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ABSTRACT
In this paper we consider the problem of finding the
roots of nonlinear equations, i.e., we summarize some oOf
the techniques for finding the zeros of f(x) where f(x)

may be a polynomial, transcendental, or other nonlinear

function.
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INTRODUCTION
The problem of finding the real or complex roots of
" a nonlinear equation is an old problem. This problem 1is
frequently encountered in scientific work. A few typical
instances are listed below:

1) in the solution of linear differential equations

we must often find the zeros of characteristic poly-

nomials,

2) the stability of a mechanical or electrical sys-

tem is determined by examining the zeros of an asso-

ciated polynomial.

3) when finite difference methods are used to solve

nonlinear boundary value problems, we must solve

simultaneous nonlinear equations.

In this thesis we review several methods of solution
of such equations and we also state and prove some theorems
that have been found useful in their solution., In addi-
tion, to illustrate most of the methods which are pre-
sented, we have listed the computer programs, together
with the numerical results of typlcal problems. These
results are presented to aid the reader in formulating
his own evaluation of the effectiveness of the techniques,
The programs are written in the FORTRAN II language for
the IBM 1620 computer. The report also contains a rather

complete and up to date bibliography.
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The equations to be considered are of the form
f(x) =0
where f(x) may be a transcendental or a polynomigl func-
tion. Methods for the determination of both real and com-
plex roots of polynomial equatlons are reviewed, whereas,
only methods for finding the real and separated roots of
transcendental equations are studied.

After discussing methods of solution for a single
equation we briefly examine simultaneous nonlinear equa-
tions. We note here that the solution of simultaneous
nonlinear equations is an extremely difficult problem and

very few efficlent algorithms are available for their solu-

tion.
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Chapter O

Let f(x) be a continuous real-valued function with
as many derivatives as may be required to permit the opera-
tions that may be used in the following development. Let ¢
be a root of multiplicity one of f(x) = O and assume that
y = f(x) has an inverse x = g(y) in some neighborhood of ? .

In chapter 1 we consider functional iteration methods
based on n-point inverse interpolation, using polynomials
as our interpolation functions. These methods lead to
approximate solutions of f(x) = 0., It is assumed that the
reader is familiar with the theory of inverse interpola-
tion, The theory is discussed in Ostrowski [ s pages
1-12] and Ralston (6 , pages 40-75]. The error in using
n-point lnverse polynomial interpolation as the basis of

functional iteration is given by

(n)
- 5—n—§ll(—1)n Yy Yy oo ¥ (0.1)

T - %0 n

where M is in the interval spanned by Yis Tpo eees ¥y
and O, y; = f(xi) and superscript numbers indicate the
order of differentiation.

The derivatives of the inverse function g(y) are
calculated in terms of derivatives of f(x), as stated in
the following.

THEOREM 0.1 If the first n + 1 (n > 0) derivatives

of f(x) exist and f'(x) # O in some interval La, bl, then

3
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the corresponding derivatives of the inverse function g(y)
exist in the corresponding y interval, 1In fact the deriva-
tives are given by:

X
S(K)(y) = ?—T%EE:T . K =1, 2, eeey n + 1
¥y

(k)

where Xk is a polynomial in y', ¥", .ee, ¥ and

X, =1, Xp4q = (éi X )3y - (2m-1)X_ y" (m =1, 2, ...).

Proof: Clearly since f'(x) # 0 in [(a, bl then

nd gh(y) = —Lf—. 4&x _ _=f%

= (r12 35 " [ge13
X

Let g(k)(y) 2—(—%?3 k=1, 2, ecey n + 1 (0.2)
y'

Here Xk is a polynomial in y', ", ece, y(k). This is
true for k¥ = 1, 2 for in particular Xl = 1, X2 = - y".
Assume the truth of our assertion for the first n deriva-
tives of g(y). We write (0.2) with kK = n

(n) gy - 0 _
g '(y) = —Zn-T

L J 1
and get by differentiation, since %%— = I

(n+1) _ 4a 1 _ _ y" P ym2n
Multiply the right hand side of the above equation by
vy 2n+l
(y.)2n+1 to obtain

4 (X ))y' - (2n-1) X, y*
g{ntL) (y) = 4X

(y.)2n+l

4
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so that

Xpep = o= (X)) ¥' - (20-1) X, ", n =1, 2, -ou ,
Xl = 1 and
g(n+1)( ) = xn+1
y (g1)2n+l °

An n-point functional iteration method has the

general form

X341 = F(Xyy X3 95 cees Xy ) (0.3)
The iteration function F may involve not only the points
Xis Ty_qs eoes Xy 4 but also values of f{x) and some of
its derivatives at one or more of the points Xys oeey X5 149
We will want to determine when an iteration method
converges, and, if 1t does converge, how fast 1t converges.
The convergence or non-convergence will in general depend
upon the choice of the initial approximation(s) to the root.
We will see that if the initlal approximation(s) are "close
enough"™ to ? then convergence is usually assured. The
Problem of obtaining a "close enough" initial approximation
to a root is a very difficult one about which very little
is known. Usually the initial approximation is obtained
from the investigators "intuition''which was derived from
his "feel" of how the real system (from whence the original
nonlinear equation was derived) should behave., Some methods
will converge independently of the initial approximation.

In practice we often begin our computation with a guess

at the root and Just hope that the iteration process will

5
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converge,

For comparative purposes we wlll use the concept of
order. Order is a measure of how fast the method in ques-
tion converges. To define the order of an iterative method

th

we flrst define the error in the 1 iterate to be

“141 = § T Fin (O.4)
Under the assumption that the method will converge we have

DEFINITION 0.1 If there exists a real number p > 1

such that | : l l |
~-X €
1im Il - qam —_ - ¢ % 0and |¢] < @,
i->o® | ¢ -xilp 1 > |€1|p

we say the method is of order p at ¥ .

If a2 method has order 2 for example, then the error
of any lterate is approximately proportional to the square
of the error of the previous iterate., The concept of order
is 1llustrated in Problem 3, Chapt. 1.

We now have

THEQOREM 0.2 The order of a method is unique,

Proof., Suppose p is the order, l.e.,

lesql
1im —2*_ _ ¢ £ 0
i>o® Je,|P
i
le sl 1
Then 1im =35 = C 1lim —_— - If 6 > O the latter
i Ieilp i o le:i

limit diverges to infinity. If 6 < 0, this 1limit converges

to zero, Thus 8 = 0 and p is unique.
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Chapter 1

In this chapter we consider some numerical methods
for the solution of transcendental equations whose roots
are real and separated.

One of the oldest known methods 1s the method of
false position (regula falsi), in which we are given two
interpolation points xq # Xoe Let Yy = f(xi) and we assume
£(xy) # f(xj), i # j. We interpolate the inverse func-
tion g(y) by a linear function which assumes the values
Xi9 X, for Y1 and Yo i.e,,

(y-y1)x, -(y-y5)x,

g(y) = —~
Y2=Y1
Let x3 = g(0), the first approximation to the root of
f(x) = 0.
X192 = V1%
Thus X, = =—=— —— which may be rewritten as
3 Yo=¥q
(x2-x1)
X3 = % - Vo 5,050 (1-1)

This is, of course, linear inverse interpolation. Con-
tinuing this process we obtaln a sequence of points
X1y Xy xj, ooe Where

*17%
xi""l = xi - yi-yl yi (1 = 2’ 3’ ..o) (1.2)

and Xys X, are our initial approximations., Does the se-
guence converge?

A sufficlilent set of conditions to ensure the con-
7
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vergence of the sequence defined by (1l.2) are the fourier

conditions:
1) f(x)f(x,) <0, 2) f(x,)f"(x;) > 0O, 3) £"(x) # 0 (x;<x<x,)
Fig. 1 illustrates the Fourier conditions.

X, 13

Fig. 1
We note that we are restricted to convex functions by the
Fourier conditions.

If the situation is as pictured in Flg. 1 then the se-
quence (l1l.2) indeed converges. For Xps Xgs eeo lie on the
concave side of the arc and cannot go beyond i’ 3 thus we
have a monotone decreasing sequence bounded below by f .
The sequence therefore converges to a 1limit ‘?O. We now
show that ¥ 1s the root ¥ of f(x) = O in (x;, X,).

We subtract 'f o, from both sides of equation (1.2)

and take limits as 1 - @ to obtain

0= %5 - (g ,)-f(x;) T - T
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Now x; # ¥ ,. Thus f( T ) =0 and ¢ , 1s a root of
f(x) = 0 in (x,, x,) and hence €0 = < .
Let us determine the order of the method of false

position. By using (0.1) the error is

_ _ Sn("‘() _ fu(
€441 = 5 - X4 = 53 ylyi"'z[f.(

;_;]3 Y14
since g*"(y) = - £r(x) .
[£r(x)]°
Using the mean value theorem we have
yo = £(x)= £(x)) = £(§) = (x; = DIE'( ) = ey £'C T ),
yy = (x, -F) £'C §,) =e;0'( €,), €4, T, in appro-
priate intervals.

freeIeC T 7))

Therefore e = - — €. € (1.3)
1+1 201 (F)1° ol
'ei+l' ™( ¢*%) £°( fl) '(¢)
Then 1im = - |€ |
i > a |€1| 2L (¥ *)13 1
since ¢, > ¢ and € approaches some limiting value

? ¥ a5 1 -2 @ Clearly f'(x) is bounded away from zero in
a neighborhood of ? . Therefore the method of false posi-
tion has order 1.

The method of "regula falsl" may be modified to in-
crease the rate of convergence. Suppose we do not insist
that f(xl)f(x2)< Q0 and that we always use the previous two

iterates, x; and X471+ to generate x l.e., we have

1+1°
X, -X
Xy = X - yi*yi 1 ¥,

1 71i-1

This modified method is called the secant method. How-
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ever, the sequence of iterates obtained may not converge

(Figure 2 is an example of nonconvergence.

///x' “\ "

NS

Figure 2

We now ask what is the order of this method assuming
that it converges? By reasoning analogous to that used pre-
viously the error in the secant method is

w( & ) '
() £10gy) (T )
20e0( €)1°

It can be shown that the order of the secant method is

€141 T

(L.4)

€34€3-1

(1L +,/5 )/2. BRalston [ 6, pages 326-327] outlines an argu-
ment and Ostrowski [ 5 , pages 80-81]1 has a complete proof.
Thus the order of convergence of the secant method is sub-
stantially greater than the order of the false position
method,

Another method for finding the roots of f(x) = 0O is
the bisection method. If f(x) is continuous on (xl, xz)

and f(xl) and f(xz) have opposite signs then we consider

10
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the sequence of points which lie halfway between the pre-
vious two points of opposite sign. The bisectlion method
1s certainly convergent having once found xq and X,.

A minor variant in the bisection method is the di-
viding interval method. Given the points X and X, such
that f(xl)f(xz) < 0, we subdivide the interval [xl, xz]
into, say m, subintervals, knowing that we have at least
one real root of f(x) in (xl, xz)° Then we search for a

pair of adjacent points X such that £(x,)f(x;,,) < O,

10 Fi41
X,-X
+ i (—gﬁ-;

X = e x

o = X

1 1 ) (1 =1, 2, eeey, m), Using
these two polints as endpoints of our next interval we con-
tinue the subdividing process until we achlieve desired
accuracy.

Since the latter two methods are not based on inter-
polation formulae we do not discuss their order of con-
vergence, These two methods are very useful when a priori
information on the location of roots is poor. If such is
the case we can start at the origin, say, and test consecu-
tive intervals of an arbitrarily fixed length until we
find an interval on which the functional values at the end-
polints differ 1n sign. Having located this fundamental
interval we then apply one of the two methods above. ITf
we desire other real roots we can continue along the x-
axis in exactly the same manner, Of course it may happen

that our test intervals were of too great a length in

which case we might miss some roots as shown in Figure 3,

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



£L0

AN )

Figure 3

The iteration methods considered thus far have been
two-polint iteration methods. Next we will consider a class
of one-point functional iteration methods of the general
form

X341 = Flxy)

We assume that f’ is a simple root of f(x) = 0, and
that f(x) has an inverse g(y) in a2 neighborhood of i? .
We expand g(y) in a Taylor-series about ¥y to obtain

m+l (y-y,)" yre

(y-y
x = g(y) = JEO j? S(j)(yi) + (m+%): g(m+2)(n )
m+l (y-¥y,) (y-y, )02
=%tk % gy + (m+%)3 g ™2 ()

where N 1s between y and y,.

Since f = g(0) we have

m+1 _1y4d
i = xi + j£1 L%_}_. yij g(j)(yi) +

12
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+
-1 m+2

1
- x o+ phoen)? 3 g, ()« £, "2 P2 () (1.5)

1 3=1 3! i (m+2) ! 1
where y, = f(x,) = f, and 8(3)(y1) = gi(j) .
We define
Y (xy) =¥, = T%i%%% (£, 9% g, (%) ana
u; = ;iT I =0, 1, 2, ... (1.6)

f m 3
- i (=1) -, J (3+1)
T =x - f,' 350 Girnr fa’ Ta” &
m+2
+ ey 6" s o

J
fi m fi L*llj

= X, = === ¥ (fi')j+1g (J+1)

i fi' =0 (fi.)j (3+1): i
m+2
« T 1™ e o)
m -1 m+2z

- x Iy £, 02 (B2 () (1.7)

17 % gEQMT Ty T TTmE) T

Now consider an iteration formula of the form

m
= J
Xi+1 —— Xi - ui jgoui Yj (108)

(1L.8) will be useful only if the Yj's are easily calculated,

We have Y_ = 1 by (1L.6) and by differentiating Y(x) we obtain

Yy = 357 (3 Dy Yyg = XM, ¥yt = g5 Yu(x) | =3, 5 44,
e (3)
where D.(X.) = D, = —t—rme (1.11)
3V %3 3 " .
Also by differentiating (1.11) with Dl = 1,
_ ’ v . 4 —
Dy = Dy Dy_4 + Dy_q Dy' = 3% Dj(x) | x = Xy (1.12)
13
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Now Y., =

1 D

2
2

Wi N

Y2 =

and by looking at (1.10) and rewriting (1.12) as

1 d 1 2 1 2
[D2 -3 (EE D2)] =3 (b, - 3 (D3 - D, )]

r - -

j-1
we see that Yj is a polynomial in D2, D3’ ee oy Dj+l .
Thus, the evaluation of (1.8) reduces to the evalua-
tion of Uy and the Dj's.
Subtract (1.8) from (1.7) to obtain the error,

-1)8+z 2 2
€341 = § " X34y = LTm+2)! £, (™2 (7).,

As before f, = f(xi) = f(xi) - f(§¢) = (x1 -%) £'( € i)’
since § 1is a zero of f(x), where { , 1s between ¥ and x,.

Then
m+2

€141 = Tﬁ%fTT i [e*( i)]m+2 g(m+2) (7.)§ €
Since g’ is a simple root of f(x) = 0 the term in braces
is bounded in some neighborhood of ¢ . The order of (1.8)
then is (m+2) provided the method converges,

Let us consider the special case when m = 0§ hence

the order is two., Then
f(xi)
T+l T T T ML T R T T (xy) (1.3)

which is the Newton-Raphson method of lteration. Geometric-

ally, x is the intersection of the tangent line f'(xi)

i+1
with the x-axis.

As m increases then so does the order, but 1in each
case we must evaluate higher and higher order derivatives,

Thus the usefulness of this class of methods is dependent

14
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on the complexity of f(x), i.e., how hard is it to evaluate
higher order derivatives.

Another one-point iterational method is that called
the "first-order"™ iteration method. The principle of the
method 1is to express the equation f(x) = O in the form

x = g(x) (1.14)
so that any solution of (1l.14) is a solution of f(x) = 0.
Geometrically a root of (1.14) is a number x = § for which
the line y = x intersects the curve y = g(x). The itera-
tion formula then has the form

X341 = 8(xy)
and 1t can be shown that if the form of (l.1l4) is chosen
correctly and we have an initial approximation which 1is
"close enough" then the method will converge with order
one, In other words equation (1.14) may be written a
variety of ways, depending on f(x), but each way does not
necessarily lead to convergence,

For example, consider f(x) = x° - x - 6 = 0, which
has as roots 3 and -2, Then (1.14) may assume any of the
following forms:

1) x = xz - 6

_ ()
2) X—l'i';c'

3) x=+/x + 6
If form 1) is used neither root is found, form 2) will

give us the root 3, while form 3) will yield both roots.
15
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Figure 4
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The three forms are illustrated in Figure 4.

As a guide, Newton's method should be used whenever
f'(x) is easily calculated. If this 1s not possible the
secant method should be used. If neilther of these methods
1s readlily applicable, then try a method with convergence
of order one,

In the methods reviewed thus far i> has been assumed
to be a root of multiplicity one of f(x) = 0. Suppose
now that f is a root of multiplicity r > 1 of f(x) = O
and that we desire an lteration method whose order of con-

vergence is independent of the multiplicity of the root.

fix
£f'(x) °

of € of f(x), u(x) has ¥ as a root of multiplicity one.

Consider u(x) = No matter what the multiplicity

The roots of u(x) O are then identical with the roots
of f(x) = O except they all are simple, Therefore we re-
Place F(x) by u(x) in any method developed thus far and
we retain the order of convergence, Newton's method, for

instance, becomes
u(xi)
41 T %y T u¥(x,)
f(x;) f'(xl)
[f'(xi)]z-f(xi)f"(x

Xy 1)
The order agaliln is two but note the necessity of the
evaluation of the second derivative of f(x).

In programming these methods it 1s necessary to "tell®
the computer when to stop the iteration. The criterion

adopted was to stop the iteration when |x1+1 - Xi' < e,

17
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where € is small, As a further check on the convergence
the value f(x1+l) 1s punched out and should also be negli-
gible, This latter condition is not a satisfactory cri-
terion for stopping the iteration since for If(x1+l)l < e
it may be necessary that |xi+1 - xil < ¢ where ¢ is less
than the smallest significant number carried in the arith-
metic and hence the computer would never stop iterating.

Now we examine the following

Problem 1., Find a real root of the equation

f(x) = sinx - x/2 = 0O

From the graph given below, Figure 5, we see that
f(g) f(n) < 0, Therefore f(x) = sin x - x/2 has a real
zero between % and 11, This problem was run using the
Newton-Raphson, secant, "first-order" iteration, and divid-
ing interval methods. The programs and complete numerical
results appear 1n the appendix. In each run € was chosen
as .1 x 10‘5. The real root sought was 1.89549, As ini-
tial guesses % and ™ were used, and as expected, the New-
ton-Raphson method converged the fastest, requiring only
five iterates. Clearly the derivative f'(x) is easily
calculated. This problem was run by Ralston using the
false-poslition method with the same € and same initial
guesses but here eleven iterates were required.

