Toopte Tuypee To,ap g (%)
For an R-module N we now obtain the new sequence
.- «— Homp (R, N) &2 Homg(R",N) £°* Homg(R",N) «— 0
which at the ith position (for i > 0) .looks like
.-+ «— Hompg(R*+', N) °“*' Homg(R%, N) &% Homg(R%-*, N) «— - --
Definition 7.1. With the sequence above, we define
Exth (M, N) 2 ker(oTi41 ) /im(oT).
We wish to compute a presentation of Ext%(M, N), and to do this we find a free resolution of N

iR A R TN

Now Lemma 6.6 tells us

Homp (R, N) = R%“ /(A A®--- D A),
te c:pies

and so o[y : Homg(R%-1, N) — Hompg(R%, N) corresponds to a map

T RE1/ADAD---BA) — R“/(ABAD--- B A).

ti-.1 copies t; copies
Lemma 6.7 tells us for any b € R%%-1,
(5) TiHL+ (AGAD--DA))=Tb+{AOAB---®A),
t;-;:opies t: c:pies

where T; is the transpose of the matrix I'; ® I,. As in the Section 6, we let U;; be the matrix whose
columns are the first st; coordinates of the generators of the syzygy module of the columns of T;4, and
ADAGD---®A. Then we have

t;4+1 copies

ker(ol'it1) & (Uin)/ (A O AD - @ A)

v

t; copies

Equation (5) gives us

im(I:) = (L) + (A 0A88-- 98)/(A8A0 -8 4).

ty copies ti copies

Thus

Exta(M,N) = Uin1)/(T) + (A0 A & & A)). (++)

t: copies

We summarize our result in the following theorem.
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Theorem 7.2. Suppose M and N are R-modules with M as in (x), and N = R°/H where H C R® is a
submodule.
e Let A be the matriz whose columns are generators of H, and let T'; be the matriz associated with the
map ['; in (x),
o let T, be the transpose of the matriz T; ® I;, and
o let Uiy be the matriz whose columns are the first st; coordinates of generators of the syzygy module

of the columns of Ti41 and ABAD---D A
t.’+1;:)p'i€8
Then Extr(M,N) = Ui}/ (T + (AD A D --- ® A)), and we can use Theorem 4.11 to compute a presen-

t;copies

tation of Extp(M, N).
Example 7.3. We now compute Ext}t(M, N) for M and N as in Example 6.9. Let R, f;,f,f3, T :=T, A,
and T} := T be as in Example 6.9. Then (1) + (A ® A D A) = (ry,rz,...,rg), where ry,ra,...,rg are the
columns of T3, and r7,rg,rg are the columns of A & A @ A. Now in Example 4.10 we found Syz(fi, f2,f3) =
{(2+z,x—y+2z,—y+2z+1)). So welet
224z
Iy = r—y+z
—y+z+1
Then the matrix 75, which is the transpose of the matrix 'y ® I, is
22+ 2 0 ga:—y+z 0 g—y+z+1 0
0 z2+z§ 0 x——y+z§ 0 —y+z+1

Now we compute the syzygy module of the columns of 75 and the columns of A. The first 6 entries of the

generators of this module are the columns of U;. These columns are

(o ) (0 ) (v-z-1) (0 )

0 0 0 y—z~1
y—2—1 0 0 0

u; = o y M2 = y—2—1 y Uz = o v W= 0 )
r—y+z 0 22 4z 1]

T A o e N A .

