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Jie Zhang, Computer Science

Model-based Path Testing

This paper presents some algorithms for model-based path testing. At first, finite 
automata modeling technique is used to build state and transition diagram and table. 
Then, Maximum-path Arithmetic and Minimum-path Arithmetic are introduced for 
analyzing the number of path of the model. Finally, three testing approaches are 
discussed: a string-matching algorithm for the interested path testing; a random-walk 
algorithm for general path testing; and coverage testing algorithm for locating path 
failure.
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1 Problem

MATT is an application that provides enhanced test generation capability for users of 

MATLAB. The ability to rapidly create custom test data for running model simulations is 

an important time saver that frees the pains of developing a variety of test data, needed 

for testing and model simulation.

MATT uses information it obtains from MATLAB to create a set of data that describes 

the inputs for a specific model superblock. With a series of point and click selections, 

users may set the types of tests for data they desire for each input and adjust parameters 

for accuracy, constant, minimum and maximum values. Once adjustments are complete, 

these settings may be saved in a MATT file format known as a test Script. Test Scripts 

may be recalled and used again for later test generation. Once each input has been set up 

for a particular test type, the user may then generate the test matrix. The test matrix 

output may then be returned to MATLAB for simulation or it may be saved and used at a 

later time.

MATT does not have the capability to direct a path, or to trace paths and their coverage 

on running model simulations. A path is a running routine of a model that enters from a 

starting state, via many middle states and transitions, and ends up with final state. MATT 

will be highly enhanced if we can add a feature to direct a path, to trace paths and their 

coverage of the model, which will help the builder of the model to get testing information 

about model functions.
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This research project is focusing on finding a testing technique and algorithm on path 

directing and tracing. We start the work with an introduction to software testing.

2 Introduction

2.1 Traditional Software Testing

Software testing includes executing a program on a set of test cases and comparing the 

actual results with the expected results. Testing and test design, as parts of quality 

assurance, should also focus on fault prevention. To the extent that testing and test design 

do not prevent faults, they should be able to discover symptoms caused by faults. Finally, 

tests should provide clear diagnoses so that faults can be easily corrected.

Software is tested from two different perspectives, the white box approach and the black 

box approach. White box strategies for testing are driven by the internal control structure 

of the program. There are several types of structural testing, including branch testing, 

control flow testing, data flow testing, slicing, and program dependency.

In the black box approach to software testing, we are interested in the inputs and outputs 

of the system in addition to an understanding of its behavior or functional properties that 

are extracted almost exclusively from the requirements. The construction of tests depends 

on looking at these properties while totally ignoring the structure of the implementation. 

Exhaustive black box testing is running the program with all possible input combinations. 

It can be easily seen that such a task is impossible (Whittaker, 1997; Myers, 1979). Myers
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concludes that, due to the impossibility of performing exhaustive black box testing, the 

approach cannot be used to show the program error-free. Further, the amount of testing to 

be done (or selecting test data out of the infinite possibilities) becomes a major problem 

as it is an issue of computational and man-hour cost.

2.2 Model-Based Testing

Traditional software testing consists of the tester studying the software system and then 

writing and executing individual test scenarios that exercise the system. These scenarios 

are individually crafted and then can be executed either manually or by some form of 

capture/playback test tool.

This method of creating and running tests faces at least two large challenges (Robinson, 

1999):

First, these traditional tests will suffer badly from the “pesticide paradox” (Beizer, 1990) 

in which tests become less and less useful at catching bugs, because the bugs they were 

intended to catch have been caught and fixed.

Second, handcrafted test scenarios are static and difficult to change, but the software 

under test is dynamically evolving as functions are added and changed. When new 

features change the appearance and behavior of the existing software, the tests must be 

modified to fit. If it is difficult to update the tests, it will be hard to justify the test 

maintenance costs.
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Model-based testing alleviates these challenges by generating tests from explicit 

descriptions of the application. It is easier, therefore, to generate and maintain useful, 

flexible tests.

In recent years, there has been a growing movement in software testing to use the 

information contained in explicit models of software behavior to make it simpler and 

cheaper to do testing. (Beizer, 1995; Apfelbaum, 1997)

Model-based testing is a black-box technique that offers many advantages over 

traditional testing (Robinson, 1999):

• Constructing the behavioral models can begin early in the development cycle.

• Modeling exposes ambiguities in the specification and design of the software.

• The model embodies behavioral information that can be re-used in future 

testing, even when the specifications change.

The model is easier to update than a suite of individual tests.

2.3 Phases of Software Testing

Generally, regardless of the paradigm adopted, testing involves four phases: behavior 

modeling, test generation, test execution and evaluation, and measuring test progress 

(Whittaker, 1997, 1999).
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2.3.1 Modeling Program Behavior

The task in modeling program behavior is to document all communication among the 

system and its users. This involves enumerating all the inputs and outputs for every user 

and constructing a representation of the understanding of the possible input sequences 

(tests): the ones the users can produce and the ones the system expects by specification. 

Finally, interaction among users that may have a consequential effect on the system needs 

to be documented. Based on this information, a model of how the software operates is 

constructed. The modeling products include:

• A document enumerating all the elements of software-user interaction

• A model of software behavior, based on which tests are generated. Examples of 

such a model include control and data flow graphs in structural testing and finite 

state machines in black box testing.

Modeling is the most fundamental phase of any testing process, since the rest of the 

phases depend on the accuracy of its artifacts.

2.3.2 Selecting Tests

This phase creates:

• A document describing each of the test adequacy criteria

• An algorithm that, based on the model constructed in the earlier phase, builds a 

test that meets the adequacy criteria
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Selecting tests is not straightforward. Most of the work in testing has addressed test 

selection with various objectives in mind, such as revealing bugs, covering code, etc..

2.3.3 Running & Evaluating Tests

Running a test involves figuring out how to simulate user action so that the software 

“thinks" that it is in its intended environment. The task of input simulation is becoming 

increasingly easier. There are numerous tools that are dedicated to simulating software 

input. Writing code for the simulations is another feasible option, when tools are not 

available.

Evaluating a test involves verifying the test result against some sort of specification. 

Howden (Howden, 1978) states that every form of testing requires or assumes the 

existence of an oracle. An oracle is an independent entity that determines whether a result 

observed in the software after a test has been run meets expectations (i.e., whether the 

correct outputs have been produced; or, whether the correct control sequences have been 

followed). Developing an oracle is nontrivial and is often as complex as the application 

under test itself. Many times, in practice, the oracle is an experienced test engineer or 

developer upon whose expertise the decision of whether a test has been successful is 

based. So this phase produces:

• An input simulator that automatically executes tests

• An oracle
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2.3.4 Measuring Test Progress

Generally, there are two classes of measures that testers and project managers are 

interested in: stopping criteria and field quality metrics. Stopping criteria describe the 

conditions under which it is determined that enough tests have been generated.

Field quality metrics are figures of estimation for how well the software will perform 

when it is released in its intended environment. For example, some of these metrics 

estimate how much more testing needs to be done, the time to release, the mean time 

between failure, the mean time to the next failure, and reliability. This phase creates:

• A document describing stopping criteria

• A document describing the field quality metrics

• The actual metrics, which are computed based on collected data (previous test 

runs).