Problem 2. PFind a positive real zero of the function
f(x) = x20 - 1 using the Newton-Raphson method.

From formula (1.13) 1t is evident that the larger

18
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N

Figure 5
f(x) =sinx -x/ 2

the value of f'(x) the smaller is the correction needed
to obtain the correct value of the root. This implies
that the larger the value of f'(x) in a neighborhood of
the root the faster the convergence, and in fact 1f £'(x)
1s small in this neighborhood the method would converge
very slowly or faill altogether. We see by looking at
Figure 6, that if the initial guess x4 is greater than 1
the method should converge, but for 0 < Xq < 1 the most
we could hope for is a very slow convergence, In fact

with x, = 0.5 the method has still not converged after

1
50 iterates and X = 2.123 x 107, whereas with x, = 1.5
or x,; = 5.0 the method d4id indeed converge in twelve and

thirty-six iterates respectively. Again € = .1 x 1077,

19
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Figure 6

f(x) = x
Problem 3, Find the real root of the equation
f(x) = % -3 =0, i.e., find the reciprocal of 3, using
the Newton-Raphson method and the "first-order" iteration
method. This problem illustrates the concept of order.
The (1+1)st iterate using the Newton-Raphson method

is given as
f{x,)
X =x...—-—1—-—
i+1 i f'(xl)

2

il

1
xy * (xi - 3) X5

= Xj (2 - 3xi)
Let our initial approximation be X, = 0.3. Then
Xz = 003(101) = 0933
0.33(1.01) = 0.3333

X

3
20
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X, = 0,3333(1.0001) = 0.33333333

[

L4

Each iterate then doubles the number of significant fig-
ures. The order of the Newton-Raphson method is two.

To solve this problem using the "first-order" itera-
tion method we rewrite the equation % - 3 =0 in the form
X = %(—x + 1). Thus

xy4q = 3% + 1)

Let X, = 0.3 once again, and we obtain the sequence of
iterates,

§ 0.3, 0.35, 0.325, 0.3375, 0.33125, 0.334375, ... §
In this case the sequence oscillates about the root but

the sequence 1s converging to the root. The order of the

"first-order" method is one,

21
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Chapter 2

The methods of Chapt. 1 for finding the real roots
of transcendental equations are used for finding the real
roots of polynomial equations. With some modifications
certain of these methods may be applied to the location
of complex roots. However, the problem of finding the
zeros of polynomials, both real and complex, arises so
frequently that special methods have been developed to
find them.

We consider the general polynomial equation of the
n-'lzg degree

n n-1
Pn(x) = a X + a;X + ... ta Jx+a =0 (2.1)

where the coefficients ags i=0,1y ¢v.y n are real num-
bers, aO # 0, and x is a complex variable.

The Newton—-Raphson method of Chapt. 1 can be modified
so that it may be used to find the complex zeros of poly-
nomials. We have f(x) = P(x) so that the Newton-Raphson
method has the form

P(x.)
X1 = X3 ~ FTTiiT sy 1 =1, 2, ...

where the initial approximation Xy is complex, X, = oq+ iBl,
B, # O.
» . 3 .
If x, = o + iB, P(x ) = A  + iB, P'(x ) = C + i D,
then we can show that

22
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n nn
n+1 T % T T2 2
n
8 _ B+ Aply — BpCy
n+l - "n 2
Cn + Dn
P(xn)
For x = - and by substitution we have
n+l *n ?'(xnj
A+ iB
. . . n n
Cpe1 ¥ EBpyy = oy * iR, C, + 1D_

Rationalizing the denominator yields the desired result.

When using this method to find complex roots we must
evaluate quantities such as (a + iB)¥. This evaluation
can certainly be accomplished using the binomial theorem.
However it may be accomplished more readily by introduc-
ing bolar coordinates and using the relation

(@ + ip)¥ = r®(cos k¥ © + i sin k 8)
where @ = r cos © and B = r sin ©.

We now discuss a method, which under certain condi-
tions, allows us to find both real and complex roots of a
polynomial equation, without any a priori information about
the roots. This method is called Graeffe's root-squaring
method. The development given here parallels that pre-
sented by Scarborough [ 7 , pages 223-243],.

Upon investigation we note that the method is most

successful when the roots of the polynomial are all real

23
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and unequal. In addition, the method easily handles up
to two pairs of complex roots and gives some valuable in-
formation if the roots are real and of equal magnitude.
In practice, we would first find all of the real roots of
the original equation by the root—-squaring process of
Graeffe. If we were to remove these roots by synthetic
division and the order of the remaining polynomial were
two or four, then the complex root pairs could be found
by examining the quadratic factors given by the root-
squaring technigue.

If the order of the remaining polynomial was greater
than four we could obtain the roots by applying another
technigue, e.g., the Lin-Bairstow method which is ex-
plained later. This technique would be applied either
to the original equation or to the reduced polynomial
equation.

The principle of the root-squaring method is to
transform the equation into an equation which has as its
roots higher powers of the roots of the original equation.
The roots of the transformed equation are said to be sepa-
rated if the ratio of the magnitude of any root to the
next larger is negligible in comparison with unity. The
root-squaring process is continued until this separation
of roots is obtained. When the process is programmed for
a digital computer it is necessary to "tell" the computer

how to recognize this separation.

24
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Consider the general polynomial equation
n -1 _
P (x) = a x" + alxn + ... +ta Jx+a =0 (2.2)
If X135 Xps eeey X are the roots of equation (2.2) we can
rewrite it in the form
Pn(x) = ao(x-xl)(x—x2) .o (x-xn) =0 (2.3)
Multiply equation (2.3) by the function (-1)% Pn(-x),

(-1)8 Pn(—x) = (-1)% ao(—x-xl) (-x—xz) ce (—x—xn)

= ao(x+xl) (x+x2) - (x+xn)
to obtain

(-1)® p_(-x)P_(x) = a ° (x"-x;%)(x"-x,2)

cen Fx ®) = 0 (a.

x° in equation (2.4) we have

2 ol (3%, = 0

Letting ¥y
2(x)

Clearly the roots of the above equation are the sguares

2 2
a, (y-2,) (y—x,

of the roots of the original equation (2.2). Thus, to form
an equation whose roots are the squares of the original equa-
tion Pn(x) = 0, we multiply the original equation by
(-1)® p_(-x).

It is instructive to consider as an example the fourth
degree equation

P4(x) - a0x4 + alx3 + a2x2 + azx + a, =0

Now
(-1)4P4(-x) = aox4 - alx3 + a2x2 - azx + a,
Multiplying we have
(—1)434(-X)P4(x) = a02x8 - a12 x° + a22 xt - a52 X<+ a42= 0
+2 a
+2_  a -2 _ a a~“ 4
a, 2 Y 3 2
+2 a
ao 4
25
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By considering other examples we would note that the
coefficients of the transformed equations are generated
in the same manner whether the degree of the polynomial
is even or odd. In both cases the odd powers of x vanish.
The procedure can be performed schematically. We carry

out the multiplication as follows:

a, 2y as az a, .o
a, —ay as —az 2, e
2 2 2 2 2
a, —ay +a, -az +ay, .o
+2aoa2 —2ala5 +2aea4 ‘23335 (2.5)
+2aoa4 —2ala5 +2a2a6
+2aoa6 -2ala7 oo
bo bl b2 b3 b4 .o
The coefficients of the transformed equation are the sums
bo’ bl’ cees bn of the several columns shown above, This

process is repeated k times to obtain an equation whose
roots are the EKEQ power of the roots of the original
equation,

First let's consider the case when the roots of equa-
tion (2.2) are all real and unequal. Let the order of the
magnitude of the roots be

|x1| > Izl > ... > lxhl
and let the final transformed equation, i.e., the equation
in which the roots are separated, be

26
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Qx) = b (™™ + b T+ L+ b () +p =0 (2.6)

The roots xlm, X2m, ce e Xnm and the coefficients
bys bys ..., b of equation (2.6) are related as follows:
bl = - (x.0 4 m o, mY
B-o—— Xl X2 . @ Xn
m m
X X
x x
1 1
Eé = x, P 0 o+ x Bk, T 4+ + x Bx o+ x Bk T o+
b, I = 173 s 1 “n 2 ™3 s
m m
M *n-1 *n
m m m
X X b'd X
_lexem(l+ CEN. SRV S B
Xo Xo X5 xlm
m m
X X
+ n-1 "n )
m m
X, Xp
2. (x, B, 0% + x %%, Px, T + + x, B Bx B
B, ~ 1 *2 *3 1 *2 *4 1 ¥2 *n
m m m m m
+ xl XBIH)CLl. + ¢ s 9 + Xn_2x _lxn )
m m m
X x X X
= - x.Px By m(l + s + 2 O S < W s + L.
1 2 3 g g g <. o
3 3 > 2
m m m m
+ X + ... + xnl-]-l2 xﬁ—l zn )
. X2 X1 X X3
B o (1B B, T
5, - 1 ¥oo v %
27
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x," Xz
Since the roots are separated the ratios 2m ’ 3m ’ e
X X
1 1
are negligible and we have the new relations
b b b
1 o _ m 2 .o m m K ~ (_1)k, m_. m m
F; = X, E;'"' X7 Xy ... B;' (-1) X1 Xp eee X
bn n m m m
ce s ® 'ﬂb—o_ [ (—l) Xl X2 s e Xn

By treating the above approximations as equations we can
divide each of these by the preceeding equation to obtain

E_%N—me_sz—xm bk‘ z-—-xm
B, 2 > 3 By k

by

&

m
n-1 X, (2.7)

b
Using equations (2.7) and the equation Bi-ﬁz —xlm we have
o

the linear factors

m

— m ~ m
boxl + bl.~ O le2 + b2,~ O ... D

n-1%n * bn1= o)
We see, therefore, that the root-squaring process has broken
up the original equation into n linear factors from which
the approximate roots can be found with relative ease., We
have in fact

b, |

lx, | = X
k ) ]

k-1

Take the logarithm of both sides and multiply by %-to get

~ 1 -
log kal = = (log Ib, | log fv, 1)

or

(log |lb | - 1o0g ID

1 D
= k k-1

P~

Ix, | e
To determine the sign of X, we substitute into the original
equation (2.2).

We now ask the question how many root-squarings are

28
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necessary in order to insure that the egs. (2.7) are in-
deed valid. Suppose an additional root-squaring is per-

formed on Q(x) to obtain the equation

= coem® om (81 - 2m
Q) = B (x=) + B, (7)) o+ ..+ B (xT)e b, =0
whose roots are xim . xgm s eeas xflm . With the additional

root—-squaring we have separated the roots even further than
before.

Now

= ~ (_1Yk . 2m 2m
bk~(l) X] e Xy BO

from our known relations between the coefficients and the
roots of a polynomial equation. We have BB = bo2 direct-

ly from the root-squaring process. Therefore

2 2
T o~ (_1)K m m 2 ., (1Y n 2
By examining the form of (2.5) it is evident that
2

o~ 2 iy
B-ln- bl,bgf-‘.‘:b2

product terms in the root—-squaring process are negligible

y «e.s and Eﬁ'ﬁs(—l)n bn2 if the cross
in comparison to the squared terms. In this case further
root-squaring is useless. It is possible that the coef-
ficients will become "too large'' for the computer before
separation occurs. The programmer must provide a means
for recognizing and allowing for such cases,.

Graeffe's method was applied to several polynomial
equations, all of whose roots were real and unequal. Com-
pPlete numerical results are given in the appendix. This

program and any further programs use eight-place arithmetic
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unless stated otherwise. For the benefit of the reader
we list the polynomial equations to be solved, their ac-
tual roots, the approximate roots given by the root-squaring
method, the number of root-squarings performed (RSP), and
the functional values of the approximate roots. In each
case the cross product terms became negligible which in-
dicated that the criterion for separation was satisfied.

EXAMPLE 1. P3(x) = x> - 2x° - 5x + 6 = 0
Actual roots: X, = 3, Xo = -2, Xz = 1
Approximate roots: x, = 3.0000000, x, = -1.9999998,
xz = 1.0000000
RSP: 5

£(xy) = 0 , £(x;) = .000003 , £(xz) = O

EXAMPLE 2.
Z 1.73%° + 2.%x

- 1.34% = 0

P (x) = 1.23%° - 2.52x" - 1.61x

Actual roots: unknown
Approximate roots: x; = 4.0657071 , x, = -2.9916832,
xz = 1.9587274 , x, = -1.0284223 , Xg = . 044463368
RSP: 5

£(x,) = .0024924 , f£(x,) = .001363 , f(xz) = .0000202

£(x,) = -.000008 , f(xg) = 0.00000

The sum of these roots is 2.04879 whereas it should be
2.52 / 1.23 = 2.04878

EXAMPLE 3.

P,(x) = x* = 5x° + 9.35x° - 7.750x + 2.4024 = O
Actual roots: X, = 1.4, Xy = 1.3, Xz = 1.2, X, = 1.1
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Approximate roots: x, = 1.4000016 , x, = 1.2999978
X4 = 1.2000007 , x) = 1.0999998
RSP: 7

£f(x)) = 0, f(x,) = .0000001, f(x4) =0, f(x,) =0
EXAMPLE 4. P,(x) = x° - 3.06x° + 3.1211x - 1.061106 = O

Actual roots: X, = 1.03, %, = 1.02, X5

Approximate roots: X, = 1.0299843 , X, = 1.0200309 ,

= 1.01

X4 = 1.0099847
BRSP: 10
f(xl) = 0, f(xz) = 0, f(x3) = 0
EXAMPLE 5. P,(x) = x? - 3.006x° + 3.012011x - 1.00601106 = O
Actual roots: X, = 1.003, X, = 1.002, x3 = 1.001
The polynomial actually examined in example 5 was
Fy(x) = x7 - 3.006x° + 3.012011x - 1.0060110 = O, because
the program was written for eilght place arithmetic, i.e.,
the constant term of PB(X) was rounded to eight significant

figures, The approximate roots listed then are actually

approximations to the real roots of 53(x).

Approximate roots: x
X3 = 0.99985752
RSP: 11

L = 1.0034118, x, = 1.0027331,

f(xl) = Q, f(xz) = 0, f(XB) = O.
Since the functional values are all zero we conclude that

the roots so obtained are gquite close to the actual roots
of P .
P,(x)

We now consider the case when the polynomial equation
31
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has some complex roots and the equation cannot then be
expressed as a product of linear factors with real coeffi-
clents., 1Instead the factored form of the equation is a
product of real linear and real quadratic factors.,

Consider for example an egquation having two distinct
real roots, Xy xB, and a palr of complex roots reie, re_ie,
such that lel > r > IXBI. Then the equation having these
as roots 1is

(x-xl) (x - reie) (x - re—ie) (X—XB) =0
An equation whose roots are the mth powers of the roots

of this equation is

(7-x,™) (v - ') (v - M) (y-xM) =0

or
y4 _ (xlm + ylglmé  m -ime X3m)y3
+ (le 0 eime + le £ e-ime + .'_)yz
- (xlm 0 elme ,m -imé eed)Y
+ (x m I_m eime rm e-ime x m) -0
1 3
Taking out xlm, xlmrm, xlmrzm, xlmrzmme and neglecting
m xjm me
the ratios , Z ' T (the roots being separated)
X X r
1 1
we have
yu - xlmy3 + 2xlmrmcosmey2 - leery + xlermme =0 (2.8)

We now separate equatlon (2.8) into quadratic and linear

factors from which we can approximate the real and complex
roots, i.e,,
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_leyz + lemrm cosmOy + X mp20 g

1
m_2m m_2m._ m _.
xl r Ty + Xl r x3 = 0

Suppose we apply the root squaring once more,

v Y 7° 7 y°
mth 1 -xlm lemrm cosme _xlerm xlermXBm
1 _XIZm bxlzmrzmcoszme _lemer lemrumXBZm
2xlmrmcosme -2x12mr2m 4X12mr3mx3mcosme
2leerme
thh 1 “xlm 4x12mr2mooszme _lemrum XIZmrUmXBZm
_2x12mr2m

Note that all the doubled products in the first row are

not negligible. Furthermore since 20032m9 - 1 = cos2me® we

can rewrite the final coefficient of yZ as 2x12mr2m0052m6.
Thus the final transformed equation is
yu - X ZmyB + 2x 2mr2m cos2me y2 - X Zmrumy
1 1 1
2m_Lm_ 2m _
+ xl r x3 = Q0

Comparing this with the equation for the mzh roots we see
that the root-squaring has doubled the amplitudes of the
complex roots, Thus the cosine of the phase angle may change

signs frequently and this may be used to indicate complex
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roots, However the presence of complex roots is probably
most easily detected by the fact that the doubled cross-
product terms of the first row do not all disappear.

Let us consider a couple of typical examples and use
the relationship between the roots and the coefficients
of an equation to aid us in the computation of the complex
roots, As written, the program gives only real roots and
not complex roots. The program does however give the neces-
sary quadratic factors and with additional programming it
would carry out all the operations done by hand in the
following two examples,

EXAMPLE 6., Find all the roots of the equation
x3 - 3x2 + Ux - 5 = 0., The root-squaring stopped with
the 32—rlg power of the roots, and the original equation
has been broken into one linear and one quadratic factor.

From the linear factor we have x, = 2,2134112

1
In order to obtain the complex roots we recall that
the roots x° + bx + ¢ = O may be written as reie, re 19,
Then
¥ + bx + o = (x - reie)(x - rewie)
= xz - r(e16 + e-ie)x + r2
= x2 - 2T COSOxX + r2

i.,e., the absolute term in the quadratic is equal to the
square of the modulus of the complex roots. Then we may
readlly evaluate the modulus r.

As the quadratic factor in the above example we have
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11 2

a) 1.1015091 x 0% y 2z _

- 5.8707920 x 1017y + 2.3283064 x 10°°= O.
The modulus of the complex roots of (a) is actually the 32nd

power of the modulus of the complex roots of the original

equation,
Therefore
PO _ 2.3283064 x 10t
1.1015091 ’
log r = 1L * 036623 - 04218
= .1769
or r = 1.503.

Now let the complex pair be denoted by u *+ iv. The

sum of the roots of the given equation is ~(-3/1) = 3.

Thus
Xq + 2u = 3
or a = 2= 2.213&112
= .3933 ,
and v o= r2 - u?

vV2.259 - .155

= 1,45
The complex roots are then .3933 + 1l.45i,
In the following example we illustrate the applica-
tion of the root squaring process to an equation with four
complex roots.

