
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2001

Model-based path testing Model-based path testing

Jie Zhang
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Zhang, Jie, "Model-based path testing" (2001). Graduate Student Theses, Dissertations, & Professional
Papers. 5128.
https://scholarworks.umt.edu/etd/5128

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5128?utm_source=scholarworks.umt.edu%2Fetd%2F5128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike

MANSFIELD LIBRARY

The University of MONTANA

Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

** Please check "Yes” or "No" and provide signature

Yes, I grant permission ^
No, I do not grant permission ____

Author's Signature

D ate I , I s W 2̂

Any copying for commercial purposes or financial gain may be undertaken only with
tire author's explicit consent.

MODEL-BASED PATH TESTING

by

Jie Zhang

M.S. The University of Montana, 1999

A professional paper
presented in partial fulfillment of the requirements

for the degree of

Master o f Science
in

Computer Science

The University of Montana

November 2001

Dean, Graduate School

erson

Date

UMI Number: EP40592

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, th e se will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI E P40592

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

Jie Zhang, Computer Science

Model-based Path Testing

This paper presents some algorithms for model-based path testing. At first, finite
automata modeling technique is used to build state and transition diagram and table.
Then, Maximum-path Arithmetic and Minimum-path Arithmetic are introduced for
analyzing the number of path of the model. Finally, three testing approaches are
discussed: a string-matching algorithm for the interested path testing; a random-walk
algorithm for general path testing; and coverage testing algorithm for locating path
failure.

Contents

1 P roblem ..1
2 In troduction..2

2.1 T rad itional S oftw are T e stin g ...2
2.2 M o d el-B ased T e s tin g ...3
2.3 P hases o f Softw are T estin g ..4

2.3.1 Modeling Program Behavior .. 5
2.3.2 Selecting Tests.. 5
2.3.3 Running & Evaluating Tests...6
2.3.4 Measuring Test Progress......................... 7

2 .4 O ur W o rk (P ath T esting) and T e rm in o lo g y ..7
3 M odeling..10

3.1 B ack g ro u n d and T e rm in o lo g y ..10
3.2 M odel B u ild in g ...12
3.3 E x a m p le ...15

4 Path and Coverage T esting ...19
4.1 M ax im u m -P ath A rith m e tic 20
4 .2 M in im u m -P ath A rithm etic.. 29
4.3 C overage T e s t in g 33

4.3.1 Transition Coverage Level..34
4.3.2 Full Predicate Coverage Level... 35
4.3.3 Transition-Pair Coverage Level... 36
4.3.4 Complete Sequence Level...36

5 Path testing approaches and algorithm s.. 37
5.1 T esting the M ost L ikely P a th s ... 37

5.1.1 String-matching.. 39
5.1.2 Finite Automata... 42
5.1.3 String-matching automata algorithm...44

5.2 R andom W alk w ith T raversal M arkers and A lg o rith m49
5.3 F u ll P red ica te C overage T esting and A lg o rith m 51

5.3.1 Case Study..52
5.3.2 Full predicate coverage criterion... 55
5.3.3 Test specifications.. 56
5.3.4 Get Prefix Algorithm............. 58
5.3.5 Generate Full-Predicate Coverage Test Cases Algorithm.................................. 60

6 C onclusion..62
REFEREN CES..62

1 Problem

MATT is an application that provides enhanced test generation capability for users of

MATLAB. The ability to rapidly create custom test data for running model simulations is

an important time saver that frees the pains of developing a variety of test data, needed

for testing and model simulation.

MATT uses information it obtains from MATLAB to create a set of data that describes

the inputs for a specific model superblock. With a series of point and click selections,

users may set the types of tests for data they desire for each input and adjust parameters

for accuracy, constant, minimum and maximum values. Once adjustments are complete,

these settings may be saved in a MATT file format known as a test Script. Test Scripts

may be recalled and used again for later test generation. Once each input has been set up

for a particular test type, the user may then generate the test matrix. The test matrix

output may then be returned to MATLAB for simulation or it may be saved and used at a

later time.

MATT does not have the capability to direct a path, or to trace paths and their coverage

on running model simulations. A path is a running routine of a model that enters from a

starting state, via many middle states and transitions, and ends up with final state. MATT

will be highly enhanced if we can add a feature to direct a path, to trace paths and their

coverage of the model, which will help the builder of the model to get testing information

about model functions.

1

This research project is focusing on finding a testing technique and algorithm on path

directing and tracing. We start the work with an introduction to software testing.

2 Introduction

2.1 Traditional Software Testing

Software testing includes executing a program on a set of test cases and comparing the

actual results with the expected results. Testing and test design, as parts of quality

assurance, should also focus on fault prevention. To the extent that testing and test design

do not prevent faults, they should be able to discover symptoms caused by faults. Finally,

tests should provide clear diagnoses so that faults can be easily corrected.

Software is tested from two different perspectives, the white box approach and the black

box approach. White box strategies for testing are driven by the internal control structure

of the program. There are several types of structural testing, including branch testing,

control flow testing, data flow testing, slicing, and program dependency.

In the black box approach to software testing, we are interested in the inputs and outputs

of the system in addition to an understanding of its behavior or functional properties that

are extracted almost exclusively from the requirements. The construction of tests depends

on looking at these properties while totally ignoring the structure of the implementation.

Exhaustive black box testing is running the program with all possible input combinations.

It can be easily seen that such a task is impossible (Whittaker, 1997; Myers, 1979). Myers

2

concludes that, due to the impossibility of performing exhaustive black box testing, the

approach cannot be used to show the program error-free. Further, the amount of testing to

be done (or selecting test data out of the infinite possibilities) becomes a major problem

as it is an issue of computational and man-hour cost.

2.2 Model-Based Testing

Traditional software testing consists of the tester studying the software system and then

writing and executing individual test scenarios that exercise the system. These scenarios

are individually crafted and then can be executed either manually or by some form of

capture/playback test tool.

This method of creating and running tests faces at least two large challenges (Robinson,

1999):

First, these traditional tests will suffer badly from the “pesticide paradox” (Beizer, 1990)

in which tests become less and less useful at catching bugs, because the bugs they were

intended to catch have been caught and fixed.

Second, handcrafted test scenarios are static and difficult to change, but the software

under test is dynamically evolving as functions are added and changed. When new

features change the appearance and behavior of the existing software, the tests must be

modified to fit. If it is difficult to update the tests, it will be hard to justify the test

maintenance costs.

3

Model-based testing alleviates these challenges by generating tests from explicit

descriptions of the application. It is easier, therefore, to generate and maintain useful,

flexible tests.

In recent years, there has been a growing movement in software testing to use the

information contained in explicit models of software behavior to make it simpler and

cheaper to do testing. (Beizer, 1995; Apfelbaum, 1997)

Model-based testing is a black-box technique that offers many advantages over

traditional testing (Robinson, 1999):

• Constructing the behavioral models can begin early in the development cycle.

• Modeling exposes ambiguities in the specification and design of the software.

• The model embodies behavioral information that can be re-used in future

testing, even when the specifications change.

The model is easier to update than a suite of individual tests.

2.3 Phases of Software Testing

Generally, regardless of the paradigm adopted, testing involves four phases: behavior

modeling, test generation, test execution and evaluation, and measuring test progress

(Whittaker, 1997, 1999).

4

2.3.1 Modeling Program Behavior

The task in modeling program behavior is to document all communication among the

system and its users. This involves enumerating all the inputs and outputs for every user

and constructing a representation of the understanding of the possible input sequences

(tests): the ones the users can produce and the ones the system expects by specification.

Finally, interaction among users that may have a consequential effect on the system needs

to be documented. Based on this information, a model of how the software operates is

constructed. The modeling products include:

• A document enumerating all the elements of software-user interaction

• A model of software behavior, based on which tests are generated. Examples of

such a model include control and data flow graphs in structural testing and finite

state machines in black box testing.

Modeling is the most fundamental phase of any testing process, since the rest of the

phases depend on the accuracy of its artifacts.

2.3.2 Selecting Tests

This phase creates:

• A document describing each of the test adequacy criteria

• An algorithm that, based on the model constructed in the earlier phase, builds a

test that meets the adequacy criteria

5

Selecting tests is not straightforward. Most of the work in testing has addressed test

selection with various objectives in mind, such as revealing bugs, covering code, etc..

