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Mineralogy, Petrography, and Geochemistry o f the Picket Pin PGE deposit, Stillwater 
Complex, Montana

Director; Don Hyndman / d û l jà jé

A bstract

The processes o f transport and deposition o f ‘reef-type’ platinum-group-element (PGE) 
deposits remain enigmatic although numerous models have been proposed. The Stillwater 
Complex contains reef-type, PGE-enriched, sulfide-bearing intervals including the J-M Reef 
and the Picket Pin deposit. The J-M Reef is located approximately 500 m above the upper 
contact o f the Ultramafic Series with the Banded Series. The reef occurs within the 
Troctolite-Anorthosite Zone I (TAZ I), a complex lithologie unit that contains numerous 
subdivisions. The Picket Pin deposit, located approximately 3000 m above the J-M Reef, is 
hosted within the 570-m thick anorthosite (AN II) at the top o f the Middle Banded Series.
The lack o f lithologie complexities within the Picket Pin deposit provides an excellent 
opportunity to investigate the PGE ore-forming processes.

Mineralogical and textural evidence suggests four main events for the formation o f the 
Picket Pin PGE deposit. In chronological order these events are: I) the formation of the 
large, framework plagioclase grains, 2 ) crystallization o f the intercumulate pyroxenes and 
plagioclase grains with resorption of the original framework plagioclase grains, 3) infiltration 
of hydrothermal fluids, and 4) subsequent precipitation of PGE’s.

The evidence presented suggests a strong case for the role o f hydrothermal fluids in the 
transport and deposition o f the PGE within the Picket Pin deposit. The above minéralogie 
evidence suggests that hydrothermal fluids contained (OH), Na, Cl, and Fe'^^  ̂and were 
constrained within the pyroxene-poor, coarse-grained zones o f AN II. This oxidized 
hydrothermal fluid may have scavenged and transported PGE’s, which were then deposited 
and concentrated when the fluids encountered the reduced environment o f the primary 
sulfide horizon.
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I. Introduction

The processes o f transportation and deposition o f ‘reef-type" platinum-group- 

elements (PGE) deposits remains enigmatic although numerous models have been proposed 

(Boudreau, Naldrett, Zientek and others). The goal o f this contribution is to test the models 

using pétrographie, textural, and geochemical analyses.

The Stillwater Complex contains reef-type, PGE-enriched, sulfide-bearing intervals 

which include the J-M R eef and the Picket Pin deposit (Fig.l). The J-M Reef is located 

approximately 500 m above the contact o f the Ultramafic Series and the Banded Series. The 

JM -reef occurs within the Troctolite-Anorthosite zone I (TAZ I), a complex lithologie unit 

that contains numerous subdivisions. The Picket Pin deposit, located approximately 3 km 

above the J-M Reef, is hosted within a thick anorthosite, Anorthosite zone II (AN II) o f the 

Middle Banded series. The lack o f lithologie complexities within the Picket Pin deposit 

provides an excellent opportunity to investigate the PGE-ore formational processes.

Studv Area

Access the study area by traveling west from Limestone, Montana on US Forest 

Service Road 410 (Picket Pin-Iron Mountain road). The road crosses the Picket Pin deposit 

as the road levels off just south o f  the Picket Pin cirque. The contact between Anorthosite II 

(AN II) o f the Middle Banded series and the lowermost troctolite o f Olivine-Bearing V zone 

(OB V) o f the Upper Banded series (the Picket Pin deposit) trends east down the drainage 

from this plateau. The study area is down the drainage and approximately 300 m due east 

from the plateau crest (Fig 2).
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Methodology

Primary field investigations o f AN II proximal to sulfide mineralization revealed 

intricately varying compositions on a scale o f centimeters to tens o f meters (Fig. 3). A total 

o f 150 samples were selected from five highly-mineralized outcrops. Samples were collected 

on a three-meter square grid to prevent bias and to include both mineralized and 

unmineralized rock. A single outcrop with dimensions o f 15 m by 25 m was selected for 

detailed pétrographie and mineralogical analysis (Fig. 4). Observations and interpretations o f 

this outcrop were later compared to the other 4 sample grids. Initial field and pétrographie 

analyses involved 35 representative samples o f this outcrop. The representative samples . 

were subdivided into four groups. The four groups, divided by modal percentage o f 

intercumulate mafic-minerals (pyroxenes and olivine), are 0-5%, 5-10%, 10-15%, and 15- 

20% (Fig. 5).

Pétrographie microscopy on polished thin sections o f each sample were used to 

determine modal abundance o f minerals, textural relationships, and sulfide-oxide 

relationships. Point counts were preformed on a total o f twelve thin sections, three from 

each pyroxene group. One thousand point counts were preformed on each thin section for a 

total o f 12,000 counts. An additional 4,500 counts were made on select thin sections to 

determine the olivine/bronzite/augite ratio for each pyroxene group. Point counts were 

performed on a Leitz/W etzlar microscope fitted with a James Swift auto-stage and a Hacker 

Instruments Prior Model G counter set to a 400 micron step interval, and were used to 

determine modal percentages (Table 1). Preliminary An content was determined using 

Scanning Electron Microscopy (SEM), Backscattered Electron Imaging (BEI), and Energy 

Dispersive X-ray Spectroscopy (EDS) was performed at the Image and Chemical Analysis 

Laboratory (ICAL) at Montana State University, Bozeman. ICAL laboratory facilities



Figure 3. Outcrop photograph depicting varying pyroxene content. Note the clinozoisite patches 
only occur within the 0-5% pyroxene group.