/ rz—1 \ / 0 \ / —z% \

0 z~—1 -1
22 -z 0 —z% 228 — 22
us = ] g = s Wy = 2 2 )
o] —z% -z 2422 +zztz+z+1
22+ z 0 g3+ 204z 4223422
\ o ) \ 224z ) \ -2z -2z —w }

( —yz+224+z - \ ( —zz 4 2 1

0 0
—y2d 42t —y22 4223 4 22 —x2% — 222 + 28 4 22
ug = 2 , Ug=
Py~z2z-22+zy—zz—s+y—2z—1 B —-z-1
xyz? — 223 4 y28 — 2% - 222 4 y2? — 228 — 22 2222 4 228 — 28 = 22
\ -2y + 22z 422 -yt xz+atz y, \ —zdtz42 }
22
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By (*%), Ext}z(M,N) 2 (uy,ug,...,ug)/(r1,rs,...,Te), and
EHIR(M7 N) = Rg/<k1’k27 .- ,k16>

using Theorem 4.11 where

(1) (o) (o) [0 (0 (o)
t] 1 0 0 0 0
0 0 -1 0 0 z
0 0 0 -1 0 0
ki=|o|, ke=]|0], ka=| 11|, ka=| 0}, ks=] o0}, ke=]o0{,
0 0 0 1 0 0
¢ 0 0 0 0 G
0 0 0 0 —1 1
U ) A €V AU
(0) (0 ) [ 0 ) [ o0 ) [ 0 )
0 0 0 0 0
0 Y-~z 0 0 o
z 0 y—z 1 (]
kr=]0|, ks= 0 , ke= 0 , kio= 0 , kn= 0 )
0 0 0 0 0
0 0 0 y—z—1 0
0 0 0 —z—1 Y-z
\9) \ o \ o) o ) \ o/
(o0 ) (0 ) (0 ) (0) [0 )
0 0 o 0
x—1 0 0 0 0
0 z—1 1 0 0
kpp=1-y+2z+1|, kiz= 0 y kig= 0 , kis=10], kis= 0
0 —y+z+1 0 0 G
0 0 z—1 0 z
0 0 —z-1 z 224z
NIV A U T A U2 A O B
For more detail on the computations in this example see Appendix A. O

APPENDIX A. EXAMPLES IN MACAULAY 2

In examples 6.9 and 7.3 we made use of the computer algebra system Macaulay 2. This appendix contains
those computer sessions. First we say a few words about this computer algebra system. Macaulay 2 does
not wrap input and output lines. Alternatively the input and output lines in Macaulay 2 grow horizontally

without bound. In this paper ellipses are used to indicate the cases where the lines exceed the width of the

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



paper. The default orderings in Macaulay 2 are grevlex with ; > z2 > z3 > --- on R, and TOP with
€ < ey < ez < --- on R™. For more information on this program we refer the reader to {5].

Macaulay 2 Session for Example 6.9. In Macaulay 2 we must first define the ring, R which we are

working over.

i1 : R=QQixy.z]

ot = R

ol : PolynomialRing

In our example we need to compute the syzygy module of the columns of the matrices T and A D A @ A.
We define these matrices in Macaulay 2 as follows:

i2 : T=matrix{{xA2-y+z,0,0,0,-xA2+x,0}{0,x2-y+2,0,0,0,-xA2+x},{-x*y*z-y*2,0,y-z-1,0*y* 2,0 {0,-x*y*z-y*Z, . . .

02 = | x2-y+2 0 0 0 “X2+% 0 |
|o xX2-y+z 0 0 0 =X 2+% |
| -xyz-yz 0 y-z-1 0 Xyz o {
|0 -Xyz-yz 0 y-z-1 0 Xyz |
| -x2z+xyz+yz-z2 0O X-y+z 0 X2z-xyz-xz O |
|o X2z+xyz+yz-22 O xy+z 0O x2z-xyz-xz |

6 6

02 : Matrix R <—--R

i3 : DDD = matrix{{-x*y*z/2,0,0},{x/3-y,0,0},{0,-x*y*z2/2,0},{0,x"3-y,0} {0,0,-x*y*zA 2},{0,0.x 3-y}}