EXAMPLE 7. Consider the polynomial
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Pe(x) = x° + 3% - x¥ - 7x2 + 10x% + 14x - 20 = O

which has the roots 1, 1 + 1, -2, -2 + 1.

We apply Graeffe's method to get approximations to
the real roots of the above egquation. The process was
stopped after the sixth root-squaring since another root-
squaring would have produced coefficients that would be
too large for the computer. In this problem we obtalned
the real roots x; = ~2.,0000084 and x, = .99999951, with
f(xl) = ,252 X 10'3, f(x2) = =-,15x 10_4o By synthetic
division we reduced the original polynomial to one of
order four with only complex roots.

We obtained

P, (x) = x' + 1.9999911x> - 1.0000014x% - 1.9999928x

+ 10,000001 = O
We performed six root-squarings on this equation and this
resulted in the two quadratic factors

2 22

v° - 7950482 x 10 45

y + 54204046 x 10 =0

and 54204046 x 105 g% + 46563726 x 1022 y + .10000064
X lO65 =0
From the first quadratic factor
r1128 = 5.4210086 x 107,
or log ry = &ETZ NOk . 349485,
or r = 2,236 (r12 = 5)

Using the second quadratic factor we obtained
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6k

. 128 _ 10
2 5.4210086 x 107Y
or log r, = 64"4;5%3405 = ,150515
or r, = l.41l4 (r 2 = 2)
2 . 2

Let the complex roots be u, + ivl, u, * ivz, and since

1
the sum of the roots is gpproximately -2 we have

or uy, +u, = -1 (2.9)
The relationship between the coefficients and the recipro-

cals of the roots may be used to obtain

1 + 1 + 1 + 1 _ 1
ul+ivl ul-ivl u2+ iv2 u,-1iv, 5

Rationalize the denominators of the complex terms and,
2 2 2 2 2 2

since uy + Vi =Ty s U +t v, = r,  We have

Zu% .\ 2u§ _ %

1 T2

2u 1
or FLow, =1 (2.10)
(2.9) and (2.10) may be solved simultaneously to obtain

u; = -2, u, = 1

2
Now vy ,/rl ~u12 = /5-4 = 1,
— / 2 2 T _
vz = /Ty ~u2 = J/2-1 =1

and hence the two pairs of complex roots are

i

-2 +1and 1 + 1
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If more than two pair of complex roots occur the
difficulties encountered in using Graeffe's method are
nearly insurmountable., Hence, in the case of three or
more palrs of complex roots we must turn elther to the
Newton-Raphson method for complex roots or to the Lin-
Bairstow method which 1s discussed later. We will find
that the Lin-Bairstow method does not require the use of
complex arithmetic to find the complex root pairs of poly-
nomials.

We now consider the effectlveness of the Graeffe
method for the solution of polynomial equations whose
roots are multiple real roots. Since such roots are equal
in magnitude, no amount of squaring would separate them.
The original equation can be broken down into linear equa-
tions for the real and unequal roots and gquadratic equa-
tlons for pairs of real roots of equal magnitude. The
presence of two real roots of equal magnitude 1s noted by
the nonvanishing of cross-product terms. These cross-
product terms, in this case, approach a value equal to
half the squsred term.

The possible real roots given by our present computer
program are arrived at by considering only the linear frag-
ments, This program may not be used to find real roots of
equal magnitude, since we must conslder quadratic factors.
The program does however give the coefficients of the qua-

dratic factors and in the followlng examples we worked with
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these factors in determining the roots. The computer pro-
gram could readily be modified to determine real multiple
roots,

We consider the following

EXAMPLE 8. P,(x) = x' - 4x7 - .75x° + 16.25x - 12.5 = 0
has the roots 2.5, 2.5, -2., 1.

The process was stopped after six root-squarings
since another root-squaring would have made the coeffi-
cients too large for the computer to handle. The final
equation should be broken into one quadratic factor and
two linear factors. The quadratic factor is easily de-
tected by noticing that the second coefficient of this

final transformed equation, .5877 x 1020, is just half

the square of the corresponding coefficient, .1085 x 1014,
of the preceeding equation., Hence the quadratic factor is

yz + .5877 x lO26

y + .8636 x 10°% = 0

and since the roots are known to be equal and since their
product 1is equal to the constant term of the gquadratic,
we have

2)64 = x128 = ,8636 x 1051

(x
Using logarithms we get x = |2.5| and by testing the
values 2.5 and -2.5, we see that X1,2 = 2.5, The approxi-
mate root +1, with a functional value of zero, is given us
by one linear fragment, while the other linear fragment
gives us + .5657, neither of which has a negligible func-

tional value, This presents no problem however., We Just
39
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use the relationship between the coefficients and the
roots of the original equation, 1i.e., Xq + X, + x3 + Xy,
= -(-4/1) = &4
or X, = -2. As a check we have

xlx2x3x4=-12.5 = -12,.5/1

n

EXAMPLE 9. P, (x) = x' - 4.5%° + 5,5%% - 2 = O has

the roots 2, 2, 1, and -

D= W

Seven root-squarings were performed. The gquadratic

2 4 .6806 x 1039y + ,1158 x 1078 = O since

factor is y
6806 x 10°7 1s just half the square of .3689 x 102°,
As above we have
1,2 = %2

and -.5, where f(-.5) = 0, is given by a linear fragment.
We have + ,707 as the other approximate root, but again
the functional values are not negligible. In this case
X, + X, + Xq + x, = k.5 or Xy = 1.

EXAMPLE 10,

PS(x) = x5 + l°5x4 - 2.5x3 - 6.5x2 - 4.,5x - 1, =0
has the roots 2., -1, -1, -1, and - % .

In this example we are examining a polynomial equa-
tion with three roots of equal magnitude. No quadratic
factors are possible in this case but Graeffe's method is
still of great value,

Eight root-squaring were performed. As approximate

roots we obtain x, = 1.9999999 , x, = -1, Xy = -.99571775,

with f(xl) = -,75x lO_5 , f(xz) = 0, f(x3) = ,1 x 10—6,
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Now the three approximate roots could be removed from the
original equation using synthetic division and the remain-
ing two real roocts could be approximated by solving the re-
sulting quadratic equation.

Hence, we can safely say that the Graeffe method gives
much valuable information about the roots of polynomial
equations regardless of the distribution of these roots.

Carvallo [Resolution Numerique des Equations, page 24
has extended Graeffe's method to the solution of trans-
cendental equations by expanding the equation into a Taylor
series, neglecting the remainder term, and then treating
the resulting polynomlal as an algebralc equation.

A more general method of finding the complex roots of
a polynomial equation is the Lin-Balrstow method. The
procedure is to find a quadratic factor x2 + ax + B of the
polynomial by an iterative process. If we divide Pn(x) by
an initial guess at our factor, say x2 + rx + s, we obtain,
as a quotient, a polynomial Qn_z(x) of degree n~2 and a

remainder Rx + S, We therefore write

P (x) = kgo akxn-k = (x2 + rx + s) iézbkxn'k-z
+ Rx + S (2.11)
It follows then that
25 T P
ay = bl + rbo
a, = b2 + rbl + sbO (2.12)
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2 = Py T TPyt SPy
8.1 = R + rbn_2 + sbn_3
a, =8 +sb _,

This is easily seen by multiplying out and matching coef-
ficients or by considering the synthetic division scheme

for a quadratic factor given below:

a, a3 @& a4 cee N - lr_s
sb, sby sby,_y Sbn—3 sb_»
rb, rby rbgr rbn_3 b, o
b, by Db, b3 cee b_ R S
By setting b_1 = b_2 = 0, bn-l = R, and bn =8 - rR (2.13)

equations (2.12) can be written as

bk = ak - rbk—l - sbk_2

R and S then are functions of r and s and we now try to

kK =0, 1, 2, voay 0 (2.14)

solve the simultaneous nonlinear equations
R(r, s) =0 and 8S(r, s) =0
by an iterative procedure. If r and s satisfy the system
then X° + Tx + 5 is the factor of P, (x) which we are seek-
ing, To find r and s we suppose that r and s are such that
r=r+ Or

=8 + D s

0|

where O r and & s are small., Let us use Taylor's expan-
sion for functions of two variables and neglect second and

higher powers of &r and A s, to obtain
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R(r,s) + ——g—% Dr + gg OAs = R(Tr,s) = 0
S(r,s) + -—g—% Ar + "%"'SS" As = s(r,s) =0 (2.15)

We now find the partial derivatives in equations (2.15) and
solve these equations for Ar and A s.

Differentiate equation (2.14) to get

0% _ .. 9% 9P

2T k-1 2r ar 6)
(2.1

0% _ . ., 9% _ 9P

Q0 S k-2 P s 2 s

We now have the

Dby 9Py
2r Qs
PROOF. Since bo = g it is a constant function of r and

THEOREM 291 fOI‘ k = O, 1, *s0 0y n_l

O,
s; hence from equations (2.16) we have

‘aa:lz'bo 2:2= by - T 2:1=_bo
N N N
= -bl + rbo = --b1 + rbo

Thus the theorem is true for k = 0, 1, 2,
Suppose that the theorem holds for all k up to m-1.
Then by equatlons (2,.16)

abm___b _ abm-l_ abm-2
r m-1 - % T gr S T %s
b - r 2 by _ 9b-l= 2 Pniy
= 7 Pp-1 FE 2 s 2 s
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and thus it holds for m.
k-1 ar 28
One may now make use of Definition 2.1 to write a2

DEFINITION 2.1 L k=0, 1, ..., n-1)

single recurrence relation in place of equations (2.16),
ioee’ ck = bk - I'Ck_l - Sck-z (2o17)

and in particular ¢_, = O anc ¢, =D Thus we note that

OO
the ¢'s are obtained from the b's in exactly the same way
as the b's were obtained from the a's.

Using equations (2,13) and Theorem 2,1 we have

R = bn~l
OR _ 2Pn-1 - -6
or ar n-2
9R . _2Pn-1 _ - e
o s os n-73

and

8 =Db, *+ rb, 4
s 2 Py o1
or or Ty v T or T Cp-1 T T Cpop t P
35 = abn + 7 ...?...E....:_l. - - ¢ - ree
os o s os - n-2 n-3

We can now solve for & r and & s, and in fact,

c,o br +c OL's =D

n-3

(cn-l - bn-—l) Ar o+ Chp D s N

il
o’

Having solved for A r and & s we add these values to r
and s to improve the estimates for r and s . The pro-
2

cedure is repeated until a quadratic factor x° + rx + s is

Li
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found with sufficient accuracyj then two roots of the gilven
equation are determined by setting x2 +TXx + 8 equal to zero.

The development given here can be found in Kunz [ 3,
pages 34-37],

The computer program as written below finds all of the
roots, both real and complex, of a polynomial equation. The.
procedure is to find a quadratic factor of the original equa-
tion, remove this factor, and then search for a quadratic
factor of the remaining polynomial of reduced degree. This
process 1is repeated until the remaining polynomial is of
degree one or two., In either case the roots of this final
polynomial are easily extracted.

Again, some examples were run using this program,

The usual choices for r and s were both zero, and in only
one case did the procedure fall to converge with x2 as our
trial factor, In the case of nonconvergence, x2 + 2x + 2
was used as the 1nitilal guess, and the method then converged.
When it converges, Balrstow's method has the characteristic
rapid convergence of the Newton-Raphson method.

In the search for each quadratic factor the iterative
procedure was continued until |r,,, - r;| < ¢ and also
lsi+1 - sil < ¢, where agaln ¢ is chosen to insure a pre-
scribed accuracy ln the approximate roots. The € used in
each example is glven in parenthesis followling the statement
of the problem,

EXAMPLE 11. Pj(x) = x3 -x-1=0 (.1 x 10—4)

k5
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In this example we chose x2 as the trial quadratic
factor, i.e., T = s = 0, The matrix of coefflclents for
Dr and O s was singular. Therefore we used x° +2x + 2
as the trilal factor and then arrived at the necessary qua-
dratic factor. The approximate roots are X1,2 = -.66235900

+ ,562279501 and x, = 1,3247180, f(xj) = 0. X tx, 4

> x3 = Q

3
as 1t should be,

EXAMPLE 12,

Y 4 1243 - 508%2 + 1035x - 875 = 0

P5(x) = x5 - 17
(.1 x 1079)
Actual roots: X1,2 = 2 + 1, Xq 4 = 3+ 4i, Xz = 7o
Approximate roots: X) 0 = 2.,0000004 + ,999999451
X5 4 = 2.9999872 & 4,00000341, x5 = 7.0000260
f(x5) = ,02425

EXAMPLE 13 (a)

6 b

+ 3.08x2 - 7.16x° + 1.92%
4y

Py(x) = 3.26x + 4.2x
- 7.76 = 0 (.1 x 10
This problem is taken from Scarborough [ , page 2571].
He gives as answers X1, =~ .051040 + ,942121, Xy = 1.06393
x, = -1.31327, X5 6 = 17571 + 1,372141

Approximate roots: = -,056091180 + ,941834901,

X
X, = 1.0639999, x, = -1.,3182197, x g = -18320110
3 L 5
+ 1,36853891 , f(xB) = ,0000427, f(x,) = - ,0000066
The agreement in the above example is not too good, yet
the sum of the approximate roots is .4 x 1077 = -(0/1)

EXAMPLE 13 (b) (.1 x 10°7)

46
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The same problem was run with a smaller epsilon. In

this case the approximate roots are

X),2 =~ 056091140 + .941834951, xq = 1.0639989
x, = -1.3182197, x4 ¢ = .18320156 + 1.36853861
f(x3) = -.0000017, f(x,) = -.0000066
EXAMPLE 13 (c) (.1 x 107%)

We now used sixteen place arithmetic and the original
epsilon, The approximate roots, truncated to eight figures,
are X) = -.056091172 + ,941834931, X3 = 1.0639998

x, = -1,3182197, Xg g = .18320110 + 1.36853891

- .0000066

EXAMPLE 14,
P7(x) - x! - 2x7 - 3x3 + hx° - 5x + 6 = 0 (.1 x 10_4)
This is an example in Scarborough and his answers rounded

to three or four decimal places are

= .3028 + 1.018i, x, = 1,1080, x, = -1.9625

X1,2 3
x5’6 = -.6“'“’5 i 101181, X,? = 1053?9
The approximate roots rounded to the same number of signifi-
cant figures are Xy o = L3046 + ,9919i, Xy = 1.1080
]
x, = -1.9625, Xg 6 = -.6463 + 1,1171i, X, = 1.5379
f(x3) = ,0000072, f(xu) = ,0000111, f(x7) = ,0000115

Note the exact agreement of the real roots.

EXANMPLE 15.
Pg(x) = x° + 20,4x” + 151.3x° + 490x” + 687x" + 719%7
+ 150x2 + 109x + 6,87 = 0 (.1 x 10—4)

This also is an example in Scarborough and as answers

b7
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he gives
Xy p = .002818 # 4131, x5 = -.0674, X = -7.78

X ¢ = -.6678 + 1.3221, x ,8 = -5.604 + 1,8911

7

The approxlimate roots given by the Balrstow method
are

X2 = ,002829 + 4131, Xq = -.0674, X, = -7.79
Xg ¢ = -,6678 + 1.3221%, X, 8 = -5.608 + 1.875i where
f(XB) = ,0002568 and f(xu) = =-,0520949, The agreement in
this example is qulite good, both for the real and complex
roots,

The last example has three pair of complex roots,

Yet no difficulties were encountered in finding approxima-
tions to the roots. Thls same problem is unmanageable wlth
Graeffe's method.

A few examples run with Graeffe's method were rerun
using the Lin-Bairstowmethod, in order that a comparison
could be made. In particular, examples 6, 7, and 4 were
rerun, The final results are given below with computer

time in seconds (TIS) included.

EXAMPLE 6 (b) Py(x) = x3 - 3x% +4x - 5=0 (.1x 107"
Approximate roots (Graeffe): X, = 2.,2134112, 1{2,3 = ,3933
+ 1.451
TIS (Graeffe): 33.1
Approximate roots (Bairstow): X, = 2.2134125, X, 3 = .3933

+ 1.451

£(x,) = .0000045
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TIS (Bairstow): 14.5
EXAMPLE 7 (c¢)

[

P6(x) = X6 + 3x5 - X - 7x3 + 10x2

+ 14x - 20 =0 (.1 x 10’4

)
Actual roots: 1, 1 +1i, -2, -2 + 1
Approximate roots (Graeffe): .99999951, 1 + i, -2,0000084,
-2 + 1
TIS {(Graeffe): 96,1
Approximate roots (Balrstow): 1, 1 + i, -1.9999998, -2 + 1
TIS {Bairstow): 37.5
EXAMPLE 4 (Do)
P4(x) = x? -3.06x° + 3.1211x -1.061106 = 0 (.1 x 107")
Actual roots: 1.01, 1,02, 1,03
The approximate roots in this example are rounded to
five significant figures.
Approximate roots (Graeffe): 1.0100, 1.0200, 1.0300
TIS (Graeffe): 44,0
Approximate roots (Bairstow): 1.0098, 1.0204, 1.0298
£f(1.0098) = ~,0000001, f(1.0204) = O, £(1.0298) =0
TIS (Bairstow): 24,3
When seeking the complex roots of polynomials, it is
frequently of interest to determine the sign of the real
part of the complex roots. The Lin-Bairstow method then is
certainly very useful as it not only gives the signs of the
real and imaginary parts but also approximates the magnitudes

wlth favorable accuracy,.

A polynomial in which a small change in a coefficlent
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may cause a significant change in one or more zeros is
called 1ll-conditioned. By significant we mean either a
change from a real to a complex root or a change such that
the magnitude of a root increases appreciably. As a simple
example the equation

x> - 8x + 16 = 0 has a double root x = b,

xz - 8x + 16,01 = O has complex roots xl,2= b + fB.
The problem of determining the roots of ill-conditioned
polynomials arises guite frequently in numerical work. The
coefficients of these polynomials may arise from empirical
data, 1n which case we do not know the exact wvalue of the
coefficients or we may know the exact value of the coeffi-
cients but may find it necesgsary to round them when insert-
ing them into the computer.