2.3.3 Running & Evaluating Tests

Running a test involves figuring out how to simulate user action so that the software

“thinks" that it is in its intended environment. The task of input simulation is becoming

increasingly easier. There are numerous tools that are dedicated to simulating software

input. Writing code for the simulations is another feasible option, when tools are not

available.

Evaluating a test involves verifying the test result against some sort of specification.

Howden (Howden, 1978) states that every form of testing requires or assumes the

existence of an oracle. An oracle is an independent entity that determines whether a result

observed in the software after a test has been run meets expectations (i.e., whether the

correct outputs have been produced; or, whether the correct control sequences have been

followed). Developing an oracle is nontrivial and is often as complex as the application

under test itself. Many times, in practice, the oracle is an experienced test engineer or

developer upon whose expertise the decision of whether a test has been successful is

based. So this phase produces:

• An input simulator that automatically executes tests

• An oracle

6

2.3.4 Measuring Test Progress

Generally, there are two classes of measures that testers and project managers are

interested in: stopping criteria and field quality metrics. Stopping criteria describe the

conditions under which it is determined that enough tests have been generated.

Field quality metrics are figures of estimation for how well the software will perform

when it is released in its intended environment. For example, some of these metrics

estimate how much more testing needs to be done, the time to release, the mean time

between failure, the mean time to the next failure, and reliability. This phase creates:

• A document describing stopping criteria

• A document describing the field quality metrics

• The actual metrics, which are computed based on collected data (previous test

runs).

2.4 Our Work (Path Testing) and Terminology

Our research is focusing on path testing. The goal is to get the information about which

states and transitions in a model are covered in a path testing case. So our work focuses

on the first two phases, modeling phase and selecting tests phase. And, our work will use

both techniques for traditional testing and model-based testing. First we create a finite

state machine, then study the criteria and algorithm to test a path within the machine. The

7

test will reveal which state and transition have been passed and what is covered in the

machine.

Following are some very important definitions.

Path testing based on the program’s control flow as a structural model is the cornerstone

of testing. Methods include how to generate tests from the program’s control flow,

criteria for selecting paths, and how to determine path-forcing input values.

A flowchart is a graphical representation of a program’s control structure. The

programmer’s original flowchart is a statement of intentions and not a program.

A process has one entry and one exit. It performs an operation on data. A process can

consist of a single statement or instruction, a sequence of statements or instructions, a

single-entry/single-exit subroutine, a macro or function call, or a combination of these.

The program does not jump into or out of process. From the point of view of test cases

designed from flowcharts, the details do not affect the control flow. A sequence of

processing statements that is uninterrupted by junctions or decisions is usually put into

one proceed block. If the processing affects the flow of control, that effect will be

manifested at a subsequent decision or case statement.

A decision is a program point at which the control flow diverges. While most decisions

are two-way or binary, some are a three-way branch in control flow. A case statement is a

multi-way branch or decision.

A junction is a point in the program where the control flow merges.

A path through a program is a sequence of instructions or statement that starts at a

junction or decision and ends at another, or possibly the same, junction or decision. A

path may go through several junctions, processes, or decision, one or more time. The

word “note” is used to mean either junction, decision or both. Paths consist of segments.

The smallest segment is a single process that lies between two nodes, e.g., junction-

process-junction, junction-process-decision, decision-process-junction, decision-process-

decision. The collective term for flowchart lines that join nodes is “link”. A flowchart

then, consists of nodes and links. A path segment is a succession of consecutive links that

belongs to some path. The word “path” is also used in the more restrictive sense of a path

that starts at the routine’s entrance and ends at its exit.

The term “complete cover”, or “cover” alone is used to mean that a set of tests has the

potential for executing every instruction and taking all branches in all directions.

Complete coverage is a minimum mandatory testing requirement.

A transaction is a unit of work seen from a system user’s point of view. A transaction

consists of a set of operations, some of which are performed by a system, persons, or

9

devices that are outside of the system. A transaction typically consists of a set of

operations that begins with an input and ends with one or more outputs. At the conclusion

of the transaction’s processing, the transaction is no longer in the system, except perhaps

in the form of historical records.

3 Modeling

Modeling is a way of representing the behavior of a system. Models are simpler than the

system they describe, and they help us understand and predict the system’s behavior.

A common type of model in computing is the state graph, or finite state machine. State

graphs are a useful way to think about software behavior and testing (Beizer, 1995). The

application begins in some state (such as “main window displayed”), the user applies an

input (“invoke help dialog”) and the software moves into a new state (“help dialog

displayed”).

3.1 Background and Terminology

Software systems are installed into environments where they are stimulated by users via

inputs and where they produce outputs to be consumed by users. A software user is an

element of its environment that is either responsible for generating system input or

expected to consume system output. Test engineers must document communication

between the software and its users occurring via inputs and outputs.

10

An input is a user-generated event recognizable by the software. An output is an event

generated by the software directed to one or more of its users.

An input is said to be applicable at an identifiable point of software execution (also

referred to as 'time' throughout this document) if and only if the user responsible for

generating the input is capable of generating it (in such a case the input is said to be

available to the user) and the system recognizes it as an allowable stimulus. Applicability

of an input is not necessarily equivalent to its legality from the point of view of its

functional specification; an applicable input is one that gets processed by the system.

An applicable input string is a sequence of inputs such that every input in the string is

applicable after all preceding inputs in the sequence have been processed by the system.

An input is said to be unreachable at an identifiable point of software execution if and

only if it is not applicable. Unreachable inputs are stimuli that cannot affect the system

due to the unavailability of the required interface (at that particular point of execution) or

that get ignored by interface components. In other words, the system under test never

processes unreachable inputs, by specification.

The functional behavior of a software system at a particular point of execution is the

manner in which it responds to inputs in it (whether it recognizes an input, ignores it, or

processes it; and in the latter case, whether the response is observed as an output or goes

unnoticed by the user as internal computation). This depends on the string of inputs that

11

has been processed by the system starting with the last invocation of the system up to the

time in question.

Behavior models are discrete structures that describe every possible functional behavior

and the manner in which software transitions from one behavior to another. In the context

of black-box testing, finite state machines are an example representation of behavior

models.

A state of a software system represents one and only one functional behavior of

the system. The state space represents every possible functional behavior of the system.

Therefore, a combination of values of all functionally significant data elements is a

sufficient description of a state. It follows from the definition of operational modes that a

state is a tuple of instantiations for all modes.

Assuming a finite-state-machine-like representation, to build a behavior model is to

enumerate the states and define the state transitions of the model.

3.2 Model Building

We usually create state transition diagrams and state transition tables to describe the

model.

A state transition diagram is a graphic representation of a state machine. State

transition diagrams emphasize the logical behavior of a system. Traditionally, state

12

transition diagrams have been used to explain how a system with a finite set of modes, or

states, can change from one mode or state to another. In Figure 1 rectangles with rounded

corners represent the states in a system. The directed lines from one state to another are

called transitions. These indicate the ability to change from one state to another.

Transitions are usually labeled with the conditions that must be satisfied before the

transition can be taken. Several transitions can originate or terminate on the same state.

D efault transition

Transition

Source state Destination state

Figure 1: the basic elements of a state transition diagram

State transition diagrams are useful for visualizing logical paths through a series of states.

A state transition diagram can help to clarify the exact sequence of logic that is needed to

change from one state to another, particularly when each state has a small number of

13

transitions that originate or terminate on it. Actions associated with states and transitions

enable the state diagram to interact with its external environment.

As a design tool, classic state transition diagrams are limited by scalability problems.

Extended state transition diagrams, like those supported in Stateflow, overcome these

limitations with constructs that handle hierarchy, parallelism, and transition re-use.

Hierarchy allows states to be grouped together into a superstate so that common

transitions only need to be drawn once. Parallelism allows the diagram to be partitioned

into several parallel states, each with its own hierarchy of active substate(s). Parallelism

prevents the state explosion that results when independent modes or attributes have

numerous possible combinations.

State transition diagrams are useful for models with a relatively small number of states.

