
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1993

An object oriented domain analysis of ecosystem modeling An object oriented domain analysis of ecosystem modeling

Ronald Lee Righter
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Righter, Ronald Lee, "An object oriented domain analysis of ecosystem modeling" (1993). Graduate
Student Theses, Dissertations, & Professional Papers. 6669.
https://scholarworks.umt.edu/etd/6669

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F6669&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/6669?utm_source=scholarworks.umt.edu%2Fetd%2F6669&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University ofM ontana
Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited
in published works and reports.

* * Please check ”Yes or “No and provide signature

Yes, I grant permission
No, I do not grant pennission

**

Author’s Signature

Any copying for commercial purposes or financial gain may be undertaken
only with the author’s explicit consent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AN OBJECT ORIENTED DOMAIN ANALYSIS
OF

ECOSYSTEM MODELING

by

Ronald Lee Righter
B. A., Elizabethtown College, 1972

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science

The University of Montana

1993

Approved by

Chairman, Board of Examiners

Dean, Graduate Schoâ

 Y ' V . / f
Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EP37470

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Oi&M ftation Publighw g

UMI EP37470
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQ^st:
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 4 8 1 0 6 - 1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Righter, Ronald Lee, M. S., December 1993 Computer Science

An Object-Oriented Domain Analysis of Ecosystem Modeling

Director; Ray Ford

Ait object-oriented methodology is used as the basis for a domain analysis of computer-
based ecosystem modeling. Requirements analysis of the application domain serves as the
basis for domain analysis, which produces a hierarchy of classes, each characterized by a
set of properties. The hypothesis that such an analysis could provide a useful set of knowl
edge about the domain is tested.

Requirements analysis of the application domain identifies several representations of
spatial phenomena and a set of significant modeling processes. A particular representation
of spatial phenomena is chosen as the basis for domain analysis. A classification of 23 key
modeling processes identifies several types of operations: data acquisition, cartographic
transformation, creation of higher level model structure from undifferentiated datasets, al
gebraic manipulation of models to derive new variables, interpolation and extrapolation of
data values, process simulation, and enhancement of models for visual display and
analysis.

Domain ana ly^ produces a set of class specifications, a set of diagrams showing the
relationships among classes, and a set of diagrams illustrating how each key modeling
activity can be performed in the context of the class hierarchy. The hierarchy contains 169
classes, which are divided into twelve groups: root entities, spatial entities, ecosystem en
tities, ecosystem descriptor entities, classification entitities, operations, data acquisition
entities, descriptor entities, window entities, software entities, documentation entities, and
human entities.

Diagrams are successfully completed, depicting the execution of 19 of the 23 key mod
eling processes. The hypothesis is considered to be successfully validated. Suggestions
for future work are made.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

Acknowledgements and thanks go to Dr. Roland Redmond, leader of the Wildlife

Spatial Analysis Lab in the Montana Cooperative Wildlife Research Unit at the University

of Montana, and his staff and students. Dr. Redmond also receives thanks for his contri

bution as a thesis committee member and for financial support. Dr. Steve Running, leader

in the Numerical Terradynamics Simulation Group at the University of Montana School

of Forestry and his staff and students provided much help and encouragement during work

on this thesis. Dr. Running also provided financial support. Dr. Jim Ullrich of the Dept,

of Computer Science at the University of Montana served as a thesis committee member.

And finally. Dr. Ray Ford of the Dept, of Computer Science at the University of Montana

provided many kinds of support and encouragement, including financial support. Dr. Ford

also served as chairman of my thesis committee, and perhaps most importantly, invited me

to participate in the development of the Ecosystem Information System.

This thesis is an attempt to integrate the results of a year and a half journey through

fields far removed from computer science. This document is an illustrated account of that

journey; it is hoped that the material presented here will be useful in the construction of the

Ecosystem Information System, and wül be useful to ecosystem scientists who are

receptive enough to listen to a visitor who wandered through their world for a time.

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables vil

List of Figures vin

Chapter I. Problem Statement 1

A. Introduction 1

B. Ecosystem Research 1

C. Data and Software Management Problems 2

D. Ecosystem Information System 3

Chapter H. Hypothesis 4

A. Statement of Hypothesis 4

B. The Nature of Complex Systems 4

C. The Nature of System Decomposition 5

D. The Object Model 5

E. Requirements Analysis 8

P. Domain Analysis 9

G. The Object-Oriented Methodology in this Thesis 10

Chapter HI. Requirements Analysis 1 %

A. Introduction 11

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. The Real World . 11

C. Models of Reality 13

D. How Models are Used 16

E. Data Acquisition 18

1. Remotely Sensed Data 18

2. Ground Based Sampling 20

F. Model Transformations 21

1. Cartographic Transformations 21

2. Partitioning Transformations 23

3. Re-Partitioning Transformations 30

4. Deriving Missing Values 31

5. Deriving Missing Variables 32

6. EcoModel Assignment 34

8. Image Enhancement 35

G. Summary of Requirements Analysis 37

Chapter IV. Domain Analysis 38

A. Introduction 38

B. Class Relationships and Interfaces 38

1. Spatial Entities 39

2. Ecosystem Entities 47

3. Operations 54

C. Object Scenario Diagrams 57

D. Summary of Domain Analysis 62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter V. Hypothesis Evaluation 64

Chapter VI. Conclusions 66

Appendix I. Class / Relationship Diagrams 67

Appendix H. Class Specifications 101

Appendix HI. Scenarios - Object Diagrams 169

Bibliography 189

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Number Name Page number
1. Scenario Completion Table 58

V ll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Number Name Paj
1. Spatial Model Diagram 1 39
2. Spatial Model Specification 40
3. Spatial Entity Specification 41
4. Spatial Model Diagram 2 41
5. Point Model Specification 42
6. Overlay Specification 42
7. Overlay Diagram 43
8. Categorical Overlay Specification 44
9. Categorical Overlay Diagram 45
10. Categorical Region Specification 46
11. Categorical SubRegion Specification 46
12. Categorical Point Specification 47
13. Ecosystem Diagram 48
14. Ecosystem Entity Specification 48
15. Ecosystem Model Specification 48
16. Ecosystem Model Diagram 49
17. Topographic Model Specification 50
18. Regional Model Specification 50
19. Ecosystem Region Specification 50
20. Cover Type Model Specification 51
21. Cover Type Model Diagram 51
22. Cover Type Region Specification 53
23. Ecosystem Landunit Specification 53
24. Cover Type Subregion Specification 53
25. Operation Diagram 55
26. Operation Specification 55
27. Model Operation Specification 55
28. Cluster Analysis Specification 56
29. Spectral Classification Specification 56
30. Cluster Analysis Scenario Diagram 59
31. Spectral Classification Scenario Diagram 60

vm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

PROBLEM STATEMENT

Introduction

Researchers in the ecological sciences are developing techniques for modehng and

analyzing ecosystems using digital computers. The increasing power of the computer al

lows researchers to work at larger spatial scales and finer spatial resolutions than was

previously possible. Modeling efforts can also be carried out at varying time scales, rang

ing from static views of an ecosystem to century long modeling of some processes.

Workers in this application domain must be well-versed in a number of disciphnes. Pri

mary among them are plant science, ecosystem ecology, community ecology, climatology,

meteorology and hydrology. Understanding of fundamental geographic principles is in

dispensable, as many of the datasets that researchers work with are two-dimensional

representations of phenomena that occur in three-dimensional space.

Ecosystem Research

Modeling and analysis of ecological phenomena can be carried out for more than

one purpose. In some cases, researchers use ecosystem simulation models for hypothesis

testing. In other cases, model outputs are used by land managers in their decision-making

process. At the University of Montana, several labs are engaged in different aspects of

ecosystem modeling . The Wildlife Spatial Analysis Lab (WSAL) at the Montana Co

operative Wildhfe Research Unit is responsible for the Montana Gap Analysis project

(MT-GAP). Gap Analysis is a nationwide effort by the U. S. Fish and Wildlife Service to

idenfity and protect biodiversity using a computerized geographic information system

(GIS). The Numerical Terradynamic Simulation Group (NTSG) in the School of Forestry

is partially funded by NASA and does ecosystem simulation on spatial scales ranging from
1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the continental to a single watershed.

Data and Software Management Problems

The focus of this thesis will be the modehng requirements for the MT-GAP and

NTSG projects. The research efforts in both labs overlap, and both projects use many of the

same datasets and software tools. Additionally, both labs share many of the same

problems. A major problem is the enormous size and number of datasets utilized in some

projects. For example, a Thematic Mapper image from the Landsat satellite will typically

require 350 to 400 MB of storage. The MT-GAP project requires 31 of these images to

cover the state of Montana. The size and number of these datasets presents a formidable

data management and processing problem. Researchers must often devise ad hoc and

sometimes unsatisfactory solutions to these problems.

Many different software tools - both commercial off the shelf (COTS) and custom-

made - are used in ecosystem modehng. Two particular types of software package have

proven especially useful. Geographic Information Systems (GIS) facilitate the acquisition,

management, analysis and display of data relating to phenomena located in geographic

space. Image Processing (IP) systems are used to analyze digital data that is collected

from remote-sensing devices such as satellites and aircraft. Commercial products of both

types are used extensively in both WSAL and NTSG. These products, however, usually

are developed for fairly large markets and thus emphasize functionality that is in fairly

widespread demand. Workers who are doing cutting edge research and/or dealing with

unique problems may find that their software and data management needs often exceed the

capacity of commercially-available software. For this reason, in-house software and data

management tools are widely used for many modehng and analytical problems. Con

struction of these software tools often requires considerable investment of time from

ecological researchers, and therefore is a distraction from the scientific work they might

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rather be doing. Additionally, these tools sometimes are of an ad/loc nature. That is, they

are sometimes built as limited solutions to a particular problem, and therefore may not be

applicable in a broader context.

Ecosystem Information System

The Ecosystem Information System (EIS) was conceived as a remedy to many of

these data management and processing problems (Ford92). EIS will allow researchers

working in a distributed environment (i.e., in physically separate labs) to share data and

software. EIS wiU provide a researcher with a mechanism to browse a collection of data

sets and software (both COTS and in-house), and obtain the information necessary to use

the data and software in an appropriate manner. A critical step in the development of EIS

is construction of a hierarchical description of the entities (software and data) available in

the participating labs. Construction of this hierarchy is a first step in the development of

any non-trivial, ecosystem database. The EIS hierarchy wiU therefore serve as a guide for

researchers who need to find what datasets and software tools are available for their work.

It will also provide a context for further software development by facilitating reuse of

existing software designs and implementations. The construction of this hierarchy is the

primary objective of this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER n

HYPOTHESIS

Statement of Hypothesis

Our hypothesis is that a domain analysis model can effectively describe the

entities and relationships between entities that are found in this application domain. The

technical basis for our modeling work is an object-oriented modeling methodology. In this

chapter we will describe object-orientation and domain analysis; we will also specify the

criteria by which we will vahdate our hypothesis.

The Nature o f Complex Systems

In what is one of the primary references in the object-oriented software develop

ment literature, Booch describes the nature of complex systems that include software

components (Booch92). He describes industrial-strength software as software for which

"it is intensely difficult, if not impossible, for the individual developer to comprehend all

the subtleties of design." (Booch92, pp. 13). This is true of software systems designed for

the modehng and analysis of geographical data. Booch characterizes a complex system as

one that has a number of attributes, such as the following.

1) A complex system is in the form of a hierarchy in which a particular subsystem is itself

composed of subsystems.

2) Hierarchic systems are usually composed of only a few different kinds of subsystems

that are organized in various patterns.

3) Relationships among separate components are weaker than relationships among the in

ternal parts of a particular component.

From these attributes, Booch derives a canonical form for a complex system. Such a sys

tem must be viewed from two perspectives, each of which is formalized as a hierarchy.
4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The part o/hierarchy is based on decomposing the system into parts. A component in the

part o f hierarchy is made of sub-components which are found below it in the hierarchy.

The kind o f hierarchy is based upon generalization of properties. A component in this

hierarchy has properties common to all components below it in the hierarchy. Booch refers

to these hierarchies as object structure and class structure, respectively.

The Nature of System Decomposition

A key notion in the design of software is that of decomposition. A complex soft

ware problem can be broken into smaller pieces, each of which can be dealt with

independently. Booch describes two approaches to decomposition — algorithmic and

object-oriented. Algorithmic decomposition divides a system into units, each of which

represents a major step in a process. Each of these units can also be decomposed

algorithmically. A more recent approach is object-oriented decomposition. Here each unit

represents a key abstraction in the application domain. In this approach, the world is

viewed as a collection of semi-autonomous entities that interact to exhibit higher level

behaviors. Booch says that although both approaches are valuable, object-oriented sys

tems tend to be smaller, more resilient, and less risky to develop, because their develop

ment can more easily be implemented incrementally.

The Object Model

There are four essential elements for the object model (Booch92, pp. 39-40) The

first is abstraction, which "denotes the essential characteristics of an object that distinguish

it from all other kinds of objects and thus provide crisply defined conceptual boundaries,

relative to the perspective of the viewer." Abstraction provides information about what an

object does while it conceals the means by which the object performs operations. The

abstraction of an object provides an interface for the object, and identifies its essential

behavior. The behavior of an object includes operations it performs on other objects, as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

well as operations that other objects perform upon it. An object that uses the resources of

another object is that object’s client. An object’s protocol is the set of operations that its

clients may perform upon it.

The second element of the object model is encapsulation, defined as "the process

of hiding all the details of an object that do not contribute to its essential characteristics."

(Booch92, pp. 46) Abstraction and encapsulation are complementary concepts. Encapsu

lation, also known as information hiding, prevents clients from seeing the inside view or

implementation of an object.

Modularity is "the property of a system that has been decomposed into a set of

cohesive and loosely coupled modules." (Booch92, pp. 52) A module is a higher level

abstraction than a class. It is a construct used in system design and implementation, and

serves as a way to manage source code. Coupling is the measure of the strength of associ

ation between modules or classes. A strongly coupled system is harder to understand than

one with weaker coupling. Cohesiveness measures the degree of connectivity between the

elements of a module or class.

The last of the major concepts of the object model is hierarchy, which is "a ranking

or ordering of abstractions." (Booch92, pp. 54)

Another attribute of object-oriented models is persistence, described by Booch as

"the property of an object through which its existence transcends time (i.e., the object

continues to exist after its creator ceases to exist) and/or space (i.e., the object’s location

moves from the address space in which it was created)" (Booch92, pp. 70). Though some

advocates of object-oriented design consider persistence as an essential aspect of object-

oriented systems, Booch considers it a minor aspect of the object model. In this applica

tion domain, persistence through time is obviously important. Virtually all software tools

used by researchers (both COTS and custom-made) provide some mechanism for storing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objects pennanently. This mechanism may be a simple "write to disk" or may involve

recording entities in a database management system. For software that functions in a dis

tributed environment, persistence in space is critical as well.

Booch next characterizes an object, which is a concept fundamental to the object-

oriented methodology, as an entity with state, behavior and identity. The concept of state

embraces all the properties of an object where a property is a distinctive feature or quality

that helps to make the object unique. Properties have a value, which may be a simple

quantity or a reference to another object. An object’s behavior determines how its state

changes in response to the actions of other objects. Behavior also controls the way in

which an object acts upon other objects. Identity is the property of an object that makes

it unique. A set of objects that share a common structure and a common behavior is called

a class. An object is an instance of a class.

In Booch’s view there are two kinds of relationships among objects — using and

containing. In using relationships, an object uses another object. Objects involved in this

kind of relationship play one of three roles. Actors use other objects, but are never them

selves used. Servers are used by other objects, but never themselves use other objects.

Finally, an agent is an object that can be both an actor and a server. In containing rela

tionships, one object contains other objects.

Relationships among classes are more involved. Booch describes three basic kinds.

Generalization, or kind of, relationships indicate sharing of properties. Aggregation, or

part of, relationships indicate structural relationships. Finally, a semantic connection be

tween otherwise unrelated classes is an association. Booch’s methodology provides four

relationships among classes. Inheritance relationships are the most powerful and can be

used to express generalization, i.e., that a class shares the structure or behavior defined in

one or more other classes, called superclasses. An inheriting class is called a subclass.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

Inheritance is the relationship used to build the kind of hierarchy discussed earlier. Using

relationships among classes can be of two types. A class can use another class in its in

terface or in its implementation. Instantiation relationships indicate that an instance of a

class involved in this relationship cannot be created without creating instances of the other

class in the relationship. Finally, metaclass relationships allow classes to be seen as

objects. A metaclass is a class whose instances are themselves classes.

Booch states that no single diagram or model can capture all the details of a system.

His methodology requires construction of two kinds of models - logical and physical. The

logical model depicts classes, objects and the relationships between them. The physical

model depicts higher level subdivision of the system into modules and the allocation of

processes to processors, then processors to competing demands. Logical models are built

first, and then used as a basis for construction of the physical models. In this work, we will

build only logical models, according to the two stages of the Booch methodology as dis

cussed in White (White93) — requirements analysis and domain analysis.

Requirements Analysis

Requirements analysis is essentially the process of determining what the customer

expects from the system that is being built. Among the products are a clear definition of a

system’s reason for being and a statement of overall goals. This stage comprises a contract

between developer and user, recognizing that the contract will evolve over time. In some

design methodologies, the only formal product of this stage is a simple statement of the

primary functions of the system. In our modeling effort, however, system requirements

will be described in more detail, with summaries of many of the kinds of modeling and

analysis activities the system must support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Domain Analysis

Domain analysis is the process of building an object-oriented model of the portions

of the real-world enterprise that are relevant to the system being designed. White says it is

through this process that developers gain the detailed knowledge of the domain needed to

have the system carry out its required functions. Domain analysis identifies all major ob

jects in the domain, including state components and major operations. The result is a

central model containing all system semantics. White says this process focuses on "re

solving that bewildering set of aliases, contradictory requirements, obscure policy, and

varying styles of explanation and communication into a ... structure that will map directly

to final implementation." (White93, pp. 7) Our domain analysis will produce three sets of

deliverables:

1) class-relationship diagrams, which identify the key classes and relationships among

classes in the domain;

2) class specifications, which contain all semantic definitions of the classes, attributes and

key operations; and

3) object-scenario diagrams, which illustrate how the objects will interact to carry out key

system functions.

White suggests the following sequence for domain analysis. First define classes,

then identify major relationships between classes and objects. Next, identify key

attributes. At this point, identify properties shared among classes to produce a class hier

archy, then identify operations. Finally, validate the model by appropriate means, and

repeat the steps above to refine the model.

We will use the object-scenario diagrams produced by domain analysis to evaluate

our model with respect to our hypothesis. That is, if we can successfully build an object-

scenario diagram for each scenario identified during requirements analysis, we will have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

validated our hypothesis.

The Object-Oriented Methodology in this Thesis

The object-oriented methodology can be employed in several ways for this

analysis. We will discuss two distinct approaches and then present a third approach, which

will serve as the basis for our woric. In the first approach, we can examine the collection

of spatial datasets, software and other tools used by ecosystem modelers, then construct an

object model depicting the nature of these objects and the relationships among them. In

this approach we make no reference to the ecosystem. Our work falls more strictly under

the umbrella of conventional software modeling and design. Our model will be hmited

because it wiH not capture much of the semantics of the application domain.

In the second approach we apply the object-oriented methodology to the ecosystem

itself. In this case we view the ecosystem as a collection of interrelated and interacting

objects (i.e., as a complex system). In this case our work falls into the domain of ecosys

tem modeling. This approach is being pursued by a number of ecosystem researchers

(Silvert93, Raper93, Bennett93, and Klanika93). It is not our intention to build an object-

oriented model of an ecosystem. Instead we will model the datasets, software and tools

used in ecosystem modeling, while recognizing the ecosystem as the focus of concern.

Our approach wiU be as follows. We will view the ecosystem as a complex system

(Booch89). The system is composed of interrelated objects. Ecosystem scientists study

the objects and relationships comprising this system. As part of their research activities,

scientists build models of such systems. They acquire data to serve as input and vahdation

for their models by samphng the ecosystem. Modeling transformations, implemented in

software, are used to derive new models from existing models. Scientists document their

research efforts and rely on documentation of research by others.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER m

REQUIREMENTS ANALYSIS

Introduction

Requirements analysis will provide a detailed summary of the key entities and pro

cessing operations carried out in the domain of ecosystem modeling. This material will be

used as the basis for a model of the application domain.

The Real World

Ecosystem researchers study phenomena, both natural and human. Phenomena can

be of two types, continuous and discrete. Continuous phenomena have a numerical value

at every point of the earth’s surface. Examples are precipitation and elevation. We assume

that discrete phenomenon are bounded in three-dimensional space. Examples are roads,

rivers, lakes and buildings. Phenomena that have a non-numerical value at every point on

the surface fall into a gray area. In many cases, these phenomena are the product of human

activity, e.g. land ownership, land use and political territory. In other cases they can only

be measured after expert analysis of data, e.g. vegetation community type.

We measure phenomena at four levels, as summarized in (Muehrcke78). Nominal

is the most primitive and is used strictly for classification. We may subdivide a set of data

into areas of equal vegetation type, where each type is represented by a unique numerical

value. Ordinal measurements indicate a ranking on a continuum, with each group having

a value. Interval and ratio measurements indicate magnitude. In the case of an interval

measure, like temperature on the Celsius or Fahrenheit scales, the numbers used don’t have

an absolute value. Hence, the value zero in an interval measure has no real world

significance. Ratio is similar to interval in that the value indicates magnitude on a scale.

However, the zero is a meaningful value. Precipitation is a ratio measure. Nominal mea-

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

surements are sometimes referred to as qualitative, while ordinal, interval and ratio mea

surements are known as quantitative. We use the term categorical in place of nominal, and

the term numerical in place of interval and ratio. We do not treat the ordinal level of

measurement in our work.

Phenomena in the real world are associated with entities or structures. These enti

ties are sometimes identifiable features of the natural and human landscape. In other cases

they are the product of analysis and modeling carried out by experts in a particular appli

cation domain. Burrough says that "all geographical data can be reduced to three basic

topological concepts - the point, the line and the area. Every geographical phenomenon

can in principle be represented by a point, line or area plus a label saying what it is."

(Buirough86, pp. 13) Unwin (UnwinSl) discusses point, line and area entities, and also

discusses the surface. A surface is a collection of points and a scalar field characterizes the

surface. A scalar field is a contiguous set of positions, each of which has an associated

scalar value, characterized by a magnitude measure. Thus, magnitude values represent a

function of scalar field position. Unwin describes an example of a contour map of a moun

tain, where altitude is a function of <x,y> position. He says two critical assumptions have

already been made. "The first is that of continuity, that is a z value exists (or can be

imagined to exist) everywhere on the surface, and that there are no sharp discontinuities....

Second, it is assumed that the field is single-valued, that is only one value of z is present at

each location." (UnwinSl, pp. 154). Based on these assumptions, a scalar field can be used

to approximate a surface corresponding to the surface of the earth. The two conditions

above are not always perfectly met, especially in mountainous areas, but this shortcoming

is often overlooked for modeling puiposes. Using these assumptions allows other contin

uous phenomena to be treated as surfaces of some type.

We can find structure in the real world by partitioning areas into subunits. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

recognize two kinds of partitioning - spatial and value. We partition an area spatially by

dividing it into spatially contiguous areas. In other words, we can identify spatially con

tiguous sets of points as sub-areas, each with a particular geographic extent. This kind of

partitioning is often used to isolate a small area for focused analysis or to provide an or

ganizational framework for archiving and management of large spatial models. Value

partitioning is used to find a more complex kind of structure. We place in one partition all

areas that are of common value for a particular phenomenon. Generally, researchers

choose one phenomenon as the basis for structure. They then develop criteria and a meth

odology for evaluating the chosen phenomenon. The result of evaluation yields a surface

broken into value partitions. In somewhat more formal terms, spatial partitioning divides

a set of points into spatially contiguous subsets. Value partitioning is carried out by iso

lating one phenomenon, and partitioning a set of points into possibly disjoint subsets that

are equivalence classes with respect to the value of that phenomenon.

