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A TEST INVOLVING WOLVES, COYOTES, AND PRONGHORN 

Kim Murray Berger,1,2,4 Eric M. Gese,3 and Joel Berger2 

1 
Department of Wildland Resources, Utah State University, Logan, Utah 84322-5230 USA 

2 
Wildlife Conservation Society, Northern Rockies Field Office, 205 Natural Science Building, University of Montana, 

Missoula, Montana 59812 USA 
United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Department of Wildland Resources, 
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Abstract. The traditional trophic cascades model is based on consumer-resource 

interactions at each link in a food chain. However, trophic-level interactions, such as 

mesocarnivore release resulting from intraguild pr?dation, may also be important mediators of 

cascades. From September 2001 to August 2004, we used spatial and seasonal heterogeneity in 

wolf distribution and abundance in the southern Greater Yellowstone Ecosystem to evaluate 

whether mesopredator release of coyotes (Canis latrans), resulting from the extirpation of 

wolves (Canis lupus), accounts for high rates of coyote pr?dation on pronghorn (Antilocapra 
americana) fawns observed in some areas. Results of this ecological perturbation in wolf 

densities, coyote densities, and pronghorn neonatal survival at wolf-free and wolf-abundant 
sites support the existence of a species-level trophic cascade. That wolves precipitated a trophic 
cascade was evidenced by fawn survival rates that were four-fold higher at sites used by 
wolves. A negative correlation between coyote and wolf densities supports the hypothesis that 

interspecific interactions between the two species facilitated the difference in fawn survival. 
Whereas densities of resident coyotes were similar between wolf-free and wolf-abundant sites, 
the abundance of transient coyotes was significantly lower in areas used by wolves. Thus, 
differential effects of wolves on solitary coyotes may be an important mechanism by which 

wolves limit coyote densities. Our results support the hypothesis that mesopredator release of 

coyotes contributes to high rates of coyote pr?dation on pronghorn fawns, and demonstrate 
the importance of alternative food web pathways in structuring the dynamics of terrestrial 

systems. 

Key words: Antilocapra americana; Canis latrans; Canis lupus; carnivore competition; mesopredator 
release hypothesis; predator-prey; Program MARK. 

Introduction 

Large carnivores can shape the structure and function 

of ecological communities (Ray et al. 2005), yet few 

ecosystems still harbor apex predators (Schaller 1996). 
Most species are declining globally due to habitat loss, 

fragmentation, disease, and human persecution (Weber 
and Rabinowitz 1996, Woodroffe and Ginsberg 1998, 

Woodroffe 2001), the latter often as a result of conflicts 

over livestock (Johnson et al. 2001, Ogada et al. 2003, 

Berger 2006). In addition to threatening the survival of 

these species, the loss of large carnivores carries broader 

implications for the maintenance of biodiversity as a 

result of indirect effects at lower trophic levels (Crooks 
and Soul? 1999, Henke and Bryant 1999). For instance, 

in the absence of grizzly bears (Ursus arctos) and wolves 

(Canis lupus) in the southern Greater Yellowstone 
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4 Address for correspondence: Wildlife Conservation 
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Ecosystem (GYE), moose (Alces alces) numbers ex 

panded, resulting in a reduction in both willow 

communities and the attendant diversity of neotropical 

songbirds (Berger et al. 2001). Similarly, the extirpation 
of vertebrate predators led to a 10- to 100-fold increase 

in herbivore densities and a concomitant decrease in the 

number of seedlings and saplings of canopy trees on 

islands in Venezuela (Terborgh et al. 2001). 

Trophic cascades have been defined as predation 
related effects that result in inverse patterns of 

abundance or biomass across multiple trophic levels in 

a food web (Micheli et al. 2001). Although the classic 
cascade is based on a three-tiered system consisting of 

predators, herbivores, and plants (Hairston et al. 1960), 
cascades can involve more than three trophic levels and 

apply to any multilink linear food web interaction (Polis 
et al. 2000). In systems with top-down control, the 

pattern of biomass that emerges depends on the number 

of trophic levels (Fig. 1). In even-numbered food chains 

with four or more trophic levels, herbivores can expand 
and overgraze plant communities because mesocarni 

vores are held in check by apex carnivores (Fig. 1; 
Oksanen et al. 1981, Fretwell 1987). The loss of primary 
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Fig. 1. Hypothesized relationships among trophic levels and changing trophic structure in Grand Teton National Park, 

Wyoming, USA. The weights of the arrows indicate the relative strengths of the effects. Relative abundance of organisms at each 

trophic level is indicated by the size of the circles. Mesocarnivore release in coyotes is thought to have occurred between the 1930s 
and 1999 as a consequence of the extirpation of wolves in northwestern Wyoming. 

carnivores from a four-tiered food chain shifts the 

trophic structure to a three-tiered system in which 

populations of secondary carnivores can increase (Fig. 

