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ABSTRACT 

Ecologists aim to understand and predict the effect of management actions on population 

dynamics of animals, a difficult task in highly variable environments. Mule deer 

(Odocoileus hemionus) occupy such variable environments and display volatile 

population dynamics, providing a challenging management scenario. I first investigate 

the ecological drivers of overwinter juvenile survival, the most variable life stage in this 

ungulate. I tested for both direct and indirect effects of spring and fall phenology on 

winter survival of 2,315 mule deer fawns from 1998 – 2011 across a wide range of 

environmental conditions in Idaho, USA. I showed that early winter precipitation and 

direct and indirect effects of spring and especially fall plant productivity (NDVI) 

accounted for 45% of observed variation in overwinter survival. I next develop predictive 

models of overwinter survival for 2,529 fawns within 11 Population Management Units 

in Idaho, 2003 – 2013. I used Bayesian hierarchical survival models to estimate survival 

from remotely-sensed measures of summer NDVI and winter snow conditions (MODIS 

snow and SNODAS). The multi-scale analysis produced well performing models, 

predicting out-of-sample data with a validation R
2
 of 0.66.  Next, I ask how predation risk 

and deer density influences neonatal fawn survival. I developed a spatial coyote predation 

risk model and tested the effect on fawn mortality. I then regressed both total fawn 

mortality and coyote-caused mortality on mule deer density to test the predation-risk 

hypothesis that coyote predation risk increased as deer density increased as low predation 

risk habitats were filled, forcing maternal females to use high predation risk habitats. 

Fawn mortality did not increase with density, but coyote predation increased with 

increasing deer density, confirming density-dependence in fawn mortality was driven by 

coyote behavior, not density per se.  Finally, I use integrated population models (IPM) to 

collate the previous findings into a model that simultaneously estimates all mule deer 

vital rates to test ecological questions concerning population drivers. I test whether 

density-dependence or environmental stochasticity (weather) drives mule deer population 

dynamics. The vital rate most influenced by density was recruitment, yet across most 

populations, weather was the predominant force affecting mule deer dynamics. These 

IPM’s will provide managers with a means to estimate population dynamics with 

precision and flexibility.   
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CHAPTER 1. DISSERTATION OVERVIEW AND INTRODUCTION 

 

A complex suite of biotic and abiotic processes drives ungulate population growth across 

varying environmental conditions. Our goal as ecologists is to understand and predict the 

effect of the environment in concert with management actions on population dynamics of 

animals, a particularly difficult task in highly variable environments. Across species, 

ungulate population growth is often driven by variation in recruitment (Gaillard et al. 

2000) modified by the interplay of summer vs. winter nutrition, weather, and predation 

(Nilsen et al. 2009). The population growth of my study species, mule deer (Odocoileus 

hemionus), is sensitive to adult female survival (Unsworth et al. 1999, Hurley et al. 

2011), but juvenile survival shows the widest variation, often in response to weather 

(Bishop et al. 2005), similar to juvenile survival across many ungulate species (Portier et 

al. 1998, Gaillard et al. 2000, Coulson et al. 2001). This variation in juvenile survival 

often drives mule deer population dynamics (Unsworth et al. 1999) and many other 

temperate ungulates (Festa-Bianchet and Smith 1994, Raithel et al. 2007). Recruitment 

may also vary spatially, depending on the effect of weather on nutritional quality 

(Pettorelli et al. 2005), winter energy expenditure (Bartmann et al. 1992, Parker et al. 

2009), and spatial variation in predation (Mackie et al. 1998, Bishop et al. 2009). This 

spatial variation suggests that site-specific ecotype productivity was modified by weather 

and local predation conditions (Lukacs et al. 2009). Given this complexity, a clear 

understanding of the interaction between forage quality, winter weather, and predation 
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risk is necessary to accurately predict population performance with environmental 

change. 

 Prediction, however, is complicated by many factors as ungulates exist over a 

wide range of environmental conditions, with their densities driven by a combination of 

these large-scale processes, life-history trade-offs and resource selection (Senft et al. 

1987, Bowyer and Kie 2006). Densities of ungulates are positively correlated with both 

primary productivity (Crete and Daigle 1999, Melis et al. 2009) and the spatial variation 

in forage because this increases access to high quality forage (Fryxell 1988, Wang et al. 

2006). Forage quality alone, however, does not determine ungulate density on landscapes 

with predation. Ungulates may adopt behavioral strategies to avoid predation, reducing 

the actual nutrition given the constraints of predation risk, resulting in a lower realized 

nutrition and thus lower growth rates (Hopcraft et al. 2010). Effects of predation are also 

strongest in lower productivity (Melis et al. 2009), and the degree to which predation is 

compensatory or additive depends on the interaction of forage quality and density 

(Bartmann et al. 1992, Ballard et al. 2001). Such trade-offs may also be influenced by 

both density-independent forces (i.e., weather) or density-dependence (Hopcraft et al. 

2010).  

 It has long been known that increasing density reduces the strength of selection 

for high-quality patches because of density-dependent competition for forage (Fretwell 

and Calver 1969, McLoughlin et al. 2010). It is through such density-dependent changes 

in habitat selection that changes in population dynamics ultimately occur, although the 

effects of density-dependent resource selection on populations are unclear for many 

ungulate species (McLoughlin et al. 2010). Despite the uncertainty about how density-
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dependence in resource selection translates to population growth, density dependence is 

perhaps the most important paradigm in ungulate population ecology (Eberhardt 2002, 

Bonenfant et al. 2009). As ungulate density increases under this paradigm, we expect 

declines in juvenile survival first, followed by fecundity, and finally, adult survival 

(Gaillard et al. 2000). Density-dependent changes in resource selection likely drive these 

widespread patterns in ungulate demography, but it has been challenging to link resource 

selection to fitness consequences (McLoughlin et al. 2010). Regardless, understanding 

the underlying mechanism of density effects on vital rates is difficult to measure because 

each rate is dependent on other vital rates. After decades of research on mule deer, 

scientists have been similarly unable to link habitat to population growth because of 

uncertainty in the relative role of summer versus winter forage quality, and the interacting 

effects of predation (Ballard et al. 2001). 

The wide annual variation of mule deer populations also poses a challenge for 

their conservation and management. Mule deer are an economically important harvested 

species in western North America necessitating intensive monitoring of population status. 

Because juvenile survival and recruitment are the most variable, these key vital rates have 

become the monitoring priority of wildlife managers attempting to predict changes in 

ungulate populations (e.g., Montana Adaptive Harvest Management 2001, Idaho Mule 

Deer Management Plan 2008, Lukacs et al. 2009). Neonate survival (birth to 6 months of 

age) may be adequately measured via age ratio surveys (December fawn ratios) when 

coupled with estimates of adult female age structure and age-specific fecundity (Harris et 

al. 2008). But wildlife managers must still rely on expensive radiotelemetry-based 

estimates of overwinter survival combined with population models to make ungulate 

http://fwp.mt.gov/fwpDoc.html?id=61831
http://fishandgame.idaho.gov/public/wildlife/planMuleDeer.pdf
http://fishandgame.idaho.gov/public/wildlife/planMuleDeer.pdf
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harvest decisions (White and Bartmann 1998, Montana Adaptive Harvest Plan 2001, 

Idaho Mule Deer Management Plan 2008). Another challenge is that wildlife managers 

must often submit harvest recommendations for the upcoming year by early January, 

limiting the information available on overwinter survival estimate at the time of season 

setting. Ideally, managers would benefit from some reliable way of predicting overwinter 

survival based on weather and an ecologically-based definition of ungulate habitat 

quality. Ultimately, population models that link summer forage quality and winter 

weather to populations are critically needed for understanding the ecology and 

management of ungulates. An applied goal of my Dissertation is to provide statistical 

tools to meet that need. The following chapters progressively identify the underlying 

mechanisms of mule deer population dynamics and then use these relationships to predict 

population growth, with the ultimate goal of improving harvest management.  

My Dissertation focuses on mule deer populations in Idaho, but my goal was to 

elucidate relationships applicable throughout western North America to improve 

management of this species. I also hope that my approach to develop large-scale 

predictive models of ungulate population dynamics can be expanded across species. I 

incorporated intrinsic (behavior, density) and extrinsic processes (weather, forage quality, 

and predation risk) into stochastic survival and population models to predict growth rates 

across a diverse range of habitat quality, predation, and weather conditions. In most 

chapters, I develop statistical models using large sample sizes (>2,000 individuals) of 

different age-classes of mule deer (juveniles, adult females) across large spatial scales 

usually from 6 to 13 populations over long temporal scales from 1995–2014.  These large 

http://fwp.mt.gov/fwpDoc.html?id=61831
http://fishandgame.idaho.gov/public/wildlife/planMuleDeer.pdf
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spatiotemporal datasets provide a unique opportunity to test fundamental and applied 

questions about mule deer ecology and management.  

In Chapter 2, I seek to understand the mechanisms driving fawn survival in 

winter, the most variable vital rate for mule deer across 13 populations of mule deer in 

Idaho. Despite the importance of nutrition, proximate causes of mule deer fawn mortality 

during winter is predation or malnutrition (Ballard et al. 2001, Hurley et al. 2011) in 

interaction with weather (Portier et al. 1998, Colman et al. 2001, Mech et al. 2001). 

Because of this interaction, the relative effects of predation and forage on ungulate 

survival are difficult to isolate (Kjellander et al. 2004, Pierce et al. 2004, Kauffman et al. 

2007, Bishop 2009). Recent field studies on ungulates, however, emphasized the critical 

importance of late summer and fall nutritional ecology to the population performance of 

large herbivores. Important barriers to understanding the complex influence of growing 

season dynamics on ungulate survival are how to disentangle correlated plant phenology 

metrics and the time series nature of NDVI data in a quantitative approach that describes 

variation in plant quality across an entire growing season or discriminates between sites. 

To solve these issues, we jointly used functional analysis (Ramsay and Silverman 2005) 

to characterize seasonal variation in NDVI curves and path analyses (Shipley 2009) to 

assess the interplay of plant phenology and winter severity and disentangled relationships 

of nutrition and weather and their effects on population dynamics of ungulates. 

 In Chapter 3, I explore prediction in both a management and ecological context by 

developing fawn survival models that balance precision, bias and generality across space 

and time (Levins 1966). The ecological relationships I illuminated from Chapter 2 were 

used to create predictive models testing both the importance of remotely-sensed summer 
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forage quality or winter snow conditions and the generality of models to predict winter 

fawn survival across a broad range of environments. One challenge in the development of 

predictive statistical models for survival is the complexity of dealing with integrating 

survival data across populations that are hierarchically structured in space and time 

(Lukacs et al. 2009). My solution was to use Bayesian hierarchical modeling, enabling 

the development of spatially structured, hierarchical and flexible statistical models (Royle 

and Dorazio 2006, Kery and Schaub 2012) which are inherently well-suited to prediction 

of animal movements and population ecology (Heisey et al. 2010, Geremia et al. 2014, 

Mouquet et al. 2015). I then developed general models appropriate for use by managers 

to estimate fawn survival in the absence of annual radiocollar data. 

 Chapter 4 combines predation risk with resource selection to describe potential 

reductions in carrying capacity of the landscape. Because of the challenge of estimating 

predation risk at large spatial scales, I focus on two populations in southern Idaho where I 

developed fine-scale measures of predation risk to mule deer fawns from their main 

predator, coyotes (Canis latrans). Assuming that predation risk can be spatially 

decomposed to depict the probability of death given a set of landscape features (Lima and 

Dill 1990, Hebblewhite 2005, Kauffman et al. 2007), maternal females should select 

lower risk habitats. However, if exclusive space use of adult females during fawn rearing 

created a despotic distribution with dominant females occupying both high forage quality 

and low predation risk habitats, fawn survival sink may be created as subordinate female 

mule deer are forced into lower quality forage and increased predation risk habitat at 

higher deer density. This density-dependent resource selection may reduce population 

productivity, negating the value of additional productive females on the landscape as total 
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adult female numbers increase. To test this hypothesis, I first modeled occurrence of 

coyotes with a spatial model to estimate predation risk, and evaluate the relationship of 

coyote predation risk to neonate mule deer mortality. Next, I tested whether this 

relationship changed as mule deer populations increased and higher quality habitats were 

filled. I use two Game Management Units, one with active coyote removal (removal) and 

one without (reference; as described in detail in Hurley et al. 2011), predicting the effect 

of density would be increased in the reference (no coyote removals) area. In keeping with 

this prediction, survival of mule deer fawns did not change in the reference area and 

declined in the removal area with increasing mule deer density. Cause-specific mortality 

from coyotes, however, increased with deer density in the reference and to a lower degree 

in the removal area suggesting density-dependence driven by expansion of deer into 

lower quality habitat that was highly selected by coyotes. Thus overall changes in 

density-dependent mortality were compensatory. This enforces the idea that density 

dependence and compensatory mortality may operate on a despotic distribution caused by 

conspecific exclusion of maternal females from low predation risk habitats.  

Through the use of integrated population models (IPM, Schaub et al. 2007) in 

Chapter 5, I  then apply the results from the previous chapters to model population 

dynamics in six of my study areas with consistently high quality vital rate data. I use 

these models to understand the relative contribution of density-dependent and density-

independent drivers of ungulate population dynamics, as well as their possible 

interaction. Many processes, such as predation or weather, can mimic density dependence 

by acting on vital rates in the same progression as expected by density often through 

density-climate interactions (Saether 1997, Clutton–Brock and Coulson 2002, 



  

8 

 

 

Hebblewhite 2005, Hurley et al. 2011). To separate the effects of weather versus density, 

I used an IPM approach to identify the properties of mule deer populations that would 

suggest regulation by density dependence or limitation by weather. I estimated the effect 

of density with the addition of a density term on each of our measured vital rates, 

recruitment (fawn ratios in December), winter fawn survival, and adult female survival. I 

then added weather covariates identified as important in previous chapters to the time 

varying estimate of winter fawn survival to increase model fit and test if density 

dependence is evident in the populations or if weather was mimicking the effect of 

density dependence. In all chapters, my search for factors that regulate or limit mule deer 

population size provides tools for harvest management and increases understanding 

population ecology of a high value ungulate. 

Throughout the rest of this Dissertation, I use the second-person voice, we, 

reflecting the highly collaborative nature of my Dissertation research. I recognize the 

contributions of my co-authors in each chapter. Moreover, each chapter is formatted for 

publication in a different peer-reviewed journal, and Chapter 2 is already published in 

Philosophical Transactions of the Royal Society B. Chapter 3 is formatted with the intent 

to submit to Journal of Wildlife Management, Chapter 4 for submission to Biology 

Letters, and Chapter 5 for submission to Oecologia.  
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INTRODUCTION  
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 This chapter is published as: Hurley, M. A., M. Hebblewhite, J. M. Gaillard, S. Dray, K. A. 

Taylor, W. K. Smith, P. Zager, and C. Bonenfant. 2014. Functional analysis of 

normalized difference vegetation index curves reveals overwinter mule deer survival is 

driven by both spring and autumn phenology. Philosophical Transactions of the Royal 

Society of London B: Biological Sciences 369:20130196. 
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A major challenge for the application of remote sensing to monitoring biodiversity 

responses to environmental change is connecting remote sensing data to large-scale field 

ecological data on animal and plant populations and communities (Turner et al. 2003). 

Large herbivores such as ungulates are an economically and ecologically important group 

of species (Gordon et al. 2004) with a global distribution and varied life-history responses 

to climate that are very sensitive to the timing and duration of plant growing seasons 

(Senft et al. 1987). Until recently, monitoring plant phenology and the nutritional 

influences on ungulate life histories have been impossible at large spatial scales due to 

the intense effort necessary to estimate even localized plant phenology. The remote 

sensing community has largely solved this issue with by partnering with ecologists to 

provide circumpolar remotely sensed vegetation indices, fueling the recent explosion of 

the integration of remote sensing data into wildlife research and conservation (Turner et 

al. 2003, Pettorelli et al. 2005c, Pettorelli et al. 2011). With satellites like AVHRR, 

MODIS, SPOT (Huete et al. 2002, Running et al. 2004), and growing tool sets for 

ecologists (Dodge et al. 2013), derived metrics are being commonly used to analyze the 

ecological processes driving wildlife distribution and abundance (Pettorelli et al. 2011). 

Indices such as the Normalized Difference Vegetation Index (NDVI) and the Enhanced 

Vegetation Index (EVI) strongly correlate with vegetation productivity, track growing 

season dynamics (Zhang et al. 2003, Zhao et al. 2005) and differences between landcover 

types at moderate resolutions over broad spatio-temporal scales  (Huete et al. 2002). 

Indices extracted from NDVI correlate with forage quality and quantity (Hamel et al. 

2009b, Cagnacci et al. 2011, Pettorelli et al. 2011) and thus have become invaluable for 

indexing habitat quality for a variety of ungulates (Hebblewhite et al. 2008, Hamel et al. 
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2009b, Ryan et al. 2012). For example, only this technology can track a landscape scale  

plant growth stage that ungulates often select to maximize forage quality (Fryxell et al. 

1988). Because of this spatial and temporal link to forage quality, NDVI can be predictive 

of ungulate nutritional status (Hamel et al. 2009b), home range size (Morellet et al. 

2013), migration and movements (Hebblewhite et al. 2008, Cagnacci et al. 2011, Sawyer 

and Kauffman 2011). An increasing number of studies have also linked NDVI to body 

mass and demography of a wider array of vertebrates. While there have been recent 

reviews of the link between NDVI and animal ecology (Pettorelli et al. 2011), few 

provided examples where fall phenology was considered. We conducted a brief review of 

recent studies to expose readers working at the interface of remote sensing and 

biodiversity conservation to the preeminent focus on spring phenology using a-priori 

defined variables. From the literature review we performed, 16 out of 22 case studies in 

temperate areas focused on spring, while 3 used a growing season average, and only 3 

considered both spring and fall phenology (Table 2-1). Most studies were based on NDVI 

metrics describing the active vegetation period, such as; start, end, and duration of 

growing season (Table 2-1). Moreover, all but one (see Table 2-1, Tveraa et al. 2013) 

were based on a-priori defined NDVI metrics assumed to provide a reliable description of 

plant phenology through the growing season. From this empirical evidence so far 

reported (see Table 2-1 for details) spring phenology appears as an important period in 

temperate systems. However, recent field studies on ungulates emphasized the critical 

importance of late summer and fall nutritional ecology, suggesting vegetation conditions 

during this period will also influence population performance of large herbivores. Our 
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brief review complements that of Pettorelli et al. (2011) and illustrates the importance of 

considering phenological dynamics over the entire growing season.  

Despite this focus on spring phenology, the best existing approach is to use a number 

of standardized growing season parameters derived from NDVI describing the onset, 

peak, and cessation of plant growth. Unfortunately, these useful parameters are often 

highly correlated. In Wyoming for example, the start of the growing season was delayed 

and the rate of green-up was slower than average following winters with high snow cover 

(2013), but these ecologically different processes were highly correlated. Thus, an 

important barrier to understanding the complex influence of growing season dynamics on 

ungulate survival is how to disentangle correlated plant phenology metrics. Another 

underappreciated barrier is the challenge of harnessing the time series nature of NDVI 

data, which requires specific statistical tools; no previous study has attempted to describe 

how the NDVI function varies across an entire growing season or discriminates between 

sites. To fill this important gap, the joint use of functional analysis (Ramsay and 

Silverman 2005) to characterize seasonal variation in NDVI curves and path analyses 

(Shipley 2009) to assess both direct and indirect effects of plant phenology offers a 

powerful way to address entangled relationships of plant quality and their effects on 

population dynamics of ungulates. 

Pioneering experimental work on elk (Cervus elaphus) (Cook et al. 2004)has led to a 

growing recognition that in temperate areas, late summer and fall nutrition are important 

drivers of overwinter survival and demography of large herbivores (Cook et al. 2004, 

Monteith et al. 2013). Summer nutrition first affects adult female body condition 

(Monteith et al. 2013), which predicts pregnancy rates (Cook et al. 2004, Stewart et al. 
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2005, Monteith et al. 2013), overwinter adult survival rates (Bender et al. 2007, Monteith 

et al. 2013), litter size (Tollefson et al. 2010), as well as birth mass and early juvenile 

survival (Lomas and Bender 2007, Bishop et al. 2009, Tollefson et al. 2010). The 

addition of lactation during summer increases nutritionally demand and thus is an 

important component of the annual nutritional cycle (Sadleir 1982, Simard et al. 2010). 

Nutrition during winter (energy) minimizes body fat loss (Bishop et al. 2009), but rarely 

changes the importance of late summer and fall nutrition for survival of both juveniles 

and adults (Cook et al. 2004). Winter severity then interacts with body condition to shape 

winter survival of ungulates (Singer et al. 1997, Monteith et al. 2013), and can, in severe 

winters, overwhelm the effect of summer/fall nutrition through increase energy 

expenditure, driving overwinter survival of juveniles.  

Like most other large herbivores of temperate and northern areas, mule deer 

(Odocoileus hemionus) population growth is more sensitive to change in adult female 

survival than to equivalent change in other demographic parameters. Survival of adult 

female mule deer, however, tends to vary little (Unsworth et al. 1999, Hurley et al. 2011); 

see (Gaillard and Yoccoz 2003) for a general discussion. In contrast, juvenile survival 

shows the widest temporal variation in survival, often in response to variation in weather 

(Portier et al. 1998, Gaillard et al. 2000, Coulson et al. 2001) and population density 

(Bartmann et al. 1992). This large variation in juvenile survival, especially overwinter, 

often drives population growth of mule deer (Unsworth et al. 1999, Bishop et al. 2009, 

Hurley et al. 2011). Fawns accumulate less fat than adults during the summer, which 

increases their mortality because variation in late summer nutrition interacts with winter 

severity (White and Bartmann 1998, Unsworth et al. 1999). While previous studies have 
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shown that spring plant phenology correlates with early juvenile survival in ungulates, 

summer survival is not necessarily more important than overwinter survival. Yet, to date, 

the effect of changes in fall plant phenology on overwinter juvenile survival remains 

unexplored. 

Our first goal was to identify the annual variation of plant primary production and 

phenology among mule deer population summer range, measured using NDVI curves of 

the growing season.  Second, with annual plant phenology characterized, we assessed 

both direct and indirect (through fawn body mass) effects of these key-periods on 

overwinter survival of mule deer fawns. We used a uniquely long-term (1998 – 2011) and 

large-scale dataset  to disentangle plant phenology effects on mule deer survival, 

encompassing 13 different populations spread over the entire southern half Idaho, USA 

while most previous studies have focused only within 1 or 2 populations. These 

populations represent diversity of elevations, habitat quality, and climatological 

influences. We focused on overwinter fawn survival because previous studies (Unsworth 

et al. 1999, Hurley et al. 2011) have demonstrated that this parameter is the primary 

driver of population growth.  

Mysterud et al. (2008) used a path analysis to separate independent effects of summer 

versus winter on body mass. We present a novel methodological framework in which we 

analyze NDVI measurements using functional principal component analysis to 

discriminate among study areas in Idaho with differing fall and spring phenology. We 

then use hierarchical Bayesian path analysis to identify factors of overwinter mule deer 

survival. Based on previous studies, we expected that plant phenology should be strongly 

associated with body mass of mule deer at 6 months of age, and that body mass and 
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winter severity should interact to determine overwinter survival. We expected direct 

effects of plant phenology on winter survival to be weaker than winter severity because 

severe conditions may overwhelm nutritional improvements to fawn quality. We also 

expected early winter severity would affect overwinter fawn survival more than late 

winter (Hurley et al. 2010).  

MATERIALS AND METHODS 

(a) Study Areas 

The study area spanned ~ 160,000km
2
, representing nearly the entire range of climatic 

conditions and primary productivity of mule deer in Idaho. We focused on 13 populations 

with winter ranges corresponding to 13 Idaho game management units (GMUs); hereafter 

we use GMU synonymous with population (Figure 2-2). There are three main habitat 

types (called ecotypes hereafter) based on the dominant overstory canopy species on 

summer range; coniferous forests, shrub-steppe, and aspen woodlands. The populations 

were distributed among the ecotypes (Figure 2-2) with 5 populations in conifer ecotype 

(GMUs 32, 33, 36B, 39, 60A), 2 in shrub-steppe ecotype (GMUs 54, 58), and 6 in aspen 

(GMUs 56, 67, 69, 72, 73A, 76). Elevation and topographic gradients within GMUs 

affect snow depths and temperature in winter, and precipitation and growing season 

length in the summer, with elevation increasing from the southwest to the northeast. 

Conifer GMUs ranged in elevation from 1001 – 1928m, but most were <1450m. Winter 

precipitation (winter severity) varied widely (from 10 to 371mm) in coniferous GMUs. 

Coniferous ecotype summer ranges are dominated by conifer species interspersed with 

cool season grasslands, sagebrush, and understory of forest shrubs. Shrub-steppe GMUs 
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ranged from 1545 to 2105 m, with winter precipitation from 24 to 105 mm. Summer 

range within shrub steppe ecotypes was dominated by mesic shrubs (e.g., bitterbrush 

(Purshia tridentate), sagebrush (Artemisia spp.), rabbitbrush (Chrysothamnus spp.), etc.). 

Aspen ecotype GMUs were located in the east and south with winter use areas ranging 

from 1582 to 2011m, with 5 of the 6 GMUs above 1700m with early winter precipitation 

ranging from 25 to 146mm. In summer, productive mesic Aspen (Populus tremuloides) 

woodlands were interspersed with mesic shrubs. 

(b) Mule deer monitoring 

We radiocollared mule deer fawns at 6 months of age in the 13 GMUs (Figure 2-1), 

resulting in 2,315 mule deer fawns from 1998-2011. We captured fawns primarily using 

helicopters to move deer into drive nets (Beasom et al. 1980), but occasionally by 

helicopter netgun (Barrett et al. 1982) or clover traps (Clover 1954). Mule deer capture 

and handling methods were approved by IDFG (Animal Care and Use Committee, IDFG 

Wildlife Health Laboratory) and University of Montana IACUC (protocol #02-

11MHCFC-031811). Fawns were physically restrained and blindfolded during processing 

with an average handling time of < 6 minutes. We measured fawn mass to the nearest 0.4 

kilogram with a calibrated spring scale. Collars weighed 320 - 400 grams (< 2% of deer 

mass), were equipped with mortality sensors and fastened with temporary attachment 

plates or surgical tubing, allowing the collars to fall off the animals after approximately 

8-10 months. We monitored between 20 and 34 mule deer fawns in each study area for a 

total of 185 to 253 annually from 1998-2011.  
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We monitored fawns with telemetry for mortality from the ground every 2 days 

between capture and 15 May through 2006, and then once at the 1
st
 of each month during 

2007-2011. We located missing fawns aerially when not found during ground monitoring. 

When a mortality signal was detected, we determined cause of death using a standard 

protocol (Wade and Bowns 1982).  In addition, we kept a minimal annual sample of ~ 

600 adult females with radiocollars, using the same capture techniques as fawns. We used 

the composite sample of monthly aerial and mortality locations over the entire study 

period from these deer to estimate mule deer population ranges. 

