University of Montana

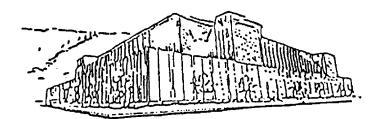
ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, & Professional Papers

Graduate School

1998

Assemblages of grassland birds as indicators of environmental condition


Sharon Freshman Browder The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Browder, Sharon Freshman, "Assemblages of grassland birds as indicators of environmental condition" (1998). *Graduate Student Theses, Dissertations, & Professional Papers*. 6941. https://scholarworks.umt.edu/etd/6941

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Maureen and Mike MANSFIELD LIBRARY

The University of MONTANA

Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

** Please check "Yes" or "No" and provide signature **

Yes, I grant permission _____ No, I do not grant permission _____

Author's Signature Sharm Brander

Date <u>19 April 1998</u>

Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.

ASSEMBLAGES OF GRASSLAND BIRDS AS INDICATORS

OF ENVIRONMENTAL CONDITION

By

Sharon Freshman Browder

B.S., Texas A&M University, College Station, 1988

Presented in partial fulfillment of the requirements for the degree of

Master of Science

UNIVERSITY OF MONTANA

1998

Approved by:

Chairperson

Dean, Graduate School

5-28-98

Date

UMI Number: EP37742

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP37742

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

Assemblages of Grassland Birds as Indicators of Environmental Condition (82 pp.)

Director: I. J. Ball

I developed four regression models that predict an index of grassland integrity using the presence or abundance of bird species in the Prairie Pothole Region of North Dakota. The index is based on proportions of cover types and the relationships of these cover types to grassland birds. Species abundance data were obtained from three-minute roadside point counts at 905 points in 44, 4050ha study plots in 1995 and 1996. Species were recorded in each of four quadrants at each point. Cover types were identified by digital aerial photography and quantified using GIS. Species selected for analysis included all grassland species (n = 11) that occurred in at least 15 quadrants, and all other species (n = 39) that occurred in at least 1% of 6772 quadrants. Logistic regression identified 386 statistically significant relationships between species and cover types at 200 m and 400 m scales. I used two thirds of the data to construct the four linear regression models (presence and abundance models at 200 m and 400 m scales). Final models included 12 species that were statistically significant ($\alpha \le 0.05$) in all four models. Cross-validation tests using the remaining third of the data indicate that the index predicts grassland integrity consistently. The presence of those species associated with woody vegetation or cropland, combined with the absence of many grassland-dependent species, can provide a measure of grassland integrity. Although identifying regional associations of species with cover types is labor-intensive, such indices can be applied relatively inexpensively to monitor grassland integrity over a large geographic area by applying them to abundance data currently collected by the Breeding Bird Survey.

ACKNOWLEDGMENTS

I am grateful to Dr. Joe Ball, Committee Chair, for entrusting this project to me. and for his patience and support throughout the project. I am indebted to Dr. Douglas Johnson for initiating the project and for his invaluable help, particularly during data analysis. Many thanks to Dr. Tom Martin for forcing me think long and hard about defining the real questions, and for his expertise with statistical software. Thanks also to Dr. Scott Mills for patiently reading and commenting on all those thick faxes. Special thanks to my mother, Katherine Freshman, who was my companion and support system in the field, and who tirelessly groundtruthed each point. Thanks also to my father, James Freshman, who was deprived of his wife for several months during data collection, and to Ben and Iwilda Freshman for their encouragement and financial assistance. Many thanks to the late Nancy Browder, who, as one of her last acts of kindness, took care my family during the summer of 1995, and to her son and my husband. Dan Browder, for his undiminished tolerance and encouragement throughout the project. Thanks to Peter Dinnsen, who watched over the household during the summer of 1996. Thanks to Patrick D. Gonzales and the Lee Metcalf National Wildlife Refuge staff for tolerating my considerable time away from work for the project. I also extend gratitude to: Wesley Hochachka for analytical and statistical advice; Steve Hoekman for statistical interpretation and moral support; Larry Igl for supplying supporting literature and an introduction to LeConte's sparrows; L. Guy McWethy for an invaluable FORTRAN program; Betty Euliss for GIS data

iii

extraction, visual aids, and archiving; Tom Sklebar for production of and assistance with GIS; Tom Fondell for supplying supporting literature; Glenn Guntenspergen for coordination of the GIS extraction; Tsairbor Yen for encouragement and technical assistance; and Virginia Johnston, Vanetta Burton, Laura Anderson, and Pam Tollefson for administrative support. This project was made possible by the financial support of the Environmental Protection Agency through Northern Prairie Wildlife Research Center. I am grateful for their support.

TABLE OF CONTENTS

ABSTR	ACTii
ACKNO	OWLEDGMENTS
	F TABLES
LIST O	F FIGURES
SECTIO	ИС
l.	Introduction
	Background
۱۱.	Methods
	Study Area6Species Composition and Relative Abundance8Cover Types10Associations Between Species Presence and Cover Type12
łłl.	Results
	Species Composition and Relative Abundance15Cover Types15Associations Between Species Presence and Cover Type17Grassland Integrity Models and Indices24

Page

.

IV.	Discussion	27
	Species Composition and Relative Abundance	27 28
LITER	ATURE CITED	38
APPEI	NDIX	
Α.	Differences in detection rates among point count periods	43
₿.	Cover type definitions and frequencies.	48
C.	Species range and occurrence in quadrants	50
D.	Species relationships to cover types at 200 m and 400 m	52
	Common, scientific, and abbreviated names of bird species observed a their habitat groups	
	Percentages of species correlated ($P \le 0.05$) with cover types at 200-m a 400-m scales for each habitat group	

.

LIST OF TABLES

Ta	able Page
1.	Percent of total area for each cover type at three scales on hexagons in the
	Prairie Pothole Region of North Dakota
2.	Linear regression models predicting grassland integrity from species presence
	or abundance at 200-m and 400-m scales, and coefficients of determination (R ²)
	for initial model fitting and cross-validation

.

LIST OF FIGURES

Fig	gure Page
1.	Study area, locations of hexagons, and biotic regions of North Dakota
2.	Significant relationships ($\alpha \le 0.05$) of grassland species to cover type
	(200 m), measured by the model regression coefficient divided by the standard error
3.	Significant relationships ($\alpha \le 0.05$) of species to cover type (200 m) by habitat
	groups other than grassland, measured by the model regression coefficient divided by the standard error
4.	Significant relationships ($\alpha \le 0.05$) of grassland species to cover type
	(400 m), measured by the model regression coefficient divided by the standard error
5.	Significant relationships ($\alpha \le 0.05$) of species to cover type (400 m) by habitat
	groups other than grassland, measured by the model regression coefficient divided by the standard error

SECTION I

Introduction

Background

Declines in populations of grassland birds in North American have been even more precipitous than those of birds in forests and other biomes (Robbins et al. 1986, Droege and Sauer 1994, Knopf 1994). Many resident species nesting in grasslands and scrublands showed consistent population declines between 1966 and 1988 (Droege and Sauer 1990). This trend has been particularly evident in the Great Plains, which was once the largest contiguous grassland area in North America. Lark Buntings (*Calamospiza melancocorys*) and Grasshopper Sparrows (*Ammodramus savannarum*) declined on average by >4% annually from 1966 to 1990. Clay-colored Sparrows (*Spizella pallida*), Bobolinks (*Dolichonyx oryzivorus*), and Baird's Sparrows (*Ammodramus bairdii*) declined by >2% annually, and Dickcissels (*Spiza americana*) declined by >1% annually (Johnson and Schwartz 1993a). Most North American grassland species both breed and winter on this continent (Johnsgard 1979), so these declines must be a function of processes occurring only in North America (Knopf 1994).

Declines in grassland birds have been attributed to extensive and continuing conversion of grasslands to cropland and to increasingly intensive agricultural practices (Herkert 1991, Bollinger and Gavin 1992). Native grasslands in North America have been altered to a greater degree than any other biome, including forests (U.S. Department of Agriculture 1987, Smith et al. 1994). Most grassland losses have been in the form of tillage for croplands. In North Dakota, nearly 70% of the total land area is composed of cropland. Most of the remaining grasslands, approximately 26% of North Dakota's total land area, is pastureland and rangeland (U.S. Department of Commerce 1994). Grassland conversion also has been accompanied by the wholesale destruction of wetlands (Dahl et al. 1991), negatively affecting species associated with wetlands. Additionally, widespread planting of trees in the Great Plains (Baer 1989) has changed avian species composition by creating suitable habitats for woodland and edge species (Martin and Vohs 1978, Martin 1980).

Wide-scale grassland conversion is particularly detrimental to grassland birds for several reasons. Most grassland conversions permanently eliminate the vegetation on which many grassland species depend for breeding or wintering habitat. Disturbances to croplands, and birds using them, occur several times each year as fields are tilled, planted, sprayed, and harvested. Few converted grasslands are maintained in permanent cover, and then only if they are used as pasture or are enrolled in an agricultural subsidy program such as the

Conservation Reserve Program (CRP). Often only small patches of grassland remain in agricultural landscapes, and such remnant grasslands usually are hayed or heavily grazed (Stewart 1975). Conversion of hayfields from grass to alfalfa, earlier hay-cropping dates, and earlier rotation of hayfields to other crops are probably contributing to declines of grassland birds (Bollinger and Gavin 1992). Heavily grazed grasslands support fewer avian species than those that are lightly or moderately grazed (Kantrud 1981). Additionally, small patches of grassland are often more attractive to edge species than to grassland species. Some species of grassland birds do not breed in small patches of grassland (Herkert 1991), and others suffer relatively high rates of nest predation and brood parasitism in small tracts (Johnson and Temple 1990).

Growing concern for the effects of wide-scale anthropogenic changes to grasslands and other ecosystems has created a need for monitoring methods that can detect changes in biotic integrity over large geographic areas. Such systems have been developed for fish (Karr 1981, Karr et al. 1986, Karr 1991), butterflies (Noss 1990, Kremen 1992, Blair and Launer 1997), aquatic invertebrates (Berkman et al. 1986, Lenat 1988, Ohio EPA 1988, Plafkin et al. 1989), and forest birds (Canterbury et al. in review). Grassland birds may be useful indicators of changes in biotic integrity in grassland ecosystems.

Bird taxa are appropriate indicators for monitoring changes on an ecosystem scale for several reasons: (1) Birds are important to a large segment of the public. Approximately 30 million bird watchers reside in the United States, and one in three households feeds backyard birds (Ehrlich et al. 1988). Hence, much of the public may better relate to concerns about changes in bird communities than to those of plants or invertebrates. (2) Birds occur across a broad gradient of anthropogenic disturbance, from pristine wilderness to metropolitan areas. (3) Most birds live only a few years, so changes in species composition and abundance can be detected over a relatively short time period. (4) Bird surveys (e.g., Breeding Bird Survey) are currently conducted across the United States and southern Canada. (5) Bird species are associated with habitat conditions; that is, different habitats support different species (Stewart and Kantrud 1972, Kantrud 1981, Johnson and Schwartz 1993a, Flather and Sauer 1996, Canterbury et al. in review). (6) Groups of bird species can be used to develop associations with cover type that are predictive of the relative level of anthropogenic disturbance (Szaro 1986, Croonquist and Brooks 1991, Canterbury et al. in review).

<u>Purpose</u>

The purpose of this study is to identify the relationships between avian species composition and cover types in the northern Great Plains, specifically the

Prairie Pothole Region of North Dakota. Although trends in grassland bird populations are indicative of negative associations with cropland, quantitative documentation of associations with cover types is currently lacking for many grassland species. By identifying such relationships, I developed a method of monitoring grassland integrity based on grassland birds. This research is part of a larger grassland monitoring program supported by the Environmental Monitoring and Assessment Program (EMAP; U.S. Environmental Protection Agency 1993).

<u>Objectives</u>

- To compare the presence of various bird species to habitat and landscape characteristics, specifically the proportion of the area that is cultivated, and quantify these relationships.
- 2. To use the relationships developed above to classify the tolerance of grassland bird species to anthropogenic disturbance, particularly cultivation.
- 3. To derive an index, based on presence or relative abundance of disturbancetolerant and disturbance-intolerant bird species, to the integrity of grassland ecosystems.

SECTION II

<u>Methods</u>

Study Area

Study plots were distributed systematically across the 11.7 million ha portion of North Dakota lying east and north of the Missouri River (Fig. 1). This area comprises four distinct physiographic regions: Southwestern Slope, Prairie Pothole, Turtle Mountain, and the Agassiz Lake Plain. Five biotic subregions of the Southwestern Slope Region and Prairie Pothole Region are contained within the study area: the Couteau Slope, Missouri Couteau, Northwestern Drift Plain, Northeastern Drift Plain, and Southern Drift Plain (Stewart and Kantrud 1972, Stewart 1975). Glaciation during the Wisconsin Age formed gently rolling to nearly flat terrain interspersed with hundreds of thousands of wetland basins. Elevations across the study area range from approximately 240 m at the Minnesota border to about 730 m above mean sea level near the Montana border. The proportion of land under cultivation increases in a rough gradient from west to east, as does average precipitation. Many of the most pristine grasslands in the study area are found in the Missouri Couteau, where rolling topography contains areas of pasture and CRP and many natural wetlands.

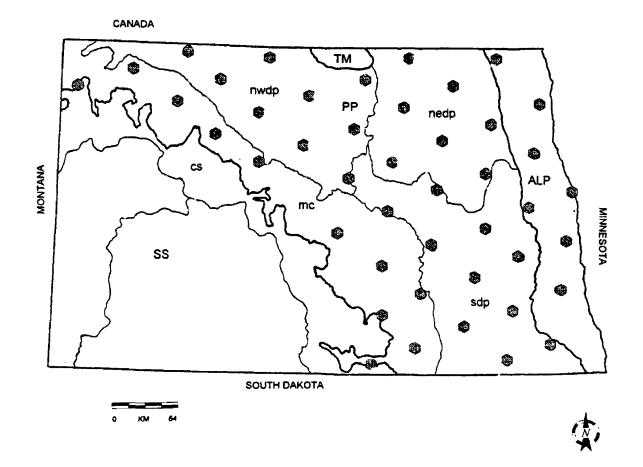


FIG. 1. Study area, locations of hexagons, and biotic regions of North Dakota (Stewart 1975). Physiographic Regions: ALP = Agassiz lake plain, PP = Prairie pothole, SS = Southwestern slope, TM = Turtle mountain. Biotic Subregions: cs = Couteau slope, mc = Missouri couteau, nedp = Northeastern drift plain, nwdp = Northwestern drift plain, sdp = Southern drift plain. @= Hexagon location.

Crops in the Missouri Couteau are predominantly small grains. In contrast, the flat Agassiz Lake Plain Region along the Red River in eastern North Dakota contains the most altered landscape in the study area. The region is heavily cultivated, and few natural wetlands or grasslands remain. Many fields have been leveled, ditched, and tile-drained and are often planted to intensively managed crops such as sugar beets or soybeans.

Following the sampling scheme designed for EMAP (U.S. Environmental Protection Agency 1993), I obtained a systematic sample of 44 hexagons distributed across the study area. Of the 44 hexagons, 9 occurred in the Missouri Couteau, 8 in the Northwestern Drift Plain, 7 in the Northeastern Drift Plain, 11 in the Southern Drift Plain, and 7 in the Agassiz Lake Plain. Two hexagons overlapped the Missouri Couteau and Couteau Slope. Mean hexagon size was 4049 ha (range = 3939 to 4135 ha).

Species Composition and Relative Abundance

I recorded the abundance of bird species inside the hexagons using roadside point counts. The method was modified from Breeding Bird Survey protocol (Robbins et al. 1986) in order to adapt it to the size and road configuration of the hexagons and to facilitate analysis of bird associations with cover types. A Breeding Bird Survey route consists of 50 points 0.8 km apart, and data are collected along the route one morning of the year during the peak of the breeding

season. Starting 0.5 hr before sunrise, the observer records all birds heard or seen within 400 m during a 3-minute period at each point. My surveys included the following modifications: (1) survey routes were shortened so they could be accommodated inside the hexagons, (2) birds were recorded in quadrants (NE, SE, SW, NW) at each point, and (3) birds flying overhead or observed in the roadway were recorded in separate categories from those observed in quadrants.

Because of the short duration of the point counts, I extended 3-minute counts on 225 points to 5 and 10 minutes in 1996 in order to evaluate the proportion of species and individuals being detected in 3-minute counts (Appendix A).

