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ABSTRACT
In this paper we consider the problem of finding the 

roots of nonlinear equations, i.e., we summarize some of 
the techniques for finding the zeros of f(x) where f(x) 
may be a polynomial, transcendental, or other nonlinear 
function.

1X1
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INTRODUCTION
The problem of finding the real or complex roots of 

a nonlinear equation is an old problem. This problem is 
frequently encountered in scientific work. A few typical 
instances are listed below:

1 ) in the solution of linear differential equations 
we must often find the zeros of characteristic poly
nomials.
2) the stability of a mechanical or electrical sys
tem is determined by examining the zeros of an asso
ciated polynomial.
3) when finite difference methods are used to solve 
nonlinear boundary value problems, we must solve 
simultaneous nonlinear equations.
In this thesis we review several methods of solution 

of such equations and we also state and prove some theorems 
that have been found useful in their solution. In addi
tion, to illustrate most of the methods which are pre
sented, we have listed the computer programs, together 
with the numerical results of typical problems. These 
results are presented to aid the reader in formulating 
his own evaluation of the effectiveness of the techniques. 
The programs are written in the FORTRAN II language for 
the IBM 1620 computer. The report also contains a rather 
complete and up to date bibliography.
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The equations to be considered are of the form 
f(x) = 0

where f(x) may be a transcendental or a polynomial func
tion. Methods for the determination of both real and com
plex roots of polynomial equations are reviewed, whereas, 
only methods for finding the real and separated roots of 
transcendental equations are studied.

After discussing methods of solution for a single 
equation we briefly examine simultaneous nonlinear equa
tions. We note here that the solution of simultaneous 
nonlinear equations is an extremely difficult problem and 
very few efficient algorithms are available for their solu
tion.
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Chapter O
Let f(x) be a continuous real-valued function with 

as many derivatives as may be required to permit the opera
tions that may be used in the following development. Let 
be a root of multiplicity one of f(x) = 0  and assume that 
y = f(x) has an inverse x = g(y) in some neighborhood of ^ , 

In chapter 1 we consider functional iteration methods 
based on n-point inverse interpolation, using polynomials 
as our interpolation functions. These methods lead to 
approximate solutions of f(x) = O, It is assumed that the 
reader is familiar with the theory of inverse interpola
tion, The theory is discussed in Ostrowski [ , pages
1-12] and Ralston [6 , pages 40-753. The error in using 
n-point inverse polynomial interpolation as the basis of 
functional iteration is given by

f - ^1+1 = •••

where is in the interval spanned by y^, y^, y^
and 0 , y^ = f(x^) and superscript numbers indicate the 
order of differentiation.

The derivatives of the inverse function g(y) are 
calculated in terms of derivatives of f(x), as stated in 
the following,

THEOREM 0,1 If the first n + 1 (n > 0) derivatives 
of f(x) exist and f'(x) O in some interval [a, b], then

3
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the corresponding derivatives of the Inverse function g(y) 
exist In the corresponding y Interval. In fact the deriva
tives are given by:

X
^(y ) = pv T f k = i ,  2 , . . . , n + l

where Is a polynomial In y*, y**, ...» y^^^ and
Xi = 1, X^)y» - (2m-l)X^ y" (m = 1, 2, ...).

Proof: Clearly since f' (%) 0 In [a, b] then

s ’(y) = tf = ^  ^

and s"(y) = dx _
C f ]2 dy 

X
Let g(^) (y) =  ^ViTT k = 1, 2, n + 1 (0.2)(y,)2k-l

Here X^ Is a polynomial In y', y", y^^^. This Is
true for k = 1 , 2 for In particular X^ = 1, Xg = - y ”. 
Assume the truth of our assertion for the first n deriva
tives of g(y). We write (0.2) with k = n

and get by dlfferentiation, since ^

g'"-"^>(y) = ^(X „ )  ^  - (2n-l) X„ f (y’)-2".
Multiply the right hand side of the above equation by 
(y f\2n+l
F y  2 5 1  to obtain

i  (X^)y' - (2n-l) Xjj y
g(n+l)(y) = dx

(y')2"+l
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so that

dXn+l = S  ( V  y' - (2n-l) X„ y ,  n = 1, 2, ...
= 1 and

(y.)2n+l

An n-point functional iteration method has the 
general form

^ i + 1  "  ^ i - i »  •••» ^ i - n + 1 ^  C o . 3 )
The iteration function F may involve not only the points 
Xi* , ^i-n+1 * also values of f(x) and some of
its derivatives at one or more of the points x^, ,,,,

We will want to determine when an iteration method 
converges, and, if it does converge, how fast it converges. 
The convergence or non-convergence will in general depend 
upon the choice of the initial approximation(s) to the root. 
We will see that if the initial approximation(s) are "close 
enough" to f then convergence is usually assured. The 
problem of obtaining a "close enough" initial approximation 
to a root is a very difficult one about which very little 
is known. Usually the initial approximation is obtained 
from the investigators "intuition"which was derived from 
his "feel" of how the real system (from whence the original 
nonlinear equation was derived) should behave. Some methods 
will converge independently of the initial approximation.
In practice we often begin our computation with a guess 
at the root and just hope that the iteration process will
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converge,
For comparative purposes we will use the concept of 

order. Order is a measure of how fast the method in ques
tion converges. To define the order of an iterative method 
we first define the error in the i^^ iterate to he

^1+1 T ■ ̂i+1 (0*̂)
Under the assumption that the method will converge we have 

DEFINITION 0.1 If there exists a real number p > 1 
such that

I T ^i+l^ Î  i+i( . I ,lim  = lim — = C 0 and jc| < od ,
i OD I f - x^l^ i -> OD |e^|^ 

we say the method is of order p at
If a method has order 2 for example, then the error 

of any iterate is approximately proportional to the square 
of the error of the previous iterate. The concept of order 
is illustrated in Problem 3, Ghapt, 1.

We now have
THEOREM 0.2 The order of a method is unique.
Proof. Suppose p is the order, i.e.,

I®1+1!lim — ~  = c 5̂ 0 
i CD I e^l ̂

I®1+1I 1Then lim   - = C lim — ^  . If Ô > 0 the latter
1 1 le^l®

limit diverges to infinity. If 6 < 0 ,  this limit converges 
to zero. Thus 6 = 0  and p is unique.
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Chapter 1
In this chapter we consider some numerical methods 

for the solution of transcendental equations whose roots 
are real and separated.

One of the oldest known methods is the method of 
false position (régula falsi), in which we are given two 
interpolation points ^ x^. Let = f (x̂  ̂) and we assume
f(x. ) ^ f(x .) , i 7̂ j. We interpolate the inverse func-X J
tion g(y) by a linear function which assumes the values 
x^, Xg for y^ and y^, i.e.,

s(y) yg-y^
Let x^ = g(0), the first approximation to the root of 
f(x) = 0 .

Xiy? “ yi%2Thus Xo =  rr—  ----  which may be rewritten asj? ^2“^1

(Xg-x, )
X3 = Xg “ yg (y^-y^) (1 .1 )

This is, of course, linear inverse interpolation. Con
tinuing this process we obtain a sequence of points
x^, Xg, X3, ... where

^i+1 = ^1 (1 = 2 , 3 , . . . )  (1.2)
and x̂ ,̂ Xg are our initial approximations. Does the se
quence converge?

A sufficient set of conditions to ensure the con-
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vergence of the sequence defined by (1 .2 ) are the fourler 
conditions :
1) f(z^)f(Xg) < o, 2 ) f(x^)f"(x^) > 0 , 3) f"(x) 4 0 (x^<x<Xg)
Fig. 1 Illustrates the Fourier conditions.

Fig. 1
We note that we are restricted to convex functions by the 
Fourier conditions.

If the situation Is as pictured In Fig. 1 then the se
quence (1.2) Indeed converges. For x^, x^, ... lie on the 
concave side of the arc and cannot go beyond ; thus we 
have a monotone decreasing sequence bounded below by f , 
The sequence therefore converges to a limit We now
show that Is the root T of f(x) = 0 In (x^, x^ ) .

We subtract ^ from both sides of equation (1.2) 
and take limits as 1 -> od to obtain

To - ^1

(x, To)

T.) - t

8
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Now Ÿ o' Thus f( t" q ) = 0 and f' ^ Is a root of
f (x) = O in (x^, Xg ) and hence % q ~ ^  •

Let us determine the order of the method of false 
position. By using (0,1) the error is

= ? - *1+1 = V l  = - ,rTw V . i 32[f•( f )]

since s"(y) = -   — ^ ~  .
[f(x)]^

Using the mean value theorem we have
y 2 == fCx^)= f(x^) - f(f) = (x^ - f ) f (  X i) = f ' ( fi)»

= (x^ - f ) f * ( f = e^f ’ ( ^ )̂ , f f  ̂in appro
priate intervals.

f"( f)f'( f , ) f (  ?,)
Therefore e. = - -------------- =--------  e. e. (1.3)1+1 2[f'(f)]3  ̂ ^

Then lim
1 OD

I^i+l* f"( f *) f*( f i) f’( r )
2[f*(? *)]^

since T i T approaches some limiting value
^ * as i -> CD, Clearly f*(x) is bounded away from zero in 

a neighborhood of ^ , Therefore the method of false posi
tion has order 1.

The method of "régula falsi" may be modified to in
crease the rate of convergence. Suppose we do not insist 
that f (%3̂ )f (X2) < 0 and that we always use the previous two 
iterates, x^ and x̂  ̂ ^̂ , to generate i.e., we have

X = X - fâZÎlzl yi+1 i yi~yi-i ^
This modified method is called the secant method. How-
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ever, the sequence of iterates obtained may not converge 
(Figure 2 is an example of nonconvergence.

Figure 2

We now ask what is the order of this method assuming 
that it converges? By reasoning analogous to that used pre
viously the error in the secant method is

f) X f*( Ci.i)
2[f'( f )]^ ^i^i-1 (1.4)"i+1

It can be shown that the order of the secant method is 
(1 + yr~)/2. Ralston [6 , pages 326-327] outlines an argu
ment and Ostrowski C 5 , pages 8O-8I] has a complete proof. 
Thus the order of convergence of the secant method is sub
stantially greater than the order of the false position 
method.

Another method for finding the roots of f(x) = 0 is 
the bisection method. If f(x) is continuous on (x^, x^) 
and f(x^) and f(x^) have opposite signs then we consider

10
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the sequence of points which lie halfway between the pre
vious two points of opposite sign. The bisection method 
is certainly convergent having once found and Xg.

A minor variant in the bisection method is the di
viding interval method. Given the points x^ and Xg such 
that f(x^)f(Xg) < O, we subdivide the interval Cx^, X2] 
into, say m, subintervals, knowing that we have at least 
one real root of f(x) in (x^, x^), Then we search for a
pair of adjacent points x^, x^_^^ such that f (x̂  ̂) f (x^^^ ) < O,
- - Xp-Xn= X^, x^ = x^ + i (— -— ) (i = 1, 2, ..., m). Using
these two points as endpoints of our next interval we con
tinue the subdividing process until we achieve desired 
accuracy.

Since the latter two methods are not based on inter
polation formulae we do not discuss their order of con
vergence, These two methods are very useful when a priori 
information on the location of roots is poor. If such is 
the case we can start at the origin, say, and test consecu
tive intervals of an arbitrarily fixed length until we 
find an interval on which the functional values at the end
points differ in sign. Having located this fundamental 
interval we then apply one of the two methods above. If 
we desire other real roots we can continue along the x- 
axis in exactly the same manner. Of course it may happen 
that our test Intervals were of too great a length in 
which case we might miss some roots as shown in Figure 3»

11
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Figure 3

The iteration methods considered thus far have been 
two-point iteration methods. Next we will consider a class 
of one-point functional iteration methods of the general 
form

^i+1 = F(x^)
We assume that ^ is a simple root of f(x) = 0, and 

that f(x) has an inverse g(y) in a neighborhood of T  •
We expand g(y) in a Te_ylor-series about y^ to obtain

m+1 (y-y. \
X = g(y) =

= X,

where ^ is between y and ŷ .̂ 
Since ^ = g(0) we have

m+1 / T «.m+2 m+2
(m+2 ):

12
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= ^  r (1.5)

W h e r e  y^ = f(x^) = and g^'^^(y^) =  ̂̂ .
We define

= T j ï H t  ’̂ "‘1
f.n, — "S i" j — O* 1* 2 , tat (1.6 )

Now (1.5) becomes

! - % ^ À T W ' . '  V
, m+2

f. m \ j
=  X .  - 7

= =̂ 1 - "1 jSo"i^ + 4 ^ 2 7 7  ) (1.7)
Now consider an iteration formula of the form

^1+1 = ’'l - "l jlo"l^ ^3 O-G)
(1.8) will be useful only if the Y  ̂*s are easily calculated.
We have Y^ = 1 by (1.6) and by differentiating Y(x) we obtain

T +1 ( ̂  °2 ^J-1 “ ^j-l) * ^ dx ^ ( ^^^1(1.10)
f. ( j)

where Dj(x^) = Dj = — |— '̂ ■■'■■ (1.11)

Also by differentiating (1,11) with = 1,
°J = Dj.i H- Dj.^- Dj- = i  Dj(x) I X = (1.12)

13
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N O W  ï i  =  I  D g

^ 2 = 3  - I  °2 >̂  =  3 - i  ( °3  '
and by looking at (1 ,10) and rewriting (1 ,12) as

“ j-l’ = °J - °2 ° 3-l
we see that Y ̂ is a polynomial in Dg, , ,,,, D .

Thus, the evaluation of (1,8) reduces to the evalua
tion of u^ and the D^ * s.

Subtract (1.8) from (1,7) to obtain the error,

"1+1 = T - ^1+1 = 4 = ^  <’C )•
As before f^ = f (z^) = f(x^) - f ( f ) = (x̂  ̂ ” f) f ' ( t )̂ , 
since Ç is a zero of f(x), where ^  ̂ is between ^ and x^. 
Then

"1+1 = T5&TT I (1)} "i“""
Since ^ is a simple root of f(x) = 0 the term in braces 
is bounded in some neighborhood of X » The order of (1,8) 
then is (m+2 ) provided the method converges.

Let us consider the special case when m = 0; hence 
the order is two. Then

f(Xi)
^1+1 = ^1 - "l = ^1 -

which is the Newton-Raphson method of iteration. Geometric
ally, X i s  the intersection of the tangent line f*(x^) 
with the x-axis.

As m increases then so does the order, but in each 
case we must evaluate higher and higher order derivatives. 
Thus the usefulness of this class of methods is dependent

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



on the complexity of f(x), I.e., how hard is it to evaluate 
higher order derivatives.

Another one-point itérâtional method is that called 
the "first-order” iteration method. The principle of the 
method is to express the equation f(x) = O in the form

X = g(x) (1.14)
so that any solution of (I,l4) is a solution of f(x) = 0.
Geometrically a root of (1.14) is a number x = f for which
the line y = x intersects the curve y = g(x). The itera
tion formula then has the form

and it can be shown that if the form of (1.14) is chosen 
correctly and we have an initial approximation which is 
"close enough" then the method will converge with order 
one. In other words equation (1.14) may be written a 
variety of ways, depending on f(x), but each way does not 
necessarily lead to convergence.

For example, consider f(x) = x  - x - 6 = 0 ,  which 
has as roots 3 and -2, Then (1.14) may assume any of the 
following forms :

1) X = x^ - 6

2) X = 1 + I

3) X = + /x + 6
If form 1) is used neither root is found, form 2) will 
give us the root 3 , while form 3) will yield both roots.

15
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Form 1)

Form 2)

-  X

Form 3)

Figure 4 
16
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The three forms are Illustrated in Figure 4.
As a guide, Newton's method should be used whenever 

f*(x) is easily calculated. If this is not possible the 
secant method should be used. If neither of these methods 
is readily applicable, then try a method with convergence 
of order one.

In the methods reviewed thus far T has been assumed 
to be a root of multiplicity one of f(x) = 0 .  Suppose 
now that ^ is a root of multiplicity r > 1 of f(x) = 0 
and that we desire an iteration method whose order of con
vergence is independent of the multiplicity of the root. 
Consider u(x) = . No matter what the multiplicity
of t of f(x), u(x) has ^ as a root of multiplicity one. 
The roots of u(x) = O are then identical with the roots 
of f(x) = O except they all are simple. Therefore we re
place F(x) by u(x) in any method developed thus far and 
we retain the order of convergence. Newton's method, for 
instance, becomes

u(x, )
X .  =  X ,  -  — —

f(x.) f*(x.)
=  X -  -       - -

[f'(x^)]^-f(x^)f"(x^)

The order again is two but note the necessity of the 
evaluation of the second derivative of f(x).

In programming these methods it is necessary to "tell" 
the computer when to stop the iteration. The criterion 
adopted was to stop the iteration when 1 “ ^i I ^

17
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where e Is small* As a further check on the convergence 
the value Is punched out and should also be negli
gible, This latter condition Is not a satisfactory cri
terion for stopping the iteration since for |f(x^+%)I ^ G 
it may be necessary that | “ ^i I G where e is less
than the smallest significant number carried in the arith
metic and hence the computer would never stop iterating.

Now we examine the following
Problem 1, Find a real root of the equation 

f(x) = sin X - x/2 = 0 
From the graph given below. Figure 5, we see that 
f(^) f(n) < 0, Therefore f(x) = sin x - x/2 has a real 
zero between ^ and rr. This problem was run using the 
Newton-Raphson, secant, "first-order" iteration, and divid
ing Interval methods. The programs and complete numerical 
results appear In the appendix. In each run e was chosen 
as ,1 X 10~^, The real root sought was 1.895^9. As Ini
tial guesses ^ and tt were used, and as expected, the New
ton-Raphson method converged the fastest, requiring only 
five iterates. Clearly the derivative f*(x) is easily 
calculated. This problem was run by Ralston using the 
false-posltion method with the same e and same Initial 
guesses but here eleven Iterates were required.

Problem 2. Find a positive real zero of the function 
20f(x) = X - 1 using the Newton-Raphson method*

From formula (1,13) it is evident that the larger

18
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-nr

\

Figure 5 
f(x) = sin X - X / 2 

the value of f*(x) the smaller is the correction needed 
to obtain the correct value of the root. This implies 
that the larger the value of f*(x) in a neighborhood of 
the root the faster the convergence, and in fact if f'(x) 
is small in this neighborhood the method would converge 
very slowly or fail altogether. We see by looking at 
Figure 6, that if the initial guess x^ is greater than 1 
the method should converge, but for 0 < x^ < 1 the most 
we could hope for is a very slow convergence. In fact 
with x^ = 0,5 the method has still not converged after 
50 iterates and x^^ = 2.123 x 10^, whereas with x̂  ̂= 1,5 
or x^ = 5.0 the method did indeed converge in twelve and 
thirty-six iterates respectively. Again e = .1 x lO” .̂

19
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- V

Figure 6 
f(x) = - 1

Problem 3, Find the real root of the equation 
f(x) = 2 -3 = 0 , i„e,, find the reciprocal of 3, using 
the Newton-Raphson method and the "first-order” iteration 
method. This problem illustrates the concept of order. 