(c) Defining Population Ranges of Mule Deer 

We used the mule deer winter and summer ranges for each GMU as the main spatial units 

of analysis, and we extracted NDVI data from summer range and winter weather from 

winter range for each year from each population. We combined relocation points for all 

individuals and years in a single study site to estimate a 95% adaptive kernel home range 

for both summer and winter (Worton 1989) for mule deer captured within a population.  

All deer populations were migratory with an average winter range size of 430 km
2
 and 

average summer range size of 3360 km
2
. Migratory periods, 1 April to 1 June and 1 

October to 15 November, were excluded from the home range estimates and remaining 

animal locations between 1 June and 30 September were used for summer, 1 December to 

31 March for winter. Climate and habitat information was then summarized by the 

aggregate home range of radio-collared deer for winter and summer within each 

population. 

(d) Functional Analysis of NDVI curves 
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We measured growing season phenology for each population-year using 1-km resolution, 

7-day composite AVHRR NDVI data obtained from the NOAA-14,-16, and -17 AVHRR, 

and maintained by the USGS (http://phenology.cr.usgs.gov/index.php) (Eldenshink 

2006).  AVHRR NDVI data extends over the full temporal extent of our mule deer 

monitoring effort and has been shown to correspond well with MODIS NDVI data 

(Eldenshink 2006). Radiometric sensor anomalies, atmospheric effects, and geometric 

registration accuracies were previously accounted for according to Eldenshink (2006). 

Further, the data were accompanied by a cloud contamination mask, which was generated 

using an adaptation of the cloud clearing of AVHRR data (CLAVR) algorithm (Worton 

1989). We then rescaled the processed data from the USGS 0-200 classification, with 100 

corresponding to vegetated/nonvegetated threshold to the standard NDVI scale of -1 to 1, 

with 0 as the threshold.  All cloud contaminated pixels were thus removed by applying 

this previously generated cloud contamination mask, and the resulting data gaps were 

infilled using a simple temporal interpolation method (Zhao et al. 2005). Finally, a 

minimum NDVI threshold value of 0 was applied to define periods of little to no 

photosynthetic activity and filter any pixels containing ice and snow from the analysis. 

Since phenological changes in NDVI only directly represent ungulate forage dynamics in 

non-forested vegetation types, we extracted NDVI values from only, grass and shrub 

vegetation types (not burned within 5 years), which we characterized using SAGEMAP 

landcover data (2005 USGS, Forest and Rangeland Ecosystem Science Center, Snake 

River Field Station, Boise, ID). Masking in this fashion directly parallels nutritional 

ecology as mule deer are adapted to feeding in open vegetation types and actively select 

these types during the growing season (Hamlin and Mackie 1989, Mackie et al. 1998, 

http://phenology.cr.usgs.gov/index.php
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Thiel 2012).  To encompass the entire growing season for each population-year, but 

excluding winter anomalies caused by varying snow condition, we restricted NDVI data 

to 15 March to 15 November. This time period provided a standardized measure of 

growing season while capturing the variability both within and between populations for 

comparing curves.  

We first assessed among population-year variation in NDVI curves to test direct 

and indirect (i.e., through body mass) effects of changes in plant phenology on 

overwinter survival of fawns. In most previous studies (see table 2-1 for a review), 

ecologists have either used a-priori summary statistics of NDVI. Unfortunately, this 

approach has led to the use of only a few variables to define the growing season in any 

ecosystem, thus to more completely assess vegetation phenology, we proposed a new 

approach to identify the key-periods along the NDVI curve. Instead of defining these 

periods a priori, our approach is based on a multivariate functional analysis of variation 

in observed NDVI curves. 

We used a functional principal component analysis (FPCA), a type of functional 

data analysis (FDA) to analyze among-population and among-year variation in NDVI 

curves. FDA is specifically designed to characterize information in multivariate time 

series (Ramsay and Silverman 2005). FPCA techniques are relatively recent (Ramsay and 

Silverman 2005) and surprisingly rarely used in ecology and remote sensing [but see 

(Embling et al. 2012)] even if they offer a very powerful way to analyze temporal 

ecological data such as NDVI time series. FPCA was applied to NDVI curves to identify 

spatiotemporal patterns of vegetation changes. While a-priori defined metrics estimated 

from NDVI data have occasionally been analyzed using PCA (Herfindal et al. 2006), 
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standard PCA is not optimal for time series data. In PCA, weeks would be considered as 

independent vectors of values whereas FPCA explicitly accounts for the chronology of 

weeks by treating the statistical unit as the individual NDVI curve. This ensures that the 

patterns identified by FPCA are constrained to be temporal trends within the growing 

period (i.e., portions of the curve) and not due to few independent NDVI values. FPCA 

produces eigenvalues (measuring variation explained by each dimension) and principal 

component scores for sampling units (summarizing similarities among NDVI curves). 

However, eigenvectors are replaced by eigenfunctions (harmonics) that show the major 

functional variations associated to each dimension.  

To facilitate the application of FPCA by ecologists and remote sensing scientists 

we provided in electronic supplementary materials the data and the full R code (based on 

the fda package) to reproduce the analysis performed in the paper. As these methods are 

poorly known in ecology and remote sensing, we also provided an expanded description 

of the mathematical theory but the reader could consult the original books (Ramsay and 

Silverman 2005, Ramsay et al. 2009) for additional information. 

 Sampling units (population-years) were partitioned using the k-means algorithm 

applied on the first two principal component scores. We computed the Calinski & 

Harabasz criterion for partitions between 2 and 10 groups and select the optimal number 

of clusters that maximizes the criterion. We also computed the amount of variation in the 

first two principal component scores (NDVI curves) that were explained by space (i.e., 

population) and time (year). This allowed us to understand which source of variation 

contributed most to differences in growing season dynamics. We then used principal 

component scores in subsequent analyses as explanatory variables of mule deer fawn 
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mass and survival. 

(e) PRISM Weather Data 

We characterized winter (1 November to 31 March) weather conditions using 4km 

gridded PRISM observations of minimum monthly temperature and total monthly 

precipitation from 1995 – 2011 (Daly et al. 1997)(available from 

http://www.prism.oregonstate.edu). Temperature and precipitation data were averaged 

across the winter range for each population, and then summed (averaged) across months 

for precipitation (temperature) to produce climate covariates that represented measures of 

winter severity, respectively. We produced variables for early winter (November – 

December) and late winter (January-March) for both precipitation and temperature. These 

variables were highly correlated (r > 0.4), thus we selected the variable with the highest 

first order correlation to our response variable, overwinter survival of fawns, as our 

winter severity index. 

(f) Environmental Effects on Body Mass and Overwinter Survival of Fawns 

We estimated population- and year-specific estimates of overwinter fawn survival (from 

16 December to 1 June) using staggered Kaplan-Meier non-parametric survival models. 

We then employed path analysis (Shipley 2009) to test the population-level effects of 

body mass and winter weather, and to tease apart the direct from the indirect effects 

(through fawn body mass, see Figure 2-3) of key periods of NDVI on overwinter 

survival. For the path analysis, we transformed our response variable with an empirical 

logit function (Warton and Hui 2010) because average survival for each population-year 

is a proportion bounded between 0 and 1 (Zar 1995). We used mass of female fawns in 

http://www.prism.oregonstate.edu/
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December to measure the cohort quality of the birth year (Hamel et al. 2009a) and 

eliminate the effect of  sexual size dimorphism (Hurley et al. 2011). A first, indirect, 

mechanistic link between environmental conditions early in life and overwinter survival 

could be that variation plant phenology and nutritional quality affects the body 

development of fawns, which in turn, drives overwinter survival. An alternative could be 

that variation in plant phenology is directly related to overwinter survival as a result of 

the availability and quality of winter forage. Because winter precipitation was recorded in 

November-December at the same time as the weighing of fawns, we could not test for an 

indirect effect of winter precipitation through body mass on overwinter survival. Our 

model included a population effect entered as a random factor on the intercept to account 

for the repeated measurements of overwinter survival in different years within a 

population. 

 We used a Bayesian framework to fit the path analyses to our data (Gelman and 

Hill 2007). We used non-informative normal (mean of 0 and a standard deviation of 100) 

and uniform (range between 0 and 100) priors for the regression coefficients and variance 

parameters respectively. Using JAGS (Plummer 2003), we generated 50,000 samples 

from Monte-Carlo Markov Chains (MCMC) to build the posterior distributions of 

estimated parameters after discarding the first 5,000 iterations as a burn in. We checked 

convergence graphically and based on Gelman's statistics (Gelman and Hill 2007). 

Estimated parameters were given by computing the mean of the posterior distribution, 

and the 2.5th and 97.5th percentiles of the distribution provided its 95% credibility 

interval. We considered a variable as statistically significant if the credibility interval of 

its posterior distribution excluded 0. We assessed the fit of the model by computing the 
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squared correlation coefficient between observed and predicted values (Zheng and 

Agresti 2000). Finally, to compare the relative effect sizes of the explanatory variables on 

overwinter survival we replicated the analyses using standardized coefficients. 

RESULTS 

(a) Functional Analysis of NDVI Curves 

Functional PCA analysis of NDVI data led to the identification of two independent 

eigenfunctions (hereafter FPCA components), which reflected contrasting patterns of 

plant phenology in spring and fall. Both FPCA components corresponded to continuums 

of increasing NDVI intensity, in early and late growing seasons, and were used as 

explanatory variables of overwinter survival of mule deer fawns.  

 The first FPCA component described the late season phenology, after peak value 

and accounted for 48.9 % of the total variation in NDVI curves. The second FPCA 

component represented the early season phenology and accounted for approximately half 

as much variation as the first FPCA component (27 %; Fig 2-1).  FPCA components can 

be interpreted as the amount of deviation from the overall average NDVI curve in terms 

of overall primary productivity at different times within the growing season. For 

example, high FPCA component 1 scores mean both high primary productivity in open 

habitats in fall, but also a longer fall growing season compared to lower FPCA 

component 1 scores (Figure 2-1a, c). Similarly, positive values of FPCA component 2 

reflect both higher spring primary productivity and early onset of plant growth (e.g., Fig 

2-1b, c; Type 4 dark green).   
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Combining both continuums in a factorial plane allowed us to distinguish five 

NDVI types of curves in reference to the overall mean trend (Figure 2-1c). For example, 

NDVI in fall was close to the average for the NDVI curve type 2 (dark blue, Figure 2-1c) 

but NDVI in spring was the lowest of all curve types in Figure 2-1c. Conversely, NDVI 

curve type 3 (light green, Figure 2-1c) has NDVI values above average in both spring and 

fall. The NDVI curve type 1 (light blue, Figure 2-1c) has the highest NDVI in fall, while 

NDVI curve type 5 (red, Figure 2-1c) had lowest fall productivity. Generally, a given 

population displayed one NDVI curve type, with some extreme values belonging to a 

different type (Figure 2-2, Appendix A Figure 2-S1). Decomposition of the among-

population and among-year variance in NDVI curves in fact shows that most (73.8 %) of 

the observed variation in NDVI curves was accounted for by population (i.e., spatial 

variation), and much less (20.8 %) by annual variation within a population, with a high 

degree of synchrony between populations within a year (only 5.4 % of the variation in 

NDVI curves is unexplained). This suggests that the 5 NDVI types we identified (Figure 

2-1) strongly reflect the distribution of ecotypes and vegetation characteristics among 

populations (Figure 2-2).  

 (b) Environmental Effects on Body Mass and Overwinter Survival of Fawns 

The average body mass of female fawns in December was 34.0 kg (SE = 2.55). In 

agreement with our hypothesis, body mass of 6-month-old fawns was positively related 

to NDVI in both spring and fall (Fig 2-3 & 2-4). From the estimated standardized 

regression coefficients, the effect of NDVI in fall (FPCA component 1) on autumn body 

mass of fawns (standardized  = 0.694, SE = 0.209) was greater the effect of NDVI in 
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spring (FPCA component 2; standardized  =0.652, SE = 0.206). FPCA component in the 

fall explained more variance in body mass than traditional estimates of phenology such 

as, start, end or peak date of growing season (Appendix A Table 2-S3).  The fall was thus 

of more importance to the body development of mule deer fawns at the onset of winter 

than spring (Fig 2-3 & 2-4).  

 The annual overwinter survival of mule deer fawns averaged 0.55 (SE = 0.24, 

range = 0 to 0.94) across populations. Our best model accounted for 44.5% of the 

observed variation in overwinter survival, including the additive effects of autumn body 

mass of female fawns, early winter precipitation, and of spring and fall NDVI. As 

expected when mean body mass reflects the average demographic performance of a given 

cohort, the annual overwinter survival of fawns was associated positively with the mean 

cohort body mass in late autumn (Figure 2-3 & 2-5A).  Total precipitation during early 

winter from November to December (ranging from 11 to 372 mm) was associated with 

decreased fawn survival (Figure 2-3 & 2-5B). Once the effect of body mass and winter 

precipitations were accounted for, spring had negative impacts on the overwinter survival 

of fawns (Figure 2-3, 2-5D), so that survival was lower with higher NDVI during the 

spring plant growth season. Fall was not significantly related to overwinter survival 

beyond the positive effect on body mass. Winter precipitation has the greatest effect size 

on overwinter survival of fawns (standardized  = -1.138, SD = 0.200), followed by 

spring (standardized  = -0.587, SD = 0.217) and fall (standardized  =-0.369, SD = 

0.247), while fawn body mass in fall has the smallest relative effect size (standardized  

= 0.350, SD = 0.146). The observed relationships between environmental conditions and 
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overwinter survival of fawns differed slightly among populations but differences were not 

statistical significance (Appendix A Figure 2-S2). 

DISCUSSION 

Our results linked variation in observed plant phenology to body mass and survival of 

juvenile mule deer during winter across populations and years, demonstrating the benefits 

of connecting remote sensing and biological information to understand consequences of 

environmental change on biodiversity. We used a new statistical approach to identify 

plant phenology from NDVI curves encompassing the entire growing season.  Previous 

studies have reported effects of plant phenology on body mass and demographic 

parameters in several species of mammals and birds (see Table 2-1 for a review).  

However, all these studies but (Tveraa et al. 2013)’s one were based on a-priori defined 

metrics mostly focusing on indexes of spring phenology, thus spring metrics appear to 

explain population parameters, but the relative role of late plant growth season has rarely 

be investigated. Our approach provides a compelling example and motivation for 

functional analysis of remote sensing derived measures of plant growth as a first step to 

help identify plant phenological periods most affecting population dynamics of animals.  

Our results emphasized that the relative role of spring versus fall phenology is 

unclear for ungulate species adapted to more arid environments. By defining the period’s 

a-posteriori, we found that mule deer fawns survived better in populations with higher 

NDVI during fall, and thus longer fall growing seasons.  The effect size of fall NDVI was 

stronger than the effect size of spring NDVI for predicting 6-month old body mass. Body 

mass was positively related to overwinter survival, but precipitation during early winter 
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decreased survival with an effect size almost 3 times as strong as early winter body mass, 

similar to other studies of winter ungulate survival (Bartmann 1984, Bishop et al. 2005, 

Hurley et al. 2011). Previous studies on large herbivores reported an effect of the 

preceding winter conditions when the juvenile was in utero (Post et al. 1997, Herfindal et 

al. 2006, Mysterud et al. 2008, Tveraa et al. 2013), or an effect of spring conditions 

(Herfindal et al. 2006) on body mass. The patterns of variation in NDVI curves translated 

to spatial variation in plant growth during fall, and hence mule deer body mass and 

survival. First, we found almost twice as much variation in the NDVI curves occurred in 

the fall (FPCA component 1, Figure 2-1a) compared to spring (FPCA component 2, 

Figure 2-1a).  Thus, plant phenology during the fall was more variable than spring in our 

semi-arid system.  Second, we found almost three times the variation in NDVI curves 

was explained by spatial variation among populations in a given year compared to 

among-year variation. The high proportion of the variance explained among populations 

indicates that variation among NDVI curves within a population was consistent year-to-

year and also synchronous between units within a year.  These patterns of stronger 

variation during fall (vs. spring) and among populations (vs. among years) contributed to 

fall NDVI having double the effect size on body mass, and hence survival.  Thus, the 

most variable period of the growing season (e.g. fall) had the strongest effect size on 

mass and survival. These results mirror results from studies of just the spatial variance in 

survival (Lukacs et al. 2009) and suggest that plant phenology may also synchronize 

population dynamics. With the recent focus on fall nutrition of elk (Cook et al. 2004), 

however, many ungulate managers in North America are focusing increasingly on fall 

nutrition.  Our results emphasize that, at least for large herbivores, focusing a priori on 
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just one season, spring or fall, without explicit consideration of the spatiotemporal 

variation in the entire curve of plant phenology could be misleading.  

 Forage availability for large herbivores varied by vegetation cover type, 

precipitation, and temperature during the growing season (Marshal et al. 2005, Stewart et 

al. 2005). Increased rainfall in summer, reflected in increased NDVI in fall, will promote 

growth of forbs (Marshal et al. 2005) a highly selected forage for mule deer (Hobbs et al. 

1983, Marshal et al. 2005) and can promote new growth in fall germinating annual 

graminoids (e.g., Cheatgrass Bromus tectorum) and delay senescence, prolonging access 

to higher quality forage (Hebblewhite et al. 2008). Increased summer-fall nutrition 

improved calf and adult female survival, fecundity rates, and age of first reproduction in 

captive elk (Cook et al. 2004). Rainfall during the growing season also increases quality 

and quantity of winter forage (Marshal et al. 2005), which increases survival of fawns 

and adult female mule deer (Bishop et al. 2009).  Tollefson et al. (2010) showed that 

summer forage has the greatest impact on mule deer juvenile survival and overall 

population growth rate in a penned experiment in eastern Washington, USA.  In our study 

area, effects of climate and plant phenology certainly varied across our southeast to 

northwest gradient (electronic supplemental materials), but will require individual-level 

analyses of individual radiocollared mule deer to most clearly separate out local 

influences on overwinter survival.  Therefore, especially in arid or semi-arid systems, we 

expect that future studies will identify strong signatures of fall NDVI and climate on 

demographic parameters of large herbivore populations, similar to our results.  

One obvious difference between our arid study system and previous studies of NDVI 

and large herbivores is that NDVI curves were not a classic bell shape. Instead, plants in 
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open-habitats had a left-skewed growth curve, with a rapid green up in spring, but then a 

long right tail in the NDVI distribution, and, occasionally, secondary growth peaks in late 

summer and fall (e.g., Figure 2-1c).  Most other studies that examined NDVI curves 

found more symmetrical shapes, with a rapid plant green up and senescence (Herfindal et 

al. 2006, Pettorelli et al. 2007). However, (Martinez-Jauregui et al. 2009) found the 

classic bell-shaped NDVI curve for Norwegian and Scottish Red deer (Cervus elaphus), 

but a similarly earlier and flatter NDVI curve in southern Spain. We believe our right-

skewed fall growing season dynamics may be characteristic of arid or semi-arid systems 

where precipitation and growing seasons cease during summer.  Nonetheless, the 

variability among studies in the shape of the NDVI curves emphasize the importance of 

identifying key periods of the growing season a-posteriori. 

One unexpected result from our study was the negative direct effects of spring NDVI 

on overwinter survival of mule deer fawns, in contrast to the stronger positive effect of 

both spring and fall NDVI on body mass, and of body mass on overwinter fawn survival.  

There could be several competing explanations for this puzzling result. First, despite the 

power of path analysis at disentangling complex relationships (Shipley 2009), there could 

still remain some confounding effects of body mass or winter severity. Although we 

attempted to control for spatial variability with random effects of study site, there could 

also be negative covariance between winter severity, which, because spring NDVI is 

correlated to winter severity of the preceding winter (Christianson et al. 2013), could lead 

to negative correlation between spring NDVI and subsequent winter severity.  The effect 

of this general relationship may downscale to study site differently if snow depth passes a 

threshold where few fawns survive regardless of mass, as is the case sporadically in some 
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of our higher elevation study sites (67, 69, 72) that typically display the most productive 

NDVI curve types. Mysterud and Austrheim (Mysterud and Austrheim 2013) provide a 

very plausible explanation based on the negative effect of a later spring (Axis 2) will 

increase winter survival through prolong access to high quality forage. Alternatively, 

viability selection operating on mule deer cohorts may explain this pattern (Fisher 1930). 

Counter-intuitively, if good spring growing conditions enhance summer survival, a large 

proportion of the cohort will survive until the onset of the winter, including frail (Vaupel 

et al. 1979) individuals that would experience increased mortality during winter (Wilson 

and Nussey 2010), and the opposite during harsh springs. As individual early mortality in 

populations of large herbivores is tightly linked with maternal condition (Gaillard et al. 

2000), fawns surviving to the winter will be mostly high quality fawns enjoying high 

maternal condition. Those fawns would thus be expected to be robust enough to survive 

winter. Bishop et al. (Bishop et al. 2009) suggested this exact viability selection process 

for mule deer fawns in Colorado, supporting our interpretation of this counterintuitive 

spring NDVI effect. Viability selection could also be compounded through the interaction 

between winter severity and the preponderance of predator-caused mortality in winter 

(Hurley et al. 2011). There might also be negative covariance between neonate and 

overwinter survival (Bishop et al. 2009), driven as we suggest here by different spring 

and fall phenology patterns.  Regardless, many plausible biological processes exist to 

explain the effect of early season plant growth on winter survival of fawns. 

Functional analysis provides a powerful approach to identify the key-periods of the 

growing season from remote sensing data and to assess their differential effects on life 

history traits. Our functional analysis applied to year- and population-specific NDVI 
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curves allowed us to identify two distinct components of variation that corresponded 

closely to contrasting spring and fall phenology.  Of course, many remote sensing studies 

have used NDVI for decades to examine differences in spring and fall phenology (Huete 

et al. 2002). Yet despite the primacy of multivariate approaches in remote sensing, only a 

few studies have used even standard Principle Components Analysis (PCA) to examine 

spatial trends in NDVI (Hall-Beyer 2003) or identify NDVI anomalies (Lasaponara 

2006).  Functional analysis allowed us to identify phenological patterns a-posteriori and 

to summarize NDVI curves into only 2 independent components instead of 5-12 a-priori 

defined metrics that are strongly correlated (see Table 2-1).  Moreover, our FPCA axes 

explained variation similarly or better than pre-defined parameters based on previous 

studies (e.g., Axis 1 versus senescence date, Appendix A Table 2-S3).  Functional analysis 

provides a novel and powerful approach for studies of the ecological effects of plant 

phenology, and arose out of the productive collaboration between remote sensing 

scientists and ecologists. We anticipate the benefits of functional analyses to extend far 

beyond NDVI, to ecological analyses of variation in the other remotely sensed vegetation 

indices (e.g., fPAR, EVI), MODIS snow and temperature datasets, and aquatic measures 

like sea surface temperature, chlorophyll, and other important ecological drivers.  

  In conclusion, in large parts of world that are semi-arid or deserts, our results 

strongly show that it may not be just spring phenology that matters to ungulate population 

dynamics. Our new approach using functional analysis of the entire NDVI curve provides 

a powerful method to identify first key periods within the growing season and then 

disentangle their respective role on demographic traits when combined with hierarchical 

path analysis. Our approach thus allowed us to determine the most likely pathways that 
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plant growth influenced mule deer overwinter survival of fawns. Finally, and perhaps 

most importantly, we demonstrated a novel approach to first identify different temporal 

components of remote sensing datasets that are the key drivers of large-scale population 

responses, aiding the broad objective of enhancing our ability to monitor responses of 

biodiversity to environmental change at global scales.  
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TABLES 

Table 2-1. A brief literature survey of the studies that investigated relationships between 

NDVI metrics and life history traits linked to performance and population abundance. 

The literature survey was performed using ISI web of knowledge using the key-words 

“NDVI and survival”, “NDVI and body mass”, “NDVI and body weight”, “NDVI and 

reproductive success”, “NDVI and recruitment”, “NDVI and population growth”, and 

“NDVI and population density”. Only studies performed on vertebrate species were 

retained. For each case study, the table displays the focal trait(s), the focal species, the 

NDVI metric(s) used, the outcome (“+”: positive association between NDVI and 

performance, “-” : negative association between NDVI and performance, “0”: no 

statistically significant association between NDVI and performance”), the reference, and 

the location of the study. 

 

 

 

 

 



 

 

5
7
 

Trait Species NDVI metrics Outcome Location Reference 

Protein mass 

Body mass 

Carcass mass 

Body fat 

Caribou 

Rangifer tarandus 

Average NDVI in June Protein mass: + 

Other traits: 0 

Québec-

Labrador 

(Canada) 

(Couturier et al. 

2008) 

Birth mass 

Juvenile autumn 

mass 

Caribou 

Rangifer tarandus 

Average NDVI in June  

+ 

Québec-

Labrador 

(Canada) 

(Couturier et al. 

2008) 

Population density 

Juvenile body 

mass 

Semi-domesticated 

reindeer 

Rangifer tarandus 

Summed NDVI over the 

breeding season 

Juvenile mass: 0 

Population density: + (in 

populations with poor 

winter ranges only) 

Norway 

(across 

populations) 

(Tveraa et al.) 

2007 

Population size Lesser grey shrike 

Lanius minor 

NDVI in May-June 

(breeding areas) 

NDVI in January-March 

(wintering areas) 

 

 

 

 

+ 

France 

Spain 

(breeding 

areas) 

Kalahari 

(wintering 

areas) 

(Giralt et al. 2008) 
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Reproductive 

performance 

(lamb/ewe in 

December) 

Sheep 

Ovis aries 

NDVI in March-May 

NDVI in May 

NDVI in May: + 

 

NDVI in March-May: 0 

North 

Western 

Patagonia 

(Texeira et al. 

2008) 

Survival African elephant 

Loxodonta africana 

Seasonal maximum 

NDVI 

Juvenile survival: +   

Adult survival: 0 

Kenya (Wittemyer 2011) 

Parasite loading Red-legged 

partridge 

Alectoris rufa 

Yearly mean NDVI  

+ 

Spain (Calvete et al. 

2003) 

Body mass Red deer 

Cervus elaphus 

Monthly NDVI Spring NDVI: + (Spain 

only) 

Other 

metrics/populations: 0 

Europe 

(across 

population) 

(Martinez-

Jauregui et al. 

2009) 

Wing length 

Tail length 

Clutch size 

Body mass 

(Males and 

females) 

Barn swallow 

Hirundo rustica 

NDVI in December-

February 

(wintering areas) 

Male wing length, male 

and female tail length, 

clutch size: + 

Other traits: 0 

Italy 

(breeding 

area) 

Africa 

(wintering 

areas) 

(Saino et al. 2004) 

Juvenile and adult 

Survival 

White stork 

Ciconia ciconia 

NDVI in October-

November (Sahel) 

NDVI in December-

February (Eastern 

southern Africa) 

 

 

+ 

Eastern 

Germany 

Poland 

(breeding 

areas) 

(Schaub et al. 