2.4 Our Work (Path Testing) and Terminology

Our research is focusing on path testing. The goal is to get the information about which 

states and transitions in a model are covered in a path testing case. So our work focuses 

on the first two phases, modeling phase and selecting tests phase. And, our work will use 

both techniques for traditional testing and model-based testing. First we create a finite 

state machine, then study the criteria and algorithm to test a path within the machine. The
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test will reveal which state and transition have been passed and what is covered in the 

machine.

Following are some very important definitions.

Path testing based on the program’s control flow as a structural model is the cornerstone 

of testing. Methods include how to generate tests from the program’s control flow, 

criteria for selecting paths, and how to determine path-forcing input values.

A flowchart is a graphical representation of a program’s control structure. The 

programmer’s original flowchart is a statement of intentions and not a program.

A process has one entry and one exit. It performs an operation on data. A process can 

consist of a single statement or instruction, a sequence of statements or instructions, a 

single-entry/single-exit subroutine, a macro or function call, or a combination of these. 

The program does not jump into or out of process. From the point of view of test cases 

designed from flowcharts, the details do not affect the control flow. A sequence of 

processing statements that is uninterrupted by junctions or decisions is usually put into 

one proceed block. If the processing affects the flow of control, that effect will be 

manifested at a subsequent decision or case statement.



A decision is a program point at which the control flow diverges. While most decisions 

are two-way or binary, some are a three-way branch in control flow. A case statement is a 

multi-way branch or decision.

A junction is a point in the program where the control flow merges.

A path through a program is a sequence of instructions or statement that starts at a 

junction or decision and ends at another, or possibly the same, junction or decision. A 

path may go through several junctions, processes, or decision, one or more time. The 

word “note” is used to mean either junction, decision or both. Paths consist of segments. 

The smallest segment is a single process that lies between two nodes, e.g., junction- 

process-junction, junction-process-decision, decision-process-junction, decision-process- 

decision. The collective term for flowchart lines that join nodes is “link”. A flowchart 

then, consists of nodes and links. A path segment is a succession of consecutive links that 

belongs to some path. The word “path” is also used in the more restrictive sense of a path 

that starts at the routine’s entrance and ends at its exit.

The term “complete cover”, or “cover” alone is used to mean that a set of tests has the 

potential for executing every instruction and taking all branches in all directions. 

Complete coverage is a minimum mandatory testing requirement.

A transaction is a unit of work seen from a system user’s point of view. A transaction 

consists of a set of operations, some of which are performed by a system, persons, or
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devices that are outside of the system. A transaction typically consists of a set of 

operations that begins with an input and ends with one or more outputs. At the conclusion 

of the transaction’s processing, the transaction is no longer in the system, except perhaps 

in the form of historical records.

3 Modeling

Modeling is a way of representing the behavior of a system. Models are simpler than the 

system they describe, and they help us understand and predict the system’s behavior.

A common type of model in computing is the state graph, or finite state machine. State 

graphs are a useful way to think about software behavior and testing (Beizer, 1995). The 

application begins in some state (such as “main window displayed”), the user applies an 

input (“invoke help dialog”) and the software moves into a new state (“help dialog 

displayed”).

3.1 Background and Terminology

Software systems are installed into environments where they are stimulated by users via 

inputs and where they produce outputs to be consumed by users. A software user is an 

element of its environment that is either responsible for generating system input or 

expected to consume system output. Test engineers must document communication 

between the software and its users occurring via inputs and outputs.
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An input is a user-generated event recognizable by the software. An output is an event 

generated by the software directed to one or more of its users.

An input is said to be applicable at an identifiable point of software execution (also 

referred to as 'time' throughout this document) if and only if the user responsible for 

generating the input is capable of generating it (in such a case the input is said to be 

available to the user) and the system recognizes it as an allowable stimulus. Applicability 

of an input is not necessarily equivalent to its legality from the point of view of its 

functional specification; an applicable input is one that gets processed by the system.

An applicable input string is a sequence of inputs such that every input in the string is 

applicable after all preceding inputs in the sequence have been processed by the system.

An input is said to be unreachable at an identifiable point of software execution if and 

only if it is not applicable. Unreachable inputs are stimuli that cannot affect the system 

due to the unavailability of the required interface (at that particular point of execution) or 

that get ignored by interface components. In other words, the system under test never 

processes unreachable inputs, by specification.

The functional behavior of a software system at a particular point of execution is the 

manner in which it responds to inputs in it (whether it recognizes an input, ignores it, or 

processes it; and in the latter case, whether the response is observed as an output or goes 

unnoticed by the user as internal computation). This depends on the string of inputs that
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has been processed by the system starting with the last invocation of the system up to the 

time in question.

Behavior models are discrete structures that describe every possible functional behavior 

and the manner in which software transitions from one behavior to another. In the context 

of black-box testing, finite state machines are an example representation of behavior 

models.

A state of a software system represents one and only one functional behavior of 

the system. The state space represents every possible functional behavior of the system. 

Therefore, a combination of values of all functionally significant data elements is a 

sufficient description of a state. It follows from the definition of operational modes that a 

state is a tuple of instantiations for all modes.

Assuming a finite-state-machine-like representation, to build a behavior model is to 

enumerate the states and define the state transitions of the model.

3.2 Model Building

We usually create state transition diagrams and state transition tables to describe the 

model.

A state transition diagram is a graphic representation of a state machine. State 

transition diagrams emphasize the logical behavior of a system. Traditionally, state
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transition diagrams have been used to explain how a system with a finite set of modes, or 

states, can change from one mode or state to another. In Figure 1 rectangles with rounded 

corners represent the states in a system. The directed lines from one state to another are 

called transitions. These indicate the ability to change from one state to another. 

Transitions are usually labeled with the conditions that must be satisfied before the 

transition can be taken. Several transitions can originate or terminate on the same state.

D efault transition

Transition

Source state Destination state

Figure 1: the basic elements of a state transition diagram

State transition diagrams are useful for visualizing logical paths through a series of states. 

A state transition diagram can help to clarify the exact sequence of logic that is needed to 

change from one state to another, particularly when each state has a small number of
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transitions that originate or terminate on it. Actions associated with states and transitions 

enable the state diagram to interact with its external environment.

As a design tool, classic state transition diagrams are limited by scalability problems. 

Extended state transition diagrams, like those supported in Stateflow, overcome these 

limitations with constructs that handle hierarchy, parallelism, and transition re-use. 

Hierarchy allows states to be grouped together into a superstate so that common 

transitions only need to be drawn once. Parallelism allows the diagram to be partitioned 

into several parallel states, each with its own hierarchy of active substate(s). Parallelism 

prevents the state explosion that results when independent modes or attributes have 

numerous possible combinations.

State transition diagrams are useful for models with a relatively small number of states. 

Drawing and using a large state transition diagram is difficult and error-prone, even with 

good CAD or CASE tools and with extended state transition ideas. Usually models with 

20 or more states are graphically intractable. For large models with hundreds of states, 

automated support is necessary. State transition tables provide a compact representation 

and ease systematic examination and use of the model.

State machines may be represented in one of several tabular formats. In the state-to-state 

format, rows represent accepting states and columns represent result states, cells 

represent the input/event trigging the transition. In the state-to-event format, rows
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represent accepting states and columns represent the input/event, cells represent the result 

states.