The (i+l)st iterate using the Newton-Raphson method 
is given as

f(Xi)
^i+1 “ ^i " f ' (xĵ )

= x^ (2 3^1 )
Let our initial approximation be x.

= 0,3(1.1) = 0.33 
z. = 0.33(1.01) = 0.3333

0.3. Then

20
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Xi, - 0,3333(1.0001) = 0.33333333

Each iterate then doubles the number of significant fig
ures. The order of the Newton-Raphson method is two.

To solve this problem using the "first-order" itera
tion method we rewrite the equation ~ - 3 = 0 in the form 
X = -X + 1). Thus

^i+1 “ ^("^i
Let = 0.3 once again, and we obtain the sequence of 
iterates,

{ 0.3, 0.35, 0 .325, 0 .3375, 0 .33125, 0.33^375, ... \
In this case the sequence oscillates about the root but 
the sequence is converging to the root. The order of the 
"first-order" method is one.

21
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Chapter 2
The methods of Chapt. 1 for finding the real roots 

of transcendental equations are used for finding the real 
roots of polynomial equations. With some modifications 
certain of these methods may be applied to the location 
of complex roots. However, the problem of finding the 
zeros of polynomials, both real and complex, arises so 
frequently that special methods have been developed to 
find them.

We consider the general polynomial equation of the 
n—  degree

P^(x) = a^x^ + a^x^ ^ + ... + a^_^x + a^ = 0 (2 .l)

where the coefficients â ,̂ i = 0 , 1 , ..., n are real num
bers, a^ ^ 0 , and x is a complex variable.

The Newton-Raphson method of Chapt. 1 can be modified 
so that it may be used to find the complex zeros of poly
nomials. We have f(x) = P(x) so that the Newton-Raphson 
method has the form

P(x^)
U+1 = ^i " P' Cx7T— X- wrT%r—T t i — 1» 2,

where the initial approximation x^ is complex, x^ = a^+ ip^,
P]_ / 0.

then we can show that

22
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„ + V u
= “n -

P(x )
For and by substitution we have

A + iB
®n+l '*■ ^^n+1 " ®n ■*■ C + iDn. n

Rationalizing the denominator yields the desired result.
When using this method to find complex roots we must 

evaluate quantities such as (a + iP)^. This evaluation 
can certainly be accomplished using the binomial theorem. 
However it may be accomplished more readily by introduc
ing polar coordinates and using the relation 

(a + ip)^ = r^Ccos k 9 + i sin k 0) 
where a = r cos 0 and P = r sin 0 .

We now discuss a method, which under certain condi
tions, allows us to find both real and complex roots of a 
polynomial equation, without any a priori information about 
the roots. This method is called Graeffe's root-squaring 
method. The development given here parallels that pre
sented by Scarborough [7 , pages 223-2433.

Upon investigation we note that the method is most 
successful when the roots of the polynomial are all real
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and unequal. In addition, the method easily handles up 
to two pairs of complex roots and gives some valuable in
formation if the roots are real and of equal magnitude.
In practice, we would first find all of the real roots of 
the original equation by the root-squaring process of 
Graeffe. If we were to remove these roots by synthetic 
division and the order of the remaining polynomial were 
two or four, then the complex root pairs could be found 
by examining the quadratic factors given by the root- 
squaring technique.

If the order of the remaining polynomial was greater 
than four we could obtain the roots by applying another 
technique, e.g., the Lin-Bairstow method which is ex
plained later. This technique would be applied either 
to the original equation or to the reduced polynomial 
equation.

The principle of the root-squaring method is to 
transform the equation into an equation which has as its 
roots higher powers of the roots of the original equation. 
The roots of the transformed equation are said to be sepa
rated if the ratio of the magnitude of any root to the 
next larger is negligible in comparison with unity. The 
root-squaring process is continued until this separation 
of roots is obtained. When the process is programmed for 
a digital computer it is necessary to "tell" the computer 
how to recognize this separation.

24-
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Consider the general polynomial equation
P^(x) 1 (2 .2 )

If x^, %2 , ...» x^ are the roots of equation (2 ,2 ) we can
rewrite it in the form

(2.3)
Multiply equation (2.5) by the function (-l)^ P^(-x),

P^(x) = a^(x-x^)(x-x^) ... (x-x^) = 0

(-1)^ P_(-x) = (-1)nn ( - X - X . ) ( - x - X n )  . (-x-x^)

= a^(x+x^) (x+Xg) (x+x^)
to obtain

(x^-x^^) = 0 (2.(-1) P^(-x)P^(x) = a^ (x )(x -Xg )

Letting y = x^ in equation (2.4) we have
0 (x) = a^^ (y-x^^)(y-X2^) ... (y-x^^) = 0 

Clearly the roots of the above equation are the squares 
of the roots of the original equation (2.2). Thus, to form 
an equation whose roots atre the squares of the original equa
tion P^(x) = 0 , we multiply the original equation by 
(-1)^ P^(-x).

It is instructive to consider as an example the fourth 
degree equation

P^(x) = a^x + a^x + a2X + a^x + = 0
Now

(-1) P^(-x) = a^x - 3.2^ - a^x + â ^
Multiplying we have

(-l)^P^(-x)P^(x) = a^^x® - a^^

25
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By considering other examples we would note that the 
coefficients of the transformed equations are generated 
in the same manner whether the degree of the polynomial 
is even or odd. In both cases the odd powers of x vanish. 
The procedure can he performed schematically. We carry 
out the multiplication as follows :

^O ^1 ^2 ^5 â|_ ...
^0 -^1 ^2 —a^ a^ ...

2 2 ^ 2 2  ̂ 2
% -^1 +a^

+2a^a2 -2aia5 +2a2a^ ■235^5
+2a^a^

^o ^1 b2 ^5 •

(2.5)

The coefficients of the transformed equation are the sums 
h ^ , h^, ..., h^ of the several columns shown above. This
process is repeated k times to obtain an equation whose
roots are the 2k-^ power of the roots of the original
equation.

First let’s consider the case when the roots of equa
tion (2.2) are all real and unequal. Let the order of the 
magnitude of the roots be

I Xt I >  I X g  I >  ... >  I I1 £1 n
and let the final transformed equation, i.e., the equation 
in which the roots are separated, be

26
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Q ( x ) = b  ( x ™ ) ^  + b. (x^)^""^ + ... + b  . (x^) + b  = 0 (2.6)o X ii"“X n
The roots Xĝ ,̂ ...» x^^ and the coefficients
b^, b^, ...» b^ of equation (2 .6 ) are related as follows;

"g—  = “ (x^^ + ^2™ ^ * * * ^n^^ o
Tc m m

= ...
^1 ^1

% ' -1% “ + -1% "  - • • • - - A n ” + -2“-5“ - • • •

+ ^n-1 n̂°̂
x,“ Tc ^ ^ m ^ m

. x , % - ( l  + ^  + ^ +  ... + ...
2 2 ^2 -X.̂

+ )
X  m X  mXi Xg

^  = - (x^°^xg^x^^ + x^^X2^x^“̂ + . . . + x^^xg^x^^
o

+ X t X•̂jr ^ + T T ^ X ^ X ^ )1 ^ 3 ^ 4  ' ^n-2^n-l n
_ m m m m

X5 ^3 ^3 ^2

x “ x ^ ^ x ^ x ^. ^n . . ^n-2 ^n-1 ^n ^

= (-1)“ x /  ... x /
o
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X p “  X , ”

Since the roots are separated the ratios — —  * — —  , ...
Xi

are negligible and we have the new relations

  ^  (-1)^ Xp^ ... Xo
By treating the above approximations as equations we can 
divide each of these by the proceeding equation to obtain

^2 ^  „ m ^3 ^  „ m ^  m ^n
¥ 7  -  ~^2 b %  ^5 • • • b T T  -  -""k * • * 5— T  -  -X (2.7)1 k—1 n—1 n

b.
Using equations (2.7) and the equation y=- -x,°^ we have

othe linear factors
b x.^ 4- b. O b-|Xp”̂ + bp 0 . .. b„ .x^^ + b 1= 0 0 1  X X <c d. n—X n n

We see, therefore, that the root-squaring process has broken
up the original equation into n linear factors from which
the approximate roots can be found with relative ease. We
have in fact

Take the logarithm of both sides and multiply by —  to get
log Ix^l -  (log Ibĵ l - log Ib̂ _̂̂ I ) 

l(log Ibĵ l - log l'bjj._il)or
mix̂ l̂ e

To determine the sign of x^ we substitute into the original 
equation (2 .2 ).

We now ask the question how many root-squarings are

28
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necessary in order to insure that the eqs. (2,7) are in
deed valid. Suppose an additional root-squaring is per
formed on Q ( x ) to obtain the equation

î^(x) . . 0

whose roots are x^™ , Xg , ...» XT™ . With the additional
root-squaring we have separated the roots even further than 
before,
Now

b^ ^  (-1)^ ... x^°^

from our known relations between the coefficients and the
  2roots of a polynomial equation. We have b^ = b^ direct

ly from the root-squaring process. Therefore

\  %  (-1)'^ ... (Xĵ “ )^ h /  ~  (-1)'^

By examining the form of (2.5) it is evident that
- b^ , bg "A: bg , ...» and ^  (-l) b^ if the cross 

product terms in the root-squaring process are negligible 
in comparison to the squared terms. In this case further 
root-squaring is useless. It is possible that the coef
ficients will become "too large" for the computer before 
separation occurs. The programmer must provide a means 
for recognizing and allowing for such cases.

Graeffe*s method was applied to several polynomial 
equations, all of whose roots were real and unequal. Com
plete numerical results are given in the appendix. This 
program and any further programs use eight-place arithmetic

29
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unless stated otherwise. For the benefit of the reader 
we list the polynomial equations to be solved, their ac
tual roots, the approximate roots given by the root-squaring 
method, the number of root-squarings performed (RSP), and 
the functional values of the approximate roots. In each 
case the cross product terms became negligible which in
dicated that the criterion for separation was satisfied.

EXAMPLE 1. P^(x) = x^ - 2x^ - 5x + 6 = 0
Actual roots : x^ = 5, X2 = , x^ = 1
Approximate roots: x^ = 3.0000000, Xg = -1.9999998,
x^ = 1.0000000 
ESP: 5

f(x^) = 0 , f(xg) = .000003 , f(xz) = 0
EXAMPLE 2.
P^(x) = 1.23x^ - 2,92x^ - l,6lx^ + 1.73x^ + 2 .94-x

- 1.34 = O
Actual roots : unknown
Approximate roots : x^ = 4.0657071 , X2 = -2.9916832,
X3 = 1.9387274 , x^ = -1.0284223 , Xc = .044463368 
ESP: 5

f(x^) = .0024924 , f(x2 ) = .001363 , f(x^) = .0000202 
f(x^) = -.000008 , f(x^) = 0.00000 

The sum of these roots is 2,04879 whereas it should be 
2.52 / 1.23 = 2.04878

EXAMPLE 3.
P^(x) = x^ - 5x^ + 9.35x^ - 7 .75OX + 2.4024 = 0 

Actual roots: x^ = 1.4, X2 = 1.3, x^ = 1.2, x^ = 1.1
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Approximate roots: x^ = 1.40000l6 , Xg = 1.2 999978
= 1.2000007 , Xĵ  = 1.0999998

RSP: 7
f(x^) = 0, f(Xg) = .0000001, f(x^) = 0, f(x^) = O 
EXAMPLE 4. P^(x) = x^ - ].06x^ + 9.1211x - I.06II06 = 0

Actual roots: x^ = 1.03, x^ = 1.02, x^ = 1.01
Approximate roots: x^ = 1.0299843 , Xg = 1,0200309 ,

x^ = 1.009984?
RSP: 10

f(x^) = 0 , f(Xg) = 0 , f(x^) = 0
EXAMPLE 5. P^(x) = x^ - 3-006x^ + 3.0l2011x - I.OO60IIO6 = 0

Actual roots: x^ = 1.003» Xg = 1.002, x^ = 1.001
The polynomial actually examined in example 5 was 

P^(x) = x^ - 3.006x^ + 3.OI20IIX - 1.0060110 = 0, because 
the program was written for eight place arithmetic, i.e., 
the constant term of P^(x) was rounded to eight significant 
figures. The approximate roots listed then are actually 
approximations to the real roots of P^(x).

Approximate roots: x^ = 1.003^118, Xg = I.OO27331,
x^ = 0.99985752
RSP: 11

f(x^) = O, f(Xg) = 0, f(x^) = O.
Since the functional values are all zero we conclude that 
the roots so obtained are quite close to the actual roots 
of P^(x).

We now consider the case when the polynomial equation
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has some complex roots and the equation cannot then be 
expressed as a product of linear factors with real coeffi
cients, Instead the factored form of the equation is a 
product of real linear and real quadratic factors.

Consider for example an equation having two distinct
i 0 — 4 Qreal roots, x^, x^, and a pair of complex roots re , re ,

such that |x^| > r > |x^j. Then the equation having these
as roots is

(x-x^) (X - re^®) (x - re“^®) (x-x^) = 0
An equation whose roots are the mth powers of the roots
of this equation is

(y-x “ ) (y - (y - A ' i ”®) (y-x “ ) = O
or ^

y'* - (Xĵ “ + + r“e-^“® + Xj^jy^

+ (x̂ =- r“ e^"® + x^“ r“ e'^”® + ...)y^

- ( x /  r“ e^”® r“ e'^”"® + ...)y

+ (x^“ r” e^“® r” e'^""® x^” ) = O 

Taking out x̂ °̂ , x^^r™, x^™r^*°x^™ and neglecting
X  "  X  “

the ratios — — , — ^  (the roots being separated)
x /  x̂ :" r"'

we have
- x^™y^ + 2x^°^r^cosm©y^ - x̂ ^̂ r̂̂ ŷ + x̂ °̂̂ r̂ °̂ x̂  ̂= 0 (2.8)

We now separate equation (2,8) into quadratic and linear 
factors from which we can approximate the real and complex 
roots, i.e..
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0

-x.^r^^y + Xt^p'^Xo"" ^  0m 2m m ^  
■1 ^ ^3

Suppose we apply the root squaring once more.

th m„2m2x, r"̂  cosme -X- X

2m 4m 2m2 m 4m4x. ̂ ^r^%os^me2m
- X - X

2m 2m2x, r^^cosm© -2x cosm©

2x

2 m 4m 2m 4m„ 2m4x^^°^r^%os^m©th2m - X - X

2m_2m-2x

Note that all the doubled products in the first row are
2not negligible. Furthermore since 2cos m© - 1 = cos2m© we

O  O  Yfi O  Yrtcan rewrite the final coefficient of y as 2x^ r cos2m©.
Thus the final transformed equation is

y^ - x^^°^y^ + 2x^^°^r^°^ cos2m© y^ - x^ r ~y2m^4m^

2m 4m . 2m+ x^~ r — x^ 
th

=  0
Comparing this with the equation for the m—  roots we see 
that the root-squaring has doubled the amplitudes of the 
complex roots. Thus the cosine of the phase angle may change 
signs frequently and this may be used to indicate complex
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roots. However the presence of complex roots is probably 
most easily detected by the fact that the doubled cross- 
product terms of the first row do not all disappear.

Let us consider a couple of typical examples and use 
the relationship between the roots and the coefficients 
of an equation to aid us in the computation of the complex 
roots. As written, the program gives only real roots and 
not complex roots. The program does however give the neces
sary quadratic factors and with additional programming it 
would carry out all the operations done by hand in the 
following two examples.

EXAMPLE 6. Find all the roots of the equation 
3 2x^ - 3x + 4x - 5 = 0. The root-squaring stopped with

the 32—  power of the roots, and the original equation
has been broken into one linear and one quadratic factor. 
From the linear factor we have x^ = 2.2134112

In order to obtain the complex roots we recall that
2 10 —10 the roots x -+• bx + c = 0 may be written as re , re

Then
x^ -k bx -t- c = (x - re^®)(x - re~^®)

= x^ - r(e^® + e"^®)x + r^
2 2 

=  X  - 2r C O S 0 X  + r
i.e., the absolute term in the quadratic is equal to the
square of the modulus of the complex roots. Then we may
readily evaluate the modulus r.

As the quadratic factor in the above example we have
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a) 1.1015091 X 10^ - 5.8707920 X 10̂ '̂ y + 2.3283064 x 10^^= 0,
The modulus of the complex roots of (a) is actually the 32̂ *̂  
power of the modulus of the complex roots of the original 
equation.
Therefore

_64 _ 2.3283064 x 10^^
1.1015091

log r = 11 .t _.366g8_- ,.04218

=  . 1 7 6 9

or r = 1.503.
Now let the complex pair be denoted by u + iv. The 

sum of the roots of the given equation is -(-3/I) = 3.
Thus

x^ + 2u = 3 

u  =  1 - --

= .3933 ,

and V = J r - u

= /2T259 - .155

=  1 . 4 5

The complex roots are then .3933 ± 1.^5i.
In the following example we illustrate the applica

tion of the root squaring process to an equation with four 
complex roots.

EXAMPLE 7. Consider the polynomial
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P^(x) = + 3x^ - x^ - 7x^ + lOx^ + 14-x - 20 = 0
which has the roots 1, 1 + 1 ,  -2, - 2 + 1 .

We apply Graeffe*s method to get approximations to 
the real roots of the above equation. The process was 
stopped after the sixth root-squaring since another root- 
squaring would have produced coefficients that would be 
too large for the computer. In this problem we obtained 
the real roots x^ = -2.0000084 and Xg = .99999951» with 
f(x^) = .252 X 10"^, f(Xg) = -.15 X 10”^. By synthetic 
division we reduced the original polynomial to one of 
order four with only complex roots.