2005) 

Adult survival Barn swallow 

Hirundo rustica 

NDVI in September-

November 

NDVI in December-

February 

NDVI in March-May 

 

 

 

 

+ 

Denmark (Szép et al. 2006) 



 

 

5
9
 

(wintering areas in 

Africa) 

Conception rates African elephant 

Loxodonta africana 

Seasonal NDVI (wet vs. 

dry seasons) 

 

+ 

Kenya (Wittenmyer et al. 

2007 ;  

Rasmussen et al. 

2006) 

Juvenile and adult 

survival 

Egyptian vulture 

Neophora 

percnopterus 

Yearly NDVI (wintering 

areas) 

NDVI in September-June 

(breeding areas) 

 

 

 

+ 

Spain (Grande et al. 

2009) 

Survival 

Reproductive 

success 

Red-backed shrike 

Lanius collurio 

NDVI in September-

October (Sahel) 

NDVI in December-

March (South Africa) 

NDVI in April (Germany) 

Survival: + (NDVI in 

December to March) 

Reproductive success: + 

(NDVI in September-

October) 

Germany (Schaub et al. 

2012) 

Juvenile survival Greater sage grouse 

Centrocercus 

urophasianus 

NDVI in May-August 

NDVI and Max NDVI in 

May, June, July, and 

August 

+ (trends only) 

 

Strong co-variation 

among NDVI metrics 

Idaho 

Utah 

 

(USA) 

(Guttery et al. 

2013) 

Body mass Red deer 

Cervus elaphus 

NDVI in the 1
st
 of May  

+ 

Norway (Pettorelli et al. 

2005) 

Juvenile body 

mass 

Roe deer 

Capreolus 

capreolus 

Summed NDVI in April-

May 

Summed NDVI in 

August-October 

 

+ (Chizé population) 

0 (Trois Fontaines 

population) 

France (Pettorelli et al. 

2006) 

Kidney mass Hystricognath 

rodents 

Yearly NDVI (calculated 

from monthly NDVI) 

 

- 

South 

America 

(across 

species 

(Diaz et al. 2006) 

Body mass Moose 7 NDVI metrics  Norway (Herfindal et al. 
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Alces alces (PCA) + 2006) 

Body mass Wild boar 

Sus scrofa 

Roe deer 

Capreolus 

capreolus 

Summed NDVI over the 

growing season 

 

Roe deer: 0 

 

Wild boar: 0 

Poland (Mysterud et al. 

2007) 

Body condition Raccoon dog 

Nyctereutes 

procyonoides 

4 NDVI metrics (onset of 

spring, peak NDVI, 

Summed NDVI over the 

growing season, and rate 

of NDVI increase in 

spring) 

Onset of spring: - 

Peak NDVI and Summed 

NDVI: + 

Rate of NDVI increase: 0 

Finland (Melis et al. 2010) 

Juvenile body 

mass 

Reproductive 

success 

Reindeer 

Rangifer tarandus 

EVI (Enhanced 

Vegetation Index) 

Modelled using a double 

logistic function. Use of 

the parameters S (onset of 

spring), mS (rate of EVI 

increase), and mEVI 

(plant productivity) 

 

 

 

S and mEVI on both 

mass and reproductive 

success: + 

 

Norway (Tveraa et al. 

2013) 

Juvenile body 

mass 

Pregnancy rate 

Elk  

Cervus elaphus 

NDVI correlated with bi-

weekly forage biomass 

and quality over the 

previous growing season 

Exposure to higher 

predicted forage quality : 

+ juvenile body mass 

+ female pregnancy 

Canada (Hebblewhite et 

al. 2008) 

Juvenile mass Sheep 

Ovis aries 

(2 breeds) 

NDVI in late May 

Summed NDVI in June-

August 

NDVI in late May: + 

Summed NDVI in June-

August: 0 or – depending 

on the breed 

Norway (Nielsen et al. 

2012 ;  

Nielsen et al. 

2013) 

Population size Common House-

Martin 

Delichon urbicum 

NDVI in December-

February 

(wintering areas in 

 

 

+ 

Italy (Ambrosini et al. 

2011) 
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Common swift 

Apus apus 

Africa) 

Juvenile body 

mass 

Chamois 

Rupicapra 

rupicapra 

5 NDVI metrics 

(NDVI slope in spring, 

NDVI maximum slope in 

spring, maximum NDVI, 

date of NDVI peak, 

Summed NDVI in March 

 

+ 

(Summed NDVI in 

March the best predictor) 

France (Garel et al. 2011) 

Juvenile growth 

Juvenile survival 

Mountain Goat 

Oreamnos 

americana 

Bighorn sheep 

Ovis canadensis 

Alpine ibex 

Capra ibex 

Summed NDVI in May 

Summed NDVI over the 

growing season 

Rate of NDVI change 

Rate of NDVI change: - 

 

Other metrics: 0 

Canada 

Italy 

(Pettorelli et al. 

2007) 

Population 

abundance 

American redstarts 

Setophage ruticilla 

NDVI in December-

March 

(wintering areas) 

 

+ 

North 

America 

(breeding 

areas) 

Carribean – 

Cuba 

(wintering 

areas) 

(Wilson et al. 

2011) 

Reproductive 

success 

Survival 

White-tailed deer 

Odocoileus 

virginianus 

Summed NDVI in May-

August 

Rate of NDVI change 

between May and June 

Maximum change 

between May and June 

 

 

Summed NDVI in May-

August on reproductive 

success: + 

 

Rate of NDVI change and 

Maximum change on 

reproductive success: - 

Anticosti 

Québec 

(Canada) 

(Simard et al. 

2010) 
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Effects on Survival: 0 

Population density Murine rodent 

Akodon azarae 

Seasonal NDVI  

+ 

Argentina (Andreo et al. 

2009) 

Population rate of 

increase 

Kangaroos 

Macropus sp. 

NDVI for 6 months and 

12 months  

 

+ 

(but not better predictor 

than rainfall) 

Australia (Pople et al. 2010) 
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FIGURES 

 

Figure 2-1. Results of Functional Principal Component Analysis of the typology of NDVI 

curves in Idaho, USA, from 1998-2011 from April (A) to November (N) for each 

population-year (dot) identifying two key periods, the spring (2nd FPCA component, the 

Y-axis) and the fall components (1st FPCA component, X-axis). a) Variation in NDVI 
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curves among populations and years was best explained by FPCA 1, which explained 

48.9% of the variation, and characterized primary production from June to October (e.g., 

summer/fall). b) FPCA 2 (Y-axis) characterized primary production in May and June and 

explained 27% of the seasonal variation. c) NDVI typology was best characterized by 5 

clusters, shown in different colors, that corresponded to different patterns of spring and 

fall primary production, compared to the mean NDVI curve across all of Idaho. For 

example, typology 5 was characterized by low NDVI intensity in both spring and fall, 

typology 3 by high NDVI intensity in both spring and fall, and typology 4 by high NDVI 

intensity in spring, but low in fall, etc.  
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Figure 2-2. Distribution of the 5 NDVI typologies shown in Figure 1, with corresponding 

colors (inset) across the 13 mule deer populations (GMU’s) in Idaho, USA, from 1998-

2011.  The size of the pie wedge is proportional to the frequency of occurrence of each 

NDVI typology within that mule deer population. For example, population 56 had all but 

one population-year occurring in NDVI typology 4 (Figure 2-1) indicating low primary 

productivity during spring but higher during fall.  
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Figure 2-3. Hierarchical Bayesian Path Analysis of the effects of spring and fall growing 

season functional components (from Figure 1) and winter precipitation on mule deer 

fawn body mass and overwinter survival from 1998-2011 in Idaho, USA. This model 

explained 44.5% of the variation in survival. Beta coefficients and their standard 

deviation are shown, with solid lines indicating the indirect effects of NDVI on survival 

mass through their effects on body mass, and dashed lines indicate the direct effects of 

NDVI on survival.  
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Figure 2-4. Results of hierarchical Bayesian path analysis showing the standardized direct 

effects of a) FPCA component 1 from the functional analysis (Fall NDVI), and b) FPCA 

component 2 (Spring NDVI) on body mass (kg) mule deer fawns in Idaho, USA, from 

1998-2011. 
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Figure 2-5.  Results of hierarchical Bayesian path analysis showing standardized direct 

effects of a) body mass (kg), b) cumulative winter precipitation (in mm), c) FPCA 

component 1 from the functional analysis (Fall NDVI), and d) FPCA component 2 

(Spring NDVI) on the overwinter survival of mule deer fawns in Idaho, USA, from 1998-

2011.  
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APPENDIX A. SUPPLEMENTAL MATERIALS 

 

 
 

Figure 2-S1. Results of functional analysis of NDVI typology for each of the 13 mule 

deer populations (GMU’s) in Idaho, 1998-2011. Individual population-years are shown 

along the same axes as in Figure 1 showing the spring (Y-axis) and fall (X-axis) growing 

season components of the NDVI growing season dynamics. For example, population unit 

58 experiences the lowest primary productivity year round, but especially in fall. 
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Figure 2-S2. Coefficients from Hierarchical Bayesian path analysis of individual mule 

deer populations (GMU’s) showing the effects of body mass, winter severity, and Fall and 

Spring NDVI on overwinter mule deer fawn survival in Idaho, 1998-2011. 
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Table 2-S3. Comparison of FPCA Axis 1 to traditional NDVI derived covariates for 

estimating vegetation phenology. Axis 1 is replaced by one of the traditional variables 

reported in other papers. We did not remove Axis 2 from the model because it was 

supposed to be linked to early season NDVI. To hold everything else constant, Axis 1 is 

replaced by each of the variables below one by one for survival and body mass. 

 

Response Axis 1 

 replaced by... 

Estimates AIC (~ R²) 

Survival Axis 1 -0.0625 (0.0482), 

P=0.19 

24.57 

Survival October 

precipitation 

0.001 (0.001), P = 0.48 25.77 

Survival Petgreen -0.001 (0.0007), P = 

0.16 

24.25 

Survival Petsenes -0.004 (0.002), P = 0.09 23.37 

Survival Peakday -0.001 (0.002), P = 0.53 25.89 

Body mass Axis 1 0.812 (0.346), P = 0.02 519.13 

Body mass October 

precipitation 

-0.001 (0.011), P = 0.96 524.50 

Body mass Petgreen 0.013 (0.006), P = 0.04 520.04 

Body mass Petsenes 0.024 (0.021), P = 0.26 523.23 

Body mass Peakday 0.004 (0.555), P = 0.83 524.43 

 

This table points to the conclusion that well defined variables are indeed easier to 

interpret but comes with the risk of being less general. The three variables tested are 

green up date, senescence date, and peak date calculated after Pettorelli et al. (2005). In 

our case, one local variable competes with Axis 1 but it is not the same for body mass 

(Petsenese) and survival (Petgreen). Axis 1 is the best or second best variable for both 

response variables. 
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2-S4: Technical description of the Functional Principal Component Analysis 

Let yij be the NDVI value measured in the i-th sampling unit (1 < 𝑖 ≤ 𝑛) for the j-th 

week (1 < 𝑗 ≤ 𝑝). To compare NDVI curves by FPCA, these discrete values (yij) should 

be converted to a function xi with values 𝑥𝑖(𝑡) computable for any value t. This step 

involves a smoothing procedure that requires defining a set of functional primary 

elements (basis functions) and then to set up a vector, matrix, or array of coefficients to 

define the function as a linear combination of these basis functions. Hence, the complete 

procedure consists in three main steps: 1) Definition of the basis functions, 2) smoothing 

of the observed curves, and 3) summarizing the variation in the curves. To define the 

basic functions, one uses a set of functional building blocks (basis functions) ϕk, k = 1,…, 

K which are used to define a function xi(t) as linear combination: 

𝑥𝑖(𝑡) =  ∑ 𝑐𝑖𝑘ϕ𝑘

𝐾

𝑘=1

 

We used cubic (i.e. four order) B-splines (i.e. piecewise polynomials of degree three) 

with 36 breakpoints so that K=38 (number of interior breakpoints + order). Second, to 

smooth the observed curves, one approximates discrete data from the function using a 

roughness penalty approach. The aim is to construct a model 𝑦𝑖𝑗 = 𝑥𝑖(𝑡) +∈𝑖𝑗 so that the 

estimated curve gives a good fit to the data. In other words, we are looking for a 

coefficient vector 𝐜𝑖 = {𝑐𝑖𝑘, … , 𝑐𝑖𝑝}  that minimizes the sum of square errors: 

𝑆𝑆𝐸(𝐜𝑖) =∑(𝑦𝑖𝑗−𝑥𝑖(𝑡𝑗))
2

𝑝

𝑗=1

=∑(𝑦𝑖𝑗 −∑𝑐𝑖𝑘ϕ𝑘

𝐾

𝑘=1

(𝑡𝑗))

2𝑝

𝑗=1

 

When K is high, this procedure tends to overfit (or undersmooth) the data. The roughness 



 

73 

 

penalty approach solves this problem by imposing smoothness by penalizing some 

measure of function complexity. For instance, we used the integrated squared second 

derivative as penalty term (𝑃𝐸𝑁2 = ∫[𝐷
2𝑥𝑖(𝑡)]

2𝑑𝑡) so that the model fitting leads to 

minimize 𝑆𝑆𝐸(𝐜𝑖) + 𝜆 ∙ 𝑃𝐸𝑁2. The smoothing parameter λ was set to 1. Finally, to 

summarize the variation between the smoothed curves, we now replace the original data 

with the n functions 𝑥𝑖(𝑡) representing the temporal evolution of NDVI for the different 

sampling units. As in standard PCA, data are centred (𝑧𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑥̅(𝑡), where 𝑥̅(𝑡) 

is the functional mean) so that FPCA will focus on deviations to the average trend. FPCA 

seeks for a function 𝜉1(𝑡) maximizing: 

𝜇1 =
1

𝑛
∑(∫𝜉1(𝑡)𝑧𝑖(𝑡)𝑑𝑡)

2𝑛

𝑖=1

 with ∫ 𝜉1(𝑡)
2𝑑𝑡 = 1 

In FDA terminology, 𝜇1is the first eigenvalue and 𝜉1(𝑡) is the first weight function (or 

harmonic) that describe the major variational component. The principal component scores 

(i.e., positions of the sampling units on FPCA axes) are given by ∫ 𝜉1(𝑡)𝑧𝑖(𝑡)𝑑𝑡. Hence, 

FPCA finds a score for sampling units, linear combination of smoothed curves with 

maximal variance (i.e. that reveals the most important types of variations among the 

curves). As in standard PCA, subsequent eigenfuctions 𝜉2(𝑡), 𝜉3(𝑡), 𝜉𝑙(𝑡) (associated to 

eigenvalues 𝜇2 > 𝜇3 > 𝜇𝑙) maximize the same criterion with an additional constraint of 

orthogonality: 

∫𝜉𝑙(𝑡)𝜉𝑘(𝑡)𝑑𝑡 = 0 for 𝑘 ≠ 𝑙
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2-S5: R code for Bayesian Hierarchical data analysis 

# Model specification using JAGS language used to produce Figure 3, 4 and 5. 
 

model 

 

{ 

 

# Variable definition 

# N : number of site and year estimates of overwinter 

survival (integer) 

# Y : observed overwinter survival, arcsin-square root 

tranformed (covariate) 

# GMU : categorical variable (range from 1 to 13) 

# mass : body mass of female fawns in late autumn 

# winP : average winter precipitation in November – 

December 

# axis1 : first axis scores of the functional PCA 

# axis2 : second axis scores of the functional PCA 

 

# Estimated parameters are alphas (from 1 to 13, plus 

alpha_mass) and betas (from 1 to 6) 

 

 for(i in 1:N) { 

 

         Y[i] ~ dnorm(mu[i], tau) 

 # Declare response variable as normal  

 #for survival 

 

 # Direct effects of body mass, winter precipitation, axis 

1 and axis 2 of the functional PCA.            

   mu[i] <- alpha[GMU[i]] + beta1 * mass[i] + beta2 

* winP[i] +  

                             beta3 * axis1[i] + beta4 * 

axis2[i] 

 

 

                 mass[i] ~ dnorm(mu_mass[i], tau_mass)  

# Declare response variable 

                                                             

# for body mass 

 

                 # Indirect effects of NDVI on body mass 
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                 mu_mass[i] <- alpha_mass + beta5 * 

axis1[i] + beta6 * axis2[i] 

 

 } 

 

 

 

         # From dispersion to standard deviation 

 sigma <- 1 / sqrt(tau) 

 

 sigma_mass <- 1 / sqrt(tau_mass) 

 

  

        # Declare non-informative priors 

        tau ~ dgamma(0.001, 0.001) 

 

        tau_mass ~ dgamma(0.001, 0.001) 

 

        for (j in 1:J){ 

 

   alpha[j] ~ dnorm(0.0, 1.0E-6) 

 

 } 

 

        alpha_mass ~ dnorm(0.0, 1.0E-6) 

 

        beta1 ~ dnorm(0.0, 1.0E-6) 

 

        beta2 ~ dnorm(0.0, 1.0E-6) 

 

        beta3 ~ dnorm(0.0, 1.0E-6) 

 

        beta4 ~ dnorm(0.0, 1.0E-6) 

 

        beta5 ~ dnorm(0.0, 1.0E-6) 

 

        beta6 ~ dnorm(0.0, 1.0E-6) 

 

 



 

76 

 

CHAPTER 3: GENERALITY AND PRECISION OF REGIONAL-SCALE 

SURVIVAL MODELS FOR PREDICTING OVERWINTER SURVIVAL OF 

JUVENILE UNGULATES
2
 

 

MARK A. HURLEY, Idaho Department of Fish and Game, P.O. Box 1336, 99 Highway 

93 N, Salmon, ID  83467, USA 

MARK HEBBLEWHITE, Wildlife Biology Program, Department of Ecosystem and 

Conservation Sciences, College of Forestry and Conservation, University of 

Montana, Missoula, Montana, 59812, USA 

PAUL M. LUKACS, Wildlife Biology Program, Department of Ecosystem and 

Conservation Sciences, College of Forestry and Conservation, University of 

Montana, Missoula, Montana, 59812, USA 

JOSH NOWAK, Wildlife Biology Program, College of Forestry and Conservation, 

University of Montana, Missoula, Montana, 59812, USA 

JEAN-MICHEL GAILLARD, Laboratoire Biométrie & Biologie Évolutive, 

CNRSUMR-CNRS 5558, University Claude Bernard - Lyon I, 69622 

Villeurbanne Cedex, France 

CHRISTOPHE BONENFANT, Laboratoire Biométrie & Biologie Évolutive, 

CNRSUMR-CNRS 5558, University Claude Bernard - Lyon I, 69622 

Villeurbanne Cedex, France 

                                                 
2
 Formatted for submission to Journal of Wildlife Management.  



 

77 

 

INTRODUCTION 

Interest in improving ecological prediction has recently surged because of the growing 

need to project the effects of land use and climate change (Mouquet et al. 2015). In 

wildlife ecology and management, prediction has played an increasingly important role, 

for example in predicting the spatial location of suitable habitat for species 

reintroductions (Mladenoff et al. 1999, Boyce and Waller 2003), identifying spatial 

human-wildlife conflict areas (Bradley and Pletscher 2005), predicting spatial wildlife-

vehicle collisions (Hurley et al. 2009), nutritional condition and pregnancy of ungulates 

(Cook et al. 2004), spatial models of wolf abundance (Rich et al. 2013), and spatial nest 

success and survival of birds based on habitat (Aldridge and Boyce 2007). Wildlife 

applications have commonly focused on developing technology for spatial predictions, 

while rigorous attempts to predict population dynamics and harvest are limited 

(Jenouvrier et al. 2009). An exception is perhaps the much-lauded North American 

waterfowl program that formally integrates predictions about population size into an 

adaptive harvest management framework (Nichols et al. 2007).  

 While there have been some attempts to formally predict future population 

dynamics in harvested ungulates with statistical models (Freddy 1982, Peek et al. 2002, 

White and Lubow 2002), prediction is rare in the population management of ungulates, 

although the relevance to state wildlife agencies for harvest management programs is 

undeniable. One challenge in development of predictive statistical models for survival is 

the complexity of dealing with integrating survival data across populations that are 

hierarchically structured in space and time (e.g., Lukacs et al. 2009). As wildlife survival 
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studies have increased scope and spatial range, pooling data across multiple populations 

has increased model complexity from single season, single population models (Bartmann 

and Bowden 1984, White et al. 1987), to populations across multiple years, populations 

and ecological regions (Griffin et al. 2011, Brodie et al. 2013). The recent growth of 

hierarchical modeling in ecology has furthered the use of Bayesian methods for wildlife 

ecologists to enable the development of spatially structured, hierarchical and flexible 

statistical models (Royle and Dorazio 2006, Kery and Schaub 2012). Bayesian models 

are inherently well-suited to prediction as well, with many recent examples in the 

ecological and wildlife literature about prediction of spatially and temporally hierarchical 

phenomenon such as epidemiology, animal movements and population ecology (Heisey 

et al. 2010a, Geremia et al. 2014, Mouquet et al. 2015). A remaining challenge in 

prediction is that not all models can be all things to all needs at all times. Levins (1966) 

was amongst the first ecologists to point out that modeling of any sort inherently requires 

trade-offs between variance/precision, bias, and generality (the ability of a model to 

predict accurately across a range of conditions) and that any model cannot maximize all 

three.  

 In most recent wildlife survival analyses, the best model is usually selected using 

a model selection criterion, such as a maximum-likelihood (e.g., Akaike Information 

Criteria, AIC) or a Bayesian (e.g., BIC, DIC) approach (Barker and Link 2015). The 

entire purpose of model selection methods is hence to select the best statistical model that 

approximates performance in out-of-sample prediction. Unfortunately, evaluating future 

predictions with independent data is rarely done, but is needed to produce robust 

predictive models. Some researchers (Franklin et al. 2000, Frair et al. 2007, Hebblewhite 
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and Merrill 2011) have evaluated the predictive performance of climate or habitat-based 

ungulate survival models using data that were used to build the statistical model, 

essentially model goodness-of-fit, but not with out-of-sample data sets. Assessing the 

predictive power of a model in this fashion, however, often provides an optimistic view 

of the model's forecasting ability (Hastie et al. 2001). This lack of external validation is 

undoubtedly because of the expense and difficulty in collecting survival data.  

 Survival is especially difficult to measure in the field, but the ability to predict 

future survival of ungulates would greatly improve population dynamics modeling and 

thereby, management prescriptions of harvested populations. Vital rates have varying 

importance to populations. For example, juvenile survival often drives population 

dynamics for large and long-lived species because it is the most variable rate in space and 

time (Gaillard et al. 2000). This life-history model has prompted wildlife managers to 

prioritize juvenile survival and recruitment monitoring as a means to predict changes in 

ungulate population dynamics (White and Bartmann 1998b, Morellet et al. 2007, Lukacs 

et al. 2009). Unfortunately, for many species affected by overwinter juvenile survival, 

estimates are not available until after harvest regulations are developed. Thus, wildlife 

managers do not have the information needed at the time of season setting to make the 

best management decisions (Figure 3-1). It would be ideal if wildlife managers had some 

reliable way of predicting future overwinter survival based on other drivers of survival, 

such as weather variables or habitat characteristics, without the need to capture and 

monitor animals.    

As a test case, we used a unique data set of mule deer juvenile survival in Idaho to 

evaluate the predictive performance of large-scale survival models, from simple to 
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complex, with the ultimate objective of integrating them into harvest management 

policies. We aimed to test the predictive performance of overwinter survival models for 

mule deer fawns subjected to a large range of habitat quality, climate and predation 

regimes in Idaho. We evaluated both model fit (within sample or internal validation) to 

identify the main drivers of survival and to assess our capacity (out-of-sample or external 

validation) to develop a model that best predicts survival from these drivers. Our goal 

was to develop predictive models based on readily available climate and forage 

productivity covariates that would enable wildlife managers to predict overwinter 

survival, and thus population dynamics and harvest, without having to radiocollar 

juveniles.   

 First we develop models to estimate survival based on freely available remote 

sensed weather data. We developed hierarchical Bayesian (H-B) survival models (Lukacs 

et al. 2009, Kery and Schaub 2012) that integrate spatial and temporal variation in 

summer and winter weather  (Hurley et al. 2014), across 11 years and 11 population 

management units for mule deer. These models include individual body mass because of 

the overwhelming importance of body mass to overwinter survival in juvenile mule deer 

repeatedly reported (Bartmann et al. 1992, Unsworth et al. 1999, Bishop et al. 2009, 

Hurley et al. 2011, Hurley et al. 2014). We then remove body mass to build predictive 

models that do not require animal capture to evaluate the loss of information without 

mass. We expanded upon Hurley et al. (2014) by measuring snow cover (MODIS 

SNOW) and depth (SNODAS) during three winter periods, early winter (November – 

December), winter (January – March) and late winter (April). Increased snow values in 

each of these periods should increase energy expenditure and thereby deplete stored fat, 
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thus decreasing survival. We also incorporate the effect of previous growing season with 

functional analysis of NDVI (Hurley et al. 2014) to evaluate the effect of early and late 

season nutrition, which should positively correlate with subsequent winter survival.   

Second, to test the predictive capacity of large-scale survival models, we conduct 

both within and out-of-sample validation. We evaluated predicted population-level 

survival using in-sample cross-validation (internal validation) by comparing modeled 

survival with a non-parametric Kaplan-Meier survival (Kaplan and Meier 1958) 

estimated with the same empirical data. We use Kaplan-Meier as a base for this 

comparison because it is a widely used metric of survival estimation in wildlife 

management agencies and, being non-parametric and non-distributional, is the simplest 

descriptive estimator for survival. 

We then validated our best empirical models with out-of-sample data to reliably 

predict overwinter survival for years not used to fit the model. We test the ability of each 

of these models to make predictions across populations and years to evaluate the 

precision/generality trade-off in relation to complexity. Specifically, we hypothesized that 

if climate-alone drives overwinter mule deer fawn survival, then models of survival only 

based on climate covariates should reliably predict observed survival across populations. 