1). This process, termed mesopredator release (Soul? et 

al. 1988), affects the persistence of both ground- and 

scrub-nesting birds through increased nest pr?dation by 

striped skunks (Mephitis mephtis), raccoons (Procyon 

lotor), and grey foxes (Urocyon einereoargenteus; Rogers 
and Caro 1998, Crooks and Soul? 1999). 

Efforts to experimentally test predictions of the 

mesopredator release hypothesis using large carnivores 

have been hampered by an absence of appropriate 
baselines against which to measure changes, a lack of 

spatial and temporal controls, and logistical and ethical 

difficulties associated with large-scale manipulations of 

terrestrial communities (Polis et al. 2000, Steneck 2005). 
As a consequence, natural experiments involving the 

reintroduction or recolonization of large carnivores to 

systems where they have been absent offer important 

opportunities to evaluate the effects of apex predators 

(Gittleman and Gompper 2001). 
The recolonization of wolves to Grand Teton 

National Park (GTNP), Wyoming, USA, is a case in 

point. Wolves were extirpated from northwestern 

Wyoming by the 1930s and were absent for nearly 70 

years until their reintroduction to Yellowstone National 

Park (YNP) in 1995 (Smith et al. 2003). During late 

1997, dispersing wolves from YNP recolonized GTNP 

(U.S. Fish and Wildlife Service, unpublished data). In the 
absence of wolves, coyotes (Canis latrans) were the 

dominant canid predator throughout the GYE. How 

ever, wolves and coyotes play different trophic roles in 

the system, as evidenced by size differences in their prey. 

Whereas wolves regularly take adult moose, elk (Cervus 

elaphus), and bison (Bison bison), coyotes prey dispro 

portionately on small mammals and neonatal ungulates 

(Paquet 1992, Arjo et al. 2002). 
To date, research on trophic cascades involving large 

carnivores has focused on cascades precipitated by direct 

predator-prey interactions (McLaren and Peterson 

1994, Estes et al. 1998, Berger et al. 2001, Ripple et al. 

2001, Terborgh et al. 2001, Fortin et al. 2005). Here we 

investigated potential direct and indirect effects of 

recolonizing wolves on pronghorn (Antilocapra ameri 

cana) neonatal survival, as mediated by changes in the 

distribution and abundance of a mesocarnivore, coyotes, 
a major predator of neonate pronghorn (Fig. 1). Wolves 

exert top-down effects on coyotes through both inter 

ference competition (Peterson 1995a, Berger and Gese 

2007), and intraguild pr?dation (Polis and Holt 1992), 
an extreme form of interference competition in which 

the intraguild prey is consumed (M. Hebblewhite, 

personal communications). In the absence of wolves, 

coyote populations may therefore expand and threaten 

the persistence of pronghorn populations by limiting 
fawn recruitment. Following the mesopredator release 

hypothesis, we tested three primary predictions: (1) 
survival of pronghorn fawns is positively associated with 

wolf density, (2) survival of pronghorn fawns is 

negatively associated with coyote density, and (3) an 

inverse relationship characterizes coyote and wolf 

densities. 

Methods 

Study area and field sites 

The study took place in Grand Teton National Park 

(GTNP), Wyoming, USA, and on the adjacent Bridger 

This content downloaded from 150.131.192.151 on Thu, 19 Sep 2013 13:24:37 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


820 KIM MURRAY BERGER ET AL. Ecology, Vol. 89, No. 3 

Montana 

Fig. 2. Map showing the location of the Greater Yellowstone Ecosystem (GYE) in the western United States, the locations of 

study sites, and place names. 

Teton National Forest (BTNF), from September 2001 to 

August 2004 (Fig. 2). The Park is bordered to the 
southeast by the National Elk Refuge (NER), a 100-km2 
area established in 1912 to provide secure winter habitat 

for elk (Smith et al. 2004). Elevation ranges from 1900 m 
to >4000 m. Within this broad array of protected lands, 

we selected three sites to exploit spatial and temporal 
variation in wolf distribution and abundance. The Elk 

Ranch site (ER) was used extensively by wolves when 

denning and pup rearing occurred (May-September) 
and periodically throughout the winter (November 

April), whereas the Gros Ventre site (GV) was used by 
wolves only during winter (Fig. 2). In contrast, the 

Antelope Flats (AF) site was not used by wolves during 
either season. All sites are characterized by shrub-steppe 
habitat dominated by big sagebrush (Artemesia t?den 

tata), low sagebrush (A. arb?sculo), Antelope bitter 

brush (Purshia tridentata), and associated understory 

grasses of the genera Stipa, Bromus, and Poa. The 

Antelope Flats and Elk Ranch sites are periodically used 

for livestock grazing; consequently, some native vegeta 
tion at both sites has been replaced with smooth brome 

(Bromus inermis Leyss). 

Handling and monitoring of coyotes 

We monitored the movements of coyotes captured at 

the Elk Ranch and Antelope Flats sites. No coyotes 
were captured at the Gros Ventre site because restric 

tions on access during winter precluded recovery of 

coyote carcasses during the period when mortality due 

to wolf pr?dation was most likely to occur (Peterson 

1995a). We captured coyotes with padded foothold traps 
or with a net-gun fired from a helicopter (Gese et al. 