We obtained
P^(x) = x^ + 1.9999911%^ - 1.00000l4x^ - 1.9999928x

+  10.000001 = 0 
We performed six root-squarings on this equation and this 
resulted in the two quadratic factors

y^ - .7950482 x lO^^y + .54204046 x 10^^ = 0

and .54204046 x 10^^ y^ + .46563726 x 10^^ y + .10000064
X 10^^ = 0

From the first quadratic factor
r^^^® = 5.4210086 x 10^^,

or log r^ = = .349485,

or r^ = 2.236 (r̂ ^̂  = 5)

Using the second quadratic factor we obtained
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^ 128 _ 1 0 ^
9 ~ , li'U5.4210086 X 10

or log rg = = .150515

or rg = 1.414 (r^^ = 2)
Let the complex roots be Ug ± , and since
the sum of the roots Is approximately -2 we have 

2u^ + 2U2 = “2
or + U2 = -1 (2.9)
The relationship between the coefficients and the recipro
cals of the roots may be used to obtain

 1 +    +  i—-—  + - ^ 1Ui+lVi u^-lv^ Uj+ IVg Uj-lVj 5

Rationalize the denominators of the complex terms and, 
since u^^ + = r^^ , U2  ̂ + ^2  ̂ = r2  ̂ , we have

2u, 2Up .

^^1 1or + Ug = ^ (2.10)

(2.9) and (2,10) may be solved simultaneously to obtain 
u^ ~ —2, U2 — 1

v^ — y = y 5-4 = 1,Now

Vg = = 1
and hence the two pairs of complex roots are 

-2 + i and 1 ± i
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If more than two pair of complex roots occur the 
difficulties encountered in using Graeffe's method are 
nearly insurmountable. Hence, in the case of three or 
more pairs of complex roots we must turn either to the 
Newton-Raphson method for complex roots or to the Lin- 
Bairstow method which is discussed later. We will find 
that the Lin-Bairstow method does not require the use of 
complex arithmetic to find the complex root pairs of poly
nomials .

We now consider the effectiveness of the Graeffe 
method for the solution of polynomial equations whose 
roots are multiple real roots. Since such roots are equal 
in magnitude, no amount of squaring would separate them.
The original equation can be broken down into linear equa
tions for the real and unequal roots and quadratic equa
tions for pairs of real roots of equal magnitude. The 
presence of two real roots of equal magnitude is noted by 
the nonvanishing of cross-product terms. These cross- 
product terms, in this case, approach a value equal to 
half the squared term.

The possible real roots given by our present computer 
program are arrived at by considering only the linear frag
ments, This program may not be used to find real roots of 
equal magnitude, since we must consider quadratic factors. 
The program does however give the coefficients of the qua
dratic factors and in the following examples we worked with
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these factors in determining the roots. The computer pro
gram could readily be modified to determine real multiple 
roots o

We consider the following
EXAMPLE 8. - 4x^ - ,75x^ + l6.25x - 12.5 = 0

has the roots 2.5, 2.5, -2., 1.
The process was stopped after six root-squarings 

since another root-squaring would have made the coeffi
cients too large for the computer to handle. The final 
equation should be broken into one quadratic factor and 
two linear factors. The quadratic factor is easily de
tected by noticing that the second coefficient of this 
final transformed equation, .5877 x 10^^, is just half

14the square of the corresponding coefficient, .1085 x 10 ,
of the proceeding equation. Hence the quadratic factor is 

y^ + .5877 X lO^^y + .8636 X 10^^ = 0 
and since the roots are known to be equal and since their 
product is equal to the constant term of the quadratic, 
we have

(x^)^^ = x^^® = .8636 X 10^^
Using logarithms we get x = |2.5| and by testing the 
values 2.5 and -2.5, we see that x^ g - 2.5. The approxi
mate root +1, with a functional value of zero, is given us 
by one linear fragment, while the other linear fragment 
gives us + .5857, neither of which has a negligible func
tional value. This presents no problem however. We Just
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use the relationship between the coefficients and the 
roots of the original equation, i.e., + X2 + + x̂^̂
= -(-4/1) = 4
or x^ = -2c As a check we have

x^X2^^x^= - 12.5 = -12.5/1
EXAMPLE 9c P^(x) = x^ - 4.5x^ + 5*5x^ - 2 = 0 has

the roots 2, 2, 1, and - ^ .
Seven root-squarings were performed. The quadratic 

factor is + .6806 x lO^^y + .1158 x 10^^ = 0 since
.6806 X 10^^ is just half the square of .3689 x 10^®.
As above we have

^1,2 ^
and -.5» where f(-.5) = 0, is given by a linear fragment.
We have + .707 as the other approximate root, but again 
the functional values are not negligible. In this case 
Xi + X2 + x^ + X4 = 4.5 or x^ = lo

EXAMPLE 10.
P^(x) = x^ + 1.5x^ - 2.5%^ - 6.5x  ̂ - 4.5% - 1. = 0 

has the roots 2., -1, -1, -1, and - ^ .
In this example we are examining a polynomial equa

tion with three roots of equal magnitude. No quadratic 
factors are possible in this case but Graeffe's method is 
still of great value.

Eight root-squaring were performed. As approximate 
roots we obtain x^ = 1.9999999 , x^ = -1 , x^ = -.99571775, 
with f(x^) = -.75 X 10“  ̂ , f(xg) = 0, f(x^) = .1 X 10“ .̂
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Now the three approximate roots could be removed from the 
original equation using synthetic division and the remain
ing two real roots could be approximated by solving the re
sulting quadratic equation.

Hence, we can safely say that the Graeffe method gives 
much valuable information about the roots of polynomial 
equations regardless of the distribution of these roots,

Carvallo [Resolution Numérique des Equations, page 24] 
has extended Graeffe’s method to the solution of trans
cendental equations by expanding the equation into a Taylor 
series, neglecting the remainder term, and then treating 
the resulting polynomial as an algebraic equation.

A more general method of finding the complex roots of
a polynomial equation is the Lin-Bairstow method. The

2procedure is to find a quadratic factor x + ax + 3 of the
polynomial by an iterative process. If we divide P^(x) by

2an initial guess at our factor, say x + rx + s, we obtain, 
as a quotient, a polynomial Q^_g(x) of degree n-2 and a 
remainder Rx + S, We therefore write

= J o  v " ’’' = rx + s)

+ Rx + S (2.11)
It follows then that

b, + rb^ 1 o
ag = bg + rbj_ + sb^ (2.12)
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\  + =^k-2

^n-1 = » + "■'’n-2 + ®̂ =n-3
®n = S + sb^_2 

This is easily seen by multiplying out and matching coef
ficients or by considering the synthetic division scheme 
for a quadratic factor given below:

®2 ®'3 • • • ^n-2 ®n-l
sb^ sb^ sb^.^ sb^_3 sb^_2

rb^ rb^ rbg_________ rb^_3 ^ V z ___________

bg bi bg b^ ... b^_2 ® ®
By setting b_^ = b_^ = 0, b^_^ = R, and b^ = S - rR (2,13) 
equations (2,12) can be written as

\  ^ ®-k “ ^\-l " ®\-2 k = 0, 1, 2, n (2.14)
R and S then are functions of r and s and we now try to
solve the simultaneous nonlinear equations

R(r, s) = 0  and S(r, s) = 0
by an iterative procedure. If r and s satisfy the system

O mmm -mm.then X + rx + s is the factor of P^(x) which we are seek
ing, To find r and s we suppose that r and s are such that 

r = r -+- A r
s = s + Z4 s

where A  r and ù>. s are small. Let us use Taylor's expan
sion for functions of two variables and neglect second and 
higher powers of A. r and A s ,  to obtain
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R(r,s) + ■ A  r +  0"^ As « R(r,s) = 0

S(r,s) + A r  + A  s « S(r,ïï) = 0 (2.15)
We now find the partial derivatives in equations (2.15) and 
solve these equations for A r  and A  s.

Differentiate equation (2.14) to get

(2.16)9 r k-1 " 9 r 9 r

4 % - - -
We now have the

^ 9 ^k+1THEOREM 2.1   = — ' for k = 0, 1, ..., n-1
PROOF, Since = a^, it is a constant function of r and 

s; hence from equations (2.16) we have

= 0 ^""1- ^9 r  8
9 b^ 3 bg 9_ _ ^ ______ —h — r — —b9 r o 9 s o 9 8 o

—  — - bn - r — —- — - b_ - r — —  - s -----d r  1 9 r 9 s 1 9 s 9 8

= -b, + rb_ = -b_ + rb_1 o 1 o
Thus the theorem is true for k = 0, 1, 2.

Suppose that the theorem holds for all k up to m-1.
Then by equations (2,16)

^  ̂ m-1 ^^m-2b„ n — r    '~z  — s9 r m-1 9 r ^  s
■u ^ ^ \ - l  _ ^^m+1

" ^ 9 s  " 9 s 9 8
43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and thus it holds for m.
^ ^ k + 1  e \

D E F I N I T I O N  2 . 1  ( k =  0 ,  1 ,  n - 1  )

O n e  m a y  n o w  m a k e  u s e  o f  D e f i n i t i o n  2 , 1  t o  w r i t e  a

s i n g l e  r e c u r r e n c e  r e l a t i o n  i n  p l a c e  o f  e q u a t i o n s  ( 2 . 16 ) ,

I . e . ,  <=k =  \  -  ® ° k -2 ( 2 . 1 7 )

a n d  i n  p a r t i c u l a r  o  -, =  0  a n c  c „  =  h _ .  T h u s  w e  n o t e  t h a t
— J. o  o

t h e  c ' s  a r e  o b t a i n e d  f r o m  t h e  b ' s  i n  e x a c t l y  t h e  s a m e  w a y  

a s  t h e  b ' s  w e r e  o b t a i n e d  f r o m  t h e  a ' s .

U s i n g  e q u a t i o n s  ( 2 . 1 3 )  a n d  T h e o r e m  2 , 1  w e  h a v e

 ̂= Vi
9 r  ^  ^ ^ n - l  _

a r  0 r  ~  “  n - 2

- ^ - R  =  g - ^ n - 1  _  _

a s  a s  "  ° n - 3

a n d

S = + "■'’n-1

=  - | ^  +  +  r  =  -  O n - 1  -  "■ ° n - 2  +  V l

+  r  - 1 - ^  =  -  o  .  -  r  o .
B s  -  a s  a s  -  ' " n - 2  ^  '"n-3

W e  c a n  n o w  s o l v e  f o r  A  r  a n d  Ù& s ,  a n d  i n  f a c t ,

° n - 2  +  ° n - 3  =  V l

( ° n - l  -  V l >  ' ^  "■ +  ° n - 2  =  " n

H a v i n g  s o l v e d  f o r  A r  a n d  A  s  w e  a d d  t h e s e  v a l u e s  t o  r  

a n d  8  t o  i m p r o v e  t h e  e s t i m a t e s  f o r  r  a n d  s  ,  T h e  p r o 

c e d u r e  i s  r e p e a t e d  u n t i l  a  q u a d r a t i c  f a c t o r  x  +  r x  +  s  i s
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found with sufficient accuracy; then two roots of the given 
equation are determined by setting x + rx + s equal to zero.

The development given here can be found in Kunz [ 3 , 
pages 3^-37]-

The computer program as written below finds all of the 
roots, both real and complex, of a polynomial equation. The 
procedure is to find a quadratic factor of the original equa
tion, remove this factor, and then search for a quadratic 
factor of the remaining polynomial of reduced degree. This 
process is repeated until the remaining polynomial is of 
degree one or two. In either case the roots of this final 
polynomial are easily extracted.

Again, some examples were run using this program.
The usual choices for r and s were both zero, and in only

2one case did the procedure fail to converge with x as our
2trial factor. In the case of nonconvergence, x + 2x + 2 

was used as the initial guess, and the method then converged. 
When it converges, Bairstow's method has the characteristic 
rapid convergence of the Newton-Raphson method.

In the search for each quadratic factor the iterative 
procedure was continued until ) -  r̂ | < e and also

- ŝ i < e, where again e is chosen to insure a pre
scribed accuracy in the approximate roots. The e used in 
each example is given in parenthesis following the statement 
of the problem,

EXAMPLE 11. P^(x) = x ^ - x - l = 0  (,lx lO"^)
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2In this example we chose x as the trial quadratic 
factor, i.e., r = s = 0. The matrix of coefficients for

p
T and s was singular. Therefore we used x + 2x + 2 

as the trial factor and then arrived at the necessary qua
dratic factor. The approximate roots are 2 ~ “*^^235900
+ .562279501 and x^ - 1.3247180, f(x^) = 0, x^ + x^ + x^ = 0
as it should be.

EXAMPLE 12.
P^(x) = x^ - 17x^ + I24x^ - 508x^ + 1035x - 875 = 0 

{.1 X 10~3)
Actual roots: 2 " ^ ^3 4 ” 3 ± 4i, x ^ =  7.
Approximate roots: ^1 2 “ 2.0000004 + .999999451

x̂ ĵ̂  = 2.9999872 + 4.00000341, x^ = 7.0000260 
f(x^) = .02425 

EXAMPLE 13 (a)
P^(x) = 3.26x  ̂+ 4.2x^ + 3.08x^ - 7.l6x^ + 1.92x

-  7 .7 6  = 0  (.1 X 10“ ^ )

This problem is taken from Scarborough [ , page 2571.
He gives as answers x^  ̂= - .051040 + .9^2121, x^ = I.06393
Xj^ = -1 .3 1 3 2 7 ,  x ^ ^ ^  = .1 7 5 7 1  ±  1.372141
Approximate roots: ^1 2 “ -.05609II80 + .941834901,

Tj = 1.0639999, x^ = -1.3182197, x^ X = .18320110
± 1.36853891 , f(x^) = .0000427, f(x^) = -.0000066

The agreement in the above example is not too good, yet
the sum of the approximate roots is .4 x 10 -(0/1)

EXAMPLE 13 (b) (.1 X lo"?)
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The same problem was run with a smaller epsilon. In 
this case the approximate roots are

^1,2 " *0560911^0 + .94l83495i, = 1.0639989
= -1 .3182197, = .18320156 + 1.36853861

f(x^) = -.0000017, = - . 0 0 0 0 0 6 6

EXAMPLE 13 (c) (.1 X 10“^)
We now used sixteen place arithmetic and the original 

epsilon. The approximate roots, truncated to eight figures,
are x^^2 = -.056091172 + .941834-931, Zo = 1.0639998

x^ = -1.3182197, = .18320110 + 1.36853891
f(x^) = 0, f(x̂ )̂ = -.0000066

EXAMPLE 14.
Py(x) = x^ - 2x^ - 3x^ + 4x^ “ 5x + 6 = 0  (.1 x 10”^)

This is an example in Scarborough and his answers rounded 
to three or four decimal places are

^1,2 " *3028 + 1.0181, x^ = 1.1080, x^ = -1.9625
^5,6 = -*6445 ± 1.1181, xy = 1.5379

The approximate roots rounded to the same number of signifi
cant figures are g = .3046 + .99191, x^ = I.IO80 
x ^  =  - 1 . 9 6 2 5 ,  x ^ ^  =  - . 6 4 6 3  +  1.1171, X y  =  1.5379

f(x_) = .0000072, f(x^) = .0000111, f(Xy) = .0000115 
Note the exact agreement of the real roots.

EXAMPLE 15.
Pg(x) = X® + 20.4x"̂  + 151.3x^ + 490x^ + 687x^ + 719x^

+ I50x^ + 109x + 6 . 8 7  = 0 (.1 X 10"^)
This also is an example in Scarborough and as answers
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he gives
^1,2 ^ *002818 + .4131, = -.0674, x^ = -7.78

X5,6 " -'^^78 + 1.3221, Xy Q = -5.604 + 1.8911
The approximate roots given by the Bairstow method

are
x^^2 = .002829 ± .4131, x^ = -.0674, x^ = -7.79 

^5 6 ” ”06678 + 1.3221, Xy g = -5.608 + 1.8751 where 
f(x^) = ,0002568 and f(x̂ )̂ = -.0520949. The agreement In 
this example Is quite good, both for the real and complex 
roots,

The last example has three pair of complex roots.
Yet no difficulties were encountered In finding approxima
tions to the roots. This same problem is unmanageable with 
Graeffe*s method.

A few examples run with Graeffe's method were rerun 
using the Lin-Bairstowmethod. In order that a comparison 
could be made. In particular, examples 6, 7, and 4 were 
rerun. The final results are given below with computer 
time In seconds (TIS) Included.

EXAMPLE 6 (b) Pg(x) = x^ - 3x^ + 4x - 5 = 0 (.1 x lO"^)
Approximate roots (Graeffe): x^ = 2.2134112, x^  ̂= .3933
± 1.451
TIS (Graeffe): 33.1
Approximate roots (Bairstow): x^ = 2.2134125» ^2 3 ' *3933
± 1.451

f(x^) = .0000045
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TIS (Bairstow); 14.5
EXAMPLE 7 (c)

P^(x) = + 3x^ - x^ - 7x^ + lOx^ + l4x - 20 = 0 (.1 x 10~^)
Actual roots: 1, 1 + 1 ,  -2, - 2 + 1

Approximate roots (Graeffe): .99999951» 1 + 1 ,  -2.0000084,
-2 + 1
TIS (Graeffe): 9^.1
Approximate roots (Bairstow): 1, 1 + 1 ,  -1.9999998, - 2 + 1
TIS (Balrstow): 37.5

EXAMPLE 4 (b)
P^(x) = x^ -3.06x^ + 3.1211% -1.061106 = 0  (.1 X 10"^)

Actual roots: 1.01, 1.02, 1,03
The approximate roots In this example are rounded to 

five significant figures.
Approximate roots (Graeffe): 1,0100, 1.0200, 1,0300
TIS (Graeffe): 44.0
Approximate roots (Balrstow): I.OO98, 1,0204, I.0298

f(1.0098) = -.0000001, f(1.0204) = 0 , f(1.0298) = 0 
TIS (Balrstow): 24.3

When seeking the complex roots of polynomials, It is 
frequently of Interest to determine the sign of the real 
part of the complex roots. The Lln-Balrstow method then Is 
certainly very useful as It not only gives the signs of the 
real and Imaginary parts but also approximates the magnitudes 
with favorable accuracy,

A polynomial In which a small change In a coefficient

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



may cause a significant change in one or more zeros is 
called ill-conditioned. By significant we mean either a 
change from a real to a complex root or a change such that 
the magnitude of a root increases appreciably. As a simple 
example the equation

OX - 8x + 16 = 0 has a double root x = 4,
p 4

X - 8x + 16,01 = 0 has complex roots 10*
The problem of determining the roots of ill-conditioned 
polynomials arises quite frequently in numerical work. The 
coefficients of these polynomials may arise from empirical 
data, in which case we do not know the exact value of the 
coefficients or we may know the exact value of the coeffi
cients but may find it necessary to round them when insert
ing them into the computer.

One coefficient of the polynomial in example 5 was 
rounded and we noted the presence of the unfavorable approxi
mations to the actual roots. In this case the change was 
not too extreme.