3.3 Example

Consider a hypothetical design of a cruise control system (Aldrich). The inputs and 

outputs to the controller are shown in Figure 2. The controller uses sensor input for the 

brake pedal, accelerator pedal and vehicle speed. User input is generated from a Power 

switch, and Set, Resume, Increment, and Decrement buttons. The controller produces a 

throttle command used as a set point to the mechanical system that controls the throttle 

plate.

The target speed for the controller also serves as an output for verification even though it

is not required by the other system components.

Inputs:

1. Vehicle speed
2. Brake pedal switch
3. Accelerator pedal position
4. Power button
5. Set button
6. Resume button
7. Increment button
8. Decrement button

Outputs:

1. Throttle plate command
2. Target speed (for verification)

Figure 2: The cruise control input and outputs
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The controller has the ability to adjust the target speed with an increment and decrement 

button. A list of functional requirements for the cruise control is shown in Table 1.

Table 1: A list of functional requirements for the cruise control

1. When the cruise control is powered on it shall enter an idle mode until a target 
speed is established that enables active control.

2. When the Set button is depressed while the cruise control is on it shall set the target 
speed to the current vehicle speed.

3. When the Resume button is depressed it shall set the target speed to the last value 
set by the vehicle speed since the control was powered on.

4. Pressing and releasing the Inc button in less than 1 second when the control is 
active shall cause the target speed to increase by 1 M.P.H

5. Holding the Inc button depressed when the control is active shall cause the target 
speed to increase by 1 M.P.H. every second.

6. Pressing and releasing the Dec button in less than 1 second when the control is 
active shall cause the target speed to decrease by 1 M.P.H

7. Holding the Dec button depressed when the control is active shall cause the target 
speed to decrease by 1 M.P.H. every second.

8. When the cruise control is not actively controlling speed, the throttle position shall 
be set to the same value as the accelerator pedal.

9. When the brake pedal is greater than zero and the cruise control is active the cruise 
control shall enter the override mode.

10. When the controller is in the override mode and the Set or Resume button is 
depressed the controller shall return to active control.

A portion of an extended state transition diagram for a cruise control application is shown
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in Figure 3. Hierarchy allows the states that represent the powered-on modes of the 

controller to be grouped together in a natural manner. Diagram 2 (of Figure 3) is a state 

transition diagram showing the logic for a cruise control. When power is enabled, i.e., the 

condition [pwr ] is logically true, the active state changes from Off to the 

no_target substate of Active (Active.no_target) .  When the Set event 

occurs, the mode changes to Active . control_enabled.

Figure 3: Cruise Control Top Level State Transition Diagram

S e t  Point Calculation

Increment
en:target_speed++;

every(10 , Update)  
{target_speed++;}

INC BU

o

INC BD

DEC BU  -----

Hold

HDEC BD

D ecrem ent
en: target_speed--;

every(10 ,U pdate)  

{target_speed--;}

[in(active_control)] [in(active_control)]

E n a b le j o g ic

override

[brakeS et  R e su m e

no target ^active contro

17



We simplify figure3 into figure 4. Table 2 is the state transition table of the cruise control 

model.

off

off

on Set/resume
ACTIVE-CONTROLJ  NO TARGETOFF

brake
brake

Set/resume
off

Increase/decreaseOVERRIDE

Figure 4: Cruise Control Model State Transition Diagram

Table 2 Cruise Control Model State Transition Table

OFF NOTARGET ACTIVECONTROL OVERIDE

OFF on

N O TA RG ET off set/resume

ACTIVECONTROL off brake increase/decrease

OVERIDE off brake set/resume
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4 Path and Coverage Testing

After the model is built, we trace paths through it to find a set of covering paths, a set of 

values that will sensitize paths, what logic function controls the flow from one state to 

another, or if a state is reachable or not. But before we do these, we should know what is 

the maximum and minimum number of paths in the model. Maximum number gives you 

an idea how many test cases should be generated and when you should stop. The 

minimum number gives you a way of efficiency to test model only once without missing 

a single state.

At first a review of some basic concepts. Path expressions are introduced as algebraic 

representations of sets of paths in a graph. With suitable arithmetic laws and weights, 

path expressions are converted into algebraic functions or regular expressions that can be 

used to examine structural properties of graphs or flowcharts.

Two basic conversions are presented as follow:
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Path expression 

> a(b+c)d

=> a(bc)*bd

4.1 Maximum-Path Arithmetic

Following is the procedure for Maximum-path Arithmetic (Beizer, 1990). Start with a 

state transition diagram, label each link with a link weight that corresponds to the number 

of paths that link represents. Typically, that’s one. However, if the link represented a 

subroutine call, say, and you wanted to consider the paths through the subroutine in the 

path count, then you would put that number on the link. Also mark each loop with the 

maximum number of times that the loop can be taken. There are three cases of interest: 

parallel links, serial links, and loops. In what follow, A and B are path expressions and 

Wa and WB are algebraic expressions in the weights.

CASE PATH EXPRESSION WEIGHT EXPRESSION
PARALLEL A+B Wa + Wb
SERIES AB Wa Wb
LOOP > II >

*

,/=o

b

parallel ( T ) -----^ 2 ^  ^ P ) -----* (T )

20



The arithmetic is ordinary algebra. This is not a true upper bound for the number of paths, 

but a larger number because the model does not include paths that might be forbidden 

due to correlated and dependent predicates. The rationale behind the parallel rule is 

simple. The path expressions denote the paths in a set of paths corresponding to that 

expression. The weight is the number of paths in each set. Assuming that the path 

expression were derived in the usual way, they would have no paths in common and 

consequently, the sum of the paths for the union of the sets would be the sum of the 

number of paths in each set. The serial rule is explained by noting that each term of the 

path expression (say the first one A) will be combined with each term of the second 

expression B, in all possible ways. If there are WA paths in A and WB Paths in B, then 

there must be WA WB paths in the combination. The loop rule follows from the 

combination of the serial and parallel rules, taking into account going through zero, once, 

twice, and so on. If you know for a fact that the minimum number of times through the 

loop is not zero but some other number, say j, then you would do the summation from j to 

n rather than from 0 to n.

Here is a reasonably well-structured program. Its path expression, with a little work, is 

shown below:

(i)

21



m

a ( b  + c ) d { e ( f i ) *  f g j ( m + l )k } * e ( f i ) * f g h

Each link represents a single link and consequently is given a weight of “ 1” to start. Let’s 

say that the outer loop will be taken exactly four times and the inner loop can be taken 

zero to three times. The steps in the reduction are:

(2)

1

(4-4)(0-3)

(3)
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(4-4)1 (0-3)

(4)

2
(4-4)

1 (0-3)

For the inner loop

(5)
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2

(6)

2
(4 -4 )

(7)
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2(4)=8
(4-4)

(8)

2 84 4

32,768

Alternatively, you could have substituted a “1” for each link in the path expression and 

then simplified, as follows:

l ( l + l ) l ( l ( l x l ) 2l x l x l ( l + l ) l ) 4l ( l x l ) 2l x l x l

= 2(l-lx(2) )4f  

but 12 = l + l ' + f + l 3 = 4 

= 2(4x2)4x4 

= 2x84x4 

=32,768
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This is the same result we got graphically. Reviewing the steps in the reduction, we:

1. Annotated the flowchart by replacing each link name with the maximum number 

of paths through that link (1) and also noting the number of possibilities for 

looping. The inner loop was indicated by the range (0-3) as specified, and the 

outer loop by the range (4-4).

