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Abstract. Global climate models predict relative humidity runoff up to 14 % in high-altitude regions east of the Sierra

(RH) in the western US will decrease at a rate of about 0.1-Nevada and Cascades, and reduce estimated Colorado River

0.6 percentage points per decade, albeit with seasonal difrunoff at Lees Ferry up to 4 % by the end of the century. It

ferences (most drying in spring and summer), geographi-could also increase the probability of large fires in the north-

cal variability (greater declines in the interior), stronger re- ern and central US Rocky Mountains by 13 to 60 %.

ductions for greater anthropogenic radiative forcing, and no-

table spread among the models. Although atmospheric mois-

ture content increases, this is more than compensated for

by higher air temperatures, leading to declining RH. Fine-1 Introduction

scale hydrological simulations driven by the global model

results should reproduce these trends. It is shown that thdhe Earth’s climate is warming due to the accumulation of

MT-CLIM meteorological algorithms used by the Variable human-produced greenhouse gases in the atmospgRE&€, (

Infiltration Capacity (VIC) hydrological model, when driven 2007. Over the oceans, warmer surface temperatures will

by daily Tmin, Tmax, @and precipitation (a configuration used likely lead to increased evaporation and therefore greater spe-

in numerous published studies), do not preserve the originagific humidity, but an approximately constant relative humid-

global model’s humidity trends. Trends are biased positiveity (RH); the greater concentration of water vapor will in turn

in the interior western US, so that strong RH decreases arwarm the surface further, since water vapor is a potent green-

changed to weak decreases, and weak decreases are chanfjedse gas (GHG) (e.gRPCC, 2007, Dessler and Sherwood

to increases. This happens because the MT-CLIM algorithm009. This feedback mechanism depends on warmer plan-

VIC incorporates infer an overly large positive trend in at- etary temperatures leading to increased atmospheric water

mospheric moisture content in this region, likely due to anvapor concentrations, which has already been identified in

underestimate of the effect of increasing aridity on RH. Thesatellite observationsS@nter et a)2007) and surface humid-

result could downplay the effects of decreasing RH on plantgty measurementsiillett et al,, 2007).

and wildfire. RH trends along the coast have a weak nega- It seems unlikely that RH will remain constant in loca-

tive bias due to neglect of the ocean’s moderating influencetions far from large open bodies of water and where annual

A numerical experiment where the valueslyf,, are altered  evaporative demand considerably exceeds annual precipita-

to compensate for the RH error suggests that eliminating théion, such as the arid regions of the western US. In such ar-

atmospheric moisture bias could, in and of itself, decreaseeas, warmer surface temperatures, along with limited mois-
ture availability, may lead to lower relative humidities in the
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1834 D. W. Pierce et al.: Modeled future changes in humidity over the western US

future than are experienced today. This could have an effecirom Maurer (2002), since statistical downscaling proce-
on hydrological and ecological processes that are sensitive tdures have typically not yet been tested with wind speed.
humidity, such as evapotranspiratidfriend 1995, runoff, The hydrological simulation needs additional meteorolog-
wildfire (Brown et al, 2004, and plant growthl{euschner ical variables, such as humidity and incoming shortwave ra-
2002. Irrigation can increase surface relative humidity lo- diation. Since these are relatively sparsely observed, VIC in-
cally (Kueppers et al.2007), but we do not include the ef- corporates algorithms taken from the MT-CLIM version 4.2
fects of irrigation in this work. package lungerford et al. 1989 Thornton and Running

A large number of studies have examined changes in thd999 Thornton et al.200Q see alsavlaurer, 2002 to cal-
hydrology of the western US and related processes usingulate these fields frorfimin, Tmax, and P. A global evalu-
the Variable Infiltration Capacity (VIC) hydrological model ation of the MT-CLIM algorithms can be found Bohn et
(Liang et al, 1994). Hydrological processes are strongly in- al. (2013. Henceforth we will call this combination of the
fluenced by topography, so VIC is often run with a resolu- VIC hydrological model and the MT-CLIM meteorological
tion of 1/8x 1/8 (longitude by latitude) or finer. Even with algorithms the VIC modeling system (VMS). We introduce
the increasing resolution of global climate models, which canthis terminology to emphasize the distinction between VIC
approach 1/2 by 1f2 VIC runs are likely to be used for hy- (the hydrological component of the system) and the entire
drological applications for a considerable time yet. VIC can modeling package that enables hydrological simulations to
also easily be run over a limited area, increasing efficiencybe computed from a given set of meteorological fields. Note,
further. however, that the references given above do not draw this

VIC is a well-regarded model [{{ang et al, 1994 has distinction, and commonly identify hydrologic simulations
been cited nearly 600 times according to the Thomsonderived using the MT-CLIM algorithms and VIC as “VIC”
Reuters Web of Knowledge) that does a good job of sim-simulations.
ulating historical changes in streamflow when driven with Checking VMS’s ability to simulate humidity changes
historical meteorology (e.ghbdulla and Lettenmaied 997, is important given the large number of published climate
Hamlet and Lettenmaiet999h Arnell, 1999 Nijssen et al. change studies that have analyzed streamflow or runoff using
2001h Wang et al.2008 Niu and Chen2009, and has been this approach. Results from VIC have informed our under-
used extensively both in the region and globally. For exam-standing of the effects of climate change on runoff, stream-
ple,Hamlet and Lettenmaigfi 9993 used VIC for forecast-  flow, wildfire, and snowpack in the western US and around
ing Columbia River streamflow based on the patterns of cli-the world, and could potentially influence key resource, pol-
mate variability;Nijssen et al(20019 examined the sensi- icy, or adaptation decisions.
tivity of global river flow to climate change; andanRhee- VIC uses humidity when calculating the incident solar ra-
nen et al. (2009 used VIC and downscaled global climate diation (along with solar angle, elevation, slope, etc.) and
model simulations to study changes in flow in the Sacra-evaporation from bare soil. Additionally, when the relative
mento and San Joaquin basi@hristensen et a{2004 and humidity drops, modeled stomatal resistance to transpiration
Christensen and Lettenmai@007) did similar analyses for in plants increases; this effect is observed in nature and in-
the Colorado River basin, whildayhoe et al(2004 exam-  cluded in VIC’s parameterizations. Under high relative hu-
ined future changes in California water resourdégester-  midity conditions the model includes the possibility of con-
ling et al. (2006, Westerling and Bryanf2008, andWest-  densation and dew formation on the ground, which increases
erling et al.(2011) used VIC simulations to help understand the soil moisture, but this is a small term and in most places
historical trends and future projections in wildfire activity, represents a negligible contribution to the soil moisture bud-
andHamlet and Lettenmai€R007 did a similar analysis for  get.
runoff, evapotranspiration, and soil moistukéaurer(2007) The MT-CLIM meteorological algorithms as incorporated
examined runoff over the Sierra Neva@amrnett et al(2009 in VMS assume that the dew point temperatufgsw, IS
andPierce et al(2008 used VIC to study changes in runoff, closely related to nighttime minimum temperature. Although
streamflow, and snowpack over the western US;Aa@m et  Tyew iS NOt an ideal proxy for atmospheric moisture content
al. (2009 examined impacts on snowpack globally. VIC has because it depends in part on atmospheric pressure (and thus
been used for a wide variety of purposes in many locations. elevation) and is nonlinearly related to moisture content, it