Bird surveys began in the southwest part of the study area and proceeded to the northeast, following the general sequence of breeding phenology in North Dakota (Stewart 1975). Surveys were conducted from late May through early July in 1995 and 1996. I recorded data in 44 hexagons in 1995 and 43 in 1996 (data were not collected in one hexagon in 1996 due to inclement weather). Hexagons contained an average of 15.3 km of survey route and 20 survey points. High water caused some points to become inaccessible: in 1996, 17 points were deleted and 3 were added. I used a Global Positioning System unit to determine the coordinates of each survey point.

Cover Types

Digital aerial photography recorded cover types at regular intervals on all 44 hexagons between May and August of 1995 and 1996. Northern Prairie Wildlife Research Center (NPWRC) staff used photo-interpretation to create a Geographic Information System using TNTmips software (MicroImages 1996). Because changes in cover type were judged to be minimal between the two study years, data were combined to create a single base map. The predominant cover type and wetland locations in each quadrant were ground truthed. Twenty-two cover types defined through photo-interpretation were collapsed into seven categories (Appendix B): Cropland, Grassland, Wetland, Patch, Wood, Other, and Barren Land.

Cropland includes lands that are tilled and planted to grain or row crops, and includes freshly tilled soil, stubble from the previous year, fallow land, or growing crops. *Grassland* includes native grassland tracts >2 ha. Native grasslands were rare, so haylands and CRP lands were added to this category because both provide habitat for grassland birds that is structurally similar. Haylands are composed of grass or legumes that are cut at least annually for livestock forage, and CRP lands are planted to idle cover in the form of grass, legumes, or a mixture of both. *Wetland* includes all wetland types present (Cowardin et al. 1979). *Patch* includes areas <2 ha that contain <50% woody vegetation as well

as linear rights-of-way (3-20 m wide) between fields, along fences and section lines, and along roadways and railroad tracks. Rights of way are unplowed, but are sometimes mowed during the growing season. Vegetation often consists of smooth brome (*Bromus inermis*). *Wood* includes areas >2 ha containing woody plants >6 m high with \geq 30% aerial cover, areas <2 ha containing >50% woody plants, shelterbelts (rows of trees planted as windbreaks), or scrub land areas >2 ha covered in shrubs 0.9-6 m tall. *Other* includes small (<2 ha) areas, such as farmsteads and rock piles, that do not fit in any other class. *Barren Land* includes highly developed areas such as road surfaces (dirt, gravel, and paved), parking lots, and buildings (except farmsteads, which are categorized as *Other*).

The area of each cover type was obtained using the following procedures. Coordinates collected at each survey point using a Global Positioning System were entered into a point file. Then, all points were buffered at radii of 200 m and 400 m. The 200-m scale was chosen as a reasonable distance within which a stationary observer could identify most passerine birds by sight or sound. The 400-m scale was chosen because it is the standard for Breeding Bird Surveys (Robbins et al. 1996). I then manually digitized additional lines to divide each buffer into quadrants along existing road line features and section lines. Open or "leaky" polygons resulting from original road features were corrected with a series of element snaps, sliver filters, and line-thinning filters. Quadrants then were

manually labeled and buffers were merged with the cover type layer. Features inside the buffers were extracted from the merged layer to obtain only those cover type polygons within the buffers. Data base reports produced text files containing the area of each cover type polygon inside the quadrants.

Some 400-m buffers extended beyond hexagon boundaries, and cover type composition could not be determined for these quadrants (n = 468). Hence, 6772 of the original 7240 quadrants were used in the analysis.

I used independent-samples t-tests (Norusis 1995) to compare mean percent of total area for each cover type in the 200-m and 400-m quadrants with those of the hexagons to determine if the quadrants were representative of the hexagons as a whole. To determine if the distribution of cover types differed between the 200-m and 400-m scales, I also examined frequency of occurrence for each cover type in the quadrants analyzed.

Associations Between Species Presence and Cover Type

Species included in the analysis were 11 grassland species (Stewart 1975, Ehrlich et al. 1988, Peterjohn and Sauer 1993) that occurred in at least 15 of the 6772 quadrants and all other species (n = 39) observed in at least 1% of quadrants (Appendix C). Because the ranges of 18 species (Appendix C) did not include all 44 hexagons, I selected hexagons for analysis based on the species'

12.

primary ranges (Price et al. 1995), but also included hexagons where I found a species outside its primary range. Many species that occurred in hexagons outside their range were wetland species that likely expanded their ranges in response to extensive flooding of wetlands during 1995 and 1996 (IgI and Johnson 1995).

Associations between the presence of each of the 50 species selected and the percentage of each of the seven cover types in the quadrants were obtained using logistic regression (Norusis 1995). Species presence was regressed against the percentages of each of seven cover types at both the 200-m and 400-m scales to obtain 700 logistic regression coefficients (Appendix D).

Association between bird species and cover type was measured using the -2LL (-2 x log likelihood) value of each regression model (Appendix D). A logistic regression model with perfect fit would have a -2LL value of 0 (Norusis 1995), so I considered those species with a significant ($\alpha \le 0.05$) regression coefficient and smallest -2LL to have the strongest relationships.

In order to examine the relationships between groups of species and cover types, I grouped the 50 species into seven breeding habitat groups (Stewart 1975, Ehrlich et al. 1988, Peterjohn and Sauer 1993, Appendix E). Habitat categories were Grassland, Wetland, Bare-ground, Savanna, Edge, Woodland,

and Generalist. I then examined the proportions of each group associated with the cover types.

For purposes of discussion in the text, significant results, relationships, or differences are those where $\alpha \le 0.05$.

.

SECTION III

<u>Results</u>

Species Composition and Relative Abundance

I recorded 130 species (Appendix E), six of which were recorded in 1995 but not in 1996 and 10 of which were recorded in 1996 but not in 1995. I recorded 14,399 individuals of 117 species at 894 points in 1995 and 14,330 individuals of 123 species at 868 points in 1996. Averages per hexagon were 40 species and 324 individuals in 1995 and 40 species and 333 individuals in 1996.

Cover Types

Percent composition for most cover types was similar among hexagons, 400-m quadrants, and 200-m quadrants. However, mean percent of total area differed significantly for three cover types (Table 1). Both 200-m and 400-m quadrants contained higher proportions of Patch, Other, and Barren Land than did hexagons. Distribution was similar between the 200-m and 400-m scales for every cover type except Other. Other occurred nearly twice as often in the 400m quadrants as in the 200-m quadrants (Appendix B).

	Hexagon [†] (n = 44)		400-m Quadrant (n = 3620)			200-m Quadrant (n = 3620)		
Cover Type*	x	(95% Cl)	x	(95% CI)	P‡	x	(95% CI)	P‡
Cropland	62.10	(56.24, 67.97)	61.46	(60.33, 62.60)	0.830	57.34	(56.15, 58.51)	0.115
Grassland	19.39	(14.56, 24.23)	16.10	(15.14, 17.06)	0.185	15.44	(14.46, 16.43)	0.114
Wetland	8.81	(7.26, 0.35)	8.81	(8.39, 9.23)	0.999	8.18	(7.72, 8.65)	0.442
Patch	4.47	(3.91, 5.03)	7.30	(7.03, 7.57)	0.005	10.58	(10.23, 10.92)	0.005
Wood	3.26	(0.74, 5.79)	2.63	(2.23, 2.94)	0.615	2.72	(2.37, 3.07)	0.667
Other	1.23	(1.08, 1.37)	2.00	(1.76, 2. 24)	0.005	2.70	(2.30, 3.11)	0.005
Barren Land	0.75	(0.67, 0.83)	1.72	(1.66, 1.79)	0.005	3.07	(2.94, 3.20)	0.005

Table 1. Percent of total area for each cover type at three scales on hexagons in the Prairie Pothole Region of North Dakota.

*Cover types defined in Appendix B.

[†]Mean hexagon size = 4050 ha

[‡]Significance levels ($\alpha = 0.05$) from independent-samples t-tests (Norusis 1995) used to compare the mean percent of total area for each cover type in 200-m and 400-m quadrants with those of the hexagons.

Associations Between Species Presence and Cover Type

Of the 700 relationships between species presence and cover type analyzed, 386 were significant (Appendix D). Only two species [Upland Sandpiper (*Bartramia longicauda*) and Ferruginous Hawk (*Buteo regalis*)] of 50 showed no significant relationship with any cover type, and all but two species with significant associations had relationships with two or more cover types.

Cropland was negatively correlated with the presence of more species (80%) than any other cover type. Only 6-8% of species were positively correlated with Cropland, two of which [Killdeer (*Charadrius vociferus*) and Horned Lark (*Eremophila alpestris*)] were Bare-ground species. Most (73%) Grassland species were negatively correlated with Cropland. At least 73% of every group except Bare-ground species was negatively correlated with Cropland, and 100% of Savanna, Woodland, and Generalist species were negatively correlated with Cropland. All Bare-ground species were positively correlated with Cropland. All Bare-ground species were positively correlated with Cropland.

Grassland was positively correlated with the presence of 40-42% of all species, and was correlated with a higher percentage (73%) of Grassland species than any other cover type. Only 14-16% of all species analyzed and 9% of Grassland species were negatively correlated with Grassland. Woodland species had no correlations with Grassland, and the Generalist and Bare-ground species had no positive correlations with Grassland.

Wetland was positively correlated with the presence of 42-46% of all species, including 89% of Wetland species. No Woodland or Generalist species were positively correlated with Wetland, and no Savanna species were correlated with Wetland.

Patch was correlated with the most species of any single cover type: 40-56% of all species were positively correlated, and only 8% were negatively correlated. Patch attracted the second highest percentage of Grassland birds (27%) after Grassland, and the second highest percentage of Wetland birds (61%) after Wetland. Patch was correlated to high proportions of Edge (46-69%) and Savanna (50-100%) species, although the proportions varied greatly between scales.

Wood was positively correlated with the presence of 24-28% of all species, and negatively correlated to 32-34% of all species. No Grassland, Wetland, or Bare-ground species were positively correlated with Wood. Most Edge (69-77%) and Woodland (100%) species were positively correlated. Positive correlations with Savanna species were highly variable between scales. Twenty-seven percent of Grassland species and 56-67% of Wetland species were negatively correlated with Wood.

Other was positively correlated with the presence of 34-36% of all species. No Grassland, Wetland, or Bare-ground species were positively correlated with

Other. However, most Edge and all Savanna, Woodland, and Generalist species were positively correlated with Other.

Few species were positively correlated with Barren Land, and results were often inconsistent between scales. Only Wetland species showed a pattern-one of consistently low percentages of both positively and negatively correlated species at both scales. No Savanna, Woodland, Generalist, or Bare-ground species were correlated at either scale.

The 200-m and 400-m scales were similar in terms of associations between habitat groups and cover types (Appendix F, Figs. 2 - 5), although individual species correlations varied somewhat. In general, cover types that composed the largest proportion of the quadrant area tended to have the most similar species and cover-type correlations between scales. Cover types that composed the smallest proportions of the quadrants and varied more in percentage of the total area between scales exhibited more differences in species and cover type correlations between scales. Patch, which exhibited the greatest proportionate difference in area between scales, showed more variability between scales in terms of species relationships than any other cover type.

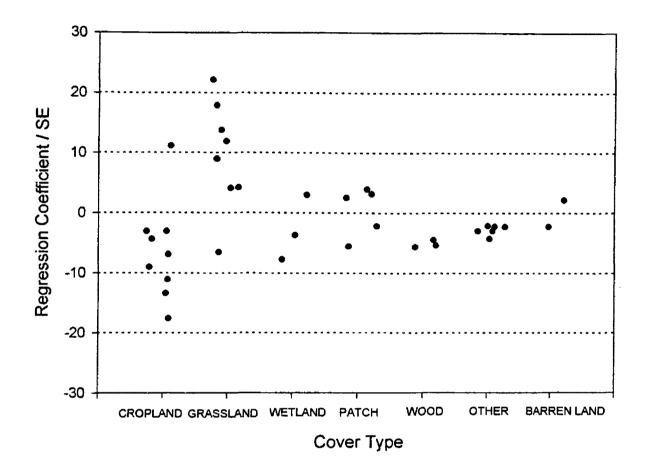


Fig. 2. Significant relationships ($\alpha \le 0.05$) of grassland species to cover type (200 m), measured by the model regression coefficient divided by the standard error.

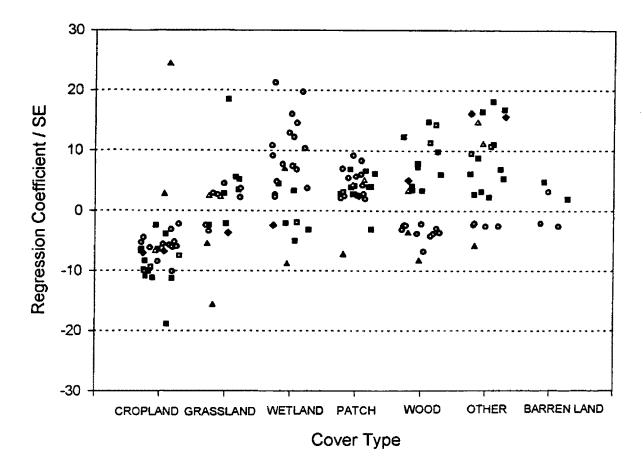


FIG. 3. Significant relationships ($\alpha \le 0.05$) of species to cover type (200 m) for habitat groups other than grassland, measured by the model regression coefficient divided by the standard error.

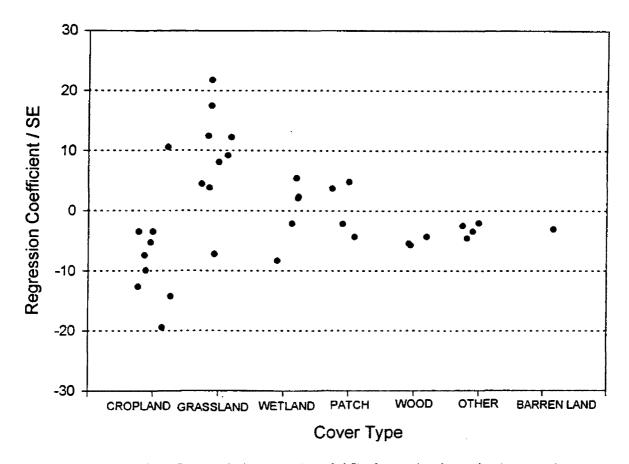


FIG. 4. Significant relationships ($\alpha \le 0.05$) of grassland species to cover type (400 m), measured by the model regression coefficient divided by the standard error.

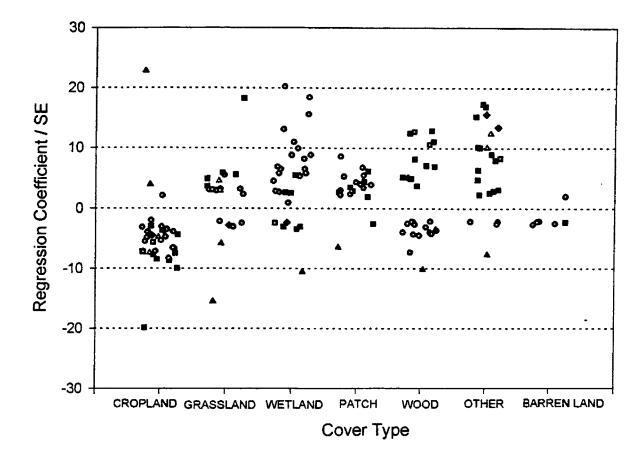


Fig. 5. Significant relationships ($\alpha \le 0.05$) of species to cover type (400 m) for habitat groups other than grassland, measured by the model regression coefficient divided by the standard error.

Grassland Integrity Models and Indices

I developed an index of grassland integrity that included those cover types that appeared to exert the most influence, either positive or negative, on grassland bird species:

Grassland Integrity = %Grassland - (%Cropland + %Wood + %Other).

