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Abstract

Ted J. Christian M.S. August, 1996 Chemistry

Kinetics o f Formation of Di-D-fructose Dianhydrides from Thermal Treatments o f Inulin

Committee Chair: Richard J. Field

Mixtures of inulin and citric acid react at elevated temperatures to form 14 separate 
di-D-fructose dianhydrides (DFDAs). At temperatures from 160 to 180°C and citric acid 
concentrations from 1.0 to 2.9% by weight, DFDAs form rapidly and comprise up to -35%  
by weight of the products after 20-40 minutes, after which the DFDA content of the mixture 
decreases for 40 hours. The remaining mass o f starting material is composed of glycosylated 
DFDA trimers and tetramers, the monomers glucose and fructose, and non-specific 
degradation products. The pH of thermolysis samples remains constant; acid catalysis that 
is pseudo order with respect to hydrogen ion is assumed.

Three individual DFDAs - a-D-fructofuranose P-D-fructofuranose 1,2':2 ,1 '- 
dianhydride, a-D-fructofuranose P-D-fructopyranose 1,2':2,l'-dianhydride, and a-D- 
fructopyranose P-D-fructopyranose 1,2':2,l'-dianhydride - were isolated and thermolyzed 
under conditions similar to those used for inulin. The difuranose degraded rapidly and was 
accompanied by isomerization to other DFDAs. Neither o f the other two degraded to any 
extent. The presence of one or two pyranose rings increased thermal stability significantly 
under these conditions. At 160°C and 1.5% citric acid, inulin was shown qualitatively to 
disappear almost completely within 15 minutes; the maximum DFDA concentration for this 
system occurred at 25 minutes. D-fructose was present from the outset and increased slightly 
in abundance for -15 minutes.

A kinetic mechanism is proposed to account for the formation and decay of all 14 
DFDAs. This mechanism is subdivided into four partial mechanisms that address unique 
formation pathways. The five difiiranoses that contain at least one P-D-fructose moiety form 
directly from inulin oligomers. Four more DFDAs form from inulin oligomers whose terminal 
P-D-fructofuranose residue has isomerized via a 2,6-anhydro intermediate to the 
fructopyranose isomer. The remaining five DFDAs arise, not from inulin, but from other 
source material that includes fructose and DFDAs that have isomerized. The fructosyl 
carbocation is central to all of these reaction pathways.

Nonlinear least squares curve-fitting o f a simple 1“ order parallel-consecutive 
mechanism provided initial estimates for growth and decay rate constants. These were 
employed in numerical simulations using LSODE (Livermore Solver for Ordinary Differential 
Equations). Simulations using the four partial mechanisms were successful in replicating the 
data.
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In t r o d u c t io n

Inulin Structure

Inulin is the major storage polysaccharide o f certain plants in the Compositae family, 

including Jerusalem artichoke, chicory, and dahlia. Inulin (Figure 1) consists of a range of

HO .

 O
OH *  atXGLL'COSE

„ o '
\ ™ _ / l

IO ^  r
G L V C O S ID IC  LIN K A G E

HO O

HO O

IIO
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OH 
HO—  O -J n

\_ jL -O H
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Figure 1 - Structure of inulin. 

polymers o f p-(2—* 1) linked D-fructofiiranose, each ending in glucopyranose. The molecular

weight distribution (polydispersity) is generally broad. Plant-derived inulin ranges to dp-70

(degree of polymerization), while bacterial inulin can range as high as dp-1000.1 The

molecular weight range of inulin products for commercial or medical use varies significantly,

depending on the methods used to extract, purify, and prepare inulin for use. Commonly

inulin is intentionally hydrolyzed to change such properties as solubility or digestibility, or to

render it more conveniently incorporated into commercial or medicinal products. The

resultant oligomers are fructo-oligosaccharides (FOS), generally with d p -2 -10. In most

cases, it is impractical to insist on a clear demarcation between inulin and FOS, since the

range of dp overlaps.

1
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Inulin in Nutrition

The P-(2—* 1) fructofuranoside linkage of inulin resists the action of mammalian 

digestive enzymes.2 Undigested oligomers o f inulin passing into the colon stimulate the 

growth of colonic microflora, most notably Bifidobacterium spp.3'6 Bifidobacteria are part 

o f the normal colonic microflora in most vertebrates including humans and many domestic 

animals.7 The benefits attributed to the presence o f a healthy population of bifidobacteria in 

the gut include inhibition o f carcinogenesis,8"10 suppression of putrefactive substances,11 

lowering of blood pressure and blood cholesterol in hypercholesteremic subjects,12-13 synthesis 

of B-complex vitamins,13 and inhibition of unfavorable bacteria such as C. perfringens and E. 

co//'.14,15 These factors point to inulin as a valuable prebiotic/ In fact, human consumption 

of inulin and its oligomers has increased steadily since the commercial production in Japan in 

the early 1980's o f Neosugar*, a synthetic FOS obtained by the action of a fungal 

fructosyltransferase.1 This increase is largely attributable to the health benefits that ensue 

from ingestion of inulin and FOS. Table 1 lists some registered trade names for products that 

contain inulin or its oligomers.

Di-D-fructose dianhydrides (DFDAs) are thought to have similar health benefits in 

animals. In two recent studies16,17 broiler chickens were fed caramel obtained from the 

thermolysis of sucrose, a process which is known to produce DFDAs.18 The results point in 

both cases to potential health and weight gain improvements as a consequence o f feeding 

sucrose caramel. Several representative articles offer the reader a more complete treatment

* A prebiotic is a non-digestible food substance that selectively stimulates the growth and/or activity 
of one or a number of bacteria in the colon, and thus improves the health of the host.
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o f the role o f fructo-oligosaccharides as prebiotics.2,18'24

Trade Name Manufacturer Source

Neosugar* Meiji Seika Co., Japan produced from sucrose by 
Aspergillus niger 
fructosv ltransfcrase

Raftiline*. Raftilosc* Raffinerie Tirlemontoise S. A.
(Orafti). Belgium

dried chicory rool extract, 
varying degrees of hydrolysis

Fibruline*.
Fibrulosc11.
Fructulinc*

Cosucra S.A.. Belgium dried chicory root extract, 
varying degrees of hydrolysis

Inubio* Hankintatukku Oy. Finland dried chicory root extract

Inutest* Lacvosan-GmbH. Linz. 
Austria

"sinistrin" branched inulin- 
likc fructan from Scilla
maritimo

Table 1 - Some registered trade names and manufacturers o f inulin and 
fructo-oligosaccharides.

Industrial Uses of Inulin

The major users o f inulin are pharmaceutical and food companies, many of which 

house nutraceutical departments specifically to research products with real or perceived health 

benefits.25 Table 2 lists some of the marketable health attributes, applications, and uses of 

inulin, inulin-containing plant parts, and FOS. One estimate states that in Europe some 

individuals may consume as much as 12g inulin per day.1 The world market for these 

functional food products in 1995 was estimated at $US 10 billion.25
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Application
Type

Properties Occurrence/Use

Health

Food

Medical

Industrial

| em ulsifier, 
bifidofactor

non-digestible. j  fiber supplement, prcbiotic

emulsifier, flavor enhancer, gelling 
agent, bulking agent, mouth feel 
enhancer, fermentation (agave 
juice. Mexico)

nontoxic, not metabolized, freely 
filtered through kidney glomeruli, 
not secreted or reabsorbed by renal 
tubules, rapidly and evenly 
distributed in the vascular and 
extracellular spaces. inulin 
conjugates arc rapidly and 
completely excreted by kidney into 
urinary tract

cyclizc. derivative, alkaline/acid 
degradation, hydrolyze

coffee, tea. yogurt, frozen desserts, biscuits, soups, 
salad dressings, whipped cream, baked goods. Iow- 
fat cheeses, no-fat icings and glazes, chocolate, 
breakfast cereals, confectionery, low-fat margarine, 
chicken breast, sausages, processed meats, tequila

assessment of renal function, assessment of 
glomerular filtration rate (GFR). conjugation and 
carrier of drugs, measurement of extracellular 
space, measurement of cardiac output, detection 
and measurement of pulmonary edema, indicator of 
gastric mucosal damage, probe for liposome 
deposition (radio labeled), potential anti-cancer 
activity

cycloinulin for molecular encapsulation, phosphate 
substitute in detergents (after oxidation), feedstock 
in production of glycerol, substrate for microbial 
fermentations (ethanol, acetone, butancdiol. 
succinate), precursor of HMF. levulinic acid, 
mannitol

Table 2 - Applications, properties, and uses o f inulin and fructo-oligosaccharides.

Effect of Heat upon Inulin

This study focuses primarily on the reactions of inulin in the presence of citric acid to

form di-D-fructose dianhydrides (DFDAs). The experiments all take place at elevated

temperatures in anhydrous environments. But even much milder conditions can generate 

DFDAs from fructose and its polymers. The detrimental economic impact of DFDA 

formation has already been felt by the sugar processing industry, where DFDAs may form 

during processing,26 thus interfering with process monitoring27 and inhibiting crystallization.28 

In these contexts, DFDAs are nuisance compounds with adverse economic impacts. A 

number of patents exist, however, for the production o f DFDAs, most claiming them as non-
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calorific or non-cariogenic sweeteners. (See for example refs29'32). In general, DFDAs may 

be expected to be present to some degree in any preparation or treatment that involves fructo- 

oligosaccharides that have been heated, especially in the presence of catalytic amounts of 

organic acids. Roasted chicory, for example, enjoys a significant presence worldwide as a 

coffee additive. One study33 identified four di-D-fructofuranose dianhydrides in a 

commercially available water soluble extract of chicory. Total DFDA content was -10%. 

Baked goods containing inulin as bulking agent or FOS as low calorie sweetener might also 

be expected to incorporate DFDAs as a result o f heating.
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DFDA Nomenclature

The 14 DFDA products described in this work differ from one another in subtle, but 

distinct ways. It can be frustrating at first trying to recognize, let alone ascribe any 

importance to, the various isomers. Furthermore, historical naming conventions commonly 

appear in the literature and it is often left to the reader to become familiar with the structures. 

The most unambiguous naming convention is set forth by the International Union of Pure and 

Applied Chemistry (IUPAC). A 1997 review o f carbohydrate nomenclature34 explains the 

precedents for naming dihexulose dianhydrides, o f which DFDAs are a sub-category 

containing only fructose. The IUPAC name specifies the following for both residues:

1. parent monosaccharide - fructose, sorbose, glucose, etc.

2. ring size - 5-membered furanose, 6-membered pyranose, etc.

3. configuration o f  the highest numbered chiral carbon - D or L

4. anomeric configuration - a or P

5. anhydride linkage - 1,2’:2,1', etc.

A recent review by Manley-Harris and Richards35 proposes a convenient shorthand

notation for DFDAs. It is this notation that will be most useful to the reader, and that will be 

used throughout this work. In general, structure illustrations adhere to the Haworth 

convention, in which the first-mentioned monosaccharide is depicted on the left in the 

“normal” orientation. The other monosaccharide is drawn to most conveniently show the 

dianhydride linkages. The linkages appear in the name as pairs o f locants, the first (unprimed) 

locant referring to the carbon of that number in the left-hand residue. The primed locant 

always refers to the right-hand residue. Figure 2 highlights the assignment o f the first part 

o f the shorthand name a-D-Fru/-1,2':2,1'-P-D-Fru/, which is common to the inulin/citric acid
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systems in this work. The reader may work out the remainder o f the assignment by analogy.

cc-D-Fru/-1,2':2,1 (3-D-Fru/

Figure 2 - Example of DFDA 
naming conventions.

Figure 3 on the following page lists the structures, shorthand names, and trivial names for 

each of the 14 DFDAs that occur in inulin/citric acid thermolyses. They are presented, for 

convenience only, in order o f elution on capillary GC from earliest to latest. DFA is an 

abbreviation for difructose anhydride, the historical reference to DFDAs containing only 

fhictofuranose. Similarly, DHL refers to the historical name diheterolevulosan, which applies 

to DFDAs containing at least one fructopyranose.
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a -D - l 'ru /-1.2 ,:2 .3 ,-p -D -F ru / 
DFA III

p-D-Fru/-2, l':3.2'-a-D-Frup a-D-Fru/-1,2': 2,6'-p-D-Frur 
DFA V

—O H  OH

P-D-Fru/-2. l':3.2'-P-D-Fnip P-D-Fru/-1,2': 2.3'-P-D-Fru/ 
DFA II

a-D -F m p-1,2 ':2 .1 '-fl-D-Frup
DHL I

P-D-Fru/-1,2 ':2 .1 '-a-D-Frup

a-D-Fru/M .2': 2.1 '-a-D-Frup P-D-Fru/-1.2':2.1'-P-D-Fru/

O l! OH  OH OH

13 14
P-D-Fru/-1.2':2.1'-p-D-Frup P-D -Fiup-l.2 ':2 .r-p-D -Frup

DHL III ° HL 'V

Figure 3 - DFDA structures and shorthand and trivial names.
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General Mechanisms of Formation of DFDAs

Although the discovery of di-D-fructose dianhydrides (DFDAs) dates back to the mid

factors that control their formation under various reaction conditions are little understood. 

In 1952 Wolfram and Hilton37 proposed a mechanism (Scheme I) that follows the general 

scheme of Lowry3" for acid catalysis. (A substrate accepts a proton, undergoes some form 

of bond rearrangement, and releases a proton.) In concentrated HC1, the C-2 hydroxyl (0-2) 

of L-sorbose is protonated and lost as water to give a sorbofiiranosyl or sorbopyranosyl cation

1920’s,36 the specific mechanisms by which they form and the kinetic and thermodynamic

L-Sorbofuranose —  L-Sorbopyranose

\
C lliO H

\ /

HO

I♦H*
■h2o

HO

OH

OH OH

a-L -S o r/-l,2 ':2 ,r-p -L -S o rp P-L-Sorp-l,2’:2 ,r-a -L -S o rp

Scheme 1
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that is sp2 hybridized at C2. This cation is subject to nucleophilic attack by OH groups from 

other sorbose molecules, the products o f which are disaccharides containing five and/or six 

membered rings. One residue of these disaccharides then accepts a proton in similar fashion, 

loses an OH as water, and forms a carbocation, which reacts intramolecularly with the other 

residue to form a dianhydride. A number of linkages and anomeric configurations may result 

from this series of reactions. Scheme 1 shows two dianhydrides that were isolated by 

Wolfram and Hilton/ One was identified as di-L-sorbopyranose 1,2':2, l'-dianhydride. The 

identity o f the other product was assumed to be L-sorbofuranose L-sorbopyranose 1,2':2, l'- 

dianhydride. This general scheme recurs throughout the literature, with minor modifications, 

right through to the present discussion of DFDA formation.

Boggs and Smith39 proposed a modification of this general mechanism to explain the 

formation o f hexa-O-acetyl di-D-fructofuranose-1,2':2, l'-dianhydride from inulin triacetate 

in fuming nitric acid (Scheme 2). In this case, a glycosidic oxygen accepts a proton and the 

inulin is hydrolyzed. The resultant oligomeric carbocation reacts with either a) nitrate ion, 

or b) the glycosidic oxygen of the next residue in the chain to form the dianhydride. The 

acetylated 0-3, 0-4, and 0-6 of each fructose residue in the chain preclude the formation of 

other linkages e.g. 2,3': 1,2'; the acetyl group does not easily carry a positive charge in a 

manner analogous to the loss o f a proton, and is therefore not easily displaced. This also 

means that at least three fructose residues must be present in the chain in order for DFDAs 

to form, the third residue carrying the positive charge - as a carbocation - once the

* Wolfram and Hilton were not able to assign anomeric configurations. The anomers shown in 
Scheme 1 were arbitrarily chosen to illustrate the general mechanism.
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dianhydride is formed.

a)

b)

oligomeric
fructofuranosyl
carbocation

A.O

A<0

C ll

o

AcO,

A tO

+

hcxa-O-acctyl di-D-fru/- 
1,2':2,l'-dianhydride

A t£>  —

A iO /

rn*

Scheme 2

Discussion of the mechanisms of DFDA formation did not reappear in the literature 

until the 1980's. In the meantime, the advent o f NMR spectroscopy and its application to 

DFDAs allowed researchers to assign anomeric configurations and ring conformations to 

DFDAs that until that time were largely speculative. (See for example refs4(M1)

Thermal Treatments of Fructose-containing Substrates

Sucrose Degradation in DMSO - The research in this section is not directly relevant to the 

current study; no mention is made of DFDAs. However, the fundamental significance lies in 

the contribution to our understanding of the non-aqueous chemistry o f carbohydrates, mainly 

sucrose. These studies reinforce the concept o f a fructofuranosyl cationic intermediate and 

provide evidence for the presence of anhydrofructose species.
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Beginning in 1981, Moody and Richards published a series of papers44-*7 describing 

the reactions that fructosyl-containing compounds, principally sucrose, undergo in hot 

dimethyl sulfoxide (DMSO). The authors had intended to explore the utility of thermolyzing 

sucrose in the presence of nucleophiles e.g. alcohols as a synthetic route to fructofuranosides. 

The work evolved, however, into a characterization of the factors affecting the hydrolysis o f 

sucrose under these conditions. The first o f the series44 describes three separate fates for 

sucrose thermolysis in DMSO in the presence o f alcohols: 1) alkyl-D-fructofuranosides, 2) 

non-specific degradation, and 3) 2,6-anhydro-P-D-fructose (15). The precursor intermediate 

in each case is the fructofuranosyl cation (16), which arises from the cleavage of the sucrose 

glycosidic bond. The anhydrofructose was never present in more than trace quantities, but

HO.

OH

OfcOHHO,

OH

15 16

increased with steric interference o f the larger alcohols.

The second paper o f the series45 revealed the critical role that traces of an acid 

impurity play in the thermolysis o f sucrose. Sulfuric and p-toluenesulfonic acids both 

catalyzed the reaction while the weaker acetic acid did not. The mechanism shown in 

Scheme 3 was proposed. Using known initial concentrations for sucrose and acid, and by 

observing the rate o f disappearance o f sucrose, the authors derived a first order rate 

expression and showed that all o f the reaction proceeds via protonated sucrose (SFT).
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a-Glc + Fru+

t
Products + H+

Scheme 3

Additional experiments using water or MA'-dimethylformamide as solvent, or using DMSO 

and adding water at varying intervals, confirmed the involvement o f the protonated glycoside 

in the rate determining step. Also, small amounts of water (1%) added to an ongoing reaction 

caused only minor changes. This last discovery is relevant to the current study, in which the 

only water present during thermolysis is the small amount produced by dehydration of inulin 

and its oligomers.

In the third paper in the series,46 partial or complete acetylation were shown to impart 

increased resistance to acid catalyzed degradation o f sucrose in DMSO. Two of the factors 

thought to contribute to this effect were the electron-withdrawing nature of the acetyl group 

and competition for the proton catalyst by the carbonyl oxygen. Both of these factors would 

result in less efficient protonation of the glycosidic oxygen and slower rate o f scission. A 

third contributing factor was thought to be the formation of a five-membered ring complex 

(17) that presumably would be more stable than the open form that is protonated at the 

glycosidic oxygen.
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RO OH
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Shortly thereafter, Moody and Richards47 measured the rates o f  glycosidation of 

fructose, sorbose, arabinose, and sucrose, and the rate of transglycosidation of various methyl 

and benzyl fructosides, in 1:1 alcohol:DMSO (alcohol = MeOH or EtOH) in the presence of 

sulfuric acid (10-lOOmM). Ketoses (fructose and sorbose) are glycosylated more easily than 

the aldose (arabinose) because they form a tertiary carbocation versus the secondary cation 

for the aldose. Therefore, only traces o f acid are needed to produce them. This is important 

in controlling non-specific degradation to e.g. 5-(hydroxymethyl)-2-fiiraldehyde (HMF), 

which is favored by high concentrations o f acid and high temperatures. The kinetic products 

o f the transglycosidations have the same ring size as the starting material. They then slowly 

mutarotate to an equilibrium mixture o f a- and P-D-ffuctofuranosides and P-D- 

fructopyranosides. *

More importantly for the current study, the work includes experiments designed to 

gain insight into the mechanism of furanoside-pyranoside interconversion. These experiments 

determined the rates o f glycosidation of the benzyl 2-thio-D-fructosides relative to their

t Angyal and Bethell® showed a-D-fhictopyranose to be highly disfavored due to synaxial interaction 
o f the C2 hydroxyl with 0 3 . Conformation inversion from 5C2 to 2C„ instead o f relieving this interaction, 
places the C2 hydroxymethyl group in the axial position and increases the gauche interaction between it and
0 3 . Also, a-D-fructopvranose in 5C2 has three axial hydroxyls, two of which are cis-1.3. while P-D- 
fructopyranose has only two axial hydroxyls in either conformation. Moody and Richards found no evidence 
of a-D-fructopyranose in any of their experiments.
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oxygen analogs. The elegant series o f deductions that followed identified 2,6-anhydro-P-D- 

fructofiiranose (15) as the key intermediate instead of acyclic D-fructose dialkyl acetals. This 

anhydride will play an important role in future mechanistic discussions o f DFDA formation 

from inulin, since it provides a reasonable pathway between fructofuranose and 

fructopyranose.

Hydrolysis - Heyraud et a! V) isolated the fructo-oligosaccharide components, from dp2 

(sucrose) to dp7, from the juice o f Jerusalem artichoke and measured the rate o f hydrolysis 

o f the individual components at 70°C in sulfuric acid (pH 2). The rate o f disappearance of 

each oligosaccharide was assumed to follow pseudo first order kinetics. The glucose-fructose 

glycosidic bond was 4-5 times more resistant to hydrolysis than the fructose-fructose bond; 

scission of the glucose-fructose bond leads to the formation of a secondary carbocation while 

scission of the fructose-fructose bond leads to a tertiary carbocation.

Mandal et al.i0 determined rate constants o f acid catalyzed hydrolysis o f sucrose in 

aqueous mixtures o f four solvents - protophobic protic glycerol, protophilic protic urea, 

aprotic dioxane, and dipolar aprotic DMSO. The kinetic behavior in all four solvents was 

similar to that in water and was therefore considered to be specific hydrogen ion catalysis 

following the general reactions depicted in Scheme 4. As the proportion o f glycerol

ki k2
S + H30 + —  [S H 30 ]+ —  products

k-i

Scheme 4
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increased so did the observed rate constant because H’ became less stabilized and more active 

as a catalyst. Hydrolysis rate relative to that in water showed a marked dependence on the 

basicity o f the solvent. With the addition o f the more basic solvents urea, DMSO, or up to 

10 mol% dioxane, the observed rate constant decreased, H' becoming more solvated and less 

catalytically active. It is difficult to draw direct correlations between this behavior and the 

solvation o f H" in anhydrous inulin/citric acid melts, in which inulin acts as a principal reactant 

and as solvent. It is fair to expect the many hydroxyl groups o f inulin to effect some degree 

o f solvation. As the thermolysis proceeds and the proportion o f DFDAs increases, so too 

does the number of free hydroxyl groups decrease, and we might expect solvation of H ' to 

decrease. It is not clear, however, what effect acidic degradation products have on the 

availability of H ' as a catalyst. Literature precedents do not exist.

DFDA Formation from Fructose-containing Substrates

Anhydrous HF  - In 1985 Defaye e ta l.5i demonstrated the formation of DFDAs from inulin 

and D-fructose upon treatment with anhydrous hydrogen fluoride at 20°C, and from D- 

fructose in sulfur dioxide at -78°C. These were the first non-aqueous systems employed to 

obtain DFDAs. Under these conditions, inulin gave high yields of a-D-Fru^-l,2':2,l'-P-D- 

Fru/? (6), a-D-Fru/-l,2':2,r-P-D-Fru/3 (9), P-D-Fru/-1,2':2,l'-P-D-Fru/? (13), P-D-Frup- 

1,2':2,1 '-P-D-Frup (14), a-D-Fru/-l,2 ':2,l'-P-D-Fru/ (10), and a previously unknown 

compound, P-D-Fru/-2,1 ':3,2'-P-D-Frup (4). The ratio o f products varied with time, 

temperature, and initial concentration, suggesting equilibration among isomers.

The authors assigned a pair of UC signals to the anomeric carbons o f fructofuranosyl
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fluorides presumed to be in equilibrium with fructofuranosyl cation. They proposed a 

mechanism (Scheme 5) whereby a-D-Fru/'-l,2':2,1 '-P-D-Fru/(10) forms first, then isomerizes 

via ionic intermediates to other DFDAs. Support for isomerization lies in the fact that a -D -

D-Fructose

m—|
^  hJ)—a v «

rayai
on

fructofuranosyl
fluoride

on

h o

0 (1

O i l

a -D -F ru /-1,2’:2 ,1 '-P -D -F ru /

on

O H

no;
iio

on

O ther
DFDAs

OH

Scheme 5

Fru/?-l,2':2,l'-P-D-Fru^ (6) and P-D-Fru^-1,2':2,1 '-P-D-Fru^ (14) treated with HF 

produced the same product mixture as D-fructose under the same treatment. A subsequent 

study52 using L-sorbose confirmed this behavior and reinforced the furanosyl ion as central to 

the mechanism.

Originally, isomerization appeared to be a legitimate mechanistic path among DFDAs 

in the current study. However, the low temperature HF systems employed by Defaye and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

coworkers are fundamentally different than the high temperature inulin/citric acid systems. 