Figure 4a. Compositional map 
o f study area. Width o f map is 
approximately 15 m.
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Figure 4b. Plan view o f same 
study area depicting lithologie 
units and sulfide distribution. 
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consist o f a Jeol Mode! 6100/Noran/Oxford microprobe with a LaBe source for SEM, X-ray 

source for EDS, and a Cathode-Luminescence source for BSE. The microprobe used 

between 15 and 30 kilovolts accelerating voltage, dependant on the element analyzed, 15 

nanoamps beam current, and a beam width o f 3 microns. Count times were typically 4000 

counts per element. Rontgenanalysen-Technik (Rontec) software was used for spectral and 

elemental analysis, density imaging, and elemental mapping.

Silicate mineral compositions and zoning patterns were determined by microprobe 

analyses. Microprobe analyses was preformed at Washington State University on a Cameca 

MBX microprobe with four wavelength dispersive spectrometers, with automation provided 

by Advanced Microbeam Inc. The microprobe used 12 nanoamps beam current, 20 kilovolts 

accelerating voltage, with a beam width o f 2 microns. Multiple well-constrained standards 

were used to calibrate the microprobe (see appendix II).

Geochemistry was performed on 32 hand-samples averaging 2 kg per sample. 

Precious metal assays and whole-rock geochemistry was performed at Bondar-Clegg 

laboratory, Vancouver, for 35 elements plus Au, Ag, Ft, Pd, Rh, and Os. The 35 major 

elements were analyzed using plasma analysis o f aqua regia digested with a multi acid (HCl- 

HNO3., HF-HCIO4) technique, detected by ICP- Atomic Emission Spectrometry. The 

precious metals were analyzed by fire-assay.

Samples selected for fluid inclusion study include one sample from each pyroxene 

group plus four additional samples from the sulfide-bearing zone for a total o f 8  samples.

The samples were doubly polished to the standard thickness o f 0.03 mm. Analysis was made 

in the fluid inclusion laboratory at the University o f Montana. The laboratory consists of the 

USGS standard fluid inclusion set up which includes a heated/cooling stage from Fluid Inc., 

and a Nikon microscope with an 100 power objective.



Representative plagioclase grains o f both the large and small groups were 

chosen for microprobe analyses after pétrographie analyses for an average o f three grains for 

the large, and five grains for the small group. An automated linear traverse from opposite 

grain comers was programmed to take analyses every millimeter for the large grains 

(roughly 20 analyses), and 0.5 mm for the small grains (roughly 10 analyses). Therefore, 

each pyroxene group averaged 110 sample points. Analyses were then averaged rim to core 

between grains and plotted for each plagioclase grain size (large or small), and each 

pyroxene group.
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Figure 5. Lithologie divisions o f study area by modal pyroxene percentage. Note the increase in 
grain size o f the intercumulate plagioclase proximal to sulfide mineralization. All mafic minerals 
occur as oikocrysts.
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IL GEOLOGIC SETTING FOR THE STILLWATER COMPLEX

The Stillwater Complex, a 2.7 Ga layered mafic complex, is situated in a fault-bound 

block in the northern Beartooth Mountains o f south-central Montana (Fig.l). The complex is 

exposed along strike (N 60° W) for approximately 48 km (Page, 1985), and attains an 

exposed thickness o f 6.5 km (Kleinkopf, 1985). The dip o f the intrusive layers ranges from 

less than 50^N to vertical, and is locally overturned. A 1,555-m continuously cored, vertical 

drillhole collared in the Stillwater River canyon indicates 1,990 m o f northward 

overthrusting during the Laramide orogeny (Geraghty, 1999). The original shape and size o f 

the complex are unknown but the top part has been removed by erosion. Both geophysical 

and gravimetrical data suggest subsurface extension o f the complex for several kilometers to 

the north and northeast.

The complex intruded into middle Archean gneisses and metasediments. It caused a 

wide basal contact aureole up to pyroxene-homfels grade. This basal contact aureole extends 

approximately 8  km perpendicular to strike. Pressure-temperature conditions inferred from 

the aureole near the contact are 3 ± 0.5 kbar with a temperature o f 850°C (Vaniman et al., 

1980, Labotka et al., 1985, 2001). Evidence from the P-T conditions may suggest that the 

complex represents a subvolcanic chamber in which the volcanic carapace has been lost to 

erosion (Helz, 1995). Mafic dikes and sills immediately below the complex prompted 

attempts to correlate their composition with the Stillwater rocks and possibly determine the 

composition o f the Stillwater primary magma (Longhi, 1983, Helz, 1985, 1995). Numerous 

mafic dikes and granitic bodies o f late Archean to Eocene age intrude and cross-cut the 

complex. They constrain a relative time o f emplacement o f the complex.

Isotopic evidence demonstrate one o f the following: 1) The Stillwater Complex 

crystallized 2,700 Ma from magmas derived from an enriched upper-mantle source, that had



a history o f Rb/Sr, Nd/Sm, U/Pb and Hf/Lu enrichment; or 