Models o f Reality

Scientists build models of reality to facilitate their research. We define a model as

an abstract representation of reality. Models can be of two kinds - spatial and temporal.

Spatial models are static views of the real world; that is, they either describe the state of

the ecosystem at a particular instant, or they summarize state values over a particular time

interval. Spatial models represent phenomena in n dimensions. We limit ourselves to

two-dimensional spatial models. Temporal models contain a logic that simulates system

activity and produces an ordered set of spatial models called a time series. A particular

time series has a temporal scale and resolution. Temporal scale is the time period repre

sented by the series, whereas temporal resolution, also called time step, indicates the time

interval between the spatial models comprising the series.

Geographic information systems and image processing systems utilize two differ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

ent characterizations of spatial data - raster and vector. The raster model assumes a reg

ular grid that divides a surface into cells of uniform size, sometimes called pixels, each of

which represents a discrete area of the surface. Each cell is referenced by unique <x,y>

coordinates. Raster cells are spatially contiguous, and in most applications are of a stan

dard square shape. Burrough (Burrough86) summarizes the advantages and disadvantages

of the raster model. He says the data structure is simple, permitting easy simulation and

analysis operations. However, this model requires that large amounts of data be stored, and

will lose information about the phenomenon if the resolution of the phenomenon is smaller

than the raster cell size. Any model of spatial data must be able to store topological

information, that is, a description of the spatial relationships between objects. Topological

information is implicit in the raster model at the level of the individual cell, in the sense that

neighbors are easily identified by simple functions on <x,y> coordinates. However, for

more abstract raster objects, such as groups of cells, topological information must be ex

plicitly managed.

The vector model is based on three kinds of entities. A node represents point enti

ties, an arc represents a line entity defined by start and end nodes and a polygon represents

an area defined by a closed collection of arcs. The vector model gives what is sometimes

called a continuous representation of reality. This means that the spatial location of nodes,

arcs and polygons corresponds to their location in the real world to a certain level of

precision. Each object (node, arc, polygon) on a vector layer is given a unique identifier

which serves as the primary key into a relational table. Burrough (Buirough86) summa

rizes the advantages and disadvantages of the vector model as follows. The vector model

gives a truer representation of real world entities and for sparse phenomenon provides a

much more compact data structure than the raster model. However, the data structures

required by vector models are complex, making many important modeling and analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

operations very difficult to implement.

The vector model can store topological information on the objects that comprise a

surface. Aronoff (Aronoff89) describes the ARC-NODE model in which topological data

is store for all arcs, nodes and polygons on a vector layer. Polygon topology defines a

polygon in terms of the arcs by which it is bounded. Node topology defines a node in terms

of the arcs in which the node is either a start or end point. Finally, arc topology identifies

the start and end nodes for each arc, as well as the polygons to the left and right of the arc.

While we recognize the importance of these traditional views of spatial data, we seek a

representation that allows us to ignore the distinction between vector and raster.

The spatial representation that we use in this work is that of a model of the geo

graphic database (Burrough86). Although the term geographic database implies that this

model relates to data in a spatial modehng/analysis system, we can apply this model to

entities and phenomena in the real world. Buirough’s model provides a means of bridging

the gap between the real world and the software systems used in the application domain.

Imphcit in Buirough’s model is a view of the earth’s surface as an infinite set of points,

each of which has a set of attributes. Each attribute represents a phenomenon. Attributes

representing continuous phenomena are present at every point on the surface. Attributes

representing discrete phenomena are present only where those phenomena occur. In other

words, an attribute representing streams is present only at points that lie in the stream. We

will call this representation of reality the point model.

Burrough’s model also uses a structure called an overlay. An overlay is a scalar

field which represents the value of exactly one attribute for a particular area. There is a

unique overlay for every attribute for a given area. If we examine a particular overlay, we

find a structure that Burrough calls a region. A region is a set of <x,y> positions that share

a value for a particular attribute. A region is composed of one or more spatially contig

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

uous areas. The smallest region is one <x,y> position. The region is therefore an equiva

lence class with respect to one attribute.

In the work here we refine Burrough’s model in several ways. Firstly, we will

describe two kinds of overlays — numerical overlays hold values on the numerical mea

surement level and categorical overlays hold values at the categorical level. Secondly* we

note that Burrough does not treat the spatially contiguous areas that comprise a region as

meaningful entities. However, these entities are spatially unique objects and should be

treated as semantically meaningful. We call these entities subregions and recognize two

kinds. Linear subregions are one-dimensional and are composed of at least two points,

while areal subregions are two-dimensional and may be as small as one point. We realize

that geometrically a point is a subspace of area "zero" in a larger two-dimensional space.

In modeling terms, each point is assumed to have a non-zero area corresponding to its

spatial resolution. Thus we treat the point as similar to the cell in the traditional raster

model. We define a four-tiered overlay structure. The foundational structure is the point,

the second level of structure is provided by the subregion, the third tier by the region and

the top level by the overlay.

How Models are Used

We discuss here a subset of the key modeling activities carried out by MT-GAP and

NTSG projects. In subsequent sections, we will expand on these descriptions and describe

other modeling activities.

Gap analysis (Scott93) is intended to provide a more proactive approach to biodi

versity protection than has been available in the past. The process relies on spatial models

of spectral reflectance, topography, land ownership, land use and other phenomena. These

foundational models are analyzed to predict land cover types and wildlife distributions.

These higher level models are used to identify geographical areas that are important to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

survival and well being of various species and communities. A vegetation model is fun

damental to biodiversity assessment, because the vegetation at a site reflects many physical

and biological factors that are significant to plant and animal species.

The MT-GAP project uses many traditional image processing and CIS analysis

techniques, as well as modeling and analytical methods developed by the project staff.

(Ma 93) discuss modeling activities being used on the Montana project to map existing

vegetation and land cover. Remotely-sensed reflectance data recorded by Landsat TM

scanner is used to identify units of land with similar spectral pattern. Land units smaller

than five acres (i.e., the minimum map unit) are removed by absorbing them into adjacent

land units. Topography is modeled for the remaining units. A subset of these units are

sampled in the field to determine plant cover type and is used to develop a characterization

for each cover type, called a signature. The signature is used to label the cover type of each

land unit in the model by cover type.

The Numerical Teiradynamic Simulation Group studies ecosystem processes at

watershed and larger scales by using a suite of temporal modeling tools. We limit our

discussion to the Regional Hydro-Ecological Simulation System (RHESSys) which has

been developed by NTSG (Nemani92). RHESSys is comprised of submodels called

Forest-BGC, Basin, MtClim and TopModel. Forest-BGC is a process model that simulates

the cychng of carbon, water and nitrogen through forest ecosystems. The model requires

topographic and soil parameters, along with an estimate of vegetation canopy density. The

simulation is driven by climate data that is extrapolated from a weather station to the study

site. Seven state variables are modeled on a daily time step: evaporation, transpiration,

snowpack, soil water, stream discharge, photosynthesis and maintenance respiration. The

remaining state variables are updated once a year: growth and decomposition respiration,

nitrogen loss, available carbon and nitrogen, and carbon and nitrogen in leaves, stems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

roots, soil and litter. A topographic landunit called a hillslope is used as the simulation

unit, reflecting the strong relationship between the hillslope and forest cover patterns in

mountainous regions. The submodel. Basin, is used to partition the study area into hills-

lopes, so that each hillslope is partitioned into areas of similar soil-water dynamics.

MtClim is used to extrapolate climate data, generally on a daily time interval for the period

for which the simulation is to run. TopModel (Bevan79) simulates water flow in moderate

to steep topography.

The execution of a RHESSys simulation proceeds as follows. Basin partitions the

study area into topographically-defined simulation units. MtClim provides climate data

for each simulation unit. Next, Forest-BGC is run on each simulation unit and results are

integrated across the hillslope. TopModel provides a robust model of hydrology, providing

estimates of stream discharge in terms of timing and quantity, and of soil moisture patterns.

These patterns are especially important in determining rates of évapotranspiration and

photosynthesis.

Data Acquisition

Remotelv Sensed Data

Before information about the real world can be used for modeling and analytical

purposes, some method(s) for sampling the real world must be devised. A great deal of the

data used in ecosystem modeling is sampled remotely — i.e., from high above the earth —

and over large areas virtually simultaneously. Two primary vehicles for remote sensing

are utilized today — aircraft and satellites. The use of aerial photography from aircraft

mounted cameras has long been a source of data about the earth, used to generate maps and

other representations of the earth’s surface. The use of satellite imagery is newer, but

rapidly growing in importance in a wide range of applications.

Two of the products from aerial photography that are used in the MT-GAP project

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

and NTSG research will be discussed here. First is the digital elevation model (DEM)

which describes the elevation of points in a regular grid on the earth’s surface . A similar

product is called a digital terrain model (DTM). Burrough (Burrough86) uses the term

digital elevation model in a broader context to refer to any digital representation of the

elevation of the earth’s surface. He uses the term altitude matrix for the particular kind of

elevation representation that is commonly available as an actual DEM or DTM dataset.

The altitude matrix has an elevation value at each intersection point of a regular grid. The

U. S. Geological Survey describes three methods used in the collection of elevation data

for the agency 7.5 minute DEM product (USGS86).

1) Elevation data is interpolated from digital representations of hypsography (contour

hnes).

2) A stereo-pair of aerial photographs are processed using a method called terrain profil

ing, and the resulting data is interpolated to a regular grid.

3) The Gestalt Photo Mapper is used to examine a stereo-pair of aerial photographs and

sample the terrain on a regular grid.

The second product of aerial photography discussed here is a hydrography overlay.

Hydrographic features are bodies of water, such as lakes, springs, marshes, ponds, streams,

and wells. A map generated from an aerial photograph is used as source material for the

digital representation of hydrographic features. The hydrography overlay is formed by

digitizing the map, either manually or automatically.

Satellite based monitoring of the earth has been carried out for several decades.

The LANDSAT series of satelhtes has provided remote sensing capabilities by carrying

scanners that record electromagnetic radiation reflected off the earth’s surface at various

wavelengths (ERDAS91, LiUesand79). The term scanner is typically used to describe an

entire data acquisition system. A satellite may carry more than one scanner. Each scanner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

carries a sensor, which records radiated energy and converts it to a signal suitable for

further use. Each sensor contains a number of detectors. The current generation of LAND

SAT satellites carries the Thematic Mapper (TM) scanner system, which records radiation

from seven bands of the electromagnetic spectrum. Three bands, the lowest in terms of

wavelength recorded, are in the visible spectrum. One band is in the near infrared, which

lies just beyond visible red. Another two bands he in the mid infrared range, and the final

band is in the thermal infrared. The width in microns of each band is called the spectral

resolution. A sensor’s spatial resolution is the size of the smallest object detectable by the

sensor. The spatial resolution of TM data is 30 meters for every band, except band 6,

which has a resolution of 120 meters. The data captured by TM scanners is initially pro

cessed by Earth Observation Satelhte Corp. (EOSAT). The result is a dataset with all

bands converted to a 30 meter resolution, called a satellite scene. Individual scenes vary

in size. The Missoula scene is a 7000 by 7000 grid of cells representing approximately 13

million acres. The temporal resolution of TM data (that is, the time interval between sep

arate recordings of a particular area) is sixteen days. A sensor also has a radiometric

resolution which indicates the number of values the signal transmitted to the earth can

have. The TM sensor has a radiometric resolution of 256, i.e., the data values are encoded

in 8 bits.

Ground Based Sampling

Ground-based sampling of data has been used in the MT-GAP project and in eco

system simulation by NTSG to measure climatic phenomena. Although climate is a

continuous phenomenon, current technology is limited in remote sensing of this data.

Therefore, ground observations are necessary. For climate modeling, researchers at NTSG

generally use data collected by the National Weather Service at primary and secondary

meteorological stations, and archived at the National Chmate Data Center, by the National

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Oceanic and Atmospheric Administration (NOAA) is useful for climate modeling. Inter

polation and extrapolation of this data are the subject of considerable modeling activity and

will be discussed later.

Ground-based sampling also provides data that can be used to complement analy

ses that are based on remotely-sensed data. This practice, called ground truthing, provides

an empirical check on the methods used by modelers. Field workers examine plots and

record observations appropriate to the purpose of a particular study. In some cases a stan

dard sampling system may be used. For example, MT-GAP utilized the Ecodata sampling

system developed by the U.S. Forest Service. The Ecodata system provides over twenty

field forms for recording particular observations and attributes of a site.

Model Transformations

Cartographic Transformations

Robinson, et al., (Robinson53), define cartography in the broad sense as work in

which the use of maps is of fundamental importance. The term map must be used with

care because researchers use hard copy maps only part of the time. Most of the time they

work with digital representations of maps using the data models discussed in the previous

section. Robinson, et al., (Robinson53), describe five conceptions of cartography, only

one of which — the geometric focus - is important in this discussion. The aim of cartog

raphy in this view is the creation of cartographic models of reality that are used for

measurement and analysis of phenomenon. The emphasis here is on accuracy of

measurement. This of course is the primary concern of scientists studying earth resources

and the natural environment.

The process of representing the three-dimensional surface of the earth on a two-

dimensional hardcopy map or a flat computer monitor requires the use of a map projection.

The act of projection involves the application of a function to the three-dimensional data in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

order to render it in two-dimensions. There are many such transformation functions. The

spatial location of real-world entities is given in the geographic coordinate system using

latitude and longitude. At this stage there is no projection system involved. After projec

tion into two-dimensions, a rectangular coordinate system is used for referencing spatial

locations. Some accuracy is always lost in a projection transformation. The fidelity of

geographic data can be analyzed in four ways - representation of angles, areas, distances

and directions. Each projection system preserves fidelity in some of these areas better than

others. The analyst must decide which projection system will best suit the needs of the

analysis, based on the nature of the data, the characteristics of the study area and the pur

pose of the analysis. For a given study, one projection system is usually chosen as the

standard. All input overlays (raster and vector) are converted to the same projection

system. During the conversion from one projection to another, the analyst must provide

parameters that will guide the transformation process.

Overlays representing the same geographic area must also be referenced to the

same coordinate system. The same geographic location will thus be represented by the

same map coordinates in both overlays. Registration is the procedure used to accomplish

this goal. In absolute registration, different overlays are registered to a common coordinate

system. In relative registration, one overlay is used as a base, or master, to which the other

overlays, called slaves, are registered. The registration process typically takes three steps.

First, a set of features (generally point entities) that can be identified on all the overlays are

isolated. Second, the coordinates of these points are recorded. Finally, a function is gen

erated to transform coordinates on each slave into the appropriate coordinates on the

master overlay.

When performing projection transformations or registration on overlays with a

regular point distribution, it is often necessary to resample the surface. A resampling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

algorithm generates a new value for a particular point by performing a calculation on the

values of its neighbors. The product of resampling is an overlay with newly calculated

values for all points. Resampling is often necessary after projection or registration be

cause the functions that transform the surface distort the regular grid of points. There are

a number of possible resampling algorithms, e.g., nearest neighbor, bilinear interpolation

and cubic convolution. Resampling may also be used to change the spatial resolution of

the points on an overlay to match the resolution of another overlay.

Partitioning Transformations

Introduction

Ecosystem modelers seek out a basic structure to use as the focus of modeling

activities. The structure must be semantically meaningful - that is, it must correspond to a

real world entity. Primitive overlay objects (i.e., points) may represent objects of special

significance to modelers (e.g., wildlife sightings, spring locations). Usually however,

overlay points are arbitrarily chosen as part of a grid of points to represent an area, and do

not have this semantic meaning to ecosystem modelers. The analyst must aggregate these

points into semantically meaningful units. Two methods of doing this are used by MT-

GAP and NTSG : classification based on spectral value, which generates a surface divided

into spectral land units, and topographic partitioning, which subdivides the surface into

spatially contiguous areas representing the natural terrain.

Classification and topographic partitioning are important components of modeling

because they allow researchers to seek out higher levels of structure than exist in raw data.

The problem common to all classification activities is: given a set of unclassified objects,

describe a set of appropriate classes, then decide which class each object should be

assigned. Classification and topographic partitioning are typically treated separately, in

spite of the fact that topographic partitioning can be viewed as a subtype of classification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

That is, the partitioning of a surface into topographic land units involves examining a col

lection of points and placing each one into a topographic landunit, just as spectral

classification requires that each point be placed into a spectral class. However, the litera

ture on classification typically excludes topographic partitioning. Both these methods are

discussed further in sections below.

Classification

Burrough (Buirough86) provides two characterizations of classification methods.

First he distinguishes univariate and multivariate classifications. Univariate classifica

tions are based upon a single variable, or attribute. Multivariate classifications are based

upon multiple variables. Secondly, Burrough distinguishes four different methods of gen

erating class intervals. Exogenous class intervals are related to the data being classified,

but are not derived from that data. They are often standard classification schemes in a

discipline (e.g., land cover type, soü class). Arbitrary class intervals are selected without

a c lear aim , w hile seria l in tervals are chosen so that they relate to each other

mathematically. Sub categories of the serial interval include class intervals based upon 1)

normal percentiles, 2) a proportion of standard deviation centered on the mean, and 3)

equal intervals on both arithmetic and non-arithmetic scales. Idiographic intervals reflect

the nature of the data set being classified; there is a unique set of intervals for each set of

data classified. Therefore, comparison between different data sets that are classified inde

pendently is difficult, if not impossible.

A third subdivision of classification focuses on the nature of the classes into which

objects are placed. The classes can be based either on traditional or fuzzy set theory.

Fedrizzi discusses fuzzy set theory noting that "analysis and modeling of real world phe

nomenon or processes must take into account an inherent uncertainty." (Fedrizzi87, pp.

13) He notes that in some cases, this uncertainty is due to vagueness, i.e., a lack of clear-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

cut boundaries of the set of objects to which a label is applied. As originally described by

Zadeh (Zadeh65), all sets can be described by a characteristic function whose value indi

cates whether the object belongs to the set. In traditional, or crisp, set theory the function

maps every candidate object to a membership value of one or zero (i.e., the characteristic

function value corresponds to either true or false). Fuzzy set theory uses a membership

function which maps object membership into the real number interval zero to one, also

called a possibility value. As an example, imagine a set of cover type classes into which

we must sort landunits. Using traditiona.1 set theor, we generate a definition for each class

corresponding to a characteristic function. We apply this function to each landunit, and the

function returns a zero or one to indicate whether or not the land unit belongs to the class.

We apply the characteristic function for each class to the landunit until either 1) we find a

return value of one, or 2) we have exhausted all classes. If we exhaust all possibilities

without finding a member, the landunit remains unclassified. Approaching the same clas

sification problem using fuzzy set theory, we start by deriving a fuzzy membership

function for each cover type class. As above, we apply the function for each class to each

landunit. The interval between zero and one contains an infinite number of real numbers;

therefore the set of potential possiblity values returned by a membership function is theo

retically infinite. Thus, we usually find that a landunit has non-zero possibility values for

more than one class. The process of de-fuzzifi.cation is used to select among several can

didate classes.

Data cannot be classified until a set of classes, called in science a class scheme or

class system, has been defined. The process of characterizing the classes into which ob

jects will be placed is called training. An analyst must not only identify the set of classes;

he/she must also define each class in terms of the dataset to be classified, so that the clas

sification process will be straightforward. Training can be of two kinds. Unsupervised

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

training examines the set of unclassified objects to determine the structure inherent in the

data. This structiue is used as the basis for class definitions. Unsupervised training is also

called cluster analysis and can utilize one of four standard algorithms - sequential, statis

tical, isodata and rgb clustering (ERDAS91). Sequential clustering not only trains, but

also classifies all points in the image. The other three clustering algorithms require the

analyst to subsequently classify the image points. Cluster analysis may be an interactive

process and may be repeated a number of times until the analyst is satisfied with the num

ber of classes and their definitions. Supervised training requires the analyst to have a priori

knowledge of the data set or the area represented by the image. One such source of

knowledge is ground truthing. A training sample is a set of image points which comprise

a discernible pattern that may represent a class. A training site is the geographic area

represented by a training sample. A training sample can be used to generate a signature,

or set of statistics that characterizes a class. Signatures can also be generated during cluster

analysis.

The actual classification process requires the analyst to choose a decision rule that

will be used to determine which class a given object is assigned to. Four decision rules are

commonly used: parallelepiped, minimum distance, mahanobis distance and maximum

likelihood (ERDAS91).

MT-GAP Classification Methods

The role of classification in the GAP project is described in (Ma93). Firstly, points

in a TM scene are classified into spectral class. The product of this classification is a

partitioning of the study area into regions, each representing a spectral class. Each is

composed of a number of subregions (i.e., an aggregate of points) which serve as modeling

units. The data is classified into spectral groups, or classes, that simulate the color com

posite of TM channels 3, 4 and 5. These bands record the visible red, near-infrared and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

mid-infrared wavelengths and are commonly used for visualization and feature identifica

tion in image processing. The algorithm identifies by similarity of color, groups of similar

points in three-dimensional spectral space. Within each color group, brightness sub

groups are identified. These sub-groups are the clusters or classes into which all the points

in the image are classified. Training and classification are combined in a two-pass process

called "corr_dist" (Ma93). The data is trained in the first pass by randomly sampling the

set of points comprising the image. Each sampled point is examined to determine if it is

distinct from the previous samples, if any, to form a new cluster. If so, this newly exam

ined point is stored in a spectral bank holding those points that characterize the clusters

identified so far. In the second pass of the process, each point in the image is examined

with respect to the "training points" stored in the spectral bank. Each point is labeled

using the Euclidean Distance decision rule.

In the second stage of classification, the subregions produced by spectral classifi

cation become the objects of classification (i.e., instead of individual points). This is a

traditional set-theoretic approach to cover type classification which utilizes the nearest

member group algorithm (Ma93). Each subregion is "located" in n-space, where n equals

the number of spectral and biophysical parameters used in the training and classification.

The cover type for a subregion of unknown class is the cover type of the nearest labeled

subregion. The class intervals used here are exogenous, and make use of a standard land

cover type classification scheme. Before classification, the analyst conducts supervised

training, using ground-sampled data collected at training sites. For each training site, the

cover type is determined. Next, each region (i.e., a set of training sites that have the same

cover type) is characterized in terms of spectral and biophysical parameters including:

mean values for all seven TM bands, mean elevation, gradient and aspect. Summary cli

mate statistics on both a yearly and growing season basis can be derived, but have not been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

used to date in cover type classification.

We can extend the cover type classification process beyond that used in this tradi

tional approach by the following fuzzy set-theoretic method. For each cover type, all

training sites are analyzed and summary statistics are generated for each parameter. Thus

we have a signature for each < cover type, parameter > pair. The signature is used to

derive a fuzzy set membership function. This m x n set of functions (where m equals the

number of cover types, and n equals the number of parameters) is applied to each unclas

sified subregion. The product is an m x /i matrix of possibility values for each unclassified

unit. Conceptually, the matrix represents a set of rules, with one rule for each cover type.

More precisely, each of m rules is a conjunction of n statements (one for each attribute).

If all the statements in a given rule are true (that is, if the possibility value for all attributes

is greater than zero), then the rule has a value greater than zero. We therefore derive the

"truth" value of a rule by taking the minimum of all its component possibility values. At

the end of evaluation, the cover type for a modeling unit, is the type whose rule has the

greatest "truth" value.

Topographic Partitioning

The second approach to generation of landunits suitable for modeling is topograph

ic partitioning. Band, et al., (Band90,92) discuss the theoretical background of this

approach and a widely used algorithm they have developed to perform such partitioning.

The fundamental unit for this work is the drainage basin, which is viewed as a fundamental

topographic concept in geomorphology, hydrology and landscape ecolo gy. Using to

pography as the focus for ecological modeling offers three advantages; 1) the drainage

basin has well-defined internal and external boundaries, 2) topography is more stable than

either vegetation or soils, and 3) a set of unambiguous, mutually exclusive and spatially

exhaustive objects can be defined from a model of topography.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

An object model of the watershed is used in which the watershed is viewed as a partition

of hillslopes and stream networks. "The watershed representation follows a formal geo-

morphic model that defines the consistent ordering and hierarchy of the topographic

objects, enabling higher order processing of drainage basin structure and attribute infor

mation (Band90, p. 787). The drainage basin is seen as a collection of hillslope facets

bounded by the stream and divide links.