It was not known to what extent their findings may be applied to the high temperature 

treatments used in this study.

In 1988, Defaye et al.53 extended their treatment with HF to inulin triacetate/ Their 

proposed mechanism was expanded to include an inulobiosyl cation intermediate, as well as 

the fructofuranosyl cation, both o f which were presumed to form the fluoride species before 

reacting further to form DFDAs. The aforementioned 13C signals which were assigned to the 

anomeric carbons of fructofuranosyl fluorides appeared in all the crude product mixtures. It 

has been suggested35 that in this system, the fluoride ion plays an important role in stabilizing 

cations that form in the reaction mixture. The solvent is a potent fluorinating agent. The 

fructofuranosyl fluorides that are presumed to form likely serve as reactive intermediates and 

provide lower energy pathways to such reactions as isomerizations, pathways that would not 

be available in inulin/citric acid melts.

Pyrolysis o f  Inulin - An investigation of the pyrolysis o f inulin58 revealed a rather high yield 

of DFDAs. A subsequent detailed analysis of the products o f inulin pyrolysis59 revealed a 

mixture o f products, the DFDA component of which contained predominantly di-D- 

fructofuranose dianhydrides. The trimethylsilyl derivatives o f these compounds revealed 

seven peaks, three o f which were positively identified as a-D-Fru/-1,2':2 ,1 '-P-D-Fru/(10),

* Defaye and coworkers have published many papers, several in collaboration with The Technical 
University of Denmark. A major focus has been formation of dianhydrides from carbohydrates and their 
derivatives in anhydrous HF and especially pyridinium poly(hydrogen fluoride), and the steric and electronic 
effects that govern product distributions under varying conditions of reaction time, temperature, etc. (See. for 
example, refs 54' ,T)
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P-D-Fru/-l,2':2,3'-P-D-Fai/(5), and a-D-Fru/-l,2':2,3'-P-D-Fru/(l). Two others had mass 

spectra consistent with di-D-ffuctofuranose dianhydrides, and two minor peaks showed mass 

spectral evidence of the presence o f furanose-pyranose dianhydrides. This is an important 

result in that the major DFDA products differ significantly from those obtained by the 

treatment of inulin with anhydrous HF.51 It was not possible to extend the pyrolysis times 

sufficiently to differentiate kinetic from thermodynamic products; at 200°C thermal 

degradation proceeds more rapidly than DFDA production. Scheme 6 illustrates the 

mechanism proposed for DFDA formation from inulin. The first step is cleavage from the 

inulin chain of a fructo-oligosaccharide intermediate, which retains the © charge as a terminal 

fructofuranosyl residue. Subsequent intramolecular attack by 0-3 ' leads to either a-D-Fru/-

•O

Scheme 6
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1,2':2,3'-P-D-Fru/ (1) or P-D-Fru/-1,2':2,3 '-P-D-Fru/ (5), depending on whether attack 

occurs a  or P to the fructosyl carbon. If the glycosidic O -1' attacks the a side of the cation, 

the product is a-D-Fru/-1,2':2,1 '-P-D-Fru/ (10). The suggestion that an oligomer with a 

terminal anhydro unit is also present is based on analogy to similar pyrolysis experiments in 

the same laboratory using glucose as the substrate.60 This mechanism is plausible given the 

extent to which the authors were able to isolate and positively identify the DFDA components 

of the reaction mixture. A subsequent investigation61 led to the identification o f all 14 DFDAs 

and the isolation and characteriztaion of 13 o f them.

DFDA Formation from  n-Fructose - Only one study exists that attempts a detailed kinetic 

description o f DFDA formation. In 1990, Chu and Berglund62 monitored DFDA formation 

in acidified, nearly saturated fructose solutions. Using HC1 to adjust the initial pH (2.65, 

4.35, 5.90), various solutions (65 to 92%) were held at constant temperature (30 to 60°C) 

for two weeks and the concentrations o f four products - D l, D2, D3, D4 - were measured 

at intervals by integration o f HPLC peaks. (See Figure 4 for structures assigned by the 

authors to these products.)

a -D -F ru /-1 .2 ':2 .1 -P -D -F ru p  a -D -F m p -l.2 ':2 .t '-P -D -F ru p  P -D -F ru /-I .2 ':2 ,l '-P -D -F n ip  P -D -F rup-I.2 ':2 .1 '-P -D -F rup

D1 (DHL II) D 2 (DHL I) D 3 (DHL III) D 4 (DHL IV)

Figure 4 - The four DFDA products o f Chu and Berglund.
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The concentration versus time curves are reconstructed, using data from Chu’s 

thesis,63 in Figure 5 for the experiment at 60°C and pH 2.65 with 80.3% initial fructose

5

02
D3

4

3

2

1

0
0 33648 96 144 240 288192

Time (hr)

Figure 5 - Formation and decay of the four DFDA products o f Chu and 
Berglund.

concentration. These data show D3 and D4 forming rapidly and reaching plateaus o f -2  and 

3 .5%, respectively, after about three days. Their concentrations then decline very slowly for 

the duration of the two week reaction time. The product D1 appears on day 5 at -0.7%  and 

increases to -3%  after two weeks. The rate o f formation of D 1 increases slightly as the 

reaction proceeds. The product D2 appears abruptly on day 11 at -1%  and remains more or 

less at that concentration.
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The authors propose a simple, second-order rate equation (Scheme 7) of the form 

-d[A]/dt=k[A]2, where each product forms directly from fructose and does not contribute, 

through isomerization or other processes, to the concentrations o f the other products. This

2 fructose
k3

D1

D2

D3

D4

-d[fructose|/dt = k[fructose| 2 

k — k i + k ; + k i + k.i

Scheme 7

greatly simplifies the kinetic treatment. The authors cite the relative acid stability of DFDAs 

in general to justify this approach.

The second-order rate constants for total DFDA formation show an unexplained 

anomaly (Figure 6). The kinetic plot o f the inverse fructose concentration versus time for 

pH 2 .65 is relatively linear. The same plots for pH 4.35 and 5.90, however, show two 

separate linear regions with different slopes (rates). The authors fit the latter data with a two 

section broken line. Their explanation is that all four products contribute to the disappearance 

o f fructose in the first section, while only D1 and D2 contribute in the second stage. No 

explanation is given for the straight line behavior at pH 2.65. In fact, the authors state 

specifically that, regardless o f pH or temperature, the point at which D3 and D4
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0.016
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g  0.014
2 section

0.013

0.012 pH 2 65 
pH 4 35 
pH 5 90

0.011

0.010 0 48 96 192144 240
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Figure 6 - Effect o f pH on the rate o f disappearance o f fructose.62 

formation levels off coincides with the break point in the two section line. This does not 

appear to be true for pH 2.65. The data for formation o f DFDAs at pH 4.35 and 5.90 are 

even less conclusive; no data exists before five days/

Total DFDA formation increased with increasing acid concentration, but only for the 

first reaction section. The rate for the second reaction section was pH-independent (i.e. 

similar slope/rate for all pH). The authors postulate the change in rate to be the result of 

solvation of fructose at concentrations less than about 70%, which selectively [sic] inhibits 

the formation o f D3 and D4, but not the formation of D1 and D2.

* Data for these plots were excerpted from Chu’s thesis.63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

The analytical techniques used to quantify DFDAs in this study seem inappropriate. 

Firstly, the identity o f two of the four HPLC peaks (excluding the fructose peak) is 

established solely on the basis o f following the procedure o f Hamada et a l MX for synthesizing 

a-D -Fru/-l,2':2,l'-P-D-Fru^ and a-D-Frup-l,2':2,l'-P-D-Frup (D1 and D2 in Chu and 

Berglund). The other two LC peaks are assumed by Chu and Berglund to be P-D-Fru/- 

1,2':2,1 '-P-D-Foy? and P-D-Fru/?-1,2':2,r-P-D-Fru/> (DHLs III and IV; D3 and D4). The 

authors justify this assignment by stating that these two products each contain at least one P- 

pyranose moiety. There is no evidence given to support this statement.

In Chu and Berglund’s analysis, the four DFDAs in question show up as minor 

deflections of the baseline in both LC and GC traces. This inevitably results in considerable 

variation when integrating, which may be the source o f some of the scatter observed. This 

low detector response probably also accounts for the paucity of early data, especially for D2, 

which is not detected until eleven days into the reaction. The authors used primarily HPLC 

to determine both DFDA and fructose concentrations. This works well for fructose, since it 

is unlikely that other monosaccharides will be present in the reaction mixture, and fructose 

is abundant at all stages o f the reaction, but another technique should have been used to 

quantify DFDAs. The use of GCMS for confirmation is quite acceptable, but the column used 

was inadequate (6 ft 3% OV-225). By using a short column the authors limited their ability

* Hamada et at.0* incorrectly assigned the configuration of DHL I as the a -a  anomer and DHL II as 
P-Fru/-l,2 ':2.r-a-Fru/7. Hamada refers for confirmation to Binkley et a/..43 who also misnamed both 
compounds. The correct assignments were published in 1985 by Defaye et al.il Chu and Berglund listed the 
correct structures for these two DFDAs but did not mention the discrepancies in earlier work. They also 
incorrectly listed the linkage of p-D-Fru/-1.2':2,3 '-P-D -Fru/as 1,2’:2.4’ and included a still unknown DFDA 
in their table of "known” DFDAs. (P-Frup-1,2':2,3’-P-Frup has never been isolated.) These errors exemplify 
typical problems with DFDA identification.
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to resolve isomers. They state that, since difructose dianhydrides are nonreducing dimers, 

there is no chance of having anomeric isomers overlapped in the same peak. This statement 

is entirely false. GC analyses in this laboratory give baseline resolution for 14 DFDAs, as well 

as other disaccharides, fructose and glucose anomers, and a range of trisaccharides, all at 

nearly ten-fold lower detection levels than Chu and Berglund achieved. It requires a 30 meter 

column, however, to achieve such resolution. Even so, two DFDAs coelute and another 

appears on the leading edge of the sucrose peak. The authors also state that there were only 

four compounds formed in the reaction. In fact, experiments in this laboratory with fructose 

and HC1 following Hilton65 yielded predominantly DHLs I, II, III, and IV. But four other 

DFDAs formed as well (a-D-Fru/-l,2 ':2,3'-P-D-Fru/(l), P-D-Fru/-1,2': 2,1 '-a-D-Fru/; (2), 

a-D-Fru/-1,2':2 ,1 '-a-D -Fru/(8), and P-D-Fru/-1,2':2,1 '-p-D-Fru/(12)).

In summary, we must read Chu and Berglund’s wt% conversion data with caution. 

In looking at the DFDA conversion plot, it may be that the plateaus for D3 and D4 represent 

a steady state in which P-D-Fru/-1,2':2, l'-P-D-Fru/? (13) and P-D-Fru/?-1,2':2,1 '-P-D-Fru/? 

(14) are being produced from fructose, likely in a second-order process. Their slow, steady 

decline might indicate they are reacting further to form the thermodynamically more stable 

a-D-Fru/?-1,2':2,l'-P-D-Fru/? (6) and a-D-Fru/-1,2':2,l'-P-D-Fru/? (9).J The appearance of 

a-D-Fru/-l,2':2,1 '-p-D-Fru/? (9) roughly coincides with the steady state. The data for a-D- 

Fru/?-1,2':2, 1 '-P-D-Fru/? (6) are inconclusive in this regard. Additionally, any conclusions we

*

* The differences in stability' are caused, in part, by the anomeric effect, which is discussed in more 
detail in the Results section. In accordance with the anomeric effect, the central dioxanc ring will have 
substituent oxygens in the axial position. In the former compounds (13 and 14). this puts the central ring in 
a boat conformation. In the latter (6 and 9). the central ring is in the more stable chair conformation.
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draw about the mechanism of formation must be tempered with the possibility o f both 

interconversion between DFDAs and the presence in small amounts o f other DFDAs. These 

possibilities each represent another layer o f complexity in the mechanistic model.

The assertion that selective inhibition o f the formation of D3 and D4 occurs due to 

solvation o f fructose is puzzling. If, as the rate equation stipulates, each product forms 

directly from fructose, there seems no reason why solvation should inhibit D3 and D4 but not 

D1 and D2. If solvation were inhibiting formation of all DFDAs from fructose, D1 and D2 

must be arising from the isomerization o f D3 and/or D4, and the rate equation should reflect 

it. A study designed to determine the fate of each individual DFDA in the system might throw 

some light on this difficult question.

The second-order rate constants for the formation o f total DFDAs were calculated 

from the slopes of the plots of inverse fructose concentration versus tim e/ These plots were 

fitted with two section broken lines. This kind o f behavior has been observed in at least two 

other cases, both of which were titrations.66 The reactions proceeded at a specific rate until 

a reagent was consumed, at which point the rate slowed abruptly. A pH effect like this would 

seem to argue for the inclusion, or at least consideration, o f hydronium ion concentration in 

the rate expression. Also, total DFDAs formed in Chu and Berglund’s experiments increased 

with increasing acid concentration, but only for the first reaction section. The rate for the 

second reaction section was pH-independent, giving further cause to consider the role o f [H ],

♦ This assumes that DFDAs are the sole products that arise from fructose in these systems. Mass 
balance experiments could reveal non-specific degradation, perhaps to volatile products, in which case 
disappearance o f fructose would not directly correspond to formation o f DFDAs.
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Acid Stability of DFDAs

Numerous studies35 attest to the resistance o f DFDAs to acid hydrolysis compared to 

inulin, for example. Individual DFDAs vary in their resistance to acid hydrolysis. Although 

a good portion o f the work has been carried out on the per-O-methyl derivatives, there can 

be no doubt that DFDAs are stable in acid solution relative to singly linked saccharides. 

(Additional detail on stability o f DFDAs in the presence of acid is given on page 70.) The 

current study provides some insight into DFDA stability in high temperature, anhydrous, 

acidified thermolyses.
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Statement of Purpose for the Current Study

This study completes work* commenced in the Shafizadeh Center for Wood & 

Carbohydrate Chemistry at the University o f Montana. The aims of that work were:

1. Isolate and characterize the individual components o f thermally 
treated inulin and sucrose.

2. Extend the mass spectral library o f the per-O-methylsilyl derivatives 
of DFDAs.

3. Determine the effects o f variations in reaction conditions, including 
time, temperature, and the presence o f additives, upon the relative 
proportions o f the components in thermal product mixtures of 
DFDAs.

The work described herein consists o f a thorough examination o f thermolysis o f inulin 

and 1.5wt% citric acid at 160°C. These experiments were then extended to higher 

temperatures and to varying citric acid concentrations. The end goal was to propose a 

reasonable mechanistic explanation for the formation of DFDAs from inulin using both 

empirical methods and computer modeling.

* Funding for this work was provided by the Cooperative State Research. Education and Extension 
Serv ice. U.S. Department o f Agriculture, under Agreement No. 95-37500-2098.
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T h e r m o l y s is  R e s u l t s  a n d  D is c u s s io n

Chapter Introduction

Anhydrous melts o f inulin/citric acid mixtures give high yields o f di-D-fructose 

dianhydrides. The systems studied in this work contain from 1.0 to 2.9 wt% citric acid and 

yield up to 35 wt% DFDAs after 30 minutes at 160°C. The focus o f this chapter, which 

contains the majority o f the thermolysis experimental work for this study, is to rationalize the 

relative distribution of individual DFDAs at any point during the reaction.

The chapter begins with quality assurance procedures, followed by some preliminary 

experiments to confirm DFDA identities. The tools employed for this purpose were a 

combination of gas chromatography, NMR, and mass spectrometry. The primary quantitative 

tool for measuring DFDA conversion was capillary gas chromatography with flame ionization 

detector (GCFID). An explanation o f the important characteristics o f a typical chromatogram 

is given.

One o f  the first questions to arise concerns the chemical fate o f DFDAs after they 

have formed from inulin. Therefore, experiments were designed to isolate individual DFDAs 

and test their fate by heating them in the presence o f citric acid and measuring the products. 

Perhaps the simplest situation from a modeling standpoint would have all DFDAs simply not 

degrade. In fact, some DFDAs are thermally stable toward acid catalyzed degradation in 

these experiments. For others, their chemical fate is more complicated. A partial explanation 

for relative stability is offered based on structure.

The conversion data for individual DFDAs during inulin thermolysis reveal a number 

o f  trends in relative abundance. A closer inspection o f the structural similarities and

29
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differences among DFDAs leads to a chemical mechanism that explains the formation from 

inulin of nine o f the 14 DFDAs. Evidence for the source material for the other five DFDAs 

is provided by qualitative experiments that track the shift in inulin oligomers from higher to 

lower degree o f polymerization during thermolysis.

The underlying theme throughout this and the next chapter is to provide a sensible 

explanation, in kinetic terms, of the reactions that inulin and its thermolysis products undergo. 

The data presented in this chapter, and the conclusions that are drawn, provide a foundation 

from which to build a suitable kinetic mechanism.
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Quality Assurance and Preliminary Experiments

This section describes quality assurance measures taken early in the research to ensure 

accuracy and precision. Also presented here are the melting points of the inulin/citric acid 

powders used, a temperature equilibrium experiment to determine how much time elapses 

before the samples reach the prescribed reaction temperature, and a determination o f response 

factors for individual DFDAs. The identities o f the 14 DFDAs relevant to this study are 

confirmed by three separate instrumental techniques. Also included are a quantitative mass 

recovery experiment to expose any indeterminate loss o f sample and a qualitative mass 

distribution experiment by Electrospray Mass Spectrometry (ESMS).

Purity o f Reagents - During the course o f this study, reagents had to be replenished. Each 

new bottle o f //-hexane, pyridine, and Tri-Sil was tested for impurities by carrying out the 

complete sample workup procedure without any sample present. That is, the new reagent 

was used in the derivatization, cleanup, and analysis steps as outlined on page 153. At no 

point did impurities interfere with any peak of interest.

Precision o f  Weight and Volume Measurements - Weighing of xylitol and inulin/citric acid 

was accomplished with a high precision electronic balance as described. Gilson micro- 

pipetters (10-200gL and 200-lOOOpL) were used to dissolve the internal standard xylitol in 

a known volume of pyridine, then to deliver precise aliquots o f that solution to each sample 

vial. The manufacturer serviced the larger pipetter shortly after this study began; its accuracy 

and precision were, therefore, recently certified. I tested the precision o f the former, smaller

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

capacity pipetter, by repeatedly transferring the same volume of pyridine to a beaker on an 

electronic balance and recording the weight increase. Precision was excellent, as indicated 

in Figure 7.

500  

4 00

S,

2  3 0 0  
V > o

%

200 

100

1 2 3 4  5

Sample

Figure 7 - Precision of 200pL Gilson pipetter.

Consistency o f  Detector Response - The GCF1D was initially fitted with a split/splitless 

injector, which proved inadequate for quantifying samples o f this type; repeated injections of 

the same sample gave wildly disparate quantitation of DFDAs. Split/splitless injectors contain 

glass injection port liners that must be carefully treated with silylating reagents to fully 

deactivate them. Poorly or incompletely deactivated liners adsorb and release analytes in

wt. overall (mg) 
Trial 1 Trial 2
96.85 97.J7
194.88 194.98
292.38 292.59
390.28 390.55
488.60 488.34
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unpredictable ways and are the source o f several chromatographic symptoms including poor 

peak shape, baseline deviations, and inconsistent detector response. The latter problem 

proved intractable and forced the installation of an on-column injector, which is much less 

susceptible to problems o f this type.*

The on-column injector introduces liquid sample directly onto the column. This 

eliminates a major potential source for error. The limitations on contaminant levels imposed 

by the on-column system do not apply to the relatively clean samples that arise from 

thermolysis o f inulin. That is, there are few if any non-volatile or marginally soluble 

compounds present and the on-column injector has proven reliable. Table 3 compares the 

peak area ratios o f a-D-Fru/-l,2 ':2,3'-P-D -Fru/(l) and a-D -Fru/-l,2 ':2,1 '-P-D-Fru/(10) to

DFDA 1/ 
xylitol

DFDA 10/ 
xylitol

DFDA 1/ 
DFDA 10

Injection 1 0.23 0.18 1.25

Injection 2 0.52 0.57 0.91

Injection 3 0.30 0.27 1.11

Injection 4 0.46 0.45 1.02

Injection 5 0.51 0.57 0.90

% RSD* 32 43 14

* relative standard deviation

Table 3 - Comparison of selected peak area ratios for 
repeated injections using split/splitless injector.

* The split mode o f the split/splitless injector allows relatively large volumes of “dirty" samples to 
be analyzed by capillary GC. The majority o f the volatilized sample, along with its contaminant element, 
bypasses the column to waste, while a small portion o f relatively clean sample is introduced onto the column. 
The splitless mode o f this injector introduces small amounts o f relatively clean, volatilized sample directly 
onto the column, where it is recondensed, then subjected to some specific temperature program. Thus the 
same injector serves two different functions.
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xylitol and to each other after five consecutive injections o f the same sample using the 

split/splitless injector.* These two DFDAs were chosen because they consistently give 

prominent, well resolved, symmetrical peaks.

The linear response range o f the flame ionization detector (FID) is large .67 As long 

as the weight of analyte does not exceed the column’s ability to produce symmetrical peaks, 

the ratios o f analytes to internal standard should be consistent to within a few percent from 

one injection to the next. As the table indicates, there was virtually no peak area consistency 

from one injection to the next using the split/splitless injector.

The new on-column injector alleviated the majority o f this inconsistent response. A 

series of three consecutive injections of a sample from an early experiment yielded the peak 

area ratios in Table 4 for a-D-Fru/-l,2 ':2,3'-p-D -Fni/(l), P-D-Fru/-1,2':2,3'-P-D-Fru/(5), 

and a-D-Fru/-l,2':2,l '-P-D-Fru/(10). RSD for peak area ratios are vastly reduced (0-3%).

DFDA 1/ 
xylitol

DFDA 5/ 
xylitol

DFDA 10/ 
xylitol

DFDA 1/ 
DFDA 5

DFDA 1/ 
DFDA 10

DFDA 5/ 
DFDA 10

Injection 1 0.72 0.30 0.82 2.40 0.88 0.37

Injection 2 0.70 0.29 0.82 2.41 0.85 0.35

Injection 3 0.70 0.29 0.80 2.41 0.88 0.36

%  RSD 2 2 1 0 2 3

Table 4 - Comparison o f selected peak area ratios for repeated injections using 
on-column injector.

* The sample was a 45 minute thermolysis of inulin/1.5% citric acid at 160 C. This and the other 
eight samples in this experiment showed inordinate scatter when converted to wt% conversion of inulin to 
DFDAs. This scatter is what prompted the test for consistency and subsequent change to an on-column 
injector. This and all previous sample sets were re-injected on the new system.
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M elting Points o f  InulinCitric Acid Mixtures - At 200 °C inulin changes from a white, 

granular powder to a white paste that slowly darkens and softens to a pale brown fluid,59 after 

which the melt continues to darken and begins to foam considerably. Homogeneous mixtures 

of inulin and small weight percentages o f citric acid undergo a glass transition at much lower 

temperatures (Table 5). There is no exact melting point for these mixtures. They appear as

Wt% Citric Acid

Trial 1.0 1.5 2.0 2.9

1 155 152 150 146

2 156 154 151 147

3 155 153 151 146

Avg. 155 153 151 146

Table 5 - Approximate melting points 
(°C) for inulin/citric acid mixtures.

solid foams having regions with sharp, angular, well defined edges. These edges begin to 

soften almost imperceptibly as the temperature increases (~2°C/min). The “melting point” 

readings in Table 5 represent the point where the edges have unmistakably lost their 

crispness. This point occurs at 155°C for the 1.0% mixture, and decreases by ~9°C as the 

wt% of citric acid increases to 2.9. In all cases the aggregates appeared to liquify completely 

within several seconds.
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Temperature Equilibration in Reaction Vials - Thermolysis o f inulin samples was conducted 

by lowering 5 mL screw-cap vials containing ~10mg sample into silicon oil that was heated 

to a predetermined temperature. There is a short delay (Figure 8) from the time the reaction

160

140

120

0  ̂ 100 
a  
S

£  80

60

40

20

▲

•  Probe touching glass
a  Probe suspended

0 1 2 3 4 5

Tim e (m in)

Figure 8 - Reaction vial equilibration time at 160°C.

vials are immersed in oil to the time after which the temperature within the vials remains 

constant. A thermocouple probe inserted through a septum at the top o f a reaction vial and 

touching the inside, bottom edge showed this delay to be approximately two minutes. The 

graph shows three repetitions with the probe touching the inside o f the vial and one 

experiment with the probe suspended ~lmm from the bottom. The glass equilibrates slightly
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faster than the air within the vial. No adjustment to the treatment o f data was made because 

of this delay.

Response Factors - The GCFID response factors (RF) for the per-O-trimethylsilylated 

derivatives of a-D-Frup-l,2':2,l '-P-D-Frup (6), a-D -Fru/-l,2 ':2,1 '-P-D-Fru/> (9), a-D-Fru/- 

1 ,2 ':2 ,l'-P-D -Fru/(10), and P-D-Fru/-l,2':2,l'-p-D-Fru/? (13) are reported in Table 6 /

6 9 10 13 D-fructose D-glucosc sucrose

.61 .64 .57 .58 .90 .91 .79
(.18) (17) (.22) (17) (.21) (20) (.22)

RF 
Cone, in 

parentheses

.62
(.075)

.66
(.070)

.58
(.088)

.59
(.066)

- - -

(mg/mL) .59 .62 .55 .56 .91 .88 .72
(.019) (017) (.022) (.016) (.021) (.020) ( 022)

.62 .66 .59 .59 .85 .86 .74
(.0038) (.0034) (.0044) (.0033) (.0021) (.0020) (.0022)

Mean RF 0.61 0.65 0.57 0.58 0.89 0.88 0.75

Table 6 - Response factors o f per-O-trimethylsilylated derivatives o f 6, 9,
10, 13, fructose, glucose, and sucrose relative to internal standard xylitol.