Ralston [6 , page 379] considered a more sophistacated 
example. The polynomial equation ~ (z+1) (z+2) ...
(z+20) = 0 has as roots -1, -2, ...» -20. We then consider 
?2Q(z) + 2”^^ z^^ = 0 and the roots are now -1, -2, -3, -4,
-4.999999928, -6.000006944, -8.007267603, -8.917250249, 
-20.84690810, -10.095266145 + 0 .6435009041, -11.793633881 
± 1.6523297281, -13.992358137 ± 2.5188300701, -16.730737466 
± 2.8126248941, and -19.502439400 ± 1.9403303471. In this
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example not only are the changes substantial but half of 
the roots become complex.

By using as many places of accuracy in the computer 
as possible the error from ill-conditioned polynomials is 
reduced. Example 5 was rerun using sixteen place arithmetic 
instead of eight. The approximate roots were truncated to 
eight significant figures. The results are given in 

EXAMPLE 5 (b).
P^(x) = x^ -3.006x^ + 3.012011X -1,006011006 = 0  (.1 X 10"^)

Actual roots: 1.003» 1.002, 1.001
Approximate roots (Graeffe): x^ = 1,0030000, x^ = 1.0019999,

x« = 1.0009999
ESP; 13

f(x^) = .69 X 10“^^, f(Xg) = 0, f(][_) = -.68 X 10"12 
TIS (Graeffe): 72.7
Approximate roots (Balrstow): I.OO3OO82, 1.0019908, 1.0010008
TIS (Balrstow): 44.0

The approximate roots are now satisfactory.
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Chapter 5
The real roots of n simultaneous nonlinear equations 

in n unknowns can be found by several methods. Two such 
methods will be outlined In this chapter. One Is a di
rect extension of the Newton-Raphson method for a single 
equation in a single unknown and the other Is based on 
the numerical solution of a properly chosen Initial value 
problem. Each method Is described only for the case of 
two equations In two unknowns, however, each method may 
be generalized to the case of n equations In n unknowns.

Let the given nonlinear equations be 
f(x, y) = 0

(3.1)
g(x, y) = 0 

where ( f » ̂  ) Is the solution.
If (x^, y^) Is an approximation to the solution and

h, k are the corrections such that

:l
+ k

then
f(xj^+h, y^+k) = 0

(3.2)
g(x^+h, y^^+k) = 0 

Assuming that f and g are sufficiently differentiable, we 
expand equations (3.2) about (x̂ ,̂ y^) using Taylor's series
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for functions of two variables. We have
f(x^+h, 7^+k) = f(x^,y^) + ^ kf^(x^,y^) + ...

(3.3)
g(x^+h, y^+k) = g(xj^,y^) + hg^Cx^^y^^) + kg_(x^,y^) +

If (xĵ , y^) is "sufficiently close" to the solution (f tV, ),
i.e., if h and k are sufficiently small, we can neglect 
higher order terms so that equations (5.3) become simply

f(xi,7i) + = °
(3.4)

g(x^,y^) + = 0
Using Cramer's rule to solve (3.4) for the approxi

mations h^, k^ of h and k we obtain

J(fl-Sl) 
provided j(f, g) / 0 where

j(fi,Si) = Sy(^i-yi> -

Then X2 = x^ + h^, y2 = ŷ  ̂ + k^ and (x2 , ^2  ̂ is the new 
approximation to the solution (Î , \  ), We expect (%2 , yg) 
to be closer to the solution ( T  , )  than (x̂ ,̂ y^). The 
iteration formula for the approximations to the roots then 
has the form

^i+1 = ^i ^i
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_ r -X- -«-T
-  -  [— jTfT5T-^i

where all functions involved are evaluated at (x^, yj_)« 
Ralston [ 6 , pages 348-350] extended this method to 

n equations in n unknowns.
Consider the following
EXAMPLE 1. Compute by the Newton-Raphson method 

two real solutions of the equations

>10^f(x, y) = X + 3 log.^x - y = 0
2g(x, y) = 2x - xy - 5x + 1 = 0 

(This example is taken from Scarborough C ].)
The PORTRAIT program and the corresponding computer 

results are given in the appendix . The iteration was con
tinued until I - x^l < e and 17̂ +̂̂  ” ^i^ G, where e 
is chosen to insure a prescribed accuracy in the approxi-

- 5mate roots. Eor this problem we let e = d  x 10 As 
an initial approximation to the roots we used (3.4, 2.2). 
The method converged in four iterates and gave as approxi
mate roots, x^ = 3.4874404, y^ = 2.2616242 where 
fCx^, y^) = ,0000128, gCx^, y^) = ,0000006, Another 
initial approximation (l,4, -1.5) was employed and again 
the method converged in four iterates, but this time to a 
different solution, Xg = 1.4588911» y2 = -1,3967658 where
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f(x2 > J2^ = «000013, g(%2 » 72^ = .0000002.
We recall that this method was applied effectively 

in the Lin-Bairstow method to find &  r and ^  s .
The "first-order" iteration method is also easily 

extended to simultaneous nonlinear equations. Bor a com
plete account of this extension the reader is referred to 
Scarborough [ 7 , pages 217-221].

We now consider a second method which is based on 
the numerical solution of initial value problems, which 
are solved quite easily on a computer. Suppose we are 
given the equation

f(x, y) = 0 (3.5)
To find a differential equation which has f(x, y) = 0 as 
its solution we proceed as follows.

We differentiate fCx, y) with respect to x, set 
this derivative equal to zero, and solve for ^  , i.e..

The general solution of equation (3.6) is f(x, y) = c, 
where c is an arbitrary constant. We impose an initial 
condition y(x^) = y^. That is, we chose a value x^ and 
substitute this value into the equation f(x, y) = 0. Equa
tion (3,5) is then reduced to an equation in one unknown, 
g(y^) =0, If the reduced equation is linear we can easily 
find y^, and if the reduced equation is nonlinear we use
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the methods reviewed in this thesis for the solution of
Therefore, if we have a system of nonlinear equations 

fĵ Cx, y) = 0
($.7)

fgCx, y) = 0
we can find the differential equations which have f^(x,y) = 0 
and fgCxiy) = 0 as solutions. To find an approximate real 
solution of (3,7), we produce the solutions of the derived 
differential equations by numerical methods, and see where 
they intersect (approximately). This gives us an initial 
approximation to the solution which can now be improved 
upon by using the Newton-Raphson method for two nonlinear 
equations,

EXAMPLE 2, Consider the set of simultaneous non
linear equations

f^(x,y) = xy - 6 = 0 
f2(x,y) = x^ - y"̂  - 11 = 0 

with a real solution (3, 2),
We form the appropriate differential equations

'^1 zd3T  ' T f ^ t r  = - Ï

“̂^2 3x2

with imposed initial conditions y^(x^) = ŷ ,̂ 72^^1^ ~ ^2'
Let the initial approximation for x be x^ = 2,5o
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1

Then y^(2*5) = 2.4, = (4.525)^ and we then pro
duce the numeric solutions, say hy Euler's method or the 
Runge Eutta method. This procedure is illustrated in 
Figure 1.

- 3

Figure 1

When we extend this method to three nonlinear equa
tions in three unknowns the problem becomes increasingly 
difficulto In this case we must find where three sur
faces intersect.
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EEî’EEENGES

The text, Iterative Methods for the Solution of 
Equations hy J, E, Trauh, Prentice-Hall Inc., 1964, con
tains a very extensive bibliography. Consequently, the 
following list of references will include only those 
papers dated after 1965. In addition, some texts which 
were found helpful are also listed.

TEXTS
1. S. D. Conte, Elementary Numerical Analysis, McGraw-

Hill, 1965
2. A, S. Householder, Principles of Numerical Analysis,

McGraw-Hill, 1953
3. K. So Kunz, Numerical Analysis, McGraw-Hill, 1957
4. S. So Kuo, Numerical Methods and Computers, Addison-

Wesley, 1965
5. Ao M. Ostrowski, Solution of Equations and Systems

of Equations, Academic Press, i960
6. A. Ralston, A First Course in Numerical Analysis,

McGraw-Hill, 1965
7. J, B, Scarborough, Numerical Mathematical Analysis,

John Hopkins Press, 1962
8. J. Todd (Editor), Survey of Numerical Analysis,

McGraw-Hill, 1962 (Also contains an extensive 
bibliography)
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c THE NEWTON-RAPHSON METHOD
C
C WHEN THE DERIVATIVE OF THE NUMERICAL EXPRESSION FIX) = 0 CAN BE
C FOUND THE REAL ROOTS OF THE EQUATION CAN BE COMPUTED BY THE
C NEWTON-RAPHSON METHOD
C
C MUST HAVE A SUBROUTINE FOR F AND DXF* THE DERIVATIVE OF FIX)
C
C XO IS THE APPROXIMATE VALUE OF THE DESIRED ROOT
C XO IS PREDETERMINED AND IS READ IN
C
C RT IS THE EXACT VALUE OF THE ROOT
C
C AN EPSILON CRITERION MUST BE SATISFIED AND EPS IS READ IN
C
C THE LARGER THE VALUE OF D X F I X ) IN THE NBHD. OF THE ROOT THE
C FASTER THE CONVERGENCE
C t h e  NEWTON-RAPHSON METHOD WILL FAIL IF DXFtX) = 0 IN THE NHBHD OF
C THE ROOT
C
C JANUARY 1966 CARD
C

DIMENSION IDI15)
1 READ 10 1 . ID 

PUNCH 102.ID 
READ 103.XO,EPS 
PUNCH 104.X0.EPS 
PUNCH 105
ITER = 1

2 CALL DOIXO.F.DXF)
RT = XO-F/DXF 
PUNCH 106,ITER,RT 
IF(ABSF(RT-X0)-EPS)3,3,4

4 XO = RT
ITER = ITER+1 
IF{ITER-50)2,2,5

3 CALL DOIRT.F.DXF)
PUNCH 107,R T,F
GO TO 1

5 PUNCH 108 
GO TO 1

101 FORMAT(15A2)
102 FORMAT(41HEVALUATION OF A REAL ROOT OF THE FUNCTI0N/2X,7 H F (X ) = 15 

1A2/6X.28HBY THE NEWTON-RAPHSON METHOD/)
103 F0RMAT(2E14,8)
104 FORMAT!2X.37HINITIAL APPROXIMATION TO THE ROOT IS E 14,8/ 2 9 X ,lOHEPS 

IILON = E 1 4 . 8 )
105 FORMAT(3X.13HITERAT ION N O • . 5 X ,16HAPPR0XI MATE ROOT)
106 FORMAT(8X,I 2 . 1 IX.El4.8)
107 FORMAT(2X,21HTHE REAL ROOT IS X = E 14.8/1O X , 7 H E (X ) = E14.8)
108 F0RMAT(63HTHE EPSILON CRITERIA HAS NOT BEEN SATISFIED AFTER 50 ITE 

IRATIONS)
END
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c THE SECANT METHOD
C A TWO POINT ITERATION METHOD FOR FINDING REAL ROOTS
C
C RT IS THE EXACT VALUE OF THE ROOT
C
C XO AND XI ARE THE APPROXIMATE VALUES OF THE DESIRED ROOT
C XO AND XI ARE PREDETERMINED AND ARE READ IN
C
C AN EPSILON CRITERION MUST BE SATISFIED AND EPS IS READ IN
C MUST HAVE A SUBROUTINE FOR F
C
C REFERENCE SCARBOROUGH
C
C JANUARY 1966, CARD
C
C

DIMENSION ID(15)
1 READ 101,ID 

PUNCH 102,ID
r e a d  103,XO,X1,EPS 
PUNCH 104,XO,X1,EPS 
PUNCH 105 
ITER = 1

2 RT = Xl-(Xl-XO)/(F ( X l ) - F ( X O n * F ( X l )
PUNCH 106,ITER,RT
IF(ABSFIRT-Xl)-EPSI3,3,4

4 XO = XI 
XI = RT
ITER = ITER+1 
IFIITER-5012,2,5

3 FRT = F(RT>
PUNCH 107,RT,FRT 
GO TO 1

5 PUNCH 108 
GO TO 1

101 FORMAT!15A2)
102 FORMAT(41HEVALUATION OF A REAL ROOT OF THE FUNCTI0N/2X,7HF(X ) = 15 

1A2/10X,20HBY THE SECANT METHOD/)
103 F O R M A T (3E14.8)
104 FORMAT(8X,28HTHE FIRST APPROXIMATIONS ARE/5HX0 = E14.8,7H AND ,5 

IHXl = E14,8/18X,10HEPSILON = E14.8/)
105 F O R M A T (3X,13HITERAT ION N O .,5 X ,16HAPPR0XI MATE ROOT)
106 FORMAT 18X,12 , 1 IX,El4.8)
107 FORMAT(2X,21HTHE REAL ROOT IS X = E14.8/10X,7HF{X ) = E14.8)
108 FORMAT(63HTHE EPSILON CRITERIA HAS NOT BEEN SATISFIED AFTER 50 ITE 

IRATIONS)
END
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c THF METHOD OF ITERATION
C
C WHEN A NUMERICAL EQUATION. F(X) = 0* CAN BE EXPRESSED IN THE FORM
C X = PHI IX). AND A CONVERGENCE CRITERION IS SATISFIED. THEN THE
C REAL ROOTS CAN BE FOUND BY THE PROCESS OF ITERATION
C
C MUST HAVE A FUNCTION SUBPROGRAM FOR P H I ( X )
C
C THE CONVERGENCE CRITERION IS AS FOLLOWS.
C t h e  ABSOLUTE VALUE OF THE DERIVATIVE OF PHI(X) MUST BE LESS THAN 1
C IN THE NEIGHBORHOOD OF THE APPROXIMATE ROOT
C SENSE SWITCH 1 IS ON IF THIS CRITERION IS TO BE TESTED
C
C MUST HAVE A FUNCTION SUBPROGRAM FOR DXPHI(X)
C
C APRT IS THE APPROXIMATE VALUE OF THE DESIRED ROOT. APRT IS PRE-
C DETERMINED AND IS READ IN
C
C RT IS THE EXACT VALUE OF THF ROOT
C
C AN EPSILON CRITERION MUST BE SATISFIED AND EPS IS READ IN
C
C MARCH 1966. CARD
C
C

DIMENSION 10(15)
1 READ 101.ID 

PUNCH 102.ID 
READ 10.APRT 
READ lO.EPS 
PUNCH 11.APRT.EPS 
IF(SENSE SWITCH 1)4,2

4 ABSDX = A B S FIDXPHI{A P R T ))
PUNCH 17, ABSDX
IF (ARSDX-1.)2,25.25 

25 PUNCH 16
2 ITER = 1
3 RT = P H I ( A P R T )

PUNCH 12.ITER.RT 
IF(ABSF(APRT-RT)-EPS)15.15.5

5 ITER = ITER+1 
APRT = RT
IF(ITER-50)3.3.20 

15 PUNCH 13.RT 
GO TO 1 

20 PUNCH 14 
GO TO 1
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10 F O R M AT(FIA.8)
11 FORMAT(38HTHE PREDETERMINED APPROXIMATE ROOT IS El A . 8//1IHEPSILON 

IIS E14.8//)
12 F O R M A T (14HITERATION NO. I 3.5 X »15HAPPR0X. ROOT = E14.8)
13 F O R M A T (2X.21HTHE REAL ROOT IS X
14 FORMAT(64HTHE EPSILON CRITERION 

lERATIONS)
16 FORMAT(42HPROCESS WILL CONVERGE
17 FORMAT(50HTHE ABSOLUTE VALUE OF 1 )

101 F O R M A T (1 5 A 2 )
102 F O R M A T (4IHEVALUATION OF A RFAL ROOT OF 

1A2/7X.26HBY THE METHOD OF ITERATION/)
END

= E14.8)
HAS NOT BEEN SATISFIED AFTER 50 IT

SLOWLY OR NOT AT ALL/)
THE DERIVATIVE OF PH I(X ) IS 514.8/

THE FUNCTION/2X»7HF(X) = 15
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c PROGRAM TO COMPUTE REAL ROOTS OF A NUMERICAL EQUATION FIX) = 0
C
C DIVIDING INTERVAL METHOD
C SOLVE ALGEBRAIC AND TRANSCENDENTAL EQUATIONS OF ONE UNKNOWN
C
C THE METHOD OF COMPUTATION IS BASED ON THE FOLLOWING FUNDAMENTAL
C THEOREM. IF FIX) IS CONTINUOUS FROM X = A TO X = B AND IF FI A) AND
C FIB) HAVE OPPOSITE SIGNS . THEN THERE IS AT LEAST ONE REAL ROOT
C BETWEEN A AND B
C
C THE STARTING POINT A IS READ IN
C A IS USUALLY TAKEN TO BE ZERO UNLESS AN OBVIOUS VALUE FOR A CAN
C BE OBTAINED BY LOOKING AT A GRAPH OF FIX)
C
C D IS THE INCREMENT
C
C N IS THE UPPER LIMIT OF THE INCREMENTS
C
C AN EPSILON CRITERION MUST BE SATISFIED
C
C MUST HAVE A FUNCTION SUBPROGRAM FOR FIX)
C
C JANUARY 1966, CARD
C
C

DIMENSION IDI15)
1 READ 10 1 , ID 

READ 100,A 
READ 100,D 
READ 100, EPS 
READ 300,N 
PRINT 700,A.D,EPS,N 
PUNCH 102,ID 
PUNCH 900,A 
J = 1 
PN = N 

50 PI = 0.
Cl = FIA)
Al = A 
IFICl)5»10,5 

10 PUNCH 200,A1 
GO TO 1 

5 PI = 1.
B = A+PI*D 
C2 = FIB)

35 IFtCl*C2)20,25,30 
25 PUNCH 200,8 

GO TO 1
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30 Al = B 
Cl * C2 
PI = PI+1.
IF(PI-PN)40*40,45 

40 B = A+PI*D 
C2 = F(B)
GO TO 35 

45 P u n c h  4 0 o 
GO 10 1 

20 60 TOI 55*60) ,J 
55 PUNCH 500 

J = 2 
60 PUNCH 600,Al,B

IFIABSFIA1-B)-EPS)110*110*105
105 D = D/10,

A = Al 
GO TO 50

110 PUNCH 800*A1*B 
GO TO 1

101 FORMAT!15A2)
102 FORMAT(3X*25H DIVIDING INTERVAL METHOD/33H FOR A REAL ROOT OF THE 

1 FUNCTION/15A2//)
100 FORMAT(E14.8)
200 FORMAT I19HA REAL ROOT IS A = E14.8)
300 FORMAT I I 3)
400 FORMATI53HTHE FUNCTION HAS NOT CHANGED SIGNS AFTER N INCREMENTS/33 

IHCHOOSE A DIFFERENT STARTING POINT/)
500 f o r m a t  Ii o x ,20h s u c c e s s i v e  i n t e r v a l s /)
600 FORMAT(4HA = E14,8*5X*4HB = E14.8/)
700 F O R M A T ( 4HA = E14.8*5X*4HD = E14.8/6HEPS = E14.8*5X*4HN = 13)
800 FORMAT(45HTHE REAL ROOT LIES IN THE OPEN INTERVAL (A , B )//6HWHERE * 

14HA = E14.8*8HAND B = E14.8/)
900 FORMATf?X*17H INITIAL GUESS IS E14.8/)

END
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P R O B L E M  1
C H A P T E R  1

E V A L U A T IO N  O F  A R E A L  R O O T O F  T H E  F U N C T IO N
F I X )  =  S I N F ( X ) - X / 2 .