One coefficient of the polynomial in example 5 was
rounded and we noted the presence of the unfavorable approxi-
mations to the actual roots, In this case the change was
not too extreme,

Ralston [6 , page 379] considered a more sophistacated
example., The polynomizal equation P = (z+1) (2+2) ...
(z+20) = O has as roots -1, -2, ..., -20. We then consider
on(z) + 2'23 219 = 0 and the roots are now -1, -2, -3, -4,
-4.999999928, -6,000006944, -8.007267603, -8.917250249,
-20,84690810, -10.095266145 + 0.6435009041, -11.793633881
+ 1.6523297281, -13.992358137 + 2.5188300701, -16,730737466

+ 2,8126248941, and -19.502439400 + 1.940330347i. 1In this

50
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example not only are the changes substantial but half of
the roots become complex.
By using as many places of accuracy in the computer
as possible the error from lll-conditioned polynomials is
reduced., Example 5 was rerun using sixteen place arithmetic
instead of eight. The approximate roots were truncated to
eight significant figures. The results are given in
EXAMPLE 5 (b).
Py(x) = x” -3.006x° + 3.012011x -1.006011006 = 0 (.1 x 107%)
Actual roots: 1,003, 1,002, 1.001
Approximate roots (Graeffe): X, = 1.0030000, X, = 1.0019999,
X3 = 1.0009999
BSP: 13
£(x) = .69 x 10717, £(x;) = 0, f(x;) = -.68 x 10717
TIS (Graeffe): 72.7
Approximate roots (Bairstow): 1.0030082, 1.0019908, 1.0010008
TIS (Bairstow): 44,0

The approximate roots are now satisfactory.

Lgha
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Chapter 3

The real roots of n simultaneous nonlinear equations
in n unknowns can be found by several methods. Two such
methods will be outlined in this chapter. One is a di-
rect extension of the Newton-Raphson method for a single
equation in a single unknown and the other is based on
the numerical solution of a properly chosen initial value
problem. Each method is described only for the case of
two equations in two unknowns, however, each method may
be generalized to the case of n equations in n unknowns.

Let the given nonlinear equations be

f(x, y) =0
(3.1)

glx, y) = 0

where (f’,ﬂ ) is the solution.
If (Xl, yl) is an approximation to the solution and

h, k are the corrections such that

f =x, +h
'}l = yl -+ k
then
f(xl+h, yl+k) = 0
(3.2)
g(xl+h, yl+k) =0

Assuming that f and g are sufficiently differentiable, we

expand equations (3.2) about (x,, y;) using Taylor's series
52
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for functions of two variables. We have

f(xl+h, yl+k) f(xl,yl) + hfx(xl,yl) + kfy(xl,yl) + ...

(3.3)

g(x,+h, y,+k) g(xl,yl) + bg (x,,y,) + kgy(xl,yl) + ...

1f (x;, y;) is "sufficiently close" to the solution (Y ,"),
i.e., if h and k are sufficiently small, we can neglect
higher order terms so that equations (3.3) become simply
f(xl,yl) + hlfx(xl,yl) + klfy(xl,yl) = 0
(3.4
0

g Gy sy ) + by (3,30 + ki (x,7,)
Using Cramer's rule to solve (3.4) for the approxi-

mations hl’ kl of h and k we obtain

i -f(xl,yl)gy(xl,yl) +g(xl,yl)fy(xl,yl)

-g(xl,yl)fx(xl,yl) + f(xl,yl)gx(xl,yl)
J(flygl)

provided J(f, g) # O where

J(fi,gi) = fx(xi,yi) gy(xi,yi) - fy(xi,yi) gx(xi,yi)
Then X5 = X+ hl’ Yo =y, * kl and (x2, yé) is the new
approximation to the solution (%, ). We expect (X2’ y2)
to be closer to the solution (¥, ) than (x4 y,). The
iteration formula for the approximations to the roots then
has the form

X, xX. + h.

i+l T *4 i
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i+l = T3 * Ky

=¥ - =

where all functions involved are evaluated at (xi, yi)o
Ralston [ 6, pages 348-350] extended this method to
n equations in n unknowns.
Consider the following
EXAMPLE 1. Compute by the Newton-Raphson method
two real solutions of the equations
x + 3 logyqox - y2 =0
2

£(x, y)

2% O

g(x, y) - xy - 5x + 1
(This example is taken from Scarborough [ J.)

The FORTRAN program and the corresponding computer
results are given in the appendix. The iteration was con-
tinued until lXi+l'— xil < € and ]yi+l - yil < €, where &
is chosen to insure a prescribed accuracy in the approxi-
mate roots. For this problem we let € = .1 x 1077, As
an initial approximation to the roots we used (3.4, 2.2).
The method converged in four iterates and gave as approxi-
mate roots, X, = 3.,4874404, ¥y = 2.2616242 wnere
£(xy, y,) = .0000128, g(x,, y;) = .0000006. Another
initial approximation (1.4, -1.5) was employed and again

the method converged in four iterates, but this time to a

different solution, X, = 1.4588911, y, = -1.5967658 where
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£(x5, y5) = .000013, glx,, y5) = .0000002.

We recall that this method was applied effectively
in the Lin-Bairstow method to find & r and & s,

The "first-order'" iteration method is also easily
extended to simultaneous nonlinear equations. For a com-
plete account of this extension the reader is referred to
Scarborough [ 7, pages 217-2211].

We now consider a second method which is based on
the numerical solution of initial wvalue problems, which
are solved quite easily on a computer. Suppose we are
given the equation

f(x, y) =0 (3.5)
To find a differential equation which has f(x, y) = O as
its solution we proceed as follows.

We differentiate f(x, y) with respect to x, set

this derivative equal to zero, and solve for %% sy ..,y
4y _
fx * %’ dx O
ay | _lx (3.6)
dx fy ’

The general solution of equation (3.6) is f(x, y) = C,
where ¢ is an arbitrary constant. We impose an initial
condition y(xl) =Yy That is, we chose a value X4 and
substitute this value into the equation f(x, y) = 0. Equa-
tion (3.5) is then reduced to an equation in one unknown,
g(yl) = 0. If the reduced equation is linear we can easily

find Yq» and if the reduced equation 1s nonlinear we use
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the methods reviewed in this thesis for the solution of MR
Therefore, if we have a system of nonlinear equations
£,(x, y) =0
(3.7)
f5(x, y) =0
we can find the differential equations which have fl(x,y) = Q0
and f5(x,y) = O as solutions., To find an approximate real
solution of (3.7), we produce the solutions of the derived
differential equations by numerical methods, and see where
they intersect (approximately). This gives us an initial
approximation to the solution which can now be improved
upon by using the Newton—-Raphson method for two nonlinear
equations.
EXAMPLE 2. Consider the set of simultaneous non-
linear equations
Xy -6 =0

x -yt - 11 =0

fl(x,y)

"

£,{x,y)
with a real solution (3, 2).

We form the appropriate differential equations

dyl (fl )X hd
dx ] 5 = T x
dy2 -(f2)x 3x2
ax (fz)y 4yj

with imposed initial conditions yl(xl) = ¥y yg(xl) = Jo-

Let the initial approximation for x be x, = 2.5.
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-

Then yl(2c5) = 2.4, ya(eus) = (4,625)" and we then pro-
duce the numeric solutions, say by Euler's method or the

Runge Kutta method. This procedure is illustrated in

Figure 1.

sl (‘&\ ‘a’\

1. 13,2)

1

Figure 1

When we extend this method to three nonlinear equa-
tions in three unknowns the problem becomes increasingly

difficult. In this case we must find where three sur-

faces intersect.
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THE NEWTON-RAPHSON METHOD
WHEN THE DERIVATIVE OF THE NUMERICAL EXPRESSION F{X) = 0 CAN BE
FOUND THE REAL ROOTS OF THE EQUATION CAN BE COMPUTED BY THE
NEWTON~-RAPHSON METHOD
MUST HAVE A SUBROUTINE FOR F AND DXFs THE DERIVATIVE OF F(X)

X0 IS THE APPROXIMATE VALUE OF THE DESIRED ROOT
X0 1S PREDETERMINED AND IS READ IN

RT IS THE EXACT VALUE OF THE ROOT

AN EPSILON CRITERION MUST BE SATISFIED AND FPS IS READ IN

THE LARGER THE VALUE OF DXF(X) IN THE NBHDe. OF THE ROOT THE
FASTER THE CONVERGENCE

THE NEWTON-RAPHSON METHOD WILL FAIL IF DXFI(X) = 0 IN THE NHBHD OF
THE ROOT

JANUARY 1966 CARD

a¥aRaNalakaXalalaNaNaNa¥aaXeaNaXaNaNaNaRa e

DIMENSION IDI(15)
1 READ 101.1D
PUNCH 102,1ID
READ 103+X04EPS
PUNCH 1044+X0EPS
PUNCH 105
ITER = 1
2 CALL DO(XOsFsDXF)
RT = XO-F/DXF
PUNCH 106sITERRT
IFLABSF(RT=X01-EPS13s3+4
4 X0 = RT
ITER = ITER+]
IF{ITER=-50)2+2+5
3 CALL DO{(RTsFsDXF)
PUNCH 107sRTsF
GO T0 1
5 PUNCH 108
GO T0 1
101 FORMAT({15A2)
102 FORMAT(41IHEVALUATION OF A REAL ROOT OF THE FUNCTION/2Xs7HF(X) = 15
1A2/6Xs2BHBY THE NEWTON-RAPHSCON METHOD/)
103 FORMAT(2E14,.,8)
104 FORMATI{2X»37HINITIAL APPROXIMATION TO THE ROOT IS El4.B/29Xs10HEPS
1ILON = El4.8)
105 FORMAT(3Xs13HITERATION NO.s5Xs16HAPPROXIMATE ROOT)
106 FORMAT(8X912311XsF14.8)
107 FORMATI(2X921HTHE REAL ROOT IS X = Fl4eB/10XsTHF(X) = E14.8)
108 FORMAT(63HTHE EPSILON CRITERIA HAS NOT BEEN SATISFIFD AFTER 50 ITE
1RATIONS)
END
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THE SFCANT METHOD
A TWO POINT ITERATION METHOD FOR FINDING REAL ROOTS

RT 1S THE EXACT VALUE OF THE ROOT

X0 AND X1 ARE THE APPROXIMATE VALUES OF THE DESIRED ROOT
XO AND X1 ARE PREDETERMINED AND ARE READ IN

AN EPSILON CRITERION MUST BE SATISFIED AND EPS IS READ IN
MUST HAVE A SUBROUTINE FOR F

REFFRENCE SCARBOROUGH

JANUARY 1966 CARD

a¥aka¥aXaRaRaNaNaNaNaXaXakakala)

DIMENSION IDI(15)
1 READ 101,1D
PUNCH 1024+1D
READ 103sX0sX1sEPS
PUNCH 1044X09sXYsEPS
PUNCH 105
ITER = 1
2 RT = XI1=-(X1-XOY/(F(X1)-F({XO))I*F(X1)
PUNCH 106+ITERSRT
IF{ABSFIRT=X1)~EPS)13+3+4
4 X0 = Xt
X1 = RT
ITER = ITER+1
IFUITER-50)2+¢24+5
3 FRT = F(RT)
PUNCH 107sRTsFRT
GO TO 1
5 PUNCH 108
GO TO 1
1C1 FORMAT(15A2)
102 FORMAT(41HEVALUATION OF A REAL ROCT OF THE FUNCTION/Z2XsTHF(X) = 158
1A2/10Xs20HBY THE SECANT METHOD/)
103 FORMATI(3F14,.8)
104 FORMAT(8X+28HTHE FIRST APPROXIMATIONS ARE/SHXO = El448s7H AND 5
IHX1 = El4.8/18Xs10HEPSILON = El4e8/)
105 FORMAT(3X+13HITERATION NO4 +5Xs16HAPPROXIMATE RQOOT}
106 FORMAT(8X912911XsF1448)
107 FORMATI(2Xs21HTHE RFEAL ROOT IS X = Fl4+8/10XsTHF(X) = E144.8)
108 FORMAT(&3HTHE EPSILON CRITERIA HAS NOT BEEN SATISFIED AFTER S0 ITE
IRATIONS)
END
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THF METHOD OF ITERATION
WHEN A NUMERICAL FQUATION, F(X) = O0s CAN BE EXPRESSED IN THE FORM
X = PHI{X)s AND A CONVERGENCE CRITERION 15 SATISFIEDs THEN THE
REAL ROOTS CAN BE FOUND BY THE PROCESS OF ITERATION
MUST HAVE A FUNCTION SUBPROGRAM FOR PHI(X)
THE CONVERGFNCE CRITERION IS AS FOLLOWS,
THE ABSOLUTF VALUF OF THE DERIVATIVE OF PHI{X) MUST BE LESS THAN 1
IN THE NEIGHBORHOOD OF THE APPROXIMATE ROOT
SENSE SWITCH 1 IS ON IF THIS CRITERION IS TO BE TESTED
MUST HAVE A FUNCTION SUBPROGRAM FOR DXPHI(X)

APRT 1S THE APPROXIMATE VALUE OF THE DESIRED ROOTs APRT IS PRE-
DETERMINED AND IS READ IN

RT 1S THE EXACT VALUE OF THF ROOT
AN EPSILON CRITERION MUST BE SATISFIED AND EPS IS READ IN

MARCH 1966+ CARD

aRalaTaka¥aXakalaNalakaXaYaXaXaXaEalaNakaXaXaXaXa

DIMENSION ID(15)
1 READ 101,1ID
PUNCH 102,10
READ 10sAPRT
READ 10+EPS
PUNCH 114APRTSEPS
IF{SENSE SWITCH 1)492
4 ABSDX = ABSF(DXPHI(APRT))
PUNCH 17+ ABSDX
IF (ABSDX=1+)29254+25
25 PUNCH 16
2 ITER =1
3 RT = PHI(APRT)
PUNCH 12+ITERSRT
IF(ABSF(APRT-RT)-FPS)15+155
5 ITER = ITER+1
APRT = RT
IF{ITER-501353,20
15 PUNCH 13RT
GO TO 1
20 PUNCH 14
GO TO 1
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10 FORMAT(F1448)

11 FORMAT(38HTHE PREDETERMINED APPROXIMATE ROOT IS E14¢8//11HEPSILON
1IS El4.8/7)

12 FORMAT(14HITERATION NOe I3+s5Xs15HAPPROXe ROOT = El448)

13 FORMAT (2X5s21HTHE REAL ROOT IS X = El4.8)

14 FORMAT(64HTHE EPSILON CRITERION HAS NOT BEEN SATISFIED AFTER 50 IT
1ERATIONS)

16 FORMAT (42HPROCESS WILL CONVERGE SLOWLY OR NOT AT ALL/)

17 FORMAT(SOHTHE ABSOLUTE VALUE OF THE DERIVATIVE OF PHI(X) IS El4.8/
1)

101 FORMAT(15A2)

102 FORMATU(4IHEVALUATION OF A RFAL ROOT OF THE FUNCTION/2Xs7HF(X) = 15
1A2/7X+26HBY THE MFTHOD OF ITERATION/)
END
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PROGRAM TO COMPUTE REAL ROOTS OF A NUMERICAL EQUATION F({X) = 0

DIVIDING INTERVAL METHOD
SOLVE ALGEBRAIC AND TRANSCENDENTAL EQUATIONS OF ONE UNKNOWN

THE METHOD OF COMPUTATION IS BASED ON THE FOLLOWING FUNDAMENTAL
THEOREM. IF F(X})} IS CONTINUOUS FROM X=A TO X=B AND IF F(A) AND
F(B) HAVE OPPOSITE SIGNS s THEN THERE IS AT LEAST ONE REAL ROOT
BETWEEN A AND B

THF STARTING POINT A IS READ IN

A 15 USUALLY TAKEN TO BE ZERO UNLESS AN OBVIOUS VALUE FOR A CAN
BE OBTAINED BY LOOKING AT A GRAPH OF FI(X)

D IS THE INCREMENT

N IS THE UPPER LIMIT OF THE INCREMENTS

AN EPSILON CRITERION MUST BE SATISFIED

MUST HAVE A FUNCTION SUBPROGRAM FOR F(X)

JANUARY 1966 CARD

2lalaXaXaNaEaYalakakaNaNaNalaRaNaXaRaalaNaaNa Nl

DIMENSION ID(15)
1 READ 101s1D
READ 100sA
READ 100D
READ 100s EPS
READ 300,N
PRINT 700sAsDeEPSsN
PUNCH 102,1D
PUNCH 900,.A

J =1

PN = N
50 PI = 0.