Concentrations (mg/mL) are shown in parentheses. The data also include RF values for D- 

ffuctose, D-glucose, and sucrose. The xylitol concentration in all samples and standards was 

approximately equal. The concentrations o f the standards ranged from 0.002 to 0.2 mg/mL, 

which elicited similar minimum and maximum detector response as actual samples. It was not 

practical, nor even possible given time constraints, to isolate all 14 DFDAs in quantities 

sufficient to determine response factors. Therefore, an average RF o f 0.60 was applied to all 

DFDAs. These data are presented in Figure 9 as a plot o f RF versus concentration.

* The isolation o f these four DFDAs is described in detail in a later section.
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Figure 9 - Plot o f response factor versus concentration for 6, 9, 10, 13; fructose 
and glucose; and sucrose.

Confirmation o f DFDA Identities - DFDA identities were initially determined by comparison 

o f relative retention times and abundances with previously established values.61 The 

schematic representation in Figure 10 illustrates a near perfect GCF1D retention time 

correlation. Slight differences in column length and temperature program account for minor 

variations. The structure o f a-D-Fru/-l,2':2,6'-P-D-Fru/ (3), previously isolated from 

Aspergillus fumigatus and identified,6* was confirmed in the laboratory o f ref.61

The mass spectra of compounds 1-14 in the current study were also a close match to 

the database compiled by Manley-Harris and Richards.61 Slight variations in relative 

abundance which were observed between the two studies are attributable to the use o f 

different instruments. The 13C spectra o f a-D-Fru£>-l,2':2,l'-P-D-Frup (6), a-D-Fru/- 

l,2':2,l'-P-D-Frup (9), ct-D-Fru/-l,2':2,r-P-D-Fru/(lO), and P-D-Fru/-l,2':2,l'-P-D-Frup 

(13) were compared with published values.54-61 Table 7 lists chemical shifts obtained in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

^ x y l i to l

2.8 2 .9 3 .0  3.1 3 .2  3 .3  3 .4  3 .5  3 .6

1.0

n  0.8 |  0.6 
■* 0.4cs
£  0.2 
u 6,7

2  l.ov
OS 0.8

0.6

0.4

6,70.2

1.7 2.11.8 1.9 2.0

^glucitol

Figure 10 - DFDA peak areas and retention times relative to 
(a) xylitol, current study; and (b) glucitol.61

current study; published values are shown in parentheses. The down field shift o f ~1.1 ppm 

in the current data relative to the published data is due to the use of different internal 

standards.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o

C
arbon C
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ical Shifts (ppm
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C-2
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-2'
C-3

C
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C-5
C

-3’
C-4*

C
-5’

C-6
C

-6’
C

-l
C-l*

a-D
-Frup-l,2':2.1 

P-D
-Frup (6)

97.5
(96.4)

96.5
(95.3)

71.0
(69.9)

72.7
(71.5)

66.0
(64.8)

70.5
(69.4)

72 6 
(71.4)

71.0
(69.9)

61.7
(60.5)

62.6
(61.5)

62.9
(61.7)

65.5
(64.4)

a-D
-Fru/-l,2':2,l'- 

P-D
-Frup (9)

104.3
(103.1)

97.7
(96.5)

83.9
(82.8)

79.8
(786)

85.5 
(84 3)

70.6
(69.4)

71.0 
(69 9)

71.0 
(69 9)

63.2
(62.1)

63.2
(62.1)

63.5
(62.3)

65.5
(64.3)

a-D
-Fru/-l,2':2,l'-

P-D
-Fni/X

10)
104.5

(103.3)
100.8
(99.7)

83.9
(82.7)

79.7
(78.6)

85.5 
(84 3)

79.0
(77.8)

76 6 
(75.4)

83.2
(82.1)

63.2
(62.0)

64.7
(63.5)

63.7
(62.6)

64.5
(63.4)

P-D
-Fru/'-l,2':2.r- 

P-D
-Frup (13)

102.7
(101.8)

98 8 
(97.9)

81.8
(80.8)

77.0 
(76 0)

83 8 
(82 8)

73.0
(72.1)

71 4 
(704)

71.0
(70.0)

64.4
(63.5)

66.2
(65.2)

64.2
(63.3)

66.8
(65.8)

T
able 7 - 13C chem

ical shifts for 6, 9, 10, and 13. 
Published values54 61 in parentheses.
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Mass Balance and ESMS - Three separate ~lOOmg samples o f inulin/1.5% citric acid were 

thermolyzed at 160°C for 20 minutes. The product from each experiment was weighed 

immediately after thermolysis, then dissolved in water and chromatographed using LC Method 

(iv). Figure 11 is a typical SEC chromatogram from these experiments and indicates the 

division o f the eluant into six fractions.* Each o f the fractions was rotoevaporated and the

4

12 164 8

t (hr)

Figure 11 - SEC chromatogram of six fractions (1 -6) collected for mass balance 
experiments.

residue weighed. Weights as percentage of total mass recovered for fractions 1-6 are 

reported in Table 8. Recovery o f mass after thermolysis was nearly 100% for trials 1 and 

2, but was not measured for trial 3. The relative amount of starting material recovered after 

SEC varied considerably in these three trials (91, 84, and 99%). HMF (5-(hydroxymethyl)-2-

* This fractionation pattern was used in the last o f three trials in order to further isolate thermolysis 
products for subsequent electrospray mass spectral analysis. In the first two experiments fractions 3 and 4 
were collected as one.
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Trial Trial Trial
1 2 3

Total recovery after thermolysis (%) 99 97 nd

Total recovery after SEC (%) 91 84 99

1 7.3 7.5 9.5

Weight of fraction as
2 13.2 7.6 13.1

percentage of material 
recovered after SEC (%)

Fr
ac

tio
i 3

4
56.8* 63.1*

7.5

43.8

5 16.6 17.2 19.1

6 5.9 4.7 7.2

* Collected as two separate fractions in Trial 3. nd - not determined.

Table 8 - Recovery o f product mass from 20 minute thermolysis 
of inulin/1.5% citric acid at 160°C.

fiiraldehyde) is a major degradation product58,69,70 with a relatively low boiling point 

(~115°C). Other minor products (e.g. H20 , CO, C 02, CH20 , CH3CHO, MeOH, EtOH) may 

form from secondary reactions o f dehydration products.71 Some loss o f these products during 

rotoevaporation is expected. Also, fractions were automatically dispensed into test tubes over 

the course o f each 16 hour run (120 tubes x 8 min/tube). Some general loss o f material is 

expected as a result of eluant transfer.

The dried fractions from trial 3 were dissolved in H20  and subjected to Electrospray 

Mass Spectrometry (ESMS). Compositions o f these fractions were similar to those of earlier 

investigations.59,61 For positive ion mode, samples were spiked with NaCl to aid ionization. 

Therefore, the reader must subtract 23 from the mass/charge value (Da/e) for each peak to 

obtain molecular weight.* For example, a DFDA contains two fructose monomers (180 g/mol 

each), minus two glycosidic bonds (18 g/mol each), plus a sodium adduct (23 g/mol) and the

* In the negative ion mode. Da/e values represent actual molecular weights.
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ESMS positive ion peak for any DFDA occurs at 347. Oligomers show up as series o f peaks 

incremented by 162 (fructose residue minus glycosidic linkage). The ESMS conditions used 

were developed using sucrose and other disaccharides as standards. The high cone voltage 

(180V) is intended to reduce hydrogen bonding among solutes and between solutes and the 

solvent.

The ESMS spectrum of fraction 1 is shown in Figure 12/ Higher order polymers are 

excluded and should elute in fraction 1. But only small traces o f material larger than 500 

mass units appear in the spectrum. As determined by experimentation, citric acid (C6Hg0 7)

CT1A3 1 (0671) Sb(l.-X) (»)), Sm(Mn, 1 \0  75) S canE S-
A  19

127»o-

149

151

369
181 509311 .413

800KM) 600

Figure 12 - ESMS spectrum of mass balance SEC fraction I .

* The header in this and subsequent ESMS figures contains sampling and processing information 
that includes a sample name, the number of the spectrum in the data file, the duration of the scan, and 
subtraction and smoothing parameters. The upper right comer shows the scan mode and the absolute intensity 
of the most abundant peak. All spectra are scaled to 100% of the most abundant peak, regardless of absolute 
intensity, and little correlation may be drawn between peak intensity and concentration.
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is also excluded on BioGel P2. This means fraction 1 was probably acidic and 

rotoevaporation may have caused oligomeric material to hydrolyze.

Peaks 119 and 127 appeared in all six fractions. Peak 119 corresponds to furfural 

(C 5H40 2 + 23). All fractions were colored to some degree, indicating the presence of 

unsaturated degradation compounds. It is not known why furfural would elute in more than 

one fraction. The identity o f 127 is not known. Peak 149 appeared in fractions 1, 5, and 6 

and corresponds to HMF. Its presence in fraction 6 is expected - HMF elutes later than 

fructose monomers - and some HMF in fraction 5 may be expected since the resolution is 

poor between fractions; the dividing lines were chosen arbitrarily and "cross-contamination" 

is expected. The presence o f HMF in fraction 1 may be the result o f hydrolysis during 

rotoevaporation of hemi-acetal HMF polymers that formed during thermolysis.

The 347 and 509 peaks are presumed to be DFDA and DFDA + monomer. The peak 

at 365 is DFDA + H20 , which corresponds to a singly-linked disaccharide.

Figure 13 shows the ESMS spectrum for fraction 2. Peaks 236, 268, 311, 347, 365, 

and 509 probably arise as a result o f incomplete resolution between fractions. Peaks 509, 

671, 833, and 995 represent a series o f glycosylated DFDAs with one, two, three, and four 

glycose residues, respectively. Traces o f DFDAs with five and six residues (1157, 1319) are 

evident when the y-axis is rescaled.

Fraction 3 (Figure 14), the "trimer" fraction, contains predominantly DFDA + 

glycosyl residue (509). This fraction also contains DFDAs (347) and the glycosylated DFDA 

tetramers and pentamers at 671 and 833.
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(THAI l(0 6 7 l)S b ( l ,4 0 0 < )) .S m (M n . 2x075) ScanES*
119

127

347

671268
133 833509365236 8 1 5 ,

779183 977 .995653

D a
500I (XI 70() 800 1000 1100 12oo 13<Mi 1400 I5oo

Figure 13 - ESMS spectrum o f mass balance SEC fraction 2.

GT3A I (0 671) Sb (1,40 00 ), Sm(M n. 2x0 75) Sc.inF.S*
2 97c6119

509

127

347

671

133

151 268

185^6 779617
279 833

D a e100 200 500 600 700 800 1000 1100 1200 1300 1400 1500400 900

Figure 14 - ESMS spectrum o f mass balance SEC fraction 3.
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GT4A 1 (0 671) Sb (1,40 00 X Sm (M n. 2x0 75) ScanES*
347

! 0 0 - i

509

127

365
455

D a  e
1000 1100 121X1 13<*» 1400 15003(H) 700400 600 900

Figure 15 - ESMS spectrum o f mass balance SEC fraction 4.

GT5AI I (I) 671) Sb (1,40 1)0 ); S m (\ln , 2x0 75) 

203

347

Scan ES*
3

102

119

F

I

311

217

455

365

419
J J. 1

100

473/
5?^527 ^ 1?671

300 400 500 700 800
“  D a e

900 1000 I t 00 1200 1300 1400 1500

Figure 16 - ESMS spectrum o f mass balance SEC fraction 5.
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Fraction 4 (Figure 15) is the "dimer fraction" and contains predominantly DFDAs 

(347), but the 509 and 671 peaks are also present. Fraction 5 (Figure 16) elutes late from 

the SEC system and contains predominantly monomers and dimers. The peak at 203 is 

assumed to be fructose, and the peak at 185 is assumed to be anhydrofructose.

The latest eluting fraction is 6 (Figure 17), which contains mostly HMF (149). The 

peak at 181 could conceivably be HMF + methanol. There is a small monomer peak (203) 

from overlap between fractions.

GT6A I (0 671) Sb (1.40 IX)), Sm (Mn. 2x0 75) ScanES*
149

° o -

181
275

203 419
329 .437

100 200 400 500 700600 800 900

Figure 17 - ESMS spectrum of mass balance SEC fraction 6.

The basic composition, then, for SEC fractions 1-6 is as expected. But the spectra 

reveal an interesting phenomenon. Each glycosylated DFDA peak is accompanied by one or 

more peaks that correspond to the loss o f H20  molecules. For example, in fraction 5 (Figure 

16) the 491 (not labeled), 473, and 455 peaks may represent the loss o f one (M-18), two (M-
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36), and three (M-54) H20 s  from a DFDA + monomer peak (509). The 311 peak in fraction 

5 could arise from the loss o f three H2Os from the singly linked disaccharide at 365. In 

fraction 2 (Figure 13) the peaks for DFDA + 2, 3, and 4 fructose residues (671, 833, and 

995) are each accompanied by M-18, M-36, and M-54 peaks.

Although the high cone voltage used in this analysis may be responsible for some loss 

of H20  from samples within the instrument, the spectra provide evidence that the majority of 

dehydration occurred during thermolysis. For example, in fraction 4 the 365 peak is many 

times more abundant than the 311 peak, which is buried within the baseline. In fraction 5 the 

311 peak is several times more abundant than 365. The same is true for 455 and 509. The 

455 peak is smaller than 509 in fraction 4 and much larger than 509 in fraction 5. If loss of 

H ,0  were occurring solely within the instrument the relative abundances o f the M-54 peaks 

to their respective parent peaks would be consistent across the fractions. This lack of 

consistency points to loss o f H20  during thermolysis and subsequent fractionation of M-54 

compounds according to molecular weight.

Further confirmation is provided by the spectra o f sucrose, 1-kestose, and nystose. 

Under ESMS conditions identical to the above, the singly-linked disaccharide sucrose does 

not dehydrate (Figure 18a). It does, however, partially hydrolyze and revert, as evidenced 

by traces o f monomer (203) and singly-linked trimer (527).

The spectrum o f a mixture o f 1-kestose and nystose was obtained at two different 

cone voltages. The lower voltage (80V) spectrum (Figure 18b) contains predominantly 1- 

kestose (527) and nystose (689). Traces o f singly-linked pentamer (851) appear as a result 

o f the enzymatic origin o f the sample. There are M + methanol peaks at 397 (sucrose or
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inulobiose + 32), 559 (1-kestose + 32), and 721 (nystose + 32). The only possible 

dehydration peak is 347. The high voltage (180V) spectrum of 1-kestose and nystose

SUCROSE 1 (1.171) Sb< 1.40.00 ); Sm (Mn. 1x0.75) 

365

NYSKESLO 1 (2.887) Sb (1.40.00 ); Sm (Mn. 1x0.75)

100-i

-17

6 8 9
527

151 183

|k i w
3 4 7 3 9 7 559 721 851

NYSKES 1 (5.087) Sb (1.40.00 ); Sm (Mn. 1x0.75)
  I "4 *

100-1
6 8 9

527

(b)

Scan F.S- 
7.14«8

(a)

203 527

Scan ES• 
1.89c8

Scan ES- 
1.34c9

( C )

o -
185

3 4 7  , , ,  509
851

D a/e
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Figure 18 - ESMS spectra o f sucrose (a), and a mixture o f 1-kestose and nystose at 
cone voltages o f 80V (b) and 180V (c).

(Figure 18c) contains M-18 peaks for the singly-linked disaccharide and for 1-kestose, but 

not for nystose or the pentamer. Obviously, the higher cone voltage is sufficient to cause loss 

o f  H20  to some extent. However, the abundances o f the M-H20  peaks in the thermolysis 

samples are many times greater than what can be expected from high cone voltage. They 

could not have arisen solely as a result o f the electrospray analysis.

DFDAs do not appear to lose H20  as a result o f electrospray analysis. Figure 19a
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shows the spectrum o f a-D-Fru/'-l,2':2,1 '-P-D-Frup (9) at 180V. The spectra o f a-D-Fru/^ 

1,2':2,1 '-P-D-Fru/(10) at 180V and 80V are shown in Figure 19b and c. The 671 peak is

DFDA9 I (2.314) Sb (1,40.00 ); Sm (Mn, 2x0.75)

100, 347

■ °o-

DFDAIO 1 (4.695) Sb (1,40.00 ); Sm (Mn. 2x0.75)

671
■m+m.

DFDA10LO l '(3.838) Sb (1.40.00 ):' Sm (Mn. 2x0.75) 
3 47

(a)

(b)

Scan ES* 
1.06c9

Scan HS * 
1.40c9

Scan ES -
9.00c8

(c)

151 >83
...... J

361

6 _

5 38
— L —

671

Da/c
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Figure 19 - ESMS spectra o f (a) a-D -Fru/-l,2 ':2,1 '-P-D-Fru^ (9) and of a-i>Fru/- 
l,2 ':2 ,r-P -D -F ru /(10) at cone voltages o f 180V (b) and 80V (c).

present in all three spectra and probably arises as a result o f intermolecular hydrogen bonding. 

Therefore, a portion o f the 671 peaks that were assumed to be glycosylated DFDA tetramer 

in the thermolysis fractions may actually be DFDA that has dimerized in the electrospray mass 

spectrometer. M+32 peaks appear with the lower voltage setting. But there is no indication 

of loss o f H20  from either of these two DFDAs.

The abundance of M-54 peaks in the thermolysis fractions is unlikely to be due to the 

degradation of the singly linked fructose residue o f a glycosylated DFDA to HMF. The
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mechanism by which HMF forms from fructose70 includes keto-enol tautomerism at the 

anomeric carbon. The authors o f r e f 70 cite the ease with which HMF forms from both 

fructose and the fructosyl moiety o f sucrose. It is reasonable to expect the fructosyl moiety 

o f glycosylated DFDAs to form monomeric HMF as well. However, this does not explain 

the M-54 peaks since the formation of HMF via the mechanism given in ref 70 is not 

compatible with retention o f the glycosidic bond. Therefore, it is unlikely that the M-54 

peaks are glycosylated DFDAs with an HMF somehow bonded to the end o f the chain and 

more likely they are caused by random dehydrations.

ESMS o f fractions 1-6 in the negative ion mode revealed only peaks that could be 

classified as background. The six fractions were virtually indistinguishable from one another/ 

Figure 20 compares the negative ion spectra o f citric acid (a), SEC fraction 1 (b), and the 

typical background at the time o f the analysis (c). The small cluster at 383 in the citric acid 

spectrum is probably citric acid dimer in various ionic states. The 191 citric acid peak was 

missing from all SEC fractions. The concentration of citric acid expected in fraction 1 can 

only be estimated. Assuming citric acid is a true catalyst in this system, that it does not 

degrade (m.p. 153°C) during thermolysis and is not consumed in side reactions, that the 

overall mass recovery is 70%, and that all citric acid elutes in fraction 1, the concentration in 

the ESMS sample should have been -0 .6  mg/mL.** This is above the concentrations 

recommended by the instrument manufacturer72 for calibration with a mixture o f com syrup

* Carbohydrates do not ionize easily. High cone voltage in the positive mode gives reasonable 
results. No carbohydrates in these samples appeared in the negative mode. This "selectivity " provides a 
convenient method o f searching for acidic species.

** 1.5mg citric acid (lOOmg x 1.5%) before thermolysis. Final dried fraction re-dissolved in 2.0 mL
HjO.
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BCIT2 1 (0.791) Sb (1,40.00 ); Sm (Mn, 2x0.75) Scan ES-
107 124

100-1 191125

141
192142
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244 259 291 383

Bl A3 1 (0.791) Sb (1.40.00 ); Sm (Mn, 1x0.75)
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100-1

y () 123

156 171 iJl 187 226 244 259 274 290

BACK2 1 (0.887) Sb (1,40.00 ); Sm (Mn. 2x0.75) Scan ES-

100i
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290

1.77c6

Figure 20 - ESMS spectra o f (a) citric acid, (b) SEC fraction 1, and (c) the typical 
background at the time o f the analysis.

(0.5 mg/mL), maltose (0.02 mg/mL), raffinose (0.1 mg/mL), and maltotetraose (0.02 

mg/mL). These recommendations are for operation in ES- mode at 30V. However, the 

chromatogram pictured in the user guide contains only some o f the expected peaks from this 

mixture. Also, as mentioned above, carbohydrates in the current study were not detected in 

any fraction in ES- mode. It is conceivable that citric acid has formed citrate esters, in which 

case it would be distributed among the SEC fractions.
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General Features of GCFID Chromatograms

The chromatogram shown in Figure 21 is typical o f the per-O-trimethylsilyl 

derivatives o f inulin/citric acid thermolysis samples. There are four specific regions 

corresponding to molecular size, as previously established.61 The monomer region (9-17 

minutes) consists primarily of anomers of fructofiiranose, fructopyranose, and glucopyranose. 

(HMF elutes before 9 minutes.) The dimer region (26-38 minutes) is predominantly di-D- 

fructose dianhydrides. The trimer region (44-53 minutes) has been partially characterized61 

and contains substantial amounts of glycosylated DFDAs. Trace quantities o f trimers remain 

in inulin samples heated for 12 hours or more. Tetramers and higher oligomers (dp 4+) elute

80

70

monomers

60
dimers

n  50  
©

* -wcOfi
c7>

3 0

20

10

J

10 20

. .  iLt
3 0

trimers

4 0

Time (min)
so

DP 4+

60

Figure 21 - GCFID chromatogram of 8 minute thermolysis o f inulin/1.5% 
citric acid.
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at the end o f the run when column temperature reaches 300°C and greater. Samples 

thermolyzed for 20 minutes or more do not contain detectable tetramers or higher oligomers.

Figure 22 is an expanded view o f the monomer region showing the internal standard 

xylitol, as well as fructose and glucose isomers. For all samples, xylitol is a single, well-

8 0

60

50

fructose■5 *0

30

10 12 1614

Time (min)

Figure 22 - Monomer region of 8 minute thermolysis o f inulin/1.5% citric acid.

resolved peak. A small impurity peak sometimes appears as a shoulder on the leading edge 

of the xylitol peak. This impurity was removed from peak integrations by manually drawing 

the baseline and splitting the impurity vertically from the xylitol peak. Fructose and glucose 

formed in relatively large abundance within the first few minutes and disappeared gradually
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over the course o f several hours. For example, after 8 minutes fructose and glucose 

combined made up ~8% by weight o f the inulin, ~2% after 40 minutes, and <1% after 2 

hours.

The primary area o f interest is the dimer region, in which 14 DFDAs elute (Figure 

23). Several unidentified compounds also appear in this region. After 8 minutes at 160°C,

40

g  20

26 28 3230 34 36 38
Time (min)

Figure 23 - Dimer region, showing 14 DFDAs, o f 8 minute thermolysis o f  inulin/1.5% 
citric acid.

all 14 DFDAs have formed from inulin/1.5% citric acid. All but three are baseline resolved; 

a-D-Frup-l,2':2,l'-P-i>Frup(6) and P4>Fruf-l,2':2,r-a-D-Fru/!? (7) coelute on this column
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and a-D-Fru/'-l,2':2,l '-P-D-Frup (9) elutes on the trailing edge of sucrose.*

Throughout the study, a-D-Frup-l,2':2,l '-p-D-Fru/? (6) and P-D-Fru/-l,2':2,l '-a-D- 

Frup (7) are quantified as a single peak. The formation and decay data for each DFDA that 

arises from repeated thermolysis experiments had to be applied to these two together, rather 

than individually. This is unfortunate because a-D-Frup-l,2':2,l '-P-D-Fru/? (6) is a 

difructopyranose compound and P-D-Fru/-1,2':2,1 '-a-D-Frup (7) is a furanose-pyranose. 

Conclusions based on structure that appear later in this work will make reference to the 

stability and/or rate of formation and decay o f these two DFDA “types”, and additional data 

would have been helpful.

The fact that a-D-Fru/-l,2':2,r-P-D-Frup (9) cannot be resolved from sucrose is a 

problem only while sucrose is present in the reaction mixture. Integration of a-D-Fru/- 

l,2 ':2 ,1 '-P-l>Fru/>> (9) in samples heated for 15 minutes or less was approximated by splitting 

the sucrose/DFDA 9 peak vertically into two “shoulders”. Using this technique may cause 

the integrator to underestimate the area for both peaks because the true peak shape is less 

than vertical on most chromatography systems. The trailing edge o f the sucrose peak and the 

leading edge of a-D -Fru/-l,2 ':2,1 '-P-D-Frup (9) would not be included in the integration of 

their respective peaks.** Sucrose, however, degrades almost completely after -15 minutes, 

so the wt% conversion data for a-D-Fru/-l,2':2,l'-p-D-Frup (9) after 15 minutes are reliable.

Two other integration effects are worth mentioning. In some samples heated for 10-

* Each inulin chain ends in glucose (Figure 1); the glucose-fructose bond is 4-5 times more resistant 
to hydrolysis than the fructosc-fhictose bond (see discussion on page 15 and re f49). Therefore, sucrose appears 
in limited quantities.