A digital elevation model is used as the basic input to the partitioning process.

Topographic information, such as gradient and aspect, is derived from the DEM. Initially,

the area inside the watershed is viewed as a tree, rooted at the outlet point for the

watershed. Each point in the watershed is a node on the tree. Each point has an arbitrary

number of descendants. The number of descendants of point A indicates how many points

are upstream of point A. The points which have no descendants (i.e., the leaves on the

tree), indicate the watershed’s ridgelines. Ridgehnes are both external, marking the bound

ary of the watershed, and internal, marking the divides between catchments. The

watershed is partitioned into hillslopes by pruning the tree. Thus, all points with fewer

than a user-specified number of descendants are eliminated. The remaining points repre

sent a model of the drainage’s stream network. This network is comprised of the remaining

drainage lines and junction points. In graph-theoretic terms, these structures are called

edges or arcs, and vertices or nodes, respectively. The hillslope is defined as the aggregate

of aU points which exist on one side of a drainage hne up to the ridgeline. If the watershed

is to be partitioned at a coarser level, the tree is pruned at higher levels.

This topographic model is characterized as a three-tiered structure (Band90). The

first level contains data overlays with point based data (i.e., elevation, gradient, aspect,

drainage area). Above this level is the extracted stream network, and above this is the basin

structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Re-partitioning Transformations

Partitioning operations (in particular, overlay classification) often produce an over

lay with a very large number of small subregions. A high concentration of smaU units is

commonly called "salt and pepper", or simply "noise". Some of these units may be only

one point in size. This amount of detail may make any further modehng operations very

compute-intensive. It also makes visualization and examination by eye much more

difficult. Additionally, the units may also be too small to have meaning in an application

domain. For example. Gap analysis is meant to serve as a coarse filter to identify areas

above a certain size (typically 100 acres) that are potentially important habitats for native

terrestrial vertebrates (Scott93). Thus, modeling units with size below this level should be

aggregated somehow.

There are two common operations that perform this function. The first is com

monly available in most CIS packages, and involves passing a window, called a filter,

across the overlay. Aronoff (Aronoff89) classifies this operation as a neighborhood

operation. The neighborhood around each point is examined and a function applied. The

return value of the function becomes the value of the point. The name of the filter de

scribes in general terms the nature of the function. For example, the majority filter has

been used on MT-GAP to eliminate "salt and pepper" on classified imagery (Ma93). The

return value from this filter is the class identifier that occurs most often in the

neighborhood. The resulting overlay will have fewer subregions.

A second re-partitioning method merges any subregions below a user specified size

with an appropriate neighboring unit. A modeling unit that is to be merged will be swal

lowed by one of its neighbors, which is selected according to a user specified function for

selecting one of the set of possible neighbors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Deriving Missing Values

Burrough (BurroughSô, pp. 146-147) defines interpolation as the "procedure of

estimating the value of properties at unsampled sites within the area covered by existing

point observations" and extrapolation as the procedure of "estimating the value of a prop

erty at sites outside the area covered by existing observations." We interpolate by finding

a model of variation and applying it to the surface. These models can be of two types. In

the discrete model, we interpolate by drawing boundaries on the surface. We can use ex

ternal landscape features to delineate landscape units, utilize edge-seeking algorithms or

employ Thiessen polygons. All these methods assume that the important variation occurs

at the boundaries defining landscape units. The second kind of interpolation model is con

tinuous and utilizes the gradual change of values. These methods use a model that can be

described by a smooth, mathematically defined surface. They are of two types, global and

local. Global models are constructed from observation at all points and don’t accommo

date local features. Examples are trend surface analysis and Fourier series. Local models

are constructed from neighborhood observations. Examples are splines and moving aver

ages, also known as inverse distance weighting.

An important use of interpolation and extrapolation on MT-GAP and NTSG

projects is as a method for modeling climate. Climate is a continuous phenomenon that is

sampled at irregularly distributed locations. Researchers must often develop a model of

climate for a specific location that has no directly-measured climate data. Climate data has

been utilized by MT-GAP to aid in cover type classification, and is used in RHESSys to

drive ecosystem simulation. Ecosystem modeling requires that this sparsely sampled data

be used to infer climate conditions at many unsampled points. The primary modeling logic

has been developed at the NTSG lab, in a software package called Mountain Microclimate

Simulation Model, or MtClim (Hungerford89). MtClim extrapolates climate data from a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

site where climate data has been measured, called a base met station, to a study site where

climate values are unknown. The extrapolation uses topographic data for the study site

(i.e., elevation, gradient and aspect) and a model of sun-earth geometry to compute inci

dent short-wave radiation. The base station data describes maximum and minimum

temperatures and precipitation on a daily time step for a time period selected by the

modeler. The input data is drawn from the Chmatological Data Summary from NOAA

containing data for National Weather Service (NWS) weather stations from the late 19th

century to the present. MtClim logic produces data describing maximum and minimum

temperatures, dew point, shortwave radiation and precipitation for a study site.

Recent enhancements of MtClim allow NWS data from a number of base stations

within a radius of the study site to be used to improve predictions of the conditions at the

study site. This new logic interpolates from surrounding base stations and produces a vir

tual met station, which occupies the same two-dimensional location as the study site. The

interpolation uses a weighted average method, by determining the radius of the window

and the maximum number of NWS stations to use for interpolation of any one virtual

station. For each virtual station, the n (where n is the maximum number of stations to use

in the weighting) nearest NWS stations within the window are selected and inverse dis

tance weighting is used to generate a weight to apply to each chosen NWS station. If no

stations are found within the window radius, the nearest station at any distance is used. For

each attribute to be interpolated, and for each time step, the appropriate data value is

weighted and a sum performed to derive the data value for the virtual station. MTCLIM is

subsequently used to extrapolate from the virtual station to the study site.

Deriving Missing Variables

Overlays containing values at the numerical measuiement level can be used as op

erands in algebraic operations. An operation can have as operands two overlays or one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

overlay and a scalar value. The result of the algebraic expression is of course another

overlay. We call this kind of operation overlay algebra. We discuss two examples of

overlay algebra in the two following sections.

Soils data is required as input for various ecosystem simulations, including

RH ESSys. Com m only used soil attributes include so il w ater capacity and so il

transmissivity. Soü water capacity measures the quantity of water the soü can retain per

unit of land. Soü transmissivity is soil depth times hydraulic conductivity, i.e., the ca

pacity of water to migrate through soü. Hydrauhc conductivity is typically estimated from

SO Ü texture.

Many ecosystem simulations use an abstraction of actual ground cover to estimate

the density of the vegetation canopy. Remotely sensed spectral reflectance is the data

source typically used for this estimation. Before using the data on these overlays to esti

mate vegetation parameters, the analyst must compensate for two limitations of the

datasets. The level of reflectance detected by the sensor is affected by dust, gases and

aerosols in the atmosphere between the ground and the sensor. A widely-used technique

for dealing with this phenomenon is known as the clear-lake strategy (White92). Certain

objects, such as deep, clear lakes, absorb all incoming radiation. The point on each overlay

with the lowest reflectance value is assumed to be a clear lake that reflects no radiation.

Therefore, any reflectance value at that point is assumed to be a product of atmospheric

effects. Overlay algebra is used to subtract the value at that point from all points on the

overlay. The resulting dataset is taken to be atmosphere corrected. Overlay algebra is also

used to compensate for the effects of sun angle. Satellite scenes are often recorded at a

time when the sun angle is low enough to cast shadows across the landscape. These shad

ows interfere with proper imagery interpretation.

After this corrective work, overlay algebra is performed on three overlays, each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

representing a unique spectral band. The product of this operation is the estimate of land

cover, called the normalized difference vegetation index (NDVI). A regression model is

used to transform NDVI values into values for another abstraction called leaf area index

(LAI) (Nemani92, White92). LAI can be measured on the ground, by dividing the total

leaf surface area in a tree canopy by the ground surface area under the canopy. Ground

measurements can be compared with the estimates from satellite imagery. Thus LAI

serves a critical role for ecosystem modelers who rely on satellite imagery. LAI is mea

sured in two forms: projected LAI estimates the leaf area on one side of a leaf and is used

primarily in broadleaf forests and croplands, while all-sided LAI is used in needleleaf for

ests where the leaves are not flat. However, several transformations must be applied to the

raw imagery in order to generate NDVI. First the data must be adjusted for the spectral

reflectance produced by the atmosphere, called atmospheric radiance. Secondly the data

must be corrected for the effects of sun angle on the image.

EcoModel Assignment

Often during modeling operations, values must be derived for attributes that de

scribe the ecosystem units in an ecosystem model. An overlay describing a particular

attribute on a point by point basis is processed to obtain representative values (e.g., the

mean) for each ecosystem unit. A value is extracted from each point that falls within the

ecosystem unit of interest, and a mean value is calculated. For example, preparation for

execution of the dynamic simulation Forest BGC requires that representative values be

computed for five attributes: elevation, gradient, aspect, available soil water and leaf area

index. A topographic model serves as a template; that is, the model is "laid over" the five

overlays containing values for the above attributes. For each hillslope in the topographic

model, a mean value is computed for each of the five parameters. This procedure is im

plemented in a process called "TopCart".

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

A similar procedure is used to generate an ecosystem model for MT-GAP by per

forming spectral classification of the numerical overlays representing the area of interest.

In order to classify each landunit by cover type and to facilitate further modeling activity,

sets of representative values are derived for topographic, spectral and climate attributes.

The topographic attributes include elevation, gradient and aspect. Average values per land

unit are also generated for each of the seven bands of TM data, as well as a set of summary

statistics developed from climate simulation.

Image Enhancement

Images (or overlays) often need to be modified to facilitate data interpretation.

This process is called image enhancement and is often used for feature extraction. The

techniques used depend on the nature of the data and the objective of analysis. We discuss

the two categories of image enhancement that are used on single-band imagery (in our

model, a single overlay). Our experience is that image enhancement operations are per

formed on overlays containing elevation or reflectance data. However, in theory any

numerical overlay could be the subject of image enhancement operations.

Spectral enhancement deals with values of individual points in the overlay. Spec

tral enhancement is usually used to make certain features stand out by increasing the

contrast in the image. A linear contrast stretch takes an overlay and modifies the values of

individual points to take full advantage of the capacity of the display device. In most raw

overlays, the data values fall within a narrow range. By "stretching" this range to fit that

of the display device, contrast is enhanced. The operation can be described as a linear

function that maps raw data values to enhanced data values. The operation uses the mean,

standard deviation, and other overlay statistics. The range of the raw data is calculated by

taking a distance from the mean measured in units of standard deviation. The minimum

and maximum values are not used, because these measures are not usually representative

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

of the data. In non-linear contrast stretching the function that describes the enhancement

is non-linear. Again, it maps raw data values to enhanced data values. Histogram equal

ization is one kind of non-linear contrast stretch. This operation redistributes point data

values so that there are approximately the same number of pixels with each value within a

range.

Spatial enhancement determines the value of a given point by examining the val

ues of its neighbors. A critical concept here is that of spatial frequency, which describes

the difference between the lowest and highest data values of a neighboring set of points.

An overlay in which all points have the same value has zero spatial frequency. An overlay

in which alternating points have values at the highest and lowest ends of the range of data

values has high spatial frequency. Convolution filtering averages the values of small sets

of points across an overlay, and is used to change the spatial frequency of the overlay. A

convolution kernel is a matrix (generally, a 3 x 3 matrix) of numbers that serve as the

coefficients of a function that computes a weighted average. The kernel is placed on the

overlay, centered on the point for which we wish to compute an enhanced data value. The

return value of the function becomes the enhanced value. An entire overlay can easily be

enhanced by passing the kernel across the surface, centering it on each point in turn. Con

volution kernels which increase spatial frequency are called high-pass kernels and those

which decrease spatial frequency are called low-pass kernels. A special kind of kernel is

zero-sum, in which the existing spatial frequency is exaggerated. Zero-sum kernels are

often called edge detectors because the resulting image often consists only of edges and

zeroes. High-pass kernels serve as edge enhancers in that they highlight the edges between

homogeneous groups of points. Unlike edge detectors they don’t necessarily elimate other

features.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Summary o f Requirements Analysis

Our detailed analysis of the key abstractions and modeling operations used in eco

system modeling provides the foundation for further analysis. Specifically, the entities and

processes identified in requirements analysis wül serve as the key components of a domain

analysis model that is presented in the following chapter and in the appendices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV

DOMAIN ANALYSIS

Introduction

We present here the results of our domain analysis, consisting of three sets of doc

uments: class relationship diagrams, class specifications and object diagrams depicting key

scenarios. These documents are contained in full in Appendices I to m . In this chapter we

discuss key aspects of our analysis, using elements from all three sets of documents.

Class Relationships and Interfaces

We begin with a discussion of class interfaces and relationships. The purpose here

is to characterize the key abstractions in the application domain, and describe the relation

ships between these abstractions. The notation we use is discussed in (Booch89). Each

class name is in boldface and class attribute and operation names are in italics.

Our complete class hierarchy contains 169 classes, making it difficult to show in a

single diagram. To simplify this discussion, we subdivide classes into twelve sets, each

occupying a section of the hierarchy and focusing on a related set of entities. These sets

are root, spatial, ecosystem, ecosystem descriptors, operations, classification, data acqui

sition, descriptors, windows, software, documentation, and humans.

We discuss in this chapter classes and relationships from the groups: spatial enti-

tites, ecosystem entities and modeling operations. We have chosen these groups to discuss

at length because they he at the heart of our domain analysis model. Ecosystem modehng

is fundamentally an activity in which operations are performed upon spatial representa

tions of ecosystems. Thus, if we confine our discussion here to a subset of our hierarchy,

it is sensible to choose those classes and relationships that represent the most significant

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

entities we have discovered.

Spatial Entities

The most significant set of abstractions we have found are those that describe phe

nomena in two-dimensional space. These entities are geometric objects that provide the

foundation upon which ecosystem models are created.

(
/ SPATIAL

ENTITY
MODEL ,

OPERATION /uses
uses/ SPATIAL

MODEL

/ POINT MODEL

(

/ OVERLAY

(/

Figure 1

Figure 1 portrays a key class, spatial model, using as a class symbol an amorphous

shape with dashed borders. Spatial model is a subclass of spatial entity, and the parent

class for two subclasses - point model and overlay. The parent-subclass relationship is

represented by a solid arrow from the child to the parent class.

Spatial model is also involved in a "using" relationship with class model opera

tion, which is indicated by a double line from "using" to "used" class with a hollow circle

adjacent to the "using" end. This notation indicates that the "used" class is referenced in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

the interface of the "using" class - either as a formal parameter to an operation or as a data

field. In the case where two classes use each other, we have hollow circles on both ends of

the line,

class

name
parent
attributes
spatial scale
geographic coordinate system
projection
consuming operation
producing operation

operations
Get spatial scale (void)
Set spatial scale (String)
Return projection (void)

Spatial Model
Spatial Entity

String
String
Projection System
Spatial Model Consumer
Model Operation

return String
return void
return Projection System

end class
Figure 2

The interface of class spatial model is shown in Figure 2. The class definition

contains class name, parent class, attributes and operations. Spatial model has five

attributes. Attributes are indicated by attribute name, followed by the type of the attribute.

In cases where the attribute is an object of a class (i.e., rather than a simple data type), the

type name will be the name of the class. In this case, the attributes of spatial model refer

to two classes that describe processing operations discussed in requirements analysis, and

these references provide the history of a particular object by providing a trace of the se

quence of processing steps used to create it.

We have followed the advice of White (White93) in providing operations for our

classes. We have modeled standard store and retrieve methods for all attributes that are

simple data values (e.g. types Number, String) as operations. Names in parentheses are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

formal paremeters for an operation and indicate the type of arguments required by the

operation. The word "return" in the specification is followed by the type of the value re

turned by the operation. The word void means that we require as an argument, or return

from an operation, no value.

class
name
parent
attributes
number points
area
perimeter

operations

Spatial Entity
Entity

Number
Number
Number

end class
Figure 3

The definition of spatial entity, the parent class of spatial model, is shown in

Figure 3. Spatial entity has attributes that describe the number of points contained in the

entity, its area and perimeter. Based on the parent/subclass relation, these attributes and

operations defined for spatial entity are inherited by all subclasses of spatial entity.

(
/ SPATIAL

MODEL /

I
r <

/ OVERLAY /

uses

/ POINT MODEL

uses

V
/ MODEL p o in t '

/

Figure 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Our concept of spatial model is refined in Figure 4. The subclasses overlay and

point model of spatial model are shown here, along with a "using" relationship between

point model and model point.

class
name
parent
attributes

model point
number overlays
overlay

operations
Iterate ovct points (void)
Sample points (void)

end class

Point Model
Spatial Model

SET < Model Point >
Number
SET < Overlay >

return Model Point
return Model Point

Figure 5

Figure 5 shows the specification for point model The bracket notation used in the

type designation for attribute model point indicates that the value will be a set of objects

of the class or type named inside the brackets. This notation is used in cases where more

than one object of a "used" class can exist in a class interface.

class
name
parent
attributes
number of regions
number of subregions
number of points
data name
containing model
consuming operation

operations

Overlay
Point Model

Number
Number
Number
Model Attribute

Point Model
Overlay Consumer

end class
Figure 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Figure 6 contains the specification for overlay. The first three attributes indicate

the number of overlay substructures that are contained in a particular overlay. The at

tribute, containing model, allows access to the point model that contains the overlay, and

therefore to the other overlay objects in the model. Data name labels the data in the

overlay.

/ OVERLAY

/ NUMERICAL
OVERLAY

/ CATEGORICAL ,
OVERLAY /

/ MODEL
ATTRIBUTE /

\

Figure 7

Figure 7 shows two subclasses of overlay, numerical overlay and categorical

overlay, along with a using relationships between model attribute and overlay. Model

attribute labels the overlay with the name of the data attribute it represents. Objects of

numerical overlay hold data at the numerical measurement level, while categorical over

lay objects hold values that are class identifiers. We distinguish between these two

subclasses of overlay because of differences in the set of operations that are meaningful in

the two cases. That is, numerical overlays can be used in overlay algebra, while such

operations performed on categorical data are meaningless. Categorical overlay objects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

are also involved in relationships, discussed later, in which numerical overlay instances

cannot take part.

It would be possible to create a subclass of numerical overlay or categorical

overlay for each kind of data that these structures can hold, i.e., subclasses for elevation,

gradient and aspect. However, we believe that the differences between overlays holding

these three kinds of data do not require the creation of a separate class for each. The

behaviors which are semantically meaningful are determined by the measurement level of

the data. We view these three overlays as objects of class numerical overlay. Thus, we

believe that subclasses numerical overlay and categorical overlay are adequate.

class
name Categorical Overlay
parent Overlay
attributes
regions SET < Categorical Region >
subregions SET < Categorical SubRegion >
points SET < Categorical Point >
consuming operation Categorical Consumer
eco model Ecosystem Model

operations
Iterate over points (void) return Categorical Point
Iterate over subregions (void) return Categorical Subregion
Iterate over regions (void) return Categorical Region
Sample points (void) return Categorical Point

end class
Figure 8

The interface of categorical overlay is depicted in Figure 8. The attribute eco

model is a reference to a higher level model which is built upon the categorical overlay.

Categorical overlays are the product of a partitioning operation, and are often used as the

basis upon which higher level modeling structure is built. We have called these higher

level models, ecosystem models, and will discuss them later in this chapter. The operation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

iterate is provided for all three sets of overlay components represented by the attributes

regions, subregions and points. The interface for numerical overlay is not shown here. It

differs from categorical overlay in two ways. First, references to categorical point, cat

egorical subregion and categorical region are replaced by numerical point, numerical

subregion and num erical region. Second, a set of algebraic operations (e.g., add, sub

tract, multiply and divide) are permitted on numerical overlay and its components.

V
/ c a t e g o r ic a l ' ^

(OVERLAY /

use:

uses

uses

c a t e g o r ic a l
REGION

uses.

/ CATEGORICAL
POINT

, uses - >
SPATIAL
REGION

/ SPATIAL ^
^ SUBREGION /

'N \

Figure 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

class
name
parent
attributes
subregions

operations
Iterate over subregions (void)

end class

Categorical Region
Spatial Region

SET < Categorical Subregion >

return Categorical Subregion

Figure 10

class
name
parent
attributes
points
containing region
neighbors

operations
Iterate over points

end class

Categorical Subregion
Spatial Subregion

Categorical Point
Categorical Region
SET < Categorical Subregion >

return Categorical Point

Figure 11

Figure 9 depicts the using and parent/subclass relationships of the overlay abstrac

tion, as proposed in our requirements analysis. Class categorical region, shown in Figure

10, is a subclass of spatial region. Categorical subregion, shown in Figure 11, is a

subclass of spatial subregion. Objects of categorical subregion are the spatially contig

uous areas that comprise the "polygon mesh" on the overlay surface. An attribute,

containing region, refers to the categorical region in which the categorical subregion is

contained. This reference to the spatially enclosing objects can be used to move from

subregion to region, and query attributes of the region, or to visit other subregions that are

part of the same region.

Point objects, which have no area and perimeter, are not subclasses of spatial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

entity. Point objects form a separate class hierarchy descended from class nam ed entity.

We do not show the interfaces for the ancestors of categorical point here because the

semantics of this set of objects is much simpler than the other classes we have discussed.

Instead, we summarize the attributes inherited from ancestors. Categorical point inherits

two objects of class coordinate - a geographic coordinate and a spatial coordinate - and a

numerical value indicating spatial resolution. The specification for categorical point is

shown in Figure 12.

class
name Categorical Point
parent Data Point
attributes
data Number
containing subregion Categorical Subregion

operations

end class
Figure 12

Data contained by an overlay is actually held by the point objects comprising the

overlay. The reference to the enclosing categorical subregion serves the same function

as the pointer to region does in the interface of categorical subregion.

Ecosystem Entities

Ecosystem entities are used to build the higher level structures often used in eco

system modeling. Whereas the spatial entities described above are essentially geometric

objects, the ecosystem entities have a richer semantics reflecting the information scientists

obtain about the real world.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

(
V

/ ECOSYSTEM
ENTITY

. uses

P =

^ V
/ e c o s y s t e m ' ^ .

(DESCRIPTOR /

\

I ^ ^

c
— V

/ ECOSYSTEM
MODEL

/CATEGORICAL
OVERLAY /

Figure 13

class
name
parent
attributes
descriptor

operations

Ecosystem Entity
Documented Entity

Ecosystem Descriptor

end class
Figure 14

class
name
parent
attributes

foundation
consuming operation

operations
Return foundation

Ecosystem Model
Ecosystem Entity

Categorical Overlay
Ecosystem Model Consumer

return Categorical Overlay

end class
Figure 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

Figure 13 depicts ecosystem model, its parent ecosystem entity and ecosystem

descriptor, along with a using relationship from ecosystem model to categorical overlay.

Figure 14 contains the specification for ecosystem entity. An object of class ecosystem

descriptor can be attached to any ecosystem entity in order to provide information on

topography, vegetation, climate and other aspects of the entity. The interface of ecosystem

model is shown in Figure 15. We do not model attributes describing geometric properties

for this class because this information is already available on the corresponding categori

cal overlay. The operation Return foundation, in the interface for ecosystem model,

allows access to the categorical overlay upon which the ecosystem model is based.