2. combined the first pair of parallels outside of the loop and also the pair 

corresponding to the IF-THEN-ELSE construct in the outer loop. Both yielded 

two possibilities.

3. Multiplied things out and removed notes to clear the clutter.

4. Took care of the inner loop: there were four possibilities, leading to the four 

values. Then we multiplied by the link weight following (originally link g) whose 

weight was also 1.

5. Got rid of link e.

6. Used the cross-term to create the self-loop with a weight of 8 = 2 x 4 and passed 

the outer 4 through.

For the cruise control example as figure 4, we re-draw the graph as follow in order to 

derive the path expressions easier:
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brake
set/resumebrake

increase/
decrease offset/resumeon

No-target >( Off/end■*( overrideOff/start Active control

off

o f f

or

Where

1 -  Off or start state

2 -  No_target state

3 -  Active control state

4 -  Override state

5 -  off/end state

a -  on

b, f  — set/resume

c — increase/decrease

d, h, i — off

e, g -  brake

The path expression is:
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a(i + ((bg)*b(h+(cf)*c)e)*( bg)*b(h+(cf)*c)d)

The above expression is derived after the following substitution:

x

Where x e

=> a(i +x)

x = (ye)*yd

Where y

h

^  y = (bg)*b(h+(cf)*c)

Assume only taking loop once and we get the maximum-path arithmetic of the cruise 

control as:

1(1 + ( ( lx l)* l( l+ ( lx l)* l) l)* ( lx l)* l( l+ ( lx l)* l) l)

= 1(1 + ( ( lx l ) i l ( l+ ( lx l)1l) l ) i ( lx l) i l( l+ ( lx l)1l) l)

= 1+ 2x2

=5
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4.2 Minimum-Path Arithmetic

A lower bound on the number of paths in a routine can be approximated for structured 

flowcharts (Beizer, 1990). It is not a true lower bound because again, forbidden paths 

could reduce the actual number of paths to a lower number yet. The appropriate 

arithmetic is:

CASE PATH EXPRESSION WEIGHT EXPRESSION
PARALLEL A+B Wa + Wb
SERIES AB MAX(Wa ,Wb)
LOOP

*<II=i< l,w,



The parallel case is the same as before. The values of the weights are the number of 

members in a set of paths. There could be an error here because both sets could contain 

the null path, but because of the way the loop expression is defined, this cannot happen. 

The series case is explained by noting that each term in the first set will be combined 

with at least one term in the number of possibilities in the first set and the second set. The 

loop case requires that you use the minimum number of loops—possibly zero. Loops are 

always problematic. If the loop can be bypassed, then you can ignore the term in the loop. 

But it is better to use a value of 1, so that we are asserting that we’ll count the number of 

paths under the assumption that the loop will be taken once. Because in creating the self

loop, we used the cross-term expression, there will be a contribution to the links 

following the loop, which will take things into account.

Alternatively, you could get a higher lower bound by arguing that if the loop were to be 

taken once, then the path count should be multiplied by the loop weight. This however, 

would be equivalent to saying that the loop was assumed to be taken both zero and once, 

because again, the cross-term that created the self-loop was multiplied by the series term. 

Generally, if you ask for a minimum number of paths, it is more likely that the minimum 

is to be taken under the assumption that the routine will loop once—because this is 

consistent with coverage.

Applying this arithmetic to the earlier example gives us the identical steps until Step 3, 

where we pick up:

(4)
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(4-4)

(5)

2
(4-4)

(6)
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(4-4)

(7)

(8)

2
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If you go back to the original graph, you will see that it takes a minimum of two paths to 

cover, and it can be done in two paths. The reason for restricting the algorithm to 

structured graphs is that for nonstructured graph the result can depend on the order in 

which nodes are removed. Structured or not, it’s worth calculating this value to see if you 

have at least as many paths as the minimum number of paths calculated this way. If you 

have fewer paths in your test plan than this minimum you probably haven’t covered. It’s 

another check.

It is obvious that for cruise control the minimum-path arithmetic is 1, which means that 

there is a single path that can cover all states and inputs. It is:

i s e t / r e s u m  e*4 No-target M O ff/en dOff/start ■H No-target

4.3 Coverage Testing
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There are four levels of path and coverage testing (Offutt, Abdurazik, 1999). (1) the 

transition coverage level, (2) the full predicate coverage level, (3) the transition-pair 

coverage level, and (4) the complete sequence level.

It is possible to apply all levels, or to choose a level based on a cost/benefit tradeoff. The 

first two are related; the transition coverage level requires many fewer test cases than the 

full predicate coverage level, but if the full predicate coverage level is used, the tests will 

also satisfy the transition coverage level (full predicate coverage subsumes transition 

coverage). Thus only one of these two should be used. The latter two levels are meant to 

be independent; transition-pair coverage is intended to check the interfaces among states, 

and complete sequence testing is intended to check the software by executing the 

software through complete execution paths. As it happens, transition-pair coverage 

subsumes transition coverage, but they are designed to test the software in very different 

ways.

4.3.1 Transition Coverage Level

It seems reasonable to expect that to test the software adequately, the tester should at 

minimum use tests that cause every transition in every statechart to be taken. This level 

requires just that, by requiring test cases that satisfy each precondition in the specification 

at least once. In the criteria definitions, T is a set of test cases, and SG is a specification 

graph, a graph that represents the transitions in a statechart. Although the tests are 

intended to be executed on an implementation of the specification, we say that a test
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traverses a transition to indicate that, from a modeling perspective, the test causes the 

transition's predicate to be true, and the implementation will change from the transition's 

pre-state to its post-state.

4.3.2 Full Predicate Coverage Level

Small inaccuracies in the specification predicates can lead to major problems in the 

software. The full predicate coverage level takes the philosophy that to test the software 

we should at least provide inputs to test each clause in each predicate. This level requires 

that each clause in each predicate on each transition be tested independently, thus 

attempting to address the question of whether each clause is necessary and is formulated 

correctly. The Boolean operators are AND, OR, and NOT. A clause is a Boolean 

expression that contains no Boolean operators. For example, relational expressions and 

Boolean variables are clauses. A predicate is a Boolean expression that is composed of 

clauses and zero or more Boolean operators. A predicate without a Boolean operator is 

also a clause. If a clause appears more than once in a predicate, each occurrence is a 

distinct clause.

Full predicate coverage is based on the philosophy that each clause should be tested 

independently, that is, while not being influenced by the other clauses. In other words, 

each clause in each predicate on every transition must independently affect the value of 

the predicate. That is, for each predicate P on each transition, T must include tests that
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cause each clause c in P to result in a pair of outcomes where the value of P is directly 

correlated with the value of c. Here, “directly correlated" means that c controls the value 

of P , that is, one of two situations occurs. Either c and P have the same value (c is true 

implies P is true and c is false implies P is false), or c and P have opposite values (c is 

true implies P is false and c is false implies P is true). This explicitly disallows cases such 

as c is true implies P is true and c is false implies P is true.