Cl = F(A)

Al = A

IF(C1)5510,45
10 PUNCH 200,A1

GO TO 1

5 P1 = 1.
B = A+PI#*D
C2 = F(B)

35 IFIC1%#C2)20+25+30
25 PUNCH 200,8B
GO 1O 1
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30 A1l = B
Cl = C2
PI = Pl+1,

IF(PI-=-PN)4D 240,445
40 B = A+PI*D
cz2 = FIB)
GO TO 35
45 PUNCH 400
GO TO 1
20 GO TO(554+60)5J
5% PUNCH 500
J = 2
60 PUNCH 600sA14+8B
IF(ABRSF{A1-RB)I=-EPS)I110+110+105
105 D = Nn/10.
A = A}l
GO TO 80O
110 PUNCH 800sA14B
GO TO 1
101 FORMAT(15A2)
102 FORMAT(3Xs25H DIVIDING INTERVAL METHOD/33H FOR A REAL ROOT OF THE
1 FUNCTION/15A2//)
100 FORMAT(F14.8)
200 FORMAT(19HA REAL ROOT IS A = El4.8)
300 FORMAT(13)
400 FORMAT(53HTHE FUNCTION HAS NOT CHANGED SIGNS AFTER N INCREMENTS/33
1HCHOOSE A DIFFERENT STARTING POINY/)
500 FORMAT(10X+20HSUCCESSIVE INTERVALS/)
600 FORMAT(4HA = E144895Xs4HB = El4.8/)
700 FORMAT( GHA = E14¢8+5Xs4HD = E14¢8/6HEPS = El4e845Xs4HN = 13)
8C0 FORMAT(45HTHE REAL ROOT LIES IN THE OPEN INTERVAL (A.B)//6HWHERE
14HA = El&4.8+8HAND B = El4.8/)
900 FORMAT(7Xs17H INITIAL GUESS IS El4.8/)
END
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PROBLEM 1
CHAPTER 1

EVALUATION OF A REAL ROOT OF THE FUNCTION
F{X) = SINF{X)—X/2e
BY THE NEWTON-RAPHSON METHOD

INITIAL APPROXIMATION TO THE ROOT IS +15708000E+01

EPSILON = «10000000F-05
ITERATION NO. APPROXIMATE ROOT
1 «19999968E+01
2 «19009953E+01
3 «18955117E+01
4 +18954943E401
5 e18954943€E401
THE REAL ROOT IS X = o18954943F+01
Fi{X) = =-.30000000E-07

EVALUATION OF A REAL ROOT OF THE FUNCTION
F{X) = SINFIX)=X/2
BY THE NEWTON-RAPHSON METHOD

INITIAL APPROXIMATION TO THE ROOT IS «31416000E+01

EPSILON = +10000000E-05

ITERATION NO. APPROXIMATE ROOT
1 +20943952E401
2 «19132229E401
3 ¢18956718E+01
4 e 18954943E+01
5 «18954943F+01

THE REAL ROOT IS X = +18954943E+01

FiX) = =+30000000€E-07
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PROBLEM 1
CHAPTER 1

FVALUATION OF A RFAL ROOT OF THF FUNCTION
FIX}) = SINF{X)Y=X/2.
BY THF SECANT METHOD

THE FIRST APPROXIMATIONS ARE
XO = «31415900E+01 AND X1 = 15707963E+01
FPSILON = <10000000F~0%

ITERATION NO. APPROXIMATE ROOT
«17596035F+01
«19320037E+01
«18924157€E+01
«18954307€401
¢189%4943E+01
«18954943E+01
THE REAt ROOT 1S X = L,18954943E+01
FIX) = —-¢30000000E~-07

AW N

EVALUATION OF A REAL ROOT OF THE FUNCTION
F(X) = SINF(X)=X/2
BY THE SFCANT METHOD

THE FIRST APPROXIMATIONS ARE
XN =  «31415900F+N1 AND X1 = ?5000000E+01
FPSILNON = +10000000F-05

ITFRATION NO. APPROXIMATE ROOT
+20452737F+01
«19285226E+01
«18980283E£+01
«18955416E+01
«18954944E+01
«18954943E+01
THE REAL ROOT IS X = «18954943E+01
FIX) = -4.30000000F~-07

DN P DN
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PROBLEM 1
CHAPTER 1

EVALUATION OF A REAL ROOT OF THE FUNCTION
FiX) = SINFI{X)Y=X/2e
BY THE METHOD OF ITERATION
THE PREDETERMINED APPROXIMATE ROOT IS +15708000£+01

FPSILON IS +10000000E-05

ITERATION NO. 1 APPROXe ROOT = +20000000E+01
ITERATION NO. 2 APPROXe ROOT = +18185948E+01
ITERATION NO. 3 APPROXae ROOT = «19389094E+01
ITERATION NO. 4 APPROXe ROOT = «18660160E+01
ITERATION NO. 5 APPROXes ROOT = «419134765E+01
ITERATION NO. 6 APPROXe ROOT = 418837149E+01
ITERATION NO. 7 APPROXe ROOT = «19028783E+01
ITERATION NO. 8 APPROXe ROOT = +418907312E+01
ITERATION NO. 9 APPROXe ROOT = «18985118E+01
ITERATION NOe. 10 APPROXe ROOT = +18935603E+01
ITEFRATION NO. 11 APPROXes ROOT = «18967246E+01
ITERATION NO. 12 APPROXe« ROOT = +18947078E+01
ITERATION NO. 13 APPROXe ROOT = «18959954E+01
ITERATION NOe. 14 APPROXe ROOT = 418951742E+01
ITERATION NO. 15 APPROXes ROOT = «18956983E+01
ITERATION NOe. 16 APPROXe ROOT = +18953640E+01
ITERATION NO. 17 APPROXe ROOT = +18955773E+01
ITERATION NO. 18 APPROXe ROOT = «18954412E+01
ITERATION NO. 19 APPROXes ROOT = +18955281E+01
ITERATION NO. 20 APPROXe ROOT = +18954726E+01
ITFRATION NO. 21 APPROXe ROOT = +18955080E+01
ITERATION NO. 22 APPROXe ROOT = +18954855E+401
ITERATION NO. 23 APPROXe ROOT = «18954998E+01
ITERATION NO. 24 APPROXe ROOT = 418954907E+01
ITERATION NOe. 25 APPROXe ROOT = 418954965E+01
ITERATION NO. 26 APPROXe ROOT = o18954928E+01
ITERATION NO. 27 APPROXe ROCT = «18954952E+01
ITERATION NO. 28 APPROXe ROOT = +18954936E+01
ITERATION NO. 29 APPROXe ROOT = +18954946E+01
THE REAL ROOT IS X = +18954%946E+01
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PROBLEM 1
CHAPTER 1

EVALUATION OF A REAL ROOT OF THE FUNCTION
FI{X) = SINFI{X)=X/2
BY THE METHOD OF ITERATION
THF PREDFTERMINFED APPROXIMATE ROOT 1S «31416000E+01

EPSILON IS o,10000000E-05

ITERATION NO. 1 APPROXe ROOT = -+14680000E-04
ITERATION NO. 2 APPROXe ROOT = =-429360000E-04
ITERATION NO. 3 APPROXe ROOT = =-458720000E-04
ITERATION NO, 4 APPROXe ROOT = =,11744000E-03
ITERATION NO, 5 APPROXe ROOT = =423486000E-03
ITERATION NO. 6 APPROXe ROOT = -e46970000E-03
ITFRATION NO. 7 APPROXe ROOT = —493938000E-03
ITFRATION NO. 8 APPROXe ROOT = «e18787400E-02
ITEFRATION NO, 9 APPROXe ROOT = -¢37574600E-02
ITERATION NO., 10 APPROXe ROOT = -¢75149000E-02
ITERATION NOe. 11 APPROXe ROOT = =6¢15029640E-01
ITERATION NO. 12 APPROXe ROOT = =4¢30058140E-01
ITERATION NO. 13 APPROXe ROOT = =460107220E-01
ITERATION NO. 14 APPROXe ROOT = =412014206E+00
ITERATION NO, 15 APPROXe ROOT = =¢23970648BE+00
ITERATION NOe. 16 APPROXe ROOT = —e47483500E+00
ITERATION NO. 17 APPROXs ROOT = «¢91438B340E+00
ITERATION NO. 18 APPROXe ROOT = ~41584372B8E+01
ITERATION NO. 19 APPROXe ROOT = =-o19998156E+01
ITERATION NO. 20 APPROXe ROOT = =418187483E+01
ITERATION NO. 21 APPROXes ROOT = =-419388341E+01
ITERATION NO. 22 APPROXe ROOT = -.18660702E+01
ITERATION NO. 23 APPROXe ROOT = —419134449E+01
ITERATION NO. 24 APPROXe ROOT = -418837361E+01
ITERATION NO. 25 APPROXe ROOT = -419028653E+01
ITERATION NO. 26 APPROXe ROOT = -,18907397E+401
ITERATION NO. 27 APPROXes ROOT = —-418985064E+01
ITERATION NO. 28 APPROXe ROOT = -,18935637E+01
ITERATION NO. 29 APPROXe ROOT = =418967225E+01
ITERATION NO. 30 APPROXe ROOT = -¢18947091E+01
ITERATION NO. 31 APPROXe ROOT = =-a18959946E+01
ITERATION NOo. 32 APPROXe ROOT = =418951747E+01
ITERATION NO. 33 APPROXe ROOT = =418956980E+4+01
ITERATION NO. 34 APPROXs ROOT = -418953642E+01
ITERATION NO. 35 APPROXe ROOT = —+18955772E+01
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ITERATION NOe. 36 APPROXes ROOT = =-418954413E+01
ITERATION NO. 137 APPROXe ROOT = =4189552B0E+01
ITERATION NO. 38 APPROXe ROOT = -418954727E+01
ITERATION NO. 39 APPROXe ROOT = -,18955080E+01
ITERATION NOe. 40 APPROXe ROOT = =¢18954855E+01
ITERATION NO. 41 APPROXe ROOT = -e18954998E+01
ITERATION NO. 42 APPROXe ROOT = -418954907E+01
ITERATION NO. 43 APPROXe ROOT = =418954965E+01
ITERATION NO. 44 APPROXe ROOT = ~418954928E+01
ITERATION NO. 45 APPROXe ROOT = =¢1B954952E+01
ITERATION NO. 46 APPROXe ROOT = =-¢1B8954936E+01
ITERATION NO. 47 APPROXe ROOT = =¢18954946E+01
THE REAL ROOT IS X = =418954946E+01
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PROBLEM 1

CHAPTER 1
DIVIDING INTERVAL METHOD

FOR A REAL ROOT OF THE FUNCTION
SINFIX)1=X/2a
INITIAL GUESS 1S +15708000E+01

SUCCESSIVE INTERVALS

A = 418708000F+01 B = «19708000E+01

A = +18908000F+01 A = L19008000E+01

A = +18948000F+0)1 B = +18958000E+401

A = «18954000F+01 B = ¢189%5000F£+01

A = «18954900E+01 B = «18955000E+01

A = «18954940E+01 B = 18954950E+01

THE REAL ROOT LIES IN THE OPEN INTERVAL (A.B)

WHERE A = ¢18954940E+401AND B = L18954950E+401

DIVIDING INTERVAL MFTHOD

FOR A REAL ROOT OF THE FUNCTION
SINFIX)=X/24
INITIAL GUESS IS «31416000E+01

SUCCESSIVE INTERVALS

A = ¢19416000E+01 B = +18416000E+01

A = +19016000F+01 B = #18916000E+401

A = «18956000F+01 B = +18946000E+01

A = 189550006401 R = «18954000E+01

A = +18955000€E+01 B = +1B954900E+01

A = +418954950E+01 B = «18954940E+01

THE REAL ROOT LIES IN THE OPEN INTERVAL (A,B}

WHERE A = o18954950E+01AND B = 418954940E+01
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PROBLEM 2
CHAPTER 1

EVALUATION OF A REAL ROOT OF THE FUNCTION
FI(X) = X#%20-1
BY THE NEWTON-RAPHSON METHOD

INITIAL APPROXIMATION TO THE ROOT IS «500000C0OF+00

EPSILON = «100000C00E-05
ITERATION NO. APPROXIMATE ROOT

1 «26214876E+05
2 «24904133E+05
3 «23658927E+05
4 022475981E+05
5 «21352182E+05
6 «20284573E+05
7 ¢19270345E+05
8 +«+18306828E+05
9 «17391487E+05
10 «16521913E+05
11 «15695818BE+05
12 «14911028E+05
13 «1416547TTE+05
14 «13457204E+05
1% «12784344E+05
16 «12145127E+05
17 «11537871E+05
18 « 109609 TBE+05
19 +10412930E+05
20 «98922840E+04
21 +93976698E+04
22 e83277864E+04
23 «84813971E+04
24 «80573273E+04
25 « 76544610E+04
26 «72717380E+404
27 «69081511FE+04
28 e65627436E+04
29 +62346065E+04
30 «59228762E+04
31 e56267324E+04
32 «53453958E+04
33 «50781261E+04
34 «48242198E+04
35 «45830089E+04
36 e43538585E+04
37 +41361656E+04
38 e392935T4E+04
39 e37328B896E+04
40 ¢35462452E+04
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41 +33689330E+04

42 e32004864E+04
43 «30404621E+04
44 «2888B4390E+04
45 «2T440171E+04
46 «26068163FE+04
47 224 T764T755E+04
48 «23526518E4+04
49 «22350193E+04
50 «2123268B4E+04

THE EPSILON CRITERIA HAS NOT BEEN SATISFIED AFTER 50 ITERATIONS
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PROBLEM 2
CHAPTER 1

EVALUATION OF A REAL ROOT OF THE FUNCTION
FIX) = X¥%20~14
BY THE NEWTON-RAPHSON METHCD

INITIAL APPROXIMATION TO THE ROOT IS +15000000E+01
EPSILON = +410000000E-05
ITERATION NO. APPROXIMATE ROOT
214250226E+01
«13538313E+401
«12862980E+01
«12224014F+01
«11623827E+01
«11071300E+01
«10590045E+01
«10228B776E+01
«10042665E+01
10 «10001679E+01
11 «10000003E+01
12 «10000001E+01
THE REAL ROOT 1S X = L10000001F+01
FI{X) = «420000000E-05

ODNADPE DN
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2%aXakalaXaXa¥ala¥aNaNaNaNalaXa

C
C
C
C

55
C
C
C

77

10

20

30

19

90
C
C
C
C

7

*# GRAEFFE'S ROOT SQUARING METHOD #%

THE UNDERLYING PRINCIPLE OF GRAEFFE'S METHOD IS THIS~THE GIVEN
EQUATION IS TRANSFORMED INTO ANOTHER WHOSE ROOTS ARE HIGH POWERS
Of THOSE OF THE ORIGINAL EQUATIONe THE ROOTS OF THE TRANSFORMED
EQUATION ARE WIDELY SEPARATEDs AND BECAUSE OF THIS FACT ARE EASILY
FOUNDes THE ROOTS OF THE TRANSFORMED EQUATION ARE SAID TO BE
SEPARATED WHEN THE RATIO OF ANY ROOT TO THE NEXT LARGER IS NEGLI~-
GIRLE IN COMPARISON WITH UNITY.

REFERENCE NUMERICAL MATHEMATICAL ANALYSIS -~ SCARBOROUGH
PHILLIP CARD MARCH 1966
SEPARATED WHEN THFE RATIO OF ANY ROOT TO THE NEXT LARGER IS NEGLIGI

READ 100,EPS
READ 101N
DIMENSION Af10)sR{10}+C{10+10)sAVB{10)sX{10)sXN(10)+SAVE(10)

READ IN THE ORDER AND COEFFICIENTS OF THE ORIGINAL EQUATION
THE ORDER N IS LESS THAN 30

M = N+1

READ 102+(A(I)slI=1sM)
PUNCH 103 sNs{A(T1)e1=1sM)
PUNCH 1144+EPS

P =1

DO 55 1=1+M

SAVE(l)} = A(CI)

COMPUTE THE ELEMENTS OF THE MATRIX C

M2 = (M+1)/2

DO 10 1=1,M2

DO 10 J=1M

CllsJd)y = O

DO 20 I=1eM

Cllel) = A(1)%%2
MM1 = M=1

DO 30 1=2,MM]
Cl2e1) = ~2.#A{1-11%A(1+1)
GO TO =2

DO 90 I=14M

AVBII)Y = ABSF{B{I))

THE PREVIOUS B(I)?'S (OR THE PRESENT A(1)'S) ARE THE COEFFICIENTS
OF OUR FINAL TRANSFORMED EQUATION

PUNCH 104
PUNCH 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CALCULATE REAL ROOTS ACCORDING TO THE SIMPLE EQUATIONS
CALL SYNTHETIC DIVISION SUBROUTINE TO CHECK FOR SIGNS OF ROOTS
PUNCH X(TI)sF{X{I1)e=X{I)sF(=X(1))

a¥aNa¥aNal

DO 110 I=1,N
110 X{1) = FXPFl{1./PY®{LOGF{AVR(T+1))~-LOGF(AVB(I1))))
DO 120 I=1+sN
120 XN(1) = =x(1)
DO 130 I=1sN
CALL SYND(MySAVE+X(1)sF)
FP = F
CALL SYND(MsSAVE+XN(I)sFN)
PUNCH 10841 +X(TI)sFPsXNIT1)FN
130 CONTINUE
PRINT 106
PAUSE
GO TO 1

PROCESS NOT COMPLETE., COMPUTE REMAINING ELEMENTS OF THE MATRIX C

aNa R

3 IF(M2~3)17+13,513
13 DO 50 I1=3,M2
MM = M-1+1
IF(MM=111T7+2T+27
27 JJ = 0
DO 50 J=] oMM
JI = JJ+1
K = 2#(1-1)4JJ
ClTad) = 2%A(JIIRA(K)R( 1) %%(]~])
50 CONTINUE

COMPUTE COEFFICIENTS OF THE TRANSFORMED EQUATION

alala)

17 P = P»2,
DO 60 I=14M
B(I) 0
DO 60 J=1.M2
60 B(1) = BIIY+C(JUsl)
IP = P
PUNCH 109,1IPs(B(l1)s1=1sM)
IF(IP~4)18+,18,28
28 DO B8 I=24N
IF(ABSFIB(IY/C(1+1})-EPS)18,88,88
88 CONTINUF
PUNCH 1001
GO TO 1¢9
18 DO 70 I=1.M
AVR(1) = ABSF(B(1}))
IF{AVB(11-499999999E49)1 70707
70 CONTINUE
PO 80 I=14M
80 Al(lIY = B(I)
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GO T0 77

100 FORMATI(F6.4)

101 FORMAT(13)

102 FORMAT (5E14.8)

103 FORMAT (8X+29H ROOTS OF THE POLYNOMIAL J46HP(X) = A(1)%)#¥N+A(2
T)HXRHEN~T+, 0o +A(NI#X+A(N+1)/1X9y39HTHE DEGREE N OF THE POLYNOMIAL P(
1X) 1S 1S5/ 46HTHE COEFFICIENTS A(1) TO A(N+1) ARE AS FOLLOWS/
2016XsE14.8)7)

104 FORMATI(/S9HTHE COFFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICI
1ENTS/18Xs24HOF THF TERMINAL EQUATION//)

105 FORMAT(18X+31HTHF POSSIBLE REAL ROOTS OF PiX)/
12H T+BXsaHXIT)»12Xs THF{X (1)) s10XsSH=-X(T)+11XsBHF{=X(T))/)

106 FORMAT(16HPROCESS COMPLETE)

108 FORMAT(12+4(3X+sE1l4e8) /)

109 FORMAT(/4HP = 13/
144HTHE COEFFICIENTS OF THE TRANSFORMED EQUATION/
24(3XsE1448))

114 FORMAT{/11HEPSILON IS F6e4)

1001 FORMAT(/34HCROSS PRODUCT TERMS ARE NEGLIGIBLE)
C
END
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SUBROUTINE
SYNTHETIC DOIVISION

SUBROUTINE SYND(M4AsXOsF)
DIMENSION A(30),+8(30)
B(1) = A(1)
DO & 1=24M
5 B{I) = B({I-1)%*XO+A(])
F = BiM)
RFTURN
END
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P{X)
THE DEGREE N OF THE POLYNOMIAL P(X)
THE COEFFICIENTS A(1l)

ROOTS OF

THE POLYNOMIAL

EXAMPLE
CHAPTER

= ACL)RXHUENFA(2)RXHRN=L1+o0e+A(NI#X+A(N+1)

TO A(N+1) ARE

«10000000E+01

~¢20000000E+01

-+« 50000000E+01

«60000000F+01
EPSILON IS 9500
P = 2
THE COEFFICIENTS OF THE TRANSFORMED
«10000000F+01 « 14000000E4+02
P= &4
THE COEFFICIENTS OF THE TRANSFORMED
«10000000F+01 «9RO0NNOOE+0?
P= 8
THE COEFFICIENTS OF THE TRANSFORMED
« 10000000E+01 «68180000E+04
P = 16
THE COEFFICIENTS OF THE TRANSFORMED
«10000000E+01 «43112258E+08
P = 132
THF COEFFICIENTS OF THE TRANSFORMED