Alternately, if unmeasured variables, such as predation or habitat quality, play a crucial 

role, not including habitat-climate interaction should weaken the predictive capacity of 

climate-only survival models. Therefore, we subset our regional survival model into three 

ecotype-specific survival models to test if both predictive performance and predictors of 

survival differed at the regional and ecotype levels (Hurley et al. 2014).  
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STUDY AREA 

Our study area covered a wide climatic, predation and habitat gradient of mule deer range 

in Idaho. We monitored overwinter survival of fawns in 11 Population Management Units 

(PMU) across central and southern Idaho that were themselves comprised of 28 different 

Game Management Units (GMU’s; Figure 3-2). In Idaho, GMUs are nested within 

PMU’s that are grouped together to represent ecological (interbreeding) populations, 

which form the basis for management. Through a hierarchical cluster analysis we 

classified GMUs into three groups and identified common habitat characteristics of these 

groups (called ecotypes hereafter) based on the dominant canopy species on summer 

range; coniferous forests, shrub-steppe, and aspen woodlands (Figure 3-2; Appendix B 

Figure 3-S1). We then assigned the PMUs to an ecotype classification based on the 

classified GMUs. GMUs within PMUs were of the same ecotype with the exception of 

one PMU, Mountain Valley, subsequently split into respective shrub and conifer ecotypes 

for analysis (Figure 3-2). Elevation and topographic gradients within PMUs affect snow 

depths and temperature in winter, and precipitation and growing season length in the 

summer, with elevation increasing from the southwest to the northeast. Areas used by 

mule deer in the winter in conifer ecotypes ranged in elevation from 1001 to 1928m, but 

most were <1450m. Winter precipitation (winter severity) varied widely (from 10 to 

371mm) in coniferous GMUs. Coniferous ecotype summer ranges are dominated by 

conifer species interspersed with cool season grasslands, sagebrush, and understory of 

forest shrubs. Semi-desert Shrub-steppe PMUs ranged from 1545 to 2105m, with winter 

precipitation from 24 to 105mm. Summer range within shrub-steppe ecotypes was 

dominated by mesic shrubs [e.g., bitterbrush (Purshia tridentata), sagebrush (Artemsia 
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spp.), rabbitbrush (Chrysothamnus spp.)]. Aspen ecotype PMUs were located in the east 

and south with winter use areas ranging from 1582 to 2011m, with two of the three PMUs 

above 1700m with winter precipitation ranging from 25 to 146mm. In summer, 

productive mesic aspen (Populus tremuloides) woodlands were interspersed with mesic 

shrubs. 

 

METHODS 

(a) Capture and Survival Monitoring 

We modeled survival probability of 2,529 fawns within 11 Population Management Units 

in southern Idaho, 2003–2013 (Table 3-S1). We varied capture methods depending on 

winter range density of deer. In concentrated winter ranges, we used helicopters to herd 

deer into drive nets as our primary capture method (Thomas and Novak 1991), but in 

dispersed winter ranges we captured fawns with a netgun fired from a helicopter (Barrett 

et al. 1982) or clover traps (Clover 1954). Fawns were physically restrained and 

blindfolded during processing with an average handling time of < 6 minutes. Two types 

of radio-collars were used: expandable collars (Telonics model 500 with CB-5 Telonics 

Inc. 932 E. Impala Avenue, Mesa, AZ) and belt collars (Lotek model LMRT-3, Lotek 

Wireless Inc., 115 Pony Drive Newmarket, Ontario Canada). Collars weighed 320–400 

grams, were equipped with mortality sensors, and fastened with temporary attachment 

plates or surgical tubing allowing the collars to fall off the animals after approximately 8–

10 months. We measured fawn mass to the nearest 0.4 kilogram with a calibrated spring 

scale to assess early winter body size and condition. An Idaho Department of Fish and 
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Game (IDFG) veterinarian or veterinary technician was on site during most captures to 

assist with sampling and assure animal welfare. Animal capture protocols were approved 

by the Animal Care and Use Committee, IDFG Wildlife Health Laboratory, Caldwell, 

Idaho, USA, and University of Montana IACUC (protocol #02-11MHCFC-031811). 

Fawns were monitored with telemetry for mortality from the ground every 2 days 

between capture and 1 June. If radio signals could not be detected from the ground within 

1 week, animals were located via aircraft. When a mortality signal was detected, the fawn 

was located and cause of death was determined using a standard protocol (Wade and 

Bowns 1982). Animals that lost radio-collars or with radiocollars that failed were 

removed (censored) from the analysis at the point of failure.  

 

(b) Defining Seasons and Herd Unit Home Ranges 

Because we wanted to associate individual deer to the weather and spatial covariates 

associated with its seasonal range, we estimated within-GMU level seasonal ranges 

across all 11 PMU’s (Figure 3-2).  Deer were captured within each PMU in each primary 

winter range within a GMU (range 1–6 different winter ranges) in proportion to the 

distribution of deer and abundance (IDFG unpublished data) in each GMU within the 

PMU. To exclude migratory periods from the seasonal home range estimates we only 

used locations between 1 June and 30 September for summer ranges and between 1 

December and 31 March for winter ranges (Sawyer et al. 2005). We created combined 

seasonal 95% kernel density utilization distributions using a bandwidth of H = 0.05 to 

minimize the inclusion of unused habitat (Worton 1989). We used all telemetry and 
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mortality locations collected, 1999–2013 (median = 96, range = 21 to 876) to create 

winter and summer utilization distributions for each GMU in the study areas. Climate and 

habitat information was then summarized within the seasonal home ranges of radio-

collared deer for winter and summer within each GMU, the basis of the spatial covariates.  

 

(c) Survival Variable Development 

Individual covariates 

Previous studies in Idaho reported only little between-sex differences in overwinter 

survival of mule deer fawns (Unsworth et al. 1999, Bishop et al. 2005a, Hurley et al. 

2011). In contrast, the overwinter survival of mule deer fawns strongly increases with 

their body mass (Hurley et al. 2011). Thus, we included body mass (kg) of mule deer 

fawns at capture, as the only individual covariate for comparison purposes. 

 

Spatial forage and weather covariates  

We used remotely sensed and modeled measures of summer plant productivity 

[Normalized Difference Vegetation Index, NDVI (Pettorelli 2013)] and winter snow 

conditions (Snow cover and SNODAS) as spatial covariates for assessing the effects of 

climate and habitat on fawn winter survival. We chose remotely sensed spatial measures 

of these covariates because remotely sensed data are spatially explicit and generally 

available to wildlife managers with a shorter delay than PRISM data, allowing a rapid 

integration into harvest management programs.  

We calculated NDVI from 16-day composite MODIS (Moderate Resolution 
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Infrared Spectroscopy) obtained from the MOD13Q1 NASA (250m
2
) data product (from 

the NASA Land Products Distributed Active Archive Center LPDAAC, 

https://lpdaac.usgs.gov/) (Huete et al. 2002). Radiometric sensor anomalies, atmospheric 

effects, cloud contamination and geometric registration accuracies were corrected using a 

simple temporal interpolation method (Zhao et al. 2005). We used a minimum NDVI 

threshold value of 0 to define periods of little to no photosynthetic activity, and filtered 

pixels containing ice and snow data flags from the analysis. Since phenological changes 

in NDVI directly represent ungulate forage dynamics only in non-forested vegetation 

types, we extracted NDVI values from only open canopied grass and shrub vegetation 

types (not burned within five years), which we characterized using SAGEMAP land 

cover data (2005 USGS, Forest and Rangeland Ecosystem Science Center, Snake River 

Field Station, Boise, ID, USA, described in the supplemental materials). We also 

restricted NDVI data to 15 March to 15 November to encompass the entire growing 

season for each population-year, and excluded winter anomalies caused by varying snow 

conditions. 

We then used a Functional Analysis to assess the shapes of the growing season 

curves for each population-year according to the methods of Hurley et al. (2014).  

However, unlike Hurley et al. (2014) who performed this Functional Analysis on NDVIg 

from the AVHRR (Advanced Very High Resolution Radiometer) / NDVI gimms dataset 

(Zeng et al. 2013) from 1998-2011, here we used MODIS NDVI. This was because 

MODIS NDVI is available at a finer resolution (250m) than AVHRR and is available to 

present, where the NDVI gimms dataset ends in 2011, allowing us to include additional 

data. Functional analysis was based on a multivariate functional analysis of variation in 

https://lpdaac.usgs.gov/
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observed NDVI curves of NDVI values over time. We used the first two principal 

component scores of the NDVI curves, which accounted for 74% of the variance and 

could be interpreted as a measure of annual fall (post NDVI peak) and spring plant 

growth (early growing season). Each of the remaining three other PC scores accounted 

for 10% or less of the variance and provided little additional information to explain the 

NDVI phenology curves.  

To measure winter snow cover, critical for determining energy expenditure and 

limiting access to forage, we used two different remotely sensed snow products from the 

MODIS satellite platform, and the Snow Data Assimilation System, SNODAS (Hall et al. 

2002, Barrett 2003). The MODIS (MOD10A2) snow data product measures complete 

snow coverage in 8-day composites at a 250m resolution. We measured snow cover during 

three winter periods, early winter (November – December), winter (January – March) and 

late winter (April), in two different ways. First, we estimated the percentage of each winter 

period each pixel was covered by snow as a measure of fractional snow cover. Second, we 

used the number of weeks > 90% of the winter use area was covered by snow. As another 

measure of snow effects on survival, we used two measures of SNODAS, which predicts 

snow depth at 1km2 daily resolution. SNOWDAS is a numeric model prediction based on air 

temperature, relative humidity, wind speed and precipitation downscaled from broad 13km2 

scales to the 1-km2.  The two measures were average depth during the period and the 

cumulative daily measures through the period. The final variables for the survival models 

included the following remotely-sensed variables; functional analysis principal 

components for fall (FPC), functional analysis principal components for spring (SPC), 

mean % snow cover in November and December (ND%snow), mean % snow cover in 
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January to March (W%snow), mean % snow cover in April (A%snow), number of weeks 

with >90% snow cover in November and December (FWeeks), number of weeks with 

>90% snow cover in January to March (WWeeks), number of weeks with >90% snow 

cover in April (AWeeks), average and cumulative snow depth in November and 

December (FDepth, FCum), average and cumulative snow depth in January – March 

(WDepth, WCum), average and cumulative snow depth in April (ADepth, ACum).  

Our goal was to develop a small set of predictive covariates and because these 

covariates were derived from similar data sources, we expect them to be highly 

correlated. Ideally we wanted to keep the best predictive covariate from each period. To 

accomplish this, we screened all covariates for collinearity and retained the individual 

covariates of collinear pairs with significant relationship (P < 0.05) to simple discrete 

time, known-fate models of overwinter fawn survival. Using these two criteria, we 

removed seven covariates from our analysis and retained seven spatial covariates 

ecologically related to mule deer ecology and survival; FPC, SPC, ND%snow, W%snow, 

A%snow, FWeeks, and WDepth. None of the retained seven covariates had a correlation 

coefficient > 0.7 (Appendix B, Table 3-S2). 

 

(d) Survival Modeling 

We used Bayesian hierarchical survival models (Royle and Dorazio 2006, Kery and 

Schaub 2012) to estimate overwinter fawn survival from 16 December to 1 June, 

including covariates at the appropriate spatial and temporal resolution for each 

hierarchical level: individual, seasonal range (GMU, j=1….j), and Population 
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Management Unit (PMU, k=1…k;  Figure 3-2). We treated survival in a known-fate (with 

detection probability = 1 with radio-collars), discrete-time formulation (Murray and 

Patterson 2006) in 24 weekly (7-day) intervals from 16 December to 1 June, and 

accommodated left and right staggered entry (capture) and exit (mortality, censor) 

common in wildlife studies (Pollock et al. 1989). Overwinter survival was estimated as 

the product of each weekly interval, seasonal study area, and PMU following the 

discrete-time survival paradigm using a generalized linear model with a logit-link 

function following:  

 𝑙𝑜𝑔𝑖𝑡(∅̂𝑖) = 𝜇 + 𝜀𝑖         Eq. 1 

where 𝑙𝑜𝑔𝑖𝑡(𝜙) is the overwinter survival (0, 1) of individual mule deer i=1…n  that is a 

function of a linear combination of covariates (see Eq. 2 for how we specify covariates), 

𝜇, and Bernoulli distributed error 𝜀. Here, we added hierarchical structure to the survival 

estimator with different covariate effects hypothesized to manifest at the individual GMU 

by season and PMU levels. First, we considered body mass in full models by adding the 

individual body mass for each individual mule deer to Eq. 1. This provided us with a way 

of measuring the difference in predictive performance between models with and without 

body mass. Next we considered the hierarchical spatial structure of seasonal ranges 

nested within PMUs using hierarchical random effects (Lukacs et al. 2009, Zuur et al. 

2009). We considered a fixed-intercept difference in survival between GMUs to be nested 

within a random-intercept difference in survival at the PMU level. We chose to place the 

random intercept at the PMU, not GMU level because ostensibly spatial forage and 

weather covariates were already incorporated at the GMU level, but a random intercept at 

the PMU level allowed for the effect of these GMU-level covariates to vary across PMUs 
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(Zuur et al. 2009). Next we included a random intercept for year to allow for temporal 

variation. We then included a combination of our spatial climate covariates measured at 

the seasonal-range (GMU) scale. Finally, some covariate effects likely differed between 

GMUs in a manner consistent with random coefficients. However, because of 

computational difficulty, we only explored one random coefficient at a time in models for 

the strongest covariate measured by effect size and precision. Thus, the most complex 

formulation for our hierarchical survival model was: 

 𝑙𝑜𝑔𝑖𝑡( 𝜙̂𝑖𝑗𝑘|𝑡) = 𝛽0𝑗 + 𝜁0𝑡 + 𝜁0𝑘 + 𝛽1𝑀𝑎𝑠𝑠𝑖 + [𝐁𝐗𝒊𝒋] + 𝜁1𝑘 ∗ 𝑥𝑖𝑗 + 𝜀𝑖𝑗𝑘|𝑡 

           Eq. 2 

where  𝜙̂𝑖𝑗𝑘|𝑡 is survival of individual mule deer i=1…n in seasonal GMU area j=1…j in 

PMU k=1…k in year t=1…11 and 𝜇 in Eq. 1 = 𝛽0𝑗 + 𝜁0𝑡 + 𝜁0𝑘that we define here; 𝛽0𝑗 

is the fixed-effect (intercept) of each seasonal range at the GMU level; 𝜁0𝑡 is the random 

intercept of year t; 𝜁0𝑘 is the random intercept of PMU; 𝛽1 is the coefficient of individual 

body mass; [𝐵𝑋𝑖𝑗] is the vector of seasonal range-level spatial climate covariates (FPC, 

SPC, W%snow, etc.) at GMU j; 𝜁1𝑘 is the random coefficient (slope) at the PMU level on 

the GMU-level covariate 𝑥𝑖𝑗;  and 𝜀𝑖𝑗𝑘∨𝑡 is the error at the level of individual, GMU and 

PMU in year t. We assumed all random effects were distributed with mean equal to zero 

and unknown variance, e.g., ~ Normal(0, 
2
).   

As a final step to estimating unbiased PMU-level survival, 𝜙𝑘∨𝑡, for evaluation of 

predictive capacity at the PMU-level, we applied a weighting scheme to the estimate 

obtained with Eq. 2 to weight GMU-level sampling variation in sample sizes according to 
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the estimated mule deer population size (IDFG, unpublished data, Chapter 5) at the PMU 

level. Thus, we estimated  𝜙̂𝑘|𝑡 following: 

𝜙̂𝑘|𝑡 =   
𝑛𝑗

𝑛𝑘

̂
∗  𝜙̂𝑖𝑗𝑘|𝑡           Eq. 3 

where nj = the number of individual mule deer in GMU j (Chapter 5) that is nested in 

PMU k.  

 We fit Bayesian hierarchical survival models with JAGS (Plummer 2003) using a 

Metropolis-Hastings Gibbs Markov chain Monte Carlo algorithm (Gelman et al. 2014). 

We used non-informative prior distributions for all covariates in Eq. 2 and centered and 

scaled (e.g., standardized) all covariates with mean = 0. We ran each model across three 

different chains for 20,000 iterations each, with a burn-in of 5,000 iterations (Plummer 

2003, Gelman et al. 2014), and obtained posterior distributions, means and medians for 

all estimated parameters. 

 

(e) Model Development  

Taking advantage of our unusually large sample sizes, we relied on out-of-sample 

predictive performance for model selection. We also calculated commonly used metrics 

including the Deviance Information Criteria (DIC), the mean Deviance (over all retained 

simulations) and the pD, a Bayesian measure of the effective number of parameters 

(Gelman et al. 2014). Thus, for each model, we report cross-validation R
2
CV, the out-of-

sample external validation R
2

 EV, DIC, Deviance and pD, but strongly favored R
2
 

diagnostics for model selection.  
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We developed a limited candidate set of models considering both summer and 

winter seasons for a total of 13 models. We developed models for all animals in the data 

set (hereafter overall models), and then partitioned the animals by ecotypes (i.e. ecotype 

models for aspen, conifer and shrub-steppe included only data from those PMUs within 

each ecotype). We also developed two models (early prediction) using data available 

prior to 1 January to assess our ability to predict survival prior to winter, one with a 

random effect of FWeeks and one without. For candidate model development, we first fit 

a model with all seven covariates (including mass, herein called the full model). We then 

removed mass to evaluate a set of prediction-only models. From the full model without 

mass we proceeded to remove the least informative parameters, based on credible 

intervals overlapping 0 and effect size of the standardized covariates, in a purposeful 

backward stepwise fashion (retaining each successive model) until reaching a reduced 

model where all parameters were highly informative (Gelman et al. 2014). Because of the 

high diversity of the climate and of the habitat across our study area, we then added a 

random effect (coefficient) for slope for each of the covariates identified in the reduced 

model as the most informative parameters (only one for each model) to the full models 

and reduced models. Random effects of covariates were not applied to ecotypes models 

because covariate effects were expected to be similar within ecotypes. Our final step was 

to predict survival with data collected prior to 1 January as a truly predictive model for 

practical use in the harvest season setting process. We evaluated early prediction models 

comprised of the most important covariates identified during overall model development.  
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(f) Evaluating the Precision, Accuracy and Generality of Survival Models 

We evaluated models using both internal validation and external validation for our overall 

set of models, prediction-only models (e.g., no body mass), and ecotype models (Hastie 

et al. 2001). We considered internal validation as a measure of the model’s goodness-of-

fit and external (e.g., out-of-sample) validation as the strongest measure of a model’s 

generality, accuracy and precision (Hastie et al. 2001), as well as the ultimate model 

selection diagnostic (Hooten and Hobbs 2015). We first predicted the expected survival 

for each animal given a set of covariates using Eq. 2, using all data for internal cross-

validation. We conducted internal validation for all models (overall, ecotype, etc.). 

Second, we conducted external validation withholding all survival data for 2007 and 

2008 to estimate predictive performance. We did not externally validate ecotype models 

due to small sample sizes, but compared ecotype models’ internal validation to our 

overall models to evaluate if using finer-scale ecotype models would increase 

explanatory power of survival models.  

We compared predicted survival rates from each Bayesian survival model against 

observed survival rates within each year and PMU. Observed survival rates were 

estimated using the simple non-parametric, non-distributional Kaplan-Meier (K-M) 

estimator (Kaplan and Meier 1958):  

𝑆𝑡,𝑘̂ =  ∏ (
𝑛𝑖−𝑑𝑖

𝑛𝑖
)𝑡,𝑘

𝑖=1         Eq. 4 

and 𝑆𝑡,𝑘 is the estimated survival of mule deer in year i=1…t, and PMU k=1…k, ni is the 

number of animals starting each weekly interval, di is the number of deaths, and the 

product of the weekly survival rates provides the non-parametric estimator of survival. 
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We used Pearson’s correlation coefficient between observed and predicted survival to 

estimate precision (R
2
). We also assessed the bias of the regression between observed and 

predicted (i.e., a slope of 1 indicates equality of both) using spline curves. The JAGS 

code for our hierarchical survival models is presented in Appendix B (Table 3-S4). 

 

RESULTS 

(a) Observed survival 

We captured and monitored a total of 2,529 fawns, averaging ~ 30 fawns/year/PMU 

(range 14 to 75) per year from 2003–2013 to develop survival models (Appendix B, 

Table 3-S1). Statewide survival of fawns ranged from 0.32 (SE = 0.032) to 0.71 (SE = 

0.034) during 2003–2013, and mean survival for all years varied across PMUs (Figure 3-

2b; Appendix B, Table 3-S1, for PMU-year specific KM estimates).  

 

(b) Covariate and random effects for overall model  

Male fawns were heavier than females (mean = 37.1 kg vs. 34.2 kg, t = -13.1, P < 0.005) 

and survival increased with mass in the full overall Bayesian survival model 

(standardized coefficient, = 0.457, SE = 0.037). In our overall models, winter survival 

increased with higher fall plant productivity later in the fall (Figure 3-3, Appendix B, 

Table 3-S2). Higher snow cover during January through March and higher number of 

weeks in autumn with >90% snow cover both decreased fawn survival (Figure 3-3, 

Appendix B, Table 3-S2). Survival also increased with higher spring functional analysis 

values but this effect was more variable between models than the effects of plant 
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productivity in fall (Figure 3-3, Appendix B, Table 3-S2) and thus SPC was not included 

in the final model. Winter snow depth and snow cover in April had minimal relationship 

to winter fawn survival for the overall models (Figure 3-3, Appendix B, Table 3-S2).  

 The high spatial heterogeneity of the study area was highlighted by the strength of 

both random intercepts and random slopes (Figure 3-2c, Appendix B, Table 3-S2). There 

was support for variation between PMUs in overall survival and also in the effects of 

winter on survival (Table 3-1, Figure 3- 4) as all the top five models in terms of internal 

validation included random slopes of one other most influence top three covariates (Table 

3-1). However, these models add complexity and parameters thus were not considered 

amongst the top models according to DIC or validation diagnostics. Covariate effects also 

varied considerably across PMUs. For example, the influence of winter snow cover on 

survival varied across PMUs, with the strongest influence in the high elevation 

southeastern PMUs and least in the low elevation western PMUs (Figure 3-2c). 

 

(c) Overall survival model validation, prediction, and complexity 

Ranking overall survival models using internal validation, external validation or DIC 

produced contrasting perspectives on what is the ‘best’ model. The best-supported overall 

survival model in terms of internal explanatory capacity (R
2
cv = 0.814) was a model 

including all covariates (excluding body mass) with a random effect (slope) for winter 

percent snow cover (Table 3-1, Figure 3-4). If we were to rank models using DIC, 

however, a model with all covariates including mass was most supported (Table 3-1), 

despite the substantially lower explanatory capacity (R
2
cv = 0.695).  
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 Overall model predictions correlated well with the Kaplan-Meier survival 

estimates for the external validation, when 403 mule deer fawns from 2007-2008 were 

left out (Figure 3-5). Although the highest R
2

CV was obtained with the most complex 

model with a random effect of snow cover in winter, the R
2

EV was substantially lower 

when these two validation years were including in the re-parameterization of this top 

model (Figures 4 & 5, R
2
 = 0.814 for all years vs. 0.698 with 2007 and 2008 excluded 

and predicted). Without mass included, the most parsimonious model with the highest 

external predictive power (R
2

EV = 0.704) was a function of three covariates, winter 

percent snow cover, fall NDVI, and the number of weeks with complete snow cover in 

November and December (Table 3-1, Figure 3-5). The most supported early prediction 

model (only covariates before 1 January) included three covariates with a random slope 

for Fall Weeks with > 90% snow cover with high explanatory capacity (R
2
cv = 0.818), 

but low external predictive power (R
2

EV = 0.590).   

 The reduced model produced a slightly lower R
2
 (0.785) between KM and 

modeled estimates, suggesting a trade-off between generality and precision when 

predicting survival. Although, the R
2
 of the model fit must increase as covariates are 

added, the opposite was true in the validation (Figure 3-4 vs. 3-5). Validation of these 

models suggested that the best performing model in terms of predictive power was not 

necessarily the best explanatory model. Interestingly, the top model that did not include 

mass ranked by DIC was also the best non-random effects survival model to successfully 

predict out-of-sample mule deer survival (Figure 3-5). Our most parsimonious model 

predicted better than the more complex models, likely due to overfitting the data with the 

additional parameters included by DIC. This suggests that for generality of true 
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prediction, the more complex models were becoming more and more overfit. Thus, the 

absolutely best model from an external validation and prediction perspective in this case 

was the simplest function of three covariates (model 2 in Table 3-1).  

 

(d) Ecotype survival models and covariate effects 

Model selection results were similar among vegetative ecotypes as the top models from a 

DIC perspective in all ecotypes were the full models including mass (Table 3-2, Figures 

3-3 to 3-6). In the aspen ecotype, there was a perfect correspondence between the ‘best’ 

model selected from a traditional DIC perspective and the internal validation (Table 3-2).  

However, the best model from DIC in the conifer ecotype had the poorest predictive 

performance. The overall predictive performance of the shrub-steppe models was lower 

than conifer or aspen, and the top predictive model had two fewer covariates than the 

best-selected model from DIC. The covariate effect of body mass was similar in each 

ecotype model where it was retained in to the overall survival model reported above; = 

0.504, SD = 0.071 in aspen, = 0.429, SD = 0.046 in conifer, and = 0.397, SD = 0.095 

in shrub-steppe. Mass only improved predictive performance for aspen. Inclusion of mass 

in conifer resulted in the worst predictive performance, and in shrub-steppe, mass 

reduced prediction again. The models we would select to predict ecotype survival without 

mass would be model 5 in aspen with two covariates; model 5 in conifer, and model 1 in 

shrub-steppe (Table 3-2).  

 Models without mass had equivalent predictive performance as other, more 

complicated models (e.g., R
2

CV of 0.859 for aspen model 2 with seven covariates versus 

R
2

CV of 0.853 for the two covariate model). Internal validation R
2

CV
 
of all aspen models 
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were > 0.851, suggesting an improved fit over the most parsimonious overall model 

(Table 3-1, Figure 3-4). The best internally validated model for conifer ecotype was the 

full model, excluding Mass (Table 3-2, Figure 3-6). This conifer model explained 0.803 

of the variance in overwinter fawn survival. The best internally validated model for 

shrub-steppe was the 6-covariate model, excluding Mass and WDepth, accounting for 

60.4% of the variance (Table 3-2, Figure 3- 6). The effect of summer range quality did 

not have the strength in ecotype specific model as in the overall likely due to similar 

values within the ecotype, whereas winter snow conditions will be more site-specific. Our 

prediction of lower performance in more carnivore-driven systems is supported by both 

the lower R
2
 of the top conifer model than the aspen and our survival prediction 

consistently biased low when predicting high survival in the conifer models versus the 

aspen models.  

 

DISCUSSION 

By combining Bayesian hierarchical survival models with spatio-temporal data on forage 

and winter conditions derived from remote sensing, we successfully developed powerful 

explanatory mule deer survival models across most of the state of Idaho. This supports 

our general working hypothesis that climatic variation and primary production are the 

major determinants of juvenile mule deer overwinter survival.  Our overall models were 

able to externally predict out-of-sample survival with R
2
EV values that ranged from 0.59 – 

0.71 across time and space. This is a novel approach because there have been few if any 

tests of the predictive capacity of such a large-scale model to predict the survival of a key 



 

99 

 

demographic trait for a harvested species. The modeling approach we advocated should 

enable wildlife managers to estimate the key vital rate of a population in a large range of 

ecological contexts. The first step should be to identify this critical vital rate. As 

recruitment is often the most important vital rate for ungulates (Gaillard et al. 2000), the 

key component should be either the summer or the winter juvenile survival. In mule deer, 

like in other ungulates living in northern temperate areas such as bighorn sheep (King et 

al. 2006, Eacker 2015), identifying the drivers of overwinter survival might allow 

reducing the need to capture and monitor ungulates annually. Instead, a monitoring 

system incorporating survival prediction with periodic monitoring for model calibration 

would save considerable funds with minimal loss in accuracy. Our most general survival 

model predicted overwinter survival of mule deer fawns through Idaho’s wide variety of 

vegetation, climate, and predator communities with easily obtainable remote-sensed data 

pertaining to vegetation quality and winter snow estimates.  