** The error introduced by vertical peak splitting is small for capillary GC relative to packed column 
GC or to most LC systems because the peaks are much sharper.
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20 minutes, the two small peaks (Figure 23) to either side o f a-D-Fru/-l,2 ':2,l '-a-D-Frup 

(11) interfered with integration enough to cause more than the usual variation/ This effect 

was presumably amplified by the low abundance o f 11, which never rises above 1% by weight 

o f total inulin. A similar interference occurred for P-D-Fru/-2,1 ':3,2'-a-D-Frup (2) in the 10- 

20 minute samples. The abundance o f 2 is even lower (<0.5wt%) and the variation is 

accordingly greater.

+ Presentation of the data, with error bars, for formation and decay of DFD As appears later. Those 
data are a direct result o f integration o f DFDA peaks in chromatograms o f the type presented above. Any 
anomalies that occur during integration are incorporated into the data.
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Isolation of Individual DFDAs

There were at least two compelling reasons to isolate significant quantities o f 

individual DFDAs for this study. DFDA response factors relative to xylitol can only be 

determined using known compounds. Ideally, the study would have included response factors 

for all 14 DFDAs. This was not practical, nor even possible given time constraints, so an 

average RJF was applied under the assumption that the flame ionization detector responds 

similarly to all DFDAs.

Also, it became obvious early in the study that the fate o f individual DFDAs could 

profoundly impact whatever kinetic mechanism was proposed. If isomerization was 

occurring, the mechanism would need to account for it. Data on isomerization o f DFDAs in 

these thermolysis systems are not available. It is possible to extract and plot (from total 

conversion data) the concentrations o f individual DFDAs at any time during the reaction. It 

is not possible to predict from these data to what extent isomerization contributes to those 

concentrations.

One main goal of this research is to describe the rates at which DFDAs form from 

inulin under the conditions tested. Any proposed mechanism must conform to two criteria: 

it must fit the data, but it must also make chemical sense. Without knowing what, if any, 

isomerizations occur, the number of permutations required to reveal reaction mechanisms that 

satisfy both these criteria would be too great. It would be far more economical to 

characterize isomerizations first and incorporate them into a more limited set o f possible 

reaction mechanisms - i.e. narrow down the choices. So the attempt to prove or disprove 

isomerization through thermolysis o f individual DFDAs was essential.
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DFDA 10 from  Inulin citric acid  - The glassy residues (~ 11 g overall) from 20 consecutive 

thermolyses of ~0.5g inulin/1.5% citric acid were dissolved in water, combined, and 

chromatographed using LC Method (i). The column capacity for this LC system ranges from 

~0.25g to -0.5g, depending on the condition o f the column, degree o f contamination, number 

and variety o f analytes, etc. Figure 24 shows a typical preparative LC chromatogram from 

these experiments. The peaks labeled A-K represent eluant fractions collected manually at

F G

attenuation

Figure 24 - Typical preparative LC chromatogram from 20 
minute thermolysis o f inulin/1.5% citric acid at 160°C.

the detector outlet port into a series o f flasks. The arrow indicates the point in each run at 

which the signal attenuation was decreased in order to highlight start and stop times o f small, 

late eluting peaks. Run time was approximately 90 minutes per injection.

Each fraction was rotoevaporated to dryness and analyzed for DFDA content by
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silylation and GCFID. Estimates o f percent composition for each fraction were based on peak 

areas under the assumption that response factors for monomers, dimers, and trimers are 

similar. This is not a valid assumption, but sufficed for the purpose of judging which fractions 

were worthy of further purification.

All but one DFDA (a-D-Fru/-l,2':2,6'-P-D-Fru/) appeared in at least one fraction.* 

Only fraction D contained a single DFDA in sufficient purity to pursue as a potential source 

o f starting material for degradation studies. This fraction contained 76% a-D -Fru/-l,2 ':2,1 

P-D-Fru/(10), 14% a-D-Fru/‘-l,2':2,3'-P-D-Fru/(l), a few percent of p-D-Fru/-2,1 ':3 ,2 '-P-d- 

Frup(4), P-D-Fru/-l,2':2,3'-p-D-Fru/(5), a-D-FruP-l,2':2,l'-P-D-Frup (6) and/or P-D-Fru/- 

l,2':2,l'-a-D-Frup (7), a-D-Fru/-l,2':2,l'-P-D-Frup (9), and traces o f trisaccharides. It was 

not known at this point in the study whether the presence of other DFDAs would affect 

degradation. I suspected that isomerization did not contribute significantly to the mechanism 

and that the presence o f a small amount o f other DFDAs should not matter. Therefore, 

fraction D was subjected to another round o f preparative LC. Trimethylsilylation and GC 

analysis of the final product showed 88% a-D -Fru/-l,2 ':2 ,l'-P-D -Fru/(10), 11% other 

DFDAs, and a small amount o f trisaccharide. The disaccharide structures were confirmed by 

GCMS and by co-injection with an inulin/citric acid thermolysis sample.

This thermolysis and fractionation o f gram quantities o f inulin/1.5% citric acid was 

repeated at a later date in order to obtain more a-D -Fru/-l,2 ':2,1 '-P-D-Fru/(10). The major 

difference in the procedure was in the method o f heating the starting material. In the latter

* a-D-Fn/-1.2':2.6'-P-o-Fm/'(3) is unstable because it contains an eight-membered central ring and 
degrades rapidly. 3 was no longer present in these 20 minute cooks.
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case, ~20g inulin/1.5% citric acid was heated in an oven at 160°C for 20 minutes and the 

glassy product dissolved in water. A more detailed preparative LC separation o f the product 

into 20 fractions still yielded only one fraction worthy of further purification. That fraction 

corresponded to fraction D from the earlier experiment. The combined yield o f a-D-Fru/- 

l,2':2,l'-P-D-Fru/(10) from these two experiments, after extensive freeze drying, was -900 

mg of a dry, solid foam.

DFDAs 6, 9, and 13 front Fmctose/HCl - The treatment o f crystalline D-fructose with cold, 

concentrated HC1 produces a thick black liquor. Fractionation by preparative LC, after ion 

exchange, of this digestion product yielded six peaks (Figure 25). The residues from each 

fraction (A-F) were rotoevaporated and analyzed by GCFID of the per-O-trimethylsilyl 

derivatives. Approximate wt% compositions for each fraction are given in Table 9. 

Fractions A and B contained predominantly monomers and low molecular weight degradation 

products and were discarded.

Fraction C contained 95% a-D-Fru/?-l,2':2,l'-P-D-Frup (6), 3% dimers other than 

DFDAs, and 1% trimers. Fraction D contained 92% a-D-Fru/-l,2':2,1 '-P-D-Frup (9) and 8% 

dimers other than DFDAs, and Fraction F contained 96% P-D-Fru/-1,2':2,1 '-P-D-Frup (13) 

and 3% trimers. These three fractions were rotoevaporated and extensively freeze dried to 

yield respectively 580mg, 600mg, and 75mg dry foam. I did not consider the presence of 

dimers other than DFDAs in fractions C and D to be detrimental. It was not possible to 

identify the trimers in fractions C and F, and it was not practical to remove them. Fraction
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Figure 25 - Typical preparative LC chromatogram from fructose/HCl 
digestion.

E contained six DFDAs, none in high relative abundance, and was discarded. The only 

difuranose dianhydrides to form in this experiment (a-D -Fru/-l,2 ':2,1 '-a-D -Fru/(8) and a-D- 

F ru/-l,2 ':2 ,l'-P -D -Fru/ (10)) eluted within this fraction. The presence of a P-D- 

fructopyranose moiety in all three major products o f this acid digestion reflects the fact that 

crystalline D-fructose is P-D-fructopyranose.
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Compound ID Fraction

A B C D E F

monomers 98 95 1 - 1 1

a-D-Fruf - 1,2': 2,3 '-P-D-Fru/ 1 - - - - - -

P-D-Fru/-2,1' :3,2 '-a-D-Fru/? 2 - - - - - -

P-D-Fru/-2,1 ': 3,2 '-P-D-Fru/? 4 - - - - - -

P-D-Fru/-1,2' :2.3 '-P-D-Fru/ 5 - - - - - -

a-D-Frup-1,2' :2 ,1 '-P-D-Fru/? 
P-D-Fru/-1,2':2 ,1 '-a-D-Fru/?

6
7 - - 95 - 5 -

a-D-Fru/-1,2': 2. l'-a-D -F ru / 8 - - - - 4 -

a-D-Fru/-1,2':2 .1 '-p-D-Fru/? 9 - - - 92 21 -

a-D-Fru/-1,2 :2 .1 '-P-D-Fru/ 10 - - - - 1 -

a-D-Fru/-1.2':2, l'-a-D-Fru/? 11 - - - - - -

p-D-Fru/-1.2 ’ :2 .1 '-P-D-Fru/ 12 - - - - - -

p-D-Fru/l,2':2.1'-P-D-Fru/? 13 - - - - 12 96

P-D-Fru/?-1,2': 2,1' -p-D-Fru/? 14 - - - - 54 -

dimers 2 5 3 8 1 -

trimers - - 1 - 1 3

Table 9 - Percentage composition of preparative LC fractions A-F 
from fructose/HCl digestion.
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Thermolysis of Individual DFDAs

Degradation studies were carried out separately on a-D-Fru/?-1,2' :2,1 '-P-D-Fru/? (6), 

a-D-Fru/l,2':2,l'-P-D-Fru/? (9), and a-D-Fru/l,2':2,l'-P-D-Fru/(10).* Note that this group 

includes a dipyranose, a furanose-pyranose, and a difuranose dianhydride. Each was 

thermolyzed individually in the presence o f 1.5wt% citric acid at 160°C and the products 

analyzed by GCFID o f the per-O-trimethylsilyl derivatives.

Degradation o f  DFDA 6 - The relative concentration o f the dipyranose dianhydride a-D- 

Fru/?-1,2':2, 1 '-p-D-Fru/? (6) remained greater than -95%  over a reaction period of five hours 

(Figure 26). The starting material contained small amounts o f a dimer and two trimers. The 

insert shows the relative concentrations o f these impurities on an expanded y-axis. The 

thermally stable dimer (▲) had the same retention time as a-D-Fru/-1,2':2 ,1 '-P-D-Fru/? (9). 

In the preparative LC separation o f the fructose/HCl digest from which these individual 

DFDAs were obtained, 6 and 9 are not fully resolved and some cross contamination occurred, 

despite repeated fractionations. The two trimers (■, ♦ ) show some scatter, and the least 

abundant o f the two (♦) might be perceived as degrading slightly. It is improbable, however, 

that the small amount o f product from the decay of this trimer goes specifically toward the 

formation of a-D-Fru/?-1,2':2,1 '-P-D-Fru/? (6), and at a rate equal to the rate o f disappearance 

o f 6. The more likely conclusion from this experiment is that a-D-Fru/?-1,2':2 ,1 '-p-D-Fru/? 

(6) is thermally stable.

* There was insufficient material (75 mg) to conduct thermolysis experiments on P -D -Fru /1.2':?. 1 '- 
P-D-Frup (13).
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Figure 26 - Thermolysis o f cc-D-Frup-l,2':2,l '-P-D-Fru^ (6) at 160°C in the 
presence o f 1.5% citric acid.

Degradation o f  DFDA 9 - Thermolysis o f the furanose-pyranose dianhydride a-D-Fru/- 

1,2':2,1 '-P-D-Fru^ (9) gave similar results (Figure 27); 9 did not decay after five hours at 

160°C. The starting material in this case contained no detectable trimers. The four dimers 

that were present in the starting material are shown in the insert. The two least abundant 

dimers (♦, ▼) decayed to non-quantifiable levels within the first 45 minutes. The retention 

time o f the most abundant dimer impurity (a ) did not correlate to any of the 14 known
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Figure 27 - Thermolysis o f a-D-Fru/-1,2':2,1 '-P-D-Frup (9) at 160°C in the 
presence of 1.5% citric acid.

DFDAs. The dimer of intermediate abundance (■) had the same retention time as a-D-Frup- 

l,2':2,l'-P-D-Frup (6) and is present as a result o f cross contamination from preparative LC 

fractionation. As before, it is unlikely that impurities have degraded specifically to 9, and at 

a rate equal to the degradation o f 9. Therefore, a-D-Fru/-1,2':2 ,1 '-P-D-Frup (9) may be 

considered thermally stable.
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Degradation o f  DFDA 10-  The behavior o f a-D-Fru/-1,2' :2,1 '-P-D-Fru/ (10) was decidedly 

different from 6 and 9 (Figure 28); 10 degraded steadily over the five hour reaction time. At

*••• O th er  D F D A s  
■ » -  Trim er*
♦  -  M onom er*

100 20>«?

oil

80
a -D -F n ^ l  ,2’:2,1,-P-D-Fnj)r 

OF A I

6 0

• (h r)

40

20

0 i
0  10 2 0  3 0  40

t( h r )

Figure 28 - Thermolysis of a-D-Fru/-1,2':2,1'-P-D-Fru/(10) at 160°C in the 
presence o f 1.5% citric acid.

least five other DFDAs (page 60) were present in the starting material, and after 30 minutes 

at least 12 o f the 14 DFDAs were still present or had formed. The reaction time was 

extended to 40 hours. Note in the insert the increased relative abundance of DFDAs other 

than a-D-Fru/-1,2':2,1'-P-D-Fru/ (10). Note also that the time scale is hours instead of 

minutes. As a-D-Fru/-1,2' :2,1 '-P-D-Fru/(10) degrades, the combined concentration o f other 

DFDAs (a ) in the reaction mixture increases out to four hours, after which all DFDAs
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gradually decay to very low abundance.

These data are presented in the form of a bar graph in Figure 29. The vertical axis 

(Wt% Conversion) reflects the approximate proportion of the recovered starting material that 

is monomers, trimers, other DFDAs, and a-D-Fru/-1,2':2 ,1 '-P-D-Fru/(10). The time axis is

^ , ^ D F D A  10 
O ilin ' DFT»A*

^ ^ " T i l i n r n
M onom cn

Figure 29 - Mono-, di-, and trisaccharides accompanying degradation 
o f a-D-Fru/-1,2' :2,1 '-P-D-Fru/(10).

not to scale and contains a gap solely to emphasize the delay between 5 and 12 hour sample 

times (300-720 min). Once the concentration of a-D-Fru/-1,2':2 ,1 '-P-D-Fru/(10) falls to a 

certain level (~5 hrs or 300 min ), the concentrations o f all DFDAs decline steadily. It is 

possible that a-D-Fru/-1,2':2 ,1 '-P-D-Fru/(10) isomerizes to other DFDAs, or that it decays 

to products which react further to form other DFDAs, or both. The trisaccharides increase
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slightly in abundance for the first 30 minutes then decrease slowly, though not to the same 

extent as the other DFDAs. The monomer component arises from degradation to yield 

fructose. Some non-specific degradation products58,71,73 (e.g. H20 , CO, C 0 2, CFFO, HMF, 

furfural) presumably elute with the solvent or are lost as volatiles. Also, as a result of 

polymerization of degradation products, the long cooks - 12 hours and greater - contained 

small amounts o f black char that were eliminated during sample workup. The relative 

abundance o f the monomer component remained low and declined steadily throughout the 

40 hour reaction period.

The data for these degradation experiments indicate that a-D-Fru/?-1,2': 2,1 '-P-D-Fru/; 

(6) and a-D-Fru/-1,2':2,1 '-P-D-Fru/? (9) are thermally stable. Although several o f the 

impurities in the starting materials degrade, it does not seem feasible that 6 and 9 degrade into 

products which then react to re-form the same two DFDAs. It also seems improbable that 

6 isomerizes to 9 and vice versa. Bond breaking is required in these scenarios, and other 

DFDAs would form, yet no other DFDAs were identified in these two degradation 

experiments.

The degradation o f a-D-Fru/-l,2':2,l'-P-D-Fru/(10) is accompanied by formation of 

other DFDAs. The combined mass o f other DFDAs in the reaction mixture at no time 

accounts fully for the loss o f a-D-Fru/-1,2':2,1 '-P-D-Fru/(10); 10 does not degrade solely 

to DFDAs. Still, the mechanism of formation of DFDAs from inulin must incorporate "side 

reactions" to account for some isomerization o f a-D-Fru/-l,2 ':2,l'-P-D-Fru/(10) to other 

DFDAs. By analogy we can expect other difuranose dianhydrides to behave similarly.

Also, it should be noted that the decline in the concentration o f trimers (Figures 28
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and 29) coincides with the initial increase then decline in the concentration of DFDAs other 

than a-D-Fru/-1,2':2,1 '-p-D-Fru/(10). This implicates trimers as sources for DFDAs. The 

composition of the trimer fraction was shown61 to contain a high proportion o f glycosylated 

difuranoses as opposed to pyranose-containing trimers. As such they are susceptible to 

degradation themselves and their contribution to DFDA concentration from hydrolysis o f the 

glycosyl residue will be somewhat limited.

The general acid stability of DFDAs was documented early74 in a study showing that 

DFDAs were 25 times more resistant than inulin to acid hydrolysis. Related studies75,76 

showed a-D-Fru^-1,2':2,l'-P-D-Frup (6) to be more than twice as resistant as a-D-Fru/- 

1,2 ':2 ,1 '-p-D-Fru/(10) to hydrolysis at 60°C in N H2S 0 4. A more recent study59 noted a 

higher resistance to acid hydrolysis o f the 2,3-linked difuranoses a-D-Fru/-l,2':2,3'-P-D-Fru/ 

(1) and P-D-Fru/-1,2':2,3 '-P-D-Fru/ (5) relative to the 1,2-linked difuranose a-D-Fru/- 

I,2':2,l'-P-D-Fru/(10). The furanose-pyranose a-D -Fru/1,2':2,1'-P-D-Frup (9) also showed 

acid stability.

The current study suggests that the presence of one or two D-fructopyranose rings 

imparts significant stability toward acid in anhydrous melts. The experiments presented in the 

following section support this hypothesis; all seven pyranose-containing DFDAs that form 

from inulin reach a maximum concentration after -30  minutes and do not decay appreciably. 

The kinetic mechanism will be slightly less complex as a result o f this stability because some 

isomerization steps can be eliminated.
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Thermolysis of Inulin/1.5% Citric Acid at 160°C

The majority o f the data presented in this work were acquired from thermolysis of 

inulin/1.5% citric acid at 160 °C. This was the first set o f inulin thermolysis conditions tested, 

mainly because it was a logical continuation o f previous w ork61 (See also Statement o f 

Purpose for the Current Study, page 28.) It was important to establish a reliable and 

relatively extensive set of data for one system before moving on to variations in temperature 

and/or citric acid concentration.

Total DFDAs from  In u lin 1.5% Citric A cid  160 °C - The data for inulin/1.5% citric acid 

thermolysis at 160°C are the result o f 18 experiments* composed of 127 data points and 13 

outliers. These data are presented in Figure 30. The first four experiments included a “zero 

time” sample that was not thermolyzed, but that was derivatized and analyzed for DFDAs.** 

Conversion of inulin to total DFDAs reaches a maximum of approximately 35wt% after about 

30 minutes. (Conversion is expressed as the percentage weight o f DFDAs relative to the 

starting weight o f inulin. Total conversion is the sum of wt% conversion values for all 

DFDAs in a sample.) This rapid conversion is followed by a much slower degradation, which 

appears to end after -30  hours.

Nine o f the outliers came from only two experiments. Notably, the four perceived 

outliers at 15 and 40 hours all arose from one experiment using the standard screw cap vials. 

There was some doubt about the ability o f these caps to protect against loss or to resist

* The reader is reminded that each ‘‘experiment” is comprised o f up to 9 individual samples, each 
in its own vial. The vials were thermolyzed simultaneously and analyzed separately for DFDAs.

** None of the zero time samples contained DFDAs.
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Figure 30 - Conversion (0-40 hr) o f inulin/1.5% citric acid to DFDAs at 160°C.

breakdown after extended heating at high temperatures. The “reliable” data points in Figure 

30 for 15 and 40 hours came from experiments using sealed glass tubes in place of screw cap 

vials. This reduced the scatter considerably.

Closer inspection of the data for the first hour reveals the inherent difficulty of 

repeating the shorter thermolyses without undue variation (Figure 31). Nine o f the 13 

outliers occur from 8-16 minutes. Five o f these nine came from one experiment. This 

suggests a problem with that experiment, rather than some systematic error. The remaining 

four outliers in this region arose one or two at a time from three separate experiments and 

may be attributed to random error.
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Figure 31 - Conversion (0-60 min) o f inulin/1.5% citric acid to DFDAs at 160°C.

The data from 0-16 minutes are relatively scattered. As mentioned (page 36), it takes 

about two minutes for the vials to reach reaction temperature, and doubtless slightly longer 

for the sample. Presumably, it takes some time for the vial and sample to cool from reaction 

temperature after submersion in ice water. Therefore, the sample spends a substantial 

proportion o f the total reaction time at some temperature other than 160°C. This might 

explain some of the observed variation. It may have been possible to slow the reaction by 

lowering the temperature to e.g. 155°C. This would extend the reaction times and reduce 

the error introduced by unavoidable temperature changes. However, the inulin/1.5% citric
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acid mixture melts around 153°C and any advantage gained by lowering the reaction 

temperature might well be offset by inconsistencies arising from incomplete or uneven 

melting.

The scatter may also be related to the chronological order in which the data were 

acquired. The 0-16 minute thermolyses were the first six experiments conducted and the 

degree o f operator inexperience may have been high. The experimental procedures had 

become straightforward and routine by the time the next group of experiments commenced. 

The reaction times for this next group begin at 20 minutes. Processing and viewing the data 

from both groups o f experiments revealed inordinate variation, so the 8, 10, 12, and 14 

minute thermolyses were repeated in duplicate. These eight new data points fell in the mid 

and lower region o f the existing early data and provided assurance that the experimental 

procedure was capable o f effecting a smooth transition between the 15 and 20 minute data.
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Individual DFDAs from Inulin/1.5% Citric Acid/160 XI - The relative distribution o f DFDAs 

throughout the thermolysis o f inulin/1.5% citric acid at 160°C is shown in Figure 32. The 

data result from integration o f individual GC peaks from thermolyzed inulin/citric acid

D FDA

Figure 32 - Wt% individual DFDAs from thermolysis o f inulin/1.5% citric 
acid at 160°C.

samples.* DFDAs are sorted in this figure, for convenience only, from front to back in order 

o f least abundant to most abundant at 30 minutes into the reaction. The right hand axis, 

labeled “DFDA”, reflects this sorting. It is important to note again that a-D-Fru/?-1,2' :2,1 '-0-

* Separate wt% versus time plots for all 14 DFDAs are presented in the kinetics discussion which 
appears later.
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D-Frup (6) and P-D-Fru/-1,2' :2,1 '-a-D-Frup (7) are listed together because they were not 

resolved on the GCFID.

General Trends in Individual DFDA Conversion Data - Table 10 shows the changes in 

DFDA abundance relative to each other at 2, 6, 30, 80, and 300 minutes for inulin/1.5% citric 

acid at 160°C. The table is divided into four groups o f columns (sections a, b, c, d) for 

purposes o f discussion.

*■ [ Iigher abundance -------------------------------------  Lower abundance -*
a b c b d

2 min 1 10 3 5 12 8
6 min 10 I - 5 8 12 9 3 11 6,7 13 2 -1 14

30 min 10 1 - 5 8 12 9 - 6,7 13 11 4 2 14
80 min 10 1 - 5 8 9 12 - 6,7 13 11 A i 14

300 min 10 1 - 5 9 8 12 - 6,7 13 11 A 2 14

Table 10 - Relative abundance o f DFDAs - highest to lowest from left to right - at 2,
6, 30, 80, and 300 minutes. (Inulin/1.5% citric acid/160°C).

The two columns in section a show that, except for early in the reaction (2 min), a-D- 

Fru/-1,2':2,1 '-P-D-Fru/(10) is the most abundant DFDA. The mean wt% conversions for 

a-D-Fru/-1,2':2,3 '-P-D-Fru/(1) and a-D-Fru/-1,2':2,1 '-P-D-Fru/(10) were similar and the 

reversal at six minutes is not overly important. It is important to note that these are the two 

major products throughout the reaction.

Sections b illustrate the labile nature o f a-D-Fru/-l,2':2,6'-P-D-Fru/(3), an unstable 

product that forms early. (The spaces in the b columns are for convenience in comparing 

trends in neighboring sections and do not represent gaps in the data.) At two minutes a-D- 

F ru /1,2':2,6 '-P-D-Fru/ (3) is the 3rd most abundant DFDA. After six minutes it is only the
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7th most abundant, at 20 minutes (Figure 32, page 75) it the least abundant, and after 30 

minutes it has disappeared altogether.

Two interesting phenomena occur in section c. First, at two minutes P-D-Fru/- 

l,2':2,l'-P-D-Fru/(12, 0.51wt%) is more than twice as abundant as a-D-Fru/-1,2':2,1 '-a-D- 

F ru / (8, 0.21wt%), but 8 becomes more abundant at six minutes and remains so for five 

hours. Second, a-D-Fru/-l,2':2, l'-P-D-Fru/? (9) “overtakes” first 12, then 8, and does not 

degrade throughout the five hour reaction period. These three products must have similar 

rates o f formation in the early stages, but a-D-Fru/-1,2' :2,1 '-P-D-Fru/? (9) remains stable 

while the other two are susceptible to thermal degradation.