Note that if full predicate coverage is achieved, transition coverage will also be achieved. 

To satisfy the requirement that the test clause controls the value of the predicate, other 

clauses in the predicate must be either True or False. For example, if the predicate is (X a  

Y), and the test clause is X, then Y must be True. Likewise, if the predicate is (X vY), Y 

must be False.

4.3.3 Transition-Pair Coverage Level

The previous testing levels test transitions independently, but do not test sequences of 

state transitions. This level requires that pairs of transitions be taken. That is, for each 

pair of adjacent transitions S, : Sj and Sj : Sk in SG , T contains a test that traverses the pair 

of transitions in sequence.

4.3.4 Complete Sequence Level
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It seems very unlikely that any successful test method could be based on purely 

mechanical methods; at some point the experience and knowledge of the test engineer 

must be used. Particularly at the system level, effective testing probably requires detailed 

domain knowledge. A complete sequence is a sequence of state transitions that form a 

complete practical use of the system. In most realistic applications, the number of 

possible sequences is too large to choose all complete sequences. In many cases, the 

number of complete sequences is infinite. So for complete sequence level testing, the test 

engineer must define meaningful sequences of transitions on the statechart diagram by 

choosing sequences of states that should be entered.

5 Path testing approaches and algorithms

5.1 Testing the Most Likely Paths

It would be helpful if there were a way to guide the path testing into areas that are of 

more interest to the tester. For instance, you might want to see if a path includes all the 

activities that a user is more likely to perform. Or, you might only want to test the 

minimum number of paths that cover all of the states in the model.

For example (Beizer, 1990), a program that detects the character sequence “zczc” can be 

in the following states:

1. neither zczc nor any part of it has been detected
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2. z has been detected

3. zc has been detected

4. zcz has been detected

5. zczc has been detected

The inputs are:

1. Z

2. C

3. Any character other than Z or C, which we’ll denote by A

C,A
Z,C,AA, C

NONE ZCZ

z

Figure 5: ZCZC sequence detector state graph
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1. If the system is in the “NONE” state, any input other than a Z will keep it in that 

state.

2. If a Z is received, the system transitions to the “Z”.

3. If the system is in the “Z” state, and a Z is received, it will remain in the “Z” 

state. If a C is received it will go to the “ZC” state, and if any other character is 

received, it will go back to the “NONE” state because the sequence has been 

broken.

4. A Z received in the “ZC” state progresses to the “ZCZ” state, but any other 

character breaks the sequence and causes a return to the “NONE” state.

5. A C  received in the “ZCZ” state completes the sequence and the system enters the 

“ZCZC” state. A Z breaks the sequence and causes a transition back to the “Z” 

state; any other character cause a return to “NONE” state.

6. No matter what is received in the “ZCZC” state, the system stays there.

String matching with a finite automata algorithm (Cormen, 1990) can be used in 

testing the paths interested in the model. You need just change concepts for the 

character string into transition input strings and the text into a path pool of your 

model.

5.1.1 String-matching

We formalize the string-matching problem as follows. We assume that the text is an array

T[l..n] of length n and that the pattern is an array P[l..m] of length m. We further
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assume that the elements of P and T are characters drawn from a finite alphabet X. For 

example, we may have X = {0, 1} or X = {a, b, ..., z}. The character arrays P and T are 

often called strings of characters.

We say that pattern P occurs with shift s in text T (or, equivalently, that pattern P occurs 

beginning at position s+1 in text T) if 0 < s < n-m and T[s+1 ..s+m] = P[l..m] (that is, if 

T[s+j] = pDL f°r 1 <j < m). If P occurs with shift s in T, then we call s a valid shift; 

otherwise, we call s an invalid shift. The string-matching problem is the problem of 

finding all valid shifts with which a given pattern P occurs in a given text T. Figure 6 

illustrates these definitions.
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Text T a b c a b a a b c a b a c

^  — j a b a a
r a u m i  r

Figure 6: The string-matching problem

The goal is to find all occurrences of the pattern P = abaa in the text T = abcabaabcabac. 

The pattern occurs only once in the text, at shift s = 3. The shift s = 3 is said to be a valid 

shift. Each character of the pattern is connected by a vertical line to the matching 

character in the text, and all matched characters are shown shaded.

We shall let S ' denote the set of all finite-length strings formed using characters from the 

alphabet E. The zero-length empty string, denoted 8, also belongs to E*. The length of a 

string x is denoted |x|. The concatenation of two strings x and y, denoted xy, has length 

|x|+ |y| and consists of the characters from x followed by the characters from y.
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We say that a string w is a prefix of a string x, denoted w e  x, if x = wy for some string y 

e  £  . Note that if w c  x, then |w| < |x|. Similarly, we say that a string w is a suffix of a

)jc

string x, denoted w d x , i f x ^  yw for some y e £ . It follows from w z> x that |w| < |x|.

The empty string s is both a suffix and a prefix of every string. For example, we have ab

c  abcca and cca 3  abcca.

5.1.2 Finite Automata

A finite automata M is a 5-tuple (Q, qo, A, £, 8), where

• Q is a finite set of states,

• qo e  Q is the start state,

• A c  Q is a distinguished set of accepting states,

• £ is a finite input alphabet,

• 8 is a function from Q x £ into Q, called the transition function of M.

The finite automaton begins in state qo and reads the characters of its input string one at a 

time. If the automaton is in state q and reads input character a, it moves (“makes a 

transition”) from state q to state 8 (q, a). Whenever its current states q is a member of A, 

the machine M is said to have accepted the string read so far. An input that is not 

accepted is said to be rejected.
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b

input

state a b

0 1 0

1 0 0

(a) (b)

Figure 7

Figure 7 illustrates these definitions with a simple two-state automaton with state set 

Q = {0, 1}, start state qo = 0, and input alphabet 2 = {a, b}. Figure 7 (a) is a tabular 

representation of the transition function 5. Figure 7 (b) is an equivalent state-transition 

diagram. State a is the only accepting state. Directed edges represent transitions. For 

example, the edge from state 1 to state 0 labeled b indicates 8 (1, b) = 0. This automation 

accepts those strings that end in an odd number of a’s. More precisely, a string x is 

accepted if and only if  x = yz, where y = 8 or y ends with a b, and z = ak, where k is odd. 

For example, the sequence of states this automation enters for input abaaa (including the 

start state) is <0, 1,0,  1,0, 1>, and so it accepts this input. For input abbaa, the sequence 

of states is <0, 1, 0, 0, 1, 0>, and so it rejects this input.

43



A finite automaton M induces a function (|>, called the final-state function, from Z* to Q 

such that 4)(co) is the state M ends up in after scanning the string co. Thus, M accepts a 

string co if and only if (|)(oo) e A. The function (|) is defined by the recursive relation

<Ks) = qo,

i()(coa) = 5 (c()(co), a) for co e Z*, a e Z .

5.1.3 String-matching automata algorithm

There is a string-matching automaton for every pattern P; this automaton must be 

constructed from the pattern in a preprocessing step before it can be used to search the 

text string. Figure 2 illustrates this construction for the pattern P = ababaca. From now 

on, we shall assume that P is a given fixed pattern string; for brevity, we shall not 

indicate the dependence upon P in our notation.