03 = |-xyz2 O 0 |
[x3-y O o |
|0 -xyz2 O ]
|0 x3-y O |
|0 0 -xyz2 |
|0 0 x3-y |
’ 6 3

o3 : Matrix R <—R

Macaulay 2 will compute the syzygy module of columns of a matrix. We form one matrix with the columns

of T and A® A ® A using the command |, and compute the syzygy module of this matrix. The output which

we call U’ is 2 matrix whose columns generate this syzygy module.
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i4 : U =syz(T|DDD)

o4 = [3}|-x2+x O X2y+X2-Xy-X Xy2z2-xyz3 . .-
{310 “X24x  -3x243x X2y2-2X2yz+x222-X2y-Xy24x2Z . ..
{1} xyz 1] Xy22Z-xXyz2+xyz 0 -
{11jo -Xyz X3-3xyz-y x2y2z+xy3z-x2yz2-2Xy2Z24XyZ . . .
3} x2+yz O X2Y+X2-y2+4yz-y+z Xy2z2-xyz3+y222-yz3  X2yz2-xy2z2+xyz3+xyz2-y2z2+ . ..
{3110 -X2+y-z  -3x2+3y-3z X2y2-2X2yZ+Xx222-X2y-Xy2-y3+X . . .
{4310 0 0 -y2+42yz-22+y-Z ..
{4}|0 0 ~y+z+1 0
{410 0 X+y-Z -yz2+23-yz+22

9 6

o4 : Matrix R <—--R

In our example we need the first six coordinates of these generators. We obtain these coordinates in the

following way.

i5 : U=U701,2345}

05 = {3}] x2+x 0 X2y+X2-Xy-X Xy2z2-xyz3 ..
{310 -X2+X -3x2+3x X2y2-2x2yz+Xx272-X2y-xy2+x2Z . ..
{1} xyz 0 Xy22z-Xyz2+XyZ 0 .-
{1310 -Xyz x3-3xyz-y X2Y2Z+xy3Z-X2yz2-2Xy222+XyZ . . .
{3}|-x24y-z O X2y+x2-y24+yz-y+z Xy222-xyz3+y272-yz3  X2yz2-Xy2z2-+xyz3+xyz2-y272+ . ..
{3110 X2+y-z  -3x2+3y-3z X2y2-2X2yZ+X2Z2-x2y-Xy2-y3+x . . .

6 6

05 : Matrix R <R

We now use Theorem 4.11 to compute a presentation of {(U}/{A ® A & A). To do so we first compute the
syzygy module of the columns of U and A A& A.

i6 : K =syz(U|DDD)

06 = {S}{y+1 y2z2-yz3+yz2 yz2 -yz2 y2 ...
{5}]-3 ~y3+3y2z-3yz24273-y2+2yz-224y+1  -X2-XY-y24+x2+2yz-22  X2+xy+y2-xz-2yz+z2 -y3 ...
{631 0 0 0 0 ..
{81]0 X-y+z -1 1 XY ...
8o 1 0 0 0 ...
{71|]0 ~y2+2yz-z2+1 “X-y+2Z xX+y-z-1 -y2 ...
@jo o 1 0 o ...
{431 yz24z3-yz-Z xz-z2 Xz+22+42 yz...
{430 0 0 1 0

9 5

06 : Matrix R <—R

We now Let K denote the matrix whose eolumns are the first six coordinates of the generators of this syzygy

module.
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i7 : K'=K'70,1,234,5)

o7 = {5}|y+1 y2z2-yz3+yz2 yz2 -yz2 y2 ...
{5}|-3 -y343y2z-3yz2473-y242yz-22+y+1  -X2-Xy-y2+xz2+2yz-z2  x2+xy+y2-xz-2yz+z2 -y3 ...
{611 0 0 0 0 ..
{81{0 X-y+z -1 1 X-y .
{81{0 1 0 0 0 .
{7}1{0 ~y2+2yz-z2+1 “X-y+Z X+y-z-1 ~y2
6 5

o7 : Matrix R <—--R

Although not necessary, we compute a Groebner basis for this submodule since the elements of the Groebner

basis are less complicated than the generators for the submodule above.