The studies enumerated above are driven by daily mini-nevertheless is a good moisture indicator and has the advan-
mum temperature, maximum temperature, and precipitatiotage that it is more commonly observed at stations than other
(Tmin, Tmax, and P). Often, these fields are derived from humidity variablesRobinson1998 Brown and DeGaetano
monthly global climate model output that has been resam-2009. In coming decade®in will increase at least partly
pled to a daily timescale using a statistical downscaling tech-due to greater concentrations of €@nd other non-water
nique YWood et al, 2004, although statistically downscaled vapor GHGs, yet VMS equates an increasd i, with an
daily global model data has been used as wklidélgo increase in humidity. There is a danger that VMS may over-
et al, 2008. Wind speed is another required input field, predictTyewincreases as a result.
and is sometimes specified using climatological values (e.qg.,
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D. W. Pierce et al.: Modeled future changes in humidity over the western US 1835

In humid regions the assumption tH&4i, equalsTgew is 2 Estimating humidity from temperature and
supported by observations, especially in clear and calm con- precipitation
ditions Brown and DeGaetan@009. However in arid re-
gions (such as much of the western US), the dew point iSOur primary interest is in future RH trends, which are de-
often lower thanTyn. Accordingly, the meteorological al- termined by both air temperature and atmospheric moisture
gorithms in VMS incorporate a correction to tlge cal- content trends. VMS is supplied with air temperatures, but
culation suggested biKimball et al. (1997 (Kimball-97 must estimate atmospheric moisture content, so any errors in
hereafter), which takes into account the local aridity. Thethe RH field that can be attributed to VMS must arise from
Kimball-97 Tyew correction is empirical in nature, being errors in atmospheric moisture content. VMS’ atmospheric
based on a polynomial fit to observations. It might there-moisture content algorithms estimdig., andTyewis avail-
fore become a progressively worse approximation as anthroable from meteorological stations, so itis a natural choice for
pogenically produced greenhouse gases alter the radiatiomomparing to observations.
balance of the planet. The following terminology will be used to describe the

A number of recent studies have focused on current and/yew calculation. Thenput variableshat the meteorological
future humidity trends. Much of this work has explored the algorithms in VMS use are dail¥iin, Tmax, and P, which
dynamics and thermodynamics of humidity changes in theneed to be supplied from an external source such as obser-
atmosphere (e.gSherwood et al.201Q Schneider et al.  vations or a global climate model. The Kimball-97 algorithm
201Q Seager et a/.201Q Wright et al, 2010. Other, ob- is a function of thregparameterswhich areE F, DTR, and
servationally based work has examined changes in surfac&min. In Kimball-97’s original formulationE F is the non-
relative humidityGaffen and Rosgl999 found that relative  dimensional ratio of daily potential evapotranspiration (PET)
humidity increased in the northern interior US from 1961— to annual precipitation, and so is a measure of aridity (higher
1995, but slightly (non-significantly) decreased during sum-values mean greater aridity). DTR is the diurnal temperature
mer and autumn in the southwe3ti (2006 analyzed global  range Tnax— Tmin- Finally, Tmin is both an input variable and
weather reports from 1976 to 2004 and found RH increases parameter.
in the northern part of the western US on into Canada, and VMS converts the three input variables into the three pa-
decreases in the southern part, similaiGaffen and Ross rameters required by Kimball-97 using the MT-CLIM al-
(1999. On the other handillett et al. (2007 found RH  gorithms Hungerford et al.1989 Thornton and Running
declines in this entire region over the period 1973-2003, al-1999 Thornton et al. 2000. The conversion off\yin and
though the trends were small and statistical significance wadmax into DTR is trivial, and of cours@mi, is used without
not indicated.Vincent et al.(2007), analyzing station data conversion.EF is computed by first estimating PET using
over the period 1953—-2005, found generally negative but nothe Priestley—Taylor equatiofP(iestley and Taylqrl972),
statistically significant RH changes in the interior westernthen dividing by annualP. Of course, the Priestley—Taylor

part of Canada, roughly in accord witNillett et al. (2007). PET estimates themselves use the simplified radiation esti-
Robinson(2000 found more complicated patterns fMew mates derived fronTyin and Tmax, SO estimated PET likely
trends that depended on season and time of day. has errors that subsequently contribute to errork fh The