V
/ ECOSYSTEM

 ̂ MODEL /

/ TOPO MODEL

/ W A T E R S H E D

- V
REGIONAL

/ MODEL /
\

1

'V
/ COVER TYPE ^

MODEL /

. - V
/ SOIL MODEL

/

Figure 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

class
name
parent
attributes

number watersheds
watersheds

operations

Topographic Model
Ecosystem Model

Number
SET < Watershed >

end class
Figure 17

class
name
parent
attributes

number regions
operations

Regional Model
Ecosystem Model

Number

end class
Figure 18

class
name
parent
attributes
number points
area
perimeter
number subregions

Ecosystem Region
Ecosystem Entity

Number
Number
Number
Number

operations

end class
Figure 19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

class
name
parent
attributes

regions
subregions
consuming operation
class scheme

operations

Cover Type Model
Regional Model

SET < Cover Type Region >
SET < Cover Type Sub region >
Cover Type Model Consumer
Cover Class Scheme

end class
Figure 20

(
/ COVER TYPE

MODEL /

/ REGIONAL
M O D E L /

\

^ v c /
/ COVER TYPE

^ SUBREGION /

u s e s

r
\

V.
COVER TYPE

REGION / / ECOSYSTEM
REGION /

\

/ ECOSYSTEM
SUBREGION /

\

Figure 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

Figure 16 portrays the class hierarchy descended from ecosystem model. A to

pographic model doesn’t have region/subregion structure; instead it may consist of one or

more watersheds as illustrated in the specification in Figure 17. Figure 18 presents the

interface of regional model, which does have the region/subregion structure. The inter

face of ecosystem region is shown in Figure 19. Generally, we do not provide attributes

to describe the geometric properties of ecosystem entity and its subclasses because the

geometry of these entities can be obtained from the components of the categorical overlay

on which the model is built. However, the number, size and shape of regions on an eco

system model will almost never be the same as on the corresponding categorical overlay.

For example, a partitioning operation (e.g., spectral classification) will examine all points

on a set of numerical overlays and create a categorical overlay where each point has a

class identifier. Our categorical overlay can be described as a "polygon mesh" of cate

gorical subregions, each occupying a spatially contiguous area. A second partitioning

operation (e.g., cover type classification) will examine each categorical subregion and

classifty it into a cover type class. It is extremely unlikely that all categorical subregions

that fall in the same spectral class, will also fall in the same cover type class. Therefore,

we provide attributes number points, area, perimeter and number subregions in the inter

face o f ecosystem region to reflect our understanding of the difference in region

"structure" between categorical overlays and ecosystem models. Figure 20 shows the

interface of a subclass of regional model, cover type model, which characterizes land in

terms of vegetative cover type. The attribute class scheme is a reference to an object of

class cover class scheme, which is used to classify the model into cover type regions.

Figure 21 illustrates the parent/subclass and using relationships of cover type model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

class
name
parent
attributes

subregions
describing class

operations

Cover Type Region
Ecosystem Region

SET < Cover Type Subregion >
Cover Type Class

end class
Figure 22

The interface for cover type region is presented in Figure 22. The attribute de

scribing class refers to the specific cover type class that describes this region. A cover

type class referenced by an object of cover type region must be contained in the cover

class scheme to which the cover type model refers. The attribute subregions is the set of

cover type subregions which comprise cover type region,

class
name
parent
attributes
foundation
viitual climate station

operations

Ecosystem Landunit
Ecossytem Entity

Categorical Subregion
Virtual Met Station

end class
Figure 23

class
name
parent
attributes

containing region
operations

Cover Type Subregion
Ecosystem Landunit

Cover Type Region

end class

Figure 24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

The classes describing the spatially contiguous portions of an ecosystem model are

subclasses of ecosystem landunit, whose specification is shown in Figure 23. The at

tribute foundation indicates a mapping of the cover type subregion from corresponding

unit on the categorical overlay. Virtual climate station is the product of interpolation of

climate data in MtClim, discussed in requirements analysis. As illustrated in Figure 24,

class cover type subregion adds to the properties inheritied from ecosystem landunit, the

attribute containing region.

Operations

The modeling and analysis operations discussed in requirements analysis define the

characteristics of a set of objects. In an object-oriented methodology, operations are seen

as properties of individual classes, and not usually as objects in their own right. We do

model some operations in class interfaces, but have found that these operations tend to be

limited in scope. Significant operations have a larger and more complex logic that prevents

them from being modeled on individual classes. Booch (Booch89) uses the term mecha

nism to describe a set of object behaviors that together achieve a more complex task than

any one object could in isolation. We provide diagrams depicting several of these mecha

nism s la te r in this chapter. F irst we present class diagram s for several m odeling

operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

(
■ — V

/ OPERATION /

(
/ NUMERICAL

CONSUMER

c
/ MODEL

OPERATION /
\

I

c
/ CLUSTER ,

ANALYSIS /

\

c
/ SPECTRAL .

CLASSIFY /

\

Figure 25

class
name
parent
attributes
date
time

operations
Perform (void)

end class

Operation
Documented Entity

Date
Time

Return void

Figure 26

class
name
parent
attributes
performer
command used

operations

Model Operation
Operation

Analyst
Command

end class
Figure 27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

class
name
parent
attributes

output bank
output scheme

operations

Cluster Analysis
Numerical Consumer

Spectral Bank
Spectral Scheme

end class
Figure 28

class
name
parent
attributes
input scheme
input bank
output overlay

operations

Spectral Classification
Numerical Consumer

Spectral Scheme
Spectral Bank
Categorical Overlay

end class
Figure 29

Figure 25 shows a portion of the hierarchy containing classes representing

operations. Classes operation and model operation have simple interfaces as shown in

Figures 26 and 27. The behavior perform in the interface of operation initiates execution;

attributes date and time record the date and time of execution. Model operation contains

the attribute performer to indicate which analyst carries out the operation; command used

records the software command utilized. The interfaces of two subclasses of model oper

ation, cluster analysis and spectral classification, are presented in Figure 28 and 29.

Both cluster analysis and spectral classification are children of class numerical con

sumer (i.e., they take numerical overlays as input). Cluster analysis (Figure 28) con

tains references to two objects produced during execution; spectral bank is a class of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

objects used in the spectral classiAcation algorithm described in requirements analysis,

and spectral scheme is a subclass of class scheme. Spectral classification (Figure 29)

uses the spectral scheme and the spectral bank generated in cluster analysis and the

input numerical overlay to produce a categorical overlay partitioned by spectral class.

Object Scenario Diagrams

It is with the illustration of scenarios that the analysis model comes to life for those

who work in the application domain. Scenarios demonstrate how the activités performed

by analysts are carried out by showing how objects work together to perform more com

plex behavior than they could in isolation. These collaborative arrangements are called

mechanisms in (Booch89). Twenty three scenarioshave been identified from the material

discussed in requirements analysis (Table 1). Nineteen have been successfully constructed

and are depicted in full in Appendix m . The four scenarios which were not successfully

constructed have a higher level logic than the scenarios for which construction was

successful. The scenarios which were not constructed are discussed in Chapter 5. In this

chapter we illustrate and discuss two scenarios that have been constructed.. We place ob

ject names in double quotes and use single underlining to highlight operation names.

Figure 30 is the object diagram depicting cluster analysis. Objects are indicated by

amorphous shapes with solid borders, with the object name inside the shape. Solid lines

between objects indicate that one object uses another. In other words, the object "a Cluster

Analysis" uses object "a Numerical Point - tm3". The message Get value triggers an op

eration that is part of the interface of the class being called. Thus the interface of class

numerical point must contain an operation called Get value. The passing of this message

will cause "a Numerical Point - tm3" to carry out that operation and return a value.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

SCENARIO LIST

Scenario Name Constructed

Registration Yes
Resample Yes
Projection Transformation No

Convolution Yes
Contrast Stretch Yes
Overlay Algebra Yes

Interpolation Yes
MtClim No

Merge Yes

Majority Filter Yes

EcoModel Assignment Yes

Cluster Analysis Yes

Spectral Classification Yes

Cover Training - traditional Yes

Cover Training - fuzzy Yes

Cover Classification - traditional Yes

Cover Classification - fuzzy Yes

Topographic Partitioning No

Forest BGC No

Elevation Data Acquisition Yes

Spectral Data Acquisition Yes

Climate Data Acquisition Yes

Field Data Acquisition Yes

Table 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

an Analyst
a S p e c t r a l C l a s s

S c h e m ea C o m m a n d

a S p e c t r a l C l a s s
1 . E x e c u te

3 . C r e a t e /
1 7 . S e t s p e c t r a l c l a s s 1 5 . C r e a te

1. P e r f o r m

a P o in t M o d e l
4 . S a m p le p o in ts

a C l u s t e r
A n a ly s i s

a N u m e r ic a l
O v e r la y - tm S

I. G e t p o in t

6 . G e t p o in t

a N u m e r ic a l
O v e r la y - tm 4

7 . G e t p o in t

a N u m e r ic a l
O v e r la y - tm S1 2 . I s m a tc h

1 3 . C r e a t e \ \
1 6 . S e t s p e c t r a l c l a s s

1 0 . G e t v a lu e X ^

8 . G e t v a lu e

9 . G e t v a lu e
a N u m e r ic a l
P o in t - tm S

a N u m e r ic a l
P o in t — tm S

B r ig h tn e s s
G ro u p

a N u m e r ic a l
P o in t - tm 4

1 1 . I te r a te o v e r b r ig h tn e s s
g r o u p s

1 4 . S e t b r ig h tn e s s g ro u p

a S p e c t r a l B a n k

Figure 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

a n A n a ly s t
a C o m m a n d

1 . E x e c u te a P o in t M o d e l

I. P e r fo rm 3 . I te ra te o v e r p o in t:

a S p e c t r a l
C la s s i f i c a t io n a N u m e r ic a l

O v e r l a y -* tm 3-4. G e t po in t

5 . G e t p o in t
a N u m e r ic a l

O v e r l a y — tm 4

6 . G e t p o in t

■ a N u m e r ic a l
O v e r la y — tm S

7 . G e t v a lu e

1 4 . S e t v a lu e
8 . G e t v a lu e

S I . I s m a tc h

9 . G e t v a lu e a N u m e r ic a l
P o in t -- tm 3

10. Iterate o v e r brightness
g r o u p s

1 2 . C r e a t e
1 3 . G e t p o in t

a Brightness
G r o u p a N u m e ric a l

P o in t " tm 4
a C a te g o r i c a l

P m n t a S p e c t r a l B a n k

a N u m e ric a l
P o in t — tm S

a C a te g o r ic a l
O v e r la y

Figure 31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

All scenarios begin with object "an Analyst" passing the message Execute to "a Com

mand", which in turn passes the message Perform to an object representing the modeling

operation depicted in the scenario. "A Cluster analysis" passes message Create to "a Spec

tral Class Scheme" and the message Sample points to "a Point Model". The message Get

point is passed to each of the three numerical overlays being sampled. Get value is sent

to each o f the numerical points being sampled. The message Iterate over brightness

groups is passed to "a Spectral Bank". The values of each sampled point are passed to "a

Brightness Group" with the message Is match, which returns a value indicating whether the

newly sampled point represents the same class as "a Brightness Group". If the point rep

resents a new brightness group, then an object of class brightness group is created, and

the reference to this brightness group is set in "a Spectral Bank". Finally, "a Spectral

Class" is created and linked to the newly created "a Brightness Group". This process

continues through all sample points.

The object "a cluster analysis" is the executive (i.e., the controlhng entity) in this

mechanism since it controls the sequence of messages and makes decisions based on val

ues returned from other objects. The object representing an operation will serve as the

executive in all of our scenarios.

In Figure 31, the scenario for spectral classification is shown. "A spectral classi

fication" passes message Iterate over points to "a Point Model". The messages Get point

and Get value are used to obtain the values for the numerical overlays being used in the

classification. For each point, the message Iterate over brightness groups is sent to "a

Spectral Bank", The message Is match, sent to each brightness group, until a match is

found. An object of class categorical overlay is created, a reference to the appropriate

categorical point is obtained, and the message Set value assigns the appropriate class

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

identifier to the point.

Summary o f Domain Analysis

The appendices to this document contain the complete results of domain analysis:

a set of class/relationship diagrams (Appendix I), a set of formal class specifications (Ap

pendix n) and a set of object scenarios (Appendix III).

Although this chapter focuses on three groups of classes — spatial entities, ecosys

tem entities and operations — there are many significant entities in those groups that are not

described. For example, a set of relationships and operations are defined to give a point or

subregion access to its neighbors in "modeling space". Additionally, many of the classes

describing operations are not described here. However, a great deal of similarity among

these classes leads us to conclude that depicting the interfaces of a few key classes in the

operation portion of the hierarchy is adequate for the overview provided in this chapter. A

significant class group that we do not discuss deals with classification entities. This class

group includes the components of class schemes, the parent/subclass hierarchy depicting

different kinds of class (e.g., cover type class, soil class), and the many entities used in the

classification operations described in requirements analysis. Although this class group is

important, many of its members are discussed in our treatment of spatial and ecosystem

entities and model operations. Additional class groups include ecosystem descriptor enti

ties, data acquisition entities, and window and descriptor entities. The remaining class

groups - software, documentation and humans - are less central to this discussion. They

represent the human actors that carry out modeling operations, the tools that make those

operations possible, and the knowledge used in support of, and obtained during, modeling

activities. However, the classes and relationships describing spatial and ecosystem enti

ties, m odeling operations and classification entities provide the core of significant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

abstraction in this domain.

The object scenario diagrams (Appendix HI) show how the classes defined in this

analysis wül actually be used in performing the key processing operations used by eco

system modelers. This is where the "action" is, in understanding how an object-oriented

approach to modeling can contribute to our knowledge of a specific application domain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V

HYPOTHESIS EVALUATION

We have constructed scenarios depicting most of the processes discussed in our

requirements analysis. These scenarios show how modeling processes can be carried out

given the structure revealed in our class hierarchy. During scenario construction, we found

that two actions were necessary with respect to the hierarchy — we had to modify the

interface of class by adding attributes and operations, and less often, we created a new

class.

The only scenarios not completed — for the extrapolation of climate data performed

by MtClim, the simulation of ecosystem processes by Forest BGC, projection transforma

tion and topographic partitioning — are for processes for which the available literature

discusses the internal logic in adequate detail. In the interest of providing a concise char

acterization of the domain, we did not incorporate this knowledge into our requirements

analysis. In general, the classes depicted in the domain analysis model, with the exception

of classes representing key modeling activities, are "primitive" in nature. That is, the logic

of their behavior is at a fairly simple level. Many of the modeling activities for which

scenarios have been successfully constructed have a higher level logic than these "primi

tive" classes. However, in these cases, the "logic gap" between the modeling activity and

the classes used in the activity is not great (e.g. Merge). However, the modeling activities

captured in Mtchm, Forest BGC and topographic partitioning exhibit a logic that is con

siderably higher than that of the classes used in these activities. This greater "logic gap"

prevented scenario construction in these cases.

We believe that many of the scenario construction problems associated with Mt-

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

clim and topographic partitioning can be handled by decomposing these high-level opera

tions into procedural components. MtClim (Hungerford89) is composed of four sub

processes which compute solar radiation, temperature, humidity and precipitation. Each of

these sub-processes can be modeled as component operations of class mtclim. Topo

graphic partitioning consists of three major sub-processes. The first defines the drainage

by recursively examing points in the watershed to determine, for each point, the number

of upstream points. Secondly, the stream network must be delineated, and thirdly the

watershed must be partitioned into hillslopes. Each of these sub-processes can be repre

sented as a component of class topo partition.

Forest BGC is a complex operation that computes flows of carbon, nitrogen and

water through forest ecosystems. The procedural decomposition discussed above for Mt-

Clim and topographic partitioning may not be appropriate in this case. Instead, a deeper

examination of the logic of this modeling activity may be needed before a productive ap

proach can be found. In particular, the treatment of the compartments, state variables, state

equations and flows comprising Forest BGC may yield an object-oriented model that can

be applied to a wide range of process models.

We conclude that our ability to define scenarios for most processes, without radi

cally changing our existing hierarchy, indicates that our domain model is capable of

supporting the necessary modeling activities, and is resilient enough to absorb many

changes. The fact that not all necessary scenarios are constructed here is not a failure of

our modeling methodology or of the concept of domain analysis. Rather it reflects that

even more detailed evaluation of some parts of the application domain may be necessajy

for the more detailed requirements analysis needed in the development of a particular

application. We believe our success in scenario construction where our requirements

analysis provides adequate information constitutes proof of our hypothesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VI

CONCLUSIONS

In keeping with the principles of the spiral model of design (BoehmSS), this work

is essentially our "first draft" in the attempt to provide a comprehensive view of ecosystem

modeling and will no doubt be challenged, revised, and extended in future work. It has

been suggested that the hierarchy be extended so that num erical and categorical overlay

subclasses are defined on the basis of data content (e.g., class elevation overlay, aspect

overlay). Currently, an overlay containing elevation data is an object of class num erical

overlay. This extension would provide a much richer set of class names that reflect more

closely the terminology used by workers in this apphcation domain. We believe that our

handling of modeling processes is a useful approach, but we are aware that additional work

is needed, especially in cases where a significant level of human judgement is involved

(e.g., supervised training). Additionally, a deeper examination of ecosystem process mod

eling is needed to adequately handle the needs of process modelers.

The work presented here provides a graphical and textual model of the domain of

ecosystem modeling. This depiction of the modeling entities used by ecosystem modelers

will serve as the foundation of the information design for the Ecosystem Information Sys

tem (EIS) and will help them to better manage the models, software, modeling activities,

and other tools used in their daily work. We hope that this work will help modelers

working in this application domain to increase their productivity and facilitate the advance

of their discipline.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX I
CLASS AND RELATIONSHIP DIAGRAMS

TABLE OF CONTENTS

ass OrouD Name page number
la . Root Entities 68
lb . Spatial Entities 69
Ic. Ecosystem Entities 75
Id. Ecosystem Descriptor Entities 80
le. Operation Entities 81
If. Classification Entities 90
Ig. Data Acquisition Entities 93
Ih. Descriptor Entities 95
li. Window Entities 96
Ij. Software Entities 97
Ik. Document Entities 99
11. Human & Group Entities 100

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

/
c

E N T IT Y /

C
N A M E D
E N T IT Y

/ D O C U M E N T E D .
/ E N T IT Y /

I

/ D O C U M E N T

<
/

u s e s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

C

V
/ S P A T IA L

E N T IT Y /

V
P O IN T /

(
V

/ S P A T IA L
P O IN T S E T /

\

C
/ S P A T IA L

M O D E L / O V E R L A Y
S U B R E G IO N/ O V E R L A Y

R E G IO N
/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

/ P R O J E C T I O N
^ p a r e m e t e r s /

I

/ O P E R A T IO N

u s e s

7 S P A T IA L
D E S C R I P T O R /

\

/ P R O J E C T I O N <1
^ S Y S T E M é = = = ^

\

7 S P A T IA L
M O D E L

(

O V E R L A Y

u s e s

/ P O IN T M O D E L

7 N U M E R IC A L
O V E R L A Y

7 C A T E G O R IC A L
O V E R L A Y

u s e s

M O D E L P O IN T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

(
/ U S E R C L A S S /

\

(

i s e s

C A T E G O R IC A L
R E G IO N

USM
/ C A T E G O R IC A L

O V E R L A Y

u s e s
u s e suse!

— V
/ c a t e g o r i c a l ' ^ .

S U B R E G IO N /

u s e !

u s e !

u s e :

/ C A T E G O R IC A L " ^
A T T R IB U T E /

C A T E G O R IC A L
P O IN T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

u s e s
/ N U M E R IC A L

^ O V E R L A Y

u s e s

u s e s ,

u s e s
u ses

u ses

uses

/ NUMERICAL
A T T R IB U T E

n u m e r ic a l
P O IN T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

C

V
/ O V E R L A Y

R E G IO N /

^ ■ \

^ V
/ N U M E R IC A L

R E G IO N(/ N U M E R IC A L .
S U B R E G IO N /

u s e s (n e ig h b o r)

/ N U M E R IC A L
S U B R E G I O N /

/ c a t e g o r i c a l ' ^ .
/ S U B R E G IO N /

^ \

u s e s (n e ig h b o r)

/ c a t e g o r i c a l " ^ .
/ S U B R E G IO N /

^ \
l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

(
/ P O IN T

/ m o d e l P O IN T

(

u s e s (n e ig h b o r)

/ m o d e l p o i n t ' ^

/ D A T A P O IN T

/ c o o r d i n a t e '
/

\

V

(
/ n u m e r i c a l

p o i n t /

-s \

' _ ^ 7 "
u s e s (n e ig h b o r)

(
/ n u m e r ic^

P O IN T /

I

/ c a t e g o r i c a l ' ^
/ p o i n t /

I %
u s e s (n e ig h b o r)

/ C A T E G O R I C A L ^
/ P O IN T /

-s \
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

(

u s e s
/ E C O S Y S T E M

E N T JT Y ^

V
/ E C O M O D E L

s t r e a m
e n t i t y/ E C O S Y S T E M

lANDUNIT /

^ V
/ E C O S Y S T E M

REGION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

(
/ E C O M O D E L

C
/ O P E R A T IO N

/

V
/ C A T E G O R IC A L " ^

O V E R L A Y /

/ R E G IO N A L
M O D E L/ T O P O M O D E L

/ S O IL M O D E L

C O V E R
M O D E L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

V.
/ C O V E R

^ MODEL /

u ses

V
/ COVER

S C H E M E /

u s e s

/ COVER
- O ^ V

/ C O V E R
REGION

u se s

/ C O V E R

V
/ SOIL Mo d e l ,

C causes- —
1

V
S U B R E G I O N /

(

i s e s

uses

SOIL ,
SUBREGION /

/
I

u s e s .

SOIL scheme'
/

■X

V - v
^ SOIL CLASS

(/

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

C
V

/ E C O S Y S T E M
R E G IO N /

-s \

/ C A T E G O R I C A L ^
^ S U B R E G I O N /

l

u s e s

C
/ C O V E R

R E G IO N

/ E C O S Y S T E M
^ L A N D U N IT

l

/ S O IL R E G IO N

/ S T R E A M
E N T IT Y

V
/ V IR T U A L M E T

S T A T IO N /

l

/ H IL L S L O P E /

/ S O IL
S U B R E G I O N /

\

/ C O V E R \
S U B R E G IO N /

l

/ E C O S Y S T E M
\ ^ P O IN T

\

/ C A T E G O R I C A L ^ ,
P O IN T /

\

V
/ O U T L E T

P O IN T /

\

C
/ S T R E A M L I N K ~ ^ / h Æ ^ O R K / (J U N C ^ O N /

\
l

\ l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

(
/ T O P O m o d e l '

/
\

c

— ^ ^ V
/ C A T C H M E N T

u s e s

u s e s

/ W A T E R S H E D u s e s

i s e s

u s e s / H IL L S L O P E

/ S T R E A M ^
N E T W O R K /

u s e s .