i8 : K=gbkK"

o8 = {5}|]0 y+1 0O 2 z2 X272-x23-xz22+22 }
{sijc -3 z y2-2yz-222-1  X2+xy+y2-xz-2yz-222 3x22 ]
{61jo 1 0 22 z2 : X2224xyz2-x23-x22+22 |
81]0 0  xy+z 0 1 y242yz+222+1 |
{8tjo o0 y+z -1 0 -X2-Xy-y2+xz+2yz+222 |
71j1 0O 0 0 X+y-Z 0 |

o8 : GroebnerBasis

The columns of K are labelled k;, ks, ...,k in example 6.9. (W

Macaulay 2 Session for Example 7.3. In Macaulay 2 we must first define the ring, R which we are

working over.
i1 : R=QQxyz]
ol = R

ol : PolynomialRing

We first define the matrices A, A AR A, Ty, and Ts.
i2 : D=matrix{{-x*y*zA2},{x"3-y}}

02 = | -xyz2 |
| By |

2 1
02 : Matrix R <R
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i3 : DDD = matrix{{-x*y*zA2,0,0},{x"3-y,0,0},{0,-x*y*2A2,0},{0,x"3-y,0},{0,0,-x*y*2/ 2},{0,0,x"3-y}}

03 = |{-xyz2 0 0 I
Ix3y 0 0 I
{0 -xyz2 0 |
|o x3y O |
|0 0 -xyz2 |
|o 0 x3-y |
6 3

o3 : Matrix R <R

i4 : T1=matrix{{xA2-y+2,0,0,0,-xA 2+x,01,{0,xA2-y+2,0,0,0,-x A 2+x} {-X*y*Z-y*2,0,y-2-1,0*y*Z,0},{0,-x*y*z-y*zZ, . . .
04 = | x2-y+z 0

0 0 “X24x 0 |
|0 X2-y+z 0 0 o -X2+X |
| -xyz-yz 0 y-z-1 0 Xyz 0 |
|0 -Xyz-yz 0 yz-1 0 xXyz |
| -x2z+xyz+yz-z2 O X-y+Z 0 x2z-xyz-xz O |
|o -X2z+xyz+yz-z2 O xy+z O X2z-xyz-xz |

6 6

04 : Matrix R <—R

i5 : T2 =matrix{{zA2+2,0,x-y+2,0,-y+2+1,0},{0,2A 2+42,0,%-y+2,0,-y+z+1}}

o5 = |z2+z © xy+z O y+z+1 0 ]
K¢ 224z 0 xy+z O -y+z+1 |
2 6

05 : Matrix R <—R
We now compute the syzygy module of the columns of T, and and the columns of A.

i6 : U2 =syz(T2|D)

o6 = {2}}0 0 yz-1 0 x-1 o -z2-2 -yz+z22+2
21]0 0 0 yz1 0 x-1 -1 0 e
{Wyz1 o 0 0 z2-z 0 -z4-273-72 -yz342z4-yz24223+422 . . .
{1}|0 yz-1 0 0 0 -22-z  X2Z24+X24xz4+x+2+1 X2Y-X2Z-X2HXY-XZ-X+ . . .
{1} xy+z O 24z 0 724z O XZ3+zZ4+x22+223+22  xyz2-x23+yz3-74-%22 . ,
{11]o xy+z O 224z O 224z -X2z-X2-xz-X ~X2Y+X2Z4HX2-Xy+XZ+ . .
{71]0 0 0 0 0 0 z-1