Grassland provided habitat structurally similar to an intact grassland ecosystem, and was attractive to the highest proportion (73%) of grassland species. Cropland, Wood, and Other were considered detractors to grassland integrity. These cover types represent effects of anthropogenic changes to the historic structure of a grassland ecosystem and showed the fewest positive correlations and the most negative correlations with grassland species. Three cover types, Wetland, Patch, and Barren Land, were not included in the index. Wetland density varied greatly among regions of the study area, so an area of degraded uplands with high wetland density might receive a higher grassland integrity rating than a drier area in more pristine condition If Wetland was included in the index. Patch appeared to be neither a positive or negative indicator of grassland integrity. Although some grassland species are positively associated with Patch (18-27%), it is unused by many and nest success along fencerows or in small grassland patches may be very low (Johnson and Temple 1990, Herkert 1991,

Bollinger and Gavin 1992). Barren Land was not indicative of grassland integrity because it had few significant or strong associations with grassland species.

Using forward linear regression and a random sample of two thirds of the data, I used presence and abundance of the 50 species analyzed to build four models predicting grassland integrity: 200-m presence, 400-m presence, 200-m abundance, and 400-m abundance. Data from 2 heavily-wooded hexagons were not used in the models. The final models contained only those 12 species that were significant in all four models (Table 2).

I tested the predictive capacity of each of the models by cross validation using the remaining third of the data. Predicted index values were calculated for each quadrant by first multiplying the presence (1 if present, 0 if absent) or abundance of each species in the model by its regression coefficient and then adding the model intercept. The coefficients of determination (R^2) of each cross-validation test were then compared to those from the original fitting. Coefficients of determination (R^2) for these models were similar for the initial fitting and for the cross-validation testing (Table 2).

	Species	Species Presence		oundance
Term	200 m	400 m	200 m	400 m
Intercept	-57.615	-60.528	-54.602	-56.189
CCLO	91.285	82.453	53.691	80.868
BAIS	62.646	66.949	49.007	48.532
GRSP	61.003	49.683	44.948	46.346
CCSP	40.251	40.137	36.822	37.219
AMBI	31.891	38.982	29.880	29.038
WEME	32.627	37.243	27.346	23.335
SEWR	26.695	33.664	24.194	23.217
SAVS	21.359	17.926	18.702	14.717
AMCO	21.029	16.907	16.499	14.179
PBGR	12.756	13.136	5.231	3.782
VESP	-18.662	-18.053	-18.811	-18.501
HOLA	-23.765	-23.073	-20.700	-19.523
R ² Initial Fitting	0.287	0.288	0.304	0.285
R ² Cross-validation	0.273	0.287	0.270	0.240

Table 2. Linear regression models predicting grassland integrity from species presence or abundance at 200-m and 400-m scales, and coefficients of determination (R²) for initial model fitting and cross-validation.

SECTION IV

Discussion

Species Composition and Relative Abundance

Species richness and abundance were remarkably similar between years. Even though some point locations changed between years and an entire hexagon was not sampled in 1996, the average number of species per hexagon and individuals per point were identical between years. Differences in species composition between years were slight: a maximum of 10 species, most of which were uncommon, were observed in one year but not the other. Such consistency between years can likely be attributed to similar wet conditions in both years and data collection by only one observer (Robbins et al. 1986).

Cover Types

Proportions of most cover types in the 200-m and 400-m quadrants were reasonably representative of the hexagons as a whole. However, the mean percent of total area differed significantly for Patch, Other, and Barren Land (Table 1). This is likely a result of roadside sampling and sampling along section lines and half-section lines. Patch is largely composed of road rights-of-way, Barren Land includes mostly road surfaces, and Other is largely composed of farmsteads, which tend to be near roads.

Associations Between Species Presence and Cover Type

Associations developed between species presence and cover type were used as a meta-analysis to obtain an overview of species and group associations with cover type. These associations were used as a tool to develop the index of grassland integrity, not as a final analysis. Caution must be used when interpreting the results of this procedure, because a large number of statistical tests conducted on a large dataset creates inferential difficulties. The large sample size increases the chance of Type I errors (falsely rejecting the null hypothesis of no relationship between a given species and cover type). Testing a large number of relationships between species and cover types (350 at each scale) further increases the likelihood of Type I errors because as the number of tests increases, the proportion of associations expected to be significant by chance alone also increases. Using a Bonferroni correction to the significance level can reduce the possibility of Type I errors when multiple tests are used (Rice 1989). In this case, a Bonferroni adjusted significance level of $\alpha = 0.00015$ would be required for each test in order to maintain an overall significance level of α = 0.05. The tradeoff of using such an adjustment is that the possibility of Type II errors (failing to reject the null hypothesis of no relationships between a

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

given species and cover type, when such a relationship exists) is increased. I used $\alpha = 0.05$ when deciding which cover types should be included in the grassland integrity index rather than $\alpha = 0.00015$, so an overall significance level of $\alpha = 0.05$ is not implied. However, I carefully considered whether or not each relationship made biological sense; that is, whether the species being tested was likely to be attracted or repelled by a given cover type based on life history requirements. As a second measure, the -2LL was also considered when evaluating the relationships. Lower -2LL values indicated a better model fit. Because of the inferential difficulties, the results of the meta-analysis were not meant to stand alone, but to act only as a guide for developing the grassland integrity formula. P-values and -2LL values for each test were included in Appendix D so that readers may draw their own conclusions based on the significance and strength of each relationship. The selection of the 12 species included in the final models did not rely on this meta-analysis, but rather on four separate regression models where multiple testing was not an issue. Nevertheless, P-values generated in meta-analysis regressions of the presence of these species on Cropland and Grassland were nearly all below the Bonferroni adjusted significance level. Only two species [Baird's Sparrow and Pied-billed Grebe (*Podilymbus podiceps*)] showed P > 0.00015 for either Cropland or

29

Grassland, the most influential cover types in the index.

Almost all of the species analyzed exhibited significant relationships with at least one cover type, with Ferruginous Hawk and Upland Sandpiper the only exceptions. For Ferruginous Hawks, the lack of significant association may be related to their large home range and relatively small number of observations. In Upland Sandpipers the lack of significant association may have occurred because determining the distance and direction from which they are calling is exceedingly difficult. Thus, assigning observations to a given quadrant was at times arbitrary.

The scale at which the cover types were sampled changed the number and type of species relationships detected in several cover types, particularly those for which cover-type composition differed between scales. Variability in associations of species and proportions of habitat groups between scales was small for cover types that composed the largest percentages of the land area and larger for those that composed a smaller proportion. Cropland, with the largest percentage of land area, had nearly all of the same relationships at 200 m and 400 m. Species relationships with Grassland also varied little between the two scales. Patch, which varied the most of the three cover types that were significantly different between scales, also varied the most in terms of species relationships between the scales. Caution should be exercised when interpreting associations of species with cover type at scales other than the one

at which they were developed, particularly for cover types that compose small proportions of the total area or that are highly variable between scales.

Species associations with cover type are dependent on the detectability of the species during the count period. Species are differentially detected depending on the frequency and loudness of their call, and their relative visibility due both to behavioral traits and to the habitat in which they occur. Yellow Rails, for example, are seldom detected in wet meadows during the day. In contrast, Bobolinks are frequently detected in the same habitat due to the conspicuous song and flight display of the male. This sort of bias could cause a species' relationship to be overlooked or under represented. Models that rely on this method cannot be expected to detect all possible associations of species with cover type, and might overlook significant ones. However, as data from this study and the Breeding Bird Survey indicate, repeated point count data collected by the same observer can provide consistent results over time (Robbins et al. 1986). Although cryptic species that are strongly tied to a given cover type may be overlooked, easily counted species that are very strongly related to a single cover type, such as Baird's Sparrow (n = 16) and Chestnut-collared Longspur (Calcarius ornatus) (n = 70), will likely be represented in the models even when the species occur in low numbers.

Relatively large tracts of land seem important for Grassland species in particular, as evidenced by the greater proportion of Grassland species positively correlated to Grassland rather than to Patch. Still, Patch was attractive to some Grassland birds, and was attractive to a greater proportion of Wetland species than was Grassland. The relationship between Patch and Wetland species may be due to the proximity of well-sampled roadside wetlands and borrow ditches to areas of Patch and to the tendency of many wetlands to be associated with areas of Patch. Cropland appears to be unattractive to most birds in general and to Grassland birds in particular: only one Grassland species, the Vesper Sparrow (Pooecetes gramineus), was positively correlated with Cropland. The association of Vesper Sparrows with Cropland has been documented previously (Herkert 1991, Johnson and Schwartz 1993a, Camp and Best 1994). Wood and Other, composed largely of farmsteads, appear to be powerful influences on species composition in the region. Tree-dependent species now occur in much larger numbers than many of the Grassland species that predominated historically.

Grassland Integrity Models and Indices

The selection of cover types for the index was based on a reasonable interpretation of the influence, structure, and function of each cover type in a grassland ecosystem and on the relative proportions of Grassland species either positively or negatively correlated with each cover type. However, no absolute

values for the proportions of Grassland species correlated with cover type were established as criteria for the inclusion of a cover type in the index. The rigor of future models may be increased by establishing more objective rules governing the inclusion of cover types in an integrity index.

Although species were selected for the models based on their statistical associations to grassland integrity, the breeding habitat requirements of these species further justifies their inclusion. Most species that were positively correlated to grassland integrity breed exclusively in grassland habitats or in wetland habitats associated with grassland. The upland species represented in the model require grassland habitats ranging from short- and mixed-grass with low litter accumulation and very few shrubs for Chestnut-collared Longspurs (Renken 1983, Arnold and Higgins 1986, Berkey et al. 1993) to relatively dense mixed grass with a high litter accumulation and a component of small shrubs for Clay-colored Sparrows (Renken 1983, Arnold and Higgins 1986, Knapton 1994, Madden 1996). Baird's Sparrows, Grasshopper Sparrows, Savannah Sparrows (Passerculus sandwichensis), and Western Meadowlarks (Sturnella neglecta) prefer an intermediate grass height with moderate levels of litter (Wiens 1969, Wiens 1973, Kantrud and Kologiski 1983, Sample 1989, Johnson and Schwartz 1993b, Anstey et al. 1995). With the exception of Clay-colored Sparrows and Western Meadowlarks, most of these species have a low tolerance for woody vegetation (Faanes 1983). Though area sensitivity has not been studied in all of

these species, Grasshopper Sparrows, Baird's Sparrows, and Savannah Sparrows are known to occur more frequently in relatively large grassland tracts than in small ones (Herkert 1991, Vickery et al. 1994, Helzer 1996). Sedge Wrens (*Cistothorus platensis*) prefer dense vegetation on moist sites, and are often found in CRP fields (Sample 1989, Herkert 1991, Johnson and Schwartz 1993a). Sedge Wrens do not appear to require particularly large grassland tracts (Herkert 1994). American Bitterns (*Botaurus lentiginosus*) require mid- or tallgrass uplands near emergent marshes ≥1 ha (Kantrud and Higgins 1992, Daub 1993). Pied-billed Grebes and American Coots (*Fulica americana*) breed in grassland marshes of all sizes (Stewart 1975, Daub 1993).

Species that were negatively correlated to grassland integrity in the index included Horned Larks and the Vesper Sparrows. Horned Larks regularly breed in sparsely vegetated habitat and cropland (DuBois 1935, Wershler et al. 1991, Patterson 1994). Vesper Sparrows are flexible in their habitat selection, but are often found in sparse vegetation and cropland (Herkert 1991, Johnson and Schwartz 1993a, Camp and Best 1994). Both species were positively associated with Cropland and negatively associated with Grassland at the 200-m and 400-m scales. Two other species [Killdeer and American Robin (*Turdus migratorius*)] were found to be negatively correlated to grassland integrity in preliminary

species abundance models, but were not included in the final models because they were not significant in the species presence models.

Cross validation produced coefficients of determination (\mathbb{R}^2) similar to those of the original four grassland integrity models, indicating that the models predict reliably when tested with fresh data. The greater similarity of coefficients of determination (\mathbb{R}^2) between species-presence models and their cross-validation tests indicates that presence may be a slightly more reliable predictor of grassland integrity than abundance. This may be a result of less variation in presence data than in abundance data. The binary nature of presence data treats a species that occurred, for example, 11 times in a quadrant the same as if it only occurred once.

Like all models, the grassland integrity models are limited in their predictive abilities. Presence and abundance measurements recorded on the breeding grounds do not differentiate between population changes that occurred there rather than on the wintering grounds or elsewhere. Thus, low grassland integrity could be falsely attributed to conditions on the breeding grounds if species that are positive covariates in the model are absent or occur in low frequencies as a result of off-site population declines. Another limitation of the model is that the index values are indicative only of the relative percentages of four cover types, not habitat quality. While higher grassland integrity values likely represent the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

best habitat available for grassland birds, the presence and abundance measurements used in the model cannot detect nest success rates or indicate changes in population on a local scale, nor can they measure the relative patchiness of the habitat. Therefore, relatively high grassland integrity values could still represent a population sink.

Data selected for cross validation were randomly selected from all portions of the study area in an effort to approximate an unbiased sample of independentlycollected data. They are a reasonable approximation of Breeding Bird Survey data generated during the same time period for the region because the study methods followed the same basic protocol. Nevertheless, data from the study itself likely fit the model slightly better than would independent data because of the lack of observer bias. Pooling data from several observers would likely produce coefficients of determination (R^2) less similar to those from the initial model fitting than those from the current cross-validation. While it would be highly desirable to cross-validate the model using actual Breeding Bird Survey data, such data are only available with observations grouped in 10-point clusters rather than single points. I have obtained these data for 1995 and 1996 and plan to test the models with them in the future. According to Patuxent Wildlife Research Center personnel, data are being entered separately for each point beginning in 1998. This will greatly facilitate future efforts to cross-validate similar models using independently collected data.

The presence of those species associated with woody vegetation or Cropland, combined with the absence of many Grassland species, can provide a measure of grassland integrity. Although identifying regional associations of species with cover types is labor-intensive, the indices presented here can be applied relatively inexpensively to monitor grassland integrity over a large geographic area because survey data are already available. I constructed the grassland integrity index to be predicted using presence and abundance of birds, so that data already available through the Breeding Bird Survey could be used in future applications of the model. The use of existing bird data to predict grassland integrity is currently more cost-effective than repeated measuring of cover type composition using remote sensing. Also, the use of birds as an indicator of grassland integrity incorporates an important biological component not available from remote sensing alone. The Breeding Bird Survey has been collecting annual abundance data on hundreds of routes in North America since 1965. Although the density of routes varies, at least one route occurs within each one degree block of latitude and longitude across the U.S. and southern Canada. Hence, indices could be applied to a specified region without the added cost of annual data collection.

LITERATURE CITED

Anstey, D. A., S. K. Davis, D. C. Duncan, and M. Skeel. 1995. Distribution and habitat requirements of eight grassland songbird species in southern Saskatchewan. Saskatchewan Wetland Conservation Corporation. 11pp.

Arnold, T. W. and K. F. Higgins. 1986. Effects of shrub coverages on birds of North Dakota mixed-grass prairies. Canadian Field-Naturalist 100:10-14.

Baer, N. W. 1989. Shelterbelts and windbreaks in the Great Plains. Journal of Forestry 87:32-36.

Berkey, G., R. Crawford, S. Galipeau, D. Johnson, D. Lambeth, and R. Kreil. 1993. A review of wildlife management practices in North Dakota: effects on nongame bird populations and habitats. Report submitted to Region 6. U.S. Fish and Wildlife Service, Denver, Colorado, USA. 51pp.

Berkman, H. E., C. F. Rabeni, and T. P. Boyle. 1986. Bio-monitors of stream quality in agricultural areas: fish vs. invertebrates. Environmental Management 10:413-419.

Blair, R. B., and A. E. Launer. 1997. Butterfly diversity and human land use: species assemblages along an urban gradient. Biological Conservation 80:113-125.

Bollinger, E. K., and T. A. Gavin. 1992. Eastern bobolink populations: ecology and conservation in an agricultural landscape. Pages 497-506 *in* J. M Hagan, III, and D. W. Johnston, editors. Ecology and conservation of neotropical migrant landbirds. Smithsonian Institution Press, Washington, D.C., USA.

Camp, M. and Best, L. B. 1994. Nest density and nesting success of birds in roadsides adjacent to rowcrop fields. American Midland Naturalist 131:347-358.

Canterbury, G. E., T. E. Martin, D. R. Petit, L. J. Petit, and D. F. Bradford. Bird communities as ecological indicators of forest condition in regional monitoring. In review.

Cowardin, L. M., V. Carter, F. C. Golet, and T. E. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Fish and Wildlife Service, Washington, D.C., USA.