Drawing and using a large state transition diagram is difficult and error-prone, even with

good CAD or CASE tools and with extended state transition ideas. Usually models with

20 or more states are graphically intractable. For large models with hundreds of states,

automated support is necessary. State transition tables provide a compact representation

and ease systematic examination and use of the model.

State machines may be represented in one of several tabular formats. In the state-to-state

format, rows represent accepting states and columns represent result states, cells

represent the input/event trigging the transition. In the state-to-event format, rows

14

represent accepting states and columns represent the input/event, cells represent the result

states.

3.3 Example

Consider a hypothetical design of a cruise control system (Aldrich). The inputs and

outputs to the controller are shown in Figure 2. The controller uses sensor input for the

brake pedal, accelerator pedal and vehicle speed. User input is generated from a Power

switch, and Set, Resume, Increment, and Decrement buttons. The controller produces a

throttle command used as a set point to the mechanical system that controls the throttle

plate.

The target speed for the controller also serves as an output for verification even though it

is not required by the other system components.

Inputs:

1. Vehicle speed
2. Brake pedal switch
3. Accelerator pedal position
4. Power button
5. Set button
6. Resume button
7. Increment button
8. Decrement button

Outputs:

1. Throttle plate command
2. Target speed (for verification)

Figure 2: The cruise control input and outputs

15

The controller has the ability to adjust the target speed with an increment and decrement

button. A list of functional requirements for the cruise control is shown in Table 1.

Table 1: A list of functional requirements for the cruise control

1. When the cruise control is powered on it shall enter an idle mode until a target
speed is established that enables active control.

2. When the Set button is depressed while the cruise control is on it shall set the target
speed to the current vehicle speed.

3. When the Resume button is depressed it shall set the target speed to the last value
set by the vehicle speed since the control was powered on.

4. Pressing and releasing the Inc button in less than 1 second when the control is
active shall cause the target speed to increase by 1 M.P.H

5. Holding the Inc button depressed when the control is active shall cause the target
speed to increase by 1 M.P.H. every second.

6. Pressing and releasing the Dec button in less than 1 second when the control is
active shall cause the target speed to decrease by 1 M.P.H

7. Holding the Dec button depressed when the control is active shall cause the target
speed to decrease by 1 M.P.H. every second.

8. When the cruise control is not actively controlling speed, the throttle position shall
be set to the same value as the accelerator pedal.

9. When the brake pedal is greater than zero and the cruise control is active the cruise
control shall enter the override mode.

10. When the controller is in the override mode and the Set or Resume button is
depressed the controller shall return to active control.

A portion of an extended state transition diagram for a cruise control application is shown

16

in Figure 3. Hierarchy allows the states that represent the powered-on modes of the

controller to be grouped together in a natural manner. Diagram 2 (of Figure 3) is a state

transition diagram showing the logic for a cruise control. When power is enabled, i.e., the

condition [pwr] is logically true, the active state changes from Off to the

no_target substate of Active (Active.no_target) . When the Set event

occurs, the mode changes to Active . control_enabled.

Figure 3: Cruise Control Top Level State Transition Diagram

S e t Point Calculation

Increment
en:target_speed++;

every(10 , Update)
{target_speed++;}

INC BU

o

INC BD

DEC BU -----

Hold

HDEC BD

D ecrem ent
en: target_speed--;

every(10 ,U pdate)

{target_speed--;}

[in(active_control)] [in(active_control)]

E n a b le j o g ic

override

[brakeS et R e su m e

no target ^active contro

17

We simplify figure3 into figure 4. Table 2 is the state transition table of the cruise control

model.

off

off

on Set/resume
ACTIVE-CONTROLJ NO TARGETOFF

brake
brake

Set/resume
off

Increase/decreaseOVERRIDE

Figure 4: Cruise Control Model State Transition Diagram

Table 2 Cruise Control Model State Transition Table

OFF NOTARGET ACTIVECONTROL OVERIDE

OFF on

N O TA RG ET off set/resume

ACTIVECONTROL off brake increase/decrease

OVERIDE off brake set/resume

18

4 Path and Coverage Testing

After the model is built, we trace paths through it to find a set of covering paths, a set of

values that will sensitize paths, what logic function controls the flow from one state to

another, or if a state is reachable or not. But before we do these, we should know what is

the maximum and minimum number of paths in the model. Maximum number gives you

an idea how many test cases should be generated and when you should stop. The

minimum number gives you a way of efficiency to test model only once without missing

a single state.

At first a review of some basic concepts. Path expressions are introduced as algebraic

representations of sets of paths in a graph. With suitable arithmetic laws and weights,

path expressions are converted into algebraic functions or regular expressions that can be

used to examine structural properties of graphs or flowcharts.

Two basic conversions are presented as follow:

19

Path expression

> a(b+c)d

=> a(bc)*bd

4.1 Maximum-Path Arithmetic

Following is the procedure for Maximum-path Arithmetic (Beizer, 1990). Start with a

state transition diagram, label each link with a link weight that corresponds to the number

of paths that link represents. Typically, that’s one. However, if the link represented a

subroutine call, say, and you wanted to consider the paths through the subroutine in the

path count, then you would put that number on the link. Also mark each loop with the

maximum number of times that the loop can be taken. There are three cases of interest:

parallel links, serial links, and loops. In what follow, A and B are path expressions and

Wa and WB are algebraic expressions in the weights.

CASE PATH EXPRESSION WEIGHT EXPRESSION
PARALLEL A+B Wa + Wb
SERIES AB Wa Wb
LOOP > II >

*

,/=o

b

parallel (T) -----^ 2 ^ ^ P) -----* (T)

20

The arithmetic is ordinary algebra. This is not a true upper bound for the number of paths,

but a larger number because the model does not include paths that might be forbidden

due to correlated and dependent predicates. The rationale behind the parallel rule is

simple. The path expressions denote the paths in a set of paths corresponding to that

expression. The weight is the number of paths in each set. Assuming that the path

expression were derived in the usual way, they would have no paths in common and

consequently, the sum of the paths for the union of the sets would be the sum of the

number of paths in each set. The serial rule is explained by noting that each term of the

path expression (say the first one A) will be combined with each term of the second

expression B, in all possible ways. If there are WA paths in A and WB Paths in B, then

there must be WA WB paths in the combination. The loop rule follows from the

combination of the serial and parallel rules, taking into account going through zero, once,

twice, and so on. If you know for a fact that the minimum number of times through the

loop is not zero but some other number, say j, then you would do the summation from j to

n rather than from 0 to n.

Here is a reasonably well-structured program. Its path expression, with a little work, is

shown below:

(i)

21

m

a (b + c) d { e (f i) * f g j (m + l)k } * e (f i) * f g h

Each link represents a single link and consequently is given a weight of “ 1” to start. Let’s

say that the outer loop will be taken exactly four times and the inner loop can be taken

zero to three times. The steps in the reduction are:

(2)

1

(4-4)(0-3)

(3)

22

(4-4)1 (0-3)

(4)

2
(4-4)

1 (0-3)

For the inner loop

(5)

23

2

(6)

2
(4 -4)

(7)

24

2(4)=8
(4-4)

(8)

2 84 4

32,768

Alternatively, you could have substituted a “1” for each link in the path expression and

then simplified, as follows:

l (l + l) l (l (l x l) 2l x l x l (l + l) l) 4l (l x l) 2l x l x l

= 2(l-lx(2))4f

but 12 = l + l ' + f + l 3 = 4

= 2(4x2)4x4

= 2x84x4

=32,768

25

This is the same result we got graphically. Reviewing the steps in the reduction, we:

1. Annotated the flowchart by replacing each link name with the maximum number

of paths through that link (1) and also noting the number of possibilities for

looping. The inner loop was indicated by the range (0-3) as specified, and the

outer loop by the range (4-4).

2. combined the first pair of parallels outside of the loop and also the pair

corresponding to the IF-THEN-ELSE construct in the outer loop. Both yielded

two possibilities.

3. Multiplied things out and removed notes to clear the clutter.

4. Took care of the inner loop: there were four possibilities, leading to the four

values. Then we multiplied by the link weight following (originally link g) whose

weight was also 1.