At first glance, the abundances o f P-D-Fru/-2,1':3,2 '-a-D-Fru/? (2) and a-D-Fru/- 

1,2':2,1 '-a-D-Fru/? (11) (section d) appear to change relative to P-D-Fru/-2,1 ':3,2'-P-D-Fru/? 

(4), p-D-Fru/-l,2':2, l'-P-D-Fru/? (13), and P-D-Fru/?-1,2':2,1 '-P-D-Fru/? (14). But recall 

(page 57) that the integration data for these two in the first 10-20 minutes are unreliable. 

Each occurred in small abundance and each eluted with “contaminant” peaks that caused 

inordinate integration error. With this in mind, there are no detectable changes in relative 

abundance between these five DFDAs. No accurate determination is possible for a-D-Fru/?- 

1 ,2 ':2 ,1 '-P-D-Frup (6) and P-D-Fru/-l,2':2,l'-a-D-Fru/? (7), except that as a pair their 

relative abundance is constant.

Structural Properties as Partial Explanation fo r  Relative Abundance - Some correlation 

exists between DFDA structure and relative abundance. The most obvious example is the 

lability o f a-D-Fru/-1,2':2,6 '-P-D-Fru/(3), presumably because it contains an eight-membered
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central dioxane ring, which breaks apart easily under the reaction conditions employed. But 

other, less obvious correlations exist. This section points out several o f these in an attempt 

to understand the factors controlling DFDA formation and decay in anhydrous, high 

temperature environments.

Table 11 lists ring configuration, dianhydride linkage, and central ring conformation*

DFDA Anomcr Ring Size Linkage Anomer Ring Size Central Ring 
Conformation

Wt% 'Ss 30 min

10 a fur 1.2':2,r P fur chair 9.55
1 a fur l,2':2,3' P fur boat 8.05
5 P fur 1,2':2,3' P fur chair 3.52
8 a fur 1.2':2.1' a fur boat 2.51

12 P fur 1,2':2,1' P fur boat 1.75
9 a fur 1.2 ':2 .r P pyr chair 1.70

6,7 - - l,2’:2 ,r - pyr chair 0.79
13 P fur 1.2 ':2.r P pyr boat 0.77

11 a fur 1.2 ':2 .r a pyr boat 0.56

4 P fur 2.1 ’:3.2’ P pyr chair 0.31
2 P fur 2.1':3,2’ a pyr boat 0.26
14 P pyr 1.2 ':2 .r P pyr boat 0.09

3 a fur 1.2':2.6' P fur flexible 0.00

Table 11 - Anomeric configuration, dianhydride linkage, and central ring 
conformation of individual DFDAs.

* With the exception of ct-D-Fru/-1,2 ':2,6'-P-D-Fru/(3), the central ring formed by the dianhydridc 
linkage of DFDAs is a six-membered 1.4-dioxane. The anomeric and exo-anomeric effects77'79 control which 
conformation this central ring adopts. Both effects arise when a lone electron pair of one oxy gen in an O-C-O 
system is arranged antiperiplanar to the o* anti-bonding orbital o f the carbon. The exo-anomeric effect may 
operate &om either the axial (a) or equatorial (b) position. By contrast the anomeric effect applies when the

,exo- a n o m e r ic  
R e ro - a n o m e r ic

(b) (d)

electronegative substituent is axially disposed (a). In DFDAs. the most important consequence is to force the 
anom eric oxygens o f each D-fructose residue into the axial position on the central ring. For the l .2 ':2 .r

(continued...)
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for each of the 14 DFDAs. They are sorted in order of relative abundance (highest to lowest) 

after thermolysis for 30 minutes at 160°C, the same sort order used in Figure 32. The 

complete structures o f 6 and 7 are known, but are not included since it is not known how 

much each one contributes to wt% conversion data. We can combine structural properties 

from Table 11 with our general knowledge o f the mechanisms of formation (Scheme 5, page 

17 and Scheme 6, page 19) to explain partially the distributions o f DFDAs during 

thermolysis.

At 2 minutes a-D-Fru/-l,2':2,3'-P-D-Fru/(l), a-D-Fru/-l,2':2,6'-p-D-Fru/(3), p-D- 

Fru/-l,2':2,3'-P-D-Fru/(5), a-D -Fru/-l,2':2,l'-P-D-Fru/(10), and P-D-Fru/-l,2':2,l'-P-D- 

Fru/(12) are the most abundant DFDAs. All contain a P-D-fructofiiranose, and none contain 

fructopyranose. The inulin chain, except the terminal a-D-glucopyranose, is made up entirely 

o f P-D-fructofuranose and it is not surprising that this moiety predominates in the major 

thermolysis products. The three most abundant products after 2 minutes (1, 3, 10) also 

contain a-furanose rings, and could form as follows: The P-1,2-linkage is already present in 

abundance. All that is needed is cleavage of the glycosidic bond to give a cationic dimer (19)

D-fructofuranosyl-( 1 -*2)-(3-D-fructofuranose
3’

HO

OH

19

t  (...continued)
linked dianhydrides, the central ring is a chair (c) if the fructose residue anomeric configurations are different 
(a.p or p,a), and a boat (d) if they are the same (a .a  or P.P). The reverse is true for 1.2':2.3' and 2 .r:3 .2 ' 
linked dianhydrides (boat for a.p or p.a; chair for a .a  or p.P).
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with a P-D-fructofuranose linked 1—*2 to a D-fructofiiranosyl cation. The anomeric carbon 

o f the cationic residue is planar sp2 and susceptible to attack from either side. The P-side, 

however, may be sterically hindered to some degree by the C-3 hydroxyl group, which would 

make attack slightly more favored from the a-side. This would account for the three 

aforementioned products, (a-attack by 0 -1 ' -* a-D-Fru/-- 1,2':2,1 '-P-D-Fru/(10); by 0-3 ' -» 

a-D-Fru/-1,2':2,3 '-P-D-Fru/(I); by 0 -6 ’ -» a-D-Fru/-1,2 ':2,6 '-P-D-Fru/(3).) p-attack by 

each o f the hydroxyl oxygens 0 -T  and 0-3 ' gives the two remaining products P-D-Fru/- 

l,2 ':2,l'-P-D-Fru/(I2) and P-D-Fru/-l,2':2,3'-P-D-Fru/(5), respectively/ Cleavage of the 

dimer from the inulin oligomer may occur before or after DFDA formation.

The absence o f pyranose in these early products is also not surprising. The partial 

mechanism of Scheme 6, page 19, illustrates an important pathway to D-fructopyranose. In 

addition to being attacked immediately by neighboring hydroxyl groups, a terminal 

fructofiiranosyl cation can adopt a 2,6-anhydro-P-D-fructofiiranose form. This anhydro form 

is in equilibrium, not only with the furanosyl cation, but with a pyranosyl cation, which is 

slower to form than the furanosyl. Attack on this pyranosyl cation by 0 -1 ’ or 0 -3 ' leads to 

the pyranose containing DFDAs.80 (a-attack by 0-1 ' -♦ P-D-Fru/-1,2':2,1 '-a-D-Fru/; (7); by 

0 -3 ' -* P-D-Fru/-2,l':3,2'-a-D-Fru/7 (2); P-attack by 0-1 ' -* p-D-Fru/-1,2':2,l'-p-D-Frup

(13); by 0-3 ' -* P-D-Fru/-2,1 ':3,2 '-P-D-Fru/? (4).) Thus, formation of the pyranose- 

containing DFDAs requires an additional step and proceeds through a less stable intermediate.

These reactions are summarized in Scheme 8, in which an inulin polymer is

* P-D-Fni/1!.2 ':2.6'-P-D-Fru/'. which is the DFDA that would result from P-side attack by 0 -6 '. has 
never been identified. It is transient if it forms at all. Also, 0 -4 ' cannot approach the anomeric C-2 without 
severe bond strain: 1,2':2.4' di-D-fructose dianhydrides do not appear to form.
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cleaved to form an oligomer with a terminal D-fructofiiranosyl cationic residue. The cation 

is in equilibrium, via the anhydro species, with a D-fructopyranosyl cation. Either o f these 

cations may react with neighboring hydroxyl groups or the glycosidic oxygen to form DFDAs. 

The mechanism accounts for all the DFDAs that contain one or more P-D-fructofuranose 

rings. It is important to note, however, that five DFDAs (a-D-Frup-1,2':2,1 '-P-D-Fru/? (6),

UO -1 o-ll
' V “ \
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a-D-Fru/-1,2 ':2,1 '-a-D-Fru/(8), a-D-Fru/-l,2':2,l'-P-D-Frup (9), a-D -Fru/-l,2 ':2,l'-a-D - 

Frup (11), and P-D-Frup-l,2':2,l'-P-D-Frup (14)) are still unaccounted for and must arise 

from starting material other than inulin oligomers. We have seen (page 55) that D -fructose 

and glucose are present for up to two hours. Evidence is presented in the following section 

that further supports D-fructose as starting material for DFDA formation.
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Disappearance o f  Imdin by HPLC - A quantitative determination o f the rate o f disappearance 

o f inulin was not feasible because inulin consists o f a range o f oligomers and polymers. 

However, a qualitative understanding can be gained from HPLC analysis o f thermolysis 

samples using LC Method (iii). Figure 33 compares an unreacted sample of inulin/l .5% 

citric acid with samples that have been thermolyzed at 160°C for one and three minutes. 

Inulin oligomers and polymers differ only in the number of fructose residues; they elute on the

0  10 20  3 0  4 0  50 60

t(m in)

Figure 33 - Comparison ofHPAE-PED chromatograms of inulin/1.5% citric acid 
after 0, 1, and 3 minutes at 160°C.

Dionex LC system in order o f increasing chain length.81,82 Assuming an initial maximum dp 

of approximately 70 (page 1), it is apparent that inulin fragmentation is extensive and occurs
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rapidly. The large peak at ~3 minutes in the 0 minute sample has the same retention time as 

D-fructose.

The 5, 10, and 15 minute samples are shown in Figure 34. The rapid disappearance 

o f inulin - nearly complete, on a qualitative basis, after 15 minutes - does not coincide with 

the maximum concentration of DFDAs, which occurs after about 25 minutes (Figure 31,

j ________________________________1 i i_______________________________ i------------------------------------------------- 1

0  10 2 0  3 0  4 0  50  6 0

t  (min)

Figure 34 - Comparison of HPAE-PED chromatograms of inulin/1.5% citric acid 
after 5, 10, and 15 minutes at 160°C.

page 73). The discrepancy between the apparent disappearance of oligomeric starting 

material and the time after which DFDA decay occurs more rapidly than formation suggests 

a route to DFDA formation that does not include inulin oligomers.
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9

0 1 2 3 4 5 6 7 8 9  10

t (min)

Figure 35 - Comparison o f HPAE-PED chromatograms of a 3 minute thermolysis 
sample with glucose, fructose, sucrose, 1-kestose, nystose, and DFDA standards.

Figure 35 compares the first ten minutes o f a three minute thermolysis sample with 

the retention times of various individual compounds. The chromatograms for a-D-Frup- 

1,2':2,1 '-P-D-Frup (6), a-D-Fru/-1,2' :2,1 '-P-D-Frup (9), a-D-Fru/-1,2' :2,1 '-P-D-Fru/( 10), 

and P-D-Fru/-l,2':2,l'-p-D-Frup (13) were obtained individually and are overlain for 

convenience. 1-kestose and nystose1 were co-injected, as were glucose, fructose, and 

sucrose. There is a correlation among the four DFDAs between elution order and number

* The structures of 1-kestose (GF2) and nystose (GF3) are given on page 154. They were confirmed 
by comparison of l3C chemical shifts with published data.83
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of primary hydroxyl groups. a-D-Frup-l,2 ':2,l '-P-D-Frup (6) does not contain primary OH 

groups and elutes first; a-D-Fru/-l,2':2,l '-P-D-Frup (9) and P-D-Fru/-1,2':2,1 '-p-D-Frup (13) 

each contain one primary OH and elute next; a-D-Fru/-1,2':2 ,1 '-P-D-Fru/(10) contains two 

primary OH groups and elutes last. Also, the disaccharide 10 nearly co-elutes with the 

trisaccharide l-kestose. By analogy, glycosylated DFDA trimers and tetramers could be 

expected to elute in the same regions as inulin-derived tetramers and pentamers, respectively. 

Therefore, at least a portion o f the peaks with retention times between 10 and 20 minutes in 

Figure 34 are likely to represent the more stable glycosylated DFDAs and not the more labile 

inulin oligomers.

Separate thermolysis experiments using nystose in the presence o f citric acid further 

reinforced this assumption. At 160°C and 1.5% citric acid, nystose had completely 

disappeared within 2 minutes and a range of DFDAs had formed. A ten-fold decrease in citric 

acid concentration to 0.17% did not change this result. Only when the reaction temperature 

was lowered to 130°C did nystose react slowly enough for the rate o f disappearance to be 

measured. Thus, the conditions during inulin thermolysis in this study were sufficient to cause 

complete and almost immediate removal o f low dp inulin oligomers.

Three peaks in each o f the thermolysis samples correspond, by retention time, to 

glucose, fructose, and sucrose (Figure 36). Although retention time alone does not prove 

these assignments, they are supported by GCFID analysis (page 53). Glucopyranose, 

fructopyranose, and fructofuranose are present early in relatively large abundance and
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disappear gradually.* Sucrose forms to a lesser extent and is all but gone after 15 minutes. 

The same patterns appear in Figure 36 and it is logical to believe that the three peaks at 3 .0, 

3 .3, and 4.0 minutes are glucose, fructose, and sucrose.

\  15 min i®160°

A 10 min ®160°

A j l L _ _ /x 5 min ® 160°

A
i \ a A/  J  v_ /\ - /" 'v 3 min ® 160°

_ A . 0 min

•i 6
t(m in )

10

Figure 36 - Glucose, fructose, and sucrose in inulin/1.5% citric acid thermolysis 
samples.

The presence o f D-fructose - and sucrose to a limited extent - makes it a candidate for 

source material for the five DFDAs whose mechanism of formation is still unaccounted for.

* Glucose-fructose dianhydrides did not form in this study, nor did they occur in similar studies with 
inulin.59'61 The 3° fructosyl cation that results from protonation of the anomeric OH and subsequent loss of 
H20  is more stable than the analogous 2° glucosyl cation.84 Therefore, fructose plays a more critical role in 
DFDA formation. Glucose is ~35 times more abundant in sucrose than in inulin (assuming avg inulin dp~35) 
and at least one glucose-fructose dianhydride has been identified in sucrose caramels.61
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These five - a-D-Frup-l,2':2,l'-P-D-Frup(6), a-D-Fru/-1,2':2 ,l'-a -D -F ru /(8), a-D-Fru/- 

1,2':2,1 '-P-D-Frup (9), a-D-Fru/-1,2':2,1'-a-D-Frup (11), and P-D-Frup-l,2':2,r-p-D-Frup

(14) - do not contain P-linked fructofuranose and cannot form directly from inulin. Instead, 

they can arise from the attack o f fructopyranose or fructofuranose OH groups on a 

monomeric fructosyl cation. This cation may also contribute to the formation o f the other 

nine DFDAs, in addition to their formation directly from inulin oligomers.
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K in e t ic s  R e s u l t s  a n d  D is c u s s io n

C hapter Introduction

The mechanism that describes the reactions that inulin and its oligomers undergo in 

the current conditions is complex. According to the partial mechanism of Scheme 8, page 

81, some DFDAs may form directly from inulin, some via the anhydrofructose intermediate, 

and the remainder through one or more unknown pathways. Degradation studies revealed 

secondary sources - from interconversion or cleavage o f trimers or both - of at least some 

DFDAs. Decay of DFDAs appears to be divided into at least two classes. The thermally 

stable DFDAs contain one or two pyranose rings and decay slowly if at all. The difuranoses 

are more labile and may lead to other DFDAs via isomerization. The overall order of these 

reactions is not immediately apparent.

Inulin cannot easily be quantified since it consists o f a continuum o f fructose 

oligomers, the distribution of which begins changing immediately upon heating. There was 

no quantitative tool available during this study to monitor inulin concentration. Citric acid 

is equally difficult to track in this system. I found no method of measuring pH in thermal 

melts in situ and citric acid is not amenable to silylation and GCFID analysis with the same 

reliability as conventional carbohydrates. Therefore, one o f the most common and powerful 

kinetic tools - measurement o f reactant concentrations - was unavailable from the start.

With the exception o f degradation studies on individual DFDAs, the quantitative 

empirical evidence for the proposed reaction mechanisms presented here was obtained by 

measuring product concentrations. Linear and nonlinear least squares curve-fitting provided 

a preliminary means of validating possible mechanisms on the basis o f how well the predicted

89
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curves fit the data. The nonlinear least squares routine provided initial estimates for 

individual DFDA growth and decay rate constants. These were then used in numerical 

simulations o f more detailed mechanisms. Slight changes in "goodness o f fit" between the 

data and simulated curves were easy to identify by visual inspection.

The "final" reaction mechanism is a product of refinements to a simple, first order 

approximation that does not fail too seriously to mimic the data. It is beyond the scope o f this 

work to insinuate the "true" mechanism for thermolysis o f inulin/citric acid mixtures. Instead 

the following series o f adjustments and refinements are offered as logical steps toward a 

reasonable set o f reactions that makes chemical sense.
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Estimating Individual DFDA Rate Constants

The Livermore Solver for Ordinary Differential Equations (LSODE) will be used later 

in this chapter to predict concentrations o f reactants and products for various reaction 

mechanisms. This modeling tool requires as input a complete breakdown o f the mechanism 

into individual reactions, including a list o f all reactants and products, and a rate constant for 

each reaction. It is these rate constants that present the most immediate challenge, since 

virtually none o f them could be determined purely by empirical methods. Instead, nonlinear 

least squares curve-fitting was used to gain insight into the overall order o f certain reactions 

and to provide initial estimates o f the growth and decay rate constants o f individual DFDAs.

Derivation o f  Ist Order Parallel-Consecutive Rate Equation - A simple mechanistic 

explanation for inulin/citric acid thermolysis is a set o f first order parallel-consecutive 

reactions85,86 of the type A->B->C. In this scenario inulin (A) gives rise to DFDAs (B) which 

decay to unspecified products (C). Growth and decay in this model are first order or pseudo 

first order. There is no compensation for isomerization between DFDAs and no consideration 

for specific versus general acid catalysis. Also, fructose as source material is neglected for 

the time being.

The following derivation results in an expression for the concentration o f any 

individual DFDA at any point in the reaction. In this treatment, all o f the oligomers o f inulin 

are grouped together as Inulin. Each DFDA is represented by In, where n is the number o f 

the DFDA as used throughout this work. The formation rate constant is k„, the degradation 

rate constant is k'n. Scheme 9 gives the overall mechanism.
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Inulin

k'l
 *■ >

k’2 Degradation
Products

k’n

Scheme 9

According to this reaction scheme, the disappearance o f inulin can be written as:

d[imlln] (1)
at

and integration gives:

[inulin]=[inulin]0e ~kt where k = ^ k n (2)

Substituting Eq. (2) into the expression for the formation of I gives:

dt
-=kn[inulin\Qe (3)

But each I decays to non-specific products at some rate k'n. Adding this degradation o f I to 

the expression for formation of I gives:

dt
=k„[inulin\Qe ~k n[In] (4)

Eq. (4) can be rearranged and multiplied by an integrating factor to give the following:
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e '^ k j i i m l i n ]„ e “ '*'** (5)
at

The left side o f Eq. (5) can be simplified using the product rule to give:

n'Un])=kn[inulin\Q e (k- k)l (6)

Finally, Eq. (6) can be directly integrated and the constant o f integration defined at time t=0. 

The result is the integrated rate expression:

kUnuliri]n . .

{e e }
ft

Eq. (7) can then be fitted to the data using nonlinear least squares. The figures on the 

following pages depict wt% conversion for each DFDA from inulin/1.5% citric acid at 160°C. 

Mean wt% conversion data are plotted with error bars to show standard error. The line in 

each plot is the curve predicted by the nonlinear least squares algorithm. In this treatment all 

three rate constants - inulin disappearance, DFDA growth, and DFDA decay - were floated 

in the calculation, i.e. the program was allowed to converge iteratively on the best fit to the 

data by adjusting all three rate constants. The individual plots are presented in pairs o f similar 

relative abundance. The y-axis maximum (wt%) is the same in each pair and decreases from 

10wt% in the first pair to lwt% in the last.
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Figure 37 - Nonlinear least squares curve-fitting to DFDAs 1, 10, 5, 8, 9, and 12.
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Figure 38 - Nonlinear least squares curve-fitting to DFDAs 3, (6)7,11, 13, 2, and 4.
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Figure 39 - Nonlinear least squares curve- 
fitting to DFDA 14.

The predicted curves fit the data reasonably well in the first 30 minutes o f the reaction. 

Eq. (7) seems capable o f estimating DFDA formation rates, which implies that formation is 

first order. The estimated rate constants for this preliminary round o f curve fitting are shown 

in Table 12. Inulin disappears by a number o f pathways and this simple mechanism can in no 

way account for them all. This limitation is reflected in the ten-fold variation for the inulin

l
k

K (xio1)
k'„ (xlO1)

DFDA
6,7 8 9 10 11 12 13 14

0.25 0.26 0.38 0.08 0.21 0.11 0.15 0.14 0.20 0.16 0.21 0.07 0.03
26 0 913 15 3 0 346 9.2 1 08 4.94 2.96 24 7 1 17 4 73 0 785 0 0397

2.03 0.892 400 0.0927 1.45 0.425 3.89 0.341 2.59 0.842 2.61 1.35 0.487

Table 12 - First estimates o f rate constants from nonlinear least squares curve fitting to
1st order parallel-consecutive mechanism.

disappearance rate constant k. The formation and decay rate constants (k„ and k 'J  have been 

multiplied by 103 for convenience. They mirror the trends in the data for relative abundances 

and provide "order o f magnitude" starting points for more serious modeling.

All o f the partial reaction mechanisms presented so far were constructed under the 

assumption that the reactions were acid catalyzed. In keeping with that history, it is
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appropriate to infer at this point that the rate o f DFDA formation is dependent on hydrogen 

ion concentration and that the hydrogen ion concentration is constant throughout the 

thermolysis. This inference will be re-examined in a later section.

After -30  minutes DFDA decay is the dominant process and the rate equation fails to 

mimic the data, especially for the difiiranose DFDAs a-D-Fru/-1,2':2,3 '-P-D-Fru/(1) and a-D- 

Fru /-l,2 ':2 ,r-p-D -Fru/(10), P-D-Fru/-l,2':2,3'-p-D-Fru/(5) and a-D -Fru/-l,2 ':2,l'-a-D - 

Fru/  (8), and P-D-Fru/-1,2':2,1'-P-D-Fru/ (12) (Figure 37). Decay of these difuranoses 

occurs more rapidly than the predicted values out to -150 minutes, after which it slows more 

rapidly than the predicted values. The first order parallel-consecutive model cannot quite 

duplicate the "curvature" o f the data. Degradation studies have already shown that 

isomerization o f 10 occurs. By inference, the other difuranoses probably also isomerize. This 

does not explain the discrepancy since the model specifies only that decay occurs and does 

not rely on the nature o f the decay products. If decay and isomerization are first order 

processes, their contribution to the decay rate could be summed and the model would remain 

valid.

Isomerization might supply a secondary source o f the difuranose DFDAs, in which 

case a new rate expression would be required. Based on degradation studies, these processes 

represent a small contribution to wt% conversion, but that contribution might be more 

noticeable in the later stages, when the initial rapid formation has ceased. The 1st order 

parallel-consecutive model would also be expected to fail if decay were occurring via 2nd 

order or higher processes.
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Each of the curves in Figures 37-39 was generated by allowing the least squares 

algorithm to assign a unique value for the rate constant for disappearance o f inulin. If the 

curve-fitting is repeated with this constant fixed, the match between the data and the predicted 

curve becomes unacceptable. In Figure 40 the nonlinear LS fit to Eq. (7) is compared to the 

data for a-D-Fru/-1,2':2,1 '-P-D-Fru/(10) with the inulin disappearance rate constant (k) fixed

to
k = .20 (float) 
k = .1 (fixed) 
k = .3 (fixed)

5

0

0 SO 100 150 200 2S0 300
t(m in )

Figure 40 - Effect o f varying the inulin disappearance rate constant on nonlinear 
least squares curve for a-D-Fru/-1,2':2 ,1 '-P-D-Fru/(10).

at 0.10 and 0.30. The resulting curves are compared to that predicted by nonlinear LS when 

the rate constant is floated. (The error bars are removed for convenience.) When the rate 

constant is decreased from .20 (float) to . 10 (fixed), the maximum predicted wt% conversion
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increases. The maximum occurs later in the reaction and the decay gradient becomes steeper. 

When the rate constant is increased from .20 (float) to .30 (fixed), the maximum predicted 

conversion is reduced and occurs sooner, and decay is slower than the data. The same effect 

was exhibited by all 14 DFDAs.

This sensitivity may be a consequence of the simplicity of the reaction mechanism used 

to generate the curves. The value o f the nonlinear LS approach lies in its ability to provide 

rough estimates of rate constants. The curve shapes for the first 30 minutes o f reaction match 

the data well and the corresponding formation rate constants are suitable as initial estimates. 