In order to specify the string-matching automaton corresponding to a given pattern 

P[l..m], we first define an auxiliary function a, called the suffix function corresponding 

to P. The function a  is a mapping from Z* to {0, 1, . . m} such that cr(x) is the length of 

the longest prefix of P that is a suffix of x:

a(x) = max { k: Pk z> x}.
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The suffix function a  is well defined since the empty string Po = £ is a suffix of every 

string. As examples, for the pattern P = ab, we have a(s) = 0, a(ccaca) = 1, and 

a(ccab)=2. For a pattern P of length m, we have a(x) = m if and only if P 3  x. It follows 

from the definition of the suffix function that if x i d  y, then a(x) < a(y).

We define the string-matching automaton corresponding to a given pattern P[l..m] as 

follows.

• The state set Q is {0,1,... ,m}. The start state q0 is state 0, and state m is the only 

accepting state.

• The transition function 8 is defined by the following equation, for any state q and 

character a:

5(q, a) = a(Pqa).

Here is an intuitive rationale for defining 5(q, a) = a(Pqa). The machine maintains as an 

invariant of its operation that (|)(Tj) = a  (Tj). In word, this means that after scanning the 

first i characters of the text string T, the machine is in state 4>(Tj) = q, where q = a  (Tj) is 

the length of the longest suffix of Tj that is also a prefix of the pattern P. If the next 

character scanned is T[i+1] = a, then the machine should make a transition to state 

cr(Tj+i)= a  (Tja). That is, to compute the length of longest suffix of Tja that is a prefix of 

P, we can compute the longest suffix of Pqa that is a prefix of P. At each state, the 

machine only needs to know the length of the longest prefix of P that is a suffix of what
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has been read so far. Therefore, setting 8 (q, a) = a(Pqa) maintains the desired invariant 

cKTi) = a  (TO.

In the string-matching automaton of figure 8 , for example, we have 8(5, b) = 4. This 

follows from the fact that if the automaton reads a b in state q = 5, then Pqb = ababab, and 

the longest prefix of P that is also a suffix of ababab is P4 = abab.

(a)

Input
state a b c Pattern

0 I 0 0 a
1 1 1 0 b
2 1 0 0 a
3 i 1 0 b
4 | 0 0 a
5 1 4 8 c
6 § 0 0 a
7 1 2 0

(b)
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Figure 8

Figure 8 (a) A state -transition daigram for the string-matching automaton that accepts all 

strings ending in the string ababaca. State 0 is the start state, and state 7 (shown 

blackened) is the only accepting state. A directed edge from state i to state j labeled a 

represents 5 (i, a) = j. The right-going edges forming the “spine” of the automaton, shown 

heavy in the figure, correspond to successful matches between pattern and input 

characters. The left-going edges correspond to failing matches. Some edges 

corresponding to failing matches are not shown; if a state i no outgoing edge labeled a for 

some a g I ,  then 6 (i, a) = 0. Figure 8 (b) The corresponding transition function 8, and 

the pattern string P = ababaca. The entries corresponding to successful matches between 

pattern and input characters are shown shaded. Figure 8 (c) The operation of the 

automaton on the text T = abababacaba. Under each text character T[i] is given the state § 

(Ti) the automaton is in after processing the prefix Ti. One occurrence of the pattern is 

found, ending in position 9.
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Following is the algorithm for simulating the behavior of such an automaton (represented 

by its transition function 6) in finding occurrences of a pattern P of length m in an input 

text T[1 ..n]. As for any string-matching automaton for a pattern of length m, the state set 

Q is {0,1,...,m}, the start state is 0, and the only accepting state is state m.

FINITE-AUT OM AT ON-M ATCHER(T, 5, m)
1. N <- length[T]
2. q ^“0
3. for i <-1 to n
4. do q <- 5 (q, T[i])
5. if q = m
6. then s <-i -  m
7. print “Pattern occurs with shift” s

The following procedure computes the transition function 5 from a given pattern P[l..m].

COMPUTE-TRANSITION-FUNCTION(P, 2)
1. m <- length [P]
2. for q <- 0 to m
3. do for each character a e E
4. do k min(m+l, q+2)
5. repeat k k-1
6. until Pk => Pq a
7. 5(q, a) <- k
8. return 5

This procedure computes 6(q, a) in a straight forward manner according to its definition. 

The nested loops beginning on lines 2 and 3 consider all states q and characters a, and 

lines 4-7 set 5(q,a) to be the largest k such that Pk 3  Pq a. The code starts with the largest 

conceivable value of k, which is min(m, q+1), and decreases k until Pk z> Pq a.
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5.2 Random Walk with Traversal Markers and Algorithm

A random walk (sometimes called a “drunkard’s walk”) is simple to describe: from the 

current node, choose an outgoing link at random, follow that link to the next node and 

repeat the process. Traversal marker is to record all the paths executed and to see if the 

succession of link names correspond exactly to the expected path name.

Random walks are very simple to implement because they have no real guiding, overall 

plan. Interestingly, they can be very useful in software testing because their very lack of a 

plan makes them fairly resistant to the pesticide paradox. Random walks have been used 

with great success in some of Microsoft’s testing efforts. (Nyman, 1998)

There are however, several difficulties and weakness in random test data (Beizer, 1990), 

especially if that is the only kind of test that’s done.

1. Random data produces a statistically insignificant sample of the possible paths 

through most routines (Huang, 1975; Moranda, 1978). Because it may be difficult to 

determine how many feasible paths there are, even copious tests based on random 

data may not allow you to produce a statistically valid prediction of the routine’s 

reliability.

2. There is no assurance of coverage. Running the generator to the point of 100% 

coverage could take centuries. Especially, random walks tend to be very inefficient
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about covering a large graph quickly. Since they have no notion of where they have 

already been in the graph, they tend to re-traverse links they have already visited. For 

instance, a random walk on a typical application might invoke the Help screen many 

times before moving on to testing the parts of the application that you want it to test.

3. If the data are generated in accordance with statistics that reflect expected data 

characteristics, the test cases will be biased to the normal paths—the very paths that 

are least likely to have bugs.

4. It may be difficult or impossible to predict the desired outputs and therefore to verify 

that the routine is working properly; all you might learn is that it did not blowup but 

not whether what it did made sense or not. In many cases, the only way to produce 

the output against which to make a comparison is to run the equivalent of the routine; 

which equivalence is as likely to have bugs as the routine being tested.

If random path generation is to be used, instead of generating test cases in accordance 

with the probability of traversals at decisions, the test cases should be generated in 

accordance with the complementary probability. This would, at least, bias the paths away 

from the normal cases and toward the weird case that are more likely to have bugs.

Use the notation for finite automata in the last section. The algorithm for a random walk:
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RANDOM-WALK(Q, 5, £)
1 q ^ 0
2 for i <-1 to n (n might be the maximum number of pass of model)
3 dodo
4
5
6 
7

j RandomNumber

print “q” 
until q = A (accepting state)

q <- 8 (q, Z [j])
f  U  ??

5.3 Full Predicate Coverage Testing and Algorithm

Treating testing as sampling requires determining the scope of the test by understanding 

the input population. Specifically, testers must analyze the environment in which the 

system operates and identify each input source. Each input source is essentially a 

subpopulation that we further decompose by determining relevant subclasses that might 

be (or must be) tested separately. In addition to sources of input, we also identify output 

devices that receive data from the system under test. Sometimes, the internal state of such 

devices can affect how the system under test behaves.