-y+z+1

7 9
o6 : Matrix R <——R

In our example we need the first six coordinates of these generators. We obtain these coordinates in the

following way.
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i7 : U2=U2'M0,1,23,4,5}

o7 = {2}|0 0 yz-1 0 x1 0 222 -yz472+2
{21|0 0 0 yz-1 0 x-1 -1 0 e
{i}}y-z-1 O 0 0 Zz2-z 0 -z4-2z3-z2 -yZ3+z4-yz2+4223472 . ..
{1}j0 yz-1 0 0 0 22-7  X2zH2+xZ+x+2+1 X2y-X2Z-X2HXY-XZ-X+ . . .
{1}|xy+z O 22+z 0 22+z O XZ3+z4+x22+2234+22  xyz2-xz3+yz3-z4-xz2 . ..
{11|0 x-y+z 0 224z 0 2247 -X22-X2-XZ-X X2YHX2ZAX2-XY X2+ . . .
6 9

o7 : Matrix R <R

We now use Theorem 4.11 to compute a presentation of (U)/({T}) + (A A& A}). To do so we first compute
the syzygy module of the columns of Uz, T3, and A® A & A.

i8 : K =syz(U2|{T1|DDD)

o8 = {211
2|0
310
B0
3]0
{310
{5110
{510
{5t 0
3]0
B3} 0
(31
{11]o
3]0
3o
{4} |0
4o
410

o

z2-Z 0 xz-z2 Q -xz+z2+z O z3+z2 -xz2-23-22 ...
Xz-z2 0 -xz+z24z -X2-x-1  x2+x

x-1 0 X 0 x+1 0 -z

0 x-1 0 X 0 -x+1 0

y+z+1 O -X-y+z O x+y-z-1
-X-y+z

)
—t
o
N
o
N
o

<
&
kA

L

O ON

OO0 Q =1

CO00O0~-0000LOCOOOCOC
¥
b

CO0DOCOO0O0OOQ00O00OO0
COoO0O0OQLOOQO—-000O0C
OCO0OCOO0OOO~0COO0O

[~ NeNolNeNeleNoNoioeoNe]
- 00000 COO0OO0="0O0O0ON

COoO0O-0CO0O0O0O0OQC
OOO—‘OOOOOOOOﬁO
~

(o]

18 14
o8 : Matrix R <R

We now Let K’ denote the matrix whose columns are the first nine coordinates of the generators of this

syzygy module.

i9 : K'=K~7{0,1,2,34,5,6,7.8}

09 = {2}{-1 0 -z2-z 0 xz-z2 O xz+z24z O 23472 -xz2-z3-22 ...
{22jo0 1 o0 -22-2 0 xzz2 0 XZ+Z24z  X2-x-1 X2+x
31jlo0 0 x1 0 X 0 -x+1 0 z -z
3i1jo0 o 0O x-1 0 X 0 -x+1 0 0
3110 0 y+z+1 O xy+z O X+y-z-1 0 0 z
31j1o 0 o y+z+1 O xy+z O x+y-z-1 0 0
{51jloc o0 O 0 0 0 0 0 0 0
{5110 o0 O 0 0 0 0 0 1 -1
{st1jo o0 0O 0 0 0 0 0 0 1
9 14

o9 : Matrix R <—R
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Although not necessary, we compute a Groebner basis for this submodule since the elements of the Groebner

basis are less complicated than the generators for the submodule above.

i10 : K=gbK"

010 = {2}|]1 0 0 0 0 0 0 0 0 o 0 0 ] 0 o0 o0 |
210 1 0 0 0 000 o0 o 0 ] 0 0 0 o0 [
B3O 0 -1 0 0 z 0 yz o 0 0 x-1 0 0 0 o |
BHO 0 0 -1 0 0 2z 0 vyz 1 0 0 x-1 1 0 o0 |
B31l0 0 1 0 0o 0 0 0 0 o 0 -y+z+1 O 0 0 0 |
3lo 0 0o 1 0 0 0 0 o 0 0 0 y+z+1 0O 0 0 ]
5]/ 0 0 0 0 00 0 o yz1 0 0 0 x1 0 z |
51]j]o 0 o 0 1 1 0 0 o z1 yz 0 0 -zl x 224z |
5110 0 0 0 1 00 0 0 o o 0 0 0 o0 o0 [

010 : GroebnerBasis

The columns of K are labelled ki,ka,..., k6 in example 7.3. ]
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