 The success of our approach based on Bayesian hierarchical models requires 

matching the spatial or temporal scale of covariates to the appropriate survival period 

(Heisey et al. 2010a, Heisey et al. 2010b, Heisey 2012). In this case we measured 

MODIS-based NDVI and snow covariates derived from MODIS and SNOWDAS 

products defined by the fawn habitat use in the population of interest in specific summer 

and winter ranges. In addition to these spatiotemporal remote sensing covariates, we also 

accounted for variation related to large-scale processes, such major vegetative differences 

through the use of random-effect terms for these unmeasured, but important, latent 

variables. PMUs in Idaho were developed from movement data of radio-collared animals 

representing putatively interbreeding populations that overlapped in their distribution on 
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summer and fall ranges (Idaho Mule Deer Management Plan 2008). These PMU 

designations did not necessarily consider differences in vegetation quality, winter 

severity, and predation risk between specific summer and winter ranges. Allowing these 

effects to vary across winter ranges (GMU scale) within PMUs and across PMUs allowed 

covariates to account for the biological processes involved while minimizing the noise of 

inherent differences in PMUs. Our Bayesian hierarchical survival models provided an 

efficient means to capture this mix of measured and unmeasured drivers of overwinter 

fawn survival across scales.  

 The importance of scale to regional hierarchical models was best exemplified by 

the inconsistent importance of body mass in the survival models. Body mass is a very 

strong predictor of juvenile ungulate survival across a multitude of studies (Bartmann and 

Bowden 1984, Unsworth et al. 1999, Pettorelli et al. 2002, Bishop et al. 2009, Griffin et 

al. 2011, Hurley et al. 2014). Increased mass-at-capture strongly increased overwinter 

survival of mule deer fawns as expected. However, our best overall survival models that 

included mass (Table 3-1, models 9 and 11) had poorer predictive power than even our 

simplest survival models, accounting for ~ 10% less variation. We suggest this disparity 

is caused by spatial differences in vegetation quality and winter severity that were 

effectively captured by remotely-sensed measures of habitat. For example, fawn mass in 

the Palisades PMU was generally higher (39.5 kg, SE = 2.46) than elsewhere in the state 

because of high quality spring and summer range that also enabled higher body growth 

rates through the summer. However, winter snow cover and depth was often also the 

highest in this region (Figure 3-2b), resulting in high fawn mortality and overriding the 

benefit of higher mass arising from higher summer forage. In contrast, Boise River PMU 

http://fishandgame.idaho.gov/public/wildlife/planMuleDeer.pdf
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fawn body mass was generally the lower (Male mean = 36.1kg, SE=1.52) because of 

poorer quality spring/summer forage and low precipitation. Despite these lower ‘quality’ 

fawns, the Boise River PMU experienced the least snow and mild winters; thus, perhaps 

counter-intuitively, survival was often high in this PMU without the low survival 

experienced in the higher elevation PMUs during severe winters. This contrast between 

summer and winter determinants of overwinter survival is interesting, but not ultimately 

why we think mass performed more poorly as a predictive covariate at our broadest scale 

of winter models. When averaging across different PMUs with high and low fawn body 

mass, body mass could not ultimately predict survival as well as PMU-level spatial and 

temporally varying covariates which ultimately drove differences in both starting body 

mass at the beginning of winter (e.g., summer forage) and the response, e.g., mortality or 

hazard rate of fawns in response to winter severity. This discussion also highlights that 

viability selection (Fisher 1930), whereby the lightest individuals are more likely to die 

either summer or winter, especially in lower quality habitat, may also be operating and 

another reason why body mass predicts individual overwinter survival well, but loses 

predictive strength at the population-level. Viability selection normally operates strongest 

on summer (neonatal) survival, reducing poor quality individuals before winter, but can 

also operate on the remaining cohort entering winter. Our weather covariates and the 

Bayesian hierarchical modeling framework will control for most of these differences, but 

extreme conditions may decouple the relationship when applied within the same model.  

The importance of spatial variation in forage and winter snow cover influencing 

overwinter survival was also displayed in the top explanatory model (Table 3-1). This 

model included a random slope for winter snow instead of body mass, and accounted for 



 

102 

 

the highest proportion of variance in our overall model set (R
2

CV =0.814). For example, 

in Boise PMU there was no effect of winter (Figure 3-2c), whereas in all the southeastern 

PMUs (e.g., Bannock, Caribou, and Palisades), the strength of the winter snow effect was 

nearly double that of those in the central conifer PMUs (Figure 3-2c, Central Mountains, 

Island Park, Smoky/Bennett, Weiser/McCall). We interpret that the random coefficient 

accounted for some of the variation at the PMU or GMU-level in the hazard rate caused 

by winter snow, which reflects spatial variation across PMUs in the realized effect body 

mass had on overwinter survival. For example, in the Bannock, Caribou, and Palisades 

PMUs, fawns with relatively high body mass often experienced greater overwinter 

mortality not because of a stronger effect of winter snow per se, but merely because of 

absolute winter severity, which was almost double the amount of snow as other PMUs 

(Figure 3-2c). However, even this random coefficient could not predict out-of-sample 

survival as well as the most parsimonious model that simply included the spatial variation 

in three key covariates directly. This discussion highlights that inferences from our 

Bayesian hierarchical survival models will vary depending on the scale of application, 

and also the challenges of interpreting random coefficients in complex models, again, 

emphasizing a parsimonious approach (Bolker et al. 2009, Zuur et al. 2009).  

 There was additional evidence in our survival modeling that ecotypes provided a 

biologically relevant scale for considering mechanisms affecting survival. Differences in 

snow cover between PMUs followed the ecotype divisions based solely on vegetation 

cluster analysis (Figure 3-2). This suggests that ecotype could be a strong driver of 

survival through nutrition or predator habitat and good partitioning metric. This is similar 

to a recent continental-scale synthesis of elk calf recruitment (which includes overwinter 
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survival) reporting that ecotype differences accounted for more observed variation in 

recruitment than state-level or administrative boundaries (Lukacs et al. In Review). 

Moreover, in contrast to the overall mule deer survival models, body mass was included 

in the top ecotype models for all three ecotypes, aspen, conifer and shrub-steppe (Table 3-

2) with a consistent positive effect between ecotypes on survival.  

The ecotype-specific effects of summer/fall forage and winter snow on mule deer 

overwinter survival varied between ecotypes in ways that corresponded to important 

differences between PMUs. This is similar to many previous studies of mule deer, and 

other ungulates, that used a variety of different measures of forage and winter severity 

(Bishop et al. 2005a, Bishop et al. 2009, Hurley et al. 2011). Our approach evaluated the 

same consistent set of predictors across a wide geographical gradient and revealed 

important between-ecotype differences. For example, fall phenology (FPC) was observed 

to be important in the conifer communities, but not in the eastern aspen communities 

where only Nov-Dec weeks with complete snow and winter snow cover predicted 

survival quite closely (R
2

CV=0.853, Table 3-2, Figure 3-4). Yet, winter snow cover had 

similar magnitude effects on fawn survival in both aspen and conifer (Figure 3-3), but 

Nov-Dec snow cover only negatively affected survival in conifer. The forage production 

and quality of shrub-steppe communities was highly influenced by precipitation, more so 

than communities with canopy tree (aspen or conifer) cover as evidenced by the positive 

relationship of most types of precipitation (including snow) and summer phenology to 

survival. It appears that in these xeric shrub-steppe ecotypes, any moisture, except early 

winter snow (which we interpret as indicating the end of the fall growing season), will 

have a positive effect on survival in this ecotype as these open areas may require winter 
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snow moisture for plant growth in early spring. In general across all ecotypes, vegetation 

phenology as measured by NDVI had much weaker effect sizes than the two primary 

snow covariates (W%snow and Fweeks, Figure 3-3). Snow accumulation is a more fine-

scale process than vegetation phenology because minimal changes in temperature and 

aspect will change snowfall to rain. This may explain why FPC and SPC were important 

in the statewide models, but lose importance in the aspen ecotype model. Phenology is 

similar across this region, limiting its effectiveness to differentiate survival among PMUs 

within ecotypes. In the aspen ecotype, snow depth was important, likely due to the higher 

elevation areas and increased average snow depth. The full model including mass was the 

best fitting model for aspen, again suggesting that mass is a finer-scale process and 

related to snow conditions. 

The regional variation we found in remotely-sensed measures of winter snow may 

also reflect differences in spatial resolution. For example, the higher resolution of the 

MODIS data at 250m as opposed to SNODAS at 1km may likely explain greater 

importance of snow cover compared to snow depth. The higher resolution may more 

accurately capture the effect of elevation and aspect in our topographically variable 

winter ranges by reflecting the snow free areas of a winter range at lower elevation. 

Regardless of which remotely sensed measure of winter severity was retained in our 

survival models, both allowed spatial variation in the measure of snow to improve 

predictions of overwinter survival. 

Our challenge in producing predictive models of survival was to balance the 

precision, bias, and generality trade-offs (Levins 1966) while using readily obtainable 

covariates that describe the complexity of our spatially diverse system. This approach 
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allowed us to select the most parsimonious model that maximized generality across large 

regional areas while minimizing model complexity (i.e. our simplest model has higher 

out-of-sample predictive capacity as our most complex model). This simple model with 

just three covariates, one summer vegetation quality and 2 two winter snow measures, 

should be general enough to estimate overwinter fawn survival in much of the arid west, 

given the data for model development was obtained from the diverse vegetation types. 

Interestingly, the inclusion of body mass decreased predictive capacity across ecotypes, 

likely because mass is related to individual survival, but the random sample of mean 

mass as used when predicting survival is a weaker measure of population level effects. 

The flexibility of a general model is important because Bishop et al. (2005) observed 

winter survival of fawns was not spatially synchronous even in adjacent winter ranges 

and cautioned that extrapolating survival to other populations can lead to erroneous 

population estimates, a problem we solved with our modeling approach.  

 Beyond statistical reasons, the potential discrepancies between predictions and 

observations might involve predation, which could also result in lower than predicted 

survival. We exclusively used vegetation quality and snow covariates to model survival, 

but this may not successfully capture predation-related drivers of fawn survival over the 

winter. For example, in our system, 21% (10% - 60%) of the fawns are killed by 

predators during winter (M. Hurley, unpublished data). Thus we only modelled 79% of 

the variation in overwinter survival when ignoring predation. Moreover, the interaction of 

weather conditions and habitat may influence fawn survival through predation risk 

(Griffin et al. 2011). Our predictive models also ignored possible density-dependence 

(Bonenfant et al. 2009). Understanding the mechanism by which forage-risk trade-offs 
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translate to mortality may be the last critical step needed to integrate density and 

predation into survival models. While including covariates representing density and 

predation appeals ecologically, from a practical viewpoint, wildlife managers often will 

not have access to this information over large regions. Instead, as our ecotype-scale 

models demonstrate, some of this potential bias between observed and predicted survival 

seems to be diminished in the ecotype-scale models with lower predictive performance 

occurring in our highest predation risk ecotype, conifer. 

We conclude that wildlife population studies should put more effort into testing 

the predictive performance of their models to understand their generality. Previous large-

scale demographic syntheses of neonatal elk calf survival (Griffin et al. 2011), adult 

female elk survival (Brodie et al. 2013), and calf:cow ratios (Lukacs et al. 2015) all 

developed relatively parsimonious models to explain spatio-temporal variation of vital 

rates over large regions, far greater than our study. For example, Griffin et al. (2011) 

predicted 90-day elk calf survival using a fairly basic model of the number of predator 

species, previous summer precipitation, and May precipitation. This model accounted for 

a reasonable percentage of the variation (42%), but the out-of-sample predictive 

performance had never been tested so far.  Conversely, many study-area specific survival 

models tend to often be so highly parameterized that we can question their predictive 

potential in other systems. Very few wildlife survival studies address any aspect of either 

internal or external validation. Internal validation may be limited by methodology 

because to date, discrete time survival modeling approaches still do not provide any 

measure of goodness-of-fit for evaluating internal model fit from a known-fate survival 

model (White and Burnham 1999).  
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MANAGEMENT IMPLICATIONS 

We have developed models to predict mule deer fawn overwinter survival from 16 

December to 1 June in Idaho’s semi-arid intermountain habitats. The models exclude 

information related to cause-specific mortality and mass of deer because this information 

is not commonly available to managers. Once these models are validated or modified for 

different vegetation communities, mule deer managers will realize extensive cost savings 

if winter fawn survival is now included in their monitoring program (radiocollared 

fawns). Modeling winter fawn survival with periodic fawn captures to empirically 

estimate fawn survival and calibrate the models can be included within integrated 

population models for harvest prescriptions. We suggest using the reduced overall model 

as the generality will likely transfer to different environments. Using the early prediction 

models will provide managers the ability to predict survival in the current winter, prior to 

harvest season development. Survival predictions can then be verified with the overall 

models for the entire winter season. We invite mule deer managers and researchers to 

evaluate performance of our models against their current monitoring program as further 

validation.  
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TABLES 

Table 3-1. Model selection results for the overall, overwinter Hierarchical Bayesian 

survival model for mule deer (Odocoileus hemionus) fawns based on 2529 individuals 

from 2003-2013 in Idaho, USA. The overall models contain data from all Population 

Management Units (PMU) and all years, and the full models contain all of the covariates. 

For each model, we report the model structure with covariates, Deviance Information 

Criterion (DIC), Difference from lowest DIC (ΔDIC), Effective Number of Parameters 

(pD), Deviance, and validation metrics. We conducted two forms of model validation; 

cross-validation within the observed data (R
2
cv) and external validation (R

2
EV) with 

withheld survival data collected on n = 403  mule deer fawns in years 2007-2008 in the 

same study areas.  The best model identified by each of the criteria (ΔDIC , R
2
cv , R

2
EV) 

are bolded.  Covariates include mean snow cover in November and December 

(ND%snow), mean snow cover in January to March (W%snow), mean snow cover in 

April (A%snow), functional analysis principal components for fall (FPC), functional 

analysis principal components for spring (SPC), number of weeks with >90% snow cover 

in November and December (FWeeks), and average snow depth in January – March 

(Depth).   

 



 

 

 

1
1
7
 

Model ΔDIC DIC pD Deviance R
2

CV R
2

EV 

1 W%snow(random)+FPC+FWeeks 122.9 11197.6 2409.1 8788.4 0.806 0.705 

2 W%snow+FPC+FWeeks 71.4 11146.1 2358.0 8788.1 0.785 0.704 

3 Full with random % W%snow 162.6 11237.3 2451.0 8786.3 0.814 0.698 

4 ND%snow+W%snow+A%snow+FPC+SPC+FWeeks+Depth 228.8 11303.5 2517.6 8785.8 0.795 0.677 

5 ND%snow +W%snow+A%snow+FPC+SPC+FWeeks 101.1 11175.8 2391.4 8784.4 0.796 0.675 

6 ND%snow +W%snow+A%snow+FPC+FWeeks 228.7 11303.4 2515.0 8787.5 0.789 0.671 

7 Full with random FWeeks  186.4 11261.1 2473.9 8789.1 0.808 0.667 

8 W%snow+FPC(random)+FWeeks 123.3 11198.0 2415.1 8779.9 0.800 0.649 

9 Full with random W%snow + Mass 176.3 11251.0 2650.4 8600.6 0.719 0.644 

10 Full with random FPC 162.1 11236.8 2454.9 8781.8 0.806 0.628 

11 ND%snow+W%snow+A%snow+FPC+SPC+FWeeks+Depth+Mass 0.0 11074.7 2472.1 8602.6 0.695 0.620 

12 FPC+SPC+FWeeks (early prediction) 174.8 11249.5 2480.6 8768.9 0.816 0.620 

13 FPC+SPC+FWeeks(random) (early prediction) 176.5 11251.2 2478.1 8773.0 0.818 0.590 

R
2

CV = Cross validation; R
2

EV = Validation with external data 
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Table 3-2. Model selection results for the ecotype specific, overwinter Hierarchical 

Bayesian survival models for mule deer (Odocoileus hemionus) fawns based on 2529 

individuals, including all years of data from 2003-2013 in Idaho, USA. The full models 

contain all of the covariates. For each model we report, the model structure with 

covariates, Deviance Information Criterion (DIC), Difference from lowest DIC (ΔDIC), 

Effective Number of Parameters (pD), Deviance, and validation metrics (Cross validation 

R
2
). The best model identified by each of the criteria (ΔDIC , R

2
cv ) are bolded. 

Covariates are; mean snow cover in November and December (ND%snow), mean snow 

cover in January to March (W%snow), mean snow cover in April (A%snow), functional 

analysis principal components for fall (FPC), functional analysis principal components 

for spring (SPC), number of weeks with >90% snow cover in November and December 

(FWeeks), and average snow depth in January – March (Depth). 

 



 

 

 

1
1
9
 

 

Model Δ  DIC DIC pD Deviance R
2

CV 

    Aspen model      

1 ND%snow +W%snow+A%snow+FPC+SPC+FWeeks+WDepth+Mass 0.0 2982.3 674.4 2308.0 0.895 

2 ND%snow +W%snow+A%snow+FPC+SPC+FWeeks+WDepth 67.5 3049.8 672.6 2377.2 0.859 

3 W%snow+A%snow+FPC+FWeeks+WDepth 56.9 3039.2 663.0 2376.2 0.856 

4 W%snow+FWeeks+WDepth 92.9 3075.2 696.3 2378.9 0.854 

5 W%snow+FWeeks 54.0 3036.3 655.1 2381.2 0.853 

6 ND%snow +W%snow+A%snow+FPC+FWeeks+WDepth 113.3 3095.6 717.5 2378.1 0.852 

7 W%snow+FPC+FWeeks+WDepth 60.3 3042.6 663.3 2379.3 0.851 

       

      

    Conifer model      

1 ND%snow+W%snow+A%snow+FPC+SPC+FWeeks+WDepth 118.8 6635.5 1367.5 5268.1 0.803 

2 ND%snow+W%snow+A%snow+FPC+SPC 140.9 6657.6 1333.0 5324.7 0.799 

3 ND%snow+W%snow+A%snow+FPC+SPC+WDepth 124.7 6641.4 1317.5 5323.9 0.797 

4 ND%snow+W%snow+FPC+SPC 94.2 6610.9 1288.5 5322.4 0.796 

5 ND%snow+W%snow+FPC 214.2 6730.9 1408.6 5322.2 0.795 

6 ND%snow+W%snow+A%snow+FPC+SPC+FWeeks+WDepth+Mass 0.0 6516.7 1354.5 5162.2 0.762 

       

    Shrub-steppe model      

1 ND%snow+W%snow+A%snow+FPC+SPC+FWeeks 8.0 1285.0 154.3 1130.7 0.604 

2 ND%snow+W%snow+A%snow+FPC+SPC+FWeeks+WDepth 18.0 1295.0 166.0 1129.0 0.596 

3 ND%snow+W%snow+A%snow+FPC+SPC+FWeeks+WDepth+Mass 0.0 1277.0 165.0 1112.1 0.575 

4 W%snow+A%snow+FPC+SPC+FWeeks 17.3 1294.3 165.2 1129.1 0.539 

5 A%snow+FPC+SPC+FWeeks 96.2 1373.2 242.7 1130.4 0.535 

6 W%snow+A%snow+FPC+FWeeks 6.3 1283.3 152.9 1130.4 0.507 

7 FPC+SPC+FWeeks 48.5 1325.5 191.3 1134.2 0.411 
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FIGURES 

 

Figure 3-1. Annual survival cycle for mule deer (Odocoileus hemionus) fawns in year t 

from birth, through summer and winter survival to recruitment into the population in 

relation to the management setting of mule deer harvest in year t+1 in Idaho, USA. 

Winter begins in November or December and winter fawn survival is measured from 15 

December to June 1 (dashed line). Season setting for harvest management begins in early 

January and final seasons are set in early March of each year. 
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Figure 3-2. (left panel) Hierarchical relationship between Mule deer (Odocoileus 

hemionus) seasonal summer and winter ranges within the deer sampling unit at the Game 

Management Unit (GMU) and the larger-scale Population Management Unit (PMU), and 

largest-scale Ecotype in central and southern Idaho, USA, years 2003–2013. Spatial 

covariates for weather (summer precipitation, NDVI, snow-cover) were extracted from 

seasonal ranges estimated from radio telemetry data during summer and winter, and then 

associated with individual mule deer within each GMU, nested within each PMU. 

Expected overwinter survival of fawns in each PMU estimated from the mean of the 

annual posterior distributions (top right). Parameter estimate for the random effect of 

winter snow cover for the best fitting random effect model (bottom right, Table 1). Green 

colors denote minimal effect of winter and orange to red colors denote increasing effect 

of winter.  
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Figure 3-3. Effects of covariates on mule deer (Odocoileus hemionus) overwinter survival 

in Idaho, 2003-2013, from the top six Bayesian hierarchical models showing the mean, 

75% and 95% Bayesian credible intervals for the following covariates: mean snow cover 

in November and December (ND%snow), mean snow cover in January to March 

(W%snow), mean snow cover in April (A%snow), functional analysis principal 

components for fall (FPC), functional analysis principal components for spring (SPC), 

Number of Weeks with >90% snow cover in November and December (FWeeks), and 

average snow depth in January – March (Depth). 
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Figure 3-4. Observed (Kaplan-Meier survival, x axis) versus predicted (modeled y axis) 

overwinter survival of 6-month old mule deer (Odocoileus hemionus) fawns in southern 

and central Idaho for each PMU, 2003-2013. Survival was predicted for 2529 mule deer 

fawns using a hierarchical Bayesian survival model that accounted for spatial and 
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temporal variation in covariates. Panel figures for the numbering scheme of Table 1 a) 

Model 10, b) Model 1, c) Model 6, d) Model 5, e) Model 3, f) Model 9. The first model is 

the only model that includes mass. The blue line is a spline fit to illustrate bias of 

modeled survival estimates from observed estimates.  
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Figure 3-5. External validation of the overall models of mule deer (Odocoileus hemionus) 

fawn survival in Idaho, 2003-2013. We conducted external validation by withholding 

survival data collected on 403 mule deer fawns in years 2007-2008. We used the models 

to predict survival of fawns and then compared the estimate (green circle) to observed 

survival (Kaplan-Meier estimate) in the same study areas. The first and 4
th

 models 
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include a random effect of winter % snow cover the others only random intercept and 

correspond to model numbers in Table 1. The blue line is a spline fit to illustrate bias of 

modeled survival estimates from observed estimates.  
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Figure 3-6. Observed (Kaplan-Meier x axis) versus predicted (modeled y axis) overwinter 

survival of 6-month old mule deer (Odocoileus hemionus) fawns within a, b) Aspen c, d) 

Conifer, and e, f) Shrub-Steppe ecotypes in southern Idaho, 2003-2013. The two most 

supported models are presented. 

a b 

f e 

d c 
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The blue line is a spline fit to illustrate bias of modeled survival estimates from observed 

estimates.  
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APPENDIX B. SUPPLEMENTAL MATERIALS 

December 26, 2015 

Hurley, M., Hebblewhite, M., et al. 2015.  Generality and precision of regional-

scale survival models for predicting overwinter survival of mule deer fawns  

Journal of Wildlife Management, In Review.  

 

3-S1: Summer Range Ecotype Classification 

We used summer range as the basis for clusters as these season ranges show the greatest 

potential variance is nutritional quality and vegetation types. Vegetation variables were 

developed from the SAGEMAP vegetation layer (2005 USGS, Forest and Rangeland 

Ecosystem Science Center, Snake River Field Station, Boise, ID). The layer contained 

126 land cover classes with a minimum mapping unit (MMU) of approximately 1 acre 

(0.4 ha). We reclassified the image into 18 vegetation classes with importance to mule 

deer ecology. These vegetation classes included; aspen woodland, riparian, other 

deciduous woodland, juniper woodland, mahogany woodland, coniferous forest, 

deciduous shrub land, mesic sagebrush shrub land, xeric sagebrush shrub land, wet 

meadow, mesic grassland, xeric grassland  (includes Conservation Reserve Program 

lands), invasive grassland, agriculture, recent burn, open water, developed, and 

unavailable. The weighted mean accuracy assessment of the reclassification was 84.4%.  

We used a hierarchical weighted means cluster analysis based on summer range 

vegetation types within summer home ranges used by the wintering herd unit (Figure 3-

S1) to identify vegetation community clusters. Defining differences identified in the three 
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primary clusters were % conifer (>40%), %aspen (6 to 13%), and % mesic sagebrush 

(>60%) on summer range. The GMUs were distributed among the ecotypes with five in 

conifer ecotype (GMUs 32, 33, 36B, 39, 60A), two in shrub-steppe ecotype (GMUs 54, 

58), and six in aspen (GMUs 56, 67, 69, 72, 73A, 76). PMUs were assigned to group 

depending on the designation of GMUs in each PMU. 

 

 

 

Supplement Figure 3-S1. Hierarchical weighted means grouping of GMUs based on 

percent of vegetation types within deer sub-population summer range. 
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Table 3-S1. Winter survival rates and standard errors (SE)
a
 of radio-collared mule deer fawns in central and south Idaho. Note that 

2007 and 2008 KM estimates were excluded for the out-of-sample validation of the Bayesian survival models.  

PMU 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

  Bannock NA 

0.48 

(0.099) 

NA NA 

0.74 

(0.092) 

0.33 

(0.093) 

0.36 

(0.071) 

0.71 

(0.082) 

NA NA NA 

  Boise River 

0.56 

(0.099) 

0.35 

(0.099) 

0.74 

(0.092) 

0.52 

(0.100) 

0.46 

(0.103) 

0.71 

(0.104) 

0.77 

(0.092) 

0.76 

(0.084) 

0.48 

(0.099) 

0.67 

(0.096) 

0.70 

(0.096) 

  Caribou 

0.74 

(0.063) 

0.53 

(0.106) 

0.52 

(0.099) 

0.31 

(0.055) 

0.81 

(0.054) 

0.22 

(0.072) 

0.28 

(0.076) 

0.61 

(0.092) 

NA NA NA 

  Central     

Mountains 

0.35 

(0.099) 

0.32 

(0.099) 

0.67 

(0.086) 

0.10 

(0.044) 

0.64 

(0.059) 

0.42 

(0.114) 

0.39 

(0.092) 

0.87 

(0.060) 

0.47 

(0.076) 

0.61 

(0.085) 

0.47 

(0.091) 

  Island Park NA 

0.85 

(0.071) 

NA NA NA 

0.32 

(0.093) 

0.56 

(0.111) 

0.68 

(0.109) 

0.07 

(0.057) 

NA NA 

  Middle Fork NA NA NA NA NA 

0.24 

(0.103) 

NA NA NA NA NA 
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  Mountain Valley NA 

0.57 

(0.103) 

0.89 

(0.047) 

0.17 

(0.076) 

0.63 

(0.112) 

0.35 

(0.112) 

0.39 

(0.106) 

0.69 

(0.075) 

0.22 

(0.076) 

0.39 

(0.083) 

0.37 

(0.080) 

  Palisades 

0.92 

(0.054) 

0.54 

(0.098) 

0.68 

(0.094) 

0.16 

(0.073) 

0.64 

(0.096) 

0.09 

(0.087) 

0.52 

(0.109) 

0.75 

(0.097) 

NA NA NA 

  Smokey-Bennett NA NA NA NA NA 

0.32 

(0.099) 

0.67 

(0.090) 

0.83 

(0.076) 

0.37 

(0.093) 

0.82 

(0.067) 

0.85 

(0.063) 

  South Hills 

0.75 

(0.089) 

0.83 

(0.079) 

0.73 

(0.087) 

0.32 

(0.105) 

0.57 

(0.126) 

0.35 

(0.107) 

0.30 

(0.113) 

0.85 

(0.071) 

NA 

0.65 

(0.101) 

0.59 

(0.113) 

  Weiser-McCall 

0.64 

(0.096) 

0.41 

(0.070) 

0.95 

(0.051) 

0.43 

(0.094) 

0.67 

(0.111) 

0.32 

(0.101) 

0.86 

(0.074) 

0.55 

(0.084) 

0.09 

(0.052) 

0.67 

(0.086) 

0.69 

(0.082) 

 a
 Survival rates and SEs were calculated following Pollock et al. (1989). 
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Table 3-S2. Correlation matrix of weather covariates 2003 to 2013. Covariates included MODIS snow, SNOWDAS, and NDVI. Snow 

covariates were developed from the time periods; November-December, January-March, and April. 
 