The operational environment is the set of all systems, components and people that 

interact with the system under test or affect the system under test in any manner. 

Informally the operational environment is the “environment in which the software 

operates.” The process of understanding the operational environment and dividing it into 

subpopulations is called domain decomposition. This is the first activity testers pursue 

when treating testing as sampling.
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5.3.1 Case Study

As an example (Offutt, Liu, 1999), the cruise control system (note that it does not model 

the throttle) has four states: OFF (the initial state), NO TARGET, ACTIVECONTROL, 

and OVERRIDE. The system's environmental conditions indicate whether the 

automobile's ignition is on (Ignited), the engine is running (Running), the automobile is 

going too fast to be controlled (Toofast), the brake pedal is being pressed (Brake), and 

whether the cruise control level is set to Activate, Deactivate, or Resume. Table 3 is the 

state transition table of cruise control system with environmental conditions.

Previous State Ignited Running Toofast Brake Activate Deactivate Resume New State

OFF @T - - - - - - NO_TARGET

NO TARGET @F - - - - - OFF

t t f @T ■ ■ ACTIVE_CONTROL

ACTIVECONTROL @F - - - - - OFF

t @F - - - - NO_TARGET

t - @T - - -

t t f @T ■ - OVERRIDE

t t f ” @T -

OVERRIDE @F - - - - - OFF

t @F - ~ - - N O T A R G E T

t t " f @T " “ ACTIVECONTROL

t t f “ @T

Table 3: State transition table for the Cruise Control System
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Each row in the table specifies a conditioned event that activates a transition from the 

state on the left to the state on the right. A table entry of @T or @F under a column 

header C represents a triggering event @T(C) or @F(C). This means that the value of C 

must change for the transition to be taken, that is, “@T(C)M means C must change from 

false to true, and “@F(C)" means C must change from true to false. A table entry of t or f  

represents a WHEN condition. WHEN[C] means the transition can only be taken if C is 

true, and WHEN[—iC] means it can only be taken if C is false. If the value of a condition 

C does not affect a conditioned event, the table entry is marked with a hyphen (don't 

care condition).

Table 4 shows the transitions of the specification with the trigger events expanded in 

predicate form, numbered Pi through P 12. A triggering event is a change in a value for a 

variable, expression, or expressions that causes the software to transition from one state 

to another. A triggering event actually specifies two values, a before-value and an after

value. To fully test predicates with triggering events, test engineers must distinguish 

between them by controlling values for both before-values and after-values. This paper 

suggests implementing this by assuming two versions of the triggering event variable, X 

and X', where X represents the before-value of X and X' represents its after-value. Figure 

9 shows the state transition diagram with the edges labeled with the predicate numbers.
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Predicate No. Previous State Predicates New State
P. OFF -nlgnited A Ignited' NO TARGET

P2 N O TA R G ET Ignited A-.Ignited' OFF

P2 N O TA R G ET -1 Activate A Ignited A Running 
A-. Brake A Activate'

ACTIVE CONTROL

P4 ACTIVE CONTROL Ignited A-,Ignited' OFF

P5 ACTIVE CONTROL Running A Ignited A-.Running' NO_TARGET

P6 ACTIVECONTROL -iToofast A Ignited A Toofast' NO TARGET

Pv ACTIVECONTROL -1 Brake A Ignited A Running 
A—.ToofastA Brake'

OVERRIDE

Ps ACTIVECONTROL —.Deactivate A Ignited A Running 
A—1 Toofast A Deactivate'

OVERRIDE

P9 OVERRIDE Ignited A—.Ignited' OFF

P.o OVERRIDE Running A Ignited A-.Running' N O TA R G ET

P,i OVERRIDE Activate A Ignited A Running 
A-. Brake A Activate'

ACTIVE CONTROL

P,2 OVERRIDE -.Resume A Ignited A Running 
A-.Brake A Resume'

ACTIVECONTROL

Table 4: state transition table with the trigger events expanded in predicate form

P4

OFF ■H A C T IV E -C O N T R O LN O  T A R G E T

O V E R R I D E

Figure 9: shows the state transition diagram with the edges labeled with the predicate 
numbers.
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5.3.2 Full predicate coverage criterion

There are nine transitions in the cruise control specifications, and twelve disjunctive 

predicates. For convenience, the technique is applied by considering each predicate 

specification separately. Both the before-values and after-values of the triggering event 

should be separately tested. This is handled by treating @ as an operator and expanding it 

algebraically. If X represents a before-value and X' an after-value, the relevant 

expansions are:

•  @ T (X ) =  h X a X'

• @T(X a  Y ) = —i (X a  Y ) a  (X' a  Y') = ( —i X v —i Y ) a X ' a Y'

• @T(X v Y ) E n ( X v Y ) A ( X ' v Y ' ) = n X A n Y A ( X ' v Y ' )

There are 54 separate test case requirements for the full predicate coverage. The third 

transition, P3, is used to illustrate the test case requirement derivation. The variable values 

are taken from the predicates, and are shown as T, F, t, f, and -. A T or F means the 

clause is triggering, and the table contains a before-value and after-value. The values for 

the test case are the new value for the triggering clause (T or F), and the t and f  values 

from the WHEN conditions. The expected output for the test specification is derived from 

the triggering event, the post-state, and any terms or variables that are defined as a result 

of the transition. P3 has four clauses:

@T Activate a  Ignited a  Running a  - 1  Brake
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and its expanded version is:

— i Activate a  Ignited a  Running a  - i  Brake a  Activate'

Its six test case requirements are:

Pre State Activate Ignited Running Brake Activate' Post State
1. NO-TARGET F t t f T ACTIVE CONTROL
2. NO-TARGET F f t f T NO-TARGET
3. NO-TARGET F t f f T NO-TARGET
4. NO-TARGET F t t t T NO-TARGET
5. NO-TARGET T t t f T NO-TARGET
6 . NO-TARGET F t t f F NO-TARGET

The first row is the predicate as it appears in the specification; every clause is True. This 

corresponds to a valid test input (and is also the transition coverage test case for this 

transition). The subsequent rows make each clause False in turn, corresponding to invalid 

inputs. Because there are no OR operators, the full predicate coverage criterion is 

satisfied by holding all other clauses True. The post-states are the expected values. Five 

of them represent invalid transitions, and it is assumed that the software will remain in 

the same state.

5.3.3 Test specifications

The actual test specifications and test scripts are mechanically derived from the test 

requirements. The predicate P3 is chosen as an illustrative example. P3 has six full
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predicate level tests. For the first test case for P3, the test case must reach the NO

TARGET state; this forms the Prefix. The Test case values set the before-value for the 

triggering event, and the WHEN condition variables of Inactive, Running, and Brake, and 

then sets Activate to be True as the triggering event. The Verify and Exit parts of the 

specifications are not shown, as they depend on the software. The software can safely be 

assumed to automatically print the current state, and to not require an exit.