The purpose of this work is to show projections of future version of the MT-CLIM algorithms used in VMS employ a
humidity changes over the western US from the new CMIP5modified version of Kimball-97'Tyew correction that com-
(Taylor et al, 2012 set of global climate models, how the putesEF using the annualized precipitation over the past
trends are misestimated by VMS, and the implications thisN days rather than the annual precipitation (i.e., usifg [
has for future runoff changes. We start with a description andsummed over the lasy days]x [days per yeaW]). Addi-
evaluation of the performance of VMS’s humidity simulation tionally, the annualized precipitation is not allowed to drop
given historical observations @hin, Tmax, and P (Sect. 2).  below a minimum valuePnin. This introduces two new pa-
We then show future changes in surface RH over the westrametersN (default: 90 days) an®n, (default: 8 cm). Be-
ern US projected by global climate models (Sect. 3.1), andow it will be shown that this modification has a detrimental
evaluate how well these changes are captured by VMS wheeffect on the simulation ofyey in Mediterranean coastal lo-
it is driven by Tmin, Tmax, and P from the global model sim-  cations such as central and southern California. The VMS
ulations (Sect. 3.2). Global climate model fields are ofteninput files allow one to specify each grid cell's annual aver-
bias corrected and/or downscaled before being used to drivage P, but this specified value is not used in the humidity
a hydrological model, so we examine the effect of those pro-calculation in versions of VMS released since late 2004 (we
cesses on the RH trends as well. We additionally run a testio not have access to earlier versions).
simulation with VMS to see what effect the humidity errors
might have on runoff (Sect. 4). A summary discussion and2.1 Kimball et al.’s Tyeyw parameterization
conclusions are given in Sect. 5.

The Kimball-97 empiricalyew parameterization is an impor-
tant part of the VMS humidity calculation. Following their

www.hydrol-earth-syst-sci.net/17/1833/2013/ Hydrol. Earth Syst. Sci., 17, 183850 2013
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Fig. 1. Dots: observed ratio dfyew/Tmin — 0.0006 DTR (in°K, where DTR is the diurnal temperature range) as a function of the EF aridity
parameter from Kimball et al. (1997). The red line shows the correction suggested in that work. White contours show the density of blue dots
in each 0.02x 0.02 gridbox; contours are drawn at 10, 25, 50, 100, 250, and 500.

Eq. (4): Las Vegas, respectively, while thé values for a linear fit
T are 0.24, 0.30, and 0.40. This is seen at many locations, not
dew _ 0.0006 DTR= —0.127+ 1.121 (1) just those shown in Fidl. Also, Kimball-97’s parameteriza-
Trin tion consistently overestimat&gew at EF =0, which may
(1.003— 1.444EF + 12312EF? — 32.766EF3) arise from a requirement thdyew equalsTmin when EF

equals 0. Such a requirement is not supported by the data
where temperatures are in Kelvin, DTR is that day’s diur- shown in Fig.1, or more generally in data from the other
nal temperature range arglF is the dimensionless ratio of western US stations used here. However, it should be noted
that day’s potential evapotranspiration to annual precipita-that data from humid east coast locations was not examined,
tion (in VMS, to 90-day annualized precipitation subject to and could display different characteristics.
a minimum of 8 cm). Figurd shows observed daily values Figure 1 suggests that th&qey correction could be im-
of the left-hand side of Eq. (1) (dots) as a functionff proved straightforwardly. The correction could be recast to
for 6 selected stations, 3 along the west coast and 3 in the linear fit in E F. The endpoint aE F =0 could be allowed
arid continental interior. Also shown (line) is the right hand to take on a value other than exactly 1.0, consistent with the
side of Eq. (1), i.e., the Kimball-97 suggested correction toobservations. And instead of the cubic coefficient, which is
Tqew as a function of aridity. The detrimental nature of the not required if a linear correction is used instead, a new pa-
suggested correction in locations influenced by the maringameter could be introduced that would reflect whether or not
environment is obvious. In places such as San Diego, Londhe location was influenced by the marine environment. For
Beach, and Oakland, even during days of high evaporativeexample, the distance to the oceans, or even a simple binary
demand (largeE F), the essentially infinite moisture source flag for coastal vs. continental environment. Such improve-
of the ocean keep%yew/Tmin Near 1. This is expected, but ments in the algorithm would be particularly valuable when
not captured in the correction. MT-CLIM exhibits errors in using VMS in coastal regions.
downward shortwave radition in the coastal environment as
well (Bohn et al, 2013. 2.2 Performance of the humidity algorithm in the

Perhaps more surprising is that even in the dry interior, western US

the suggested correction, which is cubicArF, is inferior
to a simpler linear fit. The? values for the Kimball-97 fits In this section the ability of VMS to estimate humidity
in Fig. 1 are 0.04, 0.01, and 0.18 for El Paso, Tucson, and(specifically, Tgew) across the western US will be evaluated

Hydrol. Earth Syst. Sci., 17, 1833485Q 2013 www.hydrol-earth-syst-sci.net/17/1833/2013/
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Gaps in the observed temperature record of 5 days or less

were filled by linear interpolation, as long as that process re-
sol filled by | t lat I that
sulted in no more than 4 % of the entire data set being filled
Kaeh kPl “KCTB (in which event the station was rejected). Precipitation had
koot KT kmsoKCTE ekuwr notably more gaps than temperature, and there appeared to
A kpox {}PDT'KLWS KBIL be a problem with zero precipitation values occasionally be-
45 'KSLE-KRDMK e “KSHR ing reported as missing values. Accordingly, for precipita-
homi 2 o1 tion, gaps of up to 8 days were allowed, and gaps were filled
KSXT P tKLND tKCPR with zero. Stations were included if up to 8% of the data
skacy KMHS KWMG KK e I xtvs were infilled. Any station was rejected if, after fiI_Iing thg a!-
201 KRBL o ste eor lowable gaps, more than 10 % of the data remained missing.
sac KNFL *KELY “KGIT -KCOS In the analysis by either water year or season, the individual
KOAK; . water year or season was excluded if more than 5% of tha
e KTPH eue t luded if than 5 % of that
KSFO Kcbc *KALS L .
JKMRy ~KFAT “KFMN year/season’s data was missing after the infilling procedure.
<KLSV . . e .
a5 xert KA - B0 Finally, three stations that were located within a few kilo-
KO- rfi%‘;?f meters of other included stations were dropped. Typically,
Eii KLUF- KPHX N included stations had 1 % of the temperature data infilled,
KTUS® KELP 2—-4 % of the precipitation data infilled, and 0.5-2 % missing
data remaining at the end of the infilling procedure. Only 5
30 ‘ ‘ ‘ ‘ of the 74 stations had a significalie, trend over this time
-120 -115 -110 -105 period, close to what would be observed by chance. How-

ever, inhomogeneities in the observed record due to instru-
ment changes could affect the long-term treBdovn and
DeGaetanp2009, an issue not explored here.