 
 
 

AFD FC AWD WC AAD AC FW WW F% W% A% FPC  SPC 

Ave. Fall Depth (AFD) 1 0.96 0.63 0.63 0.39 0.48 0.48 0.27 0.52 0.41 0.40 0.28 -0.14 

Fall Cumulative Snow (FC) 0.96 1 0.64 0.64 0.44 0.53 0.52 0.32 0.54 0.45 0.45 0.27 -0.12 

Ave. Winter Depth (AWD) 0.63 0.64 1 0.98 0.59 0.69 0.36 0.55 0.4 0.63 0.40 0.26 -0.02 

Winter Cumulative Snow (WC) 0.63 0.64 0.98 1 0.61 0.69 0.36 0.55 0.4 0.63 0.40 0.26 -0.02 

Ave. April Depth (AAD) 0.39 0.44 0.59 0.61 1 0.95 0.26 0.22 0.28 0.35 0.49 0.22 -0.13 

April Cumulative Snow (AC) 0.48 0.53 0.69 0.69 0.95 1 0.27 0.26 0.27 0.38 0.52 0.20 -0.14 

Fall Weeks(FW) 0.48 0.52 0.36 0.36 0.26 0.27 1 0.57 0.69 0.58 0.35 0.31 -0.10 

Winter Weeks (WW) 0.27 0.32 0.55 0.55 0.22 0.26 0.57 1 0.51 0.91 0.36 0.25 0.12 

Fall %Snow Cover (F%) 0.52 0.54 0.40 0.40 0.28 0.27 0.69 0.51 1 0.63 0.39 0.38 -0.18 

Winter %Snow Cover (W%) 0.41 0.45 0.63 0.63 0.35 0.38 0.58 0.91 0.63 1 0.46 0.32 -0.02 

April %Snow Cover (A%) 0.41 0.45 0.40 0.40 0.49 0.52 0.35 0.36 0.39 0.46 1 0.28 -0.09 

FallPC (FPC) 0.28 0.27 0.26 0.26 0.22 0.20 0.31 0.25 0.38 0.32 0.28 1 -0.04 

SpringPC (SPC) -0.14 -0.12 -0.02 -0.02 -0.13 -0.14 -0.10 0.12 -0.18 -0.02 -0.09 -0.04 1 
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Table 3-S3. Coefficients for full overall, aspen, conifer, and shrub-steppe models. Posterior parameter estimates that credible intervals 

do not overlap 0 are bolded. Covariates are centered and scaled (standardized).  

 

  Model 

Parameter  Overall Aspen Conifer Shrub Steppe 

Random Intercept 

     Bannock 

     Boise River 

     Caribou 

     Central Mountains 

     Island Park 

     Middle Fork 

     Mountain Valley 

     Palisades 

     Smokey-Bennett 

     South Hills 

     Weiser-McCall 

  

4.157 

3.700 

3.987 

4.297 

4.256 

4.088 

4.283 

4.056 

3.961 

4.056 

3.591 

 

4.484 

 

4.279 

 

 

 

 

4.135 

 

 

3.708 

 

4.338 

4.128 

3.967 

4.111 

 

3.869 

 

3.483 

 

 

 

 

 

 

 

3.582 

 

 

4.294 

Early Winter % Snow Cover (Nov-Dec) 

 

 -0.088 0.193 -0.434  0.269 

Winter % Snow Cover (Jan – Mar) 

 

 -0.349 -0.507 -0.300  0.499 

April % Snow Cover  -0.092 -0.112 -0.085  0.223 
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Fall NDVI (FPC)   0.127 0.204  0.072  0.261 

Spring NDVI (SPC)   0.065 0.118  0.025  0.237 

Fall Week With > 90% Snow (Nov-Dec)  -0.156 -0.217  0.091 -0.832 

Winter Snow Depth (Jan- Mar)   0.005 -0.115 -0.044 -0.072 

Fawn Mass   0.454 0.505  0.429  0.397 
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Table 3-S4. Example of JAGS code for hierarchical model structure in Hurley et. al 2016   

 

 

## This is the Full model with random effect of winter % snow cover 

 

## JAGS code starts here 

 

cat( "model { 

 

             ## Likelihood for survival (individual level 1) 

      for( i in 1:nAnimal ){ 

          for( j in 1:dead[i] ){ 

       eh[i,j] ~ dbern( S[i, j] ) # eh = individual encounter history 

       S[i,j] <- 1/( 1+exp(-z[i, j]) ) 

       z[i,j] <- a0[year[i], GMU[i]] + e[year[i],GMU[i],j]  # index intercept on id and GMU 

   } 

      } 

 

            ## Random effect for time 

    for(i in 1:nYear) { 

    for( j in 1:nGMU ){ 

     for( k in 1:nOcc ){ 

      e[i,j,k] ~ dnorm(muGMU[j],tau)T(-5,5) 

     } 

    } 

   } 

  ## Modelling GMU level variables (level 2) 

        for( i in 1:nYear ){ 

   for( k in 1:nGMU ){ 
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                             a0[i, k] <- alpha0[PMUlevel3[k]] + alpha1 * fallCenter[i, k]  

    + alpha2[PMUlevel3[k]] * winterCenter[i, k] 

    + alpha3 * aprilCenter[i, k] + alpha4 * fallPCC[i, k] + alpha5 * springPCC[i, k] 

    alpha6 * fallWeeksCenter[i, k] + alpha7 * winterDepthC[i, k] 

       } 

   } 

 

                  ## Metaparameters for random effects (level 3) 

               for( p in 1:nPMU ){ 

                              alpha0[p] ~ dnorm(muPMU, tauPMU) 

                              alpha2[p] ~ dnorm(muCov1, tauCov1) 

                    } 

 

                  ## Get predicted values at the PMU level 

     for(i in 1:nPMU){ 

      for(k in 1:nYear){ 

       for(l in 1:nOcc){ 

        for( m in 1:nGMU ){ 

         tempProb[i,k,m,l] <- (1/( 1+exp(- (a0[k,m ] + e[k,m,l]))))   

        }  

        phiPMUOcc[i,k,l] <- tempProb[i,k,,l]%*% weightGMU[i, , k] # weighting 

           #occasion specific survival by GMU sample size 

 

      } 

     } 

                  } 

 

     for(i in 1:nPMU){ 

      for(k in 1:nYear){ 
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       phiPMU[k,i] <- prod(phiPMUOcc[i,k, ])  # PMU estimate of survival 

      } 

     } 

 

 

 

  ## GMU random effect means 

     for(i in 1:nGMU ){ 

      muGMU[i] ~ dnorm( 0, tauGMU )T(-5,5) 

     } 

 

                  ## Distribution of priors 

 

                        alpha1 ~ dunif(-10, 10) 

                        alpha3 ~ dunif(-10, 10) 

                        alpha4 ~ dunif(-10, 10) 

  alpha5 ~ dunif(-10, 10) 

  alpha6 ~ dunif(-10, 10) 

  alpha7 ~ dunif(-10, 10) 

 

 

                        muPMU ~ dunif(-10, 10) 

                        muCov1 ~ dunif(-10, 10) 

  tau ~ dunif(0, 10) 

                        tauPMU ~ dunif(0, 10) 

  tauGMU ~ dunif(0, 10) 

                        tauCov1 ~ dunif(0, 10) 

 

  }", file="jagsOuputSurvival.txt" 
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  ) 

## 

## JAGS model code ends 

## 

 

############## JAGS input variables 

sp.data <- list( eh=eh, nAnimal=nAnimal, dead=dead, 

                 year = year, nOcc = 24, nYear = nYear, nGMU = nGMU, nPMU = nPMU, 

                 GMU = as.numeric(GMU), 

                 fallCenter = fallCenter, 

                 aprilCenter = aprilCenter, 

                 winterCenter = winterCenter, 

                 fallPCC = fallPCC, 

  springPCC = springPCC, 

  fallWeeksCenter = fallWeeksCenter, 

  winterDepthC = winterDepthC, 

  PMUlevel3 = PMUlevel3, 

                 weightGMU = weightGMU 

                 ) # data 

 

sp.params <- c(#"a0", 

 

                "alpha0", 

                "alpha1", 

                "alpha2", 

                "alpha3", 

                "alpha4", 

  "alpha5", 

  "alpha6", 
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  "alpha7", 

  "phiPMU", 

                "tau" 

  ) # parameters to track 

 

sp.inits <- function() { # starting values 

beta1guess <- runif( 1, 0, 1 ) 

alphaGuess <- runif(11, 0, 1) 

gammaGuess <- rep(0, 11) 

Tauguess <- runif( 1, 0, 1 ) 

Muguess <- runif( 1, 0, 1 ) 

list(alpha1 = beta1guess, alpha2 = alphaGuess, alpha3 = beta1guess, 

 alpha4 = beta1guess, alpha5 = beta1guess, alpha6 = beta1guess, alpha7 = beta1guess, 

     muPMU = Muguess, muCov1 = Muguess, 

     tauPMU = Tauguess, tauCov1 = Tauguess, tau = Tauguess) 

} 

 

surv.res <- jags(sp.data, sp.inits, sp.params, "jagsOuputSurvival.txt", 

         n.chains=3, n.iter=20000, n.burnin=5000, n.thin=1) 
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CHAPTER 4: HABITAT-MEDIATED DENSITY DEPENDENCE IN NEONATAL 

SURVIVAL OF MULE DEER FAWNS
3
 

 

MARK A. HURLEY, Idaho Department of Fish and Game, 600 S. Walnut Street, Boise, 

Idaho, 83707, USA 

MARK HEBBLEWHITE, Wildlife Biology Program, College of Forestry and 

Conservation, University of Montana, Missoula, Montana, 59812, USA 

JEAN-MICHEL GAILLARD, Laboratoire Biométrie & Biologie Évolutive, 

CNRSUMR-CNRS 5558, University Claude Bernard - Lyon I, 69622 

Villeurbanne Cedex, France 

 

INTRODUCTION 

Resource limitation is the primary mechanism governing the process of density 

dependence (Sinclair 1989, Bonenfant et al. 2009). In most species including large 

herbivores, both pattern- (through the analysis of time series of counts) and process- 

(through direct analysis of life history traits in response to change in density) oriented 

approaches have demonstrated evidence of density-dependence as populations approach 

or exceed nutritional carrying capacity (Abrahams and Dill 1989, Saether et al. 1998, 

Gaillard et al. 2000, Bergman et al. 2015). A decrease of the per capita food resources has 

been cited as the key mechanism involved in density-dependence. However, at the 

individual level, behavioral responses to disturbance and especially the avoidance of 
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predation should modify the per capita resource availability by shifting habitat selection, 

and thereby change the strength of density-dependence. Current theory of risk-sensitive 

foraging predicts that a tradeoff should occur between fitness benefits through nutrition 

and fitness costs through predation (Abrahams and Dill 1989, Hebblewhite and Merrill 

2009) when habitats with greater forage quality or biomass are more risky. If prey are 

distributed in an ideal free manner, increasing density should also reduce the strength of 

selection for high-quality patches because of density-dependent competition for food 

(Fretwell and Calver 1969, McLoughlin et al. 2010). Density-dependent changes in 

habitat selection are thus expected to drive population dynamics through an overall 

decrease in survival. In contrast, prey displaying despotic distribution may exclude 

conspecifics from high quality habitat thereby creating segments of the population with 

disparate resource selection and population demography. For example, White and Warner 

(2007) observed density-dependence in mortality mediated by habitat based on refugia 

within corral for reef fishes as mortality increased when refugia were filled. Yet for many 

large herbivores, our understanding of density-dependent mortality arising from this 

interaction between space and predation is unknown (Bonenfant et al. 2009, McLoughlin 

et al. 2010). 

 Differential vulnerability of life-history stages to predation could also provide a 

mechanism for such density dependent predation mortality. Indeed, for many species, it is 

the juvenile life-history stage where the first signals of density dependence occur 

(Bonenfant et al. 2009). For example, a juvenile survival sink may be created if the 

maternal female is forced into lower quality habitats with lower forage quality and higher 

risk. This habitat selection may reduce the population productivity rate as total adult 
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female numbers increase. In the case of large herbivores like mule deer (Odocoileus 

hemionus), juveniles remain with their mothers throughout the first year of their life, and 

so are dependent on the habitat selection strategies of their mothers (Shallow et al. 2015). 

If a mule deer fawn survival sink is driving density-dependent survival, we would expect 

that neonate mule deer mortality would be positively related to the predation risk from 

their main predators, coyotes (Canis latrans; Hurley et al. 2011). Under the classical 

model of density dependence where density is driven by food competition, we predict 

that overall fawn mortality will increase with increasing density (Bonenfant et al. 2009). 

However, if density dependence is driven instead by predator-mediated risk in lower 

quality habitat, we would instead predict that only predator-related fawn mortality will be 

density-dependent, and that overall fawn mortality need not be necessarily related to 

density. This might arise because non-predator related mortality is compensatory (White 

and Bartmann 1998).   

To test these predictions of density-dependent mortality, we monitored neonatal 

survival and cause-specific mortality of mule deer fawns for the first 6 months of life. We 

took advantage of an ongoing management experimental reduction in coyotes (Hurley et 

al. 2011) in one of two adjacent populations of mule deer in southern Idaho, and 

compared response to both changes in density and coyote abundance in neonatal 

mortality. First, to test whether fawn mortality occurred because of the habitat use of 

lower quality, higher coyote predation risk areas at higher density, we developed a spatial 

model for coyote predation risk (Hebblewhite et al. 2005). We then tested whether higher 

coyote predation risk was correlated with fawn survival using Cox-proportional hazards 

survival models (Hebblewhite and Merrill 2011). Finally we tested for density-
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dependence in survival (mortality) of mule deer fawns with increasing density, and then, 

just coyote-caused fawn survival for the study area as a whole and each unit individually 

to assess the influence of lower coyote density due to coyote removal. If risk-sensitive 

foraging was driving neonatal mortality, then we predicted a decline in overall mortality 

at high density in the experimental coyote removal treatment, but not necessarily a 

decline in coyote-caused mortality. In contrast, in the reference population, we predicted 

no relationship between mortality and density, but a stronger (than the coyote removal 

area) relationship between coyote caused mortality and mule deer density (sensu Sinclair 

and Arcese 1995).  

   

MATERIALS AND METHODS 

(a) Data collection 

We monitored neonate mule deer (Odocoileus hemionus) fawns in Game Management 

Units (GMU) 56 (2,338 km
2
) and 73A (1,128 km

2
) from 1998–2002 in southeastern 

Idaho. These two GMUs are within the Bannock mule deer population management unit 

used in Chapters 3 and 5. Elevations ranged from 1,350 m to 2,666 m. Each GMU 

encompassed a mountain range in its entirety and provided suitable yearlong habitat for a 

distinct subpopulation of deer with minimal interchange between the two GMUs. As 

methods for another management experiment conducted by Idaho Fish and Game 

(IDFG), coyotes were actively removed from GMU 73A (herein after removal area) and 

GMU 56 was designated a reference area (reference), see Hurley et al. (2011) for a 

detailed description of study areas and coyote removal treatments. We used aerial surveys 
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via a Bell 47 helicopter to estimate mule deer population size from late March to mid-

April each year from 1997 to 2003. We captured neonate fawns from 1 June to 18 June 

by observing fawning behavior of adult females (for details of capture methods see 

Hurley et al. 2011). Fawns were fitted with brown or black expandable radio collars 

designed to break away 6 to 8 months after capture. Animal capture protocols were 

approved by the Animal Care and Use Committee, Idaho Department of Fish and Game 

Wildlife Health Laboratory, Caldwell, Idaho, USA, and University of Montana IACUC 

(protocol #02-11MHCFC-031811). We monitored telemetry signals for mortality of 

neonate deer via aerial (fixed-wing aircraft) or ground telemetry at 1 to 2 day intervals 

during summer and twice weekly throughout autumn until collars were shed. We 

identified the cause of death within 24 hours using criteria developed by Wade and 

Bowns (1982), and categorized mortalities as coyote, mountain lion, bobcat, unknown 

predator, malnutrition, natural, other, and unknown.  

We developed a spatial model of coyote predation risk (the main cause of 

mortality, see results) using a resource selection function (RSF; Manly et al. 2002), 

framework based on coyote scat transects (e.g., Hebblewhite et al. 2005). We conducted 

coyote scat surveys annually to estimate coyote occurrence or absence (Knowlton 1985). 

Eighty 1-mile transects were randomly selected in each GMU and surveyed from May to 

June 1998–2002 (Figure 1) the key temporal window for most neonatal fawn mortality 

(Shallow et al. 2015). Landcover types were defined from the SAGEMAP vegetation 

(Chapter 3). From the 126 land cover classes with a minimum mapping unit (MMU) of 

approximately 1 acre (0.4 ha), we identified 18 habitat types based on mule deer ecology, 

leading to a weighted mean accuracy of 84.4%. We placed a 1,000 m buffer around 
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coyote transects and intersected the resulting polygon with the cover type and digital 

elevation models using a Geographical Information System (ArcGIS ver. 9.3.1, ESRI Inc. 

2009). We then measured the proportion of each habitat type within the buffer.  

(b) Statistical analysis 

We first estimated survival of mule deer neonates in each year using non-parametric 

Kaplan-Meier survival estimation (Kaplan and Meier 1958, Hosmer and Lemeshow 

1999). We used left- and right- staggered entry to account for different capture times and 

losses due to emigration or collar malfunction. We used estimated birth date as beginning 

at risk time (origin), then enter the analysis on capture date (enter the risk set), and end 

time at death or censored from shed collar or end of study (30 November; see Hurley et 

al. 2011,for details). Next, we estimated cause-specific mortality rates using cumulative 

incidence functions in a competing risks format (Heisey and Patterson 2006).   

Second, we developed our model of coyote predation risk estimated using a used-

unused resource selection probability function (RSPF) design with a random intercept 

accounting for intra-annual variation and dependency within transects (Manly et al. 2002, 

Gillies et al. 2006). The sample unit was the coyote transect, and the dependent variable, 

presence or absence, was modeled using logistic regression. This approach assumes 

predation risk is driven by the relative abundance of coyotes, which has been borne out in 

studies of other canids preying on ungulates (Hebblewhite and Merrill 2009). Coyote scat 

transects were conducted in both GMU 56 and 73A, as well as neighboring GMU’s 

(Hurley et al. 2011). We treated year as a random effect to control for year-to-year 

variance in coyote use of transects and non-independence of repeated trials of transects 
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each year (Gillies et al. 2006). Models were developed with purposeful forward and 

backward stepwise variable selection (Hosmer and Lemeshow 1999). We compared 

models with and without the random effect using AICc (Burnham and Anderson 1998) 

and validated the most supported coyote RSPF model with k-folds cross validation 

(Boyce et al. 2002). We developed coyote predation risk models based on the landcover 

model, a digital elevation model for elevation, and a measure of terrain ruggedness 

(Sappington et al. 2007).  

We measured probability of presence of coyotes from our predation risk model at 

the neonate fawn capture site buffered by 500 m and included the probability as a 

covariate in Cox-proportional hazards models (Hosmer and Lemeshow 1999, 

Hebblewhite and Merrill 2011) to test the influence of coyote predation risk on fawn 

survival. We regressed mortality against mule deer density in each year (previous spring 

survey) using linear regression to test the first prediction of the classic hypothesis of 

density dependence. We next tested the relationship between the percent of marked fawns 

killed by coyotes and mule deer population density in both GMUs to test the hypothesis 

of a coyote predation-mediated density-dependence in mule deer. 

RESULTS 

Mule deer population size fluctuated substantially over the study period, increasing from 

2,810 (GMU 56= 1878, 73A = 932) in 1998 to 4,695 in 2001 (GMU 56= 2932, 73A = 

1763) and then decreased to 3,067 (GMU 56= 1496, 73A = 1571) in 2002 due to severe 

climatic conditions. We captured 251 neonatal fawns from 1998–2002, median 58 / year 

in total, evenly distributed between GMUs. Cause-specific mortality rates of these fawns 
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were 0.13 in GMU 56 and 0.11 in 73A due to coyotes, 0.11 in GMU 56 and 0.07 in 73A 

due to mountain lions, 0.08 in GMU 56 and 0.05 in 73A due to unknown predation, and 

the remainder due to all other causes (see Hurley et al. 2011). Thus, coyotes were the 

leading cause of mortality. Overall neonatal survival rates (1 – mortality) varied from 

0.20 – 0.74, consistent with previous studies of neonatal mule deer fawn survival (Pojar 

and Bowden 2004).   

 Coyote scats were recorded on 527 of 1035 coyote scat transects, providing a 

balanced used versus unused logistic regression based RSPF. The random intercept model 

had a lower AICc than the best logistic regression without random effects (ΔAICc = 25.5) 

or the full model (ΔAICc = 34.2). Coyotes selected habitat with low elevation and mesic 

sage and avoided high elevation and aspen habitats (Table 4-1, Figure 4-1). The top 

model was validated with a 5-fold cross validation which yielded a mean rs = 0.829, 

indicating the model performed well at predicting coyote presence.  

Mule deer fawn mortality increased with our coyote predation risk model (β = 

0.938, χ
2
 = 4.0, P = 0.045). The spatial distribution of mule deer fawns with respect to 

coyote presence was markedly bimodal, opposing locations with rare (< 0.05) vs. 

abundant (> 0.3, Figure 4-2) coyote probability of presence. The hazard ratio for the 

effect of coyote presence on neonate mortality was 2.56 (95% CI = 0.993 to 6.58) 

indicating fawns with 100% probably of coyotes would die at 2.56 times the rate of fawns 

born in areas of 0% probability of coyote presence. Applying this ratio to the range of 

predicted probability of coyote presence in our study (0.014 to 0.72) suggests neonates 

were about  as likely to die if born in habitats highly frequented by coyotes (Figure 4-2).  
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To test our first prediction of density dependence for the entire study area, we 

found no clear or strong relationship between mule deer fawn mortality and population 

density when both GMUs were treated as one study area for mortality and population 

density (Fig. 4-3a;   = 0.008, F1,3 = 0.001   p = 0.98,  R
2
 = 0.0001). Our second 

prediction of habitat mediated density dependence provided a clear signal as the 

contribution of coyote predation to fawn mortality increased significantly with mule deer 

density (R
2
 = 0.90) when the 2 GMUs were treated as one population (Fig. 4-3b;   = 

0.328, F1,3 = 27.2   p = 0.01,  R
2
 = 0.90). 

We also observed no clear relationship between mule deer fawn mortality and 

population density when the GMUs were separated in GMU 56 ( = 0.11,  F1,3 = 0.19,  p 

= 0.69, R
 2

 = 0.06, Figure 4-4a), and a negative, but weak, relationship in GMU 73A ( = 

-0.540, F1,3 = 1.67 p = 0.29, R
 2

 = 0.36, Figure 4-4b), suggesting total fawn mortality was 

declining with density in the coyote removal area. Again, our second prediction of 

density dependent predation risk, was borne out when GMUs were separated. The pattern 

persists and coyotes killed more fawns as the population density increased, even though 

the overall mortally was constant or slightly decreasing (Figure 4-4a). The relationship 

was stronger in GMU 56 ( = 0.251,  F1,8 = 5.74, p = 0.09,, R
 2

 = 0.65; Figure 4-4b), but 

still positive in GMU 73A ( = 0.125,  F1,8 = 0.86, p = 0.42, R
 2

 = 0.21; Figure 4-4b) 

where coyotes were actively removed.  

 

DISCUSSION 
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We have demonstrated differential survival of neonate mule deer fawns based on an 

interaction of mule deer behavior and resource selection and resource  selection by their 

primary predator, coyotes. We observed a density-dependent increase in mule deer fawn 

mortality caused by coyotes with increasing mule deer density, but, critically, not an 

increase in overall mortality (e.g., Figure 4-3a, 4-3b). This supports our hypothesis that 

predation interacting with mule deer behavior may be the mechanism generating the 

density-dependent signature of observed in these populations (Chapter 5). We suggest 

that predation interacting with competition for space, not competition for food, may be 

the primary mechanism limiting these same populations at lower density as in Chapter 5. 

This is especially likely because we saw some evidence for declining overall mortality 

with increasing densities, whereas coyote-caused mortality increased. More generally, 

this supports the importance of density-dependent trade-offs between risk and forage in 

driving patterns of density-dependence in large herbivores (Sinclair and Arcese 1995, 

Hebblewhite and Merrill 2011).   

The next step would be to directly test whether female mule deer resource 

selection follows the same avoidance pattern of resource selection for higher coyote 

predation risk. Previous studies have shown that mule deer select aspen habitats for fawn 

rearing in direct contrast to our coyote resource selection (Hurley, unpublished data). 

However, these habitats occur at higher elevations with lower primary prey density for 

coyotes. In these systems, primary prey for coyotes are not mule deer, but lagomorphs 

(Mills and Knowlton 1991). Resource use by coyotes and resulting density has been 

linked to lagomorph abundance and the differential density by habitat type is likely 

related to resource use of their primary prey, lagomorphs. To successfully breed, coyotes 
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must be holding a territory prior to denning season in April and most of the aspen habitats 

are covered in deep snow at that time (Chapter 2), whereas, white-tailed jackrabbits 

(Lepus townsendii) are most abundant in the mid-elevation mountain shrub communities 

(mesic sage) in our study area. Accordingly, we observed higher survival of neonates and 

lower probability of coyote use in aspen habitats than in mesic sage. Our results are 

similar to Byers (1997) who reported pronghorn antelope (Antilocapra antilocapra) 

maternal behaviors are driven by anti-coyote behaviors, and that in turn, coyote foraging 

is driven by small mammal abundance. The differential mortality of neonatal mule deer 

as a function of coyote predation risk suggests that neonate fawns are alternate prey in 

this system, and are killed opportunistically and coyotes do not move to the higher 

quality aspen habitats, with higher deer density, to forage.  