1987). Coyotes were equipped with VHF collars with 

eight-hour mortality sensors (Advanced Telemetry 

Systems, Isanti, Minnesota, USA). Point and sequential 
locations obtained by ground and aerial telemetry were 

used to monitor survival and develop coyote home 

ranges (Gese et al. 1990). For ground locations, >3 

compass bearings with intersecting angles between 20? 
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and 160? were used (White and Garrott 1990). Locations 

were estimated using the program Locate II (Pacer, 

Truro, Novia Scotia, Canada), and home ranges by the 

fixed-kernel density method (Worton 1989) with the 
"adehabitat" package (Calenge 2006) in program R (R 

Development Core Team 2006). To estimate home 

ranges, we used an ad hoc smoothing parameter (/zad hoc) 

designed to prevent over- or under-smoothing. This 

method involves choosing the smallest increment of the 

reference bandwidth (/zref) that results in a contiguous 
95% kernel home range polygon that contains no lacuna 

(i.e., /zad hoc = 0.9 X hve{, 0.8 X /zref, etc.; J. G. Kie, 

unpublished data). 

Estimation of coyote densities 

We classified all coyotes as either residents or 

transients. Resident coyotes actively defended well 

defined territories, whereas transients were not associ 

ated with a particular pack or territory. Densities of 

resident coyotes were assessed using a combination of 

spring (pre-whelping) pack sizes of known (i.e., radio 

collared) individuals and indices of coyote abundance 

based on scat deposition surveys. Scat transects were 

located along ?7.5 km of unimproved road at each site. 

Transects were initially cleared of all scats and then 

walked once/week for three weeks each spring and fall 

(Gese 2001). For known individuals, we determined 

pack sizes based on aerial and ground-based observa 

tions of animals displaying affiliative behaviors such as 

traveling, hunting, and resting together, or territorial 

maintenance (Camenzind 1978). For 2003 and 2004, we 

calculated resident coyote densities at the Elk Ranch 

and Antelope Flats sites by dividing the number of adult 

(>1 year) coyotes in each pack by the size of the pack's 
home range using the 95% probability contour. Esti 

mates for all packs at a site were then averaged to 

determine a site-specific mean and variance. We 

estimated transient coyote densities at the Elk Ranch 

and Antelope Flats sites based on the ratio of radio 

collared transients to total radio-collared coyotes in 

2003. We used 2003 as the baseline because we 

conducted extensive helicopter captures of coyotes that 

year and had the largest number of collars (n 
= 

26) 

deployed. Densities of resident and transient coyotes 
were combined to produce estimates of total coyote 

density for both sites. Because we had radio collars on 

coyotes in too few packs to estimate numbers directly 
for 2002, we estimated coyote densities at the Elk Ranch 

and Antelope Flats sites based on the following 

relationship between coyote densities at both sites in 

2003 and 2004 and assessments of relative abundance 

determined by scat deposition surveys (regression 

through the origin, r2 = 0.912, P = 
0.011): 

Coyote density 
= 1.644 X scat deposition index. (1) 

For 2003 and 2004, coyote densities at the Gros Ventre 

site were estimated using Eq. 1. No estimate of coyote 

density was available for the Gros Ventre site in 2002 

because we did not conduct scat deposition surveys there 

until the spring of 2003. 

Estimation of wolf densities 

Capture and collaring of wolves was handled by the 

U.S. Fish and Wildlife Service. Radio-tracking of wolves 

followed the same procedures as for coyotes. Seasonal 

wolf densities were based on known pack sizes for the 

summer (May-September) and winter (November 

April) periods (U.S. Fish and Wildlife Service, unpub 
lished data). These periods corresponded to seasonal 

shifts in centers of activity between the wolf pack's den 

site in GTNP and the state-run elk feed grounds in the 

BTNF. Summer density estimates were based on the 

number of adults in the pack, whereas winter estimates 

were based on the number of adults and pups. Pups were 

included in the latter estimates because their presence 
would increase competition at kills and, thus, might 
make wolves less tolerant of coyotes at carcasses. To 

calculate seasonal wolf densities, we divided the number 

of wolves in the pack each season by the size of the 

pack's seasonal home range. Seasonal home ranges for 

wolves were estimated using the same procedures as for 

coyotes. 

Capture and monitoring of neonate pronghorn 

We monitored the survival of pronghorn fawns 

captured at the Antelope Flats site during June 2002 

2004, and at the Gros Ventre and Elk Ranch sites during 
June 2003-2004. All fawns were equipped with expand 

able, breakaway VHF radio-collars with four-hour 

mortality sensors (mass ?60 g; Advanced Telemetry 

Systems, Isanti, Minnesota, USA), weighed using a 

canvas sling hung from a spring scale, and aged based 

on observation of birth or the degree of desiccation of 

the umbilicus (Byers and Moodie 1990). Fawns were 

monitored daily for the first 60 days of life, and then 

weekly until the fall migration. 