Croonquist, M. J., and R. P. Brooks. 1991. Use of avian and mammalian guilds as indicators of cumulative impacts in riparian-wetland areas. Environmental Management 15:701-714.

Dahl, T. E., C. E. Johnson, and W. E. Frayer. 1991. Status and trends of wetlands in the conterminous United States, mid-1970's to mid-1980's. U.S. Department of Interior, Fish and Wildlife Service, Washington, D.C. 28pp.

Daub, B. C. 1993. Effects of marsh area and characteristics on avian diversity and nesting success. M.S. thesis. University of Michigan, Michigan, USA.

Droege, S., and J. R. Sauer. 1990. Patterns of population change in North American birds, 1966-1989: empty skies or no net loss? Abstract, Joint Annual Meeting of the American Ornithological Union and the Cooper Ornithological Society, University of California, Los Angeles, California, USA.

_______. 1994. Are more North American species decreasing than increasing? Pages 297-306 in Bird Numbers 1992. Distribution, monitoring and ecologicl aspects. E. J. M. Hagemeijer and T. J. Verstrael, editors. Proceedings 12th International Conference of IBCC and EOAC, Noordjwijkerhout, The Netherlands, Statistics Netherlands, Voorburg/Heerlen and SOVON, Beek-Ubbergen.

DuBois, A. D. 1935. Nests of Horned Larks and longspurs on a Montana prairie. Condor 37:56-72.

Ehrlich, P. R., D. S. Dobkin, and D. Wheye. 1988. The birder's handbook: a field guide to the natural history of North American birds. Simon and Schuster Inc., New York, New York, USA. 785pp.

Faanes, C. 1983. Breeding birds of wooded draws in western North Dakota. Prairie Naturalist 15:173-187.

Flather, C. H., and J. R. Sauer. 1996. Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds. Ecology 77(1):28-35.

Helzer, C. J. 1996. The effects of wet meadow fragmentation on grassland birds. M.S. thesis. University of Nebraska, Lincoln, Nebraska, USA. 65pp.

Herkert, J. R. 1991. An ecological study of the breeding birds of grassland habitats within Illinois. Ph.D. Thesis, University of Illinois, Urbana, Illinois, USA. 115pp.

_____. 1994. The effects of habitat fragmentation on midwestern grassland bird communities. Ecological Applications 4:461-471.

Igl, L. D., and D. H. Johnson. 1995. Dramatic increase of Le Conte's Sparrow in Conservation Reserve Program fields in the northern Great Plains. Prairie Naturalist 27:89-94.

Johnsgard, P. A. 1979. Birds of the Great Plains: breeding species and their distributions. University of Nebraska Press, Lincoln, Nebraska, USA. 539pp.

Johnson, D. H., and M. D. Schwartz. 1993a. The conservation reserve program and grassland birds. Conservation Biology 7:934-937.

. 1993b. The conservation reserve program: habitat for grassland birds. Great Plains Research 3:273-295.

Johnson, R. G., and S. A. Temple. 1990. Nest predation and brood parasitism of tallgrass prairie birds. Journal of Wildlife Management 54:106-111.

Kantrud, H.A. 1981. Grazing intensity effects on the breeding avifauna of North Dakota native grasslands. Canadian Field-Naturalist 95(4):404-417.

Kantrud, H. A. and Higgins, K. F. 1992. Nest and nest site characteristics of some ground-nesting, non-passerine birds of northern grasslands. Prairie Naturalist 24:67-84.

Kantrud, H. A. and R. L. Kologiski. 1983. Avian associations of the northern Great Plains grasslands. Journal of Biogeography 10:331-350.

Karr, J. R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6:21-27.

_____. 1991. Biological integrity: a long-neglected aspect of water resource management. Ecological Applications 1:66-84.

Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant, and I. J. Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey 5. 28pp.

Knapton, R. W. 1994. Clay-colored sparrow (*Spizella pallida*). A. Poole and F. Gill, editors. The birds of North America, No. 120. The Academy of Natural Sciences, Philadelphia, Pennsylvania; The American Ornithologists' Union, Washington, D.C., USA. 16pp.

Knopf, F. L. 1994. Avian assemblages on altered grasslands. Pages 247-257 *in* J. R. Jehl, Jr., and N. K. Johnson, editors. Studies in avian biology, No. 15: a century of avifaunal change in western North America. Cooper Ornithological Society.

Kremen, C. 1992. Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological Applications 2:203-217.

Lenat, D. R. 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. Journal of the North American Benthological Society 7:222-233.

Madden, E. M. 1996. Passerine communities and bird-habitat relationships on prescribe-burned, mixed-grass prairie in North Dakota. M.S. thesis. Montana State University, Bozeman, Montana, USA. 153pp.

Martin, T. E. 1980. Diversity and abundance of spring migratory birds using habitat islands on the Great Plains. Condor 82:430-439.

_____, and P. A. Vohs. 1978. Configuration of shelterbelts for optimum utilization by birds. Pages 79-88 in R. W. Tinus, editor. Proceedings, 30th Annual Forestry Commission Great Plains Agricultural Council. Great Plains Agricultural Council Publication No. 87, Tulsa, Oklahoma, USA.

Microlmages. 1996. TNTmips Version 5.5. Microimages, Inc. Lincoln, Nebraska, USA.

Norusis, M. J. 1995. SPSS 6.1 guide to data analysis. Prentice Hall, Englewood Cliffs, New Jersey, USA. 582pp.

Noss, R. F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology 4:355-364.

Ohio EPA. 1988. Biological criteria for the protection of aquatic life. Ohio Environmental Protection Agency, Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio, USA.

Patterson, M. P. 1994. Bird species abundance, composition, and vegetation characteristics, and bird productivity in Conservation Reserve Program land in central lowa. M.S. thesis. Iowa State University, Ames, Iowa, USA. 54 pp.

Peterjohn, B. G., and J. R. Sauer. 1993. North American breeding bird survey annual summary, 1990-1991. Bird Populations 1:52-67.

Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross, and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. United States Environmental Protection Agency, Washington, D.C., USA. EPA/444/4-89-001.

Price, J., S. Droege, and A. Price. 1995. The summer atlas of North American birds. Academic Press. Harcourt Brace & Company, London, UK.

Renken, R. B. 1983. Breeding bird communities and bird-habitat associations on North Dakota waterfowl production areas of three habitat types. M.S. thesis. Iowa State University, Ames, Iowa, USA. 90pp.

Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223-225.

Robbins, C. S., D. Bystrak, and P. H. Geissler. 1986. The breeding bird survey: its first fifteen years, 1965-1979. U.S. Fish and Wildlife Service Resource Publication 157. 196pp.

Sample, D. W. 1989. Grassland birds in southern Wisconsin: habitat preference, population trends, and response to land use changes. M.S. Thesis, University of Wisconsin, Madison, Wisconsin, USA. 588pp.

Smith, B. W., J. L. Faulkner, and D. S. Powell. 1994. Forest statistics of the United States, 1992, metric units. U.S. Forest Service, North Central Forest Experiment Station, General Technical Report NC-168. 147pp.

Stewart, R. E. 1975. Breeding birds of North Dakota. Tri-College Center for Environmental Studies, Fargo, North Dakota, USA.

Stewart, R. E., and H. A. Kantrud. 1972. Population estimates of breeding birds in North Dakota. Auk 89:766-788.

Szaro, R. C. 1986. Guild management: an evaluation of avian guilds as a predictive tool. Environmental Management 10:681-688.

U.S. Department of Agriculture. 1987. Basic statistics, 1982 national resources inventory. Soil Conservation Service Bulletin No. 756.

U.S. Department of Commerce. 1994. 1992 Census of Agriculture, Vol. 1, Part 34, North Dakota, AC92-A-34. Bureau of the Census. Washington, D.C., USA. 399pp.

U.S. Environmental Protection Agency. 1993. Draft program guide: environmental monitoring and assessment program. Office of Research and Development, Cincinnati, Ohio, USA. 35pp.

Vickery, P. D., M. L. Hunter, Jr., and S. M. Melvin. 1994. Effects of habitat area on the distribution of grassland birds in Maine. Conservation Biology 8:1087-1097.

Wiens, J. A. 1969. An approach to the study of ecological relationships among grassland birds. Ornithological Monographs 8:1-93.

_____. 1973. Interterritorial habitat variation in grasshopper and savannah sparrows. Ecology 54:877-884.

Wershler, C., W. W. Smith, and C. Wallis. 1991. Status of the Baird's Sparrow in Alberta: 1987/1988 update with notes on other grassland sparrows and Sprague's Pipit. Pages 87-89 *in* G. L. Holroyd, G. Burns, and H. C. Smith, editors. Proceedings of the second endangered species and prairie conservation workshop, January 1989. Provincial Museum of Alberta Natural History Occasional Paper 15.

APPENDIX A

Differences in detection rates among point count periods.

Introduction

Bird presence and abundance data were collected using 3-minute point counts. Because of the short duration of the counts, it was conceivable that only a small proportion of the birds present might be sampled at each point, biasing the analyses in favor of those species most easily detected in a short period. In order to investigate this possibility, I collected data for extended time periods at selected points during 1996. I then examined differences between the numbers of species and individuals counted during 3-, 5-, and 10-minute intervals as a proportion of the total observed in a 10-minute period.

Methods

I selected hexagons that contained the most Grassland (as defined in the thesis) for the extended counts. I then conducted sequential 3-, 5- and 10-minute point counts at 225 points on 14 hexagons and one off-frame route (n =15) between 28 May and 28 June, 1996. The off-frame route was located at Lostwood National Wildlife Refuge in Burke County, North Dakota. Although I conducted separate analyses both with and without the additional off-frame route, the results were nearly identical. Results shown here include the off-frame route. The hexagons contained a mean of 15 points each, and a range of 8 to 24 points. Wherever possible, points were located on secondary or tertiary unpaved roads. However, 14 of the 225 points occurred on a paved road or at the intersection of paved and unpaved roads.

Two groups of species were analyzed: (1) all species combined, and (2) 11 grassland species used to develop species relationships with cover types in the thesis. I used paired-difference t-tests ($\alpha = 0.05$) to compare differences in mean number of species and individuals among periods for the 15 routes. Whole routes, rather than individual points, were analyzed in order to meet the assumption of independence for the statistical tests. I plotted proportions of species and individuals observed during each period in accumulation curves to visually compare the periods.

Results

Differences in Numbers of Species

Most species were observed in the first 3 minutes. However, the proportions of species observed in the 3- and 5-minute periods were higher for grassland birds than for all species combined (Table 1). Over 95% of grassland birds were observed in the first 3 minutes, whereas only about 84% of all species combined were observed during the same period (Fig. 1).

Group	Period (minutes)	≍ No. Species Observed	SE	⊽ % Species Observed	SE
All Species	3	39.87	2.27	84.10	1.68
	5	42.67	2.37	90.02	1.37
	10	47.27	2.33	100.00	0.00
Grassland Species	3	7.07	0.30	95.83	1.99
	5	7.20	0.31	97. 5 0	1.81
	10	7.40	0.31	100.00	0.00
Group	Period (minutes)	≍ No. Individuals Observed	SE	≅ % Individuals Observed	SE
All Species	3	238.27	29.46	55.94	1.28
	5	305.73	38.26	71.39	1.05
	10	426.67	51.53	100.00	0.00
Grassland Species	3	46.53	4.57	69.93	2.60
	5	56.27	6.30	82.31	1.79
	10	70.60	9.59	100.00	0.00

Table 1. Mean numbers and proportions of species and individuals observed.

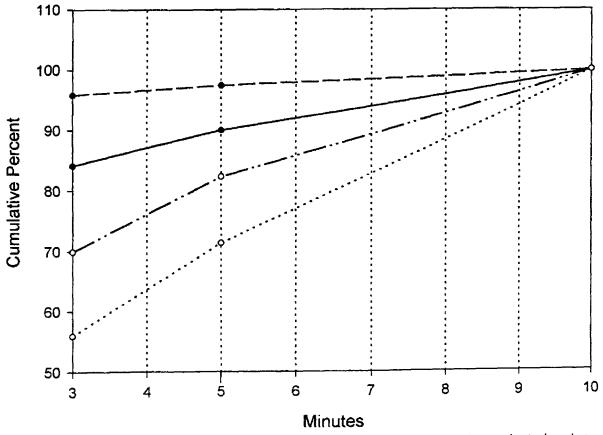
44

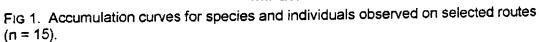
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Differences among mean numbers of all species observed during the three periods were statistically significant (P < 0.0005), even though the number of species gained by increased observation time was fairly small (Table 2). On average, 2.8 species were added to the total number observed by increasing the observation period from 3 to 5 minutes; 4.6 additional species were added when the observation period was increased from 5 to 10 minutes. The greatest benefit occurred when the observation period was increased from 3 to 10 minutes, adding 7.4 species to the total number observed. Differences among mean numbers of grassland species observed during the three periods, less than one species for each added period, were not statistically significant (Table 2).

Differences in Numbers of Individuals

More than half of all individuals were detected in the first 3 minutes. However, proportions of individuals observed in the 3- and 5-minute periods were higher for grassland species than for all species combined (Table 1). Nearly 70% of all grassland individuals were detected in the first 3 minutes, whereas only about 55% of all individuals combined were observed during the same period (Fig. 1). Differences among mean numbers of individuals observed during the three periods were statistically significant for all species combined and for grassland species alone (Table 2).


Discussion


Assuming that 100% of species present are sampled in 10 minutes, species accumulation curves show that a large proportion of species, particularly grassland obligates, are observed during the first 3 minutes. The large proportion of grassland species sampled early on may be due to their occurrence in relatively low densities and to the conspicuous displays of breeding males. Analyses of all species combined show that differences in the number of species observed among periods is statistically significant, but these differences seem of little practical importance, particularly since differences in the number of grassland species observed were not significant. Proportions of the total number of individuals are apparently observed at a slower rate, although it is not clear whether this is a result of an increased observations of new individuals or repeat counts of the same individuals that have moved to new locations. Extended observation near wetlands and shelterbelts likely results in the largest overall increases in both species and individuals recorded. Because such high proportions of species are sampled in 3-minutes, particularly grassland species that are of primary interest, time spent in extended observation seems unwarranted.

Group	Period (minutes)	⊼ Difference in No. Species	SE	95% Confidence Interval	P*
All Species	5 - 3	2.80	0.37	2.01, 3.59	*
	10 - 5	4.60	0.60	3.31, 5.89	*
	10 - 3	7.40	0.75	5.78, 9.02	*
Grassland Species	5 - 3	0.13	0.09	-0.06, 0.32	0.164
	10 - 5	0.20	0.14	-0.12, 0.51	0.18 9
	10 - 3	0.33	0.16	-0.01, 0.68	0.055
Group	Period (minutes)	≍ Difference in No. Individuals	SE	95% Confidence Interval	P*
All Species	5 - 3	67.47	9.24	47.66, 87.28	*
	10 - 5	120.93	14.13	90.62, 151.25	*
	10 - 3	188.40	22.76	139.58, 237.22	*
Grassland Species	5 - 3	9.73	1.85	5.78, 13.69	*
	10 - 5	14.33	3.75	6.30, 22.37	0.002
	10 - 3	24.07	5.30	12.70, 35.43	*
*P < 0 0005					

Table 2. Mean differences in the numbers of species and individuals observed.

*P < 0.0005.

- ---- Grassland Species
- ----- All Species
- ... o... All Individuals

APPENDIX B

Cover type definitions and frequencies.

Table 1. Cover types defined in the Northern Prairie Wildlife Research Center (NPWRC) GIS and this study.

NPWSC Land Use	NPWRC Code	Cover Type	NPWRC Codes
Grassland	1	Cover	1,2,3,11
Hayland	2		
Planted Cover	3		
Cropland	4	Cropland	4
Woodland	5	Wood	5,6,7-5,7-5S
Scrubland	6		
Odd Area	7	Other	7
Odd w/ Herb	7-1		
Odd w/ Woody	7-5		
Sheiterbeit	7-5S		
Right of Way	8A	Patch	7-1,8A, 8B, 8C, 8D
Right of Way	8B		
Right of Way	8C		
Right of Way	8D		
Right of Way	8E		
Barren Land	9	Barren Land	9, 8E
CRP	11		
Wetland	TEMP (10A)	Wetland	10A, 10B, 10C,
Wetland	SEASONAL (10B)		10D, 10E
Wetland	SEMIPERM (10C)		
Wetland	PERM (10D)		
Wetland	RIVERINE (10E)		

	Frequency		Percei	ntage
Cover Type	200 m	400 m	200 m	400 m
Cropland	5536	591 3	82	87
Grassland	1902	2408	28	36
Wetland	4057	5342	60	79
Patch	6170	6314	91	93
Wood	1108	1726	16	25
Other	762	1495	11	22
Barren Land	6449	6469	95	96

Table 2. Frequency and percentage of cover type occurrence at two scales in 6772 quadrants analyzed.