Figure 3 (left column) shows examples @few time se-
ries from observations (blue) and estimated by VMS (red) at
4 stations. Ideally, the blue and red curves should coincide.
using daily observations dfmin, Tmax, P, and Tgew from For comparisonTmin is also shown (black). With the excep-
74 meteorological stations across the western US. The firstion of Tucson (KTUS), which is an arid locatiofyew (blue)
three observed variables will be used to drive VMS, andfollows Tnin (black) quite closely. At Tucson, VMS's imple-
VMS's estimatedyew Will then be compared to the observed mentation of the Kimball-97 correction thyey Clearly im-
value. proves the simulated values. However at the other stations,

Seventy-four global summary of day (GSOD) stations VMS’s value of Tgew (red) is no better than (Billings), or
across the western US were selected for this analysisZFig. clearly worse than (San Diego and Roberts Field) simply as-
and their daily data downloaded frofip://ftp.ncdc.noaa. suming Tgew €qualsTmin. This is particularly noticeable at
gov/pub/data/gsodiThe period included was 1975 through KSAN (San Diego), where the correction severely worsens
2009. The stations are a superset of the hourly data stationthe estimate ofyey during the summer.
used in Kimball-97, but concentrated in the western part of A bispectral analysis of the data (Fi@, right column)
the continent. (Note that in Kimball-97, only one year of has some unusual properties, depending on the location. At
hourly data was used for each station, with different yearsBillings and Tucson, the squared coherence between ob-
for different stations.) The stations reflect population pat-served and modeletiey is largest at the lowest frequency,
terns rather than topography and climate patterns, and swhich makes sense; tHgew estimation algorithm does bet-
do not sample interior snow-producing mountain ranges otter capturing the large seasonal differences than the short-
high elevations in proportion to their importance to generat-period, day to day fluctuations. However at San Diego and
ing runoff. The GSOD values are based on the GSOD reportRoberts Field, coherence actually drops at the lower frequen-
ing period of a UTC based day, while calculation of daily cies. In other words, th&ew estimation algorithm is doing
Tmin from the hourly values is based on a local-time day. a worse job at capturing the large amplitude seasonal cycle
To examine if this reporting-period discrepancy affected ourthan it is capturing variability at the 0.1-0.02 day(1/(10—
analysis, we compared thiew and Thnin time series calcu- 50 day)) time scale. This seems counterintuitive, since a
lated from the hourly and daily data at 8 stations (KSAN, larger swing inTmin should provide a more robust base sig-
KTUS, KRDM, KLGB, KOAK, KELP, KLAS, selected to nal to correct with the Kimball-97 algorithm. Finally, it is
include both inland and coastal locations) over the periodworth noting that the coherences, although all statistically
1980-2005, and verified that on the timescales of interessignificant given the approximately 35-yr time series that are
here, using the GSOD (UTC-based) daily data gives resultavailable, are rather low values. At San Diego, for instance,
nearly identical to using the hourly (local-time based) data. no more than 40 % of the variability is captured by thgw

Fig. 2. Location of the 74 global summary of day (GSOD) meteo-
rological stations used in the analysis.

www.hydrol-earth-syst-sci.net/17/1833/2013/ Hydrol. Earth Syst. Sci., 17, 183850 2013
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Fig. 3. For a selection of 4 stations: left column shofg,, from overwhglmingly negative, i'?" VMS_ ftends to estimate a lower
observations (blue) over the period 1990-199ge, calculated ~ d€W point (drier atmospheric conditions) than observed, typ-
by VMS (red), andlimi, for comparison (black). The green arrow ically by about 2-10C, and particularly in the western part
shows where there has been little precipitation for the last 90 day$f the domain. Although many locations in central and south-
at KSAN, triggering a change in the humidity calculation; see text ern California have mean biases—10°C, no location has
for details. Right column shows the squared coherence between the mean bias of- +5°C. The largest RMS errors are also
observed and modelellie,y as a function of frequency (per day), concentrated in California, along with a few stations in Ore-
along with the 95 % confidence interval (dotted lines). gon and Washington, and are largest in summer and autumn,
which include part of the growing season and the bulk of the
wildfire season.
estimation algorithm at any frequency, and at the longer time At San Diego (KSAN) and other Mediterranean climates
scales £ 50 days), less than 20 % of the variance is capturedacross California, the podfyew estimation arises partly due
Only in Billings does the explained variance both generallyto the way VMS uses a modified version of the Kimball-97
exceed 50 % and reach a peak at the lowest frequencies. Thagorithm that implements a 90-day window when comput-
illustrates some of the timescale-dependent deficiencies iing annualizedP. In these locations it is not unusual to have
the Tyew calculation. little to no rain for 90 days in the spring and summer, with
The mean bias in the estimationBfzw is shown in Fig4, the result that the VMS-modified algorithm drops the annu-
and the RMS error in Figh. In summer and autumn the er- alized P value to the arbitrary value of 8cm. Such a |&v
rors are largest along the western coast and smaller in the insalue results in a far too negatifgey correction during the
terior, a geographical distinction also found in thgy clus-  dry period. The upper left panel of Fig.llustrates this phe-
ter analysis ofRobinson(1998. Both the bias and RMSE nomenon. By late June of 1991 (small green arrow on the
are largest in the southwestern part of the domain, roughly irfigure), there had been little precipitation at the station for
the Mediterranean climate regimes of California. The bias is90 days, and the correct@yew (red) discontinuously jumps
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RMSE (degC), DIJF RMSE (degC), MAM and the Kimball-97 parameterization exhibited in the previ-
sof sof ous sections, simulating observed historic humidity in west-
ern US and coastal Mediterranean climates. There is no way
sl sl to evaluate future behavior based on historical data alone,
but observed data can be used to evaluate whether the VMS
humidity algorithm generates systematically different biases
40r 401 depending on the temperature. Ideally, even if the algorithm
is biased (Fig.4), it should have the same bias in warm
35t 3s} and cold years. Otherwise, a systematic change in temper-
atures over time might generate a systematic change in hu-
0l . . . . ol midity bias over time, which would mimic a humidity trend.