B Y  T H E  N E W T O N -R A P H S O N  M E T H O D

INITIAL APPROXIMATION TO THE ROOT IS .157080005+01
EPSILON = .1OOOOOOOF-05

ITERATION NO. APPROXIMATE ROOT
1 .1999996BE+01
2 .19009953E+01
3 .18955117E+01
4 .18954943E+01
5 .18954943E+01

THE REAL ROOT IS X = . 18954943E+01
FIX) = -.30000000E-07

EVALUATION OF A REAL ROOT OF THE FUNCTION 
FIX) = SINFtX)-X/2.

BY THE NEWTON-RAPHSON METHOD

INITIAL APPROXIMATION TO THE ROOT IS .31416000E+01
EPSILON * . lOOOOOOOE-05

ITERATION NO. APPROXIMATE ROOT
1 .20943952E+01
2 .19132229E+01
3 .18956718E+01
4 .18954943E+01
5 .18954943E+01

THE REAL ROOT IS X = . 18954943E+01
FIX) = -.30000000E-07
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P R O B L E M  1
C H A P T E R  1

E V A L U A T I O N  O F  A R E A L  R O O T O F  T H E  F U N C T IO N
F ( X I = S I N F ( X » - X / 2 .

B Y  T H F  S E C A N T  M E T H O D

THE FIRST APPROXIMATIONS ARE 
XO = •31A15900E+01 AND XI = ,15707963E+01

EPSILON = .lOOOOOOOF-OS
ITERATION NO. APPROXIMATE ROOT

1 . I7S96035F+01
2 .19370037E+01
3 .1892A157E+01
4 .18954307F+01
5 .I8954943E+01
6 .18954943E+01

THE REAL ROOT IS X = ,18954943E+01
F(X) = -.30000000E-07

EVALUATION OF A REAL ROOT OF THE FUNCTION 
FIX) = SINF(X)-X/2.

BY THE SECANT METHOD

THE FIRST APPROXIMATIONS ARE 
XO = .31415900F+01 AND XI = .25000000E+01

EPSILON = .lOOOOOOOE-05

ITERATION NO. APPROXIMATE ROOT
1 .20452737E+01
2 . 19285226E+01
3 .18980283E+01
4 .189554I6E+01
5 .189S4944E+01
6 .18954943E+01

THE REAL ROOT IS X = . 18954943E + 01
E (X I = -.30000000E-07
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P R O B L E M  1
C H A P T E R  1

E V A L U A T I O N  O F  A R E A L  R O O T O F T H E  F U N C T I O N
F I X )  = S I N F ( X ) - X / 2 .

BY T H E  M E T H O D  O F I T E R A T I O N

THE PREDETERMINED APPROXIMATE ROOT IS .15708OOOE+01
EPSILON IS .lOOOOOOOE-05

ITERATION NO. 1
ITERATION NO. 2
ITERATION NO. 3
ITERATION NO. 4
i t e r a t i o n  n o . 5
ITERATION NO. 6
ITERATION NO. 7
ITERATION NO. 8
ITERATION NO. 9
ITERATION NO. 10
ITERATION NO. 11
ITERATION NO. 12
ITERATION NO. 13
ITERATION NO. 14
ITERATION NO. 15
ITERATION NO. 16
ITERATION NO. 17
ITERATION NO. 18
ITERATION NO. 19
ITERATION NO. 20
ITERATION NO. 21
ITERATION NO. 22
ITERATION NO. 23
ITERATION NO. 24
i t e r a t i o n  n o . 25
ITERATION NO. 26
ITERATION NO. 27
i t e r a t i o n  n o . 28
ITERATION NO. 29

THE REAL ROOT IS X

APPROX. ROOT = 
APPROX. ROOT =
APPROX. 
APPROX. 
APPROX. ROOT 
APPROX. ROOT 
APPROX. 
APPROX. ROOT 
APPROX. ROOT 
APPROX. ROOT 
APPROX. 
APPROX. 
APPROX. 
APPROX. 
APPROX. 
APPROX. 
APPROX. ROOT 
APPROX. ROOT 
APPROX. 
APPROX. 
APPROX. ROOT 
APPROX. ROOT 
APPROX. ROOT 
APPROX. 
APPROX. 
APPROX. 
APPROX. 
APPROX.

ROOT
ROOT

ROOT =

ROOT
ROOT
ROOT
ROOT
ROOT
ROOT

ROOT
ROOT

ROOT
ROOT
ROOT
ROOT
ROOT

APPROX. ROOT =
. 18954946E + 01

.20000000E+01 

. 18185948E+01 

.193890942+01 

. 18660160E+01 

. 19134765E+01 

.188371492+01 

.190287832+01 

.189073122+01 

.189851182+01 

.189356032+01 

.189672462+01 

.189470782+01 

.189599542+01 

.189517422+01 

.189569832+01 

.189536402+01 

.189557732+01 

.189544122+01 

.189552812+01 

.189547262+01 

.189550802+01 

.189548552+01 

.189549982+01 

.189549072+01 

.189549652+01 

.189549282+01 

.189549522+01 

.189549362+01 

. 18954946E+01
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problem 1
C H A P T E R  1

E V A L U A T I O N  O F  A R E A L  R O O T O F  T H E  F U N C T I O N
F ( X )  = S I N F ( X ) - X / 2 .

BY T H E  M E T H O D  O F I T E R A T I O N

THF PREDFTERMINFD APPROXIMATE ROOT IS .31416000E+01
EPSILON IS .lOOOOOOOE-05

ITERATION NO. 1 APPROX. ROOT = -.14680000E-04
ITERATION NO. 2 APPROX. ROOT -.29360000E-04
ITERATION NO. 3 APPROX. ROOT = -.58720000E-04
ITERATION NO. 4 APPROX. ROOT -.11744000E-03
ITERATION NO. 5 a p p r o x . ROOT -.23486000E-03
ITERATION NO. 6 APPROX. ROOT - -.46970000E-03
ITERATION NO. 7 APPROX. ROOT -.93938000E-03
ITFRATION NO. 8 APPROX. ROOT - . 18787400E-02
ITERATION NO. 9 APPROX. ROOT -.37574600E-02
ITERATION NO. 10 APPROX. ROOT -.75149000E-02
ITERATION NO. 11 APPROX. ROOT -. 15029640E-01
ITERATION NO. 12 APPROX. ROOT -.30058140E-01
ITERATION NO. 13 APPROX. ROOT = -.60107220E-01
ITERATION NO. 14 APPROX. ROOT -. 12014206E + 00
i t e r a t i o n NO, 15 APPROX. ROOT -.23970648E+00
ITERATION NO. 16 APPROX. ROOT -.47483500E+00
ITERATION NO. 17 APPROX. ROOT -.91438340E+00
i t e r a t i o n NO. 18 APPROX. ROOT -.15843728E+01
ITERATION NO. 19 APPROX. ROOT -.19998156E+01
ITERATION NO. 20 APPROX. ROOT = -.18187483E+01
ITERATION NO. 21 APPROX. ROOT -. 19388341E + 01
ITERATION NO. 22 APPROX. ROOT - . 18660702E+01
i t e r a t i o n NO. 23 APPROX. ROOT - . 19134449E+01
ITERATION NO. 24 APPROX. ROOT -.18837361E+01
ITERATION NO. 25 APPROX. ROOT - -.19028653E+01
ITERATION NO. 26 APPROX. ROOT = -.18907397E+01
ITERATION NO. 27 APPROX. ROOT - . 18985064E+01
ITERATION NO. 28 APPROX. ROOT -. 18935637E + 01
ITERATION NO. 29 APPROX. ROOT - . 18967225E+01
ITERATION NO. 30 APPROX. ROOT 18947091E + 01
ITERATION NO. 31 APPROX. ROOT - -. 18959946E + 01
ITERATION NO. 32 APPROX. ROOT = - . 18951747E+01
ITERATION NO. 33 APPROX. ROOT = “ .18956980E+01
ITERATION NO. 34 APPROX. ROOT = -. 18953642E + 01
ITERATION NO. 35 APPROX. ROOT -. 16955772E + 01
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ITERATION NO* 36 APPROX. ROOT - 18954413E+01
ITERATION NO. 37 APPROX. ROOT - 18955280E+01
ITERATION NO. 38 APPROX. ROOT - 18954727E+0I
ITERATION NO. 39 APPROX. ROOT — 18955080E+01
ITERATION NO. 40 APPROX. ROOT - 18954855E+01
ITERATION NO. 41 APPROX. ROOT = - 18954998E+01
ITERATION NO. 42 APPROX. ROOT — 18954907E+01
ITERATION NO. 43 APPROX. ROOT - 18954965E+01
ITERATION NO. 44 APPROX. ROOT - 18954928E+01
ITERATION NO. 45 APPROX. ROOT — 18954952E+01
ITERATION NO. 46 APPROX. ROOT = - 18954936E+01
ITERATION NO. 47 APPROX. ROOT — 18954946E+01

THE REAL ROOT IS X = 18954946E+01
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P R O B L E M  1
C H A P T E R  1

DIVIDING INTERVAL METHOD 
f o r  a  r e a l  ROOT OF THE FUNCTION 

SlNF<X)-X/2,

INITIAL GUESS IS .15708000E+01 
SUCCESSIVE INTERVALS

A - • 18708000E+01 B = •19708000E+01
A = .18908000E+01 B = .19008000E+01
A = .18948000E+01 B = •18958000E+01
A = . 18954000E+01 B = •18955000E+01
A = •18954900E+01 B = • 18955000E+01

A = . 18954940E+01 B = •189S4950E+01

THE REAL ROOT LIES IN Th e  OPEN INTERVAL (

w h e r e  a = .18954940E +01 AND B = .1895495

DIVIDING INTERVAL METHOD 
FOR A REAL ROOT OF THE FUNCTION 

SINF(X)-X/2.

INITIAL GUESS IS .3lA160 0 0 E + 0 1 

SUCCESSIVE INTERVALS

A = .19416000E+01

A = .19016000E+01
A = . 18956000E+01

A = .18955000E+01
A = • 1895S000E+01

A = •18954950E+01

8 = *184160008+01

B = . 18916000E+01
B = .18946000E+01

R = .I8954000E+01
9 = .18954900E+01

B = .189S4940E+01

THE REAL ROOT LIES IN THE OPEN INTERVAL (A,B) 

w h e r e  a = . 18954950E+01AND B = .189S4940E+01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P R O B L E M  2
C H A P T E R  1

E V A L U A T IO N  O F  A R E A L  ROOT O F T H E  F U N C T IO N
F ( X )  = X * * 2 0 - l .

BY T H E  N E W T O N -R A P H S O N  M E T H O D

INITIAL APPROXIMATION TO THE ROOT IS •50000000F+00
EPSILON = .lOOOOOOOE-05 

ITERATION NO. APPROXIMATE ROOT
1 .26214876E+05
2 .24904133E+05
3 .23658927E+05
4 .22475981E+05
5 .21352182E+05
6 .20284573E+05
7 .19270345E+05
8 .18306828E+05
9 . 17391487E+05

10 .16521913E+05
11 .15695818E+05
12 .14911028E+05
13 .14165477E+05
14 .13457204E+05
15 .12784344E+05
16 . 12145127E+05
17 .11537871E+05
18 .10960978E+05
19 .10412930E+05
20 .98922840E+04
21 .93976698E+04
22 .89277864E+04
23 .84813971E+04
24 .80573273E+04
25 .76544610E+04
26 .72717380E+04
27 .69081511E+04
28 .65627436E+04
29 •62346065E+04
30 .59228762E+04
31 .56267324E+04
32 .53453958E+04
33 .50781261E+04
34 .48242198E+04
35 .45830089E+04
36 .43538585E+04
37 .41361656E+04
38 .39293574E+04
39 .37328896E+04
40 .35462452E+04
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41 •33689330E+04
42 •32004864E+04
43 .30404621E+04
44 •28884390E+04
45 •27440171E+04
46 .26068163E+04
47 .24764755E+04
48 •23526518E+04
49 .22350193E+04
50 .21232684E+04

t h e  e p s i l o n  c r i t e r i a  h a s  n o t  b e e n  s a t i s f i e d  a f t e r  50 ITERATIONS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P R O B L E M  2
C H A P T E R  1

EVALUATION OF A REAL ROOT OF THE FUNCTION 
FIX) = X**20-l.

BY THE NEWTON-RAPHSON METHOD

INITIAL APPROXIMATION TO THE ROOT IS •15000000E+01
EPSILON = .lOOOOOOOE-05

TION NO. APPROXIMATE ROOT
1 •14250226E+01
2 .13538313E+01
3 •12862980E+01
4 .12224014F+01
5 .11623827E+01
6 •1 1071300E+01
7 .10590045E+01
8 .10228776E+01
9 .10042665E+01

10 .10001679E+01
11 •10000003E+01
12 .lOOOOOOlE+01

THE REAL ROOT IS X = .10000001F+0I
FIX) = •20000000E-05
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C ** GRAEFFE'S ROOT SQUARING METHOD **
C
C THE UNDERLYING PRINCIPLE OF GRAEFFE'S METHOD IS THIS-THE GIVEN
C EQUATION IS TRANSFORMED INTO ANOTHER WHOSE ROOTS ARE HIGH POWERS
C OF THOSE OF THE ORIGINAL EQUATION. THE ROOTS OF THE TRANSFORMED
C EQUATION ARE WIDELY SEPARATED, AND BECAUSE OF THIS FACT ARE EASILY
C FOUND. THE ROOTS OF THE TRANSFORMED EQUATION ARE SAID TO BE
C SEPARATED WHEN THE RATIO OE ANY ROOT TO THE NEXT LARGER IS NEGLI-
C GIRLE IN COMPARISON WITH UNITY.
C
C REFERENCE NUMERICAL MATHEMATICAL ANALYSIS - SCARBOROUGH
C
C PHILLIP CARD MARCH 1966
C
C SEPARATED WHEN THE RATIO OE ANY ROOT TO THE NEXT LARGER IS NEGLIGl
C

1 READ 100,EPS 
READ 101,N
DIMENSION AtlO),P(10),CtlO,10),A V R (101,X <10),X N (10),SAVE I 10)

C
C READ IN THE ORDER AND COEFFICIENTS OF THE ORIGINAL EQUATION
C THE ORDER N IS LESS THAN 30
C

M = N+1
READ 1 0 2 , (All),1=1,M)
PUNCH 103,N,(A(I),I=1,M)
PUNCH 114,EPS 
P = 1
DO 55 1=1,M 

55 S A V E ! I ) = A ( I )
C
C COMPUTE THE ELEMENTS OF THE MATRIX C
C

M2 = ( M + D / 2  
77 DO 10 1=1,M2 

DO 10 J=1,M 
10 C(I,J) = 0 

DO 20 1=1,M 
20 C ( 1 , I ) = All)**2 

MMl = M-1 
DO 30 1=2,MMl 

30 CI2,I) = -2.*AII-1)*AII+1I 
GO TO 3 

19 DO 90 1=1,M 
90 A V R I I ) = A B S F I B I I ))

C
C THE PREVIOUS B I D ' S  (OR THE PRESENT A I D ' S )  ARE THE COEFFICIENTS
C OF OUR FINAL TRANSFORMED EQUATION
C

7 PUNCH 104 
PUNCH 105
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cc CALCULATE REAL ROOTS ACCORDING TO THE SIMPLE EQUATIONS
C CALL SYNTHETIC DIVISION SUBROUTINE TO CHECK FOR SIGNS OF ROOTS
C PUNCH X ( I ) * F ( X ( I n ♦ ”X ( I )* E ( - X (m
C

DO H O  1=1,N
n o  X(I) = FXPE( (1 ./P)*(LOGF< AVB( I + l n ~ L O G F (  AVB( I n  n  

DO 120 1=1,N 
120 X N ( I ) = -X(I)

DO 130 1=1,N
CALL S Y N D ( M , SAVE,X(I),F)
FP = F
CALL SYND(M,SAVE,XN(I),FN)
PUNCH 108,1,X(I),FP,XN<I) ,FN 

130 CONTINUE 
PRINT 106 
PAUSE 
GO TO 1

C
C PROCESS NOT COMPLETE, COMPUTE REMAINING ELEMENTS OF THE MATRIX C
C

3 IF ( M 2 - 3 117,13,13 
13 DO 50 1=3,M2 

MM = M-I+1 
IF I M M - I ) 17,27,27

27 JJ = 0
DO 50 J=I,MM 
JJ = JJ+1 
K = 2 * ( I-I)+JJ
C(I,J) = 2.*A(JJ)*A(K)*(-1.I**(I-1)

50 CONTINUE
C
C COMPUTE COEFFICIENTS OF THE TRANSFORMED EQUATION
C

17 p * p*2.
DO 60 1=1,M 
6 (1) = 0 
DO 60 J=1,M2 

60 61 I) = B(I ) + C ( J , I )
IP = P
PUNCH 109,I P , (8(I),1=1,M)
IF(IP-4)18,18,28

28 DO 88 1=2,N
I F ( A 6 S F ( B ( n / C ( l , I ) ) - E P S > 18,88,88 

88 CONTINUE 
PUNCH 1001 
GO TO 19

18 DO 70 1=1,M
A V 6 ( I ) = ABSF(B( I ) )
IF(AVB(I)-.99999999E49)70,70,7 

70 CONTINUE
DO 80 1=1,M 

80 A { I ) = B ( I )
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GO TO 77
100 FORMAT(F6.4)
1 0 1  F 0 R M A T ( 1 3 )
102 FORMAT(5E14.8)
103 F0RMAT(8X,29H ROOTS OF THE POLYNOMIAL /46HP(X) = A(1)*X**N+A(2 

l)*X**N-l+...+A(N)*X+A(N+l)/lX,39HTHE DEGREE N OF THE POLYNOMIAL P( 
IX) IS 15/ 46HTHE COEFFICIENTS A d )  TO AI N+1) ARE AS FOLLOWS/ 
2(16X*E14.8)/)