APPENDIX C

Species	No. Quadrants in Species	No. Quadrants Where
	Range*	Species Occurred
Black Tern [†]	6068	151
Mallard	6772	325
Gadwall	6356	226
Blue-winged Teal	6772	352
Northern Shoveler [†]	5668	174
Northern Pintail [†]	5860	127
Redhead [†]	5680	75
American Bittern	6332	70
Sora	6772	291
American Coot [†]	6492	430
Common Snipe [†]	5412	109
Marbled Godwit	5120	44
Upland Sandpiper	6772	94
Killdeer	6772	410
Mourning Dove	6772	766
Ring-necked Pheasant	5372	129
Northern Harrier [†]	5324	15
Ferruginous Hawk [†]	4388	16
Eastern Kingbird	6772	345
Western Kingbird	6772	209
Least Flycatcher [†]	6772	128
Horned Lark	6772	1535
American Crow	6772	197
Bobolink	6772	511
Brown-headed Cowbird	6772	797
Yellow-headed Blackbird	6772	506
Red-winged Blackbird	6772	1883
Western Meadowlark	6772	1113
Common Grackle	6772	275
American Goldfinch	6772	79
Chestnut-colrd.Longspur	4960	57
Vesper Sparrow	6772	737
Savannah Sparrow	6772	803
Baird's Sparrow	3640	16
Grasshopper Sparrow [†]	6772	210
LeConte's Sparrow [†]	4636	70
Sharp-tailed Sparrow [†]	4820	33
Clay-colored Sparrow	6772	505

Species range and occurrence in quadrants.

Species	No. Quadrants in Species Range*	No. Quadrants Where Species Occurred
Song Sparrow	6772	378
Barn Swallow	6772	67
Warbling Vireo	6772	94
Yellow Warbler	6772	171
Common Yellowthroat	6772	476
House Sparrow	6772	78
Brown Thrasher	6772	81
House Wren	6772	325
Sedge Wren [†]	6468	217
Marsh Wren	6772	186
American Robin	6772	191

*Values below 6772 indicate that the species range (Price et al. 1995) included only a portion of the study area.

[†]Species occurred in one or more study plots outside primary range (Price et al. 1995).

APPENDIX D

Species relationships to cover types at 200 m and 400 m.

Species	[†] Cover Types	B [‡]	B/SE [§]	-2LL'	P
HOLA	Cropland	0.0317	24.38	6365	*
VESP	Cropland	0.0156	11.14	4502	*
KILL	Cropland	0.0041	2.73	3086	0.0060
NOPI	Cropland	0.005 0	1.92	1221	0.0551
RWBL	Cropland	-0.0039	-5.57	797 9	*
WEME	Cropland	-0.0158	-17.56	5727	*
BHCO	Cropland	-0.0066	-6.60	4864	*
SAVS	Cropland	-0.0090	-9.00	4850	*
MODO	Cropland	-0.0100	-10.00	4685	*
BOBO	Cropland	-0.0052	-4.33	3606	*
YHBL	Cropland	-0.0101	-8.42	3531	*
COYE	Cropland	-0.0141	-10.85	3320	*
CCSP	Cropland	-0.0264	-18.86	3163	*
AMCO	Cropland	-0.0131	-10.08	3067	*
SOSP	Cropland	-0.0089	-6.36	2876	*
BWTE	Cropland	-0.0083	-5.93	2735	*
MALL	Cropland	-0.0011	-0.69	2608	0.4915
EAKI	Cropland	-0.0167	-11.13	2596	*
HOWR	Cropland	-0.0168	-11.20	2483	*
SORA	Cropland	-0.0084	-5.25	2373	*
COGR	Cropland	-0.0133	-8.31	2233	*
GADW	Cropland	-0.0103	-5.72	1919	*
AMCR	Cropland	-0.0015	-0.75	1781	0.4541
WEKI	Cropland	-0.0191	-10.05	1761	*
SEWR	Cropland	-0.0221	-11.05	1759	*
AMRO	Cropland	-0.0128	-6.74	1696	*
MAWR	Cropland	-0.0115	-6.05	1669	*
GRSP	Cropland	-0.0307	-13.35	1636	*
PBGR	Cropland	-0.0120	-6.00	1604	*

Table 1. Species relationships to cover types at 200 m.

.

•

Species	[†] Cover Types	B‡	B/SE [§]	-2LL'	Ρ
NSHO	Cropland	-0.0062	-3.10	1546	0.0023
YWAR	Cropland	-0.0216	-9.82	1488	*
BLTE	Cropland	-0.0113	-5.14	1386	*
RPHE	Cropland	-0.0055	-2.39	1212	0.0186
LEFL	Cropland	-0.0243	-9.35	1170	*
COSN	Cropland	-0.0145	-5.58	1035	*
UPSA	Cropland	-0.0015	-0.54	991	0.5883
WAVI	Cropland	-0.0215	-7.41	932	*
BRTH	Cropland	-0.0112	-3.86	864	0.0001
AMGO	Cropland	-0.0197	-6.35	818	*
HOSP	Cropland	-0.0231	-7.00	796	*
REDH	Cropland	-0.0137	-4.42	778	*
AMBI	Cropland	-0.0209	-6.15	728	*
LCSP	Cropland	-0.0067	-2.16	726	0.0331
BARS	Cropland	-0.0249	-6.73	697	*
CCLO	Cropland	-0.0440	-6.88	523	*
MAGO	Cropland	-0.0025	-0.63	506	0.5335
STSP	Cropland	-0.0069	-1.50	392	0.1314
FEHA	Cropland	-0.0009	-0.13	212	0.8896
NOHA	Cropland	-0.0231	-3.04	195	0.0024
BAIS	Cropland	-0.0248	-3.02	194	0.0025
WEME	Grassland	0.0200	22.22	5601	*
BHCO	Grassland	0.0062	5.64	4878	*
SAVS	Grassland	0.0138	13.80	4768	*
BOBO	Grassland	0.0117	9.00	3545	*
COYE	Grassland	0.0074	5.29	3419	*
CCSP	Grassland	0.0222	18.50	3277	*
AMCO	Grassland	0.0009	0.56	3165	0.5777
BWTE	Grassland	0.0038	2.24	2762	0.0221
EAKI	Grassland	0.0056	3.50	2715	0.0006
GADW	Grassland	0.0054	2.70	1945	0.0065
WEKI	Grassland	0.0051	2.43	1860	0.0135
SEWR	Grassland	0.0215	11.94	1762	*
PBGR	Grassland	0.0079	3.76	1627	0.0002

Species	[†] Cover Types	B‡	B/SE§	-2LL'	Р
opecies	Cover Types				•
YWAR	Grassland	0.0002	0.08	1596	0.9454
NSHO	Grassland	0.0013	0.54	1546	0.5764
GRSP	Grassland	0.0358	17.90	1503	*
RPHE	Grassland	0.0070	2.92	1209	0.0043
COSN	Grassland	0.0114	4.56	1049	*
UPSA	Grassland	0.0029	0.91	990	0.3648
AMGO	Grassland	0.0046	1.35	859	0.1740
REDH	Grassland	0.0008	0.22	798	0.8225
BARS	Grassland	0.0078	2.2 9	747	0.0227
AMBI	Grassland	0.0156	5.03	747	0.1758
LCSP	Grassland	0.0097	2.94	723	0.0029
MAGO	Grassland	0.0028	0.62	506	0.5282
CCLO	Grassland	0.0450	9.00	483	*
STSP	Grassland	0.0083	1.69	392	0.0893
FEHA	Grassland	0.0066	0.97	211	0.3277
NOHA	Grassland	0.0284	4.18	188	*
BAIS	Grassland	0.0338	4.28	181	*
RWBL	Grassland	-0.0007	-0.78	8005	0.4683
HOLA	Grassland	-0.0282	-15.67	6836	*
MODO	Grassland	-0.0001	-0.08	4781	0.9325
VESP	Grassland	-0.0111	-6.53	4606	*
YHBL	Grassland	-0.0057	-3.35	3587	0.0011
KILL	Grassland	-0.0127	-5.52	3056	*
SOSP	Grassland	-0.0040	-2.11	2911	0.0361
MALL	Grassland	-0.0016	-0.84	2607	0.4105
HOWR	Grassland	-0.0049	-2.33	2602	0.0209
SORA	Grassland	-0.0019	-0.90	2400	0.3511
COGR	Grassland	-0.0023	-1.10	2300	0.2927
AMCR	Grassland	-0.0017	-0.68	1781	0.5032
AMRO	Grassland	-0.0123	-3.62	1723	0.0003
MAWR	Grassland	-0.0054	-1.93	1700	0.0537
BLTE	Grassland	-0.0041	-1.37	1412	0.1646
LEFL	Grassland	-0.0033	-1.03	1268	0.2959
NOPI	Grassland	-0.0083	-2.37	1218	0.0187

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•

.

Species	Cover Types	B‡	B/SE [§]	-2LL'	Р
WAVI	Grassland	-0.0023	-0.64	990	0.5222
BRTH	Grassland	-0.0009	-0.24	878	0.8191
HOSP	Grassland	-0.0043	-1.02	850	0.3078
RWBL	Wetland	0.0277	14.58	7772	*
WEME	Wetland	0.0004	0.17	6052	0.8537
SAVS	Wetland	0.0037	1.48	4929	0.1355
BOBO	Wetland	0.0007	0.22	3623	0.8308
COYE	Wetland	0.0187	7.48	3398	*
YHBL	Wetland	0.0490	21.30	3136	*
KILL	Wetland	0.0182	7.00	3055	*
SOSP	Wetland	0.0134	4.62	2898	*
AMCO	Wetland	0.0455	19.78	2796	*
EAKI	Wetland	0.0109	3.41	2716	0.0006
BWTE	Wetland	0.0272	10.88	2673	*
MALL	Wetland	0.0209	7.46	2562	*
COGR	Wetland	0.0040	1.00	2300	0.3125
SORA	Wetland	0.0318	12.23	2280	*
SEWR	Wetland	0.0117	3.08	1892	0.0023
GADW	Wetland	0.0266	9.17	1888	*
AMRO	Wetland	0.0010	0.20	1740	0.8425
YWAR	Wetland	0.0061	1.27	1594	0.2061
PBGR	Wetland	0.0249	7.78	1594	*
NSHO	Wetland	0.0242	6.91	1518	*
MAWR	Wetland	0.0450	16.07	14 9 5	*
BLTE	Wetland	0.0388	12.93	1289	*
NOPI	Wetland	0.0113	2.35	1220	0.0177
COSN	Wetland	0.0184	3.83	1055	0.0001
UPSA	Wetland	0.0055	0.85	990	0.3963
AMGO	Wetland	0.0042	0.58	860	0.5623
AMBI	Wetland	0.0245	4.90	752	*
LCSP	Wetland	0.0002	0.03	731	0.9833
REDH 1	Wetland	0.040 6	10.41	721	*
MAGO	Wetland	0.0103	1.27	505	0.2066
STSP V	Wetland	0.0212	2.72	389	0.0068

.

Specie	s [†] Cover Types	B‡	B/SE§	-2LL ¹	P
HOLA	Wetland	-0.0257	-8.86	7149	*
BHCO	Wetland	-0.0016	-0.59	4907	0.5537
MODO	Wetland	-0.0024	-0.86	4780	0.3860
VESP	Wetland	-0.0385	-7.70	4570	*
CCSP	Wetland	-0.0246	-4.92	3560	*
HOWR	Wetland	-0.0167	-3.09	2596	0.0020
WEKI	Wetland	-0.0087	-1.50	1863	0.1382
GRSP	Wetland	-0.0303	-3.65	1853	0.0003
AMCR	Wetland	-0.0134	-2.03	1777	0.0408
LEFL	Wetland	-0.0095	-1.25	1268	0.2077
RPHE	Wetland	-0.0095	-1.32	1215	0.1880
WAVI	Wetland	-0.0197	-1.86	986	0.0618
BRTH	Wetland	-0.0040	-0.47	878	0.6415
HOSP	Wetland	-0.0336	-2.35	843	0.0188
BARS	Wetland	-0.0094	-0.90	751	0.3645
CCLO	Wetland	-0.0248	-1.66	619	0.0952
FEHA	Wetland	-0.0724	-1.51	207	0.1328
NOHA	Wetland	-0.0053	-0.26	206	0.7941
BAIS	Wetland	-0.0730	-1.56	201	0.1182
RWBL	Patch	0.0201	8.38	7938	*
WEME	Patch	0.0113	4.04	6036	0.0001
SAVS	Patch	0.0083	2.59	4925	0.0107
BHCO	Patch	0.0127	4.10	4892	*
MODO	Patch	0.0094	2.85	477 3	0.0041
CCSP	Patch	0.0152	4.22	3578	*
YHBL	Patch	0.0296	9.25	3525	*
COYE	Patch	0.0227	6.68	3408	*
AMCO	Patch	0.0247	7.06	3124	*
KILL	Patch	0.0082	1.91	3091	0.0582
SOSP	Patch	0.0163	4.08	2902	0.0001
BWTE	Patch	0.0176	4.29	2751	*
EAKI	Patch	0.0258	6.97	2687	*
MALL	Patch	0.0013	0.25	2608	0.8049
HOWR	Patch	0.0077	1.60	2606	0.1103

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Species [†]	Cover Types	B‡	B/SE [§]	-2LL ^I	Р
SORA	Patch	0.0244	6.10	2371	*
COGR	Patch	0.0179	3.98	2287	0.0001
GADW	Patch	0.0133	2.51	1946	0.0121
SEWR	Patch	0.0165	3.24	1891	0.0012
WEKI	Patch	0.0239	5.09	1844	*
AMRO	Patch	0.0142	2.54	1734	0.0113
MAWR	Patch	0.0261	5.55	1680	*
PBGR	Patch	0.0155	2.87	1633	0.0044
YWAR	Patch	0.0294	6.26	1566	*
NSHO	Patch	0.0128	2.17	1551	0.0311
BLTE	Patch	0.0300	5.77	1388	*
LEFL	Patch	0.0197	3.18	1261	0.0014
RPHE	Patch	0.0054	0.68	1217	0.4957
COSN	Patch	0.0009	0.10	1067	0.9226
WAVI	Patch	0.0138	1.75	988	0.0811
BRTH	Patch	0.0214	2.89	871	0.0039
AMGO	Patch	0.0157	1.89	857	0.0596
HOSP	Patch	0.0209	2.75	845	0.0063
REDH	Patch	0.0164	1.91	795	0.0560
AMBI	Patch	0.0173	2.04	766	0.0419
BARS	Patch	0.0302	4.31	738	*
LCSP	Patch	0.0142	1.61	729	0.1086
HOLA	Patch	-0.0254	-7.26	7186	*
VESP	Patch	-0.0276	-5.52	4622	*
BOBO	Patch	-0.0103	-2.10	3619	0.0370
GRSP	Patch	-0.0083	-1.12	1871	0.2647
AMCR	Patch	-0.0290	-3.05	1771	0.0024
NOPI	Patch	-0.0023	-0.26	1224	0.7885
UPSA I	Patch	-0.0030	-0.29	991	0.7698
CCLO I	Patch	-0.0208	-1.26	621	0.2066
MAGO I	Patch	-0.0001	-0.01	506	0.9925
STSP I	Patch	-0.0096	-0.55	394	0.5835
FEHA I	Patch	-0.0163	-0.55	211	0.5799
NOHA I	Patch	-0.0580		204	0.1644

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Species [†] Cover Types	B‡	B/SE [§]	-2LL ¹	Р
BAIS Patch	-0.0644	-1.62	202	0.1056
BHCO Wood	0.0010	0.29	4907	0.7554
MODO Wood	0.0184	7.36	4735	*
CCSP Wood	0.0257	9.88	3514	*
COYE Wood	0.0117	3.55	3434	0.0003
SOSP Wood	0.0230	7.93	2867	*
EAKI Wood	0.0124	3.44	2717	0.0007
HOWR Wood	0.0400	14.81	2420	*
COGR Wood	0.0082	1.82	2298	0.0667
WEKI Wood	0.0144	3.35	1857	8000.0
AMCR Wood	0.0263	7.97	1739	*
AMRO Wood	0.0200	5.13	1720	*
YWAR Wood	0.0371	12.37	1490	*
RPHE Wood	0.0078	0.90	1216	0.3721
LEFL Wood	0.0444	14.32	1125	*
COSN Wood	0.0008	0.09	1067	0.9276
WAVI Wood	0.0398	11.37	908	*
BRTH Wood	0.0222	4.19	866	*
HOSP Wood	0.0046	0.51	851	0.6154
AMGO Wood	0.0281	6.11	836	*
RWBL Wood	-0.0289	-6.72	7937	*
HOLA Wood	-0.1965	-8.29	6970	*
WEME Wood	-0.0334	-5.30	6003	*
SAVS Wood	-0.0831	-5.58	4848	*
VESP Wood	-0.0031	-0.82	4659	0.4207
BOBO Wood	-0.0839	-4.39	3571	*
YHBL Wood	-0.0577	-4.12	3560	*
AMCO Wood	-0.054 9	-3.73	3134	0.0002
KILL Wood	-0.0528	-3.62	3066	0.0003
BWTE Wood	-0.1260	-3.76	2720	0.0002
MALL Wood	-0.1026	-3.56	2570	0.0004
SORA Wood	-0.0422	-2.87	2385	0.0040
GADW Wood	-0.1489	-3.02	1919	0.0025
SEWR Wood	-0.0054	-0.75	1899	0.4563

58

.