The decay stages, especially for difuranoses, need to be inspected more closely.

Curve-fitting Treatments o f  DFDA Decay - Degradation rates for thermally stable DFDAs 

are slow and should have little impact on the overall mechanism. DFDAs that decay rapidly 

will begin doing so immediately upon formation and the mechanism and rate constants must 

reflect that fact. The mechanism must also provide "cross links" between DFDAs to account 

for isomerization, which provide secondary sources for DFDA formation. Each of these 

additional pathways adds a level of complexity. In addition, the above curve-fitting treatment 

of a set o f first order parallel-consecutive reactions indicates it may be safe to assume a first 

order mechanism for DFDA formation, but the mechanism for decay, for the difuranoses at 

least, may be of higher order.

To address this question of decay order, nonlinear LS plots o f standard rate equations 

were compared to wt% conversion data for individual DFDAs. The rate equations under 

consideration are:
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• v=k[A]
• v=k[A]2 

v=k[A][B]

A prerequisite for comparing the data in this way is that the variables must be reactant 

concentrations, either directly determined or as determined through their stoichiometric 

relationship to product concentrations. It is not possible to express DFDA concentration in 

terms other than wt% conversion, which negates the use o f data obtained while inulin is still 

present and forming DFDAs. To circumvent this problem, the comparison was confined to 

data after 30 minutes reaction, the assumption being that formation o f a particular DFDA 

from inulin has ceased and the dominant process is degradation.* This makes the DFDA the 

sole reactant in a 1* order treatment. The following graphical treatments were conducted on 

each of the five difuranoses that persist beyond 30 minutes reaction.n  The results were 

virtually identical for each; a-D-Fru/-1,2':2 ,1 '-P-D-Fru/(10) is used here to demonstrate the 

principles.

• Is* Order Decay of DFDA 10 (v=k[A]) - If degradation occurs via a l51 order process, 

the rate law and its integrated solution are;

-  t - 4 ] “  (8)

* The degradation data for individual DFDAs are not applicable. The initial molar ratio of DFDA 
to citric acid in those experiments was ~39. The same molar ratio in thermolysis samples, assuming Mw 
inulin = 5000 (dp 31), is -2 .5 .

’* One method for graphical treatment of reaction mechanisms is linear least sqaures,80 in which the 
integrated rate law is rearranged algebraically in order to write it in the form o f the equation o f a straight line. 
This method tends to overemphasize variance in the later stages. Nonlinear least squares avoids this problem 
because the quantity being plotted is [A], which usually has a constant variance.87
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The nonlinear least squares treatment o f this equation for the inulin/1.5% citric 

acid/160°C thermolysis data for a-D-Fru/'-1,2':2 ,1 '-P-D-Fru/(10) is given in Figure 41. This 

rate equation overestimates the extent of degradation in the later stages (a) and

l A ) , = [ A \ ae t
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Figure 41 - 1st order nonlinear least squares curve-fitting to decay of a-D-Fru/- 
l,2 ':2,l'-p-D -Fru/(10).

underestimates the rate of degradation in the early stages (b). The nonlinear LS algorithm 

converges on a rate constant value that provides the best fit to the data based on initial 

concentration. For a-D-Fru/:-l,2':2,r-P-D-Fru/'(10) the initial concentration [A]0 is 9.55, the 

mean wt% conversion at 30 minutes.

If the initial concentration o f 10 is increased from 9.55 to 10.2, the fit to the later data 

(6-40 hrs) is relatively unaffected while the fit to the early data (0-6 hrs) improves significantly 

(Figure 42). One o f the original assumptions for this 1st order treatment was that a-D-Fru/- 

1,2':2,1 '-P-D-Fn/ (10) is the only reactant. If there are components present in the melt that
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Figure 42 - 1“ order nonlinear least squares curve-fitting to decay o f a-D-Fru/- 
l,2 ':2 ,r-P -D -Fru/(10) with [A]0 = 10.2 wt%.

provide a secondary source of 10, the actual rate of decay will be somewhat greater than that 

reflected by the data. Recall that trimers and other DFDAs (page 67), and D-fructose (pages 

55 and 87) are likely candidates for this role. This argument lends validity to a 1st order or 

pseudo 1st order decay mechanism for a-D-Fru/-1,2':2 ,1 '-P-D-Fru/(10).

• 2nd Order Decay of DFDA 10 (v=k[A]2) - This equation states that the rate o f decay 

is proportional to the square of the DFDA concentration. For this to be true, the DFDA must 

either react with another molecule of itself, or with something else that is present at the same 

initial concentration. In keeping with the chemical mechanisms reviewed in this work that 

involve the fructosyl cation, DFDA self reaction might involve protonation, opening o f an 

anhydride linkage to form a glycosylated fructosyl, and attack by a hydroxyl group from 

another DFDA of the same type. But it seems unlikely, given the variety o f DFDAs present,
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that attack by the same species would predominate over attack by several different species. 

Also, once the cation formed, the likelihood o f intramolecular hydroxyl attack is also high.

Based once again on the mechanisms reviewed in this work, the most likely candidate 

for a 2nd order DFDA decay mechanism that is not self reacting is citric acid. But citric acid 

could not have been present at 30 minutes at the same concentration as a-D-Fru/-1,2' :2,1 '-P- 

D-Fru/(10). Each sample weighed ~10mg, o f which 1.5% or ,15mg was citric acid. The 

weight of 10 present at 30 minutes was ~ lm g (~10wt% maximum conversion). Converting 

these amounts to moles gives 8xl0 '7 mol citric acid and 3x1 O'6 mol a-D-Fru/-1,2':2,1 '-P-D- 

Fru/ (10), which is a four-fold excess o f DFDA. If all the difiiranose DFDAs present in the 

melt at 30 minutes are included in the calculation (~25wt% conversion) there is a ten-fold 

excess over citric acid at 30 minutes. The likelihood of any other species being present at the 

same initial concentration and reacting only with a-D-Fru/-l,2':2,l '-P-D-Fru/(10) is remote.

Nevertheless, the graphical treatments from the previous section were applied to the 

2nd order rate law v=k[A]2. The integrated form of this equation is:

1 1
[A], [A]0 (9)

Solving Eq. (9) for [A], gives:

( ,0 )

Nonlinear least squares curve-fitting to Eq. (10) is shown in Figure 43. This equation
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Figure 43 - 2nd order nonlinear least squares curve-fitting to decay o f a-D-Fru f-  
1,2':2,1 '-P-D-Fru/(10) with [A]0 = 10.2 wt%.

more closely approximates the data after -20  hours (a), indicating that 2nd order processes 

may be of greater importance in the later stages o f thermolysis. The fit to the first five hours 

o f reaction (b) is not as good as that for the 1“ order plot (Figure 42) where [A]0=10.2. 

Using [A]0=9.55 in the 2nd order plot (not shown) considerably worsens the predicted fit in 

the 0-5 hour region.

• 2nd Order Decay of DFDA 10 (v=k[A][B]) - This form o f 2nd order kinetics is widely 

encountered, yet its application to the current study is far from straightforward. The nature 

of the analysis does not allow the identification o f the second reactant. Known possibilities 

include citric acid, which was added to the mixture, and inulin thermolysis products such as 

fructose, other DFDAs, glycosylated DFDAs, and non-specific degradation products e.g. 

HMF. But the concentration o f each of these is small relative to the difuranose DFDAs,
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which comprise 25.4% by weight o f the reaction mixture at 30 minutes. The pattern o f decay 

for the five difuranoses (a-D-Fru/11,2':2,6 '-P-D-Fru/-(3) excluded) is similar (Figure 37, page 

94) and a rate law' applied to one o f these should be valid for the other four. This assumption 

is based on the structural and behavioral similarities among these five difuranoses.

If one o f the above thermolysis products were involved, it would be the limiting 

reagent and 2nd order decay would only continue until that reactant had been consumed. But 

difuranose decay continues for 40 hours until the combined mean concentration of the five 

difuranoses falls to 4.4 wt%. No single compound appears in the analytical methods used to 

track products in this study that is present in high enough amounts to react for 40 hours on 

a 1:1 basis with five different DFDAs. Even if a general class o f compound, e.g. trimers or 

monomers, were responsible for 2nd order decay, there doesn’t appear to be enough material 

present to account for this loss. At least a portion of difuranose decay is probably non

specific in the sense that collision with any of various classes o f compound in the mixture 

results in a reaction. This might account for the apparent 2nd order nature o f the decay curve 

after 12 or so hours. But with the current knowledge o f the contents o f the melt during 

thermolysis, a sensible graphical treatment o f the rate equation v=k[A][B] is not possible.
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The Role o f  Citric Acid in DFDA decay - As mentioned above, DFDA decomposition might 

involve protonation and opening of an anhydride bond to form a carbocation (fructofuranose 

singly-linked to a fructosyl cation). The general features o f this mechanism are common to

RO OR kl

X  + H3°+ ^
R R *-1

H

RO, *OR

X
H

c+l
RO e£OR

XR R 

Scheme 10

H

RO *OR 

RX R

acetals,86 and are extrapolated here to the fructose-based ketals. In Scheme 10 the cation is 

a distinct species and the rate equation in the steady state is:

v =
k \k2[A][H 1

k - l+k2
( 1 1 )

where A is the ketal.* If the reaction is acid catalyzed [FT] is constant, being regenerated as 

a product, and the expression for the observed reaction rate is v=kobs[A], The observed rate

* If the cation is not a distinct species and the reaction proceeds by a concerted pathway, the
rate equation becomes: v = k f ^ A \ [ H  *] These two reaction pathways are kinetically indistinguishable

because they show the same dependence on concentration. But in both cases the rate depends upon hydrogen 
ion concentration.
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constant will be dependent on hydrogen ion concentration.

It is important to remember during the course o f this discussion that DFDA growth 

and decay take place in anhydrous melts. The situation in aqueous chemistry in which H ,0  

is in large excess and constitutes an abundant supply o f a conjugate acid/base pair does not 

apply. The sole initial proton donor is citric acid. Carbohydrate OH groups are poor proton 

donors (c .f  conditions required for methylation). As the reaction proceeds other proton 

donors may become available. For example, aqueous acidified solutions o f sucrose or D- 

fructose (0.05M sugar, 2mM H2S 0 4) heated to 250°C yield acidic products that include 

levulinic, lactic, formic, and acetic acid.70 Also, the predominant decomposition product o f 

anhydrous sucrose at 150-250°C is H ,0 .71 These products must be considered as possible 

by-products o f inulin thermolysis.

The ketal mechanism can be incorporated into a general scheme for acid catalyzed 

degradation o f DFDAs:

ki .
A+BH AH + B'

k-i

ko
AH+ P + H+

Scheme 11

where A and AH* are the ketal and the protonated ketal (a difuranose DFDA in this case), BH 

an organic acid, and B' the conjugate base. The opening o f AH* to a carbocation and 

subsequent reaction to form products (P) are incorporated into the second step of Scheme 

11 under the assumption that the carbocation is more reactive than the protonated ketal. If
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the first reaction in Scheme 11 is the rate controlling step the rate equation is:86

v=kx[A\[BH] ( 12)

The system will show general acid catalysis and the rate will increase not with increasing 

hydrogen ion concentration, but with the concentration o f the acid. The concentrations of 

acidic by-products o f inulin thermolysis will influence the rate.

If the second reaction in Scheme 11 is the rate controlling step the rate equation is:86

The system will show specific acid catalysis and the rate will depend on hydrogen ion 

concentration regardless of the source of hydrogen ion. Aqueous acidified sucrose was shown 

early to undergo specific acid catalyzed hydrolysis.88 Mandal et al50 found that the kinetic 

behavior of acid catalyzed sucrose hydrolysis in four non protic solvents was exactly similar 

to that in water and therefore assumed specific acid catalysis. And Lonnberg and Gylen89 

found the rate limiting step in hydrolysis o f alkyl fructofuranosides to be formation o f the 

fructosyl carbocation and not protonation o f the glycosidic oxygen. It is uncertain whether 

or not these results may be applied to anhydrous melts o f inulin/citric acid. Experiments that 

monitor and control each acidic species present during thermolysis might resolve the question 

o f whether DFDA formation and decay are catalyzed specifically by hydrogen ion. Lacking 

these experiments, I am forced to presume specific acid catalysis and develop the mechanistic 

model accordingly. In that case, protonation o f the glycosidic oxygen (first step in Scheme

(13)
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11) occurs rapidly, and formation o f the carbocation is the rate controlling step, assuming 

subsequent reaction o f the carbocation is also fast. The overall kinetics will be pseudo 1" 

order or pseudo 2nd order, depending on whether the hydrogen ion concentration remains 

constant or changes during thermolysis.*

• pH During Thermolysis - A series of pH measurements was carried out on thermolysis 

samples to establish whether or not a pseudo 1" order treatment was appropriate. Table 13 

lists thermolysis time, pH, and citric acid concentration for inulin/citric acid mixtures 

containing 1.0, 1.5, 2.0, and 2.9 wt% citric acid. Pure citric acid was tested also. Each

pH*

0 .5

*

2 5 9 Avg

Citric 2.45 2.28 2.25 2.39 2.47 2.37
acid

(2.54e‘2) (2.94e-2) (3.34e2) (2.80e‘2) (3.04e‘2) (2 .54c2)

Inuiin/ 3.68 3.69 3.67 • 3.66 3.68
1.0%

(2.86c4) (2.66c-4) (2.66c-4) . (2.67c-4) (2.71c-4)

Inuiin/ 3.52 3.55 3.50 3.46 3.42 3.49
1.5%

(4.09e“*) (4.67c-4) (3.76c-4) (3.85c-4) (4.47c-4) (4.17c-4)

Inuiin/ 3.44 3.39 3.35 . 3.37 3.39
2.0%

(5.57c-4) (5.18c-4) (5.63c-4) _ (5.18c-4) (5.39c-4)

Inuiin/ 3.41 3.34 3.32 _ 3.36 3.36
2.9%

(8.02c-4) (8.05c-4) (8.28c-4) - (7.73c-4) (8.02c-4)

* molar concentration o f citric acid is shown in () beneath each pH value.

Table 13 - pH o f citric acid and inulin/citric acid mixtures after thermolysis at 160°C.

* If citric acid were the only acidic species present and its concentration were constant throughout 
the reaction period, then the system could obey general acid catalysis and still be pseudo 1st order. It is not 
known how low the concentrations of acidic by-products must be to satisfy this condition.
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sample (~ 1 Omg) was subjected to the same thermolysis treatment as used throughout this 

study. The residues were dissolved in distilled H20  (2.0 mL) and the pH recorded. Variations 

in pH between samples was due in part to variations in acid concentration; in general, lower 

concentrations gave higher pH readings, and vice versa.

The color o f the glassy citric acid residue changed during heating from light yellow 

after 30 minutes through yellow/orange to orange/brown after 9 hours, indicating some 

degradation. However, the pH o f pure citric acid was relatively unaffected by heating at 

160°C for 9 hours. The pH of the inulin/citric acid mixtures was also relatively constant 

throughout the reaction time. This constant pH during thermolysis supports the hypothesis 

that DFDA decay is pseudo 1** order.

• Effect of Citric Acid Concentration on Wt% Conversion - A number o f experiments 

were conducted on mixtures of inuiin with 1.0, 2.0, and 2.9% citric acid. A plot o f mean wt% 

conversion of total DFDAs for these systems in the first hour o f thermolysis is presented in 

Figure 44. Trends in the data for 1.0, 1.5, and 2.0% citric acid can be interpreted in terms 

of competing formation and decay rates for DFDAs, each dependent on [H*]. The discussion 

o f the 2 .9% data is deferred until later.

At citric acid concentration o f 1.0%, DFDA decay rate is slow and the data describe 

a smooth curve that gradually approaches a maximum (at -40-50 min). When citric acid is 

increased to 1.5% the formation rate increases, as evidenced by more rapid conversion in the 

early stages. The higher maximum conversion for 1.5% citric acid may be due to a higher 

proportion of the starting material going toward DFDA formation, while in the 1.0% system
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Figure 44 - Mean wt% conversion (0-60 min) to total DFDAs from inuiin with 
citric acid concentrations o f 1.0, 1.5, 2.0, and 2.9 wt%.

less starting material goes into DFDA formation and more into reactions that result in non- 

DFDA products. The decay rate also increases for the 1.5% system, causing the maximum 

conversion to occur earlier (-25-30 min). The slope of the curve after 30 minutes is negative, 

indicating that decay has become the dominant process.

The formation rate at 2.0% citric acid is only slightly greater than at 1.5%, which 

might indicate that the "nominal" acid concentration has been reached. The lower maximum 

conversion and slightly steeper decay indicate that degradation is competing more efficiently 

than in the 1.0 and 1.5% systems.
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If the data are plotted out to five hours (Figure 45) the above trends for 1.0, 1.5, and 

2.0% continue. The decay curves for these three descend toward equilibrium at relative rates 

in accord with citric acid concentration - i.e. fastest descent for highest acid concentration.

30

1.0%1.5%
2.0%

2.9%

50 150 250 3000 100 200

t(m in)

Figure 45 - Mean wt% conversion (0-300 min) o f inuiin to total DFDAs from 
inuiin with citric acid concentrations o f 1.0, 1.5, 2.0, and 2.9 wt%.

Table 14 shows the abundance of the difiiranoses (ff) relative to pyranose-containing 

DFDAs (fp pp) at 40 and 210 minutes for all four systems. The ratios (italics in the table) 

were calculated as the sum o f the mean wt% conversion for DFDAs 1, 5, 8, 10, and 12 

divided by the same sum for DFDAs 2, 4, 6, 7, 9, 11,13, and 14. The fact that the ratio is 

greater in all cases at 40 minutes than at 210 minutes reflects the rapid formation and greater
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overall abundance o f the difuranoses.

[Citric acid)

1.0% 1.5% 2.0% 2.9%

40 min. 6.6 5.5 5.3 7.9

210 min. 4.8 4.0 3.7 6.4

%  decrease 27 27 30 19

Table 14 - Average ratio and % decrease o f difuranoses 
to pyranose-containing DFDAs at 40 and 210 minutes.

The ratio decreases gradually as citric acid increases for the 1.0, 1.5, and 2.0% 

systems. This is true at both 40 and 210 minutes and reflects the ease of difuranose decay 

relative to the pyranoses. The ff'-fp/pp ratio decreases by the same amount (-30% ) after 210 

minutes reaction time, indicating a consistent decline o f difuranoses in all three systems.

The 2.9% system contains anomalies. The DFDA formation rate, instead of increasing 

slightly as in the 2.0% system (Figure 44), was markedly slow. In all of these systems some 

balance exists between acid catalyzed formation of DFDAs from inuiin oligomers and 

degradation of the D-fructose moieties o f those oligomers to non-specific products. Lower 

citric acid concentrations presumably catalyze anhydride formation (and scission o f glycosidic 

bonds, etc.) to a greater extent than degradation o f fructofuranose and fructopyranose rings. 

Evidently, at 2.9% the balance tips toward ring degradation and fructose residues are removed 

from the pool of material that might otherwise go toward DFDA formation. Thus, a paucity 

of starting material, rather than increased decay rate, could be responsible for low yield in the 

early stages. This does not, however, explain the slow decay rate. There is no apparent
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reason why increased ring degradation would not affect the starting material and the DFDA 

products in a similar manner. Therefore, no reasonable explanation is offered for the decay 

behavior o f the 2 .9% system.

The relative abundance of difuranoses (Table 14) was higher in the 2 .9% system than 

in the other three systems, and the change in this abundance from 40 to 210 minutes was less 

than in the other systems. It is possible that ring degradation has caused the formerly more 

stable pyranose-containing DFDAs to decay faster. In other words, decay is less selective at 

higher acid concentration and the difference in the rate o f decay for the two groups is smaller. 

This would explain both the higher jf:fp/pp  ratio and the fact that the ratio changes less.

Thermolysis at Higher Temperature - A series of thermolysis experiments were conducted 

at elevated temperatures. Bond scission reactions o f the type described in this work have high 

activation energies and are relatively more sensitive to temperature changes than other 

reaction types. Both the Arrhenius equation and Transition State Theory86 predict a strong 

temperature dependence for reactions with high activation energies. Also, since thermolysis 

occurred in viscous melts, there was some concern that diffusion control might be operating. 

According to a traditional rearrangement o f the Stokes-Einstein equation,90 the rate constant 

of a diffusion controlled reaction is insensitive to temperature changes relative to changes in 

viscosity.

Thermolysis data for inulin/1.5% citric acid at 170 and 180°C are compared in Figure 

46 to data for the same mixture at 160°C. As the graph shows, the formation and decay of 

DFDAs from inuiin are quite sensitive to temperature. As the temperature increases from 160
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to 170 to 180°, the time at which maximum wt% conversion occurs decreases from 25 to 15 

to 5 minutes. The decay rate displays a similarly large temperature dependence. This result 

highlights the importance o f activation energy and the absence o f diffusion control in the 

current thermolysis systems.
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Figure 46 - Inulin/1.5% thermolysis at 160, 170, and 180°C.
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Reaction Mechanisms

The previous sections have provided a foundation for numerical simulations. The 

following concepts are those upon which the kinetic model will be constructed.

1. The fructosyl cation holds a central role in DFDA growth and decay. DFDAs, 

glycosylated DFDAs, and oligomers o f inuiin are ketals and will react via fructosyl cations 

under acidic conditions (page 106). They will also react according to specific acid catalysis 

and obey pseudo 1* order kinetics. Two experimental results, in addition to aforementioned 

literature references, reinforce this view: 1) graphical treatments o f the degradation data for 

difuranoses are most successful when applied to a 1st order rate equation (page 100), and 2) 

pH remains constant throughout the reaction (page 109). However, the 1st order graphical 

treatment was not entirely satisfying and a portion o f DFDA decay is likely to occur via 2nd 

order processes. This is not unreasonable given the abundance of fructose-containing 

compounds in the reaction mixture which may form fructosyl cationic species.

2. Five o f the six difuranoses can form directly from inuiin oligomers o f dp>2 (Scheme 

8, page 81). Assuming protonation is rapid and there is no buildup of fructosyl cation, the 

formation of the cation will be the rate controlling step and a simple, one-step mechanism 

(A-*B) can be written for the formation of these five.

3. Four more DFDAs can form from inuiin oligomers whose fructofuranosyl cationic 

form has isomerized via the 2,6-anhydrofructose intermediate to the fructopyranosyl form 

(Scheme 8, page 81). The effects o f the anhydro intermediate on the validity o f applying 

pseudo I51 order kinetics to DFDA formation are not known. Recall (page 80) that these four 

DFDAs were not present at very early reaction times. The simplest approach is to exclude
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the intermediate from the model. If numerical simulation is unable to duplicate the data for 

these four DFDAs, the anhydro species may need to be incorporated into the mechanism.

4. The remaining five DFDAs differ from the foregoing in that they do not contain 

P-D-fructofiiranose rings and cannot form directly from inuiin oligomers. Their mechanism 

of formation must be determined from a combination o f experimental evidence and common 

sense. In accordance with the ketal mechanism already put forth, isomerization provides a 

route to these five. A protonated anhydride linkage may open to a glycosylated cation, then 

re-close to form a different (or the same) DFDA. The 2,6-anhydrofructose intermediate may 

play a role. Also, fragmentation of inuiin in the acidic melt yields fructose and sucrose, both 

candidates for source material for DFDAs.

5. The pyranose-containing DFDAs do not appear to degrade significantly. 

Degradation o f these DFDAs will play a minor role and inaccuracies in their decay rate 

constants should not overtly influence the model.

6. The difuranoses a-D-Fru/-l,2':2,3'-P-D-Fru/(1), P-D-Fru/-1,2':2,3'-P-D-Fru/(5), 

a-D-Fru/-l,2':2,r-a-D-Fru/(8), a-D-Fru/-l,2':2,r-P-D-Fru/(10), and P-D-Fru/-l,2 ':2,l'-p- 

D-Frn/' (12) constitute >80% of the DFDAs at 30 minutes in the inuiin/1.5% citric acid/160 ° C 

system. Each is a possible "trickle" source for other DFDAs. One o f the anhydride linkages 

may be protonated and the linkage opened to form a glycosylated fructosyl cation. A variety 

o f subsequent closures o f the linkage involving the cation and an OH group of the glycosyl 

moiety are possible, each resulting in formation of a different difuranose. The 2,6- 

anhydrofructose intermediate may accompany this process and lead to one o f the 

furanose/pyranose DFDAs.
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7. The isomerization steps above might begin with a fiiranose/pyranose, in which case 

dipyranoses could form. The only two dipyranoses identified in these systems are a-D-Frup- 

1,2':2,1 '-P-D-Frup (6) and P-D-Frup-1,2':2,1 '-P-D-Frup (14). The abundance o f the former 

is not known for certain, although the combined maximum wt% conversion for 6 and 7 is less 

than 1%. DFDA 14, the latter, is the least abundant o f the known DFDA products, never 

reaching more than ~0.1%.

8. D-fructose forms early and constitutes a source for DFDAs, especially those that 

cannot form from inuiin.