«10000000E+01

CROSS PRODUCT TERMS

«18530244E+16

ARE NEGLIGIBLE

IS 3
AS FOLLOWS

EQUATION
«49000000F+02

EQUATION
«13930000E+04

EQUATION
e16864330E+07

EQUATION
¢2B8211530E4+13

EQUATION
«79586610E+25

1
2

«36000000E+02

e12960000E+04

«16796160E+07

«28211099€E+13

¢ 795866 10E+25

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)

X(I)
«30000000F+N]
+19999998F+01

«10000000F+01

FIX(T))

«0000000NF~-99
~e39999995E+401

«00000000F-99

~-X{1)

—+30000000F+01
-¢19999998£+01

-«10000000F+01

Fe=X(1))
-« 24000000F+02
«30000000E-~05

«80000000E+01
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EXAMPLE 2

CHAPTER 2
ROOTS OF THE POLYNOMIAL
PIX) = ACL)*XHEN4A(2)#XH#N=-1+00otA(N)#X+A(N+1)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 5
THE COEFFICIENTS A(1) TO A(N+1) ARE AS FOLLOWS
«12300000E+01
-+25200000€+01
-+16100000E+02
«17300000E+02
«29400000E+02
-+.13400000E+01
EPSILON IS +9500
P = 2
THE COEFFICIFNTS OF THE TRANSFORMED FQUATION
«15129000F+01 «45956400E+02 +41872600E+03 «12527236E+04
«91072400E403 «17956000E+01
P = 4
THE COEFFICIENTS OF THE TRANSFORMED EQUATION
«22888664E+01 +84500960F+03 «62945798E+05 «80679383E+06
«B2491942E+06 «32241793E401
P = 8
THE COEFFICIENTS OF THE TRANSFORMED EQUATION
«52389093F+01 «42589218E+06 «26024526E+10 «54706587E+12
+68048684F+12 «10395332E402
P = 16
THE COEFFICIENTS OF THE TRANSFORMED EQUATION
¢27446170E+02 «15411612E+12 e6306TB845E+19 «29573920E+24
c46306233E+24 «10806292E+03
P = 132
THE COEFFICIENTS OF THE TRANSFORMED EQUATION
«75329224E+073 «23405584E+23 «39684374E+38 e87455834E+47
«21442672€+48 e11677594E 405

CROSS PRODUCT TERMS ARE NEGLIGIBLE

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THF TERMINAL EQUATION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



THE

x{n
«406570T71E4+01
229916832F+01
«1958727T4F+01
«10284223E401

e46463368FE-01

FIX(I))

224924000E-02

—e96737312E402

«20200000F~04
«2B276895E402

«00000000E~-99

POSSIBLE REAL ROOTS OF P{X)

=X{1)
~e4065T7071E+01
-e29916832¢+401
~e19587274F+01
-+10284223E+01

-e44463368E~01

Fi=X(1}))
-+B80787521E+4+03
«13630000E-02
+55880009€+02
~-+80000000E-05

~e26116159E+01
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P(X)

THE DEGREE N OF THE POLYNOMIAL P(X)

EPSI

P =

ROOTS OF THE POLYNOMIAL
= A(T)RXEENFA(2)RXRRN=1+oeetA(NIRX+A(N+])

THE COEFFICIENTS A(1) TO A{N+1) ARE

«10000000E+01

—¢50000000FE+01

«93500000F+01

~«77500000F 401

«24024000E+01

LON IS 49500
2

COEFFICIENTS OF THE TRANSFORMED

THF

+10000000F+01
«57715257€+01

4
COEFFICIENTS OF
«10000000F4+01
¢33310508F+02

8
COEFFICIENTS OF
«10000000E+01
«11095899£+04

16
COEFFICIFNTS OF
+«10000000F+01
«12311897E+07

32
COEFFICIENTYS OF
+«10000000F+01
«15158280F+13

64
COEFFICIENTS OF
«10000000F+01
«229T7T345F+25

«6300N0N0E+01

THE TRANSFORMFD
«10235400E+02

THE TRANSFORMED
+29358610£402

THF TRANSFORMFD
«e30742116F+013

THE TRANSFORMED
«52226201E+05

THE TRANSFORMED
«22698620E+10

EXAMPLE
CHAPTER

1s 4
AS FOLLOWS

EQUATION
«14727300E+02

EQUATION
«37702401E+02

EQUATION
¢27T725341E+03

FQUATION
«21140784E+05

EQUATION
«22885700E+09

EQUATION
«463T7T7269E+17

3
2

«15137620E+02

«59149550€+02

+98689700E+03

«35869052E+06

« 7T6602250E+11

«51740891E+22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P = 128
THE COEFFICIFNTS OF THE TRANSFORMED EQUATION

«10000000E+01 «50635189E+19 +19458531E+34 s 26567264E+44

«52795838E+49

CROSS PRODUCT TERMS ARE NEGLIGIBLE

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS

OF THE TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)
1 X(1) FIX{I)) -xt1)

1 «14000016E+n01 +00000000E~99 -+ 14000016F+01
2 «12999978E+01 « 10000000E-06 -e12999978E+01
3 «12000007F+01 «00000000E-99 ~+12000007F+01
4 ¢10999998E+N1 «NO0NOOO00ONE-99 -¢10999998E+01
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F{=X(I))
e49140117€+02
«42119853€E+02
+315880039E+02

+3035998BE+02



P{X)
THE DEGREE N OF THE POLYNOMIAL P(X)

ROOTS OF

THE POLYNOMIAL

EXAMPLE
CHAPTER

= ACT)¥XRENGLA(2)NXRRN~]1+oee+A(N)EX+A{N+1)

THE COFFFICIFNTS A(1) TO A(N+1)
«10000000€+01
~+30600000F+01
«31211000€+01
-.10611060E+01
EPSILON 15 49500
P = 2
THE COEFFICIFNTS OF THE TRANSFORMED
«10000000F+01 «31214000F+01
P= &
THE COFFFICIENTS OF THE TRANSFORMED
«10000000E+01 e32485449E+01
P= 8
THE COEFFICIENTS OF THE TRANSFORMED
«10000000F+01 «35212850E401
P = 16
THF COEFFICIFNTS OF THE TRANSFORMED
«10000000F+01 «41500620E+01
P = 132
THE COEFFICIENTS OF THE TRANSFORMED
«10000000F +01 «58344720E+01
P = 64
THE COEFFICIENTS OF THE TRANSFORMED
«10000000F+01 «12071605E+02
P =128
THF COEFFICIFNTS OF THE TRANSFORMED
«10000000F+01 «60114120F+02
P = 256
THF COEFFICIENTS OF THF TRANSFORMED

«10000000F+01

«20989490F+04

1S 3

ARE AS FOLLOWS

EQUATION
«32472965E+01

EQUATION
+35158790E+01

EQUATION
e41246930E+01

EQUATION
¢56942710E+01

EQUATION
«10984729E+02

EQUATION
«42B04TH60E+0O2

EQUATION
e 715737920F+03

EQUATION
«33532166E406

AN I -

»11259459E+01

«12677541E+01

«16072004E+01

«25830931E+01

«66723699E+01

«44520520E+02

«1982076T7E+04

«392B6280F+07
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P = 512
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

«10000000E+01 e37349436E407 «95948640E+11 +15434117E+14

P = 1024
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

« 10000000F+01 e13757906E+14 «50908504E+22 +23821196E+27

CROSS PRONDUCT TERMS ARE NEGLIGIBLE

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS

OF THE TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)

I xX(1) FIX(TI)) ~-Xt1)

1 «10299843F+01 «00000000F-99 ~¢10299843F+01
? «Y0200209F+01 «00N00000F-99 -«10200309F+01
3 «10099847F+01 «00000000F-99 ~«10099847F+01
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F{=X(1))
~e86147220E+01
—-e84898456FE+01

-¢83650347E+01



P(X)
THE DEGREF N OF THF POLYNOMIAL
COEFFICIENTS A(1)

THF

ROOTS OF

THE POLYNOMIAL

EXAMPLE S
CHAPTER

= A(])RXRENFA(D ) HXEEN-T+ooe+A(N)IEX+A(N+]}

TO A{N+1) ARE

«10000000F+01

-«30060000E+01

+30120110E+401

~-+10060110E+01

FPSILON 1S 49500

P = 2

THE COFFFICIFENTS OF
«10000000F+01

P = &

THE COEFFICIENTS OF
«10000000F+01

P= 8

THF COFFFICIFNTS OF
«10000000E+01

P = 16

THF COEFFICIFNTS OF
«10000000E+01

P = 32

THE COEFFICIENTS OF
«10000000E+01

P = 64

THF COEFFICIFNTS OF
«10000000F+01

P = 128

THE COEFFICIENTS OF
« 10000000E+01

P = 256

THE COFFFICIENTS OF

+«10000000E+401

THE TRANSFORMED
»30120140FE+01

THE TRANSFORMED
+30240841E+01

THF TRANSFORMFD
¢30483932E+401

THE TRANSFORMED
«30976897E+01

THE TRANSFORMED
«31990170E+01

THE TRANSFORMED
»34127570E+401

THE TRANSFORMED
«38853440E+01

THE TRANSFORMFD
«50076110E+01

P(X)

IS 3
AS FOLLOWS

EQUATION
¢30240721E+01

EQUATION
+»30483457F+01

FQUATICN
«30975057E+01

EQUATICN
»31983322€+01

EQUATION
»34104760E+01}

EQUATION
«38807830E+01

EQUATION
«50441430E+01

EQUATION
«87091280E+01

2

«10120581E+401

«10242615€+01

«10491116E+01

«11006351€+01

«12113976E+01

e 146T7T48B41E+01

«21535095E+01

«46376031E+01
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P = 512
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

«10000000E+01 «76579110E+01 «29402286E+02 «21507362E+02
P = 1024
THE COEFFICIFNTS OF THE TRANSFORMED EQUATION

«10000000F+01 -+ 16097200F+00 «53509150E+03 «46256662E+03
P = 2048
THE COEFFICIFNTS OF THE TRANSFORMED EQUATION

«10000000F+01 ~«10701571E+04 «28647183E+06 «21396787E+06

CROSS PRODUCT TERMS ARE NEGLIGIBLE

THF COEFFICIENTS LISTED DIRECTLY ABOVFE ARE THE COEFFICIENTS
OF THF TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)

1 xt1n FIX(I) -X{1)} Fe=-xt1n

1 «10034118E+01 «00000000E-99 -«10034118E+01 -« B0651154E+01
2 «10027331F+01 +00000000E~-99 -e¢10027331F+01 ~«B80569296£+01
3 «99985752F+00 +00000C0N00E~-99 —+99985752F+00 -«80223088E+01
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P{X)
THE DEGREE N OF THE POLYNOMIAL P(X)
THF COEFFICIENTS A1)}

ROOTS OF THE POLYNOMIAL
= ALT)EXHENFA(2)HXRRN-]+eeo+A(NI®¥X+AIN+T)

TO A(N+1)

+«10000000F+01

-+30000000€+01

«40000000FE+01

-+50000000E+401

FPSILON IS 49500

P =2

THF COEFFICIENTS OF
«10000000F4+01

P = 4

THE COEFFICIENTS OF
«10000000F+01

P= 8

THF COEFFICIENTS OF
«10000000F+01

P = 16

THF COEFFICIENTS OF
«10000000F+01

P = 32

THF COEFFICIENTS OF

«10000000E+01

CROSS PRODUCT TERMS

THE TRANSFORMED
«100000N0F+0

THE TRANSFORMED
+29000000F+02

THE TRANSFORMED
«54930N000E+073

THE TRANSFORMFD
¢33126900F+06

THE TRANSFORMFD
«11015091E+12

ARE NEGLIGIBLFE

EXAMPLE
CHAPTER

1s 3

ARE AS FOLLOWS

FQUATION
~+14000000F+02

EQUATION
«14600000E+03

EQUATION
-+ 14934000F+05

FQUATION
-+¢20588190F+09

EQUATION
~e58707920E+17

6
2

«25000000F+02

«62500000F+03

«39062500E+06

«15258789E+12

«23283064E+23

THF COEFFICIFNTS LISTED DIRFCTLY AROVF ARE THE COFFFICIENTS
OF THE TERMINAL EQUATION

THF POSSIRLE REAL ROOTS OF P(X)

X(t1)
+22134112€+401
+15099398E+01

«14960572E+01

FIX(1))

~e24000000E-05
-e23574562E+01

-«?3B18766E+01

=Xt

-+22134112F+01
-+¢150993G98E+01

-e14960572¢+01

FI-X(1))
- 439395130402
~e21322052E+02

~e2104T245E+402
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e 858994T0E+T4

«1RLLATHLLE+BL

«18446743E+84

EXAMPLE 7 (A)
CHAPTER 2
ROOTS OF THE POLYNOMIAL
PIX) = A(1)%X*AN+A(2) XX*HN=1 400 o+A(N)®X+A(N+])
THE DEGREF N OF THE POLYNOMIAL P(X) IS 6
THF COFFFICIENTS A(1) TO A{N+1) ARE AS FOLLOWS
«10000000F+01
«30000000F+01
-.10000000E+01
-+70000000E+01
«10000000E+02
«14000000F+02
-<20000000F+02
FPSILON IS 49500
P = 2
THE COEFFICIENTS OF THE TRANSFORMED EQUATION
.10000000F+01 «11000000F+02 «63000000F+02 «19300000F+03
«33600000F+03 «59600000E+073 «40000000E+03
4
COEFFICIENTS OF THF TRANSFORMED EQUATION
+10N0N000NF+01  =,50000000F+01 «39500000F+03 «72250000F +04
—e66760000F+05 «BALTENDOF+0S «16000000F+06
8
THE COEFFICIENTS OF THE TRANSFORMED EQUATION
«10000000F+01  -+76500000F+013 «94755000E+05 «10375686E+09
¢33345864E+10 «28830925F+11 «25600000E+11
16
THF COEFFICIENTS OF THE TRANSFORMED EQUATION
«10000000F+01 «39571500E+06 «17439567E+12 «10089386E+17
«51415054E+19 e 66049141F+21 «65536000E+21
32
THF COEFFICIFNTS OF THF TRANSFORMED EQUATION
«10000000F+01  -¢19220098E+12 «22439090F+23 «10000291€+33
«13107400F+38 < 47950983E+42 c429496T2E+42
64
THE COEFFICIENTS OF THE TRANSFORMFD EQUATION
+10000000E+01  -479369640E+27 e54195409E+45 «99999940E+64
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THE COEFFICIENTS LISTFD DIRFCTLY ABOVE ARE THE COEFFICIENTS
OF THF TFERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P(X)

1 X1y FIXUIN) -X(1) FE=-X(1))

1 «21987816E+401 «22852832E+03 ~-¢21987816€+01 ¢ T4243100E+01
2 «22739770E+01 «27517328F+03 -222739770F+01 +11300856E+02
2 «20000084F+01 «1360030RF+072 ~¢20000084F+01 «25200000E-03
4 e38015546E+00 -+¢13611266F+02 ~+38015546E+00 -~+23534105E+02
S «11763972F+01 «64068T00F+01 -e11763972F+01 -«17258128E+02
6 299999951F+NC -+ 15000000F~-04 ~«99999951F+00 -«20000006E+D2
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PX)

THE DEGRFF N OF THFE POLYNOMIAL P{X)
THF COEFFICIENTS A(1)

EPSI

P =
THE

THF

ROOTS OF THE POLYNOMIAL
= ACT)I®RXHENFA(2) X REN=T+eeetA(NIEX+A(N+])

TO A(N+1) ARE

+10000000E+01

«19999911€4+01

—-«10000014E+01

—+19999928F+01

«10000001E+02
LON IS 9500
2
COEFFICIENTS OF THE TRANSFORMED

«10000000E+01
«10000002E+013

4
COEFFICIENTS OF
«10000000F+01
«10000004F+05

8
COEFFICIENTS OF
«10C00000E+01
« 10000008E+09

16
COEFFICIENTS OF
+«10000000F+01
«10000016F+17

32
COEFFICIFNTS OF
¢« 10000000F+01
«10000032€£+33

64
COEFFICIENTS OF
«10000000F+01
+10000064E+65

«59999672E£+01

THF TRANSFORMED
—e22000274F+02

THE TRANSFORMED
-e10219842E+04

THE TRANSFORMED
+33015610E+4+06

THE TRANSFORMFD
~+19650189€E+12

THE TRANSFORMED
-e79504820F+22

EXAMPLE
CHAPTER

1S 4
AS FOLLOWS

EQUATION
« 2899994 0E+02

EQUATION
«75299B14FE+03

EQUATION
«35714781E+06

EQUATION
«15275247E+12

EQUATION
«23281737E+423

EQUATION
«54204046E+45

7 (8)
2

«24000001E+02

-e52239891FE+04

«12230094E+08

« 78145580E+14

»30516774E+28

«46563726FE+55

COEFFICIENTS LISTED DIRECTLY ABOVF ARE THE COEFFICIENTS
OF THF TERMINAL EQUATION
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THE

1 X(1)

1 «21988400E+01
2 «22739223E+01
3 «14296147E+01
4 «844239656FE+00
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POSSIBLE REAL ROOTS OF P(X)

FIX(IY)
+45405902E+02
«50533354E402
«15117753€E+402

«21309670E+01

-X{1)

-¢21988400E+01
~e22739223E+01
—e14296147E401

-e&44239656F+00

F{=-X(1))
«11676756E+02

«12597933E+02
«91488B690E+01

«10554213E+02



P(X)

THE DEGREE N OF THE POLYNOMIAL P(X)
THE COEFFICIENTS A(1)

ROOTS OF

THE POLYNOMTAL

EXAMPLE
CHAPTER

= ACT)*XERNFA(2)RXRRN-Y 444 o+A(N)IEX+A(NI])

TO A(N+1) ARF

«10000000F+01

-+ 40000000F+01
~+T75000000E+00
¢16250000E+02
~+12500000F+02

FPSILON IS .9500

P = 2

THE COEFFICIFENTS OF THE TRANSFORMFD
«10000000F+01 «17500000E402
«15625000€+03

P= &

THE COEFFICIENTS OF THE TRANSFORMED
«10000000E+01 e95125000F+02
«24414062E405

P = 8

THF COEFFICIENTS OF THE TRANSFORMED
« 10000000F+01 «33087576E+04
¢59604642E+09

P = 16

THE COEFFICIENTS OF THE TRANSFORMED
+10000000E+01 e4T2214TOE+07
«35527133E+18

P = 32

THE COEFFICIENTS OF THE TRANSFORMED
«10000000E+01 «10846282E+14
e12621771E+36

P = 64

THE COEFFICIENTS OF THE TRANSFORMED
« 10000000E+01 «58773890E+26
«159309108+71

THE

1S 4
AS FOLLOwWS

EQUATION
«10556250F+03

EQUATION
«28700040E+04

EQUATION
«3112864BE+07

EQUATION
e57261954E+13

EQUATION
«29433972E+26

EQUATION
e86362072E+51

8
2

+24531250F+073

«e27189941E+05

«59915598E+09

«35527706E+18

¢12621772E+36

«15930912E+71

COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION
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THE POSSIBLE REAL ROOTS OF P(X)