Aspen is a rare cover type in the study area, comprising 5% of the total landscape 

with 72% of the adult females selecting this habitat at low densities in 1998 at study 

initiation (Hurley, unpublished data). Females actively exclude conspecifics from fawn 

rearing habitat as observed in this study and by Taylor (2013), thereby limiting 

subdominant females’ use of the highest quality cover types for fawn rearing (Shallow et 

al. 2015). Mountain shrub cover types may provide adequate maternal nutrition in some 

years with adequate precipitation, but senescence of forage will be earlier in the summer 

than the higher elevation aspen and conifer types (Chapter 2). Mortality of neonates may 

increase in these habitats through nutrition, disease, contact with livestock, or increased 

predation risk. We suggest that the decrease in mule deer productivity as populations 

increase may be related to fill of the high quality habitat and the resulting increased use 

of lower quality, high predation risk habitat. We conclude that the appearance of density 
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dependent effects were the result of mule deer behavior and not forage biomass 

limitation. 
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TABLES 

Table 4-1. Parameter estimates of the top coyote (Canis latrans) resource use model in 

southern Idaho, 1998–2002, used to estimate exposure of neonatal mule deer (Ocodoileus 

hemionus) fawns to coyote predation risk.  

 

Vegetation Type  Coef. z P>|z|  95%  CI 

Intercept  2.48 2.75 0.006  0.714 4.25 

Aspen  -2.48 -2.54 0.011  -4.40 -0.569 

Other Deciduous  -3.59 -1.33 0.182  -8.87 1.688 

Elevation  -.002 -2.83 0.005  -0.002 -0.0005 

Mesic sage  .870 4.02 0.000  .446 1.294 

Mesic grass  -50.3 -2.11 0.035  -96.88 -3.65 

Developed  6.88 1.99 0.046  0.117 13.63 
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FIGURES 

 

Figure 4-1. Spatial predictions from the resource selection function based model of 

coyote (Canis latrans) predation risk for mule deer (Odocoileus hemionus) neonatal 

predation risk in southern Idaho, 1998–2002, showing the two Game Management Units 

56 and 73A where neonatal mule deer were monitored. The spatial distribution of coyote 

transects used to develop the model in a wider spatial area are depicted by black circles. 
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Figure 4-2. Relationship between coyote (Canis latrans) predation risk (estimated from a 

resource selection functions based on scat transects) and mule deer (Odocoileus 

hemionus) fawn survival (estimated with Cox-proportional hazards models) in mule deer 

in southern Idaho, 1998–2002.  
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Figure 4-3. Relationship between mule deer (Ocodoileus hemionus) density and overall 

fawn mortality rates (top panel) and fawn mortality caused by coyotes (Canis latrans) 

including average density and mortality (bottom panel) for two Game Management Units 

(GMU 56, 73A) in southern Idaho, 1998–2002. 
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Figure 4-4. Relationship between mule deer (Ocodoileus hemionus) population size and 

a) overall fawn mortality rates (top panel) and b) fawn mortality caused by coyotes 

(Canis latrans) including independent measures of density and mortality (bottom panel) 

in 2 Game Management Units (GMU 56, 73A) in southern Idaho, 1998-2002. 
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CHAPTER 5: DISENTANGLING CLIMATE AND DENSITY-DEPENDENT 
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INTRODUCTION 

The search for density-dependence in population dynamics is one of the fundamental 

questions of ecology (Andrewartha and Birch 1954, Krebs 1994). Without limits to 

growth, populations are predicted to grow exponentially and quickly surpass 

ecological carrying capacity. Thus, understanding the strength and mechanisms of 

density-dependence in population growth is a primary effort for population 

ecologists. In this paper, we view of density-dependence based on the logistic growth 

model that predicts linear density-dependence driven by intraspecific competition for 

resources (space, food, etc.) with increasing density (Krebs 1994). Density-

dependence need not only be linear, and can either be concave (strong response only 

at low density) or convex (at high density) by extending the logistic model to the 

theta-logistic model (Krebs 1994). Regardless of form, the strength of density-

dependent feedbacks to population growth are generally expected to be stronger, and 

more convexly non-linear, in large, longer-lived species, compared to smaller, more 

r-selected species (Fowler 1981, Caughley and Krebs 1983). Life-history strategies, 

pace of life, and other factors often reduce the generality of this continuum, but 

empirical evidence supports stronger density-dependence in large mammals (Fowler 

1981, Eberhardt et al. 2003). Furthermore, many processes, such as predation or 

weather, can mimic density dependence by acting on vital rates in the same 

progression as expected by density often through density-climate interactions 

(Saether 1997, Clutton–Brock and Coulson 2002, Hebblewhite 2005, Hurley et al. 

2011).  
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Nutritional limitation by conspecifics is hypothesized to be the primary 

mechanism governing density dependence in ungulates (McCullough 1979). Density-

dependent effects (e.g., reduced survival or fecundity leading to decreased population 

growth) are expected as populations approach or exceed nutritional carrying capacity, 

especially in non-linear density dependence that manifests only at high density 

(Stewart et al. 2005). In large mammals, density dependence is expected to first act in 

parallel to the responses of vital rates to environmental variation, affecting first 

juveniles, then reproduction, and finally adult female survival (Fowler 1981, 

Eberhardt 2002, Gaillard & Yoccoz 2003). Ungulates conform quite well across 

species to this predicted sequence (Bonenfant et al. 2009).  Ungulate populations near 

carrying capacity are thus expected to exert negative impacts through herbivory on 

plants (Mysterud 2006), and through competition withother species. 

Population dynamics are also limited by factors unrelated to population 

density, and, the interaction of density-dependent and independent factors(Bonenfant 

et al. 2009). Understanding the relationship between density-dependent (i.e., 

regulatory) and density-independent (i.e., limiting, sensu Sinclair 1989) drivers of 

population dynamics remains  an important challenge of population ecology. 

Environmental stochasticity in resource availability and climate can affect population 

dynamics a multitude of different ways (Saether 1997). A single species can exhibit 

density-dependent responses in one population and not another, as evident in elk 

(Cervus elaphus) and caribou/reindeer (Rangifer spp.) in relation to latitude (Post 

2005, Ahrestani et al. 2013). Thus, despite the general evidence for density-
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dependence in large mammal populations, the strength of density dependent and 

independent factors vary across populations.  

 Interactions of weather, forage quality, and predation may prevent 

manifestation of density-dependence on this predicted sequence of changes in vital 

rates if densities are kept low by density-independent factors. This is especially true 

for non-linear density dependence (convex) where a critical threshold may need to be 

reached before density dependent changes to vital rates are evident. For instance, 

density dependence was weak at high latitudes or under predation, suggesting weather 

and predation limited densities below where density-dependence would be important 

in these low productivity environments (Wilmers et al. 2006, Wang et al. 2009). 

Similarly, roe deer (Capreolus capreolus) density was lower at higher latitude, low 

productivity environments in Europe, and experienced stronger top-down effects of 

predation in these same environments (Melis et al. 2009). Larger bodied ungulates are 

also generally less vulnerable to predation, and thus experience stronger effects of 

density-dependence (Sinclair and Pech 1996, Sinclair et al. 2003). However, 

avoidance of predation may cause smaller bodied ungulates to select resources 

inconsistent with nutritional carrying capacity alone, leading to a lower density than 

predicted by nutritional carrying capacity. Population growth rate becomes difficult to 

predict if the functional relationships between survival and habitat quality (forage and 

predation risk) changes with density. Therefore, rigorous statistical approaches are 

often required to test between competing hypotheses about regulating or limiting 

factors.  
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 Unfortunately, identifying mechanisms of density-dependence in population 

dynamics has been statistically challenging. Most researchers have focused on testing 

for density dependence using time-series of population counts (Taper and Gogan 

2002, Turchin 2003), but criticisms of non-independence between axes (Elkington 

2000)has caused researchers to develop statistical approaches to address this 

limitation (Dennis and Taper 1994, Sibly and Smith 1998). Models have been 

developed to test for linear, non-linear, and higher-order forms of density-dependence 

that represent different competing hypotheses of the mechanisms of density-

dependence (Elkington 2000, Bjornstad and Grenfell 2001). These more complex 

models often, unfortunately, exceed the resolution of the data to distinguish between 

because of the quality of count data, as well as the limiting effect of time-series length 

on detecting density dependence (De Valpine and Hastings 2002, Brook and 

Bradshaw 2006). More recently, researchers have started to appreciate that these 

pattern-based approaches based on count data have limited value at exposing the 

underlying mechanisms of density-dependence (Saether et al. 2007, Abadi et al. 

2012).  

  An alternative approach is to understand the underlying processes (e.g., 

changes in vital rates) driving patterns of density-dependence. The development of 

state-space models (Royle et al. 2007, Kery and Schaub 2012) offer a promising 

solution to some of these statistical and conceptual challenges (Abadi et al. 2012). 

The ability to integrate the biology and sampling variance while estimating vital rates 

simultaneously allows us to share information across data types and quality, 

providing more realistic demographic estimates, including for time-series missing 
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data (Royle et al. 2007, Kery and Schaub 2012). Most studies have applied such state-

space models to estimating the strength of density dependence and density 

independence only with time-series of counts, though, limiting their ability to identify 

the vital rate mechanisms driving population changes (Ahrestani et al. 2013, Koons et 

al. 2015, Lee et al. 2015). Developing state-space models using vital rates would be 

especially useful to identify the most density-dependent vital rate. This approach has 

been used successfully by combining both information about counts and vital rates 

(survival, fecundity) for Red-backed shrikes (Lanius collurio) to estimate the strength 

of density dependence in an integrated population model (Abadi et al. 2012). In 

ungulates, time-series counts have been combined with climatic effects to estimate 

both density dependence and density independence (Koons et al. 2015, Lee et al. 

2015). But, to date, there have been only a few studies that combined counts, vital 

rate data, and climate data to estimate both density-dependence and density-

dependent forces in an integrated population modeling framework for ungulates 

(Johnson et al. 2010).  

Understanding the relative contribution of density-dependent and density-

independent drivers of ungulate population dynamics, as well as their possible 

interaction, is important because of their ecological and economic importance 

(Gordon et al. 2004). In particular, for mule deer, the evidence for density-

dependence seems contradictory (Peek et al. 2002, Bergman et al. 2015). For 

example, in one study, Peek et al. (2002) showed that both density dependence and 

climatic variation explained their dynamics, but climatic factors dwarfed the effect of 

density. White and Bartmann (1998) showed that overwinter survival of fawns 
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interacted strongly with density at extreme densities. However, the bulk of the 

literature paints only a weak picture of density dependence in both time-series counts, 

and vital rates (reviewed by Bergman et al. 2015). The relatively weak support for 

density-dependence in mule deer is especially puzzling given the strong experimental 

field evidence for it in their close relative, the white-tailed deer (Odocoileus 

virginianus; McCullough 1979, Patterson and Power 2002). A plausible explanation 

is that across the semi-arid west, mule deer may be a species for which the relative 

interplay between density-independent and dependent factors is in favor of density-

independent climatic variation.  

In this study, our objectives were to test for the relative strength of density-

dependent and density-independent forces in driving mule deer population dynamics 

across six population units in Idaho, USA. We developed an integrated population 

model (IPM, sensu Abadi et al. 2012) and incorporate density dependent effects on 

each of our measured vital rates and weather effects on the most variable vital rate, 

winter fawn survival. We hypothesize that mule deer populations are limited by 

frequent weather-caused die-offs, limiting our ability to detect density-dependence. 

We expect density effects first in recruitment to 6 months of age, then overwinter 

juvenile survival, and lastly adult survival and thus predict negative density 

dependence will be strongest in either recruitment or winter fawn survival (Hurley et 

al. 2011; Bergman et al. 2015). We predict that density dependence should be 

strongest on recruitment (fawn:adult female ratio in December) due to the interaction 

of predation and density especially at high density (Chapter 4). Alternatively, density-

dependence should be strongest on winter fawn survival (6 months to 12 months old) 
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because of competition on winter range (Bartmann et al. 1992, White and Bartmann 

1998). For weather related limitations on vital rates, we hypothesized that the patterns 

observed with density related reduction and weather reduction will be similar. If this 

is true, we predict that the addition of an important weather variable to an IPM 

containing a density dependent term will reduce the density dependent effect. We 

predict populations that experience the mildest climate will show the strongest effect 

of density. We predict that populations least likely to show density dependence 

should be those areas of contiguous good quality habitat that show a strong effect of 

weather related reductions in fawn survival.  

STUDY AREA 

Our study area covered a wide climate, predation and habitat gradient of mule deer 

range in Idaho and is fully described in (Hurley et al. 2016, Chapter 3). We monitored 

population size, age and sex composition, survival of fawns and adult females, and 

harvest in six Population Management Units (PMU) across central and southern 

Idaho. In Idaho, Game Management Units (GMUs) are nested within Population 

Management Units (PMUs) that are grouped together to represent ecological 

(interbreeding) populations, which form the basis for management. Through a 

hierarchical cluster analysis we identified three main habitat types (called ecotypes 

hereafter) based on the dominant overstory canopy species on summer range; 

coniferous forests, shrub-steppe, and aspen woodlands and assigned each PMU to a 

ecotype (Chapter 3). Elevation and topographic gradients within PMUs affect snow 

depths and temperature in winter, and precipitation and growing season length in the 
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summer, with elevation increasing from the southwest to the northeast. Areas used by 

mule deer in the winter in conifer ecotypes (Boise River, Central Mountains, and 

Weiser-McCall) ranged in elevation from 1001 to 1928m, but most were <1450m. 

Winter precipitation (winter severity) varied widely (from 10 to 371mm) in 

coniferous GMUs. Coniferous ecotype summer ranges are dominated by conifer 

species interspersed with cool season grasslands, sagebrush, and understory of forest 

shrubs. Shrub-steppe PMUs (South Hills) were semi-desert and ranged from 1545 to 

2105m, with winter precipitation from 24 to 105 mm. Summer range within shrub- 

steppe ecotypes was dominated by mesic shrubs (e.g., bitterbrush (Purshia 

tridentata), sagebrush (Artemsia spp.), rabbitbrush (Chrysothamnus spp.), etc). Aspen 

ecotype PMUs (Bannock and Caribou) were located in the east and south with winter 

use areas ranging from 1582 to 2011m, and winter precipitation ranging from 25 to 

146 mm. In summer, productive mesic aspen (Populus tremuloides) woodlands were 

interspersed with mesic shrubs. 

Because we wanted to associate individual deer to the weather and spatial 

covariates associated with its seasonal range, we estimated within-GMU level 

seasonal ranges across all six PMUs (Figure 5-2, Chapter 3). Deer were captured 

within each PMU in each primary winter range (range 1-6 different winter ranges) in 

proportion to the distribution of deer and abundance (IDFG unpublished data). 

Migratory periods were excluded from the seasonal home range estimates; locations 

between 1 June and 30 September were used for summer ranges and 1 December to 

31 March for winter ranges (e.g., Sawyer et al. 2005). We created combined seasonal 

95 % kernel density utilization distributions for deer from each winter and summer 



 

172 

 

range by using telemetry locations from all individuals and years for the entire study 

area (Chapter 3). Climate and habitat information was then summarized within the 

seasonal home ranges of radiocollared deer for winter and summer, the basis of the 

spatial covariates.  

METHODS 

(a) Integrated Population Model Development 

We used an integrated population model (IPM) to evaluate the relative strength of 

density-dependent and density-independent forces on mule deer population dynamics 

across our six populations. IPMs allow for the incorporation of many different types 

of population data of varying quality that are integrated into a population model to 

provide improved rigor in both population estimates and projections (Besbeas et al. 

2002, Johnson et al. 2010, Kery and Schaub 2012). Our mule deer data included 

annual estimates of survival and fecundity from marked individuals, annual harvest 

data, but only infrequent sightability-adjusted aerial surveys, obviously a key 

component for evaluating density dependence. To solve the problem of estimating 

density-dependent effects with only infrequent density estimates, we developed and 

fit an IPM to six PMUs with varying amounts of empirical data to estimate an annual 

population density given age-class specific vital rates. We then used this model to test 

the influence and strength of density on each individual vital rate in the following 

predicted order from strongest to weakest; fall recruitment, overwinter fawn survival, 

adult survival. We will first describe the data sources used to parameterize the IPM 

and then the model structure of the IPM and the methods used to evaluate density 
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dependence and the influence of weather covariate on model fit and the strength of 

density dependence.  

Population estimates 

We conducted PMU-wide population surveys using sightability models corrected for 

visibility bias once every 4-5 years (Unsworth et al. 1994). Surveys were conducted 

via a Bell 47 helicopter during mid-winter (January - February) for total deer numbers 

only. We surveyed 100% of subunits (quadrats) that were occupied by deer. 

Age and Sex ratio estimates 

Early winter fawn:adult female ratios are a measure of age-specific fecundity and 

fawn survival for the first six months of life. We used helicopter surveys to estimate 

age and sex composition for each PMU every December (Unsworth et al. 1994). We 

surveyed a previously defined stratified random sample of medium to high-density 

subunits. Sampling emphasized obtaining an adequate sample size and representative 

geographic distribution across each PMU. Adult male:adult female ratios were 

obtained concurrently with fawn:adult female ratios, however survey design and 

emphasis was placed on obtaining accurate and precise estimates of fawn:adult 

female ratios for all PMUs. Adult male:adult female ratios were included in the model 

when additional survey effort was expended to obtain similar accuracy and precision 

of fawn ratios  To maintain repeatability  across PMUs and years, age and sex 

classification procedure was limited to only three or four primary observers, one of 

whom would be on every flight along with secondary regional observers. Surveys 
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were conducted between1 December and 31 December, prior to antler shed, with a 

Bell 47 helicopter. 

 

Survival monitoring 

We monitored survival of 1,961 six-month-old male and females and 1,061 adult 

females (4,776 adult years) within six Population Management Units in southern 

Idaho, 2001–2013. We varied capture methods as described previously in Hurley et 

al. (2014; Chapter 2, 3), and deployed 320– 400 gram collars on adults that were 

permanently affixed, and for female fawns, permanent collars with a temporary pleat 

or surgical tubing for male fawns that allowed collars to drop off after approximately 

8-10 months.  All collars had a mortality signal. An Idaho Department of Fish and 

Game (IDFG) veterinarian or veterinary technician was on site during most captures 

to assist with sampling and assure animal welfare.  Animal capture protocols were 

approved by the Animal Care and Use Committee, Idaho Department of Fish and 

Game Wildlife Health Laboratory, Caldwell, Idaho, USA, and University of Montana 

IACUC (protocol #02-11MHCFC-031811). Deer were monitored with telemetry for 

mortality from the ground at least once a month between capture (7 December to 15 

January) and 1 June. If radio signals could not be detected from the ground within 1 

week, animals were located via aircraft. When a mortality signal was detected, cause 

of death was determined using a standard protocol (Wade and Bowns 1982). Animals 

that lost radiocollars or with radiocollars that failed were removed (censored) from 

the analysis at the point of failure.  
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Harvest estimation 

We used harvest data to estimate the ratio of males and females in the IPM. Idaho 

estimated harvest with a mandatory reporting procedure and a follow up non-response 

telephone survey (IDFG 2013). The non-response survey accounted for the biased 

reporting rate based on hunting success and hunter demographics (IDFG 2013). 

Harvest is specific to antlered vs. antlerless mule deer and number of antler points on 

male deer.  

(b) Integrated Population Model Parameterization 

We developed a Bayesian state-space integrated population model (BSS; Besbeas et 

al. 2002, Kery and Schaub 2012) to both backcast and forecast population density 

from the combined estimates of vital rates, harvest, and, when available, population 

abundance. Our estimates of female age class survival, fawn ratios, male:female 

ratios, harvest data and population estimates have inherent differences in 

completeness and variance between years. Fortunately, BSS models allow integration 

of data of varying quality (Kery and Schaub 2012). We used a post-breeding, sex-

specific and age-structured matrix model (Caswell 2000) modified from a standard 

large herbivore model in the timing of inclusion of juveniles as follows (Figure 5-1): 

[

0  0
𝑆𝑗(1 −  ) 𝑆  0

𝑆𝑗 0 𝑆  

]   [

𝑁𝑗𝑡−1
𝑁 𝑡−1
𝑁 𝑡−1

]  =  [

𝑁𝑗𝑡
𝑁 𝑡
𝑁 𝑡

]     (1) 

where R = ratio of fawns to adult females in December, r = male fawn sex ratio such 

that 𝑆𝑗(1 −  ) = Survival of female fawns from 15 Dec to 31 May, 𝑆𝑗  = Survival of 
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male fawns, 𝑆   = Survival of adult (here defined as older than 1 year old) females 

from 16 Dec to 15 Dec, and 𝑆   = Survival of adult males from 16 December to 15 

December. The model is constructed with a 6-month-post-birth matrix because 

December is the data collection start or end point for fawn ratios, winter fawn 

survival, and harvest. An unmeasured life-stage was survival from 12 to 18 months 

which was included in the 𝑆𝑗 estimate as 1 because of the very high expected survival 

for this 6 month time period (M. Hurley, unpublished data; Hurley et al. 2011). To 

estimate the total number of deer in the population at 15 December each year, the 

harvest is subtracted from each age class and then the current number of 6 month-old-

fawns (Ny) was added to the estimate (eq. 5, 7, 8). Both information from the 

individually-based vital rate information and aerial population surveys, and their 

variances, are combined to provide improved estimates of abundance in all years.  

 We modeled the number of deer in each age and sex class; 6 to 18 month-old 

juveniles, adult females, and adult males in years with a Normal approximation of a 

binomial distribution parameterization as (μ, τ), where τ = 1/ , and truncated at 0 on 

the lower bound to prevent MCMC from searching negative values. Six month-old 

fawns were estimated with: 

     (2) 

We assumed an even sex ratio of fawns in the ratio estimate on December 15 and 

modeled the number in the yearling age class, which is dependent on the previous 

year fawn ratios and winter survival of juveniles, as: 

   (3) 

2̂

)))1()/(1,(~ ,,, tttAFttAFty RRNRNNormn 

)))1(5.0/(1,5.0(~
1,1,1,1,1,,  

tjtjtytjtytj SSnSnNormn
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We estimated the number of deer in the adult female class by first estimating the 

survival of adult females from the previous year as: 

   (4) 

We then estimated the total number of adult females in the current year by adding the 

yearling class (4) and subtracting harvest of both adult and yearling females ( ):

        (5) 

We estimated the number of deer in the adult male class by first estimating the 

survival of adult males from the previous year as: 

   (6) 

Total estimate of adult males is then calculated to include the addition of the yearling 

class (4) and reductions due to harvest of both adult and yearling males ( ): 

        (7) 

The estimate of total population size is then calculated as the summation of young of 

year, adult females and adult males:    

        (8) 

To account for sampling error in the observed data, we modeled the count and 

survival using the mean of the data estimated precision as 1/ . We used binomial 

distribution for survival data, and assumed a Normal distribution for the observation 

model abundance estimates, where abundance estimates were the outcome of a 

Normal distribution with mean equal to model parameter and the precision parameter 

was approximated by the estimated standard error from the sightability correction 

)))1(/(1,(~ 1,1,1,1,1,,   tAFtAFtAFtAFtAFtAF SSNSNNormn

tFH ,

tFtjtAFtAF HnnN ,,,, 

)))1(/(1,(~ 1,1,1,1,1,,   tAMtAMtAMtAMtAMtAM SSNSNNormn
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model (Unsworth et al. 1994). This distribution approximation has been shown to be 

more efficient for fitting count data in a Bayesian IPM than the traditional Poisson 

distribution (M. Hurley, unpublished data).  

The population estimates were distributed as: 

       (9) 

The observed ratio of the young of year (6-month-old fawns) to females ≥ 18 months 

old (yf)was distributed as: 

      (10) 

The observed ratio of males ≥ 18 months old to females ≥ 18 months old (mf) was 

distributed as:  

      (11) 

We estimated observed survival using the non-parametric Kaplan-Meier (K-M) 

estimator (Kaplan and Meier 1958) then used a Normal distribution (μ, τ) truncated 

between 0 and 1 to model survival. Survival of females ≥ 18 months old from 16 

December of the previous year to 15 December of the current was distributed as: 

       (12) 

Juvenile survival from 6 months of age to 1 June was distributed as: 

       (13) 
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Testing for Density Dependence 

For IPM’s built only on count data, the classic parameterization has been to use the 

simplest form of linear density dependence characterized on the log scale of 

abundance using Gompertz models (Ahrestani et al. 2013, Koons et al. 2015). To 

further decompose the effect of density on population growth, we first estimated 

linear density-dependence in each of our measured vital rates, recruitment (R), winter 

fawn survival ( ), and adult female survival ( ) while holding the other rates 

constant. We also investigated whether non-linear forms of density dependence 

provided a better fit to the data using quadratic models. As a first approximation, we 

used quadratic models (X+X
2
) to test for evidence of non-linearity. But because 

model fit was not improved by non-linear forms of density dependence, and converge 

was rare, we only report linear density-dependence in subsequent models. We created 

informative priors for the intercepts with  equal to the mean of the data and 

precision equal to the standard deviation of observed means. We estimate the 

standardized effect size of negative density dependence with a non-informative prior (

) on each vital rate as a function of the standardized number 

of animals estimated with the IPM in the previous year as: 

     (14) 

     (15) 

     (16) 

jS AFS

)0001.0,0(~ NormDD

)/)(()( 1 NtDDt NNRRLogit   

)/)(()( 1, NtDDjtj NNSSLogit   
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For time-varying models of juvenile survival we allowed survival to vary from the  

plus or minus a year effect with effect size set to 0 and = 50 which approximated the 

range of survival observed in Idaho from 2001 to 2013: 

       (17) 

where tau (the standard deviation of the true effect size across years. 

Testing for Density Independence in Climatic Drivers 

We tested for effect of weather on the strength of density dependence in 

recruitment by adding a density dependent linear slope to recruitment and modeling 

overwinter fawn survival using the remotely-sensed variables from the MODIS 

(Moderate Resolution Infrared Spectroscopy) satellite developed by Hurley et al. 

(Chapter 3). We focus on overwinter fawn survival for two reasons. First, theory 

predicts we will see density-dependence first in juvenile survival. Second, previous 

studies showed climate effects manifested the strongest on overwinter fawn survival 

both in general in mule deer, and specifically in our study area (Bishop et al. 2005, 

Hurley et al. 2011). Following our hypothesis, we predict that fitting the IPM with 

winter fawn survival modeled with climate covariates will improve fit and decrease 

the strength of statistical density dependence that would mimic density dependence. 

From Hurley et al. (Chapter 3) we included climate and forage covariates identified as 

the best predictors of overwinter survival; principal components of the Functional 

Analysis for fall (FPC), mean % snow cover in January to March (W%snow), and 

number of weeks with >90% snow cover in November and December (FWeeks). 