5. Got rid of link e.

6. Used the cross-term to create the self-loop with a weight of 8 = 2 x 4 and passed

the outer 4 through.

For the cruise control example as figure 4, we re-draw the graph as follow in order to

derive the path expressions easier:

26

brake
set/resumebrake

increase/
decrease offset/resumeon

No-target >(Off/end■*(overrideOff/start Active control

off

o f f

or

Where

1 - Off or start state

2 - No_target state

3 - Active control state

4 - Override state

5 - off/end state

a - on

b, f — set/resume

c — increase/decrease

d, h, i — off

e, g - brake

The path expression is:

27

a(i + ((bg)*b(h+(cf)*c)e)*(bg)*b(h+(cf)*c)d)

The above expression is derived after the following substitution:

x

Where x e

=> a(i +x)

x = (ye)*yd

Where y

h

^ y = (bg)*b(h+(cf)*c)

Assume only taking loop once and we get the maximum-path arithmetic of the cruise

control as:

1(1 + ((lx l)* l(l+ (lx l)* l) l)* (lx l)* l(l+ (lx l)* l) l)

= 1(1 + ((lx l) i l (l+ (lx l)1l) l) i (lx l) i l(l+ (lx l)1l) l)

= 1+ 2x2

=5

28

4.2 Minimum-Path Arithmetic

A lower bound on the number of paths in a routine can be approximated for structured

flowcharts (Beizer, 1990). It is not a true lower bound because again, forbidden paths

could reduce the actual number of paths to a lower number yet. The appropriate

arithmetic is:

CASE PATH EXPRESSION WEIGHT EXPRESSION
PARALLEL A+B Wa + Wb
SERIES AB MAX(Wa ,Wb)
LOOP

*<II=i< l,w,

The parallel case is the same as before. The values of the weights are the number of

members in a set of paths. There could be an error here because both sets could contain

the null path, but because of the way the loop expression is defined, this cannot happen.

The series case is explained by noting that each term in the first set will be combined

with at least one term in the number of possibilities in the first set and the second set. The

loop case requires that you use the minimum number of loops—possibly zero. Loops are

always problematic. If the loop can be bypassed, then you can ignore the term in the loop.

But it is better to use a value of 1, so that we are asserting that we’ll count the number of

paths under the assumption that the loop will be taken once. Because in creating the self

loop, we used the cross-term expression, there will be a contribution to the links

following the loop, which will take things into account.

Alternatively, you could get a higher lower bound by arguing that if the loop were to be

taken once, then the path count should be multiplied by the loop weight. This however,

would be equivalent to saying that the loop was assumed to be taken both zero and once,

because again, the cross-term that created the self-loop was multiplied by the series term.

Generally, if you ask for a minimum number of paths, it is more likely that the minimum

is to be taken under the assumption that the routine will loop once—because this is

consistent with coverage.

Applying this arithmetic to the earlier example gives us the identical steps until Step 3,

where we pick up:

(4)

30

(4-4)

(5)

2
(4-4)

(6)

31

(4-4)

(7)

(8)

2

32

If you go back to the original graph, you will see that it takes a minimum of two paths to

cover, and it can be done in two paths. The reason for restricting the algorithm to

structured graphs is that for nonstructured graph the result can depend on the order in

which nodes are removed. Structured or not, it’s worth calculating this value to see if you

have at least as many paths as the minimum number of paths calculated this way. If you

have fewer paths in your test plan than this minimum you probably haven’t covered. It’s

another check.

It is obvious that for cruise control the minimum-path arithmetic is 1, which means that

there is a single path that can cover all states and inputs. It is:

i s e t / r e s u m e*4 No-target M O ff/en dOff/start ■H No-target

4.3 Coverage Testing

33

There are four levels of path and coverage testing (Offutt, Abdurazik, 1999). (1) the

transition coverage level, (2) the full predicate coverage level, (3) the transition-pair

coverage level, and (4) the complete sequence level.

It is possible to apply all levels, or to choose a level based on a cost/benefit tradeoff. The

first two are related; the transition coverage level requires many fewer test cases than the

full predicate coverage level, but if the full predicate coverage level is used, the tests will

also satisfy the transition coverage level (full predicate coverage subsumes transition

coverage). Thus only one of these two should be used. The latter two levels are meant to

be independent; transition-pair coverage is intended to check the interfaces among states,

and complete sequence testing is intended to check the software by executing the

software through complete execution paths. As it happens, transition-pair coverage

subsumes transition coverage, but they are designed to test the software in very different

ways.

4.3.1 Transition Coverage Level

It seems reasonable to expect that to test the software adequately, the tester should at

minimum use tests that cause every transition in every statechart to be taken. This level

requires just that, by requiring test cases that satisfy each precondition in the specification

at least once. In the criteria definitions, T is a set of test cases, and SG is a specification

graph, a graph that represents the transitions in a statechart. Although the tests are

intended to be executed on an implementation of the specification, we say that a test

34

traverses a transition to indicate that, from a modeling perspective, the test causes the

transition's predicate to be true, and the implementation will change from the transition's

pre-state to its post-state.

4.3.2 Full Predicate Coverage Level

Small inaccuracies in the specification predicates can lead to major problems in the

software. The full predicate coverage level takes the philosophy that to test the software

we should at least provide inputs to test each clause in each predicate. This level requires

that each clause in each predicate on each transition be tested independently, thus

attempting to address the question of whether each clause is necessary and is formulated

correctly. The Boolean operators are AND, OR, and NOT. A clause is a Boolean

expression that contains no Boolean operators. For example, relational expressions and

Boolean variables are clauses. A predicate is a Boolean expression that is composed of

clauses and zero or more Boolean operators. A predicate without a Boolean operator is

also a clause. If a clause appears more than once in a predicate, each occurrence is a

distinct clause.

Full predicate coverage is based on the philosophy that each clause should be tested

independently, that is, while not being influenced by the other clauses. In other words,

each clause in each predicate on every transition must independently affect the value of

the predicate. That is, for each predicate P on each transition, T must include tests that

35

cause each clause c in P to result in a pair of outcomes where the value of P is directly

correlated with the value of c. Here, “directly correlated" means that c controls the value

of P , that is, one of two situations occurs. Either c and P have the same value (c is true

implies P is true and c is false implies P is false), or c and P have opposite values (c is

true implies P is false and c is false implies P is true). This explicitly disallows cases such

as c is true implies P is true and c is false implies P is true.

Note that if full predicate coverage is achieved, transition coverage will also be achieved.

To satisfy the requirement that the test clause controls the value of the predicate, other

clauses in the predicate must be either True or False. For example, if the predicate is (X a

Y), and the test clause is X, then Y must be True. Likewise, if the predicate is (X vY), Y

must be False.

4.3.3 Transition-Pair Coverage Level

The previous testing levels test transitions independently, but do not test sequences of

state transitions. This level requires that pairs of transitions be taken. That is, for each

pair of adjacent transitions S, : Sj and Sj : Sk in SG , T contains a test that traverses the pair

of transitions in sequence.

4.3.4 Complete Sequence Level

36

It seems very unlikely that any successful test method could be based on purely

mechanical methods; at some point the experience and knowledge of the test engineer

must be used. Particularly at the system level, effective testing probably requires detailed

domain knowledge. A complete sequence is a sequence of state transitions that form a

complete practical use of the system. In most realistic applications, the number of

possible sequences is too large to choose all complete sequences. In many cases, the

number of complete sequences is infinite. So for complete sequence level testing, the test

engineer must define meaningful sequences of transitions on the statechart diagram by

choosing sequences of states that should be entered.

5 Path testing approaches and algorithms

5.1 Testing the Most Likely Paths

It would be helpful if there were a way to guide the path testing into areas that are of

more interest to the tester. For instance, you might want to see if a path includes all the

activities that a user is more likely to perform. Or, you might only want to test the

minimum number of paths that cover all of the states in the model.

For example (Beizer, 1990), a program that detects the character sequence “zczc” can be

in the following states:

1. neither zczc nor any part of it has been detected

37

2. z has been detected

3. zc has been detected

4. zcz has been detected

5. zczc has been detected

The inputs are:

1. Z

2. C

3. Any character other than Z or C, which we’ll denote by A

C,A
Z,C,AA, C

NONE ZCZ

z

Figure 5: ZCZC sequence detector state graph

38

1. If the system is in the “NONE” state, any input other than a Z will keep it in that

state.