Xt
025272226E+401
«24730708E+01
«5656B8540E+00

«10000000E+01

Fe¢Xeryn
«51240000E-02

«47800000E-02

—e41692900E+01

«00000000F-99

-X(1)
—e25272226E+01
~e24730708E+01
~¢56568540E+00

-«10000000F+01

Fi{=X{(1))
«46998401E+02
«40633948BE+02

-+21105910E+02

~¢24500000E+02
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P{X)
THE DEGREE N OF THE POLYNOMIAL P(X)

ROOTS OF

THE POLYNOMIAL

EXAMPLE
CHAPTER

= ALL)RXRENFA(2)#XREN-]1+o0 o +A(N)I#X+A(N+])

THE COEFFICIENTS A(1) TO A(N+1) ARE
«10000000E+01
~«45000000E+01
«55000000F+01
«00000000E=-99
-+20000000E+01
EPSILON IS .9500
P = 2
THE COEFFICIENTS OF THE TRANSFORMED
«10000000F+01 +92500000F+01
«40000000F+01
P = 4
THE COEFFICIENTS OF THE TRANSFORMED
«10000000F+01 «33062500E+02
«16000000E+02
P= 8
THE COEFFICIENTS OF THE TRANSFORMED
«10000000€+01 «51300390E+03
«25600000E+03
P = 16
THE COEFFICIENTS OF THE TRANSFORMED
«10000000F +01 «13107300F+06
«65536000E+05
P = 32
THE COEFFICIENTS OF THE TRANSFORMED
«10000000E+01 +85899350E+10
«42949672E+10
P = 64
THE COEFFICIENTS OF THE TRANSFORMED
«10000000F+01 «3689349TF+20
e 18446743E+20
P = 128
THE COEFFICIENTS OF THE TRANSFORMED
+10000000E£+401 «68056550E+39
+34028232E+39
THE

IS 4
AS FOLLOWS

EQUATION
«26250000F+02

EQUATION
«29006250E+03

EQUATION
«66050003E+05

EQUATION
e42950982F+10

EQUATION
+18446743E+20

EQUATION
«34028232E+139

EQUATION
«11579205E+78

9
2

«22000000F+02

«27400000E+07

«65794000E+05

«42950328E+10

e 18446T744E+20

«34028236E+39

«11579208E+78

COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION
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THE

1 X1

1 +20108597F+01
2 «19891988E+01
3 «50000000E+00
4 «70710678E+00
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POSSIBLE REAL ROOTS OF P{X)

FIXUTIY)
«29930000F-03
«28730000E~03

-¢11250000E+01

-e59099040E+00

=Xt1)
—~e20108597F+01
-e¢19891988E+01
-¢50000000F+00

-« 70710678BE+00

F(=X{I))
«73179524E4+02
» T0840044E+02
«00000000E—-99

+25909901E+01



P{X)

THE DEGRFF N OF THE POLYNOMIAL P{X)
THE COEFFICIFNTS A(1l)

FPS1

P =
THE

ROOTS OF THE POLYNOMIAL
= A(L1)RXEENFA(2)#XRRN-]L1+ooo+A(N)%X+AIN+])

TO A(N+1) ARE

«10000000E+01

+15000000E£+01

-«25000000E+01

~«65000000E+01

~e45000000E+01

~¢10000000F+01

LON IS 9500
2
COEFFICIENTS OF

«10000000F+01
« 72500000401

4
COEFFICIENTS OF
«10000000F+01
«19062500F+02

8
COEFFICIENTS OF
+10000000F+01
¢25900390E+03

16
COEFFICIENTS OF
«10000000E+01
«65538997E+05

32
COEFFICIENTS OF
«10000000E+01
¢42949669E+10

64
COEFFICIENTS OF
+» 1000C000E+01
2 18446T40F+20

THE TRANSFORMED
« 725000007401
¢ 10000000E+0O1

THE TRANSFORMED
«19062500E+02
« 10000000F+01

THE TRANSFORMED
«25900390E+03
+«10000000E+01

THE TRANSFORMED
«6553899T7E+05
«10000000E+01

THE TRANSFORMED
+472949669E+10
«10000000E+01

THE TRANSFORMED
e1B446T4LO0E+20
+ 10000000E+01

EXAMPLE 10
CHAPTER

Is 5
AS FOLLOWS

EQUATION
«16750000F+02

EQUATION
«52187500F+02

EQUATION
«77201170E+03

EQUATION
«19661198E+06

EQUATION
«12884898E+11

EQUATION
«55340170E420

2

«16750000E+02

«e52187500FE+02

e 77201170E403

«19661198E+06

«12884898E+11

«553401T0E+20
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p = 128
THE COFEFFICIFNTS OF THF TRANSFORMED EQUATION

«10000000E+01 +34028B221F+39 +10208430E+40 «10208430E+40
«34028221FE+39 «10000000E+01

P = 256

THE COEFFICIENTS OF THE TRANSFORMED EQUATION
«10000000E+01 «11579198E+78 +34737100E+78 «34T737100E+78
+11579198E+78 «10000000E+01

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THE TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P{X)

1 X1 FIX{I)) -X(1) F{=X{1})

1 +19999999E+01 -+ 75000000E-05% —e19999999E+01 -e59999973E+01
2 «71014781E+00 -« 78069124E+401 ~«71014781E+00 +«13869000E-01
3 ¢ 10000000F+01 -+12000000F+02 ~+10000000F+01 «00000000E~99
4 e99571775F+00 ~¢11939956F+02 -e99571775F+00 «10000000E-06
5 «7T0710678E+00 -+« T7640872E+01 -+ 70710678E+00 «14087200E-01
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®#% LIN-BAIRSTOW METHOD FOR COMPLEX ROOTS %%

A GENERAL METHOD FOR DETERMINING THE COMPLEX ROOTS OF A POLYNOMIAL
EQUATION

PIX) = AO®RXH#ANLA]IRXHEN=-]1+,,s+AN—1%#X+AN = O
INVOLVES FINDING A QUADRATIC FACTOR Xx*®#2+ALP#X+BETA OF THE POLY-
NOMIAL BY AN ITERATIVE PROCEDURE.

REFFRFNCE NUMERTICAL ANALYSIS—KUN2Z

PHILLIP CARD MARCH 1966

a%2¥aYaXaYaNakaRaNaNaNa)

1 READ 100+EPS
READ 101N
DIMENSION A(100)+,B(100)-C(100)

READ THE ORDER AND COEFFICIENTS OF THE ORIGINAL EQUATION
THE ORDER N IS LESS THAN 100
AND GREATER THAN 3

aNaRaNaNa!

J
M +
LY = 1
L2 = 2
READ 102s{A{I)e]l = 1sM)
PUNCH 103 sNelA{I)Is] = 1+M)
PUNCH 114,+EPS

nn

N
N+1

R AND S INITIALLY ARE GUESSES AT THE QUADRATIC COEFFICIENTS

aNa N

JP1 = J+1

2 READ 1044sRsS
PUNCH 115
PUNCH 105sRs5
K =0

CALCULATE THE COEFFICIENTS BI(I)Y AND C(I)

2 XaNs!

3 K = K+1

B(1) All)
B(2) AL2)-R¥*R{1)
DO 10 I = 3,4P1

10 B(I) A(TI-R*B({I-1)-S*B(]1-2)
ci1y B(1)
Ct2) BU2)=R#*#CI(1)
DO 20 I = 3.J

20 C(1) = B{I1)-R*C(I=-1)~-S*C(1=-2)

o

CALCULATE DELR AND DELS

a¥aXa!
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DEN = ClU=11¥%2-C(J=21%(C(J)=-B(J}))
IF(DEN1214+22421

22 PRINT 116
GO TO 2

21 DELS = (C{J-11#B(J+1)-B(J)®(C(J)=-B(J)))/DEN
DELR = (B(J)*C(J-1)=C(J=-2)%B(J+1))/DEN
RS = R+DELR
$S = S+DELS
PUNCH 106+KsRS»SS
IF(ABSF (R-RS)-EPS154+5515

S IF{ABSF(S=SS)-EPS5)25+25,515

15 IF(K-501354454+45

35 R = RS
S = 5§

REPEAT THE PROCESS WITH NEW R AND S

aNaEe!

GO TO 13

METHOD HAS CONVERGED sCOMPUTE ROOTS USING QUADRATIC FORMULA

[aNaNAl

25 T =1
CALL OES(TsRsSsRR1sRI1sRR24R12)
PUNCH 108
PUNCH 109sL1»RR1sR1I1,4L2+RR2,R12
L = L1 + 2
L2 = L2+2
PRINT 117
PAUSE
GO TO &
45 PUNCH 107
PRINT 107
PAUSE

HIT START TO READ IN NEW VALUES FOR R AND S

a¥aNa!

GO TO 2

4 J = J=2
IF1{J=2165475485
85 JP1 = J+1
DO 50 I=1,JP1
50 A(I) = Bt(I)
GO T0 2
75 CALL QES{B{1)+B(2)+B(3)sRR1»RI1sRR2,RI2)
PUNCH 118
PUNCH 1094+L1sRR1sRI14L2sRR24RI2
PRINT 121
PAUSE
GO T0 1
65 RR = -B(2)1/B{(1)
Rl = 0.
PUNCH 118
PUNCH 109sL1sRRsRI
PRINT 121
GO 70O 1
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100 FORMAT(E14.8)
101 FORMAT(13)
102 FORMAT(5E14.8)

103 FORMAT( 62HBAIRSTOW®'S METHOD FOR FINDING QUADRATIC FACTORS OF P
10LYNOMIALS/BXs46HPIX) = A(1I)RXEENFA(2)HXHEN=]14+qeatA(NIEXFA(NFY) /

2 BXs39HTHE DEGREE N OF THE POLYNOMIAL P(X) 1S I5/BX+46HTHE COEFFIC

3IENTS A(1l) TO A(N+1) ARE AS FOLLOWS/(24X+E1448))
104 FORMAT (2E14.8)
105 FORMAT(21XsEl144895X9E1448)
106 FORMAT(12Xs12+7XsF1l4eBe5X4+F14,8)
107 FORMAT{/39HMETHOD HAS NOT CONVERGED IN 50 ITERATES/)
108 FORMAT({TH ROOTS+8Xs4HREALs1I0XsFHIMAGINARY)
109 FORMAT({3Xs12s5X+sE14e48+3X9sE14.8)
114 FORMAT(/12X+11HEPSILON IS El4.8)
115 FORMATU{/9Xs7THITERATE+11Xs1HR+18Xs1HS/)
116 FORMAT (18HCHOOSE NEW R AND S)
117 FORMAT({11HCONVERGFNCF)
118 FORMAT{/7H ROOTS,8X+4HREALs10Xs9HIMAGINARY)
121 FORMAT (10HF INAL HALT)
END
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SUBROUT INE
QUADRATIC EQUATION SOLVER

SUBROUTINE QES(A343A2+A15RR1sRI1sRR2,R12)
D = A2¥%2-4 %A RAL
IF{D}5+15,15

15 RR1 = (-A2+S5QRTF{D}))/(2.%A3)
RR2 = (-A2-SQRTF(D}1)/{2.%A3)
RI1 = O
RI2 = O
RFTURN

5 RR1 = =A2/(2+.%A3)
RR? = RR1
RI1 = SQRTF(=D)1/12.%A3)
RI2 = -RI1
RETURN
END
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EXAMPLE 11
CHAPTER 2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS
PIX) = A(LIRXRANFA(Z2IRXHEN-] +o0 e +tAIN)*X+A(N+1)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 3
THE COEFFICIENTS A(1) TO A(N+1) ARE AS FOLLOWS
+10000000E+01
+00000000E=-99
-+10000000E+01
-+10000000E+01

EPSILON IS 400001

ITERATE R 5
«10000000E+01 «10000000E+01
1 «13333333E+01 «666666T0E+00
2 «13245615E+01 «75438592E+00
3 «13247180E+01 e 75487770E+00
4 «13247180E+01 « 75487770E+00
ROOTS REAL IMAGINARY
1 —+66235900E+00 ¢56227950E+00
2 -~e66235900E+00 -e56227950E+00
ROOTS REAL IMAGINARY
3 «13247180E+01 +00000000E~99
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BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS

EXAMPLE 12
CHAPTER 2

PIX) = A(L)¥XHENFA(2)%XEXN=1+eeo+A(N} *X+A(N+1)
THE DEGREE N OF THE POLYNOMIAL P(X) 1S 5
THE COEFFICIENTS A{(1) TO A(N+1) ARE AS FOLLOWS
«10000000E401
~+17000000E+02
«12400000E+03
~+50800000E+03
«10350000E+04
- «87500000E+03
EPSILON IS +00010
ITERATE R S
«00000000E~99 +00000000E~-99
1 -e16169632E+01 e17224409E+01
2 ~e28679906E+01 «33046610E+01
3 -¢36781091E+01 «448731B0E+01
4 -—e39708941E+01 e49519633E+01
5 -—+39997555E+01 «49995860E+01
6 ~+«40000009E+01 «50000008E+01
7 -«40000009E€+01 «S0000008E+01
ROOTS REAL IMAGINARY
1 «20000004E+01 +99999945E+00
2 «20000004F+01  =+99999945E+00
ITERATE R S
«00000000E~99 «00000000E-99
1 -+41183426E+01 e13461536E+02
2 -¢58254301E+01 e22250883E+02
3 —e60079523E+01 «24958785E+02
4 ~e59999744E+01 «24999951E+02
5 —e59999982E401 ©24999990E+02
ROOTS REAL IMAGINARY
3 «29999872E+01 «40000034E+01
4 «29999872E+401  —+40000034F+01
ROOTS REAL IMAGINARY
5 «70000260E+01 «00000000E~99
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EXAMPLE 13 (A)
CHAPTER 2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS
P{X) = A(1)%XRENFA(2) XX HEN=]1+00e+A(N)*X+A(N+1)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 6
THE COEFFICIENTS A(1l) TO A(N+1} ARE AS FOLLOWS

+32600000E+01
«00000C0D0E=-99
«42000000E+01
+30800000E+01
-+71600000E+01
«19200000E+01
-+ 77600000E+01

EPSILON IS 410000000E-04

ITERATE R S
«00000000E-99 «00000000E-99
1 «19805873E+400 «10837988E+01
2 +95997580E-01 «90173020E+00
3 «11244911E+400 «BB99T7TBEE+00
4 «11218236E+00 +B901992TE+00
5 «11218228BE+00 +839019935E+400
ROOTS REAL IMAGINARY
1 -+¢56091180E-01 «54183490E+00
2 —«56091180E-01 ~+94183490E+00
1TERATE R S
+00000000E~99 «00000000E-99
1 «65306290E+00 -«65103051E+01
2 «35247705E+00 -+34335817E+01
3 «245T74896E+00 -+19838148E+401
4 «24185552E+00 ~+14808962E+01
5 +25340898E+00 -e14044602E+401
6 «2542198T7E+00 —¢14025857€E+01
7 «25422081E+00 ~e14025844E+401
ROOTS REAL IMAGINARY
3 «10639999E+01 +00000000E~-99
4 -¢13182197E+401 «00000000E~-99
ROOTS REAL IMAGINARY
5 «18320110E+00 «13685389E+01
6 «18320110E+400 ~+13685389E+01
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EXAMPLE 13 (B)
CHAPTER 2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS
PIX) = A(1)RX*ENFA(2)RX¥EN-1+eae+A(N)*X+A(N+1)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 6
THE COEFFICIENTS A(1l) TO A(N+1) ARE AS FOLLOWS

«32600000E+01
«00000000E~99
+42000000E+01
«30800000E+01
~e71600000E+01
«19200000E+01
~e77600000E+01

EPSILON IS +10000000E~07

ITERATE R S

«00000000E~-99

«00000000E~99

1 +19805873E+00 «10837988E+01
2 «e95997580E-01 «S90173020E+00
3 «11244911E+00 «88997786E+00
4 «11218236E+00 «89019927E+00
5 «11218228E+00 «89019935E+00
6 «11218228E+00 ¢89019935E+00
ROOTS REAL IMAGINARY
1 -—e56091140E-01 e94183495E+00
2 -¢56091140E-01 -+ 34183495E+00
ITERATE R S
«0000000E~-99 «00000000E-99
1 «65306408E+00 ~e65103057E+01
2 #35247765E+00 -~+34335823E+01
3 «245T74921E400 -e19838151E+01
4 «24185558E+00 -«14808962E+01
5 ¢25340902E+00 -e14044601E+01
] e25421991E+400 -¢14025857TE+401
1 «25422085E+00 -e14025844E+01
8 «25422085E+00 -e14025844E401
ROOTS REAL IMAGINARY
3 «10639989E+01 «00000000E=-99
4 —¢13182197E401 «00000000E~99
ROOTS REAL IMAGINARY
5 «18320156E+00 «13685386E+01
6 «18320156E+00 ~¢13685386E+01
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EXAMPLE 13 (C)
CHAPTER 2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS
PUIX)Y = A(T)IRX*AENFA(2)*¥X¥XN—-]1+eee+A(NI®X+A(N+]1)
THE DEGREF N OF THE POLYNOMIAL P(X) IS 6
THE COEFFICIENTS A(1} TO A(N+1) ARE AS FOLLOWS