Assem bling a Mechanism - The kinetic mechanism for inulin/citric acid thermolysis will 

certainly contain many reactions. Nine DFDAs can form from inuiin in pseudo I” order 

processes. The other five must come from somewhere else, including isomerizations and 

likely 2nd order reactions between two fructose moieties. Fructose could conceivably give rise 

to all 14 DFDAs. Each difuranose can isomerize to 13 other DFDAs. There are six 

difuranoses, which makes nearly 70 reaction pathways from isomerizations alone. Decay 

reactions other than loss to isomerization include reaction with cationic and OH-containing 

species, and non-specific degradation. ESMS analysis o f thermolysis samples (page 47) and 

o f several commercial chicory products91 showed that dehydrations o f DFDAs also occur 

during thermolysis. A kinetic mechanism that includes each o f these pathways would surpass 

100 reactions.

Exact determinations of the rate constants for all o f these reactions were not possible. 

Instead, the conversion data were used to provide rough estimates o f the formation and decay
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rate for each DFDA. The numerical simulations that follow have taken these estimates into 

account. There is an inherent danger in attempting numerical simulations on systems for 

which too few variables have been determined empirically. The investigator that assigns 

values for rate constants at will, without regard for experimental evidence or chemical 

appropriateness, invites the construction of a "house o f cards". Out o f necessity, many of the 

rate constants reported here are estimated. The system under investigation is complex and 

is not easily broken down in the laboratory into its component parts. It is impossible to 

proceed without making assumptions where experimental evidence is lacking.

Use o f LSODE on a Single DFDA - The "mechanics" of performing numerical simulations for 

this study are straightforward. The user creates an ASCII text file that contains information 

about the mechanism, including reactants and products for each reaction in the mechanism, 

the rate constant for each reaction, the initial concentrations o f each reactant and product, 

start and stop times, and the number of data points to generate/ Convergence criteria in the 

form of tolerances for absolute and relative error are adjustable. The error tolerance values 

suggested by the simulation program were used throughout this study.

Once the input data file is written, LSODE is invoked. The program integrates the 

differential equations represented by the mechanism being modeled and writes the solution to 

a text file. This output file, containing time/concentration data pairs for each reactant and 

product, is imported into Axum and plotted against actual wt% conversions and the fit of the 

predicted concentrations to the data checked visually. In this way many simulations can be

* The numerical simulator includes a utility that prompts the user for information and writes it to 
an ASCII file formaned for direct import into the simulation program.
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performed on the same mechanism until an acceptable fit is obtained. The difficulty, therefore, 

is not in performing the simulations, but in deciphering the true details o f the mechanism. 

Very subtle changes to a rate constant may have profound effects on the quality o f the fit, 

while gross changes to another rate constant within the same mechanism may have little or 

no observable effect.

DFDA 10 (a-D -Fruf-l^'^l'-P-D -Fru/) was used for the first simulation attempts for 

two reasons. First, 10 is the most abundant DFDA. Wt% conversion values include absolute 

errors that are associated with such tasks as the measurement o f the starting material and 

integration of GC peaks. These errors will have the least relative effect on the most abundant 

product, making the conversion data for that product the most reliable. Second, 10 is a 

difiiranose and so isomerizes to other DFDAs. This adds an extra level o f complexity, but it 

also forces the concept o f isomerization to be integral to the model from the start.

The following three mechanisms were tested against the data with varying degrees of 

success/ The rate constant for the overall disappearance of inuiin in these mechanisms is 0.20 

min'1. This is the value produced by the nonlinear least squares method for a-D-Fru/- 

1,2':2,1 '-P-D-Fru/(10) (Table 12, page 96), which is the most abundant DFDA product and, 

as such, exerts the most influence on the overall mechanism.

• Simple 1“ Order Growth and Decay - In the first trial (mechanism 1), DFDA 10 

forms directly from inuiin (i) and decays to non-specific products (np). This is the same 1" 

order parallel-consecutive mechanism used earlier for nonlinear least squares curve fitting and 

was not expected to duplicate the data. Inuiin forms other DFDAs as well. These are

* These and all subsequent simulations were performed on thermolysis data from inulin/1.5% citric 
acid at 160°C.
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i -*► 10

i -►  sp

10 —► np

mechanism 1

designated as specific products (sp), which represent a "gene pool" from which additional 

DFDAs may be added to the mechanism. Inuiin disappears by more than one reaction 

pathway. For each mechanism, the rate constant for the disappearance o f inuiin is the sum 

of the rate constants for all Is* order reactions in which inuiin is the reactant. The value o f this 

constant is 0.20 min'1.

The concentrations predicted by mechanism 1 are plotted against the actual data in 

Figure 47. The two plots in the figure differ only in the x-axis range. As in the nonlinear 

least squares treatment, the mechanism does not duplicate the curvature in the decay data very 

well, although the formation rate and extent o f decay at 40 hours are approximately correct.

li

o 600 1200 1800 2400

1

0 100 200 300
t ( m i n )  t ( m i n )

Figure 47 - Comparison o f mechanism 1 simulated curve to wt% conversion data for 
DFDA 10. (Inulin/1.5% citric acid/160°C)
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• Inclusion of Isomerization - The second mechanism in these preliminary trials 

(mechanism 2) includes isomerization o f 10 to other DFDAs. Isomerization is generalized 

in the following way: the contribution to the decay o f a DFDA (10 in this case) by

i — ►  1 0

i — ►  s p

1 0 — ►  s p

s p — 1 0

1 0 — n p

mechanism 2

isomerization is represented as DFDA -* sp, and isomerization o f other DFDAs to the one 

under scrutiny is represented by the reverse reaction sp -♦ DFDA. This generalization 

reduces the nearly 70 possible isomerization pathways to a more manageable number.

The addition of a secondary source o f 10 through isomerization improved the fit 

considerably (Figure 48). The curve predicted by the mechanism now more closely 

duplicates both the region around the maximum and the curvature o f the decay data out to 

12 hours or more. This mechanism could not quite simulate the extent o f decay at 40 hours.
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Figure 48 - Comparison of mechanism 2 simulated curve to wt% conversion data for 
DFDA 10. (Inulin/1.5% citric acid/160°C)

• A 2nd Order Decay Pathway - When thermolysis samples were dissolved in H20  and 

chromatographed by SEC (Figure 11, page 41) one peak contained predominantly trimers. 

ESMS of this fraction (Figure 14, page 45) revealed a large peak corresponding to 

glycosylated DFDAs. Also, mild hydrolysis o f this same trimer fraction in a previous 

inulin/citric acid thermolysis study61 revealed a disproportionately greater abundance o f 

difuranoses over pyranose-containing DFDAs. It is reasonable then to assume that some 

fraction of the disappearance of the difuranoses involves 2nd order reactions with fructosyl (or

i — ►  1 0

i — ►  s p

1 0 — ►  s p

s p — ►  1 0

1 0 — ►  n  p

1 0  +  u p  — ►  P

mechanism 3
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glucosyl) carbocations. Therefore, a third form o f the mechanism for 10 (mechanism 3) was 

written that includes a 2nd order decay pathway. In this pathway np reacts with 10 to form 

products p. The products p do not differ in nature from the products np. They are both 

nonspecific products but are labeled differently. This avoids the implication that 2nd order 

decay is product catalyzed.

As shown in Figure 49 the 2nd order decay pathway has a small but noticeable 

influence on the extent o f decay at very long times. The curve fit for the first 12 hours is 

indistinguishable from the previous trial.

li

o
£

11

600 1200 1800 24000
t ( m i n )  t ( m i n )

Figure 49 - Comparison of mechanism 3 simulated curve to wt% conversion data for 
DFDA 10. (Inuiin/1.5% citric acid/160°C)

Extension o f Numerical Simulation to Four Difuranoses - Numerical simulations o f identical 

form to mechanism 3 were carried out on conversion data for the four remaining difuranoses 

that can arise directly from inuiin - a-D-Fru/-l,2':2,3'-P-D-Fru/(1), a-D-Fru/-l,2':2,6'-P-D- 

Fru/(3), P-D-Fru/-l,2, :2,3'-p-D-Fru/(5), and P-D-Fru/-l,2':2,l'-P-D-Fru/(12). The plots 

for these four DFDAs are grouped together in Figure 50. Once again a pair o f graphs that
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Figure 50 - Simulated curves for DFDAs 1, 3, 5, 10, and 12.
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differ only in x-axis scale is shown for each DFDA. It should be borne in mind that these 

simulations were performed separately using the same mechanism for each.

This mechanism accounts very well for the formation and decay o f five difuranoses. 

Two discrepancies appear that may be attributed to the quality o f the data rather than to the 

accuracy of the mechanism. The data near the maximum (10-20 min) for 1, 5, 10, and 12 are 

discontinuous. This problem has been addressed (page 73) and the most obvious outliers 

were discarded from the data set. Some scatter remains, however, and is reflected in the mean 

wt% conversion plots. The second discrepancy is more subtle. The simulated curves 

consistently underestimate wt% conversion at 5 hours (300 min). This may indicate that the 

data for 12 hours and beyond are not accurate. One can imagine, looking at Figures 49 and 

50, a decay with slightly less curvature that passes above the 12 hour data points but that still 

connects with the 40 hour data. This discrepancy is more evident in simulations on less 

abundant DFDAs.

Table 15 lists the simulated rate constants for DFDAs I, 3, 5, 10, and 12. The 

estimates from nonlinear least squares (Table 12, page 96) are shown in parentheses/ The 

I -  order parallel-consecutive reaction scheme is the dominant process for these five DFDAs. 

Isomerization and 2nd order decay are critical to the success o f the mechanism but their rates 

are slow in comparison. The 1st order rate constants from the simulation are similar to those 

predicted by nonlinear least squares.

A less obvious trend exists. The rate o f  1” order decay to non-specific products

* The units o f pseudo l31 order rate constants are m in'1. The units for the pseudo 2nd order 
rate constants in this study can only be defined i f  wt% data are converted to moles per unit volume. This is 
not feasible. The reactions did not take place in a fixed volume o f solvent and the exact nature of the non
specific products involved in 2nd order decay is not known.
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1 3

u ru A

5 to 12

i -* DFDA .0183
(.026)

.042
(015)

.0077
(.0092)

.0215
(.0247)

.004
(.005)

i - » sp .1817 .158 .1923 .1785 .196

DFDA —* sp .0008 .6 .0015 .001 .00085

sp -» DFDA .0001 0 .0002 .00015 1.3e'5

DFDA -♦ np .0024
(.0020)

1.5
(40)

.0045
(.0015)

.003
(.003)

.0025
(.0026)

DFDA + np —♦ p .0001 0 .001 .00015 5.0e'5

Table 15 - Simulated rate constants for DFDAs 1, 3, 5, 10, and 12.

(DFDA -* np) is three times the rate o f decay to specific products (DFDA - * sp) for four o f 

the five difuranoses in this group. (a-D -Fruf-l^ '^^ '-P-D -Fru/(3) forms and decays at much 

higher rates and cannot be considered in the same class as the other four.) This result is 

approximately reflected in the degradation data for 10 (Figure 28, page 67). In those 

experiments the concentration o f other DFDAs increased by -10%  in 5 hours. In the same 

period 80% of 10 had disappeared, suggesting that decay to non-specific products (np) was 

faster than decay to other DFDAs (sp). No effort was made to maintain this ratio during the 

simulations. However, experimentation with the ratio during simulations, including complete 

and partial reversal, did not produce better curves.

It must be remembered that the rate constant values in Table 15 are the result o f 

assigning a specific rate to disappearance o f inuiin (0.20 min'1). As explained, this value was 

not determined by experimentation but rather by inference. All other rate constants depend
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in some way on this one and must be adjusted if a different disappearance rate for inuiin is 

used. In any case, it is an average, since inuiin oligomers span a wide molecular weight range. 

The higher the molecular weight o f the oligomer, the slower its disappearance rate, assuming 

chain length does not significantly influence the rate of cleavage of glycosidic bonds in these 

systems. This means that inuiin is disappearing at many rates, depending on chain length, and 

that it is not completely gone until all oligomers are gone.

DFDAs from  Inuiin via the Anhydro Intermediate - The next group of DFDAs to be modeled 

were those that can form indirectly from inuiin via the 2,6-anhydro intermediate - P-D-Fru/- 

2 ,l':3,2'-a-D-Fng? (2), p-D-Fru/-2,l':3,2'-P-D-Frup (4), P-D-Fru/-l,2':2,l'-a-D-Frup (7), 

and P-D-Fru/-l,2':2,l'-P-D-Frup (13). The combined data for a-D-Frup-l,2':2,l '-P-D-Fru/? 

(6) and P-D-Fru/-1,2' :2,1 '-a-D-Fru/? (7) are included in this group under the assumption that 

at any time during thermolysis 7 is the major contributor to wt% conversion for the two. The 

justification for this lies in the fact that P-D-Fru/?-1,2 ':2,1 '-P-D-Fru/? (14), the only other 

dipyranose present, does not reach greater than ~0.1% relative abundance at any time.

As stated it was not clear what part the anhydro species would play and the simplest 

approach would be to exclude it. But numerical simulations o f 2, 4, 7, and 13 using 

mechanism 3 could not provide a suitable fit. The simulation process involves working on 

sections o f the curve one at a time. Once one section - e.g. initial rate - matches the data 

fairly well, the rate constants controlling another section - e.g. middle decay from 1-5 hours - 

are adjusted incrementally until that section begins to match the data. Other aspects - overall 

extent o f decay, abruptness o f change from predominantly formation to predominantly decay,
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maximum conversion, depth o f curvature, etc. - begin to enter the picture. The investigator 

works back and forth among sections. If after many o f these manual iterations the curve still 

fails to resemble the data, the mechanism must be modified.

At no point was mechanism 3 able to match the more gentle change from formation 

to decay near the maximum that DFDAs 2, 4, 7, and 13 exhibit without sacrificing the 

remainder o f the fit. Inspection o f the wt% conversion plots for these DFDAs (Figure 38, 

page 95) reveals a slower initial formation rate than for the difuranoses from the previous 

group (1,3, 5, 10, and 12). The anhydro species could account for slower formation and is 

the obvious candidate for an additional rate controlling step between inuiin and this group. 

Including the anhydro species gives mechanism 4, which retains most of the features o f the 

previous mechanism. The oligomeric 2,6-anhydro-D-fructose intermediate is designated an-i

i sp

i — an-i

an-i — DFDA

DFDA — an-i

DFDA — np

sp — DFDA

DFDA — sp

mechanism 4

(anhydro-inulin). All other designations are the same. Many different values for the rate 

constant for 2nd order decay in this mechanism did not improve the fit over that obtained when 

this value was set to zero. This may be a reflection o f the results obtained in re f61 in which
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glycosylation of DFDAs favored the difuranoses over the pyranose-containing DFDAs. The 

primary OH groups of a DFDA are less sterically hindered than the secondary OH groups and 

will react more easily with fructosyl carbocations. Incorporation o f pyranose into DFDAs 

reduces the number of primary hydroxyls and thus the probability o f glycosylation. Therefore, 

the 2nd order glycosylation process will be less important for 2, 4, 7, and 13, and may be 

excluded from this mechanism with little adverse effect.

The simulated curves for mechanism 4 are presented in Figure 51. The early data 

for P-D-Fru/-2,1 ':3,2'-a-D-Frup (2) are unreliable. This simulation was the last o f the four 

to be performed for that reason. Its rate constants were developed by inserting and adjusting 

the values for P-D-Fru/-2,1':3,2'-P-D-Frup (4), rather than beginning from "scratch" as in 

other simulations.

There is a subtle indication o f an induction period (lag time) in these data; formation 

does not commence immediately from time zero. The introduction o f the anhydro 

intermediate (an-i) into the mechanism provided some compensation for this feature. Without 

the anhydro intermediate the mechanism could not duplicate the slower initial formation rate 

without grossly overestimating maximum wt% conversion. The curvature in and around 

maximum conversion also improved with the inclusion of the anhydro species. It was possible 

to more closely match the transition from growth to decay, which is less abrupt than in the 

difuranoses. However, mechanism 4 still cannot quite duplicate the formation rate in the 

early stages o f the reaction.

The fit after -1 hour, when degradation has become the dominant process, out to ~5 

hours is very good. But looking at Figure 51, the eye perceives that the 12 hour data points
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Figure 51 - Simulated curves for DFDAs 2, 4, 7, and 13.
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all lie below the arc that describes a smooth continuation of the earlier data. "Deepening" the 

decay curvature to match the 12 hour data sacrifices the earlier fit considerably. It would be 

appropriate to redetermine wt% conversion at 12 hours and longer before assuming that the 

30 or more experiments that comprise the 1-5 hour data are inaccurate.

The simulated rate constants for DFDAs 2,4, (6)7, and 13 are listed in Table 16. The 

nonlinear least squares estimates for growth and decay are not listed because the inclusion of 

the anhydro species as a stable intermediate in equilibrium with each DFDA precludes a direct 

comparison between the two methods.

DFDA

2 4 (6)7 13

i —* sp .19 .19 .19 .188

i —* an .01 .01 .01 .012

an-i —* DFDA .0043 .006 .017 .022

DFDA -* an-i .045 .06 .07 .13

DFDA —* np .015 .0172 .004 .004

sp -» DFDA 1.5e's 5.5e'3 l.Oe-0 3.0e'5

DFDA -* sp .01 .005 2.0e'5 .007

Table 16 - Simulated rate constants for DFDAs 2, 4, 7, and 13.

The dependence on isomerization as a source for these DFDAs (sp -* DFDA) is small; 

in all cases the rate constant for the reverse reaction (DFDA —> sp) is the larger. The opposite 

was true for the difuranoses (Table 15), where the isomerization equilibrium favored DFDA 

formation. This reflects the relative stability o f  D-fiructopyranose over D-fructofiiranose. For 

a one-step isomerization to occur, the bond between oxygen and an anomeric carbon opens
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to form a glycosylated fructosyl carbocation and the oxygen just released re-attacks the cation 

from the opposite side to form a new DFDA. It is assumed the anhydride linkage will break 

in such a way as to form the most stable cationic intermediate. This means the fructofuranosyl 

cation will predominate over the fructopyranosyl. Thus the source material for 2, 4, (6)7, and 

13 is limited to those DFDAs that already contain a pyranose and the major components in 

the mixture - the difuranoses - are excluded for the most part.

Indirect Formation o f DFDAs - Five DFDAs form during inulin/citric acid thermolysis that 

cannot arise directly from inulin. One o f these - a-D-Fru/?-1,2': 2,1 '-P-D-Fru/? (6) - was 

modeled in the previous section because its conversion data could not be separated from that 

of P-D-Fru/-1,2':2,1'-a-D-Frup (7). The other dipyranose - p-D-Frup-1,2':2,1 '-P-D-Fru/? (14) 

- is never present in more than trace quantities. Early (0-20 min) wt% conversion for 14 is 

zero in the data set, not necessarily because it had not formed, but because its abundance was 

low enough to approach the minimum detection level o f the analytical method. Simulations 

on 14 are o f decidedly lower quality, partially because of missing data and low overall 

abundance. The remaining three DFDAs in this group are a-D-Fru/-1,2':2 ,1 '-a-D -Fru/(8), 

a-D-Fru/-1,2':2,1'-P-D-Frup (9), and a-D-Fru/-1,2 ':2,l'-a-D-Frup (11). This group o f five 

DFDAs presents the most difficulty in terms o f a sensible chemical mechanism that can 

reproduce the data.

• A Unique Mechanism for DFDA 8 - The initial rate of formation for DFDA 8 is nearly 

as rapid as for the other five difuranoses, yet both residues are a  anomers. 8 cannot form
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directly from inulin oligomers by intramolecular attack, since inulin contains only P anomers, 

and must arise rapidly from some other source that is present very early in the reaction. 

DFDA 10 forms early and could give rise to 8 via a one-step isomerization. Efforts to employ 

this isomerization in simulations failed to duplicate the rapid formation and decay rates that 

8 exhibits.

HPAE-PED chromatograms o f inulin suggest some fructose is present at time zero 

(Figure 52), and that fructose concentration increases for the first 15 minutes o f thermolysis 

(F igure 36, page 87). But trial simulations using a 2nd order mechanism of the type 2

%O
u
Stm

ta.

0 10 20 3 0 40 50 60

t(m in )

Figure 52 - HPAE-PED chromatogram showing D-fructose content of inulin/1.5% 
citric acid.

Fructose —* DFDA also failed to match the data. This type of mechanism, in combination 

with the same decay pathways used in previous mechanisms, yields a conversion plot with a 

more gentle transition from growth to decay. The initial formation rate is too slow and the
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change from positive to negative slope at the maximum is not abrupt enough.

Formation by both 1“ order isomerization and 2nd order bimolecular reaction of 

fructose* are incorporated into mechanism 5. The initial concentration of fructose [f]0 was

1 sp

i — f

2f — sp

f — np

sp — 8

8 — sp

8 — np

2f — 8

8 — 2f

mechanism 5

estimated as 5%. A portion o f inulin in this mechanism goes toward production of fructose, 

which may go on to form 8 and other DFDAs (sp), or degrade to non-specific products (np). 

The large I" order decay rate constants that were necessary to duplicate the steep decline 

from maximum conversion completely overshadowed the minimal contribution from the 2nd 

order pathway 8 + np -* p. This path was therefore excluded from the mechanism.

The simulation o f wt% conversion data for DFDA 8 according to mechanism 5 is 

presented in Figure 53. The curve matches the data well for the first 5 hours. There is an 

almost imperceptible induction period followed by rapid growth and decay. The simulation

* One D-fructose must have undergone protonation and loss of H20  to form the fructosyl carbocation. 
which then reacts quickly with a molecule of D-fructose.
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Figure 53 - Simulation of DFDA 8 according to mechanism 5.

out to 5 hours is as good or better than those for the other difuranoses. But as mentioned, 

large decay constants were necessary to obtain this early fit. This resulted in almost complete 

disappearance of this DFDA after ~25 hours, even though the data specify a more gradual 

decay to a small but definite concentration at 40 hours.

• An Additional Anhydro Species - Without introducing a further mechanistic pathway, 

the possible formation routes through isomerization to a-D-Fru/-l,2 ':2,l '-P-D-Frup (9) are 

limited. Only a-D-Fru/-1,2':2,1 '-a-D-Fru/? (11) and P-D-Fru/-l,2':2,l'-P-D-Fru/? (13) can 

open to a carbocation and re-close to form 9. An underlying theme to the most successful 

mechanisms so far is the availability o f more than one source material for DFDA formation. 

Without that, in every case the mechanism failed in some way to give satisfactory results. 

Simulations o f 9 using a mechanism that was limited to one source material were no 

exception.

It is reasonable to expect the cationic form of DFDAs to undergo the same
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isomerization via 2,6-anhydro-D-fructose that has been postulated for inulin. With this two- 

step pathway included in the mechanism, any 1,2-linked a-D-fructofuranose or P-D- 

fructopyranose can isomerize to 9. This increases the source material for 9 to include most 

notably a-D-Fru/-1,2' :2,1 '-a-D-Fru/'(8) and a-D-Fru/-1,2':2 ,1 '-P-D-Fru/(10), both o f which 

form early to relatively high abundance. It also provides what appears to be the crucial 

second source material, providing a great deal more flexibility in balancing formation and 

decay in such a way as to obtain the curve shape stipulated by the data. In mechanism 6 

DFDAs (sp) form anhydro species (an-sp) that can go on to form the DFDA under scrutiny. 

This mechanism was applied to 9, 11, and 14 with more success than previous attempts to 

model these DFDAs, but with less overall success than for those DFDAs that form from 

inulin.

i sp

i — f

2f — sp

sp — DFDA

DFDA — sp

DFDA — np

DFDA + np — P

sp — sp-an

sp-an —► 

mechanism 6

DFDA

The simulated curves for 9, 11, and 14 are presented in Figure 54. The initial 

formation rate for 9 is too rapid to be modeled accurately by this mechanism. Increasing P‘
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Figure 54 - Simulated curves for DFDAs 9, 11, and 14.

order formation rate to match the data in the 0-20 minute region causes the simulated curve

to rise well above the actual maximum. It was not possible to correct for this by increasing 

decay rates without completely sacrificing the fit in the 1-5 hour range and overestimating the 

extent o f decay. The earlier observations concerning the validity o f the 12 hour data are

reinforced by the low 12 and 24 hour conversion data for 9.
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The simulation o f 11 matches the 0-5 hour data well except in the region near 

maximum conversion. The later data for this DFDA were lost during a file transfer; the 

simulated curve is extended to 40 hours simply to demonstrate its shape.

The rate constants for 8, 9, 11, and 14 are given in Table 17. The major common 

feature among these four is that they do not form from inulin, yet three distinct structural

DFDA

8 9 11 14

i —► sp .18 .2 .2 .2

i - » f .02 - - -

2f -* sp 5.0e'5 5.0e‘5 5.0e‘5 5.0e'5

f-»  np .0004 .00042 8.1e‘5 .0003

sp -* DFDA .011 .00165 .0037 .0007

DFDA -* sp .26 .07 .5 1.11

DFDA -* np .12 .007 .05 .04

DFDA + np -* p - .00015 .0001 .0001

sp —* sp-an - .004 .0009 .0009

sp-an -* DFDA - .0012 .0003 .01

2f —* DFDA .001 - - -

DFDA -* 2f .0001 - - -

Table 17 - Simulated rate constants for DFDAs 8, 9, 11, and 14.

types are represented: difiiranose, furanose/pyranose, and dipyranose. The conversion data 

for 8 closely resemble the other difuranoses. The success o f the simulations for those 

difuranoses (Figures 49 and 50) reinforces the belief that they form directly from inulin, while
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the structure of 8 guarantees that it does not. 1" order decay constants for 8 are two orders 

o f magnitude greater than those for four o f the other five difuranoses.