o | e This trend could either add to or offset a real-world humidity
12 s 4 5 6 7 12 3 4 5 6 7 trend, depending on its sign.
Figure6 shows the mean bias ifyew in the five warmest

RMSE (degC), JJA RMSE (degC), SON
sof sof years at each station, minus tifig.,y bias in the five cold-
est years at that station. Water years (October to September)
were used in this calculation rather than calendar years since
) L we are most interested in hydrological applications. The en-
tire period used is water years 1976—2009 (34 yr), so this is
40f 401 approximately the difference between the warmest 15 % and
coldest 15 % of years. Results are given for the entire water
35k 35l year (left panel), or just the cold (middle panel) and warm
(right panel) seasons; the warmest and coldest years are cal-
sl sl culated separately for each season. The number of stations

T R B RS i | with positive and negative differences in bias between the

12 3 4 5 6 7 12 3 4 5 6 7 warm and cold years is noted in the lower left corner of each

panel in Fig 6. The results show that during the cold season,

the Tyew bias is less negative in warm yeaps<€ 0.01). Al-

though the warm season result is in the same sense, it is not

significant, and the year-round result shows little difference

to a much lower value once the 90-day averaging windowin the number of stations.

advances to cover only the dry period. While less bias is desirable, the drawback is that as tem-
Averaged across all 74 stations examined here, in Marchperatures increase over time this changing bias could mimic

April-May (MAM) the mean Tgew bias (VMS minus ob-  a positive Tgew trend. In the cold season, the difference in

servations) for the original Kimball-97 algorithm is 3% Ty, bias between the five warmest and five coldest years

larger than for the VMS modified algorithm. However in the s on the order of $C (Fig. 6). The air temperature differ-

other three seasons, the mean bias is 20-150 % larger usinghce between the warm and cold years is abd@.3So if

VMS'’s modified algorithm than found when using the orig- the western US warms 3°C in the cold season as a result

inal Kimball-97 algorithm. The simulated values are worse of climate change, this may produce a trend-af°C in the

primarily in the Mediterranean coastal climates of central andsimulatedZgen. However in the warm season, and especially

southern California, locations where Figsand5 showed in the yearly average, this does not seem to be an issue.

the Tqew €Stimate was especially biased. The biggest effect

is in September-October-November (mean error2f88°C

for VMS, vs.—1.13°C for the original algorithm with actual 3 \odel projected changes in humidity over the

long-term averag®), at the end of the long summer dry pe-  \yestern US

riod in coastal southern California. Diurnal variation in RH

in that season can be very large on the coast, with nighttime3 1 CMIP5 global climate model humidity changes
moisture recovery with the onshore breeze.

Fig. 5. As in Fig. 3, but for the RMS errorC).

We calculated the annual and seasonal (DJF, MAM, JJA,
2.3 Simulating humidity in warm vs. cold years SON) surface relative humidity (RH) trends in 13 global
climate models from the Coupled Model Intercomparison
Our primary purpose is to understand how VMS might simu- Project, version 5 (CMIP5) data archivEaylor et al, 2012).
late humidity in the future, as the Earth becomes increasinglyThe models are listed in Table 1, and include all those with
warmer due to the accumulation of anthropogenic GHGs inthe necessary surface daily humidity, temperature, and pre-
the atmosphere. This is distinct from the problems VMS cipitation data at the time this work was undertaken. We used
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Fig. 6. Mean Tyey bias €C) in the five warmest years in the 1975-2009 record minus the mean bias in the five coldest years. Stratified by

season (ONDJFM = October through March; AMJJAS = April through September; ALL = all months).

Table 1. Global climate models used in this analysis, taken from the Couple Model Intercomparison Project, Version 5 (CMIP5) archive.

Model Originating institution

CanESM2 Canadian Centre for Climate Modelling and Analysis

CCsM4 National Center for Atmospheric Research, USA

CNRM-CM5 Centre National de Recherches Meteorologiques, France
CSIRO-Mk3.6.0 CSIRO Atmospheric Research, Australia

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA
GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA

GISS-E2-R NASA Goddard Institute for Space Studies, USA

HadGEM2-ES Met Office Hadley Centre for Climate Prediction and Research, UK
INM-CM4 Institute for Numerical Mathematics, Russia

IPSL-CM5A-LR  Institut Pierre-Simon Laplace, France

MIROC5 The University of Tokyo and National Institute for Environmental Studies, Japan
MRI-CGCM3 Meteorological Research Institute, Japan

NorESM1-M Norwegian Climate Center

two representative concentration pathways (RCPs): RCP 4.\er reaches-0.2 percentage points per decade in RCP 4.5,
and RCP 8.5an Vuuren et a).2011), roughly correspond- and—0.8 points per decade in RCP 8.5, with typically 80 %
ing to medium and high anthropogenic greenhouse gas emisr more of the models agreeing on the sign of the trend.
sions scenarios, respectively. The RCP numbers indicatéll the models show increasing RH offshore of California in
the approximate anthropogenic forcing each scenario expethe extreme southwest part of the domain, though the values
riences, in Watts m?, at the end of the century. The period are small. Several models show increasing summer RH over
included is 2010-2099. Because of the large number of modwestern Arizona and southern California in RCP 4.5, appar-
els and seasons, in this work we show multi-model ensemble&ntly a monsoonal response, although this trend is not statis-
averages (MMEAS), which in many measures produces supetically significant in the ensemble average and is reversed in
rior results to an individual model, even in a regional contextthe more strongly forced RCP 8.5 scenario.
(Pierce et al.2009.