S j,t ~ Norm(0 j, 50),T(-5, 5)
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Because the MODIS satellite system was launched in 2001, we truncated the data 

from 2001 to 2013. We estimated the distribution for each of these parameters as: 

    (18) 

where 0.35 is the measure of range of observations for these three standardized 

parameters. We then produced three candidate models including: summer, early 

winter, and winter; only summer and early winter; and only winter with the following 

equations: 

 (19) 

    (20) 

   (21) 

Bayesian Model Fitting 

We used Markov chain Monte Carlo (MCMC) algorithms to fit IPMs and obtain 

estimates (Besbeas et al. 2002, Abadi et al. 2012, Kery and Schaub 2012). Posterior 

distributions of model parameters were estimated by running three parallel chains of 

500,000 iterations each with a burn-in of 200,000. We retained every 15
th

 sample 

resulting in 60,000 samples to produce posterior distributions. We assessed model 

convergence by visually examining trace plots and posterior distributions for each 

parameter and assessed convergence with the Rhat statistic (Gelman et al. 2014). We 

estimated marginal distributions for the posterior likelihoods of model parameters 

with JAGS 3.4.0 (Plummer 2003), through the R2jags package in R 3.12 (Su et al. 

2015). We specified non-informative prior distributions for all parameters estimated 

in each model, truncated at 0 on the lower distribution tail of population size 

)35.0,0(~,, % NormFWeekssnowWFPC 

snowWFWeeksFPCSSLogit snowWFWeeksFPCtjtj %)( %,,  

FWeeksFPCSSLogit FWeeksFPCtjtj   ,, )(

snowWFWeeksSSLogit snowWFWeekstjtj %)( %,,  



 

182 

 

estimates and truncated between 0 and 1 for survival estimates. We initialized 

population size of each age class using the mean total counts and the proportion 

animals in each age class determined by ratio estimates. We used a normal 

distribution with a vague precision (Brooks et al. 2004). We also used normal priors 

with mean recruitment or survival data and vague precision (0.0001).  

 

RESULTS 

(a) Density dependence on vital rates 

We first estimated the influence of density on vital rates by applying density 

dependent (DD) terms on each of the individual vital rates for all PMUs. Of the 

simple models we evaluated (one DD term each) density dependence effects on 

recruitment was the most supported vital rate, followed by juvenile survival through 

winter, and then adult female survival (Table 5-1). Boise River was the exception 

where density dependence on juvenile survival was most supported with a lower DIC 

(∆ DIC = 4.5). Applying density dependence to adult female survival increased the 

DIC > 40% from the best model in all PMUs suggesting poorer overall IPM fit.  

(b) Strength of density dependence on recruitment  

We used the most supported model from Table 1, density dependence of 

recruitment and time varying juvenile survival to compare the strength of density 

across our environmentally diverse study areas. The strength of density dependence 

(effect size) declined in this order: South Hills, Boise River, Bannock, Central 

Mountains, Weiser-McCall, and Caribou (Table 5-2, Figure 5-2). Boise River and 
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South Hills were both predicted to have the strongest negative density dependence as 

we observed, βDD = -0.759, SD = 0.692 and βDD = -0.165, SD = 0.81 respectively. 

Caribou (βDD = 0.085, SD = 0.046) was the only PMUs that displayed no negative 

density dependence in recruitment (Table 5-2, Figure 5-2, 5-6) as we predicted.  

(c) Density or weather 

We used the best model from each of 3 model sets; 1) density dependence on 

recruitment and time varying juvenile survival (density only), 2) time varying 

recruitment and juvenile survival modeled with weather covariates (weather only), 

and 3) density dependence on recruitment and juvenile survival modeled with 

weather covariates (density + weather) to test the effects density and weather across 

the 6 PMUs. For four of the six PMUs, the most supported model considered a 

density dependent term on recruitment and time varying winter fawn survival (DDO; 

Table 5-3). The two exceptions were Boise River and Central Mountains, where the 

weather effects on juvenile survival with time varying recruitment models were most 

supported (weather only; Table 5-3). The addition of weather covariates to the density 

dependent models decreased the magnitude of the effect of density dependence on 

recruitment in all PMUs with the exception of Caribou, where the effect changed 

from slightly positive to a highly variable negative effect(βDD = 0.085, SD = 0.046 vs. 

βDD = -0.389, SD = 0.493; Table 5-3). The resulting weather plus density models fit 

the data poorly in contrast to the density only models as displayed in Figures 5-3 and 

5-4. In general, we found density of the previous year depressed recruitment in the 

following year, thereby limiting population growth in most populations in Idaho.  
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(d) Effects of Weather 

We found variation between PMUs in density-independent weather effects, 

and the strength or each weather covariate on population growth (Table 5-3, Figure 5-

5). For the late summer forage quality (FPCA) measure, we found a strong negative 

effect on mule deer abundance in Boise River, and a weak effect on the Central 

Mountains and Weiser-McCall PMUs. In Bannock, Caribou, and South Hills, late 

summer forage conditions increased mule deer abundance (Table 5-3, Figure 5-6). 

Similarly, the number of fall weeks covered by snow had no consistent effects on 

Bannock, Caribou, Central Mountains, but negative effects on abundance in Boise, 

South Hills and Weiser-McCall (Figure 5-5). Finally, winter snow cover from 

January to March had strong negative effects only on the Boise PMU where density-

dependence was also strong. In all other units, even when winter severity was 

included as a covariate in some models, the effect was weak with posterior estimates 

overlapping zero (Figure 5-5).   

Contrary to our predictions, we did not observe a clear pattern of weather 

effects in relation to effect size of density dependence in recruitment. There was no 

clear negative relationship between the strength of density-dependence and the 

strength of density-independence within a PMU for any of the climatic covariates 

considered here (Figure 5-5). In fact, if anything, there was some evidence for 

interactive effects of density and climate insomuch that the units that experienced the 

strongest signs of density dependence (Boise, South Hills) also experienced the 

strongest climatic effects (Figure 5-2, 5-6).  
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DISCUSSION  

Our first prediction, that mule deer populations are primarily weather limited and thus 

will not experience density dependent reductions in vital rate was only partially 

supported. Weather effects were more important than density in 2 of our 6 

populations, the remaining showed some evidence that density was more important.  

We observed the strongest density dependent effect in recruitment, followed by 

winter fawn survival and finally adult survival constant with our predictions. The 

pattern of density dependence within these vital rates were consistent with those 

predicted and documented for a variety of ungulate species (Eberhardt 2002, Gaillard 

and Yoccoz 2003). We observed a reduction in the strength of density parameter when 

weather covariates were added but at the same time a significant overall reduction in 

model fit, clouding the interpretation of this prediction. The effect of density-

dependence was not replaced with weather effects as we predicted. It was unclear 

whether this change in parameter strength was a biological effect or reduction in 

model fit, it could also be due to the interaction of density and weather effects. Lastly, 

density dependent effects decreased with increasing environmental severity, as we 

predicted.  

 Our empirical evidence is similar to Coulson (2000) in that density 

dependence in ungulates was population specific, especially in the highly variable 

environmental conditions. In addition to being population-specific, within a 

population we observed one year experiencing density effects and effects related to 

weather in the next. The interactive effects of age, weather, and predation can in some 

cases mimic density effects and combinations of age structure, weather, and density 
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dependence can lead to similar population sizes with very different trajectories 

(Coulson et al. 2001). Environmental stochasticity in resource availability and climate 

can affect population dynamics though reduced quality of summer forage, thereby 

reducing pregnancy and juvenile survival (Cook et al. 2004, Chapter 2). Two studies 

reported single species exhibiting density dependence in one population and not 

another based on latitude (Post 2005, Ahrestani et al. 2013). Therefore, predicting 

ungulate population dynamics may depend on idiosyncratic knowledge of the relative 

strength of density-dependent and independent drivers on a population specific basis.  

 The pattern of density dependence within our observed vital rates, recruitment 

> overwinter survival > adult survival, was consistent with those predicted and 

documented for a variety of ungulate species (Eberhardt 2002, Gaillard and Yoccoz 

2003). This is not unexpected because our recruitment measure, fawn ratio in 

December, is a measure of pregnancy, fetal rate, and young survival of both 

primiparous and multiparous mothers. These are the vital rates assumed to be first 

affected by density in ungulates (Bonenfant et al. 2009). As evidence, we have 

observed highly variable yearling pregnancy rates in our study area, varying from 

12% to 80% although pregnancy is stable for older animals (M. Hurley, Unpublished 

data). These results have been echoed across temperate ungulate species (Gaillard et 

al. 2000), and despite the equivocal evidence for density-dependence in vital rates 

leading to density-dependence in population dynamics of mule deer (Bergman et al. 

2015), our study shows that indeed, mule deer populations do respond predictably to 

increasing density similar to other species.  



 

187 

 

 Another aspect of recruitment, summer neonate fawn survival, may be 

depressed by density under a predator-mediated density effect discussed in Chapter 4.  

Effects of density may differ depending if mule deer summer resource selection is 

best described by an ideal free versus an ideal despotic (territorial) model  of habitat 

selection(McLoughlin et al. 2009). Territoriality during early fawn rearing occurs in 

many small- to mid-sized ungulates, including mule deer (Mackie et al. 1998). 

Exclusive space use (territoriality) during fawn rearing may increase recruitment of 

juveniles by dominant females through exclusive access to high quality forage and 

low predation risk habitats while displacing subdominant females to lower quality 

habitat. The described behavior may create a despotic distribution of parturient 

females across summer range, with an overall reduction of fawn survival as densities 

increase. In addition to predation risk, the quality of this secondary habitat may be 

variable with respect to weather conditions, adequate for fawn rearing with high 

precipitation but nutritionally limited in low precipitation years, as has been observed 

in roe deer (Capreolus capreolus; Pettorelli et al. 2005) suggesting density 

dependence in one year and not the next. Given the strong relationship between 

winter fawn survival and weather (Hurley et al. 2011, Bishop et al. 2005, Bartmann et 

al. 1992, Chapter 3) we did not expect overwinter fawn survival to exhibit a strong 

density effect, consistent with our results. This vital is highly variable (Figure 5-3) 

and significantly related to weather (Chapter 3), unless latent effect of the resource 

use described above. 

 Our results corroborated those of Post (2005) confirming the strength of 

density dependence decreased as environmental conditions became more severe. 



 

188 

 

Whereas Post (2005) evaluated the effect of latitude, we observed the same reduction 

in the strength of negative density dependent strength in our study areas (Caribou, 

Bannock, and Weiser-McCall) where severe winters or decrease summer forage 

quality are common, resulting in variable fawn survival and population fluctuation. 

We did not explicitly test interactions here because of the modeling complexity 

involved in fitting interactions between density and up to 3 climate covariates, adding 

another 3-9 parameters to complex IPM models. We recognize this as an important 

limitation of our study, given the recognized importance of climate-density 

interactions in ungulate ecology (Portier et al. 1998; Hebblewhite 2005).  Regardless, 

there was only weak evidence for effects of density changing when in the presence of 

weather covariates in IPM models. Our best models were either density dependent or 

weather dependent, and spatially distinct. The weather-limited populations were in 

similar habitats in Central Idaho. We predicted that if populations were truly density 

independent the addition of weather covariates would decrease the strength of density 

dependence as we observed. However, the addition of weather covariates to model 

fawn survival from 6 months to 1 year old to our density dependence models 

decreased the model fit in all of the PMUs. 

 We have used an integrated population model to test the effects of density and 

weather on mule deer populations 6 spatial distinct mule deer populations. The 

resulting models separated vital rate specific effects of density and weather while 

simultaneously estimating other vital rates given these effects. These models will 

vastly improve our understanding of the importance of each vital rate to population 

dynamics. We conclude that mule deer population dynamics are similar to other 
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ungulates, experiencing the density dependent influences as modified by both 

summer nutrition and winter energy expenditure.  
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TABLES 

Table 5-1. Integrated Population Model (IPM) model selection for mule deer (Odocoileus hemionus) for 6 Population Management 

Unit (PMU), Idaho, 2001 – 2013.  Shown is the model structure with density dependent (dd) terms added on each vital rate (R- 

recruitment, jS – juvenile survival, fS – adult female survival, mS – adult male survival) and the prefix denotes dd = density 

dependence, c = vital rate varies within a given distribution of the global mean for the PMU, and t = vital rate varies within a given 

distribution for an annual mean.   Model diagnostics are the Deviance Information Criteria (DIC), effective number of parameters 

(pD), Deviance, and parameter estimates for density dependence (DD), and the standard deviation of density dependence (DD SD).  

PMU Model DD DD SD DIC pD Deviance 

Bannock ddR_tjS_cfS_cmS -0.139 0.043 201.2 22.6 178.5 

Bannock tR_ddjS_cfS_cmS -0.402 0.063 235.4 21.4 214.0 

Bannock cR_ddjS_cfS_cmS -0.434 0.057 260.7 14.8 245.9 

Bannock ddR_cjS_cfS_cmS 0.067 0.063 282.8 16.2 266.6 

Bannock cR_cjS_ddfS_cmS 0.076 0.059 283.9 11.7 272.1 

       

Boise River tR_ddjS_cfS_cmS 0.332 0.064 668.1 76.6 591.5 

Boise River ddR_tjS_cfS_cmS -0.759 0.692 672.6 106.2 566.4 

Boise River cR_cjS_ddfS_cmS -4.164 0.812 903.7 74.4 829.3 

Boise River cR_ddjS_cfS_cmS 0.284 0.080 1,075.0 105.7 969.2 

Boise River ddR_cjS_cfS_cmS -0.085 0.032 1,100.7 125.3 975.4 

       

Caribou ddR_tjS_cfS_cmS 0.085 0.046 209.3 20.6 188.7 
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Caribou tR_ddjS_cfS_cmS -2.304 0.445 298.0 34.9 263.1 

Caribou cR_ddjS_cfS_cmS -3.514 0.749 465.2 63.3 401.9 

Caribou cR_cjS_ddfS_cmS 1.411 0.233 608.1 44.4 563.6 

Caribou ddR_cjS_cfS_cmS 0.106 0.075 619.2 34.0 585.2 

       

Central Mountains ddR_tjS_cfS_cmS -0.076 0.044 232.7 22.2 210.5 

Central Mountains tR_ddjS_cfS_cmS -0.159 0.058 244.3 22.5 221.8 

Central Mountains ddR_cjS_cfS_cmS 0.086 0.084 309.5 8.8 300.8 

Central Mountains cR_ddjS_cfS_cmS -0.002 0.081 312.6 9.3 303.3 

Central Mountains cR_cjS_ddfS_cmS 0.225 0.209 313.6 8.8 304.8 

       

South Hills ddR_tjS_cfS_cmS -0.165 0.081 76.3 14.4 61.9 

South Hills tR_ddjS_cfS_cmS -0.585 0.130 89.7 20.7 69.0 

South Hills cR_ddjS_cfS_cmS -0.393 0.043 107.2 13.1 94.1 

South Hills ddR_cjS_cfS_cmS -0.353 0.073 137.2 28.2 109.0 

South Hills cR_cjS_ddfS_cmS 0.274 0.098 188.6 61.7 126.8 

       

Weiser McCall ddR_tjS_cfS_cmS -0.119 0.050 340.6 58.6 282.0 

Weiser McCall tR_ddjS_cfS_cmS -0.966 0.099 401.6 60.2 341.4 

Weiser McCall cR_ddjS_cfS_cmS -1.385 0.067 538.6 85.9 452.8 

Weiser McCall cR_cjS_ddfS_cmS 1.261 0.260 647.1 42.0 605.1 

Weiser McCall ddR_cjS_cfS_cmS -0.061 0.077 658.7 54.7 604.0 
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Table 5-2. Integrated Population Model (IPM) model selection for mule deer (Odocoileus hemionus) in 6 Population Management 

Units (PMU), Idaho, years 2001 – 2013.  The model structure includes a density dependent term on recruitment, time-varying juvenile 

survival, constant adult female survival, and constant adult male survival. Parameter estimates for density dependence (DD) and 

standard deviations (SD) are provided for density dependence (DD). Model fitting diagnostic are Deviance Information Criteria (DIC), 

effective number of parameters (pD) and Deviance. In this instance ΔDIC describes the relationship to the PMU specific model set to 

illustrate departure from the best model when another model is used for constancy of model structure for DD covariate comparisons.  

 

 

 

 

 

 

 

 

 

 

  

PMU Model DD DD SD ΔDIC DIC Deviance pD 

Boise River Recruitment DD -0.759 0.692 4.5 672.6 566.4 106.2 

South Hills Recruitment DD -0.165 0.081 0.0 76.3 61.9 14.4 

Bannock Recruitment DD -0.139 0.043 0.0 201.2 178.5 22.6 

Weiser McCall Recruitment DD -0.119 0.050 0.0 340.6 282.0 58.6 

Central Mtns. Recruitment DD -0.076 0.044 0.0 232.7 210.5 22.2 

Caribou Recruitment DD 0.085 0.046 0.0 209.3 188.7 20.6 
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Table 5-3: Model selection results for integrated population models comparing model fit for models with density dependence on 

recruitment only (DDO), effect of weather and density dependence on recruitment (WDD), and the effect of weather without density 

dependence (WO). We present the top models for each model type in each PMU to test between factors driving population dynamics; 

density dependence, weather, or both. For models including weather, we report the covariates in each model. Model fitting diagnostic 

are the Deviance Information Criterion (DIC), Difference from lowest DIC (ΔDIC), Effective Number of Parameters (pD), Deviance, 

and validation metrics.  
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 PMU Model Weather Covariates DD DD SD ΔDIC DIC deviance pD 

DDO Bannock (1)  -0.1394 0.0434 0.0 201.2 178.5 22.6 

WO Bannock (2) FPC, FWeeks NA NA 24.8 226.0 201.7 24.2 

WDD Bannock (3) FPC, FWeeks, Winter -0.0442 0.0246 57.3 258.5 245.3 13.2 

          

WO Boise River (2) FPC, FWeeks NA NA 0.0 602.1 521.2 80.9 

DDO Boise River (1)  -0.7591 0.6919 70.5 672.6 566.4 106.2 

WDD Boise River (3) FPC, FWeeks, Winter -0.2697 0.0487 284.4 886.5 814.4 72.1 

          

DDO Caribou (1)  0.0847 0.0459 0.0 209.3 188.7 20.6 

WO Caribou (2) FPC, FWeeks NA NA 260.5 469.9 434.0 35.9 

WDD Caribou (3) FPC, FWeeks, Winter -0.3893 0.4931 360.3 569.7 501.6 68.1 

          

WO Central Mtns. (2) FPC, FWeeks NA NA 0.0 198.9 178.2 20.6 

DDO Central Mtns. (1)  -0.0756 0.0444 33.9 232.7 210.5 22.2 

WDD Central Mtns. (3) FPC, FWeeks, Winter 0.0589 0.0250 62.2 261.0 249.3 11.8 

          

DDO South Hills (1)  -0.1653 0.0809 0.0 76.3 61.9 14.4 

WDD South Hills (3) FPC, FWeeks, Winter 0.0014 0.0242 15.0 91.3 80.0 11.3 

WO South Hills (2) FPC, FWeeks NA NA 16.9 93.2 78.0 15.3 
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Model Structure: 1. Density dependence on recruitment and time varying juvenile survival. 

2. Time varying recruitment and juvenile survival modeled with weather covariates. 

   3. Density dependence on recruitment and juvenile survival modeled with weather covariates. 

 

 

 

 

 

DDO Weiser McCall (1)  -0.1191 0.0498 0.0 340.6 282.0 58.6 

WO Weiser McCall (2) FPC, FWeeks NA NA 72.1 412.7 359.8 52.9 

WDD Weiser McCall (3) FPC, FWeeks, Winter -0.0376 0.0198 271.1 611.7 553.6 58.1 
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FIGURES 

 

 

Figure 5-1. Basic age-structured life-cycle for the post-breeding birth pulse matrix 

model used as the basis for the Integrated Population Model (IPM) for mule deer 

(Odocoileus hemionus) in Idaho. Here, we start the recruitment of individuals as 6 

month olds as estimated from fawn to adult female ratio counts in December, estimate 

survival through winter and summer, and recruit into the adult population at age 18 

months. Only adults reproduce as the age of first reproduction is 2 in mule deer. 
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Figure 5-2. Spatial map of the strength of density-dependent population growth rate 

for Mule deer (Odocoileus hemionus) populations estimated with an integrated 

population model in Idaho, 2001-2013. 
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Figure 5-3. Integrated population model (IPM) projections for Mule deer 

(Odocoileus hemionus) in the Bannock population management unit (PMU), 

Idaho, 2001-2013, showing time varying juvenile survival, constant female 

survival, and population abundance estimates consistent with a density-dependent 

effect on recruitment only. Lines indicate posterior mean estimate with 95% 

credible interval (grey shading). Points are field data with 95% confidence 

interval.  
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Figure 5-4. Integrated population model (IPM) projections for mule deer 

(Odocoileus hemionus) in the Bannock population management unit (PMU), 

Idaho, 2001 - 2013, weather modeled juvenile survival, constant female 

survival, and population abundance estimates consistent with a density-dependent 

effect on recruitment. Lines indicate posterior mean estimate with 95% credible 

interval (grey shading). Points are field data with 95% confidence interval.
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Figure 5-5. Comparisons of parameter estimates for standardized density dependence 

in vital rates (recruitment) and the best density-independent (weather, forage) 

covariates on mule deer (Odocoileus hemionus) populations in Idaho, 2001 – 2013. 
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Figure 5-6. Spatial map of the strength of density-independent effects on population 

growth rate from annual variation in late summer forage quality for mule deer 

(Odocoileus hemionus) populations estimated with an integrated population model in 

Idaho, 2001-2013.
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APPENDIX C. SUPPLEMENTAL MATERIALS 

Table 5_S1: Model selection results for integrated population models for mule deer (Odocoileus hemionus) with weather covariates. 

The overall models contain data from all Population Management Units (PMU) and all years. Table A compares the best fitting 

models with varying covariates. Table B compares only the shorter model with covariates Fall PCC and Fall Weeks for each PMU. 

The models compare the effects of weather on time varying recruitment and constant juvenile and adult survival with no density 

dependence. For all models, we report the Deviance Information Criterion (DIC), Difference from lowest DIC (ΔDIC), Effective 

Number of Parameters (pD), Deviance, and validation metrics. 

 

A.  

PMU Model Covariates DIC deviance pD 

Bannock tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks 225.9528 201.7095 24.24338 

Boise River tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks,Winter 562.5027 491.7094 70.79338 

Caribou tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks 469.8585 433.963 35.89542 

Central Mtns. tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks 198.8568 178.2267 20.63008 

South Hills tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks,Winter 90.2703 74.40333 15.86698 

Weiser McCall tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks 412.6944 359.8169 52.87749 

Best with just weather (No DD) 
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B.  

PMU Model Covariates Δ DIC DIC deviance pD 

Bannock tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks 0 225.9528 201.7095 24.24338 

Boise River tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks 39.58291 602.0857 521.2034 80.88227 

Caribou tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks 0 469.8585 433.963 35.89542 

Central Mtns. tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks 0 198.8568 178.2267 20.63008 

South Hills tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks 2.973442 93.24375 77.97827 15.26547 

Weiser McCall tR_cjS_cfS_cmS_pe_vars.txt Fall PCC,Fall Weeks 0 412.6944 359.8169 52.87749 

Shorter model with best overall results with just weather (No DD) 
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Table 5_S2: Model selection results for overall winter mule deer (Odocoileus hemionus) fawn survival with weather density 

dependence and covariates. The overall models contain data from all Population Management Units (PMU) and all years. The models 

compare the effects of weather density dependence on recruitment with constant juvenile and adult survival. For all models, we report 

the Deviance Information Criterion (DIC), Effective Number of Parameters (pD), Deviance, and validation metrics. 

 

 

PMU Model Covariates DD DD SD DIC deviance pD 

Boise River Weather DD Fall PCC,Fall Weeks,Winter -0.270 0.049 886.5 814.4 72.1 

South Hills Weather DD Fall PCC,Fall Weeks,Winter 0.001 0.024 91.3 80.0 11.3 

Caribou Weather DD Fall PCC,Fall Weeks 0.048 0.018 544.6 505.2 39.4 

Central Mtns. Weather DD Fall PCC,Fall Weeks,Winter 0.059 0.025 261.0 249.3 11.8 

Bannock Weather DD Fall PCC,Fall Weeks 0.128 0.052 251.4 238.9 12.6 

Weiser McCall Weather DD Fall PCC,Fall Weeks 0.237 0.042 609.8 515.1 94.7 

Best overall model for Weather with DD
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Table 5_S3: Model selection results for overall winter mule deer (Odocoileus hemionus) fawn survival with weather density 

dependence and covariates. The overall models contain data from all Population Management Units (PMU) and all years. The models 

compare the effects of weather density dependence on recruitment with constant juvenile and adult survival. These results are based 

on the full model as compared to Table 5_3 where the “best” models were chosen for each PMU. For all models, we report the 

Deviance Information Criterion (DIC), Difference from lowest DIC (ΔDIC), Effective Number of Parameters (pD), Deviance, and 

validation metrics. 

 

 

PMU Model Covs DD DD SD ΔDIC DIC deviance pD 

Caribou Weather DD Fall PCC,Fall Weeks,Winter -0.389 0.493 25.1 569.7 501.6 68.1 

Boise River Weather DD Fall PCC,Fall Weeks,Winter -0.270 0.049 0.0 886.5 814.4 72.1 

Bannock Weather DD Fall PCC,Fall Weeks,Winter -0.044 0.025 7.1 258.5 245.3 13.2 

Weiser McCall Weather DD Fall PCC,Fall Weeks,Winter -0.038 0.020 1.9 611.7 553.6 58.1 

South Hills Weather DD Fall PCC,Fall Weeks,Winter 0.001 0.024 0.0 91.3 80.0 11.3 

Central Mts. Weather DD Fall PCC,Fall Weeks,Winter 0.059 0.025 0.0 261.0 249.3 11.8 

Full model for Weather with DD, seemed to work the best for a majority of the PMUs’.  
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Figure 5-S1. Integrated population model (IPM) projections for mule deer 

(Odocoileus hemionus) in the Weiser-McCall population management unit 

(PMU), Idaho, 2001-2013, showing time varying juvenile survival, constant 

female survival, and population abundance estimates consistent with a density-

dependent effect on recruitment only. Lines indicate posterior mean estimate with 

95% credible interval (grey shading). Points are field data with 95% confidence 

interval.
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Figure 5-S2. Integrated population model (IPM) projections for mule deer 

(Odocoileus hemionus) in the South Hills population management unit (PMU), Idaho, 

2001-2013, showing time varying juvenile survival, constant female survival, and 

population abundance estimates consistent with a density-dependent effect on 

recruitment only. Lines indicate posterior mean estimate with 95% credible interval 

(grey shading). Points are field data with 95% confidence interval. 
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