104 FORMAT I/59HTHE COFFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICI 
1ENTS/18X*24H0F THF TERMINAL EQUATION//)

105 F0RMAT(18X,31HTHF POSSIBLE REAL ROOTS OF P(X)/
12H I , 8X,4HX(I ),12X,7HF(XID)*10X*5H-XIT),11X,8HF(-X(I))/)

106 FORMAT(16HPR0CESS COMPLETE)
108 FORMATII2,4(3X,E14.8)/)
109 FORMAT(/4HP = 13/

144HTHE COEFFICIENTS OF THE TRANSFORMED EQUATION/
24( 3 X , E 1 4 . 8 ) )

114 FORMAT!/IIHEPSILON IS F6.4)
1001 FORMAT!/34HCROSS PRODUCT TERMS ARE NEGLIGIBLE)

C
END
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SUBROUTINE 
s y n t h e t i c  d i v i s i o n

SUBROUTINE S Y N D C M ,A * X 0 *F ) 
DIMENSION A(30)»B(30)
6(1) = A ( 1)
DO 5 1=2,M
B(I) = B {I-l)*XO+A(I)
F = B(M)
r f t u r n
END
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E X A M P L E  1
C H A P T E R  2

ROOTS OF THE POLYNOMIAL 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGREE N OF THE POLYNOMIAL P(X) IS 3

THE COEFFICIENTS A d )  TO A(N+1) ARE AS FOLLOWS
• lOOOOOOOE+01

-,20000000E+01

50000000E+01

,60000000E+01

EPSILON IS .9500

P = 2
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

,10000000F+01 , 14000000F+02 .49000000F+02

P = 4
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOF+01 .9fiG00n00E+02 •13930000E+04

P = 8
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

,lGOOOOOOE+01 .6818000GE+G4 .1686433GE+07

P = 16
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

•IGOGGOGGE+Ol .43112258E+G8 .2821153GE+13

P = 32
THF COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOGOGE+01 . I8530244E+16 .7958661OE+25

CROSS PRODUCT TERMS ARE NEGLIGIBLE

.36000000E+02

.12960000E+04

.16796160E+07

. 2 8 2 U 0 9 9 E + 1 3

.79586610E+25

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)
I X( I )
1 .3nOOGOOOF+ni

2 .19999998F+01 

.1 OOOOOOOF+ni

F ( X ( I ) ) 

.OOOOOGOnF-99 

-.39999995E+G1 
.00n00000F-9O

-X( I ) 
-.30000000F+01 

19999998E+G1 

- . 1 GOOOOGOF+Gl

F ( - X ( I ) ) 

.24000000F+02 

.3G00G000E-05 

.80GG0000E+01
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E X A M P L E  2
C H A P T E R  2

ROOTS OF THE POLYNOMIAL 
P(X) = A(l)*X**N+AI2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGREE N OF THE POLYNOMIAL P(X> IS 5

THE COEFFICIENTS All) TO A(N+1) ARE AS FOLLOWS
•12300000E+01

-.25200000E+01

-.16100000F+02

.17300000F+02

.29A00000E+02
-.13400000E+01

EPSILON IS .9500 

P = 2
THE COEFFICIENTS OF 

.15129000F+01 

.91072400E+03

THE TRANSFORMED EQUATION 
.4S956400E+02 .41872600E+03
.17956000E+01

.12527236E+04

P = 4
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.22888664E+01 .84500960E+03 .62945798E+05

.82491942E+06 .32241793E+01
80679383E+06

P = 8
THE COEFFICIENTS OF 

•52389093F+01 
•68048684F+12

P = 16
THE COEFFICIENTS OF 

.27446170E+02 

.46306233E+24

THE TRANSFORMED 
•42589218E+06 
. 10395332E+02

THE TRANSFORMED 
.15411612E+12 
.10806292E+03

e q u a t i o n
.26024526E+10

EQUATION
.63067845E+19

•54706587E+12

.29673920E+24

P = 32
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.75329224E+03 .23405584E+23 .39684374E+38

.21442672E+48 .11677594E+05

CROSS PRODUCT TERMS ARE NEGLIGIBLE

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION

87455834E+47
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t h e  p o s s i b l e  r e a l  r o o t s  o f  P(X)1 X(I) F(x( n ) -X( I ) F(-X(II)

1 .40657071E+01 .24924000E-02 -.40657071E+01 -.80787521E+03
2 •29916832E+01 -•96737312E+02 -•29916832E+01 . 13630000E-02

•19587274F+01 .20200000F-04 -.19S87274F+01 .5S880009E+02

4 .10284223E+01 .28276895E+02 -.10284223E+01 -.80000000E-05

5 •44463368E-01 ,OOOOOOOOE-99 -•44463368E-01 -.26116159E+01
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EXAMPLE
CHAPTER

32

ROOTS OF THE POLYNOMIAL 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGREE N OF THE POLYNOMIAL P(X) IS 4

THE COEFFICIENTS A<1) TO A(N+1) ARE AS FOLLOWS
.lOOOOOOOE+01

-.50000000E+01

•93500000F+01

-.77500000F+01
.24024000E+01

EPSILON IS .9500 

P = 2
THF COEFFICIENTS OF 

. lOOOOOOOF+01 
•57715257E+01

THE TRANSFORMED 
.63000000E+01

EQUATION
.14727300E+02 .15137620E+02

P = 4
Th e  COEFFICIENTS OF 

, lOOOOOOOE+01 
.33310508E+02

P = 8
THE COEFFICIENTS OF 

.lOOOOOOOE+01 

.11095899E+04

THE TRANSFORMED 
. 10235400E+02

THE t r a n s f o r m e d  
.29358610E+02

EQUATION
.37702401E+02

EQUATION
.27725341E+03

.59149550E+02

.98689700E+03

P = 16
THF COEFFICIENTS OF 

.lOOOOOOOF+01 

. 12311897E+07
THF TRANSFORMED 
.30742116E+03

EQUATION
.21140784E+05 .35869052E+06

P = 32
THE COEFFICIENTS OF 

.lOOOOOOOF+01 

.15158280E+13

THE TRANSFORMED 
.52226201E+05

EQUATION
.22885700E+09 .76602250E+11

P = 64
THE COEFFICIENTS OF 

• IOOOOOOOF+01 
.22977345F+25

THE TRANSFORMED 
.22698620E+10

EQUATION
.44377269E+17 .51740891E+22
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p = 128
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOE+01 .506351895+19 .194585315+34

.527958385+49
,265672645+44

CROSS PRODUCT TERMS ARE NEGLIGIBLE

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)
I X( I ) F(X( I )1 -X( I ) F( - X ( I ) )

1 .140000165+01 ,000000005-99 - . 14000016F+01 .491401175+02

2 .129999785+01 .lOOOOOOOE-06 -.129999785+01 .421198535+02

? .12000007F+01 .000000005-99 -.120000075+01 .358800395+02

4 .109999985+01 .000000005-99 -.109999985+01 .303599885+02
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E X A M P L E  4
C H A P T E R  2

ROOTS OF THE POLYNOMIAL 
PfX) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGREE N OF THE POLYNOMIAL P(X) IS 3

THF COFFFICIFNTS All) TO AIN+l) ARE AS FOLLOWS
.lOOOOOOOF+01

-,30600000F+01

.31211000E+01

-.10611060E+01

EPSILON IS ,9500

P = 2
THE COEFFICIENTS OF 

, lOOOOOOOF+01

P = 4
THE COEFFICIENTS OF 

. lOOOOOOOE+01

THE TRANSFORMED EQUATION 
•31214000F+01 .32472965E+0I

THE TRANSFORMED EQUATION 
•32485449E+01 .35158790E+01

.11259459E+01

. 12677541E+01
P = 8
THE COEFFICIENTS OF 

, lOOOOOOOE+01
THE TRANSFORMED EQUATION 
.352128505+01 .41246930E+01 16072004E+01

P = 16
THF COEFFICIENTS OF 

.lOnOOOOOF+01
THE TRANSFORMED EQUATION 
.41500620E+01 .5694271OE+01 .25830931E+01

P = 32
THE COEFFICIENTS OF 

.lOOOOOOOF+01
THE TRANSFORMED EQUATION 
.58344720E+01 .10984729E+02 •66723699E+01

P = 64
THE COEFFICIENTS OF 

,lOOOOOOOF+01
THE TRANSFORMED EQUATION 
. 12071605E+02 .428047605+02 .445205205+02

P = 128
THF COEFFICÎFNTS OF 

.100000005+01
THE TRANSFORMED EQUATION 
.601141205+02 .757379205+03 .198207675+04

P = 256
THF COEFFICIENTS OF 

.lOOOOOOOF+01
THF TRANSFORMED EQUATION 
.209894905+04 .335321665+06 .392862805+07
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p = 512
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOE+01 .37349436E+07 .959486405+11 .154341175+14

P = 1024
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOF+01 .137579065+14 .909085045+22 .238211965+27

CROSS PRODUCT TERMS ARE NEGLIGIBLE

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)
I X( I ) F(X( I) ) -x( n F(-X(I))

1 .102998435+01 .OOOOOOOOF-99 -.102998435+01 -.861472205+01

7 .10200309F+01 ,000000005-99 -.10200309F+01 -.848984565+01

3 .100998475+01 .OOOOOOOOF-99 -.100998475+01 -.836503475+01
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E X A M P L E  5
C H A P T E R  2

ROOTS OF THE POLYNOMIAL 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGREE N OF THF POLYNOMIAL P(X) IS 3

THF COFFFICIFNTS A(l) TO A(N+1) ARE AS FOLLOWS
,10000000E+01

-.30060000E+01

*301201lOE+01

100601lOE+01

FPSILON IS .9S00

P = 2
THE COFFFICIFNTS OF 

, lOOOOOOOF+01

P = 4
t h e  COEFFICIENTS OF 

.lOOOOOOOF+01

THE TRANSFORMED EQUATION 
.30120140E+01 .30240721E+01

THE TRANSFORMED EQUATION 
.30240841E+01 .30483457E+01

.10120981E+01

.10242615E+01
P = 8
THE COFFFICIENTS OF 

• lOOOOOOOE+01
THF TRANSFORMED EQUATION 
.30483932E+01 .30975057E+01 .10491116E+01

P = 16
t h e  c o e f f i c i e n t s  o f

. lOOOOOOOE+01
THE TRANSFORMED EQUATION 
.30976897E+01 .31983322E+01 .11006351E+01

P = 32
THE COEFEICIENTS OF 

.lOOOOOOOE+01
THE TRANSFORMED EQUATION 
.31990170E+01 .34104760E+01 .12113976E+01

P = 64
THE COEFFICIENTS OF 

.lOOOOOOOF+01
THE TRANSFORMED EQUATION 
.34127570E+01 .38B07830E+01 .14674841E+01

P = 128
THE COEFFICIENTS OF 

.lOOOOOOOE+01
THE TRANSFORMED EQUATION 
.388534405+01 .50441430E+01 .21535095E+01

P = 256
t h e  COEFFICIENTS OF 

. lOOOOOOOE+01
THE TRANSFORMED EQUATION 
.500761105+01 .87O91280E+O1 .46376031E+01
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p = 512
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOE+01 .76579110E+01 •29402286E+02 21507362E+02
P = 1024
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOF+Dl - • 16097200E+00 .53509150E+03 .46256662E+03

P = 2048
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOE+01 -.10701571E+04 .28647183E+06 .21396787E+06

CROSS PRODUCT TERMS ARE NEGLIGIBLE

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THF TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)
I X ( I ) F(X( I ) ) -Xf I ) F c - x i I n

1 .10034118E+01 .OOOOOOOOE-99 -.10034118E+01 -.80651154E+01

2 .10027331E+01 .OOOOOOOOE-99 -.10027331E+01 -.80569296E+01

3 ,999B575?F+00 ,OOOOOOOOE-99 -.99985752F+00 -.80223088E+01
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E X A M P L E  6
C H A P T E R  2

ROOTS OF THE POLYNOMIAL 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGREE N OF THE POLYNOMIAL P(XI IS 3

THF COEFFICIENTS A d )  TO A(N+1) ARE AS FOLLOWS
* lOOOOOOOF+01
30000000E+01

.AOOOOOOOE+01

50000000E+OI

FPSILON IS .9500

P = 2
THF COEFFICIENTS OF THF TRANSFORMED EQUATION

. lOOOOOOOF+ni .lOOOnOOOF+01 -.I4000000F+02
P = 4
t h e  COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOGOOF+01 .29000000F+02 .14600000E+03
P = 8
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOF+OI ,54900000E+03 14934000E+05

P = 16
THE COEFFICIENTS OE THE TRANSFORMED EQUATION

,10000000E+01 .33I26900E+06 20588190F+09

P = 32
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOE+01 .11015091E+12 58707920E+17

CROSS PRODUCT TERMS ARE NEGLIGIBLE

.25000000F+02

.62500000F+03

.39062500E+06

.15258789E+12

.23283064E+23

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OE P(X)
I X ( I)

1 .22134112E+ÜI

2 .15099398E + 01

3 .14960572E+0I

E ( X ( I ) ) 

-.24000000E-05 

-.23574562E+01 

-.23R18766E+01

-X(I) 
-.22134112E+01 

-.15099398E+01 

-.14960572F+01

F « - X (I )) 
-.39395130E+02 

-.21322052E+02 

-.21047245E+02
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EXAMPLE
CHAPTER

7 ( A )2
ROOTS OF THE POLYNOMIAL 

P{X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGREE N OF THE POLYNOMIAL P(X) IS 6

THF COFFFICIFNTS A d )  TO A(N+1) ARE AS FOLLOWS
.lOOOOOOOF+Ol

.30000000E+01
lOOOOOOOE+01

-.70000000E+01

• lOOOOOOOE+02
. 14000000E+02

-.20000000F+02

FPSILON IS .9500 

P = 2
THE COEFFICIENTS OF

,lOOOOOOOF+Gl 
.336n0000F+03

P = 4
THF COEFFICIENTS OF 

, lOonooooF+ni
-.667S0000F+05

THE TRANSFORMED 
.llOOOOOOE+02 
.59600000E+03

THF TRANSFORMED 
-,5nnooooOF+oi
.RA4Î6000F+05

e q u a t i o n
.630000D0F+02
.40000000E+03

EQUATION
.39500000^+03
.16000000F+06

. 19300000F+03

•72250000F+04

P = 8
THE COEFFICIENTS OF 

.lOOOOOOOF+01 

.33345864E+10

P = 16
THF COEFFICIENTS OF 

.lOOOOOOOF+01 

.51415054E+T9

THE TRANSFORMED 
-.76500000E+03 
.28830925E+11

THE TRANSFORMED 
.39571500E+06 
.66049I41E+21

EQUATION
.94755000E+05
.25600000E+11

EQUATION
.17439567E+12
.65536000E+21

.10375686E+09

. 10089386E+17

P = 32
THE COEFFICIENTS OF 

.lOOOOOOOF+01 

. 13107400F + 38
P = 64
THE COEFFICIENTS OF 

. lOOOOOOOE+01 

.85899470E+74

THE TRANSFORMED 
- . 19220098E+12 
.42950983E+42

THE TRANSFORMED 
-.79369640E+22 
. 18446744E + 84

EQUATION
.22439090E+23
.42949672E+42

EQUATION
.54195409E+45 
.18446743E+84

.10000291E+33

.99999940E+64
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t h e  c o e f f i c i e n t s  l i s t e d  d i r e c t l y  a b o v e  a r e  t h e  COEFFICIENTS
OF THF TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)
I X( I) F(x( n  ) -X( I ) F ( - X ( I ) )

1 .2Î987816E+01 .22852832E+03 -.21987816E+01 .74243100E+01

2 .227S9770E+01 .27517328F+03 -.22739770F+01 •11300856E+02

S .200000fl4F+nl ,1360030RF+03 -,20r)00084F + 01 .2S200000E-n3

4 .S8015546E+00 -•13611266F+02 -.38015546E+00 -.23534105E+02

S .11768972F+01 .64068700E+01 -,11763972E+01 -.17258128E+02

6 ,99999951F+n0 -, 15000000F-04 -.99999951F+00 -•20000006E+02
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E X A M P L E  7 ( B )
C H A P T E R  2

ROOTS OF THE POLYNOMIAL 
P(X> = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGREE N OF THE POLYNOMIAL P(X) IS 4

THE COEFEICIENTS A d )  TO A(N + 1) ARE AS FOLLOWS
•lOOOOOOOE+01

. 1999991lE+01

10000014E+01

-.19999928E+01
•lOOOOOOlE+02

EPSILON IS .9500

P = 2
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lDOOOOOOE+01 .59999672E+01 .28999940E+02

. 10000002E+03
.24000001E+02

P = 4
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOF+01 -.22000274F+02 . 75299814E+03

. 10000004F+05
.52239891E+04

P = 8
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOE+01 - . 10219842E+04 .3571478lE+06

. 10000008E+09
.12230094E+08

P = 16
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOF+01 .33015610E+06 .15275247E+12

. 10000016F+17
.78145580E+14

P = 32
t h e  COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOF+01 -.19650189E+12 .23281737E+23

. 10000032E+33

P = 64
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOnOOOOOF+01 -.79504820F+22 .54204046E+45

. 10000064E+65

.30516774E+28

.46563726E+55

t h e  COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE t e r m i n a l  EQUATION
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t h e  p o s s i b l e  r e a l  r o o t s  OF P(X)
I X( I) F(X( I ) ) -X(I) F ( - X ( I ))
1 •21988400E+01 .45405902E+02 -.21988400E+01 . 11676756E+02

2 .22739223E+01 .50533354E+02 -.22739223E+01 .12597933E+02

? .14296I47E+01 •15117753E+02 -.14296147E+01 .91488690E+01

4 .442396S6E+00 .91309670E+01 -.44239656F+00 . 10554213E+02
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E X A M P L E  8
C H A P T E R  2

ROOTS OF THE POLYNOMIAL 
P(X) = A(l)*X**N+A(2)*X**N-l+.,.+A(N)*X+A(N+l) 
THE DEGREE N OF THE POLYNOMIAL P(X) IS 4

THE COEFFICIENTS All) TO A(N+1) ARF AS FOLLOWS
. lOOOOOOOE+01

-,40000000E+01

«•75000000E+00

. 16250000E+02

-.12500000E+02

FPSILON IS .9500

P = 2
THF COFFFICIFNTS OF THE TRANSFORMED EQUATION

•lOOOOOOOF+01 .17500000E+02 .10556250E+03
.15625000E+03

P = 4
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOCE+01 .95125000E+02 .28700040E+04