S T R E A M LIN Ku s e s

u s e s
O U T L E T

P O IN T

. u s e s

/

(
/ S T R E A M

J U N C T IO N /

\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

V
/ E C O S Y S T E M

d e s c r i p t o r /

/ E C O S Y S T E M
E N T IT Y

/ T M S P E C T R A L * ^ .
D E S C R I P T O R /

/ C L IM A T E
^ d e s c r i p t o r /

/ V E G ^
D E S C R I P T O R /

/ S O IL
^ D E S C R I P T O R /

\

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

(

^ V
/ O P E R A T IO N / (

/ A N A L Y S T
/
\ C

/ C O M M A N D
/

(

u s e s

u s e s

M O D E L
O P E R A T IO N /

/ C L IM A T E
A C Q U IS IT IO N // E L E V A T IO N

A C Q U IS IT IO N /

F IE L D
A C Q U IS IT IO N /

/ S P E C T R A L
A C Q U IS IT IO N /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

V
/ M O D E L ^

/ O P E R A T I O N /

■X \

^ V
N U M S E R I E S
C O N S U M E R /

E C O S E R I E S
C O N S U M E R /

/ S P A T IA L ^
^ C O N S U M E R / ~ V

S O IL
C O N S U M E R /

/ O V E R L A Y
C O N S U M E R /

C O V E R
C O N S U M E R /

-L, V
/ C A T E G O R I C A L '^

C O N S U M E R /

/ N U M E R IC A LN U M E R IC A L ,
C O N S U M E R /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

V.
/ S P A T IA L

C O N S U M E R
u s e s / S P A T IA L

m o d e l /

(

V
S P A T IA L P R D/ S P A T IA L P R D

^ C O N S U M E R /C O N S U M E R

/ R E S A M P L E
W IN D O W

u s e s
/ P R O J E C T I O N

/ T R A N S F O R M /

/ r e s m a p l e

u s e s

/ P R O J E C T I O N
/ P A R A M E T E R S /

\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

/ O V E R L A Y
/ C O N S U M E R /

?

u s e s /
' — V

O V E R L A Y /

(

/ E C O M O D E L
A S S IG N

/ R E G I S T E R u s e s

u s e s

/ E C O M O D E L
/ G C P S E T /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

/ c a t e g o r i c a l ' ^
^ C O N S U M E R /

\

u s e s

/ R E P A R T I T I O N '^

(
/ M E R G E

/C A T E G O R I C A L .
O V E R L A Y /

\

c
/ S C A N

W IN D O W /

A

/ S IM IL A R IT Y
M A T R IX u s e s

/ W IN D O W
R E P A R T IT IO N /u s e s

/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

n u m e r i c a l
O V E R L A Y /

/ N U M E R IC A L
C O N S U M E R

/ N U M P R O D
C O N S U M E R /

/ S P E C T R A L
C L A S S IF Y

u s e s

CLUSTER ,
A N A L Y S IS / T O P O

P A R T IT IO N /u s e s

uses
u s e s

u s e s

/ S P E C T R A L
S C H E M E

V— ^

/ S P E C T R A L
b a n k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

C
/ N U M P R O D

C O N S U M E R /

I

C O N V O L V E

uses

/ O V E R L A Y
A L G E B R A / A V E R A G E

W IN D O W
/ G E N E R IC

^ N U M E R IC A L /

/ IN T E R P O L A T E
uses

/ IN T E R P O L A T E
W IN D O W

/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

(

u s e s
C O V E R

C O N S U M E R
C O V E R
M O D E L

u s e s .

C O V E R
S C H E M E

C O V E R
T R A IN IN G

/

/
C

C O V E R
C L A S S IF Y /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

C
/ e c o s e r i e s

C O N S U M E R /
9=

u s e s /
=c

- — ^ V .
E C O T IM E

S E R I E S /

/ F O R E S T B G C

C
/

y N U M S E R I E S .
^ C O N S U M E R

\

u s e s

<
/ N U M E R IC A L

S E R I E S y

M T C L IM y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

/ S P E C T R A L
^ G R O U P /

/ S P E C T R A L
S P A C E

u s e s

/ S P E C T R A L
B A N K

C O L O R
G R O U P(

u s e s

u s e :

/ S P E C T R A L
C L A S S

B R IG H T N E S S
G R O U Pu s e s

u s e s

/ N U M E R IC A L
P O IN T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

/ S C H E M E u s e s
^ C O M P O N E N T

/ C L A S S
^ S C H E M E /

^ I

u s e s
C L A S S

u s e s

' — — V

/ S P E C /A L IZ A T I
O N

^ R O O T C L A S S

(
/ U S E R C L A S S

u s e s

y
u s e s x u s e :

/ M E M B E R S H IP
^ F U N C T IO N /

I I

' V
S IG N A T U R E

^ t r a i n i n g
(s i t e /

\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

/ S O I L R E G IO N / SOIL
(MODEL

/ U S E R C L A S S
C L A S S

S C H E M Eu s e s

u s e s '— —O'^ V.
/ S O IL S C H E M E

u s e s

/ S O IL C L A S S

/ S P E C T R A L
C L A S S

/ S P E C T R A L
S C H E M E

u s e s

u s e s

/ C A T E G O R IC A L
O V E R L A Y

/ C A T E G O R IC A L
R E G I O N

C O V E R
M O D E LC O V E R

R E G IO N

^ — l - ^ x < u s e s
/ C O V E R C L A S S . C O V E R

S C H E M Eu s e s

(

/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

C

/ M E T S T A T IO N u s e s / C O O R D IN A T E

/ S T E R E O P A IR

/ V IR T U A L M E T
S T A T IO N/ A C T U A L M E T

S T A T IO N
fuses

A E R IA L
P H O T O

u s e s

C A M E R A

/ A IR C R A F T /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O R B IT

uses

/ S A T E L L IT E
/ S C A N N E Rc

u s e s

u s e s

/ S E N S O R

c
u s e s

/

94

c
/ S A M P L IN G ,

S Y S T E M /
\

u s e s

/ f i e l d f o r m

<
/ E M S B A N D

u s e s

/ D A T A IT E M

c

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

S P A T IA L
M O D E L

u s e s

^ d e s c r i p t o r /

G E N E R IC
D E S C R IP T O R /

/ P R O J E C T I O N

/

/ T IM E S E R I E S / T E M P O R A L
D E S C R IP T O R /u s e s

/ E C O S E R I E S
C O N S U M E R

u s e s

/ N U M E R IC A L
S E R I E S

E C O M O D E L
S E R I E SC

/ E C O M O D E L
u s e s

u s e s

u s e s
N U M S E R I E S
C O N S U M E Ry N U M E R IC A L

O V E R L A Y

y G C P S E T

(
y u s e s y C O O R D IN A T E

<
/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

V.

(

W IN D O W

/ R E S A M P L E
W IN D O W

S E A R C H
W IN D O W

/ A V E R A G E
W IN D O W

T O P O
W IN D O W

/ R E P A R T IT IO N
W IN D O W

/ IN T E R P O L A T E
W IN D O W

/ D A T A P O IN T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

C
y S O F T W A R E

D E V E L O P M E N /

y P R O G R A M M A

y
(

(
y

'u s e s

D E S IG N y IM P L E M E N T A T
IO Nu s e s

u s e s
u s e s

u s e s

P R O G R A M
L A N G U A G Ey D E S IG N E R y

y IM P L E M E N T
C O M P O N E N TC

y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

C

(

/ e x e c u t a b l e
C O M P O N E N T /

S O F T W A R E

/ E X E C U T A B L E

u s e s

/ O P E R A T IO N

u s e s

/ C O M M A N D^ V
/ C O M M E R C IA L

S O F T W A R E /
/ IM P L E M E N T

/ C O M P O N E N T /

u s e s

/ C U S T O M
S O F T W A R E

u s e s

/ S O U R C E
M O D U L E

/ S O U R C E
C O M P O N E N T

u s e s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

/ D O C U M E N T

E X T E R N A L
D O C U M E N T

V -
/ A U T H O R

IN T E R N A L
D O C U M E N T

/

(
/ P U B E X T

D O C U M E N T / /

K
I

IN T E R N A L
T H E S IS

V

/

E X T E R N A L
T H E S I S

/
/ (

P U B IN T
D O C U M E N T /

/
(

E X T E R N A L
B O O K

/ E X T E R N A L
y ^ A R T IC L E /

\
\

' (
/ IN T E R N A L

B O O K

(

/

IN T E R N A L
A R T IC L E /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

LAB

y e m p l o y e e y u s e s

u s e s

 /

\ u s e s

y A D M IN IS T R A T y

u s e s

-1- —̂ \
/ d e s i g n e r y -X 2) u s e s

u s e s

u s e s

u s e s V - .

F IE L D
a c q u i s i t i o n

 \
d e s i g n

Reproduced with
o , the copyright owuer.

APPENDIX 2

CLASS SPECIFICATIONS

TABLE OF CONTENTS

ass Group Name page number
2 a . Root Classes 102
2b. Spatial Classes 103
2c. Ecosystem Classes 112
2d. Ecosystem Descriptor Classes 121
2e. Operation Classes 124
2f. Classification Classes 136
2g. Data Acquisition Classes 145
2h. Descriptor Classes 152
2i. Window Classes 155
2j. Software Classes 157
2k. Documentation Classes 162
21. Human Classes 165

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2a. Root Classes

102

class
{

ENTITY

/* attributes */
/* none */

/* operations */

Create
Destroy

} ;

class NAMED_ENnXY : public
{

/* attributes */
STRING
STRING

/* operations */

STRING
void
STRING
void

};

class DOCUMENTED.ENTITY
{

/* attributes */
SET < DOCUMENT >

/* operations */

DOCUMENT

ENTITY

: public

(void) ;
(void) ;

name ;
description ;

Get_name (void) ;
Set_name (STRING) ;
Get_<tescription (void) ;
Set_description (STRING) ;

NAMED ENTITY

documents ;

lterate_over_documents (void) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2b. Spatial Classes

103

class
{

SPATIAL_ENnTY : public

!* attributes */
NUMBER
NUMBER

DOCUMENTED ENTITY

area;
perimeter ;

} ;

/* operations */
NUMBER
void
NUMBER
void

Get_area (void) ;
Set_area (NUMBER) ;
Get_perimeter (void) ;
Set_perimeter (NUMBER) ;

class
{

SPATIAL_POINT_ENnTY

!* attributes */
NUMBER

; public SPATIAL ENTITY

number_points ;

1 ;

f* operations */
NUMBER
void

Get_number_points (void) ;
Set_number_points (NUMBER) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

class
{

SPATIAL MODEL : public

t* attributes */
STRING
STRING
STRING
PROJECTION_SYSTEM
PROJECTION_PARAMETERS
SET < SPATIAL_MODEL_CONSUMER >
OPERATION
SET < SPATIAL DESCRIPTOR >

SPATIAL_POINT_SET

spatial_scale ;
geog_coord_system ;
point_distribution ;
projection_system ;
projection_parameters ;
consuming_operations ;
producing^operation ;
spatial_descriptors ;

/* operations */
STRING
void
STRING
void
STRING
void
PROJECnON_SYSTEM
void

PROJECnON_PARAMETERS
void

SPATIAL_MODEL_CONSUMER
OPERATION
void
SPATIAL DESCRIPTOR

Get_spatial_scale (void) ;
Set_spatial_scale (STRING) ;
Get_geog_coord_system (void) ;
Set_geog_coord_system (STRING) ;
Get_point_distribution (void) ;
Set_point_distribution (STRING) ;
Get_projection_systeni (void) ;
Set_projecti on_s ystem

(PROJECnON_SYSTEM) ;
Get_projection_parameters (void) ;
Set_projection_parameters

(PROJECTION.PARAMETERS) ;
Iterate_over_consuming_operations (void) ;
Get_producing_operation (void) ;
Set_producing_operation (OPERATION) ;
Iterate_over_spatiaI_descriptors

I ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

class
{

POINT_MODEL : public

/* attributes */
SET < MODEL_POINT >
NUMBER
NUMBER
SET < OVERLAY >

SPATIAL_MODEL

model_points ;
number_numerical_overlays ;
number_categorical_overlays ;
overlays ;

/* operations */
MODEL.POINT
NUMBER
void

NUMBER
void

OVERLAY
MODEL_POINT
void
MODEL POINT

lterate_over_model_points (void) ;
Get_number_numerical_overlays (void) ;
Set_number_nximerical_overI ays

(NUMBER);
Get_number_categorica!_overlays (void) ;
Set_number_categorical_overlays

(NUMBER);
Iterate_over_overlays (void) ;
Get_point (COORDINATE) ;
Set j»oint (MODEL.POINT) ;
Sample_points (voidO ;

class OVERLAY : public SPATIAL_MODEL

/* attributes */
NUMBER
NUMBER
NUMBER
POINT_MODEL
SET < OVERLAY CONSUMER >

number_regions ;
number_subregions ;
number_points ;
contained_in ;
consuining_operations ;

I* operations *l
NUMBER
void
NUMBER
void
NUMBER
void
POINT.MODEL
void

Get_number_regions (void) ;
Set_number_regions (NUMBER) ;
Get_number_subregions (void) ;
Set_number_subregions (NUMBER) ;
Get_number_points (void) ;
Set_number_points (NUMBER) ;
Get_point_model (void) ;
Set_point_model (POINT_MODEL) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

class
I

NUMERICAL OVERLAY ; public

t* attributes */
SET < NUMERICAL_REGION >
SET < NUMERICAL_SUBREGION >
SET < NUMERICAL_POINT >
NUMERICAL_ATTRIBUTE
SET < NUMERICAL_CONSUMER >

I* operations */
NUMERICAL_REGION
NUMERICAL_SUBREGION
NUMERICAL_POINT
NUMERICAL_ATTRIBUTE
void

NUMERICAL.
NUMERICAL.
NUMERICAL.
NUMERICAL.
NUMERICAL.
NUMERICAL.
void
NUMERICAL.

CONSUMER
OVERLAY
OVERLAY
OVERLAY
OVERLAY
.POINT

POINT

OVERLAY

regions ;
subregions ;
points ;
describing_attribute ;
consuming operations ;

Iterate_over_iegions (void) ;
Iterate_over_subregions (void) ;
Iterate_over_points (void) ;
Get_describing_attribute (void) ;
Set_describing_attribute

(NUMERICAL_ATTRIBUTE) ;
Iterate_over_consuming_operations (void) ;
Add (NUMERICAL_OVERLAY) ;
Subtract (NUMERICAL_OVERLAY) ;
Multiply (NUMERICAL_OVERLAY) ;
Divide (NUMERICAL_OVERLAY) ;
Get_point (COORDINATE) ;
Set_point (NUMERICAL_POINT) ;
Sample_points (void) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

class
{

CATEGORICAL_OVERLAY ; public

/* attributes */
SET < CATEG0RICAL_REG10N >
SET < CATEGORICAL_SUBREGION >
SET < CATEGORICAL_POINT >
CATEGORICAL_ATTRIBUTE
SET < CATEGORICAL CONSUMER >

OVERLAY

regions ;
subregions ;
points ;
describing attribute ;
consuming_operations ;

1 ;

I* (^rations */
CATEGORICAL_REGION
CATEG0RICAL_SUBREG10N
CATEGORlCAL_POINT
CATEGORICAL.ATTRTBUTE
void

CATEGORICAL_CONSUMER
CATEGORICAL_POlNT
void
CATEGORICAL POINT

Iterate_over_regions (void) ;
Iterate_over_subregions (void) ;
Iterate_over_points (void) ;
Get_describing_attribute (void) ;
Set-describing attribute

(CATEGORICAL_ATTRIBUTE) ;
Iterate_over_consuming_operations (void) ;
Get_point (COORDINATE) ;
Set_point (CATEGORICAL_POINT) ;
Sample_points (void) ;

class
{

OVERLAY_REGlON

/* attributes */
NUMBER

: public SPATIAL POINT ENTITY

number_subregions ;

1 ;

/* operations */
NUMBER
void

Get_number_subregions (void) ;
Set_number_subregions (NUMBER) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

class
{

CATEGORICAL REGION : public

/* attributes */
CATEGORICAL_OVERLAY
SET < CATEGORICAL_SUBREGION >
SET < CATEGORICAL_POINT >
USER CLASS

OVERLAY_REGION

containing_overlay ;
subregions ;

points ;
class ;

1 ;

class
{

/* operations */
CATEGORICAL_OVERLAY
void

CATEGORICAL.SUBREGION
CATEGORICAL_POINT
USER_CLASS
void
void

NUMERICAL.REGION : public

/* attributes */
NUMERICAL_OVERLAY
SET < NUMERICAL_SUBREGlON >
SET <NUMERICAL_POINTS >

Get_containing_overlay (void) ;
Set_containing_overlay

(CATEGORICAL_OVERLAY) ;
Iterate_over_subregions (void) ;
Iterate_over_points (void) ;
Get_class (void) ;
Set_class (USER_CLASS) ;
Set_subregion

(CATEGORICAL_SUBREGION) ;

OVERLAY REGION

containing_overlay ;
subregions ;
points ;

/* operations */
NUMERICAL_OVERLAY
void

NUMERICAL_SUBREGION
n u m e r ic a l _p o in t

Get_containing_overlay (void) ;
Set_containing_overl ay

(NUMERICAL_OVERLAY) ;
Iterate_over_subregions (void) ;
Iterate_over_points (void) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

class
{

OVERLAY_SUBREGION

/* attributes */
NUMBER

I* operations
NUMBER
void

: public SPATIAL POINT ENTITY

number^neighbors ;

Get_number_neighbors (void) ;
Set_number_neighbors (NUMBER) ;

class
{

CATEGORICAL.SUBREGION : public

/* attributes */
CATEGORICAL_REGION
SET < CATEGORICAL.POINT >
SET <CATEGORICAL SUBREGION >

OVERLAY SUBREGION

containing_region ;
points ;
neighbors ;

/* operations */
CATEGORICAL.REGION
void

CATEGORICAL_POINT
CATEGORICAL SUBREGION

Get_containing_region (void) ;
Set_containing_region

(CATEGORICALJŒGION) ;
Iterate_overjpoints (void) ;
Iterate_over_neighbors (void) ;

} ;

class
{

NUMERICAL_SUBREGION : public SPATIAL_P01NT_SET

/* attributes */
NUMERICAL_REGION
SET < NUMEGORICAL_POINT >
SET < NUMERICAL SUBREGION >

contaming_region ;
points ;
neighbors ;

I* operations */
NUMERICAL_REGION
void

NUMERICAL„POINT
n u m e r ic a l _s u b r e g io n

Get_containing_region (void) ;
Set_containing_region

(NUMERICAL_REGI0N)
lterate_over_points (void) ;
lterate_over_neighbors (void) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

class
{

} ;

class
{

POINT : public

/* attributes */
COORDINATE

t* operations */
COORDINATE
void

DATA_POINT public

SPATIAL ENTITY

POINT

coord ;

Get_coord (void) ;
Set„coord (COORDINATE)

/* attributes */
NUMBER value ;

f* operations */
NUMBER
void

Get_value (void) ;
Set_value (NUMBER) ;

class
{

NUMERICAL_POINT

f* attributes */
NUMERICAL_SUBREGION

: public DATA_POINT

containing_subregion ;

/* operations */
NUMERICAL_SUBREGION
void

NUMBER
NUMBER
NUMBER
NUMBER

Get_containing_subregion (void) ;
Set_containing_subregion

(NUMERICAL_SUBREGION)
Add (NUMERICAL_POINT) ;
Subtract (NUMERICAL_POINT) ;
Multiply (NUMERICAL_POINT) ;
Divide (NUMERICAL.POINT) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

class
{

CATEGORICAL_POINT

/* attributes */
CATEGORICAL SUBREGION

public VALUE_POINT

containing subregion ;

) ;

/* operations */
CATEGORICAL_SUBREGION
void

Get_containing_subregion (void) ;
Set_containing_subregion

(CATEGORICAL_SUBREGION) ;

class
{

MODEL_POINT

/* attributes */
POINT_MODEL

public POINT

containing_point_model ;

1 ;

f* operations */
POINT_MODEL
void

Get_point_model (void) ;
Set_point_model (POINT_MODEL)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2c. Ecosystem Classes

class
{

1 ;

ECOSYSTEM ENTITY : public

I* attributes */
SET < ECOSYSTEM DESCRIPTOR >

!* operations */
ECOSYSTEM_DESCRIPTOR

112

DOCUMENTED ENTITY

ecosystem_descriptors ;

Iterate_over_ecosystem_descriptors (void) ;

class
{

ECOMODEL : public ECOSYSTEM ENTITY

/* attributes */
NUMBER
CATEGORICAL_OVERLAY
OPERATION
SET < ECOMODEL CONSUMER >

number_landunits ;
corresponding_overlay ;
producer ;
ecomodel_consuiners ;

};

class
{

!* operations */
NUMBER
void
CATEGORICAL_OVERLAY
void

OPERATION
void
ECOSYSTEM MODEL CONSUMER

REGIONAL_MODEL

/* attributes *l
NUMBER

; public

Get_number_landunits (void) ;
Set_number_landunits (NUMBER) ;
Get_correspondin_overlay (void) ;
Set_corresponding_overlay

(CATEGORICAL_OVERLAY) ;
Get_producer (void) ;
Set_producer (OPERATION) ;
Iterate_over_ecosystem_model_consumers

(void) ;

ECOMODEL

number_regions ;

} ;

/* operations */
NUMBER
void

Get_nuinber_regions (void) ;
Set_number_regions (NUMBER)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

class
{

SOIL_MODEL : public REGIONAL MODEL

1 ;

class
{

I* attributes */
SET < SOIL_REGION >
SOIL_CLASS_SCHEME
SET < SOIL_MODEL_CONSUMER >

f* operations *!
SOIL_REGION
SOEL_CLASS_SCHEME
void

SOIL MODEL_CONSUMER

soil_regions ;
describing_class_scheme ;
soil_model_consumers ;

Iterate_over_soil_regions (void) ;
Get_soil_class_scheme (void) ;
Set_soil_class_scheme

(SOIL_CLASS_SCHEME) ;
Iterate_over_soil_model_consumers (void) ;

COVER_MODEL : public REGIONAL MODEL

/* attributes */
SET < COVER_REGION >
COVER_CLASS_SCHEME
SET < COVER_MODEL_CONSUMER >
SET < COVER_SUBREGION >
SET < COVER_SUBREGION >

cover_regions ;
describing_class_scheme ;
cover_model_consumers ;
training_sites ;
cover_subregions ;

/* operations */
COVER_REGION
COVER_CLASS_SCHEME
void

COVER_MODEL_CONSUMER
COVER_SUBREGION
COVER SUBREGION

lterate_over_cover_regions (void) ;
Get_cover_class_scheme (void) ;
Set_cover_class_scheme

(COVER_CLASS_SCTEME) ;
Iterate_cover_model_consumers (void) ;
Iterate over training sites (void) ;
Iterate_over_cover_subregions (void) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

class
{

TOPO_MODEL : public

/* attributes */
NUMBER
SET < WATERSHED >

ECOMODEL

number_watersheds ;
watersheds ;

} ;

/* operations */
NUMBER
void
WATERSHED

Get_number_watersheds (void) ;
Set_number_watersheds (NUMBER) ;
Iterate_over_watersheds (void) ;

class
{

ECOSYSTEM_REGION

I* attributes */
NUMBER

public ECOSYSTEM ENTITY

number_subregions ;

/* operations */
NUMBER
void

Get_number_subregions (void) ;
Set_number_subregions (NUMBER) ;

class
{

COVER„REGION

/* attributes */
COVER_MODEL
SET < COVER_SUBREGION >
COVER CLASS

: public ECOSYSTEM REGION

containing_model ;
cover_subregions ;
describing_class ;

/* operations */
COVER_MODEL
void
COVER_SUBREGION
COVER_CLASS
void
void

Get_contaming_model (void) ;
Set_containing_model (COVER_MODEL) ;
lterate_over_cover_subregions (void) ;
Get_cover_class (void) ;
Set_cover_class (COVER_CLASS) ;
Set_cover_subregion

(COVER_SUBREGION) ;
} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

class
{

SOIL_REGION : public

/* attributes */
SOIL_MODEL
SET < SOIL_SUBREGION >
SOIL_CLASS

/* operations */
SOIL_MODEL
void
SOIL_SUBREGION
SOIL_CLASS
void

ECOSYSTEM_REGION

containing_model ;
soil_subregions ;
describing_class ;

Get_containmg_raodel (void) ;
Set_containing_model (SOIL_MODEL) ;
Iterate_over_soil_subregions (void) ;
Get_soil_class (void) ;
Set_soil_class (SOEL_CLASS) ;

} ;

class
{

ECOSYSTEM_LANDUNIT

/* attributes */
CATEGORICAL_SUBREGION
VIRTUAL_MET_STATION

; public ECOSYSTEM ENTITY

categorical_subregion ;
virtual_climate ;

} ;

class
{

/* operations */
CATEGORICAL_SUBREGION
void

VlRTUAL_MET_STATION
void

COVER_SUBREGION

/* attributes */
COVER_REGION

public

Get_categoricaI_subregion (void) ;
Set_categorical_subregion

(CATEGORICAL_SUBREGION) ;
Get_virtual_met_staticn (void) ;
Set_virtual_climate

(VIRTUAL_MET_STATION) ;

ECOSYSTEM LANDUNIT

containing^region ;