Species	Cover Types	B‡	B/SE [§]	-2LL'	P
GRSP	Wood	-0.0196	-1.81	1867	0.0711
MAWR	Wood	-0.0469	-2,36	1692	0.0184
PBGR	Wood	-0.0402	-2.26	1630	0.0236
NSHO	Wood	-0.3520	-2.42	1526	0.0157
BLTE	Wood	-0.0500	-2.16	1403	0.0309
NOPI	Wood	-0.0410	-1.62	1220	0.1044
UPSA	Wood	-0.0230	-1.31	988	0.1915
REDH	Wood	-0.6030	-1.58	781	0.1131
AMBI	Wood	-0.0172	-0.81	769	0.4172
BARS	Wood	-0.0425	-1.38	748	0.1689
LCSP	Wood	-0.0162	-1.04	729	0.2980
CCLO	Wood	-86.6199	-0.27	603	0.7861
MAGO	Wood	-0.1151	-1.20	502	0.2292
STSP	Wood	-0.2434	-1.05	389	0.2953
FEHA	Wood	-0.0050	-0.14	212	0.8866
NOHA	Wood	-44.6333	-0.16	202	0.8757
BAIS	Wood	-59.6152	-0.16	201	0.8695
BHCO	Other	0.0073	2.81	4900	0.0045
MODO	Other	0.0354	16.86	4511	*
CCSP	Other	0.0095	3.28	3584	0.0011
COYE	Other	0.0073	2.35	3441	0.0201
SOSP	Other	0.0188	6.96	2878	*
EAKI	Other	0.0266	11.08	2637	*
HOWR	Other	0.0400	18.18	2357	*
COGR	Other	0.0380	16.52	2101	*
AMCR	Other	0.0057	1.16	1781	0.2440
WEKI	Other	0.0366	14.64	1715	*
AMRO	Other	0.0405	16.20	1553	*
YWAR	Other	0.0274	8.84	1540	*
RPHE	Other	0.0006	0.08	1217	0.9280
EFL	Other	0.0333	10.74	1192	*
COSN	Other	0.0060	0.91	1066	0.3618
WAVI	Other	0.0336	9.60	930	*
BRTH	Other	0.0243	5.40	858	*

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

Species [†]	Cover Types	B‡	B/SE [§]	-2LL ¹	Ρ
AMGO	Other	0.0269	6.26	834	*
BARS	Other	0.0410	11.08	669	*
HOSP	Other	0.0517	15.67	667	*
FEHA	Other	0.0064	0.37	211	0.7132
RWBL	Other	-0.0060	-2.50	7999	0.0129
HOLA	Other	-0.0688	-5.83	7114	*
WEME	Other	-0.0062	-2.07	6047	0.0405
SAVS	Other	-0.0261	-4.21	4900	*
VESP	Other	-0.0128	-2.91	4649	0.0039
YHBL	Other	-0.0135	-2.45	3590	0.0136
BOBO	Other	-0.0980	-2.93	3575	0.0034
AMCO	Other	-0.0133	-2.25	3159	0.0250
KILL	Other	-0.0046	-0.98	3093	0.3251
BWTE	Other	-0.0110	-1.80	2763	0.0705
MALL	Other	-0.0093	-1.55	2605	0.1217
SORA	Other	-0.0004	-0.08	2401	0.9351
GADW	Other	-0.0010	-0.17	1952	0.8679
SEWR	Other	-0.0421	-2.24	1887	0.0249
GRSP	Other	-0.0388	-2.19	1860	0.0279
MAWR	Other	-0.0521	-2.00	16 9 1	0.0450
PBGR	Other	-0.0081	-1.03	1639	0.3031
NSHO (Other	-0.0249	-1.84	1549	0.0661
BLTE	Other	-0.0078	-0.93	1413	0.3478
NOPI	Other	-0.0116	-1.08	1223	0.2787
UPSA (Other	-0.0038	-0.40	991	0.6827
REDH (Other	-0.0206	-1.17	796	0.2424
AMBI (Other	-0.0050	-0.44	770	0.6617
LCSP (Other	-0.0384	-1.25	727	0.2122
CCLO (Other	-0.0182	-0.92	621	0.3592
MAGO (Other	-0.0124	-0.67	506	0.5043
STSP (Other	-0.0404	-0.83	393	0.4078
BAIS (Other	-0.0744	-0.53	204	0.5944
NOHA (Other	-0.5033	-0.52	204	0.6059
RWBL E	Barren Land	0.0057	0.89	8005	0.3747

Species	^f Cover Types	B‡	B/SE [§]	-2LL'	Р
WEME	Barren Land	0.0151	2.25	6047	0.0238
MODO	Barren Land	0.0007	0.07	4781	0.9386
CCSP	Barren Land	0.0349	4.92	3572	*
COYE	Barren Land	0.0031	0.28	3445	0.7818
KILL	Barren Land	0.0131	1.41	3093	0.1555
EAKI	Barren Land	0.0110	1.06	2725	0.2908
MALL	Barren Land	0.0014	0.10	2608	0.9214
HOWR	Barren Land	0.0062	0.51	2608	0.6066
GADW	Barren Land	0.0100	0.79	1951	0.4274
SEWR	Barren Land	0.0033	0.21	1900	0.8333
WEKI	Barren Land	0.0145	1.23	1864	0.2203
AMRO	Barren Land	0.0109	0.81	1739	0.4195
NSHO	Barren Land	0.0473	3.26	1544	0.0011
LEFL	Barren Land	0.0021	0.10	1269	0.9221
WAVI	Barren Land	0.0100	0.52	991	0.6069
UPSA	Barren Land	0.0133	0.76	990	0.4495
AMGO	Barren Land	0.0260	2.05	858	0.0412
MAGO	Barren Land	0.0257	1.12	505	0.2618
NOHA	Barren Land	0.0459	0.47	206	0.6351
HOLA	Barren Land	-0.0055	-0.70	7248	0.4828
SAVS	Barren Land	-0.0165	-1.29	4929	0.1969
BHCO	Barren Land	-0.0069	-0.64	4907	0.5242
VESP	Barren Land	-0.0063	-0.57	4660	0.5676
BOBO	Barren Land	-0.0098	-0.70	3623	0.4897
YHBL	Barren Land	-0.0553	-2.50	359 0	0.0122
AMCO	Barren Land	-0.0221	-1.19	3164	0.2350
SOSP	Barren Land	-0.0010	-0.07	2916	0.9395
BWTE	Barren Land	-0.0001	-0.01	2767	0.9920
SORA	Barren Land	-0.0148	-0.73	2400	0.4668
COGR	Barren Land	-0.0038	-0.23	2301	0.8197
GRSP	Barren Land	-0.0544	-1.61	1869	0.1068
AMCR	Barren Land	-0.0242	-0.86	1781	0.3913
MAWR	Barren Land	-0.0741	-1.94	1699	0.0524
PBGR	Barren Land	-0.0776	-1.98	1635	0.0475

61

Species [†]	Cover Types	B [‡]	B/SE [§]	-2LL'	Р
YWAR	Barren Land	-0.0146	-0.55	1595	0.5801
BLTE	Barren Land	-0.0441	-1.14	1412	0.2557
NOPI	Barren Land	-0.0090	-0.26	1224	0.7956
RPHE	Barren Land	-0.0476	-1.06	1216	0.2921
COSN	Barren Land	-0.0349	-0.82	1066	0.4136
BRTH	Barren Land	-0.0183	-0.45	878	0.6530
HOSP	Barren Land	-0.0335	-0.68	851	0.4941
REDH	Barren Land	-0.1000	-1.52	795	0.1275
AMBI	Barren Land	-0.0944	-1.40	767	0.1610
BARS	Barren Land	-0.0245	-0.51	752	0.6128
LCSP	Barren Land	-0.0125	-0.34	731	0.7370
CCLO	Barren Land	-0.1973	-2.19	616	0.0288
STSP	Barren Land	-0.0486	-0.64	394	0.5217
FEHA	Barren Land	-0.1821	-1.12	210	0.2609
BAIS	Barren Land	-0.0309	-0.28	206	0.7828

*P ≤ 0.00005

[†]Species abbreviations defined in Appendix E.
[‡]B = regression coefficient from logistic regression of species against cover type.
§B/SE = regression coefficient / standard error.
¹-2LL = -2(log likelihood) (Norusis 1995).

Species [†]	Cover Types	B‡	B/SE [§]	-2LL ¹	Р
HOLA	Cropland	0.0320	22.86	6432	
VESP (Cropland	0.0148	10.57	4528	r
KILL (Cropland	0.0063	3.94	3077	0.0001
NOPI (Cropland	0.0060	2.14	1219	0.0303
RWBL (Cropland	-0.0024	-3.00	7997	0.0021
WEME (Cropland	-0.0175	-19.44	5672	r
BHCO (Cropland	-0.0071	-7.10	4860	1
SAVS (Cropland	-0.0099	-9.90	483 9	1
MODO (Cropland	-0.0077	-7.70	4727	E.
BOBO (Cropland	-0.0063	-5.25	3599	i
YHBL (Cropland	-0.0085	-7.08	3553	tr tr
COYE (Cropla nd	-0.0129	- 9 .92	3344	t
CCSP (Cropland	-0.0258	-19.85	3176	1
AMCO (Cropla nd	-0.0107	-8.23	3103	÷
SOSP (Cropland	-0.0050	-3.57	2904	0.0005
BWTE C	Cropland	-0.0070	-4.67	2745	4
EAKI C	Cropland	-0.0129	-8.60	2650	*
MALL C	Cropland	-0.0005	-0.31	2608	0.7807
HOWR C	Cropland	-0.0111	-7.40	2555	*
SORA C	Cropland	-0.0055	-3.44	2390	0.0008
COGR C	Cropland	-0.0074	-4.35	2281	*
GADW C	Cropland	-0.0087	-4.83	1929	*
WEKI C	Cropland	-0.0140	-7.37	1810	*
AMCR C	ropland	-0.0023	-1.15	1781	0.2529
AMRO C	ropland	-0.0074	-3.70	1726	0.0002
SEWR C	ropland	-0.0252	-12.60	1722	*
MAWR C	ropland	-0.0106	-5.30	1676	*
GRSP C	ropland	-0.0327	-14.22	1603	*
PBGR C	ropland	-0.0130	-6.50	1598	*
NSHO C	ropland	-0.0041	-1.95	1551	0.0489
YWAR C	ropland	-0.0177	-8.43	1522	*
BLTE C	ropland	-0.0086	-3.91	1399	0.0001
EFL C	ropland	-0.0173	-7.21	1216	*

Table 2. Species relationships to cover types at 400 m.

Species	Cover Types	B‡	B/SE [§]	-2LL'	Ρ
RPHE	Cropland	-0.0070	-2.92	1208	0.0030
COSN	Cropland	-0.0142	-5.46	1036	*
UPSA	Cropland	-0.0006	-0.20	991	0.8308
WAVI	Cropland	-0.0151	-5.59	961	*
BRTH	Cropland	-0.0086	-2.87	870	0.0036
AMGO	Cropland	-0.0118	-3.93	845	0.0001
HOSP	Cropland	-0.0133	-4.43	832	*
REDH	Cropland	-0.011 9	-3.84	784	0.0001
BARS	Cropland	-0.0156	-4.73	729	*
AMBI	Cropland	-0.0218	-6.61	724	*
LCSP	Cropland	-0.0099	-3.09	721	0.0019
CCLO	Cropland	-0.0464	-7.37	510	*
MAGO	Cropland	-0.0023	-0.55	506	0.5829
STSP	Cropland	-0.0077	-1.67	392	0.0947
FEHA	Cropland	-0.0001	-0.01	212	0.9936
NOHA	Cropland	-0.0263	-3.42	192	0.0006
BAIS	Cropland	-0.0305	-3.43	189	0.0006
WEME	Grassland	0.0218	21.80	5551	*
BHCO	Grassland	0.0068	5.67	4874	*
SAVS	Grassland	0.0137	12.45	4781	*
MODO	Grassland	0.0016	1.23	4779	0.2120
BOBO	Grassland	0.0105	8.08	3566	*
COYE	Grassland	0.0083	5. 93	3413	*
CCSP	Grassland	0.0238	18.31	3252	*
AMCO	Grassland	0.0005	0.29	3165	0.7682
BWTE	Grassland	0.0041	2.41	2762	0.0175
EAKI	Grassland	0.0079	4.94	2704	*
COGR	Grassland	0.0007	0.33	2301	0.1181
SADW	Grassland	0.0063	3.15	1943	0.0017
VEKI	Grassland	0.0091	4.55	1847	*
SEWR	Grassland	0.0220	12.22	1765	*
PBGR	Grassland	0.0069	3.14	1631	0.0021
WAR	Grassland	0.0030	1.20	1594	0.2265
ISHO (Grassland	0.0011	0.46	1555	0.6617

Species	[†] Cover Types	B‡	B/SE [§]	-2LL ^I	P
GRSP	Grassland	0.0350	17.50	1535	*
LEFL	Grassland	0.0026	0.90	1269	0.3681
RPHE	Grassland	0.0093	3.72	1204	0.0002
COSN	Grassland	0.0088	3.26	1057	0.0011
UPSA	Grassland	0.0030	0.91	990	0.3697
BRTH	Grassland	0.0031	0.89	877	0.3760
AMGO	Grassland	0.0059	1.74	857	0.0797
HOSP	Grassland	0.0039	1.11	850	0.2659
REDH	Grassland	0.0043	1.23	797	0.2169
BARS	Grassland	0.0101	2.97	744	0.0033
AMBI	Grassland	0.0177	5.53	742	*
LCSP	Grassland	0.0100	2.94	723	0.0032
MAGO	Grassland	0.0005	-0.01	506	0.9941
CCLO	Grassland	0.0479	9.21	476	*
STSP	Grassland	0.0067	1.31	393	0.1883
FEHA	Grassland	0.0065	0.93	211	0.3550
NOHA	Grassland	0.0261	3.84	192	0.0001
BAIS	Grassland	0.0439	4.48	172	*
RWBL	Grassland	-0.0011	-1.22	8004	0.2176
HOLA	Grassland	-0.0294	-15.47	6815	*
VESP	Grassland	-0.0129	-7.17	4593	*
YHBL	Grassland	-0.0051	-3.00	3589	0.0032
KILL	Grassland	-0.0139	-5.79	3052	*
SOSP	Grassland	-0.0038	-2.00	2912	0.0516
HOWR	Grassland	-0.0011	-0.55	2608	0.5804
MALL	Grassland	-0.0014	-0.70	2608	0.4942
SORA	Grassland	-0.0028	-1.27	2399	0.2015
AMCR	Grassland	-0.0010	-0.40	1782	0.6920
AMRO	Grassland	-0.0086	-2.77	1731	0.0052
MAWR	Grassland	-0.0048	-1.71	1701	0.0878
BLTE	Grassland	-0.0068	-2.13	1409	0.0373
NOPI	Grassland	-0.0086	-2.39	1218	0.0174
WAVI	Grassland	-0.0005	-0.14	991	0.8881
RWBL	Wetland	0.0243	1.00	7859	*