.24414062E+05

P = 8
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOF+OI .33087576E+04 .3I128648E+07
•59604642E+09

P = 16
Th e  COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOE+01 .47221470E+07 .57261954E+13

.35527133E+18

P = 32
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOE+01 .10846282E+14 .29433972E+26

.12621771E+36

P = 64
t h e  COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOE+01 .58773890E+26 .86362072E+51

. 15930910E+71

.24531250F+03

.2718994IE+05

.59915598E+09

.35527706E+18

.12621772E+36

.159309I2E+71

t h e  COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION
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T H E  P O S S IB L E  R E A L  R O O T S  OF P ( X )
I X< I) F(X( I ) ) -X( I) F ( - X ( I ))

1 .25272226E+01 .51240000E-02 -•25272226E+01 .469984015+02

2 .24730708F+01 .47800000E-02 -.24730708E+01 •40633948E+02

3 •56568540E+00 -•41692900E+01 -.56568540E+00 -.21105910E+02

4 ,]OOOOOOOE+ni ,OOOOOOOOF-99 lOOOOOOOF+01 -.245000005+02
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EXAMPLE
CHAPTER

92

ROOTS OF THE POLYNOMIAL 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGREE N OF THE POLYNOMIAL P(X) IS 4

THE COEFFICIENTS A(l) TO A(N+1) ARE AS FOLLOWS
« lOOOOOOOE+01

-.45000000E+01

.55000000E+01

.OOOOOOOOE-99
-.20000000E+01

EPSILON IS .9500 

P = 2
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOF+01 .92500000F+01 .26250000E+02

.40000000F+01
.22000000F+02

P = 4
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOF+01 .33062500E+02 .29006250E+03

. 16000000E+02

P = 8
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOE+01 .51300390E+03 .66050003E+05

.25600000E+03

P = 16
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

.lOOOOOOOF+01 . 13107300F+06 .42950982F+10

.65536000E+05
P = 32
t h e  COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOE+01 .85899350E+10 . 18446743E+20

.42949672E+10

P = 64
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOF+01 .36B93497F+20 .34028232E+39

. 18446743F+20

P = 128
t h e  COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOE+01 .68056550E+39 .11579205E+78

.34028232E+39

.27400000E+03

.65794000E+05

.42950328E+10

.18446744E+20

.34028236E+39

. 11579208E + 78

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION
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T H E  P O S S IB L E  R E A L  R O O T S  OF P ( X )
I x( n FtX( I ) ) -X( I ) F ( - x ( I n

1 •20108S97F+01 .29930000F-03 -•20108597F+01 .73179524E+02

2 .19891988E+01 .28730000E-03 -.19891988E+01 .70840044E+02
•SOOOOOOOE+00 -.11250000E+01 -•50000000F+00 .OOOOOOOOE-99

4 .70710678E+00 -.59099040E+00 -.70710678E+00 .25909901E+01
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E X A M P L E
C H A P T E R

102

ROOTS OF THE POLYNOMIAL 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGRFF N OF THE POLYNOMIAL P(X) IS 5

THE COEFFICIENTS A(l) TO A(N+1) ARE AS FOLLOWS
.lOOOOOOOE+01
. 15000000E+01

-.25000000E+01
-•65000000E+01

-.45000000E+01

-•30000000E+01

EPSILON IS .9500

P = 2
THE COEFFICIENTS OF 

• lOOOOOOOE+OI 
.72500000E+01

P 55 4
THE COEFFICIENTS OF 

, lOOOOOOOF + 01 
.19062500E+02

P = 8
THE COEFFICIENTS OF 

, lOOOOOOOF+01 
•25900390E+03

P = 16
THE COEFFICIENTS OF 

. lOOOOOOOE+01 

.65538997E+05

THE TRANSFORMED 
.72500000F+01 
. lOOOOOOOE+01

THE TRANSFORMED 
•19062500E+02 
. lOOOnOOOE+Ol

THE TRANSFORMED 
•25900390E+03 
• lOOOOOOOE+01

THE TRANSFORMED 
.65538997E+05 
• lOOOOOOOE+Ol

EQUATION
.16750000F+02

EQUATION
.52187500E+02

EQUATION
•77201170E+03

EQUATION
•19661198E+06

.16750000E+02

.52187500E+02

.77201170E+03

.19661198E+06

P = 32
THE COEFFICIENTS OF 

• lOOOOOOOE+01 
•42949669E+10

P = 64
THE COEFFICIENTS OF 

. lOOOOOOOE + 01 

. 18446740E + 20

THE TRANSFORMED 
•42949669E+10 
•lOOOOOOOE+Ol

THE TRANSFORMED 
.18446740E+20 
.lOOOOOOOE+01

EQUATION
.128B4898E+11

EQUATION
.55340170E+20

.12884898E+11

.55340170E+20
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p = 128
THE COEFFICIENTS OF THF TRANSFORMED EQUATION

.lOOOOOOOF+01 .3402B221F+39 •10208430F+40
•34028221F+39 .lOOOOOOOE+01

.10208430F+40

P = 256
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. lOOOOOOOE+01 .11579198E+78 .347371OOE+78
•11579198E+78 . lOOOOOOOE+01

•34737100E+78

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)
I x n  ) F ( X t I )) -X( 1) F ( - X ( I ))

1 .19999999E+01 -.75000000E-05 -.19999999E+01 -.59999973E+01

2 .71014781E+00 -.78069124E+01 -.71014781E+00 . 13869000E-01

3 .lOOOOOOOF+OI 12000000F+02 -, lOOOOOOOE+01 ,OOOOOOOOE-99

4 •99571775F+00 -.11939956E+02 -.99571775F+00 .lOOOOOOOE-06

5 .70710678E+00 -.77640872E+01 -.70710678E+00 . 14087200E-01
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C ** LIN-BAIRSTOW METHOD FOR COMPLEX ROOTS **
C
C A GENERAL METHOD FOR DETERMINING THE COMPLEX ROOTS OF A POLYNOMIAL
C EQUATION
C P(X) = AO*X**N+Al*X**N-l+...+AN-l*X+AN = 0
C INVOLVES FINDING A QUADRATIC FACTOR X**2+ALP*X+BETA OF THE POLY-
C NOMIAL BY AN ITERATIVE PROCEDURE.
C
C REFERENCE NUMERICAL ANALYSIS-KUNZ
C
C PHILLIP CARD MARCH 1966
C

1 READ 100,EPS 
READ 101,N
DIMENSION A ( 1 0 0 ) ,B(1 0 0 ) » C (100)

C
C READ THE ORDER AND COEFFICIENTS OF THE ORIGINAL EQUATION
C THE ORDER N IS LESS THAN 100
C AND GREATER THAN 3
C

J = N 
M = N+1 
LI = 1 
L2 = 2
READ 1 0 2 , < A { I )* I = 1,M)
PUNCH 103,N,(At I ) ,I = 1,M)
PUNCH 114,EPS

C
c R AND S INITIALLY ARE GUESSES AT THE QUADRATIC COEEFICIENTS
C

JPl = J+1
2 READ 104,R,S 

PUNCH 115 
PUNCH 105,R,S 
K = 0

C
C CALCULATE THE COEFFICIENTS B(I) AND C(I)
C

3 K = K+1 
B ( 1 ) = At 1)
B<2) = A(2)-R*R(1)
DO 10 I = 3,JPl 

10 Btl) = A ( T ) - R * R { I - l ) - S * B ( 1-2)
C ( 1) = B ( 1)
C(2) = B(2)-R*C(1)
DO 20 I = 3,J 

20 Ctl) = B ( I ) - R * C ( I - l ) - S * C ( 1-2)
C
C CALCULATE DELR AND DELS
C
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DEN = C(J-1)**2-C(J-2)*(C(J)-6(J))
I F (DEN121*22.21 

22 PRINT 116 
GO TO 2

21 DELS = (C(J-1)*B(J+1)-B(J)*(C(J)-B(J)>Î/DEN 
DELR = (B(J)*C(J-1)-C(J-2)*B(J+1))/DEN 
RS = R+OELR 
SS = S+OELS 
PUNCH 106.K.RS.SS 
IF(ABSF(R-RS)-EPS)5*5 *15 

5 IF(ABSF(S-SS)-EPS)25.25.15 
15 IF(K-50)35*45,45 
35 R = RS 

5 = SS
C
C REPEAT THE PROCESS WITH NEW R AND S
C

GO TO 3
C
C METHOD HAS CONVERGED .COMPUTE ROOTS USING QUADRATIC FORMULA
C

25 T = 1
CALL 0ES(T.R.S.RR1.RI1.RR2.RI2)
PUNCH 108
PUNCH 109.L1.RRl.RI1 .L2.RR2.RI2 
LI = LI + 2 
L2 = L2+2 
PRINT 117 
PAUSE 
GO TO 4 

45 PUNCH 107 
PRINT 107 
PAUSE

C
C HIT START TO READ IN NEW VALUES FOR R AND S
C

GO TO 2

4 J = J-2
IF!J-2 >65.75.85 

85 JPl = J+1
DO 50 1=1.JPl 

50 A( I ) = B U  )
GO TO 2

75 CALL 0 E S ( B ( 1 ).B(2).B(3).RR1.RI1.RR2.RI2) 
PUNCH 118
PUNCH 1 09.L1.RRl.RI1 .L2.RR2.RI2 
PRINT 121 
PAUSE 
GO TO 1 

65 RR = -B(2)/B(l)
RI = 0.
PUNCH 118
PUNCH 109.L1.RR.RI 
PRINT 121 
GO TO 1
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100 F0RMAT(E14.8)
101 F O R M A T ! 13)
102 F O R M A T(5E14.8)
103 FORMAT! 6 2 H B A I R S T O W •S METHOD FOR FINDING QUADRATIC FACTORS OF P 

10LYN0MIALS/8X.46HPIX) = All)*x**N+A(2)*X**N-l+...+A(N)*X+A!N+l)/
2 8X*39HTHE DEGREE N OF THE POLYNOMIAL PlXI IS I5/8X,46HTHE COEFFIC 

All) TO AIN+1) ARE AS F O L L O W S / !24X * E 1 4 * 8 ))
: (2 E 1 4 . 8 )

FORMAT!21X * E 1 4 . 8 * 5 X * E 14,8)
F0RMAT!12X*I2,7X,E14.6,5X,E14.8)

39HMETHOD HAS NOT CONVERGED IN 50 ITERATES/)
H RO O T S , 8 X,4HREAL,10X,9HIMAGINARY)

F O R M A T ! 3 X , 12,5X,E14.8,3X,E14.8 )
12X,11HEPSIL0N IS E14.8)

F O R M A T ! / 9 X . 7 H I T E R A T E ,1IX*IHR♦18X»1HS/)
BHCHOOSE n e w  R AND S)
IHCO N V E R G F N C F )
7H R O O T S *8X,4HREAL*10X.9HIMAGI NARY)
OHFINAL HALT)

3 lENTS
104 FORMAT
105 FORMAT
106 FORMAT
107 FORMAT
108 FORMAT
109 FORMAT
114 FORMAT
115 FORMAT
116 FORMAT
117 FORMAT
118 FORMAT
121 FORMAT

END
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SUBROUTINE
QUADRATIC EQUATION SOLVER

SUBROUTINE Q E S ( A 3 , A 2 , A 1»RRI,RI1 *RR2*RI 2) 
D = A2**2-4.*A3*A1 
IF<D)5»15,15 

15 RRl = (-A2+SQRTF(D))/(2.*A3)
RR2 = (-A2-S0RTF(D))/(2.*A3)
RI 1 = 0 
RI2 = 0 
RFTURN 

5 RRl = -A2/(2.*A3)
RR? = RRl
R I 1 = SQRTF(-D)/(2**A3)
R I 2 = -RIl
RETURN
END
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E X A M P L E  1 1
C H A P T E R  2

B A I R S T O W ‘S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 3
THE COEFFICIENTS A d )  TO A(N + 1) ARE AS FOLLOWS

• lOOOOOOOE+01 
.OOOOOOOOE-99 
lOOOOOOOE+01 

-.lOOOOOOOE+01

EPSILON IS .00001
ITERATE R S

1
2
3
4

ROOTS REAL
1 -.66235900E+00
2 -.66235900E+00

.lOOOOOOOE+01 

.13333333E+01 

. 13245615E+01 

.13247180E+01 

. 13247180E+01
IMAGINARY 

.56227950E+00 
-.56227950E+00

.lOOOOOOOE+01

.66666670E+00

.75438592E+00

.75487770E+00

.75487770E+00

ROOTS REAL
3 . 13247180E+01

IMAGINARY
.OOOOOOOOE- 99
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E X A M P L E  1 2
C H A P T E R  2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l)
THE DEGREE N OF THE POLYNOMIAL P(X> IS 5
THE COEFFICIENTS All) TO A(N+1) ARE AS FOLLOWS

•lOOOOOOOE+01 
-•17000000E+02 
.12A00000E+03 

-.50800000E+03 
.10350000E+04 

-.87500000E+03
EPSILON IS .00010

ITERATE R

1
2
3
4
5
6 
7

ROOTS REAL
1 .20000004E+01
2 .20000004E+01

.OOOOOOOOE-99
-.16169632E+01
-.28679906E+01
-.36781091E+01
-.39708941E+01
-.39997555E+01
-.40000009E+01
-.40000009E+01

IMAGINARY 
.99999945E+00 

-.99999945E+00

.OOOOOOOOE-99 

. 17224409E+01 

.33046610E+01 

.44873180E+01 

.49519633E+01 

.49995860E+01 

.50000008E+01 

.50000008E+01

ITERATE

1
2
3
4
5

ROOTS REAL
3 .29999872E+01
4 .29999872E+01

.OOOOOOOOE-99
-.41183426E+01
-.58254301E+01
-.60079523E+01
-.59999744E+01
-.S9999982E+01

IMAGINARY 
.40000034E+01 

-.40000034E+01

.OOOOOOOOE-99

.13461536E+02

.22290883E+02

.24958785E+02

.24999951E+02

.24999990E+02

ROOTS REAL
5 .70000260E+01

IMAGINARY
•OOOOOOOOE-99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E X A M P L E  1 3  ( A )
C H A P T E R  2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 6
THE COEFFICIENTS All) TO A(N+1) ARE AS FOLLOWS

.32600000E+01
•OOOOOOOOE-99
•42000000E+01
•30800000E+01

-.71600000E+01
•19200000E+01

-.77600000E+01
EPSILON IS .lOOOOOOOE-04

ITERATE R S

ROOTS
1
2

•OOOOOOOOE-99
1 •19805873E+00
2 •95997580E-01
3 •11244911E+00
4 •11218236E+00
5 •11218228E+00

REAL IMAGINARY
-•56091180E-01 •94183490E+00
-•56091180E-01 -.94183490E+00

•OOOOOOOOE-99
•10837988E+01
•90173020E+00
•88997786E+00
•89019927E+00
•89019935E+00

ITERATE

ROOTS
3
4

ROOTS
56

•OOOOOOOOE-99
1 •65306290E+00
2 •35247705E+00
3 •24574896E+00
4 •24185552E+00
5 .25340898E+00
6 •25421987E+00
7 •25422081E+00

REAL IMAGINARY
10639999E+01 *00000000E-
13182197E+01 •OOOOOOOOE*

•OOOOOOOOE-99
-•65103051E+01
-•34335817E+01
-•19838148E+01
-•14808962E+01
-•14044602E+01
-•14025857E+01
-•14025844E+01

99
99

REAL
18320110E+00
18320110E+00

IMAGINARY
•13685389E+01

-•13685389E+01
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E X A M P L E
C H A P T E R

1 3  (B J2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l)
THE
THE

DEGREE N OF THE POLYNOMIAL P(X) 
COEFFICIENTS A(l) TO A(N+1) ARE 

.32600000E+01 
•OOOOOOOOE-99 
•42000000E+01 
•30800000E+01 

-.71600000E+01 
•19200000E+01 

-•77600000E+01

IS
AS FOLLOWS

EPSILON IS lOOOOOOOE-07

ITERATE

ROOTS
1
2

•OOOOOOOOE-99
1 • 19805873E+00
2 •95997580E-01
3 •11244911E+00
4 •11218236E+00
5 •11218228E+00
6 •1I218228E+00

REAL IMAGINARY
i56091140E-01 •94183495E+00
.56091140E-01 -•94183495E+00

•OOOOOOOOE-99
•10837988E+01
•90173020E+00
•88997786E+00
•89019927E+00
•89019935E+00
•89019935E+00

i t e r a t e R

•OOOOOOOOE-99 •OOOOOOOOE-99
1 •65306408E+00 -•65103057E+01
2 •35247765E+00 -.34335823E+01
3 •24574921E+00 -•19838I51E+01
4 •24185558E+00 -•14808962E+01
5 •25340902E+00 -•14044601E+01
6 •25421991E+00 -•14025857E+01
7 •25422085E+00 - • 14025844E+01
8 •25422085E+00 - • 14025844E+01

ROOTS REAL
3 • 10639989E+01
4 -•13182197E+01

ROOTS REAL
5 •18320156E+00
6 • 18320156E+00

IMAGINARY
•OOOOOOOOE-99
•OOOOOOOOE-99

IMAGINARY
•13685386E+01
-•136853B6E+01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E X A M P L E  1 3  ( C )
C H A P T E R  2

BAIRSTOW'S m e t h o d  FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 6
THE COEFFICIENTS A(l) TO A(N+1) ARE AS FOLLOWS

.32600000E+01

.OOOOOOOOE-99

.42000000E+01
•30800000E+01

-.71600000E+01
.19200000E+01

-.77600000E+01
EPSILON IS . lOOOOOOOE-04

ROOTS
1
2

ROOTS
3
4

ITERATE R S
.OOOOOOOOE-99 .OOOOOOOOE-99

1 .19805873E-00 .10837988E+01
2 .95997548E-01 .90173012E-00
3 .11244910E-00 .88997783E-00
4 .11218234E-00 .89019925E-00
5 .11218227E-00 .89019933E-00

REAL IMAGINARY
-.56091172E -01 .94183493E- 00
-.56091172E -01 -.94183493E- 00

ITERATE R S

.OOOOOOOOE-99 .OOOOOOOOE-99
1 .65306317E-00 -.65103047E+01
2 .35247717E-00 -.34335812E+01
3 .24574899E-00 -.19838145E+01
4 .24185551E-00 -.14808960E+01
5 .25340897E-00 -.14044600E+01
6 .2S421986E-00 -.14025856E+01
7 .25422081E-00 -.14025843E+01