Statistical analysis 

We evaluated the relationships between coyote density 
and pronghorn fawn survival, wolf density and fawn 

survival, and coyote density and wolf density using 
correlation analysis. We used correlation analysis rather 

than simple linear regression or multivariate regression 
because for each bivariate comparison, values of the 

independent variable were subject to measurement error; 

thus, we did not meet the assumptions of regression 

analysis (Gotelli and Ellison 2004). Furthermore, the 

hypothesized relationship between wolf density and 

fawn survival was indirect and mediated by changes in 

coyote density; thus, we expected that the relationship 
between wolf density and fawn survival would be 

confounded by the coyote variable in a multivariate 

analysis (Cohen et al. 2003). Although correlation 

analysis uses a slightly different line-fitting algorithm 
that minimizes both the vertical and horizontal (i.e., x 

and y) distance of each point from the regression line, 
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Fig. 3. Coyote densities (resident and transient combined) at the three field sites in northwestern Wyoming, 2002-2004. Values 
are means ? 2 SE. 

the correlation coefficient is identical to that produced 

by linear regression (Gotelli and Ellison 2004). 
We estimated survival of pronghorn fawns for the first 

60 days of life using a known fate model in Program 
MARK (White and Burnham 1999). The analysis was 
based on individual encounter histories, with a single 
encounter for each cohort that indicated whether the 

fawn survived or died during the 60-day period. We 

evaluated 37 models to assess the effects of individual 

covariates (gender and birthweight) and group covari 

ates (coyote density, summer wolf density, and winter 

wolf density) on fawn survival. For fawns that were not 

newborns at capture, we calculated mass at birth based 

on the following relationship (modified from Byers 
1997) as follows: 

birthweight 
= 

weight at capture 
- 

0.2446(age in days). 

(2) 
The global model considered was (5g+m+c+sw+ww), 

where S was estimated survival probability, g was 

gender, m was birthweight, c was coyote density, sw 

was summer wolf density, and ww was winter wolf 

density. We also tested models that included dummy 
variables for site (s), wolf-free site (wf), and year (y) to 

examine possible differences in fawn survival among 
sites and years that were not captured by the group 

covariates. We used Akaike's Information Criterion 

adjusted for small sample sizes (AICC) and Akaike 

weights to rank models (Burnham and Anderson 2002). 

Using the top-ranked (i.e., minimum AICC) model from 

the initial analyses, we fit one additional model to assess 

whether an irruption in white-tailed jackrabbits (Lepus 

townsendii) at the Gros Ventre site might account for an 

observed increase in fawn survival in 2004. 

Results 

Coyote captures 

We radio-collared 38 coyotes at the Elk Ranch and 

Antelope Flats sites. The percentage of coyotes classified 

as residents and transients was 51% (n= 18) and 49% (n 
= 

17), respectively. In three cases, the animal died too 

soon after capture for its status to be determined. In 

addition to the three coyotes of unknown status, seven 

coyotes were censored from all analyses because they 

dispersed to areas outside our field sites. 

Coyote and wolf densities 

Total coyote densities were highest at the Antelope 
Flats site in 2003 (0.479 ? 0.065 coyotes/km2) and 
lowest at the Elk Ranch site in 2004 (0.215 ? 0.002 

coyotes/km2; Fig. 3). Densities of resident coyotes at the 

Antelope Flats site (X 
= 0.251 ? 0.025) were similar to 

those at the Elk Ranch site (1 = 0.232 ? 0.029, Student's 
t test, P = 

0.687), whereas transient densities were 

significantly lower at Elk Ranch (1 = 0.188 ? 0.019 vs. X 
= 0.039 ? 0.005, Student's t test, P < 0.001; Fig. 4). 
With respect to wolves, densities were highest at the Elk 

Ranch site during the winter of 2003 (0.061 wolves/km2), 
and lowest at the Elk Ranch site during the summer of 

2003 (0.015 wolves/km2; Fig. 5). Wolves made only rare 

visits to the Antelope Flats site; thus, wolf density at this 

site was effectively zero for all years. 