Figure7 shows the seasonal and annual RH trends for the3.2 VMS-simulated humidity changes

MMEA, along with the number of models that have a neg- L ] )
ative trend (decreasing RH) in each grid cell. On an annuall© evaluate VMS's simulation of RH trends, the daily tem-

basis, 9-12 of the 13 models have predominantly negativé’eratu_r? and precipitation data from the 13 glo'bal models
trends over most of the western US, particularly in the north-Was bilinearly interpolated to a commonx2° grid over

ern part of the domain. RH declines are generally strongefh® western US, applied to VMS, and the difference be-
away from the coast. The average trend in spring and sumtween the VMS-estimated RH trend and global model RH
trend was calculated. VMS’s algorithms calculate dew point
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Fig. 7. Mean RH trends (percentage points per decade), and number of models with a negative RH trend, found in a set of 12 CMIP5
simulations with the rcp 4.5 (upper panel) and rcp 8.5 (lower panel) concentration pathways. Contour interval: 0.2. Grey circles indicate
trends that are not significant at the 0.05 level.

temperature, which is then converted to vapor pressure. Tethen averages them to produgg, but is nonetheless a close

calculate RH, the variable of interest here, requires an aimpproximation.

temperature. It is assumed that RH is calculated with re- Results are shown in Fi@. It is clear that VMS tends

spect to the daily average temperatigg. Further,Taygwas — to systematically bias the RH trend towards more positive

taken as Tmin + Tmax)/2. This is not exactly true for VMS, values. Errors are largest (VMS simulating an overly posi-

which internally calculates temperatures at each hour andive RH trend) in the interior western US, roughly over Col-
orado, Idaho, Montana, and Wyoming, and are about twice
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Fig. 8. Model mean error in the VMS-simulated relative humidity trend field (percentage points per decade), with respect to the trend in the
original global model. Contour interval is 0.05 (upper panels), 0.1 (lower panels).

as large for the RCP 8.5 forcing scenario as for the RCP 4.5s on the order of-0.2 to—0.8 percentage points per decade

scenario, which is consistent with the anthropogenic forc-(Fig. 7), these biases are easily large enough to be significant

ing being considerably larger in the latter. The sign of theto the simulation’s results.

error is reversed near the coast in many of the models, al- In regional modeling it is common to bias correct and

though coastal errors are generally much smaller than errordownscale global model data, so the middle column of %ig.

in the interior. Errors are weakest in the autumn, and genshows the effect that bias correcting of the original global

erally stronger and approximately equal in the other threemodel data has on the simulated VMS RH trend (the bias

seasons. Along the coast the location of greatest error movesorrection method used is describedAierce et al.2012.

north as the year progresses, peaking in spring in Southerithe right column shows the change in trend due to bias cor-

California, summer in Central/Northern California, and au- rection with constructed analogue (BCCA) downscalidg (

tumn in the Pacific Northwest. dalgo et al.2008 Maurer et al.2010. For constructing this
These errors can be made more quantitative by computlast quantity, VMS RH trends were simply interpolated to the

ing the histogram of differences between the RH trends afiner downscaled grid before the grid cell-by-grid cell differ-

each grid cell, pooled over all the models (F&). The left-  ence was computed. Neither bias correction nor downscaling

hand column shows the VMS-estimated RH trend minus thecontributes appreciably to the error in the RH trend.

original global model trend, i.e., the change in RH trend

due to VMS. In addition to imposing notable spread, VMS’s

humidity algorithms systematically bias the simulated RH3-3 Components of the relative humidity trend

trends, with mean biases across the domain and different

models of 0.12 percentage points per decade for RCP 4.5 anfecreasing RH can arise from increasing temperatures or

0.32 perpentage pomt; per decgde for RCP 85 The Strong%recreasing atmospheric water content. B4ty and Tgew

the applied GHG forcing, the bigger the positive RH trend increase in the model runs analyzed here, Ty always

bias_VMS tends to develop. Considering that the ensemble, o ...« more tharTgew, typically by about 50 %. So the de-
median RH trend from the full set of CMIP5 global models ¢e55e in RH is accomplished by ambient air temperatures

Hydrol. Earth Syst. Sci., 17, 1833485Q 2013 www.hydrol-earth-syst-sci.net/17/1833/2013/



D. W. Pierce et al.: Modeled future changes in humidity over the western US 1843

VMS - global Bias_Corr - VMS D/Scale - Bias_Corr
%= 0.12 7005 ""0.00 80000f % = 0.00
150} 6 = 0.21 6001 ¢ = 0.01 6= 0.01
500} 60000t
100 4001 |
300} 40000
50 200} 20000}
H 100} [
Ok =0 oem = . ; ; Ok ; ; ;
-1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0 -10 -05 0.0 05 1.0
% pts./decade % pts./decade % pts./decade
T RCP 8.5 |
VMS - global Bias_Corr - VMS D/Scale - Bias_Corr
— 700F= —
1 X= 0.32 X = 0.01 X = 0.01
001 52 0334 6001 6 = 0.01 80000t ¢ = 0.02
80 500
40 288: 40000+
20 100} 20000}
i n_ 00
Ok ; : Ok ; : ; Ok ; : :
-1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0
% pts./decade % pts./decade % pts./decade

Fig. 9. Histograms of changes (shifts) in the estimated RH trend (percentage points per decade) at all gridpoints in the western US, accu-
mulated across all models. Left column: RH trend in VMS minus that found in the global model. Center column: trend after bias correction
minus trend before bias correction. Right column: trend after downscaling minus that found before downscaling. Y-axis is number of grid
cells. The meanx) and standard deviatiow | of the distribution are also indicated.
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Fig. 10. Contribution (percentage points per decade) to global model relative humidity trend arising from global model t@ggpgsamd
Tavg, as noted in the panel titles. Contour interval is 0.2.

warming faster than the increasing moisture content of thewith respect to temperature, not time), which was obtained
atmosphere, but both increase. by taking the tangent to the svf) curve at the mean cli-
Equal trends iMgewandTayg do not contribute equally toa matologicalTgew andTayg values (i.e., linearizing around the
trend in RH because of nonlinearities in the relationship be-annual mearfgey and Tayg). Figure10 shows the resulting
tween temperature and humidity. RH = s¥ig{,)/svp(Tavg), contributions to the global model RH trend that arise from
where svp[') is the saturation vapor pressure at temperatureglobal model trends ifgew and Tayg. In the RCP 4.5 runs,
T; since bothTyew and Tayg have trends, the relative humid- warming Tayg by itself would tend to change RH by0.6 to
ity trend dRH/d can be expanded using the standard formula—1 percentage points per decade in the majority of the inte-
for the derivative of a quotient, along with the chain rule, to rior western USTye by itself would tend to increase RH by
relate RH trends to trends ifjew and Tayg. Actually eval-  +0.5 to +0.8 percentage points per decade, partially compen-
uating the terms requires calculating dstp/(note: change  sating for theT,yg warming, leaving the residual RH trends
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Fig. 11.For the mean of the global models, using RCP 4.5 fordfapthe Tmin trend,®C per decadgp) Tyew trend from the global model,
°C per decade{c) Tmin trend minus global modelye,, trend,°C per decade{d) Tmin trend minus VMS'sTye trend, °C per decade.
(e) Error in VMS's Tyeyw trend (with respect to the global modetC per decade. Panegl§—(j): same, but for RCP 8.5 forcing. Contour
interval is 0.025.