REAL IMAGINARY
. 10639998F+01 
-.13182I97E+0]

.OOOOOOOOE-99

.OOOOOOOOE-99

ROOTS REAL
5 ,183201lOE-00
6 .183201lOE-OO

IMAGINARY 
.13685389E+01 

- . 136853R9E+01
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e x a m p l e  1 4
C H A P T E R  2

B A I R S T O W ’S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+11 
THE DEGREE N OF THE POLYNOMIAL P(X) IS 7
THE COEFFICIENTS A(l) TO A(N+1) ARE AS FOLLOWS

.lOOOOOOOE+01

.OOOOOOOOE-99
-.20000000E+01
.OOOOOOOOE-99

-.30000000E+01
.40000000E+01

-.50000000E+01
.60000000E+01

EPSILON IS . lOOOOOOOE-04

ITERATE R S
.OOOOOOOOE-99 .OOOOOOOOE-99

1 -.12500000E+00 .15000000E+01
2 -.33026133E+00 .88502620E+00
3 — .69440005E+00 .10784368E+01
4 -.60706881E+00 .10696903E+01
3 -.609218795+00 .10767151E+01
6 -.6092132BF+00 .10766801E+01
7 -.60921328E+00 .10766801E+01

ROOTS REAL IMAGINARY
1 •30460664E +00 .99191475E+00
2 •30460664E+00 99191475E+00

ITERATE R S

.OOOnOOOOF-99 .OOOOOOOOE-99
1 ,34867614F+01 -.24185137E+01
2 .26015274E+01 -.19842264E+01
3 .19315073E+01 -.17834572E+01
4 .14045295E+01 -.18387089E+01
5 .10336157E+01 -.20264880E+01
6 .88039870E+00 -.21434174E+01
7 .85524766Ë+00 -.21732008E+01
8 .85447464E+00 -.21744699E+01
9 .85447380E+00 -.21744715E+01

ROOTS REAL IMAGINARY
3 .Î1080156E+01 .OOOOOOOOE- 99
4 - . I9624902F+0I .OOOOOOOOF- 99
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ITERATE

ROOTS
5
6

•OOOOOOOOE-99
1 .43915078E+02
2 .21959686E+02
3 .1098753SE+02
4 .55172830E+01
5 .28305900E+01
6 .16291744E+01
7 •13034803E+01
8 .12925243E+01
9 .12926297E+01

10 •12926297E+01
REAL IMAGINARY

•64631485E+00 .111745288+0
•64631485E+00 -•11174528E+0

•OOOOOOOOE-99
•10449172E+02
•52530510E+01
•27110865E+01
•154B4181E+01
•11666539E+01
•12888837E+01
•15911775E+01
•16660050E+01
•16664238E+01
•16664238E+01

ROOTS REAL
7 .15378910E+01

IMAGINARY
•OOOOOOOOE-99
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EXAMPLE 15
CHAPTER 2

B AIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
PIX) a A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l)
THE DEGREE N OF THE POLYNOMIAL P(X> IS 8 
THE COEFFICIENTS A U »  TO A(N+1) ARE AS FOLLOWS

• lOOOOOOOE+01 
.20400000E+02 
.15130000E+03 
•49000000E+03 
.68700000E+03 
•7Î900000E+03 
.15000000E+03 
•10900000E+03 
,68700000E+01

EPSILON IS ,00001 

ITERATE R S

ROOTS
1
2

.OOOOOOOOF-99 ,
1 .50713200E+00 ,
2 -.S0994650E-01
3 ,29452665F+00 ,
4 -.16727224E+00 ,
5 .35399700F-01 ,
6 .20501505E-01 ,
7 -.56442910E-02 ,
8 -.56575771E-02
9 -.56604909E-02 ,

REAL IMAGINARY
28287885E-02 ,41326656E+00
.28287885E-02 -.41326656E+00

OOOOOOOOE-99
450OOOOOE-O1
12056259E-01
58640522E-01
78684068E-01
10122710E+00
17233900E+00
17012366E+00
17079725E+00
17079728E+00

ITERATE

1
2
3
4
5
6 
7

ROOTS REAL
3 -.673787S0E-0I
4 -.77857520E+01

.OOOOOOOOE-99

.91876182E+00

.42300950E+01

.76635625E+01

.78875067E+01

.78540419E+01

.78531312F+01
•78S31280E+01

IMAGINARY 
.OOOOOOOOE- 
.OOOOOOOOE-

.OOOOOOOOE-99

.60581391E-01

.28963854E+00

.50986716E+00

.52713429E+00

.52466013E+00

.52459383E+00

.52459362E+00

99
99
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ITERATE R S
.OOOOOOOOE-99 .OOOOOOOOE-99

1 .10133398E+01 .14704039E+01
2 .13146751E+01 .21107625E+01
3 .13354893E+01 .21917771E+01
4 .13355030E+01 .21924679E+01
5 .13355030E+01 .21924679E+01

ROOTS r e a l  i m a g i n a r y
5 -.66775150E+00 .13215808E+01
6 -.66775150E+00 -.13215808E+01

ROOTS REAL IMAGINARY
7 -.56085115E+01 .18748846E+01
8 -.56085115E+01 -.18748846E+01
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E X A M P L E
C H A P T E R

6  ( B )2

B A I R S T O W ’S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 3
THE COEFFICIENTS A(l) TO A(N+1) ARE AS FOLLOWS

•lOOOOOOOE+Ol
-.30000000E+01
.AOOOOOOOE+01

-.50000000E+01
FPSTLON IS . lOOOOOOOF-OA

ITERATE R S

ROOTS
1
7

ROOTS
3

1
2
3
4

REAL
•39329379E+00
.39329379E+00

•OOOOOOOOE-99
-.77777777E+00
-.78762305E+00
-•78658759E+00
-•786S8832E+00

IMAGINARY 
•14506123E+01 

-.I4506123E+01

•OOOOOOOOE-99
•16666666E+01
•22573839E+01
•22589561E+01
•22589561E+01

REAL
•22134125E+01

IMAGINARY
•OOOOOOOOE-99
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E X A M P L E
C H A P T E R

7  ( C )2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
P(X) = A(I)*X**N+A(2)*X**N-l+,..+A(N)*X+A(N+l)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 6
THE COEFFICIENTS A(l) TO A(N+1) ARE AS FOLLOWS

•lOOOOOOOE+01
.30000000E+01

-.lOOOOOOOE+01
-.70000000E+01
•lOOOOOOOE+02
.14000000E+02

-.20000000E+02
EPSILON IS . lOOOOOOOE-04 

ITERATE R S

ROOTS
1
2

.OOOOOOOOE-99
1 ,OOOOOOOOF-99
2 .71532846E+00
3 .98185698E+00
4 .99971621E+00
5 .99999988E+00
6 .lOOOOOOlE+01

REAL IMAGINARY
. lOOOOOOOE+01 .OOOOOOOOE-
. 19999998E+01 .OOOOOOOOE-

.OOOOOOOOE-99 
-.20000000E'01 
-.21751824E+01 
-.20464492E+01 
-.20005900E+01 
-.20000000E+01 
-.20000000E+01

99
99

ITERATE R

ROOTS
3
4

1
2
3
4
5
6
7
8 
9

10
11

REAL

.OOOOOOOOE-99
-.18000006E+02
-.11688143E+02
-.74978080E+01
-.47364012E+01
-.29642537E+01
-.19614340E+01
-•17926335E+01
-.20306692E+01
-.20005634E+01
-.20000001E+01
-.20000000E+01

IMAGINARY
,10000000E+01 
, 1OOOOOOOF + 01

.lOOOOOOOE- 
-. lOOOOOOOF-

.OOOOOOOOE-99
-.lOOOOOOlE+02
-.65660120E+01
-.42488138E+01
-.26356980E+01
-.13968442E+01
-.18518910E+00
.13697357E+01
.20601793E+01
.20007869E+01
.20000002E+01
.20000001E+01

01
•01

ROOTS REAL
5 -.20000001E+01
6 -.20000001E+01

IMAGINARY 
.lOOOOOOlE+01 
■.lOOOOOOlF+01
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E X A M P L E
C H A P T E R

4  ( B )
2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l)
THE DEGRFF N OF THE POLYNOMIAL PCX) IS 3
THE COEFFICIENTS A(l) TO A(N+1) ARE AS FOLLOWS

.lOOOOOOOE+01
-.30600000E+01
.31211000E+0Î

-.10611060E+01
EPSILON IS inOOOOOOF-04

ROOTS
1
2

ROOTS
3

ITERATE R S

.OOOOOOOOF-99 .OOOOOOOOF-99
] -.906644BRF+00 .346766665+00
2 I 3868472F + 01 .570098335+00
3 -.16523766E+01 .724670225+00
4 -.18054803E+01 .832648725+00
5 -.189649615+01 .906235555+00
6 -.195156925+01 .954887585+00
7 -.198515235+01 .986235865+00
8 -.200561145+01 .10059877E+01
9 -.201789745+01 .101809305+01

10 -.202493775+01 .102511385+01
11 -.202851925+01 .102870875+01
12 -.202935955+01 .102955925+01
13 -.203020045+01 .103039985+01
14 -.203019905+01 .103039915+01

REAL IMAGINARY
, 10204480F+01 .OOOOOOOOE- 99
, 10097S23E+01 .OOOOOOOOE- 99

REAL IMAGINARY
102P7996F+01 .OOOOOOOOF-99
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E X A M P L E  5 ( B )
C H A P T E R  2

ROOTS OF THE POLYNOMIAL 
P(X) = A(l)*X**N+A(2)*X**N-l+...+A(N)*X+A(N+l) 
THE DEGREE N OF THE POLYNOMIAL P(X) IS 3

THE COEFFICIENTS A d )  TO A(N+1) ARE AS FOLLOWS
, lOOOOOOOE + 01

-.30060000E+01

.301201lOE+01
-. 1006011OE+01

FPSILON IS .9500

P = 2
t h e  c o e f f i c i e n t s  OF 

. lOOOOOOOE+01

P = 4
THE COEFFICIENTS OF 

.lOOOOOOGE+Ol

P = 8
t h e  COEFFICIENTS OF 

. lOOOOOOOE+Ol

THE TRANSFORMED EQUATION 
.30120140E+01 .30240720E+01

THE TRANSFORMED EQUATION 
.30240841E+01 .30483454E+01

THF TRANSFORMED EQUATION 
.30483940E+01 .30975028E+01

. 10120581E+01

. 10242616E+01

.10491120E+01

P = 16
THE COEFFICIENTS OF 

.lOOOOOOGE+01
THE TRANSFORMED EQUATION 
.30977003E+01 .3198 3106 E + 0 1 11006359E+01

P = 32
THE COEFFICIENTS OF 

. lOOOOOOOF+01
THE TRANSFORMED EQUATION 
.31991261E+01 .34103098E+01 .12113995E+01

P = 64
THE COEFFICIENTS OF 

.lOOOOOOOE+01
THE TRANSFORMED EQUATION 
.34137883E+01 .3879 3731E + 0 1 .14674889E+01

P = 128
THE COEFFICIENTS OF 

. lOOOOOOOE+01
THE TRANSFORMED EQUATION 
.38952045E+01 .50301422E+01 .21535239E+01

P = 256
THE COEFFICIENTS OF 

.lOOOOOOOF+01
THE TRANSFORMED EQUATION 
,51123339E+0I .85254989E+01 .46376652E+01
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p = 51?
THF COFFFICÎFNTS OF THF TRANSFORMFD EQUATION 

«lOOnOOOOF+01 .90849606F+01 .25265545E+0?
P = 1024
THF COEFFICIENTS OF THF TRANSFORMFD EQUATION 

.lOOOOOOOF+01 .32005418E+02 .24755023F+03
P = 2048
THE COEFFICIENTS OF THE TRANSFORMED EQUATION 

. lOOOOOOOF+01 .52924637E+03 .31670250E+05

P = 4096
THF COEFFICIENTS OF THE TRANSFORMED EQUATION 

. lOOOOOOOF+01 .21676122E+06 .77649701E+09

P = 819?
Th e  COEFFICIENTS OF THF TRANSFORMFD EQUATION 

, lOOOOOOOF+01 .45432434F+11 .58309572E+18

CROSS PRODUCT TERMS ARE NEGLIGIBLE

.21507939F+02

•46259144E+03

.21399084E+06

.45792082E+11

.20969148E+22

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION

I X ( I)
1 ,I0030000F+01

? ,10019999F+01

3 .10009999E+01

THE POSSIBLE REAL ROOTS OF P(X) 
F (X ( n  ) - X ( I )

,69nOOOOOF-13
.OOOOOOOOE-99

-.68000000E-13

10030000F+01
10019999E+01

10009999E+01

F ( - x ( I n  
-.80601485E+01 
-.80480940E+01 

-.B0360516E+01
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E X A M P L E
C H A P T E R

(B)

B AIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS 
P(X) » A (1)*X**N+A(2 )*X**N-1+.. .+A(N>*X+A(N+1)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 3
THE COEFFICIENTS A(l) TO A(N+1) ARE AS FOLLOWS

.lOOOOOOOE+OI
-•30060000E+01
.30120110E+01
10060110E+01

EPSILON IS . lOOOOOOOE-OA
ITERATE R S

ROOTS
1
2

•OOOOOOOOE-99 •OOOOOOOOE-99
1 -•89066644E-00 •33466766E-00
2 -•13624176E+01 •55021623E-00
3 -•16232926E+01 •69941653E-00
4 -•17737425E+01 •80366B35E-00
5 -•18632289E+01 •87475906E-00
6 -•19174554E+01 •92183480E-00
7 -•19506445E+01 •95228612E-00
8 -•19710588E+01 •97166430E-00
9 -•19836440E+01 •98386234E-00

10 - • 19914085E+01 •99148464E-00
11 -•19961961E+01 •99622151E-00
12 -.19991401E+01 •99914840E-00
13 -•20009366E+01 . 10009396E+01
14 -•20020101E+01 • 10020119E + 01
15 -.20026156E+01 • 10026174E+01
16 -•20029051E+01 •10029070E+01
17 -.20029917E+01 •10029937E+01
18 -•20029999E+01 •10030019E+01

REAL IMAGINARY
.10019908E+01 
. 10010008E+01

.OOOOOOOOE-99
•OOOOOOOOE-99

ROOTS REAL
3 . 10030082E+01

IMAGINARY 
,OOOOOOOOE-99
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c NEWTON-RAPHSON method for simultaneous EQUATIONSc
C METHOD OF SOLUTION FOR FINDING THE REAL ROOTS OF TWO EQUATIONS IN
C TWO UNKNOWNS, F1(X,Y) = 0, F2{X,Y) = 0
C
C M u s t  h a v e  s u b r o u t i n e  f o r  F1 ,F2 ,DXF1,DYF1,DXF2»DYF2c
C XO a n d  YO a r e  THE APPROXIMATE VALUES FOR A PAIR OF ROOTS
C XO AND YO ARE PREDETERMINED AND ARE READ IN
C
C X AND Y ARE THE EXACT VALUES OF THE PAIR OF ROOTS
C AN EPSILON CRITERION MUST BE SATISFIED, EPSILON IS READ IN
C
C A CONVERGENCE CRITERION EXISTS
C
C JANUARY 1966, CARD
C

1 READ 10,XO 
READ 10,YO 
READ 10,EPS 
PUNCH 11,X0,Y0,FPS 
ITER = 1

2 CALL D0(X0,Y0,F1,F2 ,DXF1,DYF1,DXF2,DYF2)
D = DXF1*DYF2-DXF2*DYF1
H = (-F1*DYF2+DYF1*F2)
G = (-F2*DXF1+F1*DXF2)
X = XO+H/D
Y = YO+G/D
PUNCH 12 , i t e r ,X,Y
IF(ARSF(X0-X)-FPS)3,3,4

3 IF(ABSF(Y0-Y)-EP5)5,5,4
4 ITER = ITER+1 

XO = X
YO = Y
IF(ITER-50)2,2,6

5 PUNCH 13,X, Y 
GO TO 1

6 PUNCH 14 
GO TO 1

10 F0RMAT(E14.8)
11 FORMAT(41HTHE PREDET ERMINED APPROXIMATE ROOT XO IS E14.8//41HTHE P 

IREOETERMINED APPROXIMATE ROOT YO IS E 14.8//1IHEPSI LON IS E14.8//)
12 F O R M A T (14HITERATION NO. I3,5X,9HR00T X = E 14.8//22X,9HR00T Y = E14 

1.8//)
13 F O R M A T (40HTHE EPSILON CRITERION HAS BEEN SAT ISFIED//5X,14HAND ROOT 

1 X IS E14.8,7X,10HROOT Y IS E14.8)
14 F O R M A T {64HTHE EPSILON CRITERION HAS NOT BEEN SATISFIED AFTER 50 IT 

lERATIONS)
END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E X A M P L E  1
C H A P T E R  3

Th e  PREDETERMINED APPROXIMATE ROOT XO IS .3AOOOOOOE+01 

t h e  PREDETERMINED APPROXIMATE ROOT YO IS .22000000E+01 

EPSILON IS , lOOOOOOOF-DS

ITERATION NO. ROOT X = 

ROOT Y =
.3A899099E+01

.22633598E+01

ITERATION NO. ROOT X = 

ROOT Y =
.34R74422E+01
.22616255E+01

ITERATION NO. 3 ROOT X = .34R74405E+01 

ROOT Y = .22616242E+01

ITERATION NO, ROOT X = .34874404E+01

ROOT Y = .22616242E+01

THE EPSILON CRITERION HAS BEEN SATISFIED
AND ROOT X IS .34874404E+01 ROOT Y IS . 22616 242E + 0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E X A M P L E  1
C H A P T E R  3

THE PREDETERMINED APPROXIMATE ROOT XO IS .14000000E+01 
t h e  p r e d e t e r m i n e d  a p p r o x i m a t e  ROOT YO IS 15000000E+01
FPSILON IS •lOOOOOOOE-05

i t e r a t i o n  NO. ROOT X = .145734495+01

ROOT Y = -.139969705+01

ITERATION NO. 2 ROOT X = 

ROOT Y =
.145888965+01

.13967682E+01

ITERATION NO. 3 ROOT X = 

ROOT Y =
.145889115+01
-.139676585+01

ITERATION NO. 4 ROOT X = 

ROOT Y =
.145889115+01 
.139676585+01

THE EPSILON CRITERION HAS BEEN SATISFIED
AND ROOT X IS .145889115+01 ROOT Y IS -.139676585+01
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