Pronghorn neonatal survival 

We included 108 marked individuals (19 in 2002, 44 in 

2003, and 45 in 2004) in the analysis of fawn survival, 
distributed by site as follows: ER = 27, GV = 30, and AF 
= 51. On the basis of minimum AICC, the best model of 

fawn survival contained parameters for gender, birth 

weight, and coyote density (Table 1). However, the top 
ranked model had just 13.7% of the Akaike weights 
(Table 1), indicating there was considerable uncertainty 
as to which of the highly ranked candidate models was 

B Elk Ranch Antelope Flats 

Residents Transients 

Fig. 4. Comparison of resident and transient coyote 
densities at sites with radio-collared coyotes in northwestern 

Wyoming, 2003-2004. Values are means ? 2 SE. 
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Fig. 5. Seasonal wolf densities at two sites in northwestern Wyoming, 2002-2004. The Antelope Flats site is not shown because 
wolves did not use the site. 

actually the best predictor of fawn survival (Burnham 
and Anderson 2002). Coyote density appeared in all nine 

of the top-ranked models, with a cumulative Akaike 

weight of 62.4% (Table 1). Thus, the overall importance 
of this single variable likely contributed to model 

selection uncertainty, as a model that included only 

coyote density was nearly as good (AAICC 
= 

1.311) at 

predicting fawn survival as one that also included both 

gender and birthweight (Table 1). Models that included 
variables for coyote and wolf densities outperformed 

comparable models that suggested that fawn survival 

differed among the sites independent of coyote and wolf 

densities (Table 1). 
Model-averaged survival estimates (Burnham and 

Anderson 2002) during the first 60 days of life ranged 

from a low of S = 0.049 at the Antelope Flats site in 

2003, to a high of S = 0.440 at the Elk Ranch site in 2004 

(Table 2). Based on the parameter estimates from the 

top-ranked model, fawn survival was negatively corre 

lated with coyote density (?. 
= ?12.313 ? 3.875, Wald 

test, P = 
0.002) and positively correlated with birth 

weight (? = 0.413 ? 0.263, Wald test, P = 0.116). 
Survival of male fawns was lower than for females (? 

= 

-0.496 ? 0.266, Wald test, P = 
0.062). Based on the 

results of correlation analysis, fawn survival was 

negatively correlated with coyote density (r 
= 

-0.882, 
P = 

0.009; Fig. 6a) and positively correlated with winter 

wolf density (r = 0.791, P = 0.034; Fig. 6b), and the 

relationship between coyote and winter wolf densities 

was negative (r 
= 

-0.740, P = 
0.036; Fig. 6c). Summer 

Table 1. Model selection results for survival (S) of pronghorn fawns during the first 60 days of 
life at three study sites in northwestern Wyoming, USA, 2002-2004. 

Model K\ AICC AAICC Akaike weight Model likelihood Deviance 

Sg+m+c 4 107.003 0.000 0.137 1.000 98.611 

Sg+C 3 107.357 0.353 0.115 0.838 101.124 

Sc 2 108.314 1.311 0.071 0.519 104.198 

Sm+C 3 108.566 1.563 0.063 0.458 102.333 

Sg+m+c+j 5 108.804 1.800 0.056 0.407 98.209 

Sg+m+c+sw 5 109.014 2.011 0.050 0.366 98.420 

5g+m+c+ww 5 109.122 2.119 0.048 0.347 98.528 

Sg+c+sw 4 109.282 2.278 0.044 0.320 100.889 

Sg+c+ww 4 109.431 2.428 0.041 0.297 101.039 

Swf+g+m 4 109.729 2.725 0.035 0.256 101.336 

5wf+g 3 109.772 2.769 0.034 0.250 103.539 

Swf 2 109.829 2.826 0.033 0.243 105.714 

Sc+sw 3 109.873 2.870 0.033 0.238 103.640 

Sc+ww 3 110.364 3.360 0.026 0.186 104.131 

Sg+m+c+ww+sw 6 110.590 3.587 0.023 0.166 97.750 

Swf+y+g+m 6 110.728 3.725 0.021 0.155 97.888 

Sg+c+ww+sw 5 110.737 3.734 0.021 0.155 100.143 

Sc+ww+sw 4 110.897 3.894 0.020 0.143 102.505 

?wf+g+m+c+ww 6 111.151 4.148 0.017 0.126 98.311 

Sm+c+ww+sw 5 111.302 4.298 0.016 0.117 100.708 

Ss+g+m 5 111.910 4.906 0.012 0.086 101.315 

Ss+g 4 111.921 4.917 0.012 0.086 103.528 

Ss 
~ 

3 111.921 4.918 0.012 0.086 105.688 
Sg+m+ww 4 112.300 5.297 0.010 0.071 103.908 

Ss+m 4 112.311 5.308 0.010 0.070 103.919 

Notes: Although we tested 37 models, we present results only for models with Akaike weights > 

0.01. Abbreviations are: g, gender; m, birthweight; c, coyote density; j, an irruption in the 

population of white-tailed jackrabbits; sw, summer wolf density; ww, winter wolf density; wf, wolf 
free site; s, site; and y, year. 

t Number of estimable parameters, including the intercept. 
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Table 2. Model-averaged estimates {S, with SE and confi 
dence limits) of pronghorn fawn survival during the first 60 

days of life at three study sites in northwestern Wyoming, 
2002-2004. 