/* operations */
COVER_REGION
void

Get_region (void) ;
Set.region (COVER_REGION)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

class
{

SOIL_SUBREGION

/* attributes */
SOIL_REGION

/* operations */
SOIL.REGION
void

public ECOSYSTEM_LANDUNlT

containing_region ;

Get_containing_region (void) ;
Set_containing_region (SOIL_REGION) ;

1;

class
{

WATERSHED : public

f* attributes */
TOPO_MODEL
SET < CATCHMENT >
STREAM_NETWORK

ECOSYSTEM ENTITY

containing_model ;
catchments ;
stream_network ;

f* operations */
TOPO_MODEL
void
CATCHMENT
STREAM_NETWORK
void

Get_containing_model (void) ;
Set_containing_model (TOPO_MODEL) ;
Iterate_over_catchments (void) ;
Get_stream_network (void) ;
Set_stream_network

(STREAM_NETWORK) ;
} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

class
{

CATCHMENT : public

I* attributes */
WATERSHED
HILLSLOPE
HILLSLOPE
STREAM LINK

ECOSYSTEM ENTITY

containing_watershed ;
left_hillslope ;
right_hillslope ;
stream_link ;

/* operations */
WATERSHED
void

HILLSLOPE
void
HILLSLOPE
void
STREAM_LINK
void

Get_containing_watershed (void) ;
Set_containing_watershed

(WATERSHED) ;
Get_left_hillslope (void) ;
Set_left_hillslope (HILLSLOPE) ;
Get_right_hillslope (void) ;
Set_right_hillslope (HILLSLOPE) ;
Get_stream_lmk (void) ;
Set_stream_link (STREAM_LINK) ;

1 ;

class
{

HILLSLOPE : public

/* attributes */
CATCHMENT

ECOSYSTEM LANDUNIT

containing_catchment ;

} ;

/* operations */
CATCHMENT
void

Get_containing_catchment (void) ;
Set_containing_catchment

(CATCHMENT) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

class
{

STREAM_ENTITY ; public ECOSYSTEM.ENTITY

/* attributes */
NUMBER
NUMBER

length ;
order ;

} ;

class
(

/* operations */
NUMBER
void
NUMBER
void

STREAM_NETWORK

/* attributes *l
WATERSHED
OUTLET_POINT
SET < STREAM_JUNCTION >
SET < STREAM_UNK >
NUMBER
NUMBER

: public

Getjength (void) ;
Set_length (NUMBER) ;
Get_order (void) ;
Set_order (NUMBER) ;

STREAM ENTITY

containing_watershed ;
outlet_point ;
streamjunctions ;
streamjinks ;
number_junctions ;
number_links ;

/* operations */
WATERSHED
void

OUTLET_POINT
void
STREAM_JUNCTION
STREAM_LINK
NUMBER
void
NUMBER
void

Get_containing_watershed (void) ;
Set_containing_watershed

(WATERSHED) ;
Get_outlet_point (void) ;
Set_outletjf>oint (OUTLET_POINT) ;
Iterate_over_stream_junctions (void) ;
Iterate_over_stream_links (void) ;
Get_number_junctions (void) ;
Set_number_junctions (NUMBER) ;
Get_number_links (void) ;
Set_number_links (NUMBER) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

class
{

STREAM_UNK : public

/* attributes */
STREAM_JUNCTION
STElEAM_JUNCTION
CATCHMENT
STREAM_NETWORK

/* cqDerations */
STREAM_JUNCTION
void
STREAM_JUNCTION
void
CATCHMENT
void
STREAM_NETWORK
void

STREAM_ENTITY

flows_to ;
flows_from ;
contaming_catchment ;
containing_network ;

Get_flows_to (void) ;
Set_flows_to (STR£AM_JUNCTION) ;
Get_flows_from (void) ;
Set_flows_from (STREAM_JUNCTION) ;
Get_catchment (void) ;
Set_catchmetn (CATCHMENT) ;
Get_containing_network (void) ;
Set_containing_network

(STREAM_NETWORK) ;

class
{

ECOSYSTEM_POINT

/* attributes */
CATEGORICAL POINT

public ECOSYSTEM ENTITY

categorical_point ;

f* operations */
CATEGORICAL_POINT
void

Get_categorical_point (void) ;
Set_categorical_point

(CATEGORICAL„POINT) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

class
I

STREAM_JUNCTION

/* attributes */
STREAM_NETWORK
NUMBER
SET < STREAM_LINK >
STREAM_LÜ^

I* operations */
STREAM_NETWORK
void

NUMBER
void
STREAM_LINK
STREAM_UNK
void

public ECOSYSTEM_POINT

containing_stream_network ;
number_inflows ;
inflows ;
outflow ;

Get_containing_stream_network (void)
Set_containing_s tream_network

(STREAM_NETSVORK) ;
Get_number_inflows (void) ;
Set_number_inflows (NUMBER) ;
Iterate_over_inflows (void) ;
Get_outflow (void) ;
Set.outflow (STREAM_LINK) ;

};

class
{

OUTLET_POINT

/* attributes */
STREAM NETWORK

: public ECOSYSTEM POINT

containing_stream_network ;

} ;

/* operations */
STREAM_NETWORK
void

Get_containing_streain_network (void) ;
Set_containing_stream_network

(STREAM_NETWORK) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2d. Ecosystem Descriptor Classes

121

class
{

1 ;

class
{

ECOSYSTEM_DESCRIPTOR ; public

I* attributes */
ECOSYSTEM_ENTITY

i* operations */
ECOSYSTEM.ENTITY
void

TM_SPECTRAL_DESCRIPTOR . public

/* attributes */
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

DOCUMENTED.ENnTY

described_ecosystem_entity ;

Get_described_ecosystem_entity (void) ;
Set_described_ecosystem_entity

(ECOSYSTEM_ENTITY) ;

ECOSYSTEM_DESCRIPTOR

tm_l ;
tm_2 ;
tm_3 ;
tm_4 ;
tm_5 ;
tm_6;
tra_7 ;

/* operations */
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void

Get_tm.
Set_tm_
Get_tm.
Set_tm_
Get_tm.
Set_tm_
Get_tm.
Set_tm_
Get_tm.
Set_tm_
Get_tm.
Set_tm_
Get_tm.
Set tm

_1 (void) ;
.1 (NUMBER)
2 (void) ;
,2 (NUMBER)
.3 (void) ;
.3 (NUMBER)
.4 (void) ;
4 (NUMBER)
.5 (void) ;
.5 (NUMBER)
.6 (void) ;
.6 (NUMBER)
.7 (void) ;
,7 (NUMBER)

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

class
{

SOIL_DESCRIPTOR public ECOSYSTEM DESCRIPTOR

/* attributes */
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

depth ;
texture ;
hydraulic_conductivity ;
transmissivity ;
water_capacity ;
availabie_water ;
temperature ;
carbon ;
nitrogen ;

I* operations */
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void

Get_depth (void) ;
Set_depth (NUMBER) ;
Get_texture (void) ;
Set_texture (NUMBER) ;
Get_hydraulic_conductivity (void) ;
Set_hydraulic_conductivity (NUMBER) ;
Get_transmissivity (void) ;
Set_transmissivity (NUMBER) ;
Get_v/ater_capacity (void) ;
Set_water_capacity (NUMBER) ;
Get_available_water (void) ;
Set_available_water (NUMBER) ;
Get^temperature (void) ;
Set_temperature (NUMBER) ;
Get_carbon (void) ;
Set_carbon (NUMBER) ;
Get_nitrogen (void) ;
Set_nitrogen (void) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

class
{

1 ;

class
{

CUMATE_DESCRIPTOR

/* attributes */
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

/* operations */
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void
NUMBER
void

VEG_DESCRIPTOR

/* attributes */
NUMBER
NUMBER
NUMBER
NUMBER

public

public

LANDUNIT DESCRIPTOR

maximum_temperature ;
ininimum_temperature ;
dew_point ;
shortwave_radiation ;
precipitation ;

Get_maximum_teraperature (void) ;
Set_maximum_temperature (NUMBER) ;
Get_ininimum_temperature (void) ;
Set_ininimum_temperature (NUMBER) ;
Get_dew_point (void) ;
Set_dew_point (NUMBER) ;
Get_shortwave_radiation (void) ;
Set_shortwave_radiation (NUMBER) ;
Get_precipitation (void) ;
Set_piecipitation (NUMBER) ;

ECOSYSTEM DESCRIPTOR

gross_primary_production ;
net_primary_production ;
maintenance_carbon ;
growth_carbon ;

/* operations */
NUMBER
void

NUMBER
void
NUMBER
void
NUMBER
void

Get_gross_primary_production (void) ;
Set_gross_primary_production

(NUMBER) ;
Get_net_primary_production (void) ;
Set_net_primary_production (NUMBER) ;
Get_maintenance_carbon (void) ;
Set_maintenance_carbon (NUMBER) ;
Get_growth_carbon (void) ;
Set_growth_carbon (NUMBER) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

2e. Operation Classes

class
{

OPERATION ; public

/* attributes */
DATE
TIME

/* operations */
DATE
void
TIME
void
void

DOCUMENTED ENTITY

date_performed ;
time_performed ;

Get_date_performed (void) ;
Set_date_performed (DATE) ;
Get_time_perforraed (void) ;
Set_time^performed (TIME) ;
Perform (void) ;

} ;

class
{

MODEL_OPERATION

t* attributes */
ANALYST
COMMAND

: public OPERATION

performed_by ;
used_command ;

} ;

class
{

!* operations */
ANALYST
void
COMMAND
void

Get_analyst (void) ;
Set_analyst (ANALYST) ;
Get_command (void) ;
Set_command (COMMAND)

SPATIAL_CONSUMER ; public MODEL^OPERATION

/* attributes */
SPATIAL_MODEL

f* operations *!
SPATIAL.MODEL
void

input ;

Get_input (void) ;
Set_input (SPATIAL_MODEL) ;

1 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

class
(

SPATIAL_PRD_CONSUMER ; public

/* attributes */
SPATIAL_MODEL

/* operations */
SPATIAL.MODEL
void

SPATIAL_CONSUMER

output ;

Get_output (void) ;
Set_output (SPATIAL_MODEL) ;

} ;

class
{

PROJECTION_TRANSFORM : public SPATIAL_PRD_CONSUMER

/* attributes */
PROJECTIONPARAMETERS parameters ;

} ;

/* operations */
PROJECTION_PAREMETERS
void

Get_paramters (void) ;
Set_parameters

(PROJECTION_PAREMETERS) ;

class
{

RESAMPLE : public

/* attributes */
RESAMPLE WINDOW

SPATIAL_PRD_CONSUMER

window ;

/* operations */
RESAMPLE_WINDOW
void

Get_window (void) ;
Set_window (RESAMPLE_WINDOW) ;

1 ;

class
{

OVERLAY_CONSUMER

/* attributes */
OVERLAY

public MODEL OPERATION

input ;

} ;

/* operations */
OVERLAY
void

Get_overIay (void) ;
Set_overlay (OVERLAY) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

class
{

REGISTER : public

/* attributes */
OVERLAY
GCP_SET
OVERLAY

/* (^rations */
OVERLAY
void
GCP_SET
void

OVERLAY
void

OVERLAY_œNSUMER

input_slave ;
ground_control_points ;
output_slave ;

Get_input_slave (void) ;
Set_input_slave (OVERLAY) ;
Get_ground_controI_points (void) ;
Set_ground_control_j)oints

(GCP_SET) ;
Get_output_sIave (void) ;
Set_output_slave (OVERLAY) ;

class
{

ECOMODEL_ASSIGN

/* attributes */
ECOMODEL

public OVERLAY CONSUMER

output ;

};

class
(

/* operations */
ECOMODEL
void

CATEGORICAL_CONSUMER : public

/* attributes */
CATEGORICAL OVERLAY

Get_output (void) ;
Set_output (ECOMODEL) ;

MODEL OPERATION

input ;

/* operations */
CATEGORICAL_OVERLAY
void

Get_input (void) ;
Set_input (CATEGORICAL_OVERLAY)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

class
{

REPARTITION ; public

/* attributes */
CATEGORICAL OVERLAY

CATEGORICAL CONSUMER

output ;

/* operations */
CATEGORICAL_OVERLAY
void

Get_output (void) ;
Set_output

(CATEGORICAL_OVERLAY) ;

class MERGE
{

: public

I* attributes */
SIMILARITY MATRIX

REPARTITION

similarity_matrix ;

1 ;

I* operations */
SIMILARITY_MATRIX
void

Get_similarity_matrix (void) ;
Set_similarity_matrix

SIMILARITY_MATRIX)

class
{

WINDOW_REPARTITION

/* attributes */
REPARTITION WINDOW

public REPARTITION

window ;

} ;

class
{

/* operations *f
REPARTITlON_WINDOW
void

NUMERICAL_CONSUMER

I* attributes */
n u m e r ic a l _o v e r l a y

public

Get_scan_window (void) ;
Set_scan_window

(REPARTITI0N_WIND0W) ;

MODELOPERATION

input ;

1 ;

/* operations */
NUMERICAL.OVERLAY
void

Get_input (void) ;
Set_input (NUMERICAL_OYERLAY) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

class
{

NUMERICAL_PROD_CONSUMER

/* attributes */
NUMERICAL OVERLAY

: public

output ;

NUMERICAL CONSUMER

} ;

/* operations */
NUMERICAL_OVERLAY
void

Get_output (void) ;
Set_output (NUMERICAL_OVERLAY) ;

class CONVOLUTION : public
{

/* attributes */
AVERAGE WINDOW

NUMERICAL_PROD CONSUMER

window ;

/* operations */
AVERAGE_WINDOW
void

Get_window (void) ;
Set_window (AVERAGE_WINDOW) ;

class
{

OVERLAY_ALGEBRA

/* attributes */
NUMERICAL OVERLAY

: public NUMERICAL PROD CONSUMER

addend ;

1 ;

I* operations */
NUMERICAL_OVERLAY
void

Get_addend (void) ;
Set.addend (NUMERICAL_OVERLAY) ;

class
{

INTERPOLATE : public

I* attributes */
INTERPOLATE WINDOW

NUMERICAL PROD_CONSUMER

window ;

} ;

I* operations */
INTERPOLATE_WINDOW
void

Get_window (void) ;
Set_window

(INTERPOLATE_WINDOW) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

class
!

};

class
{

GENERIC_NUMERICAL

/* attributes */
STONG

/* operations */
STRING
void

PARHTIONER : public

/* attributes */
CATEGORICAL_OVERLAY

/* operations */
CATEGORICAL_OVERLAY
void

public NUMERICAL PROD CONSUMER

operation_type ;

Get_operation_type (void) ;
Set_operation_type (STRING) ;

NUMERICAL CONSUMER

output ;

Get_output (void) ;
Set_output

(CATEGORICAL_OVERLAY) ;
} ;

class
{

SPECTRAL_CLASSIHCATION ; public

/* attributes */
SPECTRAL_SCHEME
SPECTRAL_BANK
CATEGORICAL OVERLAY

PARTITIONER

input_class_scheme ;
input_spectral_bank ;
output ;

/* operations */
SPECTRAL.SCHEME
void

s p e c t r a l _b a n k
void

CATEGORICAL_OVERLAY
void

Get_input_class_scheme (void) ;
Set_input_class_scheme

(SPECTRAL_SCHEME) ;
Get_input_spectral_bank (void) ;
Set_input_spectral_bank

(SPECTRAL_BANK) ;
Get_categorical_overlay (void) ;
Set_categorical_overlay

(CATEG0RICAL_0VERLAY) ;
} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

class
I

CLUSTER_ANALYSIS

I* attributes */
SPECTRAL.BANK
SPECTRAL_SCHEME

/* operations */
SPECTRAL_BANK
void

SPECTRAL.SCHEME
void

: public NUMERICAL CONSUMER

output_bank ;
output_scheme ;

Get_output_spectral_bank (void) ;
Set_output_spectral_bank

(SPECTRAL_BANK) ;
Get_output_class_scheme (void) ;
Set_output_class_scheme

(SPECTRAL_SCHEME) ;
} ;

class
{

TOPO_PARTITION

I* attributes */
NUMERICAL_OVERLAY
CATEGORICAL OVERLAY

: public PARTITIONER

output_digital_area_transform ;
output_partitions ;

/* operations */
NUMERICAL_OVERLAY
void

CATEGORICAL_OVERLAY
void

Get_output_digital_area_transform (void) ;
Set_output_digital_area_transform

(NUMERICAL_OVERLAY) ;
Get_output_partitions (void) ;
Set_output_partitions

(CATEGORICAL_OVERLAY) ;
} ;

class
(

COVER_CONSUMER

/* attributes */
COVER_MODEL
COVER SCHEME

; public MODEL OPERATION

input_modeI ;
Lnput_scheme ;

I* operations */
COVER_MODEL
void
COVER_SCHEME
void

Get_input_mode] (void) ;
Set_input_model (COVER_MODEL) ;
Get_input_scheme (void) ;
Set_input_scheme (COVER_S CHEME) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

class
{

1 ;

class
{

COVER_TRAINING

/* attributes */
COVER_SCHEME

I* operations */
COVER.SCHEME
void

COVER_CLASSIFY

/* attributes */
COVER_MODEL

I* operations */
COVER_MODEL
void

public

public

COVER CONSUMER

output_scheme ;

Get_output_scheme (COVER_SCHEME) ;
Set_output_scheme (COVER_SCHEME) ;

COVER_CONSUMER

output_model ;

Get__output_model (void) ;
Set_output_model (COVER_MODEL) ;

class
{

SOIL_CONSUMER

I* attributes */
SOIL_MODEL
SOIL SCHEME

public MODEL OPERATION

input_model ;
input_scheme ;

} ;

/* operations */
SOIL_MODEL
void
SOIL_SCHEME
void

Get_input_model(void) ;
Set_inputt_modeI (SOIL_MODEL) ;
Get_input_scheme (void) ;
Set_input_scheme (SOIL_SCHEME) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

class
{

SOIL_TRAINING

I* attributes */
SOIL_SCHEME

f* operations */
SOIL_SCHEME
void

public SOIL_CONSUMER

output_scheme ;

Get_output_scheme (SOIL_SCHEME) ;
Set_output_scheme (SOIL_SCHEME) ;

class
{

SOIL_CLASSIFY

I* attributes */
SOIL_MODEL

t* operations */
SOIL_MODEL
void

public SOIL CONSUMER

output_model ;

Get_output_model (void) ;
Set_output_raodel(SOEL_MODEL) ;

class
{

ECOSERIES_CONSUMER

f* attributes */
ECOMODEL TIME SERIES

: public MODEL OPERATION

input ;

I* operations */
ECOMODEL_TIME_SERIES
void

Get_input (void) ;
Set_input (ECOMODEL_TIME_SERIES)

1 ;
class
{

FOREST_BGC : public ECOSERIES_CONSUMER

I* attributes */
ECOMODEL TIME_SERIES output ;

/* operations */
ECOMODEL_TIME_SERIES
void

Get_output (void) ;
Set_output

(ECOMODEL_TIME_SERIES) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class
{

]

133

NUMSERIES_CONSUMER

/* attributes */
NUMERICAL_TIME_SERIES

/* operations */
NUMERICAL_TIME_SERIES
void

public MODEL OPERATION

input ;

Get_input (void) ;
Set_input (NUMERICAL_TIME_SERIES)

class
{

MTCLIM : public

/* attributes */
NUMERICAL TIME SERIES

NUMSERIES CONSUMER

output ;

1 ;

/* operations */
NUMERICAL_TIME_SERIES
void

Get_output (void) ;
Set_output

(NUMERICAL_TIME_SERIES) ;

class
{

ELEVATION_ACQUISinON : public

/* attributes */
STEREO_PAIR
NUMERICAL_OVERLAY
ANALYST

OPERATION

airjphoto_pair ;
output_elevation_model ;
performed_by ;

/* operations */
STEREO_PAIR
void
NUMERICAL_OVERLAY
void

ANALYST
void

Get_air_photo_pair (void) ;
Set_alr_jphoto_pair (STEREO_PAIR) ;
Get_output_elevation_model (void) ;
Set_outptu_ele vati on_model

(NUMERICAL_OVERLAY) ;
Get_analyst (vodi) ;
Set_analyst (ANALYST) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

class
{

SPECmAL_ACQUISmON

/* attributes */
SENSOR
POINT_MODEL
NUMBER
NUMBER

public OPERATION

sensor ;
output_spectraI_modeI ;
solar_zenith ;
soIar_azimuth ;

};

class
{

I* operations */

SENSOR
void
POINT_MODEL
void

CLIMATE_ACQUISITION

/* attributes */
NWS_MET_STATION
NUMERICAL_OVERLAY
CLIMATE_RECORDER

public

Get_sensor (void) ;
Set_sensor (SENSOR) ;
Get_output_spectral_model (void)
Set_output_spectral_modei

(POINT_MODEL) ;

OPERATION

climate_station ;
output_climate_model ;
data_recorder ;

I* operations */
NWS_MET_STATION
void

NUMERICAL_OVERLAY
void

CLIMATE_RECORDER
void

Get_climate_station (void) ;
Set_climate_stati on

(NWS_MET_STATION) ;
Get_output_climate_model (void) ;
Set_output_cl i mate_model

(NUMERICAL_OVERLAY) ;
Get_data_recorder (void) ;
Set_data_recorder

(CLIMATE_RECORDER) ;
} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

class
t

FIELD_ACQUISrnON

/* attributes */
FIELD_WORKER
SAMPLING_SYSTEM
AERIAL_PHOTO
TRAINING_SITE
FIELD FORM

public OPERATION

field_worker ;
sampling_system ;
airjphoto ;
training_sitet ;
fieldform :

/* operations */
HELD_WORKER
void
SAMPLING_SYSTEM
void

AERIAL_PHOTO
void
TRAINING_SITE
void
FIELD_FORM
void

Get_field_worker (void) ;
Set_field_worker (FIELD_WORKER) ;
Get, sampling, system (void) ;
Set_sampling_system

SAMPLING_SYSTEM) ;
Get_air_photo (void) ;
Set_airj)hoto (AERIAL_PHOTO) ;
Get_ training, site (void) ;
Set_training_site (TRAINING_SITE) ;
Get_field_fonn (void) ;
Set_field_fonn (FIELD_FORM) 1;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

2f. Classification Classes

class
(

Î ;

class
{

SPECTRAL_SPACE : public

/* attributes */
NUMBER
SET < COLOR_GROUP >

/* operations *I
NUMBER
void
COLOR GROUP

SIGNATURE : public

/* attributes */
NUMBER
TRAINING_SAMPLE
USER DEFINED_CLASS

DOCUMENTED ENTITY

dimensionality ;
color_groups ;

Get_dimensionality (void) ;
Set_dimensionality (NUMBER) ;
Iterate_over_color_groups (void) ;

DOCUMENTED ENTITY

value ;
derived_from ;
characterized_class ;

f* operations */
NUMBER
void
TRAINING_SAMPLE
void

USER_DEFINED_CLASS
void

void
BOOLEAN

Get_value (void) ;
Set_value (NUMBER) ;
Get_training_sample (void) ;
Set_training_sample

(TRAINING_SAMPLE) ;
Get_characterized_class (void) ;
Set_characterized_cl ass

(USER_DEFINED_CLASS)
Compute_value (NUMBER) ;
Is_match (NUMBER) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class
{

} ;

137

SPECTRAL_BANK ; public DOCUMENTED_ENnTY

/* attributes */
SET < BRIGHTNESS_GROUP>

/* operations */
BRIGHTNESS_GROUP
void

brightness_groups ;

Iterate_over_brightness_groups (void)
Set_brightness _group

(BRIGHTNESS_GROUP) ;

class SPECTRAL_GROUP
{

; public DOCUMENTED ENTITY

1 ;

class
{

{* attributes */
NUMBER
/* operations */
NUMBER
void

correlation_coefficient ;

Get_correlation_coefficient (void) ;
Set_correlation_coefficient (NUMBER) ;