2. If a Z is received, the system transitions to the “Z”.

3. If the system is in the “Z” state, and a Z is received, it will remain in the “Z”

state. If a C is received it will go to the “ZC” state, and if any other character is

received, it will go back to the “NONE” state because the sequence has been

broken.

4. A Z received in the “ZC” state progresses to the “ZCZ” state, but any other

character breaks the sequence and causes a return to the “NONE” state.

5. A C received in the “ZCZ” state completes the sequence and the system enters the

“ZCZC” state. A Z breaks the sequence and causes a transition back to the “Z”

state; any other character cause a return to “NONE” state.

6. No matter what is received in the “ZCZC” state, the system stays there.

String matching with a finite automata algorithm (Cormen, 1990) can be used in

testing the paths interested in the model. You need just change concepts for the

character string into transition input strings and the text into a path pool of your

model.

5.1.1 String-matching

We formalize the string-matching problem as follows. We assume that the text is an array

T[l..n] of length n and that the pattern is an array P[l..m] of length m. We further

39

assume that the elements of P and T are characters drawn from a finite alphabet X. For

example, we may have X = {0, 1} or X = {a, b, ..., z}. The character arrays P and T are

often called strings of characters.

We say that pattern P occurs with shift s in text T (or, equivalently, that pattern P occurs

beginning at position s+1 in text T) if 0 < s < n-m and T[s+1 ..s+m] = P[l..m] (that is, if

T[s+j] = pDL f°r 1 <j < m). If P occurs with shift s in T, then we call s a valid shift;

otherwise, we call s an invalid shift. The string-matching problem is the problem of

finding all valid shifts with which a given pattern P occurs in a given text T. Figure 6

illustrates these definitions.

40

Text T a b c a b a a b c a b a c

^ — j a b a a
r a u m i r

Figure 6: The string-matching problem

The goal is to find all occurrences of the pattern P = abaa in the text T = abcabaabcabac.

The pattern occurs only once in the text, at shift s = 3. The shift s = 3 is said to be a valid

shift. Each character of the pattern is connected by a vertical line to the matching

character in the text, and all matched characters are shown shaded.

We shall let S ' denote the set of all finite-length strings formed using characters from the

alphabet E. The zero-length empty string, denoted 8, also belongs to E*. The length of a

string x is denoted |x|. The concatenation of two strings x and y, denoted xy, has length

|x|+ |y| and consists of the characters from x followed by the characters from y.

41

We say that a string w is a prefix of a string x, denoted w e x, if x = wy for some string y

e £ . Note that if w c x, then |w| < |x|. Similarly, we say that a string w is a suffix of a

)jc

string x, denoted w d x , i f x ^ yw for some y e £ . It follows from w z> x that |w| < |x|.

The empty string s is both a suffix and a prefix of every string. For example, we have ab

c abcca and cca 3 abcca.

5.1.2 Finite Automata

A finite automata M is a 5-tuple (Q, qo, A, £, 8), where

• Q is a finite set of states,

• qo e Q is the start state,

• A c Q is a distinguished set of accepting states,

• £ is a finite input alphabet,

• 8 is a function from Q x £ into Q, called the transition function of M.

The finite automaton begins in state qo and reads the characters of its input string one at a

time. If the automaton is in state q and reads input character a, it moves (“makes a

transition”) from state q to state 8 (q, a). Whenever its current states q is a member of A,

the machine M is said to have accepted the string read so far. An input that is not

accepted is said to be rejected.

42

b

input

state a b

0 1 0

1 0 0

(a) (b)

Figure 7

Figure 7 illustrates these definitions with a simple two-state automaton with state set

Q = {0, 1}, start state qo = 0, and input alphabet 2 = {a, b}. Figure 7 (a) is a tabular

representation of the transition function 5. Figure 7 (b) is an equivalent state-transition

diagram. State a is the only accepting state. Directed edges represent transitions. For

example, the edge from state 1 to state 0 labeled b indicates 8 (1, b) = 0. This automation

accepts those strings that end in an odd number of a’s. More precisely, a string x is

accepted if and only if x = yz, where y = 8 or y ends with a b, and z = ak, where k is odd.

For example, the sequence of states this automation enters for input abaaa (including the

start state) is <0, 1,0, 1,0, 1>, and so it accepts this input. For input abbaa, the sequence

of states is <0, 1, 0, 0, 1, 0>, and so it rejects this input.

43

A finite automaton M induces a function (|>, called the final-state function, from Z* to Q

such that 4)(co) is the state M ends up in after scanning the string co. Thus, M accepts a

string co if and only if (|)(oo) e A. The function (|) is defined by the recursive relation

<Ks) = qo,

i()(coa) = 5 (c()(co), a) for co e Z*, a e Z .

5.1.3 String-matching automata algorithm

There is a string-matching automaton for every pattern P; this automaton must be

constructed from the pattern in a preprocessing step before it can be used to search the

text string. Figure 2 illustrates this construction for the pattern P = ababaca. From now

on, we shall assume that P is a given fixed pattern string; for brevity, we shall not

indicate the dependence upon P in our notation.

In order to specify the string-matching automaton corresponding to a given pattern

P[l..m], we first define an auxiliary function a, called the suffix function corresponding

to P. The function a is a mapping from Z* to {0, 1, . . m} such that cr(x) is the length of

the longest prefix of P that is a suffix of x:

a(x) = max { k: Pk z> x}.

44

The suffix function a is well defined since the empty string Po = £ is a suffix of every

string. As examples, for the pattern P = ab, we have a(s) = 0, a(ccaca) = 1, and

a(ccab)=2. For a pattern P of length m, we have a(x) = m if and only if P 3 x. It follows

from the definition of the suffix function that if x i d y, then a(x) < a(y).

We define the string-matching automaton corresponding to a given pattern P[l..m] as

follows.

• The state set Q is {0,1,... ,m}. The start state q0 is state 0, and state m is the only

accepting state.

• The transition function 8 is defined by the following equation, for any state q and

character a:

5(q, a) = a(Pqa).

Here is an intuitive rationale for defining 5(q, a) = a(Pqa). The machine maintains as an

invariant of its operation that (|)(Tj) = a (Tj). In word, this means that after scanning the

first i characters of the text string T, the machine is in state 4>(Tj) = q, where q = a (Tj) is

the length of the longest suffix of Tj that is also a prefix of the pattern P. If the next

character scanned is T[i+1] = a, then the machine should make a transition to state

cr(Tj+i)= a (Tja). That is, to compute the length of longest suffix of Tja that is a prefix of

P, we can compute the longest suffix of Pqa that is a prefix of P. At each state, the

machine only needs to know the length of the longest prefix of P that is a suffix of what

45

has been read so far. Therefore, setting 8 (q, a) = a(Pqa) maintains the desired invariant

cKTi) = a (TO.

In the string-matching automaton of figure 8 , for example, we have 8(5, b) = 4. This

follows from the fact that if the automaton reads a b in state q = 5, then Pqb = ababab, and

the longest prefix of P that is also a suffix of ababab is P4 = abab.

(a)

Input
state a b c Pattern

0 I 0 0 a
1 1 1 0 b
2 1 0 0 a
3 i 1 0 b
4 | 0 0 a
5 1 4 8 c
6 § 0 0 a
7 1 2 0

(b)

46

•1 - 1 2 3 4 5 6 7 8 9 10 11

T[i] - a b la b
■Hi

a
HUU

b
m m M

a
,y v] : .