of —0.1to—0.2 percentage points per decade seen in the lefttably smaller than in the global models. In other words, when
most column of Fig7. Values are proportionally higher for computingTgew, VMS does not correct thEy, trend enough
the RCP 8.5 case. for aridity, and as a resulfgew in VMS increases too much

in the interior western US. The implied error in VMY gew
trend is shown in panel e. Similar, though stronger, results
are found for RCP 8.5 forcing (panels f—j).

As described in Sect. 2, VMS computBsg,y using Tmin and The Kimball-97 aridity correction depends on DTR and
a correction based on the local aridity. The first question isEF (Eg. 1). The model-estimated DTR trend is shown in
whether the humidity error arises from the handlindglgfy Fig. 12. There is little agreement in the magnitude or sign
or from the aridity correction. What would the simulated RH of this trend across the different models, leading to a near-
trend be if onlyTpin, were included in the calculation? We zero annual mean value for RCP 4.5 and values of 0.05 or
computed this and found that in about half the simulations,less for RCP 8.5. Furthermore, Eq. (1) indicates that a DTR
using only Tmin results in an even more positively biased trend of 0.05C per decade, consistent with the individual
trend than found when including the correction. In the otherseasonal values of RCP 4.5 or the annual mean for RCP 8.5
half, the trend is about the same as found using the correcas shown in Fig12, will produce aTgew tendency of only
tion. The implication is that the correction, while often acting about 0.02C per decade. This value is too small to explain
in the right direction, is not strong enough to overcome thethe 0.05-0.2C per decade error in the VMS-estimatag,y
deleterious effects of assumifigey, can be estimated simply trend (Fig.11). Between the model disagreements on the sign
asTmin. This point is brought out more fully in Fig.1. Pan-  of the DTR trend and the small effect it has, itis unlikely that
els a—c show the mean global modgli, trend, Tgew trend,  the overly largelgew trends in VMS arise from treatment of
and difference between them, respectively, for the RCP 4.8he DTR parameter.

forcing scenario. For comparison, the difference between the TheE F trends are also shown in Fil2. Values are gener-
Tmin @andTyew trends computed by VMS is shown in panel d. ally positive over the southwestern US, indicating an increas-
In the interior, the difference in trends found in VMS is no- ing aridity over that part of the domain. Comparing thié&

3.4 Understanding VMS’s humidity trend bias
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Fig. 12.Trend in the diurnal temperature range (DTR},per decade, and in Kimball et. al's EF parameter (0.001 per decade). Upper panels:
for RCP 4.5 forcing. Lower panels: for RPC 8.5 forcing.

trends (Fig12) to the errors in the VMS-estimatdgew trend an increasing depression Gfeyw below Tiin) also showlgew
(Fig. 11, panels e and j) reveals correspondences; where thecends that are the most consistent with the original global
EF trend is greatest, th&jew error tends to be lowest. For model. Locations in the interior western US where VMS fails
example, in RCP 4.5, thE F trend is greatest along the west to show increasing aridity show the largest errors inTig,
cost and southern tip of Arizona/New Mexico; this is also trend.

where theTgew trend error is smallest. The point-by-point  This analysis implies that the problem is that not enough
spatial correlation between the two fields is 0.66 with a slopeof the domain shows the increasifg (aridity) trends, par-
that is significantly different from zerg(< 0.05). l.e., loca- ticularly in the northern interior western US — exactly where
tions where VMS simulates increasing aridity (and thereforeVMS's Tyew trend is too large. Sincg& F is PET/P, the low
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F the intention of isolating the effects @few by altering only
Tgew, leavingTmin, Tmax, and P unchanged.

The effect of decreasinfew on runoffis shown in Figl3.
Declines exceed 4 % over much of the western US, ranging
up 14 % in some locations. The decreases are not geograph-
ically uniform, with the largest values concentrated in the
higher elevations east of both the Sierra Nevada and Cas-
cade mountain ranges, and in the mountainous parts of Col-
orado, Utah, Idaho, Montana, and Arizona. In the lower ele-
vation parts of the lower Colorado River basin, by contrast,
decreases generally do not exceed 2 %.

After routing the runoff, annual streamflow in the Col-
orado River at Lees Ferry declines about 4%. A recent
study Harding et al. 2012 using VMS forced by down-
scaled GCM temperature and precipitation fields as de-
scribed herein concluded that Colorado River streamflow out
of the upper basin might decline 7.6 % by the end of the cen-
tury (a mean value across models), so a 4 percentage point
T , correction to that result is potentially important to include.

-14 12 -10_ -8 6 -4 -2 0 2 Although simplistic, this experiment suggests the hu-
Ghengs i unoit6) midity errors could have a discernable impact on model-
Fig. 13.Changes in annual runoff (%) calculated by VMS given an Simulated future streamflow. We emphasize that the concern
imposed, fixed 0.75C decrease iffigey. is not with a constant bias in the simulated Lees Ferry runoff,
which could be addressed by a simple bias correction tech-
nigue. Rather, the issue is that the global models project a

values of P in the southwest deserts drive very large values_trend of decreasing relative humidity in this area in the com-

of EF there. The percentage changeA¥ is much more ing century, a trend that is not well captured by VMS. Cor-
equal across the domain than seen in E®.but the actual rectly including this humidity trend could decrease simulated

magnitudes of theé F changes are much larger in the desert Colorado River flow by about 4 % over the course of the cen-
regions because of the division [ In the Northern Rock- tury.

ies, a different weighting of F or the E F trend would have
little effect on theTyew trend, since the F trend is so small
there to begin with. The problem of insufficieRtF trend
could be solved by adding a bias term to thé& trend, but
that would simply be inserting the anticipated trend into the
result in an ad hoc way, and so should be avoided.