95% 95% 
lower upper 

Site S SE CL CL 

Sites with coyotes and wolves 

Gros Ventre 2003 0.255 0.071 0.141 0.417 
Gros Ventre 2004 0.390 0.094 0.228 0.581 
Elk Ranch 2003 0.259 0.085 0.127 0.454 
Elk Ranch 2004 0.440 0.112 0.244 0.657 

Site with coyotes and no wolves 

Antelope Flats 2002 0.149 0.055 0.070 0.291 

Antelope Flats 2003 0.049 0.037 0.011 0.193 

Antelope Flats 2004 0.097 0.043 0.040 0.218 

wolf density was also positively correlated with fawn 

survival (r 
= 

0.447, P = 
0.314), and negatively correlated 

with coyote density (r 
? 

-0.521, P = 
0.185), but neither 

relationship was statistically significant. 

Discussion 

Did wolves precipitate a trophic-level interaction? 

The traditional trophic cascades model is based on 

consumer-resource interactions at each link in a food 

chain (Paine 1980). Consequently, research on top-down 
effects resulting from reintroductions of large carnivores 

has focused on cascades precipitated by direct predator 

prey interactions (Berger et al. 2001, Ripple et al. 2001, 

Terborgh et al. 2001, Fortin et al. 2005, Hebblewhite et 

al. 2005), to the extent that alternative top-down 

pathways through which large carnivores influence 

systems have largely been ignored. However, large 
carnivores such as wolves also exert top-down forcing 
on systems through interference competition and intra 

guild pr?dation, and these interactions may also be 

important mediators of cascades. 

That wolves precipitated a species-level trophic 
cascade (sensu Polis 1999) is evidenced by more than a 

four-fold difference in neonatal survival at sites used by 
wolves during either winter, or both winter and summer 

(Table 2). The corresponding negative correlation 

between coyote and wolf densities supports the hypoth 
esis that interspecific interactions between these species 
facilitated the observed increase in pronghorn fawn 

survival. Whereas mean densities of resident coyotes 
were similar between wolf-free and wolf-abundant sites 

(X = 0.251 ? 0.025 coyotes/km2 and X = 0.232 ? 0.29 

coyotes/km2, respectively; Student's t test, P = 
0.687), 

the mean abundance of transient coyotes was signifi 

cantly lower in areas used by wolves (X 
= 0.188 ? 0.019 

coyotes/km2 vs. X = 0.039 ? 0.005 coyotes/km2; 
Student's t test, P < 0.001). Thus, differential effects 

of wolves on solitary coyotes may be an important 
mechanism by which wolves limit coyote populations 

(Berger and Gese 2007). This hypothesis is further 

supported by differences in mortality rates and cause 

specific mortality of resident and transient coyotes in 

GTNP between 2001 and 2004. Annual mortality rates 

of resident coyotes were 26% at the wolf-free site, and 

27% at the wolf-abundant site (Berger and Gese 2007). 
In contrast, those of transient coyotes averaged 46% and 

66% in wolf-free and wolf-abundant areas, respectively 

(Berger and Gese 2007). And, whereas no resident 

coyote were killed by wolves, 67% of transient coyote 
deaths resulted from pr?dation, with wolves accounting 
for 83% of predation-related mortality (Berger and Gese 

2007). 
Despite the strong correlations between coyote 

densities, winter wolf densities, and fawn survival, the 

variable for winter wolf density did not appear in any of 

the highest ranked models (i.e., models with AICC < 2; 

Table 1; Burnham and Anderson 2002). This supports 
the hypotheses that the effect of wolves on fawn survival 

is largely indirect and mediated by differences in coyote 
densities among the sites, as inclusion of the winter wolf 

density variable in the model explained no additional 

variation in fawn survival beyond that already captured 

by the coyote density variable. 

Reductions in coyote densities in GTNP have not 

been as large as those documented elsewhere. For 

instance, coyote densities were reportedly reduced by 
50% in YNP following wolf reintroduction, and coyotes 

were extirpated from Isle Royale within eight years of 

the arrival of wolves in the late 1940s (Krefting 1969, 
Smith et al. 2003). In contrast, coyote abundance in 

GTNP has declined by ?33% based on differential 

population densities at sites with and without wolves. 

Several factors likely contributed to the lesser 

reduction in coyote densities we detected. For instance, 

the small size of the area (2314 km2) and corresponding 
lack of refugia are thought to have contributed to the 

rapid extirpation of coyotes from Isle Royale (Peterson 

1995/?). In contrast, GTNP is not spatially closed and a 

single wolf pack occupied only a small portion of the 

Park during the course of this study. Thus, it is likely the 

coyote population in GTNP will experience additional 

reductions as the wolf population continues to increase 

and wolves expand into areas of the Park from which 

they are currently absent. Furthermore, competition 
between wolves and coyotes may have been mediated by 
a relative abundance of prey. Elk densities in GTNP are 

in the neighborhood of 6 elk/km2, rising to ?76 elk/km2 
during winter when elk are concentrated on feed 

grounds (based on data from Smith et al. 2004). As 
elk are the primary prey of wolves (Smith et al. 2003), 
their relative abundance may increase wolf tolerance of 

coyotes at carcasses where agonistic encounters are most 

likely to occur (Switalski 2003). 