9 and 11 are structurally similar, differing only in the anomeric configuration o f the 

pyranose residue. The formation rate constants for these two DFDAs are similar and the 

higher 1“ order decay constants for 11 reflect its lower abundance. Along the same line of 

reasoning, 14 is the least abundant DFDA during thermolysis and its large 1“ order decay 

constants are exceeded only by a-D-Fru/-l,2':2,6'-p-D-Fru/(3), which disappears completely 

after -2 0  minutes.

M odeling o f Combined Reaction Mechanisms - Each of the above partial mechanisms was 

written to address the formation and decay of one o f four DFDA groups - (i) difuranoses 

directly from inulin that contain P-D-fructose, (ii) furanose/pyranoses from inulin via the 

anhydro-inulin intermediate, (iii) the difuranose 8 which contains only a-D-fructose, and (iv) 

pyranose-containing DFDAs from sources other than inulin. The wt% conversion data for 

each DFDA within each group were modeled in the previous sections one DFDA at a time. 

The difuranoses o f group (i) were the easiest to model. As modeling proceeded to each 

successive group, the mechanisms required to approximate the data became more and more 

complex and the results o f simulations were less and less satisfactory. This general 

progression of increasing difficulty resurfaced during the following attempts to combine the 

partial mechanisms into a whole.
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• Five Difuranoses from Inulin - The reactions o f mechanism 3 were written into a 

single mechanism incorporating DFDAs 1, 3, 5, 10, and 12. Rate constants were copied 

directly into the combined mechanism without modification. A single numerical simulation 

using these constants gave rise to the curves in Figure 55. Only one plot encompassing the 

entire 40 hour reaction period is presented for each compound.

The quality o f the fit from 0-5 hours in all five cases was virtually unaffected. The 

extent of decay at 40 hours for 1 and 12 is somewhat overestimated and the curvature o f the 

decay region for 5 is decreased somewhat. Both o f these "symptoms" were amenable to 

improvement with minor adjustments in the decay constants. The fit to 3 is unchanged and 

the fit to 10 is marginally better than in the individual treatment. This result speaks to the 

relative solidity o f mechanism 3 in terms of its ability to reproduce the data. It does not 

guarantee completeness. For example, formation from fructose (2f —* DFDA) was left out 

of the mechanism even though there is no evidence to suggest that fructose gives rise to the 

difiiranose 8 more readily than to the other difuranoses. It was merely the case that formation 

directly from inulin was capable o f reproducing the data without the inclusion of fructose.

Neither was degradation of DFDAs to fructose (sp -* 2f) included in this or in any of 

the mechanisms. It is not known what contribution this pathway would have on the overall 

mechanism. One way in which DFDAs could degrade to fructose is given in Scheme 12. The 

glycosylated fructosyl cation results from acid catalyzed opening o f one dianhydride linkage. 

In order for the other linkage to open also, the cationic anomeric carbon must first react with 

H20  and lose FT to form a fructose-fructose disaccharide. The remaining glycosidic oxygen
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Figure 55 - Combined simulation o f difuranoses that form directly from inulin.
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could then be protonated and the linkage break to form D-fructose and D-fructosyl.

Inulin/citric acid samples in this study were anhydrous initially; any water that was available

for this reaction must have formed during thermolysis.

HO

O H

IK HO
t- D-Fructose

O H O H

Scheme 12

• A Mechanism for all 14 DFDAs - One overall mechanism was assembled that required 

69 individual reactions to encompass all four mechanism types and all 14 DFDAs 

(mechanism 7). Once again the rate constants obtained from modeling individual DFDAs 

independently were copied directly into the mechanism and a single numerical simulation 

performed. Figures 56 and 57 on the following pages depict the resulting curves for each of 

the 14 DFDAs. The quality o f the fit is significantly reduced. Almost without exception the 

decay rate is too high and the simulated curves fall short of the data throughout the reaction 

period. It is not surprising that the combined mechanisms cannot model the system accurately 

without some adjustment. The number o f interdependent reactions is multiplied many fold 

in going from one o f the relatively simple partial mechanisms to this overall mechanism. It 

would be possible to further refine the rate constants to obtain curves that match the data as 

well as those presented earlier. Such a task, however, would push the emphasis of this study 

too far into the realm of speculation; too few empirical rate constants exist for this system 

already. It is more appropriate to return to the laboratory and endeavor to isolate reaction
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pathways that belong to the partial mechanisms given earlier, the focus being to establish 

realistic rates for as many reactions as possible and to remain open to the possibility of 

changes and improvements to the existing set o f reactions.

i — *■ sp 10 sp 67 —*- an-i 9 —*■ sp

i — 1 10 — np 67 — np 9 — - np

i — ■ 3 10 + np — P sp — 67 9 + np —► P

i — - 5 12 — sp 67 — sp sp — sp-an

i — - 10 12 — np an-i — 13 sp-an — - 9

i — 12 12 + np — P 13 — an-i sp — 11

8P — - 1 i — an 13 — - np 11 — - sp

sp — » 5 an-i — 2 sp ----- 13 11 — np

sp — 10 2 — an-i 13 — sp 11 + np — P

sp — - 12 2 — np i — f sp-an — 11

1 — sp sp — 2 2f — - sp sp — 14

1 — np 2 — sp f — np 14 — - sp

1 + np — - P an-i — 4 sp — 8 14 — - np

3 — sp 4 — an-i 8 — - sp 14 + np — P

3 — np 4 — np 8 — np sp-an — 14

5 — sp sp — 4 2f — 8

5 — np 4 — sp 8 — 2f

5 + np — - P an-i — 67 sp — - 9

mechanism 7
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Figure 56 - Overall reaction mechanism applied to 1, 3, 5 ,10, and 12.
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Figure 57 - Overall reaction mechanism applied to remaining 9 DFDAs.
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C o n c l u s io n

The thermolysis o f inulin in the presence o f citric acid involves a complex set of 

chemical reactions and equilibria, most o f which cannot be studied independently. It was the 

goal o f this study to elucidate the nature of the kinetic factors that control these reactions and 

equilibria and to propose a suitable kinetic mechanism. The various pieces o f evidence 

available to achieve that goal can be classified according to how many assumptions were 

required to justify their use. Empirical evidence o f course forms the foundation. It was 

possible to determine experimentally the concentrations o f all 14 DFDAs over the entire 

course o f the reaction under varying reaction conditions.

The move from experimentation to interpretation required a number o f assumptions. 

Perhaps the most serious of these is the extrapolation to thermal melts o f compounds and 

processes known to occur in aqueous systems. In thermal melts the solvent is the reactant 

that is in highest abundance. Literature precedents for how to proceed in this situation are 

few.

In proposing a kinetic model I have endeavored to maintain a balance between 

empirical evidence, justifiable assumption, and the freedom that might be expected in any field 

where the researcher is essentially the first to attempt a specific problem. I believe the 

complex kinetic mechanism o f this system, and the many rate constants that accompany it, 

are deserving o f some measure o f freedom. The result is a set of 1st and 2nd order reactions 

that succeed to some extent in explaining the data.

As it stands, the kinetic model provides a qualitative understanding of the processes 

occurring. One quantitative description o f  those processes, in the form o f specific rate
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constants, has been given. Even if it cannot be assumed to provide a complete quantitative 

description, the model fits together intellectually and makes reference to common-sense 

chemistry.
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F u r t h e r  W o r k

The direction that this work takes in the future will be largely dictated by the 

inclinations of the next investigator. As it stands, this work provides insight into the reaction 

conditions that might be best suited for optimizing (or minimizing) DFDA production from 

inulin. But the thermolysis o f inulin produces myriad components, only some of which have 

been identified and fewer o f which have been quantified. Organic acids probably form 

pyrolytically from inulin and its primary degradation products. It is not clear to what extent 

acidic species other than citric acid contribute to the rates o f DFDA growth and decay. 

Commercial preparations o f chicory, for example, contain organic acids as well as proteins 

and free amino acids, and their affect on DFDA reaction rates is unknown.

From a kinetics perspective, the mechanisms proposed in this study are only capable 

of duplicating the data on an individual basis or in groups o f structurally similar DFDAs. The 

contribution to decay in the later stages from 2nd order processes has likely been under 

emphasized. Individual experiments involving one DFDA or class of DFDAs and a specific 

compound that occurs during thermolysis - e.g. fructose, fructosylated DFDAs, HMF, etc. - 

might remove some of this ambiguity.

Finally, the general public is increasingly aware o f specific ingredients in foods and 

consumables. Witness the many nutritional and supplemental products containing non- 

digestible oligosaccharides. It is not known to what extent DFDAs occur in these products 

nor what fraction o f the beneficial properties associated with them can be attributed to 

DFDAs. Many o f these products are subjected to elevated temperatures during processing 

or preparation in the home and the presence o f DFDAs is likely.
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E x p e r im e n t a l

Instrumentation

Gas Chromatography - Thirteen DFDAs from the thermal treatment of inulin had been 

identified previously.59,61 This work is a continuation o f those studies and employs similar 

techniques. The primary quantitative tool was capillary gas chromatography with flame 

ionization detection (GCFID). The instrument used was a Hewlett-Packard 5890 Series A 

gas chromatograph with on-column injector and cross-linked 5% phenyl-dimethyl siloxane 

column (HP Ultra-2, 25m x 0.33mm x 0.53pm). The temperature program was 55°C for 1 

minute, 30°/min. to 170°C, 3°/min. to 320°C, and hold for 10 minutes. Total acquisition 

time was 65 minutes. In order to ensure the chromatographic peaks for this system were the 

same as those identified in the earlier studies, the column was installed in a Hewlett-Packard 

5890 GC with HP 5971 mass spectral detector at 70eV (GCMS) and representative samples 

run under the same temperature program. Further evidence was provided by installing a 

100% dimethyl siloxane (HP-1, 25m x .33mm x 0.53pm) column in the GCMS. On the 

former column a-D-Fru/?-l,2':2,l'-P-D-Frup (6) and P -D -F ru /l^ '^ l'-a-D -F ru /?  (7) coelute. 

On the latter these two DFDAs are resolved but a-D-Fru/-1,2':2,1 '-a-D-Fru/? (1 l)and P-D- 

Fru/-l,2':2,l'-P-D-Fru/(12) coelute. All other elution orders are the same for both columns.

Liquid Chromatography - Four LC methods were employed. M ethod (i) : Preparative liquid 

chromatography was performed on aqueous samples (~lg/mL) using Waters Delta Pak Clg
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cartridges (3 - 25 x 100mm, 15p 100A, plus guard pak) eluted at 10.0 mL/min with H ,0. 

M ethod  (77): Analytical LC (HPLC) was performed using Waters Resolve CIg Radial Pak 

cartridge (8 x 100mm, 5p, plus guard pak) eluted at 1.0 mL/min with H ,0. Waters 515 

HPLC pumps and a Waters 410 differential refractometer were used with these two systems. 

M ethod (Hi): Dionex High Performance Anion Exchange HPLC system with Pulsed 

Electrochemical Detection (HPAE-PED) was used to examine the inulin profile. Elution was 

by sodium hydroxide/sodium acetate gradient (NaOH/NaAc) at 1.0 mL/min. Eluents were 

made up by first dissolving weighed amounts o f reagent grade NaAc-3H,0 in degassed, ultra 

pure water (>17 MQcm'1), then adding measured volumes o f reagent grade certified 50% 

NaOH solution. The column was a Dionex CarboPac PA1. The gradient profile and detector 

potentials are shown in Table 18. The method included 10 minute equilibration times at the 

beginning and end of each run. The reference electrode was Ag/AgCl and acquisition was via 

analog/digital interface to Dionex AI-450 Chromatography software. M ethod (iv) : Size 

exclusion chromatography (SEC) was performed on a Pharmacia glass column (2.6 x 90cm

Elution Gradient

t (min) %A* %B**

0 95 5

60 0 100

* 150 mM NaOH
** 150 mM NaOH/500 mM
NaAc

Detector Settings

t(s ) E (V)

0 - .50 +.10

.51 - .60 +.60

.61 - .65 -.60

U> 0 1 L/i o Integration
Period

Table 18 - Elution gradient and electrode potentials for Dionex LC 
system.
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» 475 mL) packed with BioRad BioGel P2 ultra fine (<45|i) media eluted with H20  at 0.5 

mL/min. The refractive index detector (Waters 410) output was amplified and routed through 

a PICO AD-100 analog to digital interface to a DOS-based computer.* Acquisition time was 

approximately 15 hours.

NMR Spectroscopy - 'H and 13C spectra o f individual DFDAs were recorded using a Bruker 

ADV DRX400 spectrometer at 400 and 100 MHZ, respectively. Samples were dissolved in 

D20  and referenced to internal /-butanol.

Electrospray M ass Spectroscopy - Electrospray mass spectra were acquired on a 

Fisons/Micromass VG Platform II instrument with the probe temperature set at 60°C. 

Aqueous carbohydrate samples (~4mg/mL) were spiked with a drop of 0.1 M NaCl and 

analyzed in positive ion mode at a cone voltage o f +180V92 with methanol as the mobile 

phase. They were then re-injected in negative ion mode with H20  as mobile phase and cone 

voltage of+30V.93 Nitrogen was employed as nebuliser (15 L/hr) and drying gas (250 L/hr). 

Data acquisition and processing were performed using Mass Lynx* 2.0 software.

Thermolysis of Inulin, Nystose, and Individual DFDAs

Preparation o f starting material - To obtain 1.5% citric acid by weight, inulin (Sigma, from 

Dahlia tubers) and milled citric acid (Aldrich) were dissolved independently in ratios o f 19.70g 

inulin in -300 mL water and 0.30g citric acid in -10  mL water. Inulin does not dissolve easily

* Budget constraints and frugality compelled me to beg or borrow the necessary components and to 
assemble a 386-based computer from scratch in order to collect and store the data from this LC system.
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so the inulin solution was heated to ~50°C and allowed to cool to room temperature. Once 

cool, the two solutions were combined, mixed thoroughly by stirring, and freeze dried 

immediately to yield an inulin/citric acid powder. The process was repeated with appropriate 

amounts to obtain citric acid concentrations o f 1.0, 2.0, and 2.9% by weight.

Thermolysis - A bank of 9 screw-cap vials (5 mL capacity), each containing approximately 

lOmg (accurately weighed to ±0.01 mg) inulin/citric acid powder, was lowered in heated 

silicon oil. At timed intervals, each vial was withdrawn and plunged immediately into ice 

water. One thermolysis experiment in this work is defined as the data obtained from a set of 

9 thermolysis samples.

Derivatizcition - Immediately after completing a thermolysis experiment, all 9 samples were 

dissolved with sonication in 0.75mL pyridine. To each was then added lOOpL internal 

standard (~6±0.01mg/mL xylitol in pyridine) and 0.25 mL neat chlorotrimethylsilane (Tri-Sil", 

Pierce). The samples were quickly capped and held at 100°C for one hour, then allowed to 

cool to room temperature.

Sample cleanup - Pyridine* was blown off with dry nitrogen at room temperature and replaced 

with 2 mL a/-hexane (R.P. Normapur AR) that had been glass distilled. The samples were 

sonicated for 10 minutes, centrifuged for 5 minutes at 1.5xl03g, and decanted.** The final

* Suspected carcinogen

** Tri-Sil reacts with water from the atmosphere that enters the vials during work up, and with the
(continued...)
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samples were stored below 0°C in clean vials while awaiting GC analysis.
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Analysis - Samples were analyzed by GCFID. Response factors (RF) for four individual 

DFDAs (a-D-Fru^-1,2':2,1 '-P-D-Frup (6), a-D-Fru/-1,2 ':2,1 '-P-D-Frup (9), a-D-Fru/- 

l,2 ':2,l'-P-D-Fru/(10), and P-D-Fru/-l,2':2,l'-p-D-Frup (13)), at concentrations similar to 

those encountered in the experiments, were determined relative to the internal standard xylitol. 

The average RF (0.60) was applied to all DFDAs.

Preparation o f I-Kestose andNyslose - 1-kestose (GFJ [a-D-glcp-( 1 —*2)-P-D-fru/-(2—» 1 )-P- 

D-fru/-(2-» 1)] and nystose (GF3) [a-D-glcp-( 1 —»2)-P-D-fru/-(2—► 1 )-P-D-fru/-(2-» 1 )-P-D-fru/] 

were isolated in gram quantities from the commercial product Nutraflora* (Golden 

Technologies, Inc., Golden, CO) using LC M ethod (i). 1-kestose and nystose are the only 

major components o f this product detectable by standard GCFID and reversed phase LC 

methods, and are easily resolved. Their identities were confirmed by comparison o f 13C 

spectra with published values.83 They are hygroscopic and required storage under vacuum 

over phosphorus pentoxide (P20 5) at 40°C for 48 hours or more to remove water after freeze 

drying. Continued storage under vacuum over a desiccant was sufficient to keep the samples 

dry. Preparation of nystose with 1.5% citric acid was carried out in the same fashion as with 

inulin.

** (...continued)
small amount of water that forms from dehydration reactions during thermolysis, to form a fine white 
precipitate. This precipitate tends to freeze glass injection syringes and clog the fine tubing found in 
chromatography systems.
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Individual DFDAs - The same techniques used to prepare inulin/citric acid starting material 

were applied to dried, amorphous DFDAs isolated as described below.

Preparation of Individual DFDAs

Inulin/citric acid - Two separate preparations were carried out. In the first, ~0.5g (accurately 

weighed) previously prepared inulin/1.5% citric acid was placed in a round bottom flask, 

immersed in silicon oil at 160°C, and continuously rotated for 20 minutes. The flask was 

open to the atmosphere. This procedure was repeated 20 times, the residue each time being 

dissolved in minimum water and stored below 0°C. The combined products o f these 

thermolyses were fractionated by LC M ethod (i). The resultant fractions were analyzed for 

DFDA content by GCFID of the per-O-methylsilyl derivatives.

In the second preparation, ~20g o f inulin/1.5% citric acid was placed in two open 

containers and heated in an oven at 160°C for 15 minutes. The resultant caramel was 

dissolved in a minimum of H20  and fractionated by LC M ethod (i), followed by 

trimethylsilylation and GC analysis.

Fructose HCI - 5g Crystalline D-(-)-fructose (BDH Chemicals Ltd, glucose free) was 

dissolved in reagent grade concentrated hydrochloric acid (20g) that had been pre-cooled to 

near 0°C. The reaction mixture was stored at -5 °C for 72 hours. The resultant black liquid 

was then poured over 35g of ice, allowed to dissolve, and passed through a glass column (3 .5 

x 35cm = 350mL) packed with IRA-400 ion exchange resin. It was necessary to regenerate 

the resin midway through and repeat the ion exchange to neutralize the sample completely.
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The details o f this treatment are as follows:

1. Prepare resin
a. Wash column with 1200 mL distilled H ,0  at -50  mL/min
b. Load with 500 mL 1.5M NaOH and let stand for 60 minutes
c. Wash with distilled H20  until pH<9 (-1L  at -50  mL/min)
d. Load with 500 mL 1,5M NaCl and let stand for 60 minutes
e. Wash w ith -1L  distilled H20

2. Activate resin with 1.5M NaOH (-1L at high flow) and wash with distilled 
H20  until pH<9

3. Load sample, followed by H20 , and elute at ~20mL/min until sample 
volume = 1L

4. Regenerate resin with -500 mL 2.0M NaOH at high flow, wash with H20  
until pH<9

5. Reload entire sample from previous run, followed by 500+ mL H20 .

After ion exchange, the sample was taken to dryness under vacuum, redissolved in 7.0 

mL distilled H20 , and the pH adjusted to neutral with dilute HC1 or dilute NH4OH. Repeated 

preparative LC fractionation o f this sample gave six major fractions, three o f which each 

contained a single DFDA (DHL I, a-D-Frup-l,2':2,1 '-P-D-Frup, ~580mg; DHL II, a-D-Fru/- 

1,2':2,l'-P-D-Frup, ~600mg; or DHL III, P-D-Fru/-l,2':2,r-P-D-Fny>, -  75mg).

Miscellaneous Procedures

M ass Balance - Experiments to estimate losses incurred during thermolysis and sample 

workup were carried out using LC M ethod (iv). -lOOrng (accurately weighed) inulin/1.5% 

citric acid was thermolyzed at 160°C for 20 minutes, cooled, and dissolved in 1.0 mL H20 . 

The entire sample was then loaded onto the P2 column and fractions collected. Each fraction 

was taken to dryness under vacuum and the residual weight determined to ±0. lmg.
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Response Factors - -9  mg (±0.0lmg) o f xylitol, a-D -Frup-l,2 ':2,1 '-P-D-Frup (6), a-D-Fni/1 

1,2':2,1 '-P-D-Frqp(9), a-t>Fru/-l,2^2,l'-p-D -Fru/(10), P-D-Fru/-l,2':2,l'-P-D-Frup (13), 

D-fructose, D-glucose and sucrose were prepared individually using the derivatization and 

sample cleanup methods above. Aliquots o f these stock solutions were then combined and 

diluted by pipette to provide a series o f standards from which response factors were 

determined.

Mass, freeze drying, thermolysis temperature, melting point - Masses reported to ±0.0 lmg 

were recorded on a Mettler AT201 top loading electronic balance. Less demanding 

measurements (±0.lmg) were carried out on a Mettler AE200. Three freeze driers were 

employed depending on the quantity o f material being prepared. For <g quantities, a bench 

top model (FTS Systems FlexiDry MP) was used. For larger amounts, floor standing units 

with heated shelves and higher capacity (Dynovac FD12 at the University o f Waikato, VirTis 

Genesis 12 LL at the University of Montana) were employed. Freeze dried carbohydrate 

samples were held for 48 hours at -40  °C over P20 5 before use, and were stored in vacuum 

desiccators. Thermolyses were performed in Teflon*-lined, screw-capped glass vials 

(Supelco) immersed in silicon oil (United Chemical Technologies, polymethylphenylsiloxane) 

at 160-180°C. Temperature was maintained to within ±0.2°C with a thermostated 

recirculating pump (Braun Thermomix II). Melting points were determined on a Reichert- 

Jung Thermovar apparatus.
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Data Analysis and Kinetic Modeling

Quantitation - GCFID integration results were obtained with HP ChemStation for each 

sample/ These were then exported to ASCII text files, parsed using a QBasic program to 

remove all information but the actual data, and imported into Axum® (MathSoft, Inc. Ver. 

5 .0) for calculation o f percent conversion and for graphical treatment.**

Preliminary Curve-Fitting - Initial estimates for the rate o f formation and disappearance o f

each DFDA were obtained in Axum using a nonlinear least squares routine.94 This algorithm

combines Taylor Series or the Gauss-Newton method with the gradient, or steepest descent,

method.87 The user provides a mathematical model (rate equation), specifies the value of

initial reagent concentrations, and gives initial estimates for each variable in the model. The

k [inulin]0 t ,
rate equation used in this part o f the study was [/]„=--------------  (e -e  "), where [I]n is the

k ' n-k
concentration at any time of the individual DFDA that is under scrutiny, [inulin]0 is the initial 

inulin concentration, and k, k„, and k n are the rate constants for disappearance o f inulin, 

individual DFDA formation, and individual DFDA decay, respectively. The nonlinear LS 

program solves the equation iteratively until the solution converges to within prescribed 

boundaries, or criteria. The user may specify convergence criteria that compare the relative 

change in the estimates for successive iterations. Since nonlinear curve-fitting was used in this 

study as a rough estimate only o f rate constants, and since the rate equation at this stage was

* Automatic integration of partially resolved peaks is sometimes not reliable using the ChemStation 
software. Therefore, to ensure consistency, it was necessary to draw certain baselines and peak start and stop 
times manually for every chromatogram.

** It was necessary to compose macros, scripts, and/or computer programs to perform these functions.
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purely a first approximation, the default convergence tolerances provided by the program 

were deemed acceptable. Graphs comparing the actual data with predicted values were used 

to gauge the appropriateness o f the model.

Kinetic Plots o f DFDA Degradation - Data for the disappearance o f DFDAs were plotted 

using \" and 2nd order rate equations. Standard treatments o f the form v = k[A], v = k[A]2, 

and v = k[A][B] were replaced with analogous equations incorporating a physical property 

that is directly proportional to reactant concentration. That property, in this case, was wt% 

DFDA as determined by peak area. Since in general, DFDAs did not decay completely to 

products - measurable amounts still remained after 40 hours thermolysis - the final 

concentration was incorporated into the rate equations as "infinity" concentration. 

Rearrangements o f the integrated rate equations were subjected to linear and nonlinear LS 

analysis. The justification for, and limitations of, these kinetic treatments can be found in 

Espenson.86

Kinetic Modeling - Computer models o f tentative kinetic mechanisms were developed using 

SIMSODE,95 a numerical simulation program for chemical reaction systems with mass-action 

kinetics. The user must first create a data file using the companion program DATED,96 which 

records reactant and product names, individual reactions in the mechanism, and rate constants. 

SIMSODE is the “control” program which invokes LSODE,97 the Livermore Solver for 

Ordinary Differential Equations, to calculate a solution based on the mechanism and rate 

constants set forth in the DATED file. SIMSODE writes an ASCII file containing
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concentration/time data for each species in the mechanism. These data were then imported 

into Axum and visualized graphically.
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