COLOR_GROUP : public

I* attributes */
NUMBER
SET < BRIGHTNESS_GROUP >

SPECTRAL_GROUP

number_brightness_groups ;
brightness_groups ;

f* operations */
NUMBER
void

BRIGHTNESS_GROUP

Get_number_brightness_groups (void) ;
Set_number_brightness_groups

(NUMBER) ;
Iterate_over_brightness_groups (void) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

class
I

BRIGHTNESS_GROUP : public SPECTRAL_GROUP

} ;

class
{

/* attributes */
COLOR_GROUP
SPECTRAL_CLASS
NUMERICAL_POINT
NUMERICAL.POINT
NUMERICAL_POINT

/* operations */
COLOR_GROUP
void

SPECTRAL_CLASS
void

NUMERICAL_POINT
void
NUMERICAL_POINT
void
NUMERICAL_POINT
void
BOOLEAN

TRAINING_SAMPLE

/* attributes */
SET < TRAINING_SITE >
SIGNATURE

: public

containing_color_group ;
spectral_class ;
point_l
point_2
point_3

Get_containing_color_group (void) ;
Set_containing_color_group

(COLOR_GROUP) ;
Get_spectral_class (void) ;
Set_spectral_class

(SPECTRAL_CLASS) ;
Get_point_l (void) ;
Set_point_l (NUMERICAL_POINT) ;
Get_point_2 (void) ;
Set_point_2 (NUMERICAL_POINT) ;
Get_point_3 (void) ;
Set_point_3 (NUMERICAL_POINT) ;
Is_match

(NUMBER, NUMBER, NUMBER) ;

DOCUMENTED ENTITY

training_sites ;
signature ;

} ;

f* operations */
TRAINING_SITE
SIGNATURE
void

Iterate_over_training_sites (void)
Get_signature (void) ;
Set„signature (SIGNATURE) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

class
{

SIMILARITY_MATRIX

I* attributes */
MATRIX < SIMILARITY >

public DOCUMENTED ENTITY

similarities ;

1 ;

/* operations */
SIMILARITY

void

Get_similarity
(USER_CLASS, USER_CLASS) ;

Set_similaiity
(USER_CLASS,USER_CLASS) ;

class
{

SIMILARITY : public

NUMBER
USER_DEFINED_CLASS
USER DEFINED CLASS

DOCUMENTED_ENTirY

value ;
from_class
to_class ;

I* operations */
NUMBER
void
USER_CLASS
void

USER_CLASS
void

Get_value (void) ;
Set_value (NUMBER) ;
Get_from_class (void) ;
Set_from_class

(USER_CLASS) ;
Get_to_class (void) ;
Set_to_class (USER_CLASS) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

class
{

MEMBERSHIP_FUNCTION

/* attribute */
STRING
USER_DEFINED_CLASS
FUNCTION

public DOCUMENTED ENTITY

attribute_defined ;
class_defined ;
function ;

/* operations */
STRING
void
USER_CLASS
void
FUNCTION
void
NUMBER

Get_attribute_defined (void) ;
Set_attribute_defined (STRING) ;
Get_class_defined (void) ;
Set_class_defined (USER_CLASS) ;
Get_function (void) ;
Set_function (FUNCTION) ;
Compute_possibility (NUMBER) ;

} ;

class
{

SCHEME_COMPONENT

/* attributes */
CLASS SCHEME

: public DOCUMENTED_ENTITY

containing_class_scheme ;

/* cç>erations */
CLASS_SCHEME
void

Get_containing_class_scheme (void) ;
Set_containing_class_scheme

(CLASS_SCHEME) ;

class
1

CLASS : public

/* attributes */
SPECIALIZATION
NUMBER
NUMBER

CLASS SCHEME COMPONENT

child_specialization ;
number_children ;
id;

/* operations */
SPECIALIZATION
void

NUMBER
void

Get_child_specialization (void) ;
Set_child_specialization

(SPECIALIZATION) ;
Get_id (void) ;
Set_id (NUMBER

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

class
{

ROOT_CLASS : public

/* attributes */
CLASS SCHEME

CLASS

containing class scheme ;

(* operations */
CLASS_SCHEME
void

Get_containing_class_scheme (void) ;
Set containing class scheme

CLASS_SCHEME) ;

class
{

USER_CLASS : public

I* attributes */
SPECIALIZATION
SIGNATURE
MEMBERSHIP FUNCTION

CLASS

parent_speciaiization ;
signature ;
membership_function ;

I* operations */
SPECIALIZATION
void

SIGNATURE
void
MEMBERSHIP_FUNCTION
void

Get_parent_specialization (void) ;
Set_parent_specialization

(SPECIALIZATION) ;
Get_signature (void) ;
Set_signature (SIGNATURE) ;
Get_membership_function (void) ;
Set_membership_function

(MEMBERSmP_FUNCTION) ;

1 ;
class
{

SOIL_CLASS

/* attributes */
SOIL REGION

public USER_DEFINED_CLASS

described_region ;

/* operations */
SOIL.REGION
void

Get_described_region (void) ;
Set_described_region (SOIL_REGION) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

class
{

COVER_CLASS : public

I* attributes */
COVER REGION

USER_DEFINED_CLASS

described_region ;

/* cçierations */
COVER.REGION
void

Get_described_region (void) ;
Set_described_region (COVER_REGION) ;

class SPECTRAL_CLASS

f* attributes */
CATEGORICAL REGION

public USER_DEFINED_CLASS

described_region ;

I;

I* operations */
CATEGORICAL_REGION
void

Get_described_region (void) ;
Set_described_region

(CATEGORICAL_REGION) ;

class
{

SPECIALIZATION

/* attributes *!
CLASS
USER DEF1NED_CLASS

public CLASS SCHEME COMPONENT

parent_class ;
child_class ;

!* operations */
CLASS
void
USER_DEFINED_CLASS
void

Get_parent_class (void) ;
Set_parent_class (CLASS) ;
Get_child_class (void) ;
Set_child_class

(USER_DEHNED_CLASS) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

class
{

OLASS_SCHEME

I* attributes */
ROOT CLASS

: public DOCUMENTED ENTITY

root ;

} ;

class
{

/* operations */
ROOT_CLASS
void

SOIL_SCHEME : public

I* attributes */
SOIL_MODEL
SET < SOIL CLASS >

Get_root (void) ;
Set_root (ROOT_CLASS) ;

CLASS_SCHEME

described_model ;
classes ;

) ;

class
{

I* operations */

SOIL_MODEL
void
SOIL_CLASS
void

COVER_SCHEME

/* attributes */
COVER_MODEL
SET < COVER CLASS >

public

Get_described_model (void) ;
Set_described_model (SOIL_MODEL) ;
Iterate_over_classes (void) ;
Set_class (SOIL_CLASS) ;

CLASS SCHEME

described_model ;
classes ;

} ;

/* operations */
COVER_MODEL
void
COVER_CLASS
void

Get_described_model (void) ;
Set_described_model (COVER_MODEL) ;
Iterate_over_classes (void) ;
Set_dass (COVER_CLASS) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

class
I

SPECTRAL_SCHEME

/* attributes */
CATEGORICAL_OVERLAY
SET < SPECTRAL CLASS >

: public CLASS SCHEME

described_overlay ;
clases ;

/* operations */
CATEGORICAL_OVERLAY
void

SPECTRAL_CLASS
void

Get_described_overlay (void) ;
Set_described_overlay

(CATEGORICAL_OVERLAY) ;
Iterate_over_classes (void) ;
Set_class (SPECTRAL_CLASS) ;

};

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

2g. Data Acquisition Classes

class
(

MET_STATION : public

/* attributes */
NUMBER
COORDINATE

DOCUMENTED ENTITY

elevation ;
coord ;

) ;

class
{

/* operations */
NUMBER
void
COORDINATE
void

ACTUAL MET_STATION public

/* attributes */
DATE
DATE

Get_elevation (void) ;
Set_elevation (NUMBER) ;
Get_coord (void) ;
Set_coord (COORDINATE) ;

MET_STATION

start_date ;
end_date ;

1 ;

class
I

/* operations */
DATE
void
DATE
void

VIRTUAL_MET_STATION public

/* attributes */
DATE

Get_start_date (void) ;
Set_start_date (DATE) ;
Get_end_date (void) ;
Set_end_date (DATE) ;

MET STATION

date_generated ;

I;

/* operations */
DATE
void

Get_date^generated (void) ;
Set_date_generated (DATE) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

class
{

AIRCRAFT : public

/* attribute */
CAMERA

DOCUMENTED ENTITY

cames ;

1 ;

c l a s s

{

/* operations */
CAMERA
void

Get_camera (void) ;
Set_camera (CAMERA) ;

AERIAL_PHOTO : public DOCUMENTED_ENTITY

/* attributes */
STRING type;
STRING scale ;
DATE acquisition_date ;
TIME acquisition_time ;
CAMERA camera ;

I* operations */
STRING Get_type (void) ;
void Set_type (STRING) ;
STRING Get_scale (void) ;
void Set_scale (STRING) ;
DATE Get_acquisition_date (void) ;
void Set_acquisition_date (DATE) ;
TIME Get_acquisition_time (void) ;
void Set_acquisition_time (TIME) ;
CAMERA Get_camera (void) ;
void Set_camera (CAMERA) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

class
{

STEREO_PAIR : public

f* attributes */
AERIALJPHOTO
AERIAL_PHOTO

DOCUMENTED.ENTITY

photo_l ;
photo_2 ;

/* operations */
AERIAL_PHOTO
void
AERIAL_PHOTO
void

Get_photo_l (void) ;
Set_photo_l (AERIAL_PHOTO) ;
Get_photo_2 (void) ;
Set_photo_2 (AERIALJPHOTO) ;

class
{

CAMERA

/* attributes */
STRING
NUMBER

: public DOCUMENTED ENTITY

manufacturer ;
focaljlength ;

/* operations */
STRING
void
NUMBER
void
AERIALjPHOTO

Get_manufacturer (void) ;
Set_manufactuier (STRING) ;
Get_focal_length (void) ;
Set_focal_length (NUMBER) ;
Readjdata (void) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

class
{

SATELUTE : public DOCUMENTED_ENTITY

/* attributes */
DATE launch_date ;
NUMBER life_expectancy ;
NUMBER ground_track_speed ;
NUMBER orbital_period ;
NUMBER ground_track_distance ;
SCANNER scanner ;
ORBIT orbit ;

f* operations */
DATE Get_launch_date (void) ;
void Set_launch_date (DATE) ;
NUMBER Get_life_expectancy (void) ;
void Set_life_expectancy (NUMBER) ;
NUMBER Get_ground_track_speed (void) ;
void Set_ground_track_speed (NUMBER) ;
NUMBER Get_orbital_period (void) ;
void Set_orbital_period (NUMBER) ;
NUMBER Get_ground_track_distance (void) ;
void Set_ground_track_distance (NUMBER) ;
SCANNER Get_scanner (void) ;
void Set_scaimer (SCANNER) ;
ORBIT Get_orbit (void) ;
void Set_orbit (ORBIT) ;

1 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

class
{

ORBIT

!* attributes *
NUMBER
NUMBER

public DOCUMENTED ENTITY

altitude ;
inclination_angle ;

} ;

class
{

I* operations *
NUMBER
void
NUMBER
void

SCANNER : public

I* attributes *i
NUMBER
NUMBER
NUMBER
SATELLITE
SENSOR

Get_altitude (void) ;
Set_altitude (NUMBER) ;
Get_inclination_angle (void) ;
Set_inclination_angle (NUMBER)

DOCUMENTED ENTITY

scan_angle ;
instantaneous_field_of_view ;
swath_width ;
carried_on ;
carries ;

i* operations */
NUMBER
void
NUMBER
void

NUMBER
void
SATELLITE
void
SENSOR
void

Get_scan_ang]e (void) ;
Set_scan_angle (NUMBER) ;
Get_instantaneous_field_of_view (void) ;
Set_instantaneous_fi eld_of_vie w

(NUMBER) ;
Get_swath_width (void) ;
Set_swath_width (NUMBER) ;
Get_satellite (void) ;
Set_sateliite (SATELLITE) ;
Get_sensor (void) ;
Set_sensor (SENSOR) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

class
{

1 ;

class
{

1 ;

class
{

SENSOR : public DOCUMENTED_ENTITY

!* attributes */
STRING
NUMBER
SET < EMS_B AND >
SCANNER

temporal_resolution ;
radiometric_resolution ;
ems_bands ;
scanner ;

!* operations */
STRING
void
NUMBER
void
EMS_BAND
SCANNER
void
POINT_MODEL

Get_temporal_resolution (void) ;
Set_temporal_resoIution (STRING) ;
Get_radiometric_resolution (void) ;
Set_radiometric_resolution (NUMBER) ;
Iterate_over_ems„bands (void) ;
Get_scanner (void) ;
Set_scanner (SCANNER) ;
Read_data (void) ;

EMS_BAND : public DOCUMENTED_ENTITY

f* attributes */
STRING spectral_resolution ;

!* operations *l
STRING
void

Get_spectral_resolution (void) ;
Set_spectral_resolution (STRING) ;

FIELD_FORM : public d o c u m e n t e d _e n t it y

f* attributes */
SAMPLING_SYSTEM
DATAJTEM

sampling_system ;
data ;

f* operations *l
SAMPLING_SYSTEM
void

DATAJTEM
void

Get_sampling_system (void) ;
Set_sampling_system

(SAMPLING_SYSTEM) ;
Get_data_item (void) ;
Set_data_item (DATA_ITEM) ;

1 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

class
{

SAMPLING_SYSTEM

f* attributes */
STRING

public DOCUMENTED ENTITY

developer ;

};

class
{

I* operations */
STRING
void

DATA_ITEM

/* attributes */
STRING
NUMBER

Get_developer (void) ;
Set_developer (STRING) ;

public DOCUMENTED ENTITY

data_type ;
value ;

I* operations */
STRING
void
NUMBER
void

Get_data_type (void) ;
Set_data_type (STRING) ;
Get_value (void) ;
Set_value (NUMBER) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2h. Descriptor Classes

152

class
{

1 ;

class
{

SPATIAL_DESCRIPTOR

/* attributes */
SPATIAL_MODEL

f* operations *!
SPATIAL_MODEL
void

: public

PROJECnON_PARAMETERS : public

!* attributes */
NUMBER
NUMBER

DOCUMENTED ENTITY

described_model ;

Get_described_model (void) ;
Set_described_model

(SPATIAL_MODEL) ;

SPATIAL DESCRIPTOR

easting ;
northing ;

} ;

class
{

I* operations */
NUMBER
void
NUMBER
void

GENERIC_SPATIAL_DESCRIPTOR

Get_easting (void) ;
Set_easting (NUMBER) ;
Get_northing (void) ;
Set_northing (void) ;

; public SPATIAL DESCRIPTOR

/* attributes *t
STRING
STRING

f* operations */
STRING
void
STRING
void

descriptor_type ;
descriptor_value ;

Get_desc_value (void) ;
Set_desc_value (STRING) :
Get_desc_type (void) ;
Set_desc_type (STRING) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

class
{

TEMPORAL_DESCRIPTOR

/* attributes */
STRING
STRING
TIME SERIES

public DOCUMENTED ENTITY

temporal_descriptor_type ;
temporal_descriptor_value ;
described_time_series ;

} ;

/* operations *!
STRING
void
STRING
void

Get_temporal_descriptor_type (void) ;
Set_temporal_descriptor_type (STRING) ;
Get_temporal_descriptor_type (void) ;
Set_temporal_descriptor_type (STRING) ;

class
{

GCP_SET

I* attributes */
SET < COORDINATE >
SET < COORDINATE >

public DOCUMENTED_ENTITY

coordinate_set_l ;
coordinate_set_2 ;

i* operations */
COORDINATE
FUNCTION

Iterate_over_coordinates ;
Compute_transformation (void) ;

class
{

TIME_SERIES : public

f* attributes */
TEMPORAL_DESCRIPTOR
TEMPORAL DESCRIPTOR

DOCUMENTED_ENTITY

temporal_scale ;
temporal_resolution ;

I* operations */
TEMPORAL_DESCRIPTOR
void

TEMPORAL_DESCRIPTOR
void

Get_temporal_scale (void) ;
Set_temporal_scale

(TEMPORAL_DESCRIPTOR) ;
Get_temporal_resoluiton (void) ;
Set_temporaJ_resolution

(TEMPORAL_DESCRIPTOR) ;
} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

class
{

n u m e r ic a l t im e se r ie s public TIME SERIES

f* attributes */
SET < NUMERICAL_OVERLAY >
SET < NUMERICAL_SERIES_CONSUMER >

numericaI_overlays ;
consuming_operations;

} ;

/* operations */
NUMERICAL_OVERLAY
NUMERICAL_SERIES CONSUMER

Iterate_over_numerical_overlays (void) ;
Iterate_over_consuming_operations (void) ;

class
{

ECOMODEL_TIME_SERIES : public

I* attributes */
SET<ECOMODEL>
SET < ECOMODEL_SERIES_CONSUMER >

TIME.SERIES

ecomodels ;
consuming_operations;

/* operations */
ECOMODEL
ECOMODEL SERIES CONSUMER

Iterate_over_ecomodels (void) ;
Iterate_over_consuming_operations (void) ;

class
{

COORDINATE : pubUc

/* attributes */
NUMBER
NUMBER
STRING

ENTITY

x_coord ;
y_coord ;
coord_type ;

I* operations */
NUMBER
void
NUMBER
void
STRING
void

Get_x_coord (void) ;
Set_x_coord (NUMBER) ;
Get_y_coord (void) ;
Set_y_coord (NUMBER) ;
Get_coord_type (void) ;
Set_coord_type (STRING) ;

1 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

2i. Window Classes

class
{

WINDOW

!* attributes */
NUMBER
NUMBER

I* operations */
NUMBER
void
NUMBER
void

public DOCUMENTED ENTITY

dimension_in_x ;
dimension_in_y ;

Get_dimension_in_x (void) ;
Set_dimension_in_x (NUMBER) ;
Get_dimensicxi_in_y (void) ;
Set_dimension_in_y (NUMBER) ;

1 ;

class
{

AVERAGE_WINDOW

/* attributes */
MATRIX
NUMBER

public WINDOW

coefficient_matrix
mean ;

};

class
{

i* operations */
MATRIX
void
NUMBER
NUMBER
NUMBER

REPARTITION WINDOW public

I* attributes */
NUMBER
NUMBER

Get_coefficient_matrix (void) ;
Set_coefficient_matrix (MATRIX) ;
Get_value (void) ;
Set_value (NUMBER) ;
Compute_mean (MATRIX) ;

WINDOW

majority ;
minority ;

I* operations */
NUMBER
void
NUMBER
void
NUMBER
NUMBER

Get_majority (void) ;
Set_maJority (NUMBER) ;
Get_minority (void) ;
Set_minority (NUMBER) ;
Calculate_majority (void) ;
Calculate_minority (void) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

class
{

};

class
{

TOPO_WINDOW

/* attributes */
NUMBER
NUMBER

/* operations */
NUMBER
void
NUMBER
void
NUMBER
NUMBER

SEARCH_WINDOW

/* attributes */
NUMBER

/* operations */
NUMBER
void
POINT

public

public

WINDOW

gradient ;
aspect ;

Get_gradient (void) ;
Set_gradient (NUMBER) ;
Get_aspect (void) ;
Set_aspect (NUMBER) ;
Calculate_gradient (void) ;
Calculate_aspect (void) ;

WINDOW

number j>oints ;

Get_number_points (void) ;
Set_number_points (NUMBER) ;
Get_nearest_neighbor (void) ;

} ;

class INTERPOLATE_WINDOW
{

/* attributes */
SET < NUMERICAL_POINT>
NUMBER

: public

target_points ;

WINDOW

value ;

) ;

/* operations */
NUMERICAL_POINT
NUMBER
void
void

Iterate_over_target_points (void)
Get_value (void) ;
Set_value (NUMBER) ;
Compute_weight (void) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2j. Software Classes

157

class
(

SOFTWARE_DEVELOPMENT : public

/* attributes */
DATE
DATE

DOCUMENTED ENTITY

start_date ;
end_date ;

};

/* operations */
DATE
void
DATE
void

Get_start_date (void) ;
Set_start_date (DATE) ;
Get_end_date (void) ;
Set_end_date (DATE) ;

class
{

DESIGN : public

/* attributes */
SET < DESIGNER >
SET < IMPLEMENTIONS >

SOFTWARE DEVELOPMENT

designers ;
implementations ;

} ;

!* operations */
DESIGNER
IMPLEMENTATION

terate_over_designers (void) ;
Iterate_over_implementations (void) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

class
{

IMPLEMENTATION ; public SOFTWARE_DEVELOPMENT

/* attributes */
SET < PROGRAMMER >
DESIGN
IMPLEMENTED_COMPONENT
SET < PROGRAMMING_LANGUAGE >

programmers ;
design ;
product ;
programmingjanguages ;

} ;

class
{

f* operations */
PROGRAMMER
DESIGN
void
IMPLEMENTATION_COMPONENT
void

PROGRAM.LANGUAGE

Iterate_over_programmers (void) ;
Get_design (void) ;
Set_design (DESIGN) ;
Getjmplementation_component (void) ;
Set_implementati on_component

(IMPLEMENTATION_COMPONENT) ;
Iterate_over_programming_l anguages

(void) ;

SOFTWARE : public DOCUMENTED_ENTITY

I* attributes */
STRING version_number ;
STRING revision_number ;
EXECUTABLE executable ;
SET < COMMAND > commands ;

/* operations *l
STRING Get_version_number (void) ;
void Set_version_number (STRING) ;
STRING Get_revision_number (void) ;
void Set_revision_number (STRING) ;
EXECUTABLE Get_executable (void) ;
void Set_executable (EXECUTABLE) ;
COMMAND lterate_over_commands (void) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

class
{

CUSTOM_SOFTWARE

/* attributes */
SOURCE COMPONENT

; public SOFTWARE

source ;

} ;

class
{

/* operations */
SOURCE_COMPONENT
void

COMMERCIAL.SOFTWARB ; public

!* attributes */
STRING
STRING
NUMBER

Get_source (void) ;
Set_source (SOURCE_COMPONENT)

SOFTWARE

producer ;
vendor ;
cost ;

1 ;

class
{

f* operations */
STRING
void
STRING
void
NUMBER
void

IMPLEMENTED_COMPONENT : public

/* attributes */
CUSTOM_SOFTWARE

Get_producer (void) ;
Set_producer (STRING) ;
Get_vendor (void) ;
Set_vendor (STRING) ;
Get_cost (void) ;
Set_cost (NUMBER) ;

DOCUMENTED ENTITY

containing_software ;

} ;

/* operations */
CUSTOM_SOFTWARE
void

Get_containing_software (void) ;
Set_containing_software

(CUSTOM_SOFTWARE) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

class
{

};

class
{

} ;

class
{

} ;

class
{

SOURCE_COMPONENT : public

/* attributes */
SET < SOURCE^MODULE >

/* operations */
SOURCE_MODULE

SOURCE_MODULE : public

I* attributes */
SOURCE_COMPONENT

I* operations */
SOURCE.COMPONENT
void

EXECUTABLE_COMPONENT : public

I* attributes *l
SOFTWARE

f* operations *!
SOFTWARE
void

IMPLEMENTATION COMPONENT

source_modules ;

Iterate_over_source_modules (void) ;

IMPLEMENTATION COMPONENT

ontaining_source_component ;

Get_containing_source_coniponent (void) ;
Set_containing_source_component

(SOURCE_COMPONENT) ;

DOCUMENTED ENTITY

containing_software ;

Get_software (void) ;
Set_software (SOFTWARE) ;

COMMAND : public

/* attributes */
OPERATION

/* operations */
OPERATION
void

EXECUTABLE COMPONENT

operation_used_for ;

Get_operation_used_for (void) ;
Set_operation_used_for (OPERATION)

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

class
{

EXECUTABLE : public

/* attributes */
DATE

EXECUTABLE COMPONENT

creation_date ;

1 ;

class
{

/* operations *f
DATE
void

PROGRAMMING_LANGUAGE : public

/* attributes */
SET < IMPLEMENTATION >

Get_creation_date (void) ;
Set_creation_date (DATE) ;