Species [†] Co	over Types	B‡	B/SE [§]	-2LL ^I	Ρ
WEME W	etland	0.0027	1.08	6051	0.2842
SAVS W	etland	0.0063	2.33	4926	0.0188
BHCO W	etland	0.0039	1.39	4905	0.1586
BOBO W	etland	0.0068	2.13	3619	0.0363
COYE W	etland	0.0161	5.55	3419	*
YHBL W	etland	0.0527	20.27	3181	*
KILL W	etland	0.0169	5.45	3069	*
SOSP W	etland	0.0064	1.73	2913	0.0844
AMCO W	etland	0.0480	18.46	2848	*
EAKI W	etland	0.0100	2.70	2720	0.0065
BWTE W	etland	0.0257	8.86	2705	*
MALL W	etland	0.0194	5.88	2579	*
SORA W	etland	0.0299	9.97	2322	*
GADW We	etland	0.0243	6.94	1914	*
SEWR We	etland	0.0206	5.42	1876	*
YWAR We	etland	0.0124	2.58	1590	0.0104
PBGR We	etland	0.0364	11.03	1549	*
NSHO We	etland	0.0197	4.58	1538	*
MAWR We	etland	0.0485	15.65	1511	*
BLTE We	etland	0.0435	13.18	1284	*
NOPI We	etland	0.0085	1.47	1223	0.1413
COSN We	etland	0.0302	6.57	1035	*
UPSA We	etland	0.0056	0.77	990	0.4453
REDH We	etland	0.0378	8.22	750	*
AMBI We	etland	0.0291	5.39	749	*
LCSP We	etland	0.0039	0.48	731	0.6361
MAGO We	etland	0.0209	2.75	500	0.0057
STSP We	tland	0.0246	2.89	388	0.0038
NOHA We	tland	0.0156	1.02	205	0.3058
HOLA We	tland	-0.0357	-10.50	7104	*
MODO We	tland	-0.0041	-1.28	4779	0.1951
VESP We	tland	-0.0448	-8.30	4560	*
CCSP We	tland	-0.0155	-3.37	3580	0.0007
HOWR We	tland	-0.0172	-2.97	2598	0.0031

Specie	s [†] Cover Types	B‡	B/SE§	-2LL ¹	Р
COGR	Wetland	-0.0014	-0.29	2301	0.7775
GRSP	Wetland	-0.0123	-1.84	1868	0.0664
WEKI	Wetland	-0.0041	-0.69	1865	0.4785
AMCR	Wetland	-0.0242	-2.95	1771	0.0032
AMRO	Wetland	-0.0029	-0.48	1739	0.6334
LEFL	Wetland	-0.0064	-0.82	1269	0.4102
RPHE	Wetland	-0.0141	-1.68	1214	0.0940
WAVI	Wetland	-0.0304	-2.38	983	0.0176
BRTH	Wetland	-0.0037	-0.40	878	0.6954
AMGO	Wetland	-0.0208	-1.69	857	0.0917
HOSP	Wetland	-0.0329	-2.27	844	0.0231
BARS	Wetland	-0.0044	-0.42	752	0.6691
CCLO	Wetland	-0.0274	-1.70	619	0.0887
FEHA	Wetland	-0.0871	-1.72	206	0.0848
BAIS	Wetland	-0.1200	-2.09	197	0.0366
RWBL	Patch	0.0260	8.67	7934	*
WEME	Patch	0.0132	3.77	6039	0.0002
SAVS	Patch	0.0072	1.00	4928	0.0877
BHCO	Patch	0.0143	3.58	4895	0.0003
MODO	Patch	0.0057	1.33	4779	0.1871
CCSP	Patch	0.0142	2.96	3585	0.0028
YHBL	Patch	0.0287	6.83	3558	*
COYE	Patch	0.0267	6.21	3413	*
AMCO	Patch	0.0254	5.52	3140	*
KILL	Patch	0.0018	0.30	3094	0.7627
SOSP	Patch	0.0113	2.02	2912	0.0426
BWTE	Patch	0.0210	4.04	2753	*
EAKI	Patch	0.0228	4.47	2709	*
MALL	Patch	0.0084	1.35	2606	0.1735
SORA	Patch	0.0279	5.37	2377	*
COGR	Patch	0.0088	1.33	2299	0.1815
GADW	Patch	0.0164	2.45	1947	0.0135
SEWR	Patch	0.0281	4.84	1881	*
GRSP	Patch	0.0072	0.94	1871	0.3505

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Species [†]	Cover Types	B‡	B/SE [§]	-2LL	Р
WEKI	Patch	0.0195	2.95	1858	0.0032
AMRO	Patch	0.0099	1.27	1738	0.2017
MAWR	Patch	0.0259	3.98	1691	0.0001
PBGR	Patch	0.0166	2.31	1635	0.0200
YWAR	Patch	0.0198	2.75	1589	0.0061
NSHO I	Patch	0.0217	3.06	1547	0.0023
BLTE I	Patch	0.0304	4.41	1398	*
LEFL I	Patch	0.0073	0.75	1269	0.4515
RPHE I	Patch	0.0088	0.93	1216	0.3536
COSN I	Patch	0.0052	0.49	1067	0.6295
WAVI I	Patch	0.0078	0.70	990	0.4887
BRTH I	Patch	0.0089	0.75	878	0.4542
AMGO F	Patch	0.0032	0.25	860	0.8041
HOSP F	Patch	0.0151	1.35	850	0.1770
REDH F	Patch	0.0100	0.83	797	0.4021
AMBI F	Patch	0.0092	0.73	769	0.4640
BARS F	Patch	0.0120	0.95	751	0.3381
LCSP F	Patch	0.0314	3.45	722	0.0006
CCLO F	Patch	0.0014	0.09	622	0.9289
STSP F	Patch	0.0096	0.55	394	0.5844
HOLA F	Patch	-0.0277	-6.44	7200	*
VESP F	Patch	-0.0254	-4.31	4638	*
BOBO F	Patch	-0.0020	-0.36	3623	0.7237
HOWR F	Patch	-0.0069	-0.95	2607	0.3482
AMCR F	Patch	-0.0294	-2.51	1774	0.0122
NOPI F	Patch	-0.0003	-0.03	1224	0.9750
UPSA F	Patch	-0.0185	-1.22	989	0.2257
MAGO F	Patch	-0.0028	-0.15	506	0.8793
FEHA F	Patch	-0.0740	-1.29	209	0.1982
NOHA F	Patch	-0.0001	0.00	206	0.9961
BAIS F	Patch	-0.1580	-2.12	198	0.0338
MODO V	Vood	0.0208	7.17	4735	*
VESP V	Vood	0.0029	0.76	4659	0.4489
CCSP V	Vood	0.0323	11.14	3490	*

Species [†]	Cover Types	B‡	B/SE [§]	-2LL ¹	P
COYE	Wood	0.0171	5.03	3425	*
SOSP	Wood	0.0231	7.00	2879	*
EAKI	Wood	0.0065	1.33	2725	0.1804
HOWR	Wood	0.0402	12.97	2468	*
SEWR	Wood	0.0044	0.71	1899	0.4781
WEKI	Wood	0.0065	1.07	1864	0.2915
AMCR	Wood	0.0304	8.22	1735	*
AMRO	Wood	0.0222	5.16	1721	*
YWAR	Wood	0.0427	12.56	1483	*
RPHE	Wood	0.0009	0.07	1217	0.9409
LEFL	Wood	0.0462	12.83	1153	*
COSN	Wood	0.0024	0.26	1067	0.7935
WAVI	Wood	0.0427	10.68	917	*
BRTH	Wood	0.0231	3.79	868	0.0002
AMGO	Wood	0.0284	5.26	843	*
FEHA	Wood	0.0144	0.51	211	0.6079
RWBL	Wood	-0.0392	-7.26	7919	*
HOLA	Wood	-0.2204	-10.11	6926	*
WEME	Wood	-0.0360	-5.37	6005	*
BHCO	Wood	-0.0020	-0.49	4907	0.6143
SAVS	Wood	-0.0745	-5.69	4858	*
BOBO	Wood	-0.0591	-4.25	3586	*
YHBL	Wood	-0.0700	-4.43	355 5	*
AMCO	Wood	-0.0836	-4.24	3123	*
KILL	Wood	-0.0409	-3.38	3074	0.0008
BWTE	Wood	-0.1128	-4.12	2723	*
MALL	Wood	-0.1078	-3.92	2569	0.0001
SORA	Wood	-0.0287	-2.45	2392	0.0142
COGR	Wood	-0.0022	-0.33	2301	0.7481
GADW	Wood	-0.1821	-3.59	1912	0.0003
GRSP	Wood	-0.0136	-1.35	1870	0.1777
MAWR	Wood	-0.0250	-1.82	1699	0.0673
PBGR	Wood	-0.0352	-2.15	1632	0.0317
NSHO	Wood	-0.2395	-3.03	1527	0.0025

Species [†] Cover Types	B‡	B/SE [§]	-2LL ^I	Р
BLTE Wood	-0.0979	-2.60	1396	0.0094
NOPI Wood	-0.1011	-2.19	1214	0.0287
UPSA Wood	-0.0631	-1.84	984	0.0662
HOSP Wood	-0.0011	-0.09	851	0.9275
REDH Wood	-0.2347	-2.07	785	0.0387
AMBI Wood	-0.0208	-0.83	769	0.4049
BARS Wood	-0.0156	-0.83	751	0.4022
LCSP Wood	-0.0011	-0.10	731	0.9244
CCLO Wood	-1.1465	-1.78	601	0.0752
MAGO Wood	-0.4241	-1.59	496	0.1112
STSP Wood	-0.0848	-1.13	391	0.2594
NOHA Wood	-188.111	-0.15	199	0.8822
BAIS Wood	-248.212	-0.14	198	0.8847
BHCO Other	0.0141	3.20	4898	0.0015
MODO Other	0.0677	17.36	4478	*
CCSP Other	0.0154	2.96	3586	0.0031
COYE Other	0.0130	2.36	3440	0.0181
KILL Other	0.0001	0.01	3094	0.9904
SOSP Other	0.0406	9.02	2852	*
EAKI Other	0.0462	10.27	2643	*
HOWR Other	0.0728	16.93	2359	*
COGR Other	0.0673	15.30	2113	*
GADW Other	0.0023	0.25	1952	0.8009
AMCR Other	0.0196	2.65	1776	0.0077
WEKI Other	0.0598	12.46	1749	*
YWAR Other	0.0450	8.04	1550	*
AMRO Other	0.0753	15.69	1540	*
LEFL Other	0.0502	8.37	1221	*
RPHE Other	0.0013	0.11	1217	0.9129
COSN Other	0.0122	1.09	1066	0.2754
WAVI Other	0.0618	10.13	921	*
BRTH Other	0.0395	4.82	862	*
AMGO Other	0.0475	6.42	833	*
AMBI Other	0.0027	0.17	770	0.8633

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Species	[†] Cover Types	B‡	B/SE [§]	-2LL ^I	Р
HOSP	Other	0.0825	13.52	713	*
BARS	Other	0.0669	10.14	685	*
FEHA	Other	0.0084	0.27	212	0.7857
RWBL	Other	-0.0104	-2.54	7999	0.0113
HOLA	Other	-0.0641	-7.63	7146	*
WEME	Other	-0.0054	-1.13	6050	0.2616
SAVS	Other	-0.0244	-3.39	4917	0.0007
VESP	Other	-0.0165	-2.43	4653	0.0147
YHBL	Other	-0.0091	-1.25	3597	0.2138
BOBO	Other	-0.0864	-4.50	3578	*
AMCO	Othe r	-0.0148	-1.72	3162	0.0866
BWTE	Other	-0.0180	-1.82	2763	0.0701
MALL	Other	-0.0244	-2.16	2602	0.0311
SORA	Other	-0.0007	-0.08	2401	0.9299
SEWR	Other	-0.0291	-1.98	18 95	0.0476
GRSP	Other	-0.0185	-1.43	1870	0.1522
MAWR	Other	-0.0375	-2.08	1698	0.0370
PBGR	Other	-0.0204	-1.44	1637	0.1504
NSHO	Other	-0.0231	-1.49	1552	0.1370
BLTE	Other	-0.0124	-0.88	1413	0.3784
NOPI	Other	-0.0151	-0.93	1223	0.3509
UPSA	Other	-0.0033	-0.22	991	0.8271
REDH	Other	-0.0319	-1.23	796	0.2181
LCSP	Other	-0.1111	-1.68	723	0.0929
CCLO	Other	-0.0504	-1.27	620	0.2062
MAGO	Other	-0.0432	-1.05	504	0.2955
STSP	Other	-0.2376	-1.00	390	0.3184
NOHA	Other	-0.1753	-0.74	204	0.4587
BAIS	Other	-0.2378	-0.72	203	0.4690
RWBL	Barren Land	0.0272	2.06	8002	0.0399
HOLA	Barren Land	0.0221	1.58	7247	0.1149
WEME	Barren Land	0.0191	1.22	6050	0.2222
BHCO	Barren Land	0.0192	1.08	4906	0.2779
VESP	Barren Land	0.0125	1.00	4660	0.5093

Specie	s [†] Cover Types	B‡	B/SE [§]	-2LL ¹	P
				·····	
BWTE	Barren Land	0.0010	0.04	2767	0.9702
COGR	Barren Land	0.0137	0.47	2301	0.6381
AMRO	Barren Land	0.0132	0.38	1740	0.7054
NSHO	Barren Land	0.0351	1.16	1554	0.2442
LEFL	Barren Land	0.0043	0.10	1269	0.9229
UPSA	Barren Land	0.0395	0.98	990	0.3288
AMGO	Barren Land	0.0267	0.55	860	0.5837
LCSP	Barren Land	0.0022	0.04	731	0.9708
MAGO	Barren Land	0.0648	1.45	505	0.1466
STSP	Barren Land	0.0192	0.26	395	0.7966
NOHA	Barren Land	0.0929	1.71	204	0.0879
SAVS	Barren Land	-0.0428	-1.86	4927	0.0622
MODO	Barren Land	-0.0276	-1.24	4779	0.2136
BOBO	Barren Land	-0.0518	-1.77	3620	0.0774
CCSP	Barren Land	-0.0108	-0.43	3593	0.6669
YHBL	Barren Land	-0.0764	-2.40	3591	0.0164
COYE	Barren Land	-0.0524	-1.72	3442	0.0852
AMCO	Barren Land	-0.0672	-2.01	3161	0.0443
KILL	Barren Land	-0.0452	-1.42	3092	0.1567
SOSP	Barren Land	-0.0847	-2.25	2910	0.0241
EAKI	Barren Land	-0.0052	-0.18	2726	0.8575
HOWR	Barren Land	-0.0394	-1.13	2607	0.2589
MALL	Barren Land	-0.0563	-1.52	2605	0.1294
SORA	Barren Land	-0.0353	-0.97	2400	0.3300
GADW	Barren Land	-0.0387	-0.94	1951	0.3481
SEWR	Barren Land	-0.1873	-2.99	1888	0.0027
GRSP	Barren Land	-0.0389	-0.90	1871	0.3673
WEKI	Barren Land	-0.0143	-0.37	1865	0.7135
AMCR	Barren Land	-0.0061	-0.16	1782	0.8744
MAWR	Barren Land	-0.0644	-1.29	1702	0.1989
PBGR	Barren Land	-0.1689	-2.59	1631	0.0095
YWAR	Barren Land	-0.0873	-1.56	1593	0.1183
BLTE	Barren Land	-0.1510	-2.15	1408	0.0311
NOPI	Barren Land	-0.0067	-0.14	1224	0.8863

.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Species	[†] Cover Types	B‡	B/SE [§]	-2LL ¹	Р
RPHE	Barren Land	-0.0012	-0.03	1217	0.9799
COSN	Barren Land	-0.0129	-0.25	1067	0.7995
WAVI	Barren Land	-0.0077	-0.14	991	0.8901
BRTH	Barren Land	-0.0535	-0.73	877	0.4632
HOSP	Barren Land	-0.0486	-0.66	851	0.5057
REDH	Barren Land	-0.1245	-1.36	796	0.1752
AMBI	Barren Land	-0.1974	-1.75	766	0.0795
BARS	Barren Land	-0.1376	-1.37	749	0.1716
CCLO	Barren Land	-0.0175	-0.23	622	0.8173
FEHA	Barren Land	-0.3860	-1.27	209	0.2028
BAIS	Barren Land	-0.1929	-0.86	205	0.3882

*P ≤ 0.00005

[†]Species abbreviations defined in Appendix E.
[‡]B = regression coefficient from logistic regression of species against cover type.
§B/SE = regression coefficient / standard error.
¹-2LL = -2(log likelihood) (Norusis 1995).