Effects of changes in neonatal survival 

and pronghorn population density 

Demographic modeling indicates that the observed 

differences in fawn survival between wolf-free and wolf 

abundant areas were sufficient to alter the trajectory of 
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the pronghorn population in GTNP from a declining to 

an increasing trend (Berger 2007). Still, for increases in 

summer survival of pronghorn fawns to result in an 

actual increase in the pronghorn population in GTNP, 
several conditions must be met. First, mortality from 

coyote pr?dation must be additive and not compensa 

tory (Boyce et al. 1999). We found no evidence of any 

compensatory predation-related mortality in radio 

collared fawns. (Berger 2007), and prospects for com 

pensatory density-dependent mortality appear unlikely 

given that the current pronghorn population in the Park 

is <10% of its historical size (Berger 2003). Second, 
fawns surviving the summer must also survive their first 

winter to be recruited into the population as yearlings. 
Whereas prospects for density-dependent population 

regulation appear unlikely on the summer range, 
conditions on the winter range, located on lands 

managed by the Bureau of Land Management some 

190 km beyond Park borders, strongly differ. Habitat 

designated "crucial winter range" for pronghorn 

(Wyoming Game and Fish Department, Cheyenne, 

Wyoming, USA) is currently undergoing rapid conver 

sion due to development of natural gas wells. As 

overwinter survival rates of juvenile ungulates are 

typically lower than those of adults (Gaillard et al. 

1998), this age class is likely to be differentially 
susceptible to any reductions in carrying capacity 

stemming from habitat loss. Thus, increases in summer 

survival of fawns may be offset by increases in 

overwinter mortality, resulting in no net change, or 

even a decrease, in the pronghorn population. Third, 
fawns surviving their first winter must complete the 

return migration the following spring to be recruited 

into the Park population. Telemetry data indicate that 

approximately 80-85% of fawns return to the Park each 

year, with the remainder dispersing to other summer 

ranges (K. M. Berger, unpublished data). Although 

competition for forage could alter the proportion of 

fawns showing philopatry to their natal range, this 

possibility appears unlikely given the low population 

density. 

Contributing factors 

The detection of trophic cascades in terrestrial systems 
has often been elusive because interactions between 

species can be weak and diffuse (Polis et al. 2000). 

Although the food web in Greater Yellowstone is 
complex due to a large number of sympatric carnivores 

and herbivores (Berger and Smith 2005), the focal chain 
we studied was relatively simple in structure. Adult 

pronghorn are effectively predator-free owing to their 

speed (Byers 1997), and while bobcats (Lynx rufus) and 
golden eagles (Aquila chrysaetos) are important preda 
tors of fawns in some areas (Beale and Smith 1973, 

Byers 1997), both species occur at low densities at our 

field sites (K. M. Berger, personal observations). Wolves 

do kill pronghorn fawns opportunistically, but their 

large body mass (18-80 kg) relative to coyotes (11-18 
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Fig. 6. Correlations between (a) observed pronghorn fawn 
survival and coyote density, (b) observed pronghorn fawn 
survival and wolf density, and (c) coyote and wolf densities at 
three sites in northwestern Wyoming, 2002-2004. Note that the 
lines are fitted using correlation analysis (Gotelli and Ellison 

2004), which uses a slightly different line-fitting algorithm than 
linear regression. 
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kg) makes it energetically inefficient for wolves to hunt 

systematically for pronghorn neonates (3-4 kg) with the 

same intensity as coyotes (Gittleman 1985, Byers 1997). 

Consequently, coyotes accounted for 71% of total 

mortality, and 97% of predation-related mortality, of 

pronghorn fawns in our system (Berger 2007). Thus, 
effects of changes in coyote pr?dation on fawn survival 

may have been easier to discern due to a lack of 

compensatory pr?dation. 

Anthropogenic changes in pronghorn population 
densities may have contributed to the strength of the 

interaction between coyotes and pronghorn. Specifically, 

populations that have been reduced by severe winter 

weather or over-harvesting by humans may experience 

poor recruitment resulting from sustained levels of 

pr?dation (Gasaway et al. 1983). Although a few 

thousand pronghorn have historically summered in the 

Park (Deloney 1948), the population was reduced in the 

late 1800s as a consequence of market hunting. Since the 

turn of the 20th century, the population has never 

numbered more than the low 400s, and is currently ?200 

animals (Berger 2003). Thus, relatively high coyote 
densities coupled with relatively low densities of 

pronghorn may allow coyotes to consume nearly all of 

the estimated ?150 pronghorn fawns produced in the 

Park each summer (Berger 2007). 