......iMHI

* - ' ' S'-c a
. v.F *s

b a

State (jUi) 0 1 2 3 4 5 4 5
6 ' 7

2 3

(C)

Figure 8

Figure 8 (a) A state -transition daigram for the string-matching automaton that accepts all

strings ending in the string ababaca. State 0 is the start state, and state 7 (shown

blackened) is the only accepting state. A directed edge from state i to state j labeled a

represents 5 (i, a) = j. The right-going edges forming the “spine” of the automaton, shown

heavy in the figure, correspond to successful matches between pattern and input

characters. The left-going edges correspond to failing matches. Some edges

corresponding to failing matches are not shown; if a state i no outgoing edge labeled a for

some a g I , then 6 (i, a) = 0. Figure 8 (b) The corresponding transition function 8, and

the pattern string P = ababaca. The entries corresponding to successful matches between

pattern and input characters are shown shaded. Figure 8 (c) The operation of the

automaton on the text T = abababacaba. Under each text character T[i] is given the state §

(Ti) the automaton is in after processing the prefix Ti. One occurrence of the pattern is

found, ending in position 9.

47

Following is the algorithm for simulating the behavior of such an automaton (represented

by its transition function 6) in finding occurrences of a pattern P of length m in an input

text T[1 ..n]. As for any string-matching automaton for a pattern of length m, the state set

Q is {0,1,...,m}, the start state is 0, and the only accepting state is state m.

FINITE-AUT OM AT ON-M ATCHER(T, 5, m)
1. N <- length[T]
2. q ^“0
3. for i <-1 to n
4. do q <- 5 (q, T[i])
5. if q = m
6. then s <-i - m
7. print “Pattern occurs with shift” s

The following procedure computes the transition function 5 from a given pattern P[l..m].

COMPUTE-TRANSITION-FUNCTION(P, 2)
1. m <- length [P]
2. for q <- 0 to m
3. do for each character a e E
4. do k min(m+l, q+2)
5. repeat k k-1
6. until Pk => Pq a
7. 5(q, a) <- k
8. return 5

This procedure computes 6(q, a) in a straight forward manner according to its definition.

The nested loops beginning on lines 2 and 3 consider all states q and characters a, and

lines 4-7 set 5(q,a) to be the largest k such that Pk 3 Pq a. The code starts with the largest

conceivable value of k, which is min(m, q+1), and decreases k until Pk z> Pq a.

48

5.2 Random Walk with Traversal Markers and Algorithm

A random walk (sometimes called a “drunkard’s walk”) is simple to describe: from the

current node, choose an outgoing link at random, follow that link to the next node and

repeat the process. Traversal marker is to record all the paths executed and to see if the

succession of link names correspond exactly to the expected path name.

Random walks are very simple to implement because they have no real guiding, overall

plan. Interestingly, they can be very useful in software testing because their very lack of a

plan makes them fairly resistant to the pesticide paradox. Random walks have been used

with great success in some of Microsoft’s testing efforts. (Nyman, 1998)

There are however, several difficulties and weakness in random test data (Beizer, 1990),

especially if that is the only kind of test that’s done.

1. Random data produces a statistically insignificant sample of the possible paths

through most routines (Huang, 1975; Moranda, 1978). Because it may be difficult to

determine how many feasible paths there are, even copious tests based on random

data may not allow you to produce a statistically valid prediction of the routine’s

reliability.

2. There is no assurance of coverage. Running the generator to the point of 100%

coverage could take centuries. Especially, random walks tend to be very inefficient

49

about covering a large graph quickly. Since they have no notion of where they have

already been in the graph, they tend to re-traverse links they have already visited. For

instance, a random walk on a typical application might invoke the Help screen many

times before moving on to testing the parts of the application that you want it to test.

3. If the data are generated in accordance with statistics that reflect expected data

characteristics, the test cases will be biased to the normal paths—the very paths that

are least likely to have bugs.

4. It may be difficult or impossible to predict the desired outputs and therefore to verify

that the routine is working properly; all you might learn is that it did not blowup but

not whether what it did made sense or not. In many cases, the only way to produce

the output against which to make a comparison is to run the equivalent of the routine;

which equivalence is as likely to have bugs as the routine being tested.

If random path generation is to be used, instead of generating test cases in accordance

with the probability of traversals at decisions, the test cases should be generated in

accordance with the complementary probability. This would, at least, bias the paths away

from the normal cases and toward the weird case that are more likely to have bugs.

Use the notation for finite automata in the last section. The algorithm for a random walk:

50

RANDOM-WALK(Q, 5, £)
1 q ^ 0
2 for i <-1 to n (n might be the maximum number of pass of model)
3 dodo
4
5
6
7

j RandomNumber

print “q”
until q = A (accepting state)

q <- 8 (q, Z [j])
f U ??

5.3 Full Predicate Coverage Testing and Algorithm

Treating testing as sampling requires determining the scope of the test by understanding

the input population. Specifically, testers must analyze the environment in which the

system operates and identify each input source. Each input source is essentially a

subpopulation that we further decompose by determining relevant subclasses that might

be (or must be) tested separately. In addition to sources of input, we also identify output

devices that receive data from the system under test. Sometimes, the internal state of such

devices can affect how the system under test behaves.

The operational environment is the set of all systems, components and people that

interact with the system under test or affect the system under test in any manner.

Informally the operational environment is the “environment in which the software

operates.” The process of understanding the operational environment and dividing it into

subpopulations is called domain decomposition. This is the first activity testers pursue

when treating testing as sampling.

51

5.3.1 Case Study

As an example (Offutt, Liu, 1999), the cruise control system (note that it does not model

the throttle) has four states: OFF (the initial state), NO TARGET, ACTIVECONTROL,

and OVERRIDE. The system's environmental conditions indicate whether the

automobile's ignition is on (Ignited), the engine is running (Running), the automobile is

going too fast to be controlled (Toofast), the brake pedal is being pressed (Brake), and

whether the cruise control level is set to Activate, Deactivate, or Resume. Table 3 is the

state transition table of cruise control system with environmental conditions.

Previous State Ignited Running Toofast Brake Activate Deactivate Resume New State

OFF @T - - - - - - NO_TARGET

NO TARGET @F - - - - - OFF

t t f @T ■ ■ ACTIVE_CONTROL

ACTIVECONTROL @F - - - - - OFF

t @F - - - - NO_TARGET

t - @T - - -

t t f @T ■ - OVERRIDE

t t f ” @T -

OVERRIDE @F - - - - - OFF

t @F - ~ - - N O T A R G E T

t t " f @T " “ ACTIVECONTROL

t t f “ @T

Table 3: State transition table for the Cruise Control System

52

Each row in the table specifies a conditioned event that activates a transition from the

state on the left to the state on the right. A table entry of @T or @F under a column

header C represents a triggering event @T(C) or @F(C). This means that the value of C

must change for the transition to be taken, that is, “@T(C)M means C must change from

false to true, and “@F(C)" means C must change from true to false. A table entry of t or f

represents a WHEN condition. WHEN[C] means the transition can only be taken if C is

true, and WHEN[—iC] means it can only be taken if C is false. If the value of a condition

C does not affect a conditioned event, the table entry is marked with a hyphen (don't

care condition).

Table 4 shows the transitions of the specification with the trigger events expanded in

predicate form, numbered Pi through P 12. A triggering event is a change in a value for a

variable, expression, or expressions that causes the software to transition from one state

to another. A triggering event actually specifies two values, a before-value and an after

value. To fully test predicates with triggering events, test engineers must distinguish

between them by controlling values for both before-values and after-values. This paper

suggests implementing this by assuming two versions of the triggering event variable, X

and X', where X represents the before-value of X and X' represents its after-value. Figure

9 shows the state transition diagram with the edges labeled with the predicate numbers.

53

Predicate No. Previous State Predicates New State
P. OFF -nlgnited A Ignited' NO TARGET

P2 N O TA R G ET Ignited A-.Ignited' OFF

P2 N O TA R G ET -1 Activate A Ignited A Running
A-. Brake A Activate'

ACTIVE CONTROL

P4 ACTIVE CONTROL Ignited A-,Ignited' OFF

P5 ACTIVE CONTROL Running A Ignited A-.Running' NO_TARGET

P6 ACTIVECONTROL -iToofast A Ignited A Toofast' NO TARGET

Pv ACTIVECONTROL -1 Brake A Ignited A Running
A—.ToofastA Brake'

OVERRIDE

Ps ACTIVECONTROL —.Deactivate A Ignited A Running
A—1 Toofast A Deactivate'

OVERRIDE

P9 OVERRIDE Ignited A—.Ignited' OFF

P.o OVERRIDE Running A Ignited A-.Running' N O TA R G ET

P,i OVERRIDE Activate A Ignited A Running
A-. Brake A Activate'

ACTIVE CONTROL

P,2 OVERRIDE -.Resume A Ignited A Running
A-.Brake A Resume'

ACTIVECONTROL

Table 4: state transition table with the trigger events expanded in predicate form

P4

OFF ■H A C T IV E -C O N T R O LN O T A R G E T

O V E R R I D E

Figure 9: shows the state transition diagram with the edges labeled with the predicate
numbers.