APPENDIX E

Common, scientific, and abbreviated names of bird species observed and their habitat groups*.

Common Name	Scientific Name	Abbrev.	Habitat Group
Western Grebe	Aechmophorus occidentalis	WEGR	Wetland
Horned Grebe	Podiceps auritus	HOGR	Wetland
Eared Grebe	Podiceps nigricollis	EAGR	Wetland
Pied-billed Grebe	Podilymbus podiceps	PBGR	Wetland
Ring-billed Gull	Larus delawarensis	RBGU	Wetland
Franklin's Gull	Larus pipixcan	FRGU	Wetland
Black Tern	Chlidonias niger	BLTE	Wetland
Double-crested Cormorant	Phalacrocorax auritus	DCCO	Wetland
American White Pelican	Pelecanus erythrorhynchos	WHPE	Wetland
Mallard	Anas platyrhynchos	MALL	Wetland
Gadwall	Anas strepera	GADW	Wetland
American Wigeon	Anas americana	AMWI	Wetland
Green-winged Teal	Anas creccia	AGWT	Wetland
Blue-winged Teal	Anas discors	BWTE	Wetland
Northern Shoveler	Anas clypeata	NSHO	Wetland
Northern Pintail	Anas acuta	NOPI	Wetland
Wood Duck	Aix sponsa	WODU	Wetland
Redhead	Aythya americana	REDH	Wetland
Canvasback	Aythya valisine ri a	CANV	Wetland
Lesser Scaup	Aythya affinis	LESC	Wetland
Ring-necked Duck	Aythya collaris	RNDU	Wetland
Ruddy Duck	Oxyura jamaicensis	RUDU	Wetland
Lesser Snow Goose	Chen caerulescens	LSGO	Tundra
Canada Goose	Branta canadensis	CAGO	Wetland
American Bittern	Botaurus lentiginosus	AMBI	Wetland
Great Blue Heron	Ardea herodias	GBHE	Wetland
Great Egret	Casmerodius albus	GREG	Wetland
Black-crowned Night- heron	Nycticorax nycticorax	BCNH	Wetland
Sandhill Crane	Grus canadensis	SACR	Wetland
Virginia Rail	Rallus limicola	VIRA	Wetland

•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Common Name	Scientific Name	Abbrev	Habitat Group
Sora	Porzana carolina	SORA	Wetland
Yellow Rail	Coturnicops noveboracensis	YERA	Wetland
American Coot	Fulica americana	AMCO	Wetland
Wilson's Phalarope	Phalaropus tricolor	WIPH	Wetland
American Avocet	Recurvirostra americana	AMAV	Wetland
Common Snipe	Gallinago gallinago	COSN	Wetland
White-rumped Sandpiper	Calidris fuscicollis	WRSA	Tundra
Marbled Godwit	Limosa fedoa	MAGO	Wetland
Greater Yellowlegs	Tringa melanoleuca	GRYE	Tundra
Lesser Yeilowlegs	Tringa flavipes	LEYE	Tundra
Willet	Catoptrophorus semipalmatus	WILL	Wetland
Upland Sandpiper	Bartramia longicauda	UPSA	Grassland
Killdeer	Charadrius vociferus	KILL	Bare Ground
Mourning Dove	Żenaida macroura	MODO	Edge
Rock Dove	Columba livía	RODO	Generalist
Sharp-tailed Grouse	Tympanuchus phasianellus	STGR	Grassland
Ring-necked Pheasant	Phasianus colchicus	RPHE	Grassland
Northern Harrier	Circus cyaneus	NOHA	Grassland
Sharp-shinned Hawk	Accipiter striatus	SSHA	Woodland
Red-tailed Hawk	Buteo jamaicensis	RTHA	Savanna
Swainson's Hawk	Buteo swainsoni	SWHA	Savanna
Ferruginous Hawk	Buteo regalis	FEHA	Grassland
Great Horned Owl	Bubo virginianus	GHOW	Woodland
Black-billed Cuckoo	Coccyzus erythropthalmus	BBCU	Woodland
Hairy Woodpecker	Picoides villosus	HAWO	Woodland
Downy Woodpecker	Picoides pubescens	DOWO	Woodland
Yellow-bellied Sapsucker	Sphyrapicus varius	YBSA	Woodland
Pileated Woodpecker	Dryocopus pileatus	PIWO	Woodland
Red-headed Woodpecker	Melanerpes erythrocephalus	RHWO	Woodland
Northern Flicker	Colaptes auratus	NOFL	Generalist
Common Nighthawk	Chordeiles minor	CONI	Savanna

Common Name	Scientific Name	Abbrev	. Habitat Group
Ruby-throated Hummingbird	Archilochus colubris	RTHU	Woodland
Eastern Kingbird	Tyrannus tyrannus	EAKI	Edge
Western Kingbird	Tyrannus verticalis	WEKI	Savanna
Eastern Phoebe	Sayornis phoebe	EAPH	Edge
Eastern Wood-pewee	Contopus sordidulus	EAWP	Edge
Willow Flycatcher	Empidonax traillii	WIFL	Wetland
Least Flycatcher	Empidonax minimus	LEFL	Woodland
Horned Lark	Eremophila alpestris	HOLA	Bare Ground
Black-billed Magpie	Pica pica	BBMA	Generalist
Blue Jay	Cyanocitta cristata	BLJA	Woodland
American Crow	Corvus brachyrhynchos	AMCR	Edge
European Starling	Stumus vulgaris	EUST	Generalist
Bobolink	Dolichonyx oryzivorus	BOBO	Grassland
Brown-headed Cowbird	Molothrus ater	BHCO	Edge
Yellow-headed Blackbird	Xanthocephalus xanthocephalus	YHBL	Wetland
Red-winged Blackbird	Agelaius phoeniceus	RWBL	Wetland
Western Meadowlark	Stumella neglecta	WEME	Grassland
Orchard Oriole	Icterus spurius	OROR	Edge
Northern Oriole	Icterus galbula	BAOR	Edge
Brewer's Blackbird	Euphagus cyanocephalus	BRBL	Generalist
Common Grackle	Quiscalus quiscula	COGR	Edge
House Finch	Carpodacus mexicanus	HOFI	Generalist
American Goldfinch	Cardeulis tristis	AMGO	Edge
Pine Siskin	Cardeulis pinus	PISI	Woodland
Chestnut-collared Longspur	Calcarius ornatus	CCLO	Grassland
Vesper Sparrow	Pooecetes gramineus	VESP	Grassland
Savannah Sparrow	Passerculus sandwichensis	SAVS	Grassland
Baird's Sparrow	Ammodramus bairdii	BAIS	Grassland
	Ammodramus savannarum	GRSP	Grassland
LeConte's Sparrow	Ammodramus leconteii	LCSP	Grassland
Sharp-tailed Sparrow	Ammodramus caudacutus	STSP	Wetland

Common Name	Scientific Name	Abbrev	. Habitat Group
Lark Sparrow	Chondestes grammacus	LASP	Savanna
Chipping Sparrow	Spizella passerina	CHSP	Edge
Clay-colored Sparrow	r Spizella pallida	CCSP	Edge
Field Sparrow	Spizella pusilla	FISP	Edge
Song Sparrow	Melospiza melodia	SOSP	Edge
Rose-breasted Grosbeak	Pheucticus ludovicianus	RBGR	Woodland
Indigo Bunting	Passerina cyanea	INBU	Edge
Dickcissel	Spiza americana	DICK	Grassland
Lark Bunting	Calamospiza melanocorys	LARB	Grassland
Purple Martin	Progne subis	PUMA	Savanna
Cliff Swallow	Hirundo pyrrhonota	CLSW	Savanna
Barn Swallow	Hirundo rustica	BARS	Savanna
Tree Swallow	Tachycineta bicolor	TRES	Edge
Bank Swallow	Riparia riparia	BANS	Savanna
NorthernRough- winged Swallow	Stelgidopteryx serripennis	NRWS	Savanna
Cedar Waxwing	Bombycillla cedrorum	CEDW	Edge
Loggerhead Shrike	Lanius Iudovicianus	LOSH	Savanna
Red-eyed Vireo	Vireo olivaceus	REVI	Woodland
Warbling Vireo	Vireo gilvus	WAVI	Woodland
Yellow-throated Vireo	Vireo flavifrons	YTVI	Woodland
Solitary Vireo	Vireo solitarius	SOVI	Woodland
Black-and-white Warbler	Mniotilta varia	BAWW	Woodland
Tennessee Warbler	Vermivora peregrina	TEWA	Woodland
Yellow Warbler	Dendroica petechia	YWAR	Edge
Ovenbird	Seiurus aurocapillus	OVEN	Woodland
Common Yellowthroat	Geothlypis trichas	COYE	Edge
American Redstart	Setophaga ruticilla	AMRE	Woodland
House Sparrow	Passer domesticus	HOSP	Generalist
Sprague's Pipit	Anthus spragueii	SPPI	Grassland
Gray Catbird	Dumetella carolinensis	GRCA	Edge
Brown Thrasher	Toxostoma rufum	BRTH	Edge

Common Name	Scientific Name	Abbrev. Habitat Grou
House Wren	Troglodytes aedon	HOWR Edge
Sedge Wren	Cistothorus platensis	SEWR Grassland
Marsh Wren	Cistothorus palustris	MAWR Wetland
Black-capped Chickadee	Parus atricapillus	BCCH Woodland
Veery	Catharus fuscescens	VEER Woodland
American Robin	Turdus migratorius	AMRO Generalist
Eastern Bluebird	Sialia sialis	EABL Edge

*(Stewart 1975, Ehrlich et al. 1988, Peterjohn and Sauer 1993).

						,,	Co	ver T	уре					
Group and Correlation	Crop	land	Grass	land	Wet	and	Patch	1	Wood	k k	Other		Barre Land	n
All Groups Combined														
200 m (+)		6		40		42		56		28		34		8
200 m (-)		80		16		16		8		32		22		6
400 m (+)		8		42		46		40		24		36		2
400 m (-)		80		14		16		8		34		16		12
Habitat Group														
Grassland														
200 m (+)	2	(9)	16	(73)	2	(9)	6	(27)	0	(0)	0	(0)	2	(9)
200 m (-)	16	(73)	2	(9)	4	(18)	4	(18)	6	(27)	12	(55)	2	(9)
400 m (+)	2	(9)	16	(73)	6	(27)	4	(18)	0	(0)	0	(0)	0	(0)
400 m (-)	16	(73)	2	(9)	4	(18)	4	(18)	6	(27)	8	(36)	2	(9)

Percentages* of species correlated[†] ($P \le 0.05$) with cover types at 200-m and 400-m scales for each habitat group.

Cropland Grassland Wetland Patch Wood Other 0 (0) 10 (28) 32 (89) 22 (61) 0 0 0 28 (78) 4 (11) 0 (0) 0 (0) 20 (56) 8 28 (78) 6 (17) 0 (0) 0 (0) 20 (56) 8 28 (78) 6 (17) 0 (0) 24 (67) 6 28 (78) 6 (17) 0 (0) 24 (67) 6 28 (78) 6 (17) 0 (0) 24 (67) 6 29 (78) 6 (46) 12 (89) 20 (77) 22 24 (92) 6 (46) 12 (46) 12 (77) 22 24 (92) 0 (0) 2 (89) <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Ŭ</th> <th>Cover Type</th> <th>,pe</th> <th></th> <th></th> <th></th> <th></th> <th></th>								Ŭ	Cover Type	,pe					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Group and Correlation	Crop	and	Gras	sland	Wetl	and	Patc	Ę	Woo	-p	Othe	5	Barren Land	ne
nd	Habitat Group													2	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Wetland														
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	200 m (+)	0	0)	10	(28)	32	(68)	22	(61)	Q	(o)	0	0	3	(9)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	200 m (-)	28	(78)	4	(11)	0	0)	0	0)	20	(99)	ω	(23)	4	(11)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	400 m (+)	2	(9)	12	(33)	32	(68)	22	(61)	0	0)	0	0	2	(9)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	400 m (-)	28	(78)	G	(17)	0	0)	0	0)	24	(67)	ဖ	(17)	œ	(23)
	Edge														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200 m (+)	0	(0)	10	(38)	ဖ	(46)	18	(69)	20	(77)	22	(85)	4	(15)
	200 m (-)	24	(62)	4	(15)	ပ	(46)	3	(8)	0	0)	0	(o)	0	0)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	400 m (+)	0	(0)	10	(38)	Q	(46)	12	(46)	18	(69)	24	(92)	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	400 m (-)	24	(92)	0	0	9	(46)	3	(8)	0	0	0	0)	2	(8)
0 (0) 4 (100) 0 (0) 4 (100) 2 (50) 4 4 (100) 0 (0) 0 (0) 0 (0) 0 0 (0) 4 (100) 0 (0) 2 (50) 4 4 (100) 0 (0) 0 (0) 2 (50) 0 4 (100) 0 (0) 0 (0) 0 (0) 4	Savanna														
4 (100) 0 (0) 0 (0) 0 (0) 0 0 (0) 4 (100) 0 (0) 2 (50) 0 (0) 4 4 (100) 0 (0) 0 (0) 0 (0) 4	200 m (+)	0	(0)		(100)	0	(0)	4	(100)	2	(20)	4	(100)	0	0)
0 (0) 4 (100) 0 (0) 2 (50) 0 (0) 4 4 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0	200 m (-)	4	(100)		0)	0	(0)	0	(o)	0	(0)	0	0)	0	0
4 (100) 0 (0) 0 (0) 0 (0) 0 (0)	400 m (+)	0	0)	4	(100)	0	0)	2	(20)	0	0)	4	(100)	0	0
	400 m (-)	4	(100)	0	(o)	0	(0)	0	(o)	0	(0)	0	(0)	0	(o)

•								U U	Cover Type	,pe					
	Group and Correlation	Crol	Cropland	Grassland	land	Wetland	and	Patch	ų	Wood	po	Other	er	Barren Land	ç
	Habitat Group														1
	Woodland														
	200 m (+)	0	(o)	0	(o)	0	(0)	3	(50)	4	(100)	4	(100)	0	
	200 m (-)	4	(100)	0	0	2	(50)	0	0)	0	0	0	(0)	0	0
	400 m (+)	0	(0)	0	<u>(</u>)	0	0)	0	(0)	4	(100)	4	(100)	0	0)
	400 m (-)	4	(100)	0	0)	3	(50)	0	(0)	0	<u>(</u>)	0	(0)	0	S
	Generalist														
	200 m (+)	0	(0)	0	0)	0	<u>(</u>)	4	(100)	2	(50)	4	(100)	0	0
	200 m (-)	4	(100)	2	(50)	3	(50)	0	0)	0	0	0	0)	0	\smile
	400 m (+)	0	(0)	0	(o)	0	0	0	(0)	2	(50)	4	(100)	0	0)
	400 m (-)	4	(100)	2	(20)	2	(20)	0	0	0	0	0	0	0	$\overline{}$

							С	over T	уре					
Group and Correlation	Cropland		Gras	sland	Wet	land	Patc	h	Wo	od	Othe	ər	Barro Land	-
Habitat Group														
Bare Ground														
200 m (+)	4	(100)	0	(0)	2	(50)	0	(0)	0	(0)	0	(0)	0	(0)
200 m (-)	0	(0)	4	(100)	2	(50)	2	(50)	4	(100)	2	(50)	0	(0)
400 m (+)	4	(100)	0	(0)	2	(50)	0	(0)	0	(0)	0	(0)	0	(0)
400 m (-)	0	(0)	4	(100)	2	(50)	2	(50)	4	(100)	2	(50)	0	(0)

*First value is the percentage of the total number of species analyzed (50). Value in parentheses is the percentage of the total number of species within the habitat group. [†](+) indicates a positive correlation, (-) indicates a negative correlation.