DOCUMENTED_ENTITY

implementations ;

f* curations */
IMPLEMENTATION Iterate_overJmplenientations (vodi)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2k. Documentation Classes

162

class
{

DOCUMENT : public

I* attributes *[
NUMBER

NAMED ENTITY

length ;

};

class
{

f* operations */
NUMBER
void

e x t e r n a l _d o c u m e n t

f* attributes */
STRING

public

Getjength (void) ;
Set_length (NUMBER) ;

DOCUMENTED ENTITY

writer ;

);

class
{

I* operations */
STRING
void

PUB EXT.DOCUMENT

I* attributes */
DATE

public

Get_writer (void) ;
Set_writer (STRING) ;

EXTERNAL DOCUMENT

publication_date ;

1 ;

class
{

I* operations */
DATE
void

e x t e r n a l _ b o o k

I* attributes */
STRING

public

Get_publication_date (void) ;
Set_publication_date (DATE)

PUB EXT DOCUMENT

publisher ;

1 :

/* operations *!
STRING
void

Get ̂ publisher (void) ;
Set_publisher (STRING) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

class
{

e x t e r n a l _a r t ic l e

I* attributes */
STRING

I* operations */
STRING
void

: public PUB EXT DOCUMENT

journal ;

Get journal (void) ;
Setjoumal (STRING) ;

} ;

class
{

} ;

class
{

EXTERNAL.THESIS ; public

/* attributes */
STRING

I* operations */
STRING
void

INTERNAL_DOCUMENT : public

I* attributes */
SET <AUTHOR >

EXTERNAL DOCUMENT

degree ;

Get_degree (void) ;
Set_degree (STRING) ;

DOCUMENT

writers ;

} ;

[* operations */
AUTHOR

class PUB_INT_DOCUMENT
{

I* attributes *!
DATE

: public

Iterate_over_writers (void) ;

INTERNAL DOCUMENT

publication_date ;

I* operations */
DATE
void

Get_publication_date (void) ;
Set_publication_date (DATE)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

class
{

INTERNAL_BOOK public PUB INT DOCUMENT

/* attributes */
STRING

/* operations */
STRING
void

publisher ;

Getjjublisher (void) ;
Set_publisher (STRING) ;

\ ;

class
{

};

class
{

INTERNAL_ARTICLE

/* attributes */
STRING

/* operations */
STRING
void

INTERNAL_THESIS

/* attribuées */
STRING

public

public

PUB INT DOCUMENT

journal ;

Getjoumal (void) ;
Setjoumal (STRING) ;

INTERNAL DOCUMENT

degree ;

1 ;

/* operations */
STRING
void

Get_degree (void) ;
Set_degree (STRING) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

2j. Human Classes

class
{

EMPLOYEE : public NAMED_ENTITY

f* attributes */
STRING home_address ;
STRING home_phone ;
STRING office ;
STRING office_phone ;
STRING email ;
STRING fax ;
DATE birth_date ;
DATE hire_date ;
LAB employed_in ;

!* operations *l
STRING Get_home_address (void) ;
void Set_home_address (STRING) ;
STRING Get_home_phone (void) ;
void Set_home_phone (STRING) ;
STRING Get_office (void) ;
void Set_office (STRING) ;
STRING Get_office_phone (void) ;
void Set_office_phone (STRING) ;
STRING Get_email (void) ;
void Set_email (STRING) ;
STRING Get_fax (void) ;
void Set_fax (STRING) ;
DATE Get_birth_date (void) ;
void Set_birth_date (DATE) ;
DATE Get_hire_date (void) ;
void Set_hire_date (DATE) ;
LAB Retum_lab (void) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

class
{

ADMINISTRATOR

/* attributes */
SET <PROJECT>
LAB

public EMPLOYEE

projects ;
administers ;

} ;

/* operations */
PROJECT
LAB

Iterate_over j>roJects (void) ;
Retum_lab (void) ;

class
{

AUTHOR : public EMPLOYEE

/* attributes */
SET < INTERN AL_DOCUMENT > documents ;

};

class
{

f* operations */
INTERN AL_DOCUMENT

ANALYST : public

[* attributes *f
SET < OPERATION >

EMPLOYEE

Iterate_over_documents (void) ;

operations ;

} ;

J* operations *!
OPERATION Iterate_over_operations (void)

class
{

PROGRAMMER: public

f* attributes */
SET < IMPLEMENTATION >

EMPLOYEE

implementations ;

} ;

/* operations */
IMPLEMENTATION Iterate_over_implementation (void)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

class
{

DESIGNER public EMPLOYEE

/* attributes */

1 ;

class
{

} ;

class
{

SET < DESIGN > designs ;

f* operations */
DESIGN Iterate_over_designs (void) ;

FIELD_WORKER : public EMPLOYEE

i* attributes */
SET < FIELD_DATA_ACQUISITION > field_data_acquisitions ;

/* operations */
FIELD_DATA_ACQUISmON Iterate_over_fieId_dat a_acquis iti

LAB ; public DOCUMENTED_ENTITY

/* attributes */
STRING lab_address ;
STRING lab_phone ;
STRING lab_email ;
STRING lab_fax ;
SET < PROJECT > projects ;
SET < EMPLOYEE > employees ;

/* operations */
STRING Get_lab_address (void) ;
void Setjab_address (STRING) ;
STRING Get_lab_phone (void) ;
void Set_Iab_phone (STRING) ;
STRING Get_lab_email (void) ;
void Set_lab_emaii (STRING) ;
STRING Get_lab_fax (void) ;
void Set_lab_fax (STRING) ;
PROJECT Iterate_over_projects (void) ;
EMPLOYEE Iterate_over_empIoyees (void) ;

} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

class
{

PROJECT

/* attributes */
STRING
LAB

f* operations */
STRING
void
LAB

: public DOCUMENTED ENTITY

funding_source ;
managed_by ;

Get_funding_source (void) ;
Set_funding_source (STRING) ;
Retum_lab (void) ;

1 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX III
SCENARIOS

TABLE OF CONTENTS

Scenario Name page number
1. Resampling 170
2. Registration 171
3. Overlay Algebra 172
4. Contrast Stetch 173
5. Convolution 174
6. Inteipolation 175
7. EcoModel Assignment 176
8. Cluster Analysis 177
9. Spectral Classification 178
10. Cover Training — traditional set theory 179
11. Cover Classification — traditional set theory 180
12. Cover Training — fuzzy set theory 181
13. Cover Classification — fuzzy set theory 182
14. Merge 183
15. Majority Filter 184
16. Elevation Data Acquisition ' 185
17. Spectral Data Acquisition 186
18. Climate Data Acquisition 187
19. Field Data Acquisition 188

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

a n A n a ly s t

1 . E x e c u t e

2 . P e r f o rma C o m m a n d a R e s a m p le

3 . I te r a te o v e r p o in ts

4 . R e s a m p le
5 . G e t v a lu e

a n O v e r la y

6 . S e t v a lu e

a R e s a m p le
W in d o w

a D a t a P o in t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

a n A n a ly s t

a G C P S e t

a C o m m a n d 1 . E x e c u te
3 . C r e a t e

8 . A d d f ro m c o o r d
9 . A d d to c o o r d / ^

1 0 . C o m p u te T r a n s to r m a t io n a n O v e r la y --
m a s t e r

4 . G e t p o in t
2 . P e r fo rm

- . " ^ 5 . G e t p o in t
1 1 . I t e r a te o v e r p o in tsa R e g is t r a t io n a n O v e r la y --

s la v e

6 . G e t c o o r d in a te

1 2 . G e t c o o r d a D a ta P o in t -
m a s t e r

. G e t c o o r d in a te

1 3 . S e t X c o o r d
1 4 . S e t y c o o r d

a D a ta P o in t --
s l a v e a D a ta P o in t -

s l a v ea C o o r d in a te

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

a n A n a ly s t

a N u m e r ic a l
O v e r la y 11 . E x e c u te

I te r a te o v e r po in t!

a C o m m a n d 2 . P e r fo rm

a n O v e r la y
A lg e g b ra

I te r a te o v e r p o in ts

a N u m e r ic a l
O v e r la y 2

G e t v a lu e

A d d

a N u m e r ic a l
P o in t 2 a N u m e r ic a l

P o in t 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

a n A n a ly s t

E x e c u te

a C o m m a n d

2 . P e r fo rm
a C o n s t r a s t

S t r e t c h

3 . I te r a te o v e r p o in ts

a N u m e r ic a l
O v e r la y4 . G e t v a lu e

5 . S e t v a lu e

a N u m e r ic a l
P o in t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

a n A n a ly s t

1 . E x e c u t e

a C o m m a n d

2 . P e r f o r m

a N u m e r ic a l
O v e r la y3 . I te r a te o v e r p o in ts

a C o n v o lv e

4 . C o m p u te m e a n
 5 . G e t v a lu e

a n A v e r a g e
W in d o w6 . S e t v a lu e

a N u m e r ic a l
P o in t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

a n A n a ly s t

1 . E x e c u t e

a Command

2 . P e r fo rm
a Numerical

O v e r la y - t a r g e t
a n In te rp o la t io n 3 . I te r a te o v e r p o in ts

6 . S e t v a lu e

4 . C o m p u te w e ig h t s
5 . G e t v a lu e

a N u m e r ic a l
P o in t — ta r g e t

a n In te rp o la t io n
W in d o w

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

a n A n a ly s t

a Command
a P o in t M o d e l

1 . E x e c u te

3 . I te ra te o v e r m o d e l p o in ts
a N u m e r ic a l

O v e r la yg. Perform
4 . G e t n u m e r ic a l a t t r ib u te

1 1 . G e t p o ir r t_ _ _ - - -

an Ecomodel
Assignment 5 . G e t n a m e

a N u m e r ic a l
A ttr ib u te

6 . I te ra te o v e r c o v e r
s u b r e g io n s

1 2 . G e t v a lu e

1 3 , S e t t m l a C o v e r M o d e l

9 . I te ra te o v e r p o i n ^

1 0 . G e t c o o i

N u m e r ic a l
P o in t

7 . G e t c a te g o r ic a l s u b re g io i
8 . G e t T M D e s c r ip to ra T M D e s c r ip to r

a C a te g o r ic a l
S u b r e g io n

a C o v e r
S u b r e g io n

a C a te g o r ic a l
P o in t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

a n A n a ly s t
a S p e c t r a l C l a s s

S c t i e m ea C o m m a n d

a S p e c t r a l C l a s s
1. E x e c u te

3 . C r e a t e ^
1 7 . S e t s p e c t r a l c l a s s 1 5 . C r e a te

i2 . Perform

a P o in t M o d e l
4 . S a m p le p o in ts

a C lu s te r
A n a ly s i s

'. G e t p o in t a N u m e r ic a l
O v e r la y - tm 3

6 . G e t p o in t

a N u m e ric a l
O v e r la y - tm 4

7 . G e t p o in t

a N u m e r ic a l
O v e r la y - tm s1 2 . I s m a tc h

1 3 . C r e a t e \ »
1 6 . S e t s p e c t r a l c l a s s

1 0 . G e t v a lu e

8. G e t v a lu e

9 . G e t v a lu e
a N u m e r ic a l
P o in t - tm 3

a B r ig h tn e s s
G ro u p

a N u m e r ic a l
P o in t - tm 5

a N u m e r ic a l
P o in t ” tm 4

1 1 , I te r a te o v e r b r ig h tn e s s
g r o u p s

1 4 . S e t b r i g h tn e s s g r o u p

a S p e c t r a l B a n k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

an Analyst
a C o m m a n d

1 . E x e c u te a P o in t M o d e l

3 . I te ra te o v e r g g in t :P e r f o rm

a S p e c t r a l
C la s s i f ic a t io n a Numerical

O v e r la y -- tm S4 . G e t poll

5 . G e t p o in t
a N u m e r ic a l

O v e r la y -- tm 4

6 . G e t p o in t

a N u m e r ic a l
O v e r la y - tm 5

7 . G e t v a lu e

1 4 . S e t v a lu e
8 . G e t v a lu e

1 1 . I s m a tc h

9. Get value a N u m e r ic a l
P o in t — tm 3

10. Iterate over brightness
groups

1 2 . C r e a te
1 3 . G e t p o in t

a Brightness
G ro u p a N u m e r ic a l

P o in t “ tm 4
a C a te g o r ic a l

P o in t a S p e c t r a l B a n k

a N u m e r ic a l
P o in t -- tm 5

a Categorical
Overlay

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

a n A n a ly s t

a C o v e r M o d e l

3 . S e t c o v e r c l a s s s c h e r n e
4 I te r a te o v e r tra in in g s i te s
9,’ I te ra te o v e ^ o y e t ^ i o n s

1 . E x e c u te
a C o m m a n d

2 . P e r f o r m

6 . S e t re g io na C o v e r
T ra in in g a T ra in in g S ite

5 . C r e a te
7 . S e t s u b r e g io n

' \ 8 . S e t c o v e r c l a s s
1 0 I t e r a t e o v e r s u b r e g io n s

16. Get class

a R e g io n

1 7 . S e t s ig n a tu r e '

\1 4 . C r e a t e
15 . Compute value

a C o v e r
S u b r e g io n

a T M D e s c r ip to r
a C l a s s

a Signature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

a n A n a ly s t

a C o v e r M o d e l

a C o m m a n d
1 . E x e c u te

G e t c o v e r c l a s s s c h e m e
4 . I t e r a t e o v e r c o v e r

s u b r e g io n s

P e r fo rm

5 . G e t T M d e s c r ip to r
1 1 . S e t c o v e r re g io n
1 2 . G e t c o v e r re g io n a C o v e r

S u b r e g io na C o v e r
C la s s i f ic a t io n

6 . G e t tm t
7. G e t tm 2

8 . I t e r a t e o v e r c l a s s e s a T M D e s c r ip to r

1 3 . S e t c o v e r s u b r e g io n
9 . G e t s ig n a tu r e

1 0 . Is m a tc h

a C l a s s S c h e m e

a S ig n a tu r e

a R e g io n a C la s s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

a n A n a ly s t

a C o v e r M o d e l

3 . S e t c o v e r c l a s s s c h e m e
4 . I te r a te o v e r tra in in g s i t e s
9 . I te ra te o v e r c o v e r r e g io n s

1 . E x e c u te
a C o m m a n d

2 . P e r fo rm

6 . S e t re g io n
a T ra in in g S i te

5 . C r e a te
S e t s u b re g io r i

8 . S e t c o v e r c l a s s
1 0 , I te r a te o v e r s u b r e g io n s
\ 2 6 . G e t c l a s s ' - ^

2 7 . S e t s i g n a tu r e - t m l /
2 8 . S e t s i g n a t u r e - tm 2

2 9 . S e t m e m b e r s h ip fu n c t io n
tm 1 / , /

3 0 . S e t m e m b e r s h ip f u n c t io n a R e g io n

1 1 . G e t T M d e s c r ip to ra C l a s s

1 2 . G e t tm l
1 3 . G e t tm 2

2 3 . C r e a t e /
2 4 . C o m p u te fu n c t io n

2 5 . S e t a t t r ib u te
a C o v e r

S u b r e g io n
\1 4 . C r e a t e \

1 5 . C o m p u te v a lu e
1 6 . G e t v a lu e

2 0 . C r e a t e
2 1 . C o m p u te f u n c t io n

2 2 . S e t a t r ib u te
1 7 . C r e a te

1 8 . C o m p u te v a lu e
1 9 . G e t v a lu ea M e m b e r s h ip

F u n c t io n -- tm 2 a T M D e s c r ip to r

a Signature -
tm2

a M e m b e r s h ip
F u n c t io n - t m l

a S ig n a tu r e
tm l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

a n A n a ly s t

a C o v e r M o d e l
a C o m m a n d

1 . E x e c u te

3 . G e t c o v e r c l a s s s c h e m e
4 . I te ra te o v e r c o v e r s

subregions""^"^^
l2 . P e r f o r m

5 . G e t T M d e s c r ip to r
1 3 . S e t c o v e r re g io n
1 4 . G e t c o v e r re g io n a C o v e r

S u b r e g io n
a C o v e r

Classification

6 . G e t t m l
7 . G e t tm 2

8 . I t e r a t e o v e r c l a s s e s a TM D e sc r ip to i

1 5 . S e t c o v e r s u W g i o 9 . G e t m e m b e r fu n c tio n tm 1

/ * 1 1 . tp o m p u te p o s s ib il i ty 1 0 . G e t m e m b e r fu n c tio n tm 2

a G la s s S c h e m e

1 2 . C o m p u te possib tfii
a M e m b e r s h ip
F u n c t io n -- t m l

a R e g io n
a C l a s s

a M e m b e rs h ip
F u n c tio n - tm 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

a n A n a ly s ta C o m m a n d
a C a t O v e r la y

1 . E x e c u te
3 . I t e r a t e o v e r c o v e r

s u b r e g io n s
. P e r fo rm

4 . G e t A re a
5 . G e t c o v e r re g io n

7 . I te r a te o v e r n e ig h b o r s
12 . S e t c o v e r re g io n

1 6 . I te r a te o v e r p o in ts

a C a t S u b r e g io n
a M e rg e

6. Get cover class
1 3 . S e t cover subregion

a C a t R e g io n8 . G e t c o v e r re g io n/
1 7 . S e t v a lu

. G e t c o v e r c l a s s
G e t id ^ 1 4 . S e t ^ v e r s u b r e g io nP o in t

1 0 . G ^ s im ila r ity
a C a t S u b r e g io n

“ a n e ig h b o r

1 1 . G e t v a lu e

a C a t R e g io n
n e ig h b o r 'sa S im ila r ity

M a tr ix
a S im ila r i ty

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

a n A n a ly s t

1 . E x e c u t e

a C o m m a n d a C a te g o r ic a l
O v e r ta y

3 . I te r a te o v e r p o in ts .2. Perform

a M a jo r ity F ilte r
4 . G e t m a jo r ity

a R e p a r t i t io n
W in d o w

S e t v a lu e

a C a te g o r ic a l
P o in t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

a n A n a ly s t

a n E le v D a ta
A c q u is i t io n

1 . P e r fo rm

2 . C r e a t e

3 . G e t v a iu e

*4. S e t v a lu e
a N u m e r ic a l

O v e r la y - D E M

a P h o to
E le v a t io n P o in t

a N u m e r ic a l
P o in t - D E M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

a Satellite

G e t s c a n n e r

a S p e c t r a l
A c q u is i t io n

2 . G e t s e n s o r
a S c a n n e r

3 . R e a d

4 . C r e a t e ^
5 . I t e r a te o v e r o v e r la y s

6 . I te r a te o v e r p o i n t e ^

a S e n s o r

S e t v a lu e

a P o in t M o d e l -
T M s c e n e

a Numerical
Overlay - tml

Î Numerical
Point - tml

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

a N W S M e t
S ta t io n

1 . G e t c o o rd

a C l im a te
A c q u is i t io n

2 . R e a d

a C lim a te
R e c o r d e r

5 . S e t v a lu e \ 3 . C r e a t e
4 . G e t n u m e r ic a l p o in t

a N u m e r ic a l
P o in t

a N u m e r ic a l
O v e r la y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

a F ie ld W o rk e r

3 . R e a d

a F ie ld
A c q u is i t io n

1. Pertorrn
2 . G e t lo c a t io n

a T ra in in g S ite

4 . G e t d a t a ite m

5 . S e t v a lu e

a F ie ld F o rm

a D a ta I te m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

(Aronoff89) S . Aronoff, Geographic Information Systems ; A Management Perspective,
Ottawa, Canada : WDL Publications 1989.

(Band86) L. E. Band, "Topographic Partition of Watersheds with Digital Elevation
Water Resources Research, Y o\. 22 pp. 15-24 1986.

(Bennett93) D. A. Bennett, M. P. Armstrong, F. Weirich, "An Object-Oriented Model
Base Management System for Environmental Simulation", Proceedings o f the Second
International Conference!Workshop on Geographic Information Systems and
Environmental Modeling, Breckenridge, CO. September 1993.

(Boehm88) B. W. Boehm, "A Spiral Model of Software Development and Enhancement",
IEEE Computer, Vol. 21 No. 5 pp. 61-72 1988.

(Booch91) G. Booch, O ^ ^ Oriented Design with Applications. Redwood City, CA ;
The Benjamiri/Cummings Publishing Company, Inc. 1991.

(Burrough86) P. A. Burrough, Principles of Geographical Information Systems for Land
Resources Assessment. Oxford ; Clarendon Press 1986.

(ERDAS91) ERDAS. ERDAS Field Guide. ERDAS, Inc 1991.

(Fedrizzi87) M. Fedrizzi, "Introduction to Fuzzy Sets and Possiblity Theory" in
Optimization Models Using Fuzzy Sets and Possiblitv Theory ed. J. Kacprzyk, S. A.
Orlov ski, Kluwer Academic Publishers 1987.

(Ford92) R. Ford, "Ecosystem Information System Development", National Science
Foundation Grant Proposal 1992.

(Hungerford87) R. D. Hungerford, R. Nemani, S. W. Running, J. C. Coughlan,
"MTCLIM; A Mountain Microclimate Simulation Model" USDA, INT-414 November
1989.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

(Jennings93) M. D. Jennings,. "A Land Cover Classification for GAP Analysis Terrestrial
Vegetation", draft 1993.

(Klanika93) K. Klanika, M. Mohite, A. D. Whittaker, M. L. Wolfe, "A Distributed
Parameter, Object-Oriented Hydrologie Model", Proceedings o f the Second International
Conference/Workshop on Geographic Information Systems and Environmental Modeling,
Breckenridge, CO. September 1993.

(Lammers90) R. B. Lammers, L. E. Band, "Automating Object Representation of
Drainage Basins", Computers and GeoSciences, Vol. 16 pp. 787-810 1990.

(Lillesand79) T. M. Lillesand, R. W. Kiefer, Remote Sensing and Image Interpretation.
John Wiley & Sons 1979

(Ma93) Z. Ma, R. L. Redmond, "Using Landsat TM Data and a CIS to Clasify and Map
Existing Vegetation Across the State of Montana", draft 1993.

(Muehrcke78) P. C. Muehrcke, J. O. Muehrcke, Map Use i Reading. Analysis and
Interpretations, Madison, WI : JP Publishing 1978.

(Nemani92) R. Nemani, S. W. Running, L. Band, D. Peterson, "Regional Hydro-Ecological
Simulation System: An Illustration of the Integration of Ecosystem Models in a GIS" in
Integrating GIS and Environmental Modeling ed. M. Goodchild, B. Banks, L. Steyvert^
Oxford, London 1992.

(Raper93) J. Raper, D. Livingstone "High Level Coupling of GIS and Environmental
Process Modeling", Proceedings o f the Second International Confer ence/Workshop on
Geographic Information Systems and Environmental Modeling, Breckenridge, CO.
September 1993.

(Robinson53) H. Robinson, R. D. Sale, J. L. Morrison, P. C. Muehrcke, Elements of
Cartography, New York, NY : John Wiley & Sons 1953.

(Scott93) M. Scott et, al., "GAP Analysis : A Geographical Approach to Protection of
Biological Diversity", Wildlife Monograph No. 123 January 1993.

(Silvert93) W. Süvert, "Object-Oriented Ecosystem Modeling", Elsevier Inc. 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

(UnwinSl) D. Unwin, Introductory Spatial Analysis. Methuen 1981.

(USGS86) U. S. Geological Suryey, "Standards for Digital Eleyation Models", Open File
Report 86-004. Dept, of the Interior, U. S. Geological Survey, National Mapping
Division 1986.

(White93) I. White, The Booch Method i A Case Study for Rational Rose for Windows.
Santa Clara, CA : Rational 1993.

(White92) J. White, "RHESSys Runs on Watershed Scale Data", unpublished document
1992.

(Zladeh65) L.A. Zadeh, "Fuzzy Sets", Inf. and Control Vol. 8 pp. 338-353 1965.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	An object oriented domain analysis of ecosystem modeling
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.nyDtT