«32600000E+01
«00000000E~-99
«42000000E4+01
+30800000E+01
-+71600000€E+01
«19200000E+01
-+ 77600000E+01

EPSILON 1S <10000000E~04

1TERATE R S

«000N0000E~-99

«00000000F~99

1 «19805873E~00 «10837988E+01
2 e95997548F-01 «90173012E-00
3 «11244910£~-00 «88997783E-00
4 «11218234E-00 «8901992SE-00
5 «11218227E-00 «B89019933E-00
ROOTS REAL IMAGINARY
1 ~e56091172E-01 «94183493E-00
2 —~+56091172E-~01 -e94183493E-00
ITERATE R S
«00000000F~-99 +00000000E~99
1 «65306317E-00 ~e65103047E4+01
2 «352477T17E-00 ~e34335812E+401
3 «245T74899E~00 ~e19838145E+01
4 «24185551E~00 -¢14808960E+01
5 «25340897E-00 —e14044600E+01
6 «25421986E-00 ~-«14025856E+01
7 +25422081E~00 -e14025843E+01
ROOTS REAL IMAGINARY
3 «10639998F+01 «00000000CE~99
4 -e13182197E£+01 «00000000E~99
ROOTS REAL IMAGINARY
5 «18320110F~00 «13685389E+01
6 «18320110€E-00 ~+13685389E+01
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EXAMPLE 14
CHAPTER 2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS
PIX) = A(L)RXHENFA(2)*XHRN=1+00a+A(N)*X+A(N+1)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 7
THE COEFFICIENTS A(1) TO A(N+1) ARE AS FOLLOWS

«10000000E+01
«00000000E~-99
- +20000000E£+401
«00000000E~-99
-+30000000E+01
«40000000E+01
-e50000000F+01
«60000N00E+01

EPSILON IS «10000000E-04

ITERATE R S

«00000000E~-99 «00000000E~99

1 ~+12500000E+00 «15000000E+01

2 —~e33026133E+00 «88502620E+00

3 ~«69440005E+00 +10784368E+01

4 ~e&07068B1E+00 «10696905E+01

5 —e60921879E+00 «10767151E+01

6 —e«60921328F+00 «10766801E+401

7 -+60921328E+00 «10766801€E+401

ROOTS REAL IMAGINARY
1 «30460664E+00 «99191475E+00
2 +30460664E+00 -+99191475E+00
ITERATE R )

«000NO000F-99 «00000000E-99

1 +3486T614E+01 -e24185137€+401

2 «26015274E+01 ~-e19842264E+01

3 «19315073E+01 -e17834572E+01

4 «14045295E+01 ~e¢1838B7089E+01

5 «10336157€+01 ~-e20264880E+01

6 +88039870E+00 -e21434174€401

7 «85524T66E+00 ~-e21732008E+01

8 e8544T7464E400 -e21744699E+01

9 «85447380E+00 ~e21T44715E+01

ROOTS REAL IMAGINARY

3 «11080156E+401 «00000000E~99
4 ~e19624902F+01 «00000000F-99
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ITERATE R S
+N0000000F~99 +«00000000E~-99
1 «43915078F+02 ¢ 10449172E+02
2 e21959686E+02 «52530510E+01
3 «10987535E+02 ¢27110865E+01
4 «55172830E+401 »15484181€E401
5 «28305900E+01 211666539E+01
6 e 16291T744E+0] «12888837E+401
7 «13034803€E+01 ¢15911775E+01
8 «12925243€401 «16660050E+01
9 ¢12926297E401 »16664238E+01
10 «12926297E+01 +16664238E+01
ROOTS REAL IMAGINARY
5 -e646731485F4+00 «11174528E+01
6 —e64631485E+00 ~+11174528E+01
ROOTS REAL IMAGINARY
7 «15378910E+01 +00000000E-99
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EXAMPLE 1%
CHAPTER 2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS
PIX) = A(1)SXRENSFA(2)HXHEN=T+00etA(NIEX+A(N+])
THE DEGREE N OF THE POLYNOMIAL P(X} IS ]
THE COEFFICIENTS A(1) TO A(N+1) ARE AS FOLLOWS

+10000000E+01
«20400000€E+02
+15130000E+03
+49000000E+013
«68T00000E+02
+71900000E+03
¢15000000E403
¢10900000E+03
+«68700000E+01

EPSILON IS L00001

1TERATE R S

«00000000F~-99 « 00000000E~-99

1 «50713200E+00 «45800000E-01

2 ~¢50994650E-01 +12056259E~01

3 «29452665FE4+00 +58640522E-01

4 ~e16727224E+00 «78684068E-01

5 ¢35399700F~01 «10122710E+00

6 «?20%01505€-01 «17233900E+00

7 ~e56442910€-02 «17012366E+00

8 -+¢565757TT1E-02 «17079725E+00

S ~e56604909E-02 «17079728E+00

ROOTS REAL IMAGINARY
1 +28287885E-02 «413266%6E400
2 «2B287885E~-02 -e41326658E400
ITERATE R S

«00000000F-99 «00000000E-99

1 «91876182E+400 «50581391E-01

2 «42300950E+01 «28963854E+00

3 «76635625E+01 +50986716E+00

4 «7887506TE+01 «5271342%E+00

5 « TBS540419E+D] «52666013E+00

6 «78531312F401 ¢52459383E+00

7 «78531280E+01 «524%59362E+00

ROOTS REAL IMAGINARY

3 -e67378750E~01 «00000000E~99
4 ~eT7785T7520E401 +00000000€~99
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ITERATE R 5
+00000000F-99 «00000000E-99
1 «10133398E+01 «14704039E+01
2 «13146751E+01 «21107625E+01
3 «13354893E+01 «21917771E+01
4 «13355030E+01 021924679E+01
5 «13355030E+01 «21924679E+01
ROOTS REAL IMAGINARY
5 -e66775150E+00 «13215808E+01
6 ~e667T75150E+00 ~+13215808E+01
ROOTS REAL IMAGINARY
7 -+56085115€+01 «18748846E+01
8 -¢56085115E+01 -+18748846E+01
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EXAMPLE 6 (B)
CHAPTER 2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS
PIX) = A(L)%XRRN+A(2)RXHUN-T1+o0e+A(N)IXX+A(N+])
THE DEGREE N OF THE POLYNOMIAL P(X) IS 3
THE COEFFICIENTS A(1) TO A(N+1) ARE AS FOLLOWS
+«10000000E+01
~+30000000E+01
«40000000€+01
- +«50000000E+01

FPSILON IS +10000000F-04

ITERATE R S
«00000000E-99 «00000000E-99
1 - 777771 TT7E+00 «16666666E+01
2 -+ 78762305E+00 «e22573839E401
3 -« 7865B759E+400 «22589561E+01
4 —«78658832E+00 «22589561E+01
ROOTS REAL IMAGINARY
1 «39329379E4+00 «14506123E+01
2 «39329379E+00 -¢14506123E+01
ROOTS REAL IMAGINARY
3 «22134125E+01 «00000000E-99
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RAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS

EXAMPLE 7
CHAPTER 2

(Q)

PX) = AC1)RXERNSA(2)RXHEN-T14+00e+A(NI#X+A(N+1)
THE DEGREE N OF THE POLYNOMIAL P(X) IS 6

THE COEFFICIENTS A(l) TO A(N+1) ARE AS FOLLOWS

«10000000E+01

+«30000000E+01

-¢10000000E+01

-+ 70000000E+01

«10000000€E+02

«+14000000E+0?2

~«¢20000000E+02

EPSILON IS +10000000F€~04

ITERATE R N

«00000000€F~99

«00000000E~-99

1 «00000000F~-99 -+20000000E 01
2 e 71532846E+00 ~e21751824E+01
3 «98185698E+00 ~e20464492E+01
4 ¢99971621E+00 -+ 20005900E+01
5 +9999998BE+00 -¢20000000E+01
6 «10000001F+01 -+ 20000000E+01
ROOTS REAL IMAGINARY
1 «10000000E+01 «00000000E~99
2 -¢19999998E+Q1 +00000000E-99
ITERATE R S
«00000000F~99 «00000000E-99
1 ~+18B000006E+02 -¢10000001E+02
2 -¢11688143E£+402 -«65660120E+01
3 ~eT4ST78080E+01 -e42488138E+01
4 ~e4T364012E4+01 ~+26356980E+01
5 -e29642537E+01 -e13968442E+01
6 -e19614340E+01 -+18518910E+00
7 ~e17926335E+401 «13697357E+01
8 -+20306692E+01 «20601793E+01
9 -«20005634E+01 «20007869E+01
10 -+20000001E+01 «20000002€+01
11 -¢20000000E+01 «20000001E+01
ROOTS REAL IMAGINARY
3 «10000000E+01 «10N00000CE+0
4 « 10000000F+01 -¢10000000F+01
ROOTS REAL IMAGINARY
5 -+20000001E+01 «10000001E+01
6 ~+20000001E401 ~e¢10000001F+01
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EXAMPLE 4 (B}
CHAPTER 2

RAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS
PIX) = A(I)IRXHENFA(D ) RXXAN—T+oae+A(N)*X+AIN+])

THE DEGRFEF N OF THE POLYNOMIAL PI(X) 1S 3
THE COFFFICIENTS A(1) TO A(N+1) ARE AS FOLLOWS
«1N00000C0E+01
-+30600000E+01

+31211000€E+01
-+10611060E+01

FPSILON IS .10000000F-04

ITERATE

R S

s NOONNNONF-99 «O0NONNONOF-9G

] -« 906644BRF+00 e 346T6666F+00

2 —«13868472F+01 «57009833E4+00

3 ~e165237656E+01 e T246T7022E+00

4 ~+18054803E+401 e8B3264872E+00

5 -«18964961E+01 «30623555E+00

6 ~e¢19515692E+01 «35488758E+00

7 ~«+19851523E+01 «9862358B6£+00

8 —e20056114E+01 «10059877E+01

Q —-e20178974E+01 +»10180930E+01

10 -e20249377F+01 «10251138E+01

11 ~+?20285192F+01 «102B7087E+01

12 —e?70293595F+01 «e10295592E+01

13 —«?20302004F+01 «10303998E+01

14 -e?0301990E+01 «10303991E+01

ROOTS REAL IMAGINARY
1 «10704480F+01 «00000000E~-99
7 «10097523E+01 «C0000000E-99
ROOTS REAL IMAGINARY

3 »10797996F+01 «00000000F ~99
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P(X)

FPSILON IS

ROOTS OF THE POLYNOMIAL

TO A(N+1) ARE

«10000000F+01

~e30060000E+01

«30120110E+01

-~«10060110FE+01

«9500

2
COEFFICIENTS OF
«10000000E+01

4
COEFFICIENTS OF
« 1000000CE+O1

8
COFFFICIFNTS OF
«1000000CF+01

16
COEFFICIENTS OF
«1000000CE+0O2

32
COEFFICIENTS OF
« 10000000F+01

64
COEFFICIENTS OF
«10000000E+01

128
COEFFICIENTS OF
«10000000F+01

256
COEFFICIFNTS OF
«10000000F+01

THE TRANSFORMED
«30120140E+01

THE TRANSFORMED
«30240841E+01

THF TRANSFORMFD
+30483940F+01

THE TRANSFORMED
«30977003E+01

THE TRANSFORMED
«31991261E+401

THFE TRANSFORMED
«34137883E+01

THE TRANSFORMED
«38952045E+01

THE TRANSFORMED
«51123339E+401

EXAMPLE 5
CHAPTER 2

= ACTYRXRENFA(2)HXRRN—1 4,0 0e+A(NIXX+A(N+])
THE DEGREF N OF THF POLYNOMIAL P(X)
THE COEFFICIENTS A(1)

IS 3
AS FOLLOWS

EQUATION
«30240720E401

EQUATION
«30483454E+01

EQUATION
«30975028FE+01

EQUATION
+31983106E+01

EQUATIOCN
«34103098E+01

EQUATION
«38793731E+01

EQUATION
«50301422E+01

EQUATION
«B85254989E+401

(B)

«10120581E+01

+10242616E+01

«10491120E+01

«11006359E+01

«12113995E+01

«14674889E+01

«21535239E+01

«46376652E+01
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P = 512
THE COEFFICIFNTS OF THE TRANSFORMED EQUATION

«10000000F+01 ¢ 90849606F+01 «25265545E+07 «21507939FE+02
P = 1024
THF COEFFICIENTS OF THF TRANSFORMED EQUATION

«10000000F+01 «32005418E+02 «264755023E+03 2 46259144F+073
P = 2048
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

. 10000000E+01 «52924637E+03 «31670250FE+05 «21399084E+06
P = 4096
THE COEFFICIENTS OF THE TRANSFORMED EQUATION

«10000000F+01 «21676122FE406 «T7649701E+09 e45792082E+11
P = 8197
THE COEFFICIENTS OF THF TRANSFORMED EQUATION

«10000000F+01 e45432434F+11 «58309572E+18 «2096914BE+22

CROSS PRODUCT TERMS ARE NEGLIGIBLE

THE COEFFICIENTS LISTED DIRECTLY ABOVE ARE THE COEFFICIENTS
OF THF TERMINAL EQUATION

THE POSSIBLE REAL ROOTS OF P({X)

I X1} FIXtI)) -X(1) F(=X(I))

1 + 10030000F+01 +69000000F~113 —-«10030000F+01 -~ +80601485E+01
2 ¢10019999F+0N1 «00000000E-99 ~e10019999E+01 -+80480940E+01
3 +1000999%E+N1 -+ 68000000E~13 -e10009999E+01 -~eB0360516E+01
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EXAMPLE 5 (8B)
CHAPTER 2

BAIRSTOW'S METHOD FOR FINDING QUADRATIC FACTORS OF POLYNOMIALS
PIX) = A(1)%XRENFA(2 ) #XEEN=T+eeetA{N)*X+A(N+])
THE DEGREE N OF THE POLYNOMIAL P(X) 1S 3
THE COEFFICIENTS A(1) TO A(N+1) ARE AS FOLLOWS
«10000000E+01
~¢30060000E+01
«30120110E+01
~-«10060110€+01

EPSILON IS 410000000E-04

ROOTS
1

ROOTS

ITERATE

R

«00000000E-99

S

«00000000E-99
e33466T7T66E~-00
¢55021623E-00
«69941653E~00
«80366835E-00
«87475906E~00
«92183480E-00
+95228612E~00
¢97166430E-00
«98386234E-00
¢99148464E-00
«99622151E~-00
+99914840E-00
«10009396E+01
«10020119E+01
«10026174E+01
«10029070E+01
«10029937E+01
«10030019E+01

1 ~e89066644E-00

2 -e13624176E+01

3 -e16232926E+01

4 ~el17737425E+01

5 ~+18632289E+01

6 -e¢19174554E+01

7 -¢19506445€E+01

8 -e¢19710588E+01

9 -«19836440E+01

10 ~¢19914085€E+01

11 -e19961961E+01

12 ~e19991401E+01

13 -«20009366E+01

14 -+20020101E+01

15 ~«20026156E+01

16 ~-+20029051E+01

17 —e20029917E+01

18 ~+20029999E+01

REAL IMAGINARY
«10019908BE+01 «00000000E~99
«10010008E+01 «00000000E-99
REAL IMAGINARY

«10030082E+01 «00000000E-99
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NEWTON-RAPHSON METHOD FOR SIMULTANEOUS EQUAT!IONS

METHOD OF SOLUTION FOR FINDING THE REAL ROOTS OF TWO EQUATIONS IN
TWO UNKNOWNSs F1{XsY) = 0s F2(XsY) = 0O

MUST HAVE SUBROUTINE FOR F1sF2,DXF1sDYF1sDXF2sDYF2

X0 AND YO ARE THE APPROXIMATE VALUES FOR A PAIR OF ROOTS
X0 AND YO ARE PREDETERMINED AND ARE READ IN

X AND ¥ ARE THE EXACT VALUES OF THE PAIR OF ROOTS
AN EPSILON CRITERION MUST BE SATISFIEDs EPSILON IS READ IN

A CONVERGENCE CRITERION EXISTS

JANUARY 1966s CARD

2 XalaXaXaXakakakeRakaNa¥aNaaXaRa)

1 READ 10+X0
READ 10sYO
READ 10-EPS
PUNCH 11+X0sYOSFPS
ITER =1
2 CALL DO(XOsYOsF1sF2sDXF1sDYF1+DXF2sDYF2)

D = DXF1*DYF2-DXF2%DYF1
H = (—F1*DYFZ2+DYF1%#F2)
G = {(~F2*¥DXF1+F1*DXF2)
X = XO+H/D

Y = YO+G/D

PUNCH 12sITERsXsY
IF{ABSF{X0=X)1—-FPS13+394
3 IF(ABSF{YD=Y)=EPS)15+5+4
4 ITER = JTER+1
X0 = X
YO = ¥
IF{ITER=50)2s296
S PUNCH 13¢XsY
GO 70O 1
6 PUNCH 14
GO TO 1
10 FORMAT(El1448)}
11 FORMAT(41HTHE PREDETERMINED APPROXIMATE ROOT X0 IS El48//41HTHE P
1REDETERMINED APPROXIMATE ROOT YO IS E148//11HEPSILON IS El4.87/)
12 FORMAT(14HITERATION NOs I395X+s9HROOT X = E1448//22Xs9HROOT Y = El4
le8/77)

13 FORMAT{40HTHE EPSILON CRITERION HAS BEEN SATISFIED//5Xs14HAND ROOT
1 X IS Fl4e8s7Xs10HROOT Y IS El14.8)

14 FORMAT{(64HTHE FPSILON CRITERION HAS NOT BEEN SATISFIED AFTER 50 I7
1ERATIONS)
END
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EXAMPLE 1
CHAPTER 3

THF PRENFTERMINED APPROXIMATE ROOT X0 IS o34000000E+01

THF PREDFTFRMINED APPROXIMATF ROOT YO IS <22000000E+01

FPSTILON IS L10000000F-NS

ITERATION NO. 1 ROOT X = +34899099E+01
ROOT ¥ = ,22633598E+01
ITERATION NO. 2 ROOT X = +34874422E+401
ROOT Y = 422616255E+01
ITFRATION NO. 3 ROOT X = «34B74405E+01
ROOT Y = «22616242E+01
ITFRATION NO. 4 ROOT X = +34874404E401
ROOT Y =  L,22616242E+401

THE EPSILON CRITERION HAS BEEN SATISFIED

AND ROOT X 1S «34874404E+01 ROOT Y 1S 422616242E+01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



EXAMPLE 1
CHAPTER 13

THE PREDETERMINED APPROXIMATE ROOT X0 IS 414000000E+n1
THE PRFDFTERMINED APPROXIMATE ROOT YO IS —-.15000000E+01

FPSILON IS +10000000E-05

ITERATION NO. 1 ROOT X = +14573449E+01
ROOT Y = =¢13996970E+01
ITFRATION NO. 2 ROOT X = +14588B96£+01
ROOT ¥ = —-,1366768B2E+01
ITFRATION NO. 3 ROOT X = +14588%911E+01
ROOT ¥ = -41396765B8E+01
ITEFRATION NO. 4 ROOT X = «14588911E+01
ROOT Y = ~413967658E+01

THE EPSILON CRITERION HAS BEEN SATISFIED

AND ROOT X IS +14588911E+01 ROOT Y IS —-413967658E+01
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