1. Test specification P 3 -1:
Prefix:
Test case value:

Ignited = True 
Activate = False 
Running = True 
Brake = False 
Activate = True 

Expected outputs: ACTIVE CONTROL

— Reach NO-TARGET state
— Trigger before-value
— Condition variable
— Condition variable
— Triggering event

2. Test specification P3-2 :
Prefix:
Test case value:

Expected outputs:

Ignited -  True 
Activate = True 
Running = True 
Brake = False 
Activate = True 
NO-TARGET

Reach NO-TARGET state 
Trigger before-value 
Condition variable 
Condition variable 
Triggering event

3. Test specification Ps-3:
Prefix:
Test case value:

Expected outputs:

Ignited = True 
Activate = False 
Ignited = False 
Running = True 
Brake = False 
Activate = True 
NO-TARGET

Reach NO-TARGET state 
Trigger before-value 
Condition variable 
Condition variable 
Condition variable 
Triggering event

4. Test specification P3-4 :
Prefix:
Test case value:

Expected outputs:

Ignited = True 
Activate = False 
Running = False 
Brake = False 
Activate = True 
NO-TARGET

Reach NO-TARGET state 
Trigger before-value 
Condition variable 
Condition variable 
Triggering event

57



5. Test specification P3-5 :
Prefix:
Test case value:

Expected outputs:

Ignited = True 
Activate = False 
Running = True 
Brake = True 
Activate = True 
NO-TARGET

6. Test specification P3-6:
Prefix:
Test case value:

Expected outputs:

Ignited = True 
Activate = False 
Running = True 
Brake = False 
Activate = False 
NO-TARGET

Reach NO-TARGET state 
Trigger before-value 
Condition variable 
Condition variable 
Triggering event

Reach NO-TARGET state 
Trigger before-value 
Condition variable 
Condition variable 
Triggering event

There is a interesting point to note about these test specifications. It should be clear that 

there is some redundancy; some of the condition variables do not need to be explicitly 

set, as they will already have the appropriate values.

Following are two algorithms (Offutt, Abdurazik, 1999), Get Prefix Algorithm and 

Generate Full-Predicate Coverage Test Cases Algorithm. A prefix generation algorithm 

was used in test data generation algorithms to create the values necessary to reach a 

particular state.

5.3.4 Get Prefix Algorithm

Figure 10 gives an algorithm for generating test prefix values from a specification graph. 

The input is a state (the test state) in the graph, and it finds a path from an initial state in 

the graph to the test state.
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algorithm: GetPrefix (State)
input: Test state of a transition,
output: Inputs to get to the given state,
output criteria: No redundant inputs,
declare: prefix (s) — Inputs to reach state s.

incomingTrans (s) — The set of incoming transitions, 
event (otr) — Trigger event for transition otr. 
whenCondition (otr) — Precondition for otr. 
nextState (otr) — Next state for transition otr. 
expectedOutput -- Post-state after transition.
TCValue (otr) — Value assignments for the trigger 
event and when condition variables for otr.

GetPrefix (State)

BEGIN -- Algorithm GetPrefix 
s = State
prefixStates = prefixStates u  s 
WHILE (s IS NOT initial state) LOOP 

get incomingTrans (s) 
prefix (s) = EMPTY
IF (3 transition itr e incomingTrans (s) such that 
prevState (itr) = initial State) THEN 

s = prevState (itr) 
prefixStates = prefixStates \ j  s 
EXIT

ELSE
s = prevState (itr) such that itr e incomingTrans (s) a  

prevState (itr) £ prefixStates 
prefixStates = prefixStates vj s 

END IF 
END LOOP

END Algorithm GetPrefix

Figure 10: The GetPrefix Algorithm
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5.3.5 Generate Full-Predicate Coverage Test Cases Algorithm

Figure 11 gives an algorithm for generating test cases for the full predicate coverage 

criterion. Algorithm GenerateFullPredicateCoverageTCs takes a state transition table as 

input, and generates test cases for the full predicate coverage criterion. It processes each 

outgoing transition of each source state, generates a test case that makes the transition 

valid, and then generates test cases that make the transition invalid. When generating a 

test case, GetPrefix() is used to obtain prefixes to reach the source state of a transition. 

Then each variable in the transition predicate is assigned a test case value. To avoid 

redundant test case value assignments, those variables that already have assigned values 

in the prefixes are not considered in the test case value assignment process. After all test 

case values are generated, an additional algorithm is run on the test cases to identify and 

remove redundant test cases.

algorithm:
input:
output:
output criteria: 
assumption:

declare:

GenerateFuIIPredicateCoverageTCs (STTable)
State transition table.
Test cases for full predicate coverage.
Test cases contain prefix, test case values, and expected output. 
Clauses are disjunctive.
No redundant assignments in prefix and test cases, 
prefix (s) — Inputs to get to the state s. 
outgoingTrans (s) — Set of outgoing transitions, 
event (otr) — Trigger event for transition otr. 
whenCondition (otr) — Precondition for otr. 
nextState (otr) — Next state for transition otr. 
expectedOutput — Post-state after transition.
TCValue (otr) — Value assignments for the trigger event and when 
condition variables for otr.

GenerateFullPredicateCoverageTCs (STTable)

60



BEGIN — Algorithm GenerateFullPredicateCoverageTCs 
TestCaseSet = EMPTY 
FOR EACH source state s in STTable 

prefix (s) = GetPrefix (s) 
get outgoingTrans (s)
— Generate one test case for each transition 
FOR EACH outgoing transition otr e outgoingTrans (s) 

expectedOutput = nextState (otr)
TC Value (otr) = EMPTY
get event (otr) and whenConditions (otr)
— Check for redundancy
IF (-G a condition variable var e prefix (s) s.t. 
var.name = event (otr).name a  var.value = event (otr).value)

TC Value (otr) = TC Value (otr) u  
{(event (otr). name, event (otr). before Value)}

END IF
— Assign value for clauses in when condition 
FOR EACH clausej in whenConditions (otr)

IF (-G a condition variable var e prefix (s) s.t. 
var.name = clausej .name a  var.value = clause; .value)

TC Value (otr) = TC Value (otr) u  
{( clausej.name, clausej.value)}

END IF 
END FOR
TC Value (otr) = TC Value (otr) u  {(event (otr). name, 

event (otr). after Value)}
TestCaseSet = TestCaseSet u  {(prefix (s), TCValue (otr), 

ExpectedOutput}
— get test cases for invalid transitions 
expectedOutput = current state s
FOR EACH variable var in TCValue (otr)

TCValue (otr) = TCValue (otr) -  {(var.name, var.value)} 
var.value = -i var. value
TCValue (otr) = TCValue (otr) u  {(var.name, var.value)} 
TestCaseSet = TestCaseSet u  {(prefix (s), TCValue (otr), 

expectedOutput)}
END FOR 

END FOR 
END FOR

END Algorithm GenerateFullPredicateCoverageTCs

Figure 11: The GenerateFullPredicateCoverageTCs Algorithm
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6 Conclusion

When conducting model testing, you may want to know how the state and transition are 

passed in your model. Using state transition diagram designed in the software design 

phase, you can conduct the path testing. If you would like to test the specific path in your 

mind, you can use string-matching algorithm to do the test. If you just want to know how 

many different paths are working as expected or get the general idea about model, you 

may conduct the random walk testing. Coverage testing is a good way to find out where 

and why some paths are not working.
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