54

5.3.2 Full predicate coverage criterion

There are nine transitions in the cruise control specifications, and twelve disjunctive

predicates. For convenience, the technique is applied by considering each predicate

specification separately. Both the before-values and after-values of the triggering event

should be separately tested. This is handled by treating @ as an operator and expanding it

algebraically. If X represents a before-value and X' an after-value, the relevant

expansions are:

• @ T (X) = h X a X'

• @T(X a Y) = —i (X a Y) a (X' a Y') = (—i X v —i Y) a X ' a Y'

• @T(X v Y) E n (X v Y) A (X ' v Y ') = n X A n Y A (X ' v Y ')

There are 54 separate test case requirements for the full predicate coverage. The third

transition, P3, is used to illustrate the test case requirement derivation. The variable values

are taken from the predicates, and are shown as T, F, t, f, and -. A T or F means the

clause is triggering, and the table contains a before-value and after-value. The values for

the test case are the new value for the triggering clause (T or F), and the t and f values

from the WHEN conditions. The expected output for the test specification is derived from

the triggering event, the post-state, and any terms or variables that are defined as a result

of the transition. P3 has four clauses:

@T Activate a Ignited a Running a - 1 Brake

55

and its expanded version is:

— i Activate a Ignited a Running a - i Brake a Activate'

Its six test case requirements are:

Pre State Activate Ignited Running Brake Activate' Post State
1. NO-TARGET F t t f T ACTIVE CONTROL
2. NO-TARGET F f t f T NO-TARGET
3. NO-TARGET F t f f T NO-TARGET
4. NO-TARGET F t t t T NO-TARGET
5. NO-TARGET T t t f T NO-TARGET
6 . NO-TARGET F t t f F NO-TARGET

The first row is the predicate as it appears in the specification; every clause is True. This

corresponds to a valid test input (and is also the transition coverage test case for this

transition). The subsequent rows make each clause False in turn, corresponding to invalid

inputs. Because there are no OR operators, the full predicate coverage criterion is

satisfied by holding all other clauses True. The post-states are the expected values. Five

of them represent invalid transitions, and it is assumed that the software will remain in

the same state.

5.3.3 Test specifications

The actual test specifications and test scripts are mechanically derived from the test

requirements. The predicate P3 is chosen as an illustrative example. P3 has six full

56

predicate level tests. For the first test case for P3, the test case must reach the NO

TARGET state; this forms the Prefix. The Test case values set the before-value for the

triggering event, and the WHEN condition variables of Inactive, Running, and Brake, and

then sets Activate to be True as the triggering event. The Verify and Exit parts of the

specifications are not shown, as they depend on the software. The software can safely be

assumed to automatically print the current state, and to not require an exit.

1. Test specification P 3 -1:
Prefix:
Test case value:

Ignited = True
Activate = False
Running = True
Brake = False
Activate = True

Expected outputs: ACTIVE CONTROL

— Reach NO-TARGET state
— Trigger before-value
— Condition variable
— Condition variable
— Triggering event

2. Test specification P3-2 :
Prefix:
Test case value:

Expected outputs:

Ignited - True
Activate = True
Running = True
Brake = False
Activate = True
NO-TARGET

Reach NO-TARGET state
Trigger before-value
Condition variable
Condition variable
Triggering event

3. Test specification Ps-3:
Prefix:
Test case value:

Expected outputs:

Ignited = True
Activate = False
Ignited = False
Running = True
Brake = False
Activate = True
NO-TARGET

Reach NO-TARGET state
Trigger before-value
Condition variable
Condition variable
Condition variable
Triggering event

4. Test specification P3-4 :
Prefix:
Test case value:

Expected outputs:

Ignited = True
Activate = False
Running = False
Brake = False
Activate = True
NO-TARGET

Reach NO-TARGET state
Trigger before-value
Condition variable
Condition variable
Triggering event

57

5. Test specification P3-5 :
Prefix:
Test case value:

Expected outputs:

Ignited = True
Activate = False
Running = True
Brake = True
Activate = True
NO-TARGET

6. Test specification P3-6:
Prefix:
Test case value:

Expected outputs:

Ignited = True
Activate = False
Running = True
Brake = False
Activate = False
NO-TARGET

Reach NO-TARGET state
Trigger before-value
Condition variable
Condition variable
Triggering event

Reach NO-TARGET state
Trigger before-value
Condition variable
Condition variable
Triggering event

There is a interesting point to note about these test specifications. It should be clear that

there is some redundancy; some of the condition variables do not need to be explicitly

set, as they will already have the appropriate values.

Following are two algorithms (Offutt, Abdurazik, 1999), Get Prefix Algorithm and

Generate Full-Predicate Coverage Test Cases Algorithm. A prefix generation algorithm

was used in test data generation algorithms to create the values necessary to reach a

particular state.

5.3.4 Get Prefix Algorithm

Figure 10 gives an algorithm for generating test prefix values from a specification graph.

The input is a state (the test state) in the graph, and it finds a path from an initial state in

the graph to the test state.

58

algorithm: GetPrefix (State)
input: Test state of a transition,
output: Inputs to get to the given state,
output criteria: No redundant inputs,
declare: prefix (s) — Inputs to reach state s.

incomingTrans (s) — The set of incoming transitions,
event (otr) — Trigger event for transition otr.
whenCondition (otr) — Precondition for otr.
nextState (otr) — Next state for transition otr.
expectedOutput -- Post-state after transition.
TCValue (otr) — Value assignments for the trigger
event and when condition variables for otr.

GetPrefix (State)

BEGIN -- Algorithm GetPrefix
s = State
prefixStates = prefixStates u s
WHILE (s IS NOT initial state) LOOP

get incomingTrans (s)
prefix (s) = EMPTY
IF (3 transition itr e incomingTrans (s) such that
prevState (itr) = initial State) THEN

s = prevState (itr)
prefixStates = prefixStates \ j s
EXIT

ELSE
s = prevState (itr) such that itr e incomingTrans (s) a

prevState (itr) £ prefixStates
prefixStates = prefixStates vj s

END IF
END LOOP

END Algorithm GetPrefix

Figure 10: The GetPrefix Algorithm

59

5.3.5 Generate Full-Predicate Coverage Test Cases Algorithm

Figure 11 gives an algorithm for generating test cases for the full predicate coverage

criterion. Algorithm GenerateFullPredicateCoverageTCs takes a state transition table as

input, and generates test cases for the full predicate coverage criterion. It processes each

outgoing transition of each source state, generates a test case that makes the transition

valid, and then generates test cases that make the transition invalid. When generating a

test case, GetPrefix() is used to obtain prefixes to reach the source state of a transition.

Then each variable in the transition predicate is assigned a test case value. To avoid

redundant test case value assignments, those variables that already have assigned values

in the prefixes are not considered in the test case value assignment process. After all test

case values are generated, an additional algorithm is run on the test cases to identify and

remove redundant test cases.

algorithm:
input:
output:
output criteria:
assumption:

declare:

GenerateFuIIPredicateCoverageTCs (STTable)
State transition table.
Test cases for full predicate coverage.
Test cases contain prefix, test case values, and expected output.
Clauses are disjunctive.
No redundant assignments in prefix and test cases,
prefix (s) — Inputs to get to the state s.
outgoingTrans (s) — Set of outgoing transitions,
event (otr) — Trigger event for transition otr.
whenCondition (otr) — Precondition for otr.
nextState (otr) — Next state for transition otr.
expectedOutput — Post-state after transition.
TCValue (otr) — Value assignments for the trigger event and when
condition variables for otr.