Populations of migratory ungulates may be regulated 

by bottom-up forces when carnivore densities are 

determined by the supply of resident herbivores (Sinclair 
1995). However, alternative prey may maintain stable 

predator populations or enable high densities of 

predators (Polis 1999). Because pronghorn females rely 
on reproductive synchrony and predator swamping to 

maximize fitness (Gregg et al. 2001), low pronghorn 
densities relative to the number of coyotes sustained by 
resident herbivores such as elk may allow coyotes to 

effectively regulate the pronghorn population by con 

suming a large proportion of the fawns produced each 

year (i.e., a predator-pit; Holling 1965). The possibility 
of a predator-pit is suggested by a positive relationship 
between fawn survival and pronghorn population 

density (r2 = 0.257, P = 0.004) in GTNP between 1981 
and 2004 (Berger 2007). 

The strength of the interaction between coyotes and 

pronghorn may also be enhanced by a lack of alternative 

prey. Notably, although jackrabbits are an important 

component of coyote diets in some areas (Clark 1972), 
black-tailed jackrabbits (Lepus californicus) do not occur 

in northwestern Wyoming (Best 1996), and white-tailed 

jackrabbits are functionally, if not actually, extinct in 

GTNP (Berger et al. 2006). Jackrabbits and pronghorn 
neonates are similarly sized (3-4 kg), and the absence of 

alternative prey may increase coyotes' dependence on 

pronghorn fawns at a critical juncture when adult 

coyotes are experiencing energetic demands associated 

with provisioning pups. 
An irruption in the jackrabbit population at the Gros 

Ventre site in 2004 provided an opportunity to explore 

this idea. Specifically, we included a dummy variable 

representing the jackrabbit irruption in the model of 

estimated fawn survival to test for evidence of additional 

variation in survival that was not adequately explained 

by the top-ranked model. The model that included the 

jackrabbit variable accounted for 5.6% of the Akaike 

weights (Table 1), suggesting some support for our 

hypothesis (Burnham and Anderson 2002). However, 

this model had a similar deviance to the top-ranked 

model, and the AAICC 
^ 2 was a result of adding 

another parameter to the model that explained little 

additional variation (Burnham and Anderson 2002). 

Thus, we concluded there was weak evidence that an 

irruption in the jackrabbit population contributed to an 

increase in fawn survival at the GV site in 2004. 

Finally, the strength of the interaction between 

coyotes and pronghorn may be enhanced by changes 
in coyote densities resulting from human alteration of 

resource availability. Specifically, whereas most elk 

migrated out of GTNP and the surrounding area prior 
to human settlement, currently an average of 7500 elk 

now winter just south of GTNP on the National Elk 

Refuge (Smith et al. 2004). Overwinter mortality of elk 

on the NER averages 2-3% (Smith 1991), resulting in an 
estimated 41 000 kg of gross carcass biomass during a 

typical winter (i.e., 7500 elk X 2% mortality X 273 kg/elk 
= 40 950 kg). Coyotes are opportunistic, generalist 

predators and scavengers and their densities are limited 

by the availability of prey during winter (Gese 2004). 
Thus, the availability of abundant elk carcasses on the 

NER is likely to subsidize the winter diets of coyotes and 
maintain the population in GTNP at artificially elevated 

densities. Furthermore, because elk feeding suppresses 

temporal variation in elk mortality associated with mild 

and harsh winters, carcasses on the NER provide a 

stable food supply that may buffer the coyote popula 
tion from weather-dependent fluctuations. That elk 

carrion is an important resource for coyotes is suggested 

by the coyote "aggregations" that form on the NER 

each winter (Camenzind 1978). Indeed, the availability 
of this seasonal food subsidy results in the seasonal 

migration of transient and resident coyotes from both 

the ER and AF sites (K. M. Berger, unpublished data). 

Conclusions 

In contrast with previous studies, the changes in 

herbivore populations that we observed resulted not 

from direct pr?dation by a top carnivore, but rather as a 

result of indirect effects mediated by changes in 

mesocarnivore abundance. The strong, negative corre 

lations between coyote and wolf densities, and coyote 
densities and fawn survival, support the hypothesis that 

mesopredator release of coyotes, resulting from the 

extirpation of wolves throughout much of North 

America, contributes to high rates of coyote pr?dation 
on pronghorn fawns observed in some areas. Thus, from 

both management and conservation perspectives wolf 

restoration holds promise for reducing coyote pr?dation 
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rates on neonatal ungulates such as pronghorn, mule 

deer (Odocoileus hemionus), and white-tailed deer 

(Odocoileus virginianus). In particular, we expect that 

similar cascades should emerge in places such as 

Yellowstone National Park, where the pronghorn 

population has declined precipitously in recent years, 

coyote pr?dation on pronghorn fawns is high, and 

wolves have reportedly reduced the coyote population 

by as much as 50% (Caslick 1998, Smith et al. 2003). Our 
results provide strong evidence of a species-level trophic 
cascade precipitated by wolf recolonization in the 

southern GYE, and support a growing body of research 

demonstrating the importance of top-down forces in 

structuring the dynamics of consumer-resource interac 

tions in terrestrial systems (McLaren and Peterson 1994, 

Berger et al. 2001, Ripple et al. 2001, Terborgh et al. 

2001, Fortin et al. 2005). 
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