-120 -115 -110

5 Summary and conclusions

In this work we have examined relative humidity (RH) sim-
ulations from 13 global climate models from the CMIP5
archive, driven with the RCP 4.5 and 8.5 scenarios of atmo-
spheric greenhouse gas concentrations over the course of the
21st century. Results suggest that the interior western US is
4 Implications for runoff over the western US likely to experience an RH decline of about 0.1 to 0.6 per-
centage points per decade, depending on season, location,
The errors in simulated humidity might have an effect on strength of the anthropogenic forcing, and the model con-
runoff, with lower humidities associated with more evapo- sidered. Land surface models should include this drying, as
transpiration water loss from the surface and therefore loweit could affect processes such as evapotranspiration, runoff,
runoff. To test this, a simple numerical experiment was per-wildfires, and plant growth. The purpose of this work has
formed by decreasing VMS's calculated value Bty by been to determine if the variable infiltration capacity (VIC)
0.75°C before it was used by VIC. This value was chosenhydrological modeling system (VMS), when run with input
as a representative end-of-century value for the interior westvariables Tin, Tmax, @nd precipitation £) from a global
ern US based on the mean model analysis (Figpanels e  model, preserves the original global model's RH trend. We
and j). examine this hydrological model because it has been fre-
For a control run, VMS was first driven by observed daily quently used in studies of the future climate of the west-
Tmin» Tmax, @ndP on a 1/8x 1/8 latitude-longitude grid over ern US. Systematic errors in its simulations could therefore
the western US, over the period 1915-2083aiflet and Let-  have implications for our understanding of climate change’s
tenmaier 2005. The experiment consisted of forcing VMS effects in the region, and potentially on resource management
to decrease its calculatd@ey by 0.75°C at all times, with  or adaptation decisions made on the basis of those studies.
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VMS calculates atmospheric moisture content using al- The RH trend errors could also affect the simulation of
gorithms from the MT-CLIM packageHungerford et al.  future wildfires. The fire model iWesterling et al(2011)
1989 Thornton and Runningl999 Thornton et al. 2000, finds that the distribution of fire sizes is sensitive to mois-
incorporating a modified version of thémball et al. (1997 ture deficit, which is affected by relative humidity. This dis-
(Kimball-97 hereafter) parameterization Bfey. Local Tyew tribution is highly non-gaussian, with a heavy tail of large
is taken asTmin, adjusted by an aridity term (arid locations events that have a tremendous impact on the western land-
have a lowefTyey relative toTimin) and a term proportionalto  scape, so a possible change in fire size could be significant
the diurnal temperature range (DTR). Comparison of VMS's for understanding future climate impacts in the western US.
estimatedlgew to Observed values at 74 meteorological sta- In addition to fire sizeWesterling et al(2011) also model
tions across the western US shows that the parameterizatidiarge ¢ 200 ha) fire occurrence as a nonlinear function of
does a poor job at locations influenced by the marine environmoisture deficit. Analyzing their model over the estimation
ment, particularly along the western coast of the US, whereperiod used in that work (1972-1999), we find that a system-
it consistently underestimat&yew. This is partly due to ne- atic 5% decrease in relative humidity from within the range
glect of marine humidity sources (and thus not a surprisingof relative humidity values where fire is more likely to occur
result), and partly due to a modification to the Kimball-97 increases the average probability of a large fire occurring by
algorithm that is used in VMS; rather than the aridity term 13 to 60 %, with the larger percentage increases correspond-
being calculated from annual precipitation, it is calculateding to higher initial relative humidity values (i.e. lower initial
from annualized precipitation over the last 90 days. In theprobabilities of fire).

Mediterranean climates along the west coast, it is not un- Simulated RH declines are slightly too strong along the
usual to experience 90 days without any precipitation, lead-coast. This is likely the result of the VMS-estimated arid-
ing to a sudden drop in VMS-estimated RH. Although theseity trends and the corresponding corrections to They —
Mediterranean locations typically produce limited runoff (for Tmin relationship failing to represent ocean humidity sources.
instance, Southern California imports most of its water), cor-However, the geographical extent of marine influences may
rectly estimating humidity in the population centers there be exaggerated in the relatively coarse resolution global cli-
is still of interest for purposes of modeling human comfort mate models used here, which do not resolve coastal topog-
(heat index), health, air conditioning use, and wildfire. Wild- raphy.

fire probabilities in neighboring vegetated areas could be The global model results agree that both average temper-
misestimated, along with the air pollution impacts of changesatures {ayg) and7gew Will increase everywhere in the west-

in wildfire (both local and regional, since wildfire emissions ern US in the coming century. Generally,q increases more
are transported long distances). rapidly thanTgew, leading to a decrease in RH, especially in

To examine whether a global model’s RH trend is pre- the interior. VMS estimates an overly large increas@&qsy,
served in VMS, the dailyTmin, Tmax, and P fields from which is why the RH decrease is smaller in magnitude than
13 global model simulations were applied to the VIC model- it should be.
ing system. It was found that the VMS-simulated RH trend is  These results suggest that improving the simulation of RH
not a faithful reproduction of the trend in the original global trends under conditions of climate change may require in-
model, but rather is consistently biased towards positive valtroducing a new input variable to augment the current de-
ues ininterior locations (i.e., less RH decrease than the globgbendence offinin, Tmax, and P. The accumulation of green-
models projected). Since regional climate change studies ofhouse gases in the atmosphere is altering the radiation bal-
ten use bias correction and downscaling, we also examinednce of the planet, initially through an increased downward
the impact these have on the RH trend bias, but found theyongwave flux from the atmosphere to the surface. A statis-
had negligible effect. The size of the bias is significant, be-tical fit to historical conditions might have limitations if the
ing enough in some cases to eliminate or even reverse thbalance of physical processes determining the relationship
original RH trend found in the global model. betweenTyew andTinin changes, and this may be the case for

A simple numerical experiment suggested that eliminatingfuture humidity over the western US.
the RH bias could diminish runoff up to 14 % in the dry in-
terior US, and reduce Colorado River flow at Lees Ferry by
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