GenerateFullPredicateCoverageTCs (STTable)

60

BEGIN — Algorithm GenerateFullPredicateCoverageTCs
TestCaseSet = EMPTY
FOR EACH source state s in STTable

prefix (s) = GetPrefix (s)
get outgoingTrans (s)
— Generate one test case for each transition
FOR EACH outgoing transition otr e outgoingTrans (s)

expectedOutput = nextState (otr)
TC Value (otr) = EMPTY
get event (otr) and whenConditions (otr)
— Check for redundancy
IF (-G a condition variable var e prefix (s) s.t.
var.name = event (otr).name a var.value = event (otr).value)

TC Value (otr) = TC Value (otr) u
{(event (otr). name, event (otr). before Value)}

END IF
— Assign value for clauses in when condition
FOR EACH clausej in whenConditions (otr)

IF (-G a condition variable var e prefix (s) s.t.
var.name = clausej .name a var.value = clause; .value)

TC Value (otr) = TC Value (otr) u
{(clausej.name, clausej.value)}

END IF
END FOR
TC Value (otr) = TC Value (otr) u {(event (otr). name,

event (otr). after Value)}
TestCaseSet = TestCaseSet u {(prefix (s), TCValue (otr),

ExpectedOutput}
— get test cases for invalid transitions
expectedOutput = current state s
FOR EACH variable var in TCValue (otr)

TCValue (otr) = TCValue (otr) - {(var.name, var.value)}
var.value = -i var. value
TCValue (otr) = TCValue (otr) u {(var.name, var.value)}
TestCaseSet = TestCaseSet u {(prefix (s), TCValue (otr),

expectedOutput)}
END FOR

END FOR
END FOR

END Algorithm GenerateFullPredicateCoverageTCs

Figure 11: The GenerateFullPredicateCoverageTCs Algorithm

61

6 Conclusion

When conducting model testing, you may want to know how the state and transition are

passed in your model. Using state transition diagram designed in the software design

phase, you can conduct the path testing. If you would like to test the specific path in your

mind, you can use string-matching algorithm to do the test. If you just want to know how

many different paths are working as expected or get the general idea about model, you

may conduct the random walk testing. Coverage testing is a good way to find out where

and why some paths are not working.

REFERENCES

Aldrich, William. Coverage Analysis for Model Based Design Tools, The Math Works,
Inc.

Apfelbaum, L. (1997) Model-Based Testing, Proceedings of Software Quality Week
1997

Avritzer, A. and Weyuker, E. (1995), Automatic Generation of Load Test Suites and
the Assessment of the Resulting Software, IEEE Transactions on Software
Engineering, 21, 9, 705-716.

Beizer, B. (1990) Software Testing Techniques, 2nd Edition

Beizer, Boris. Black Box Testing: Techniques for Functional Testing of Software and
Systems, New York, John Wiley & Sons, 1995

Beltrami, E. (1977) Models for Public Systems Analysis

Binder Robert V. Testing Object-Oriented Systems, Models, Patterns, and Tools,
Addison-Wesley 1999

Bodin, L. and Tucker, A. (1983) A Model for Municipal Street Sweeping Operations
in Modules in Applied Mathematics Vol. 3: Discrete and System Models

62

Chow, T.S. (1978) Testing Software Design Modeled by Finite-State Machines, IEEE
Transactions on Software Engineering 4

Cormen, Thomas. Introduction to Algorithms, Cambridge, Masachusetts, The MIT
Press, 1990

Dahbura, A. and Uyar, M. (1986) Optimal Test Sequence Generation for Protocols:
The Chinese Postman Algorithm Applied to Q.931, IEEE GLOBECOM, Dec. 1986

Dahle, O. (1995), Statistical Usage Testing Applied to Mobile Telecommunication
Systems, Master’s Thesis, Department of Computer Science, University of Trondheim,
Norway.

Dill, D., Ho, R., Horowitz, M. and Yang, C. (1995) Architecture Validation for
Processors, Proceedings of the 22nd annual International Symposium on Computer
Architecture

Duran, J. andNtafos, S. (1984), An Evaluation of Random Testing, IEEE Transactions
on Software Engineering, 10, 4, 438-444.

Duran, J. and Wiorkowski, J. (1984), Quantifying Software Validity by Sampling,
IEEE Transactions on Reliability, 29, 2, 141-144.

Feller, W. (1950), An Introduction to Probability Theory and its Application, Vol. 1,
Wiley, New York.

Gross, J. and Yellen, J. (1998) Graph Theory and its Applications

Hamlet, D. and Taylor, R. (1990), Partition Testing Does Not Inspire Confidence,
IEEE Transactions on Software Engineering, 16, 12, 1402-1411.

Houghtaling, M. (1996), Automation Frameworks for Markov Chain Statistical
Testing, In Proceedings o f the Automated Software Test and Evaluation Conference,
Washington, DC.

Howden, Willaim E. Theoretical and empirical studies of program testing. IEEE
Transactions on Software Engineering, 4(4):293{298, July 1978.

Huang, J.C. An approach to program testing. ACM Computing Surveys 7: 113-
128(1975).

Kwan, M-K. (1962) Graphic Programming Using Odd and Even Points, Chinese
Journal of Mathematics, Vol. 1

Moranda, P.B. Limits to program testing with random number inputs. Proceedings
COMSAC’78, New York; IEEE, 1978.

63

Myers, Glenford J. The Art of Software Testing. Wiley, 1979.

Nyman, N. (1998) GUI Application Testing with Dumb Monkeys, Proceedings of
STAR West 1998

Ntafos, Simeon C. A comparison of some structural testing strategy. IEEE
Transactions on Software Engineering, 14(6):868{874, June 1988.

Offutt, J. and Abdurazik, A. Generateing tests from UML Specifications, Second
International Conference on the Unified Modeling Language (UML99), 1999

Offutt, Jefferson, A, Liu, Shaoying, and Abdurazik, Aynur, Generating Test Data Feom
State-based Specifications, 1999.

Ostrand, T. and Balcer, M. (1988), The Category-Partition Method for Specifying
and Generating Functional Tests, Communications of the ACM, 31,6, 676-686.

Poore, J. H., Mills, H. D. and Mutchler, D. M. (1993), Planning and Certifying
Software System Reliability, IEEE Software, 88-99.

Pressman, Roger Software Engineering: A Pracitioner’s Approach, 5th Edition,
McGraw-Hill companies Inc. 2001

Rautakorpi, M. (1995), “Application of Markov Chain Techniques in Certification of
Software”, Master’s Thesis, Department of Mathematics and Systems Analysis, Helsinki
University of Technology, Helsinki, Finland.

Robinson, Harry. “Graph Theory Techniques in Model-Based Testing”, Proceedings
of the International Conference on Testing Computer Software 1999

Robinson, Harry, “Finite State Model-Based Testing on a Shoestring”, Presented at
STAR West 1999

Shen, Y. and Lombardi, F. (1992) “Graph Algorithms for Conformance Testing Using
the Rural Chinese Postman Tour”, SIAM Journal on Discrete Mathematics, Vol. 9

Skiena, S. (1998) The Algorithm Design Manual

Thevenod-Fosse, P. and Waeselynck, H. (1993), “STATEMATE Applied to Statistical
Software Testing,” In Proceedings o f the International Symposium on Software Testing
and Analysis, ACM Press, Cambridge, MA, pp.99-109.

Whittaker, James A. “Stochastic software testing”. Annals of Software Engineering,
4:115{131, August 1997.

64

Whittaker, James A.. “Software testing: What it is, and why it is so difficult”. To
appear in IEEE Software, 1999.

Whittaker, J. A. (1992), “Markov Chain Techniques for Software Testing and
Reliability Analysis”, Ph.D. Dissertation, Dept, of Comp. Sci., Univ. of Tennessee,
Knoxville, TN.

Whittaker, James A. and El-Far, Ibrahim K. “Automated Construction of Behavior
Models for Software Testing”, IEEE Transactions on Software Engineering, (submitted)

Whittaker, J. and Thomason, M. (1994), “A Markov Chain Model for Statistical
Software Testing”, IEEE Transactions on Software Engineering, 20, 10, 812-824..

65

	Model-based path testing
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459808976.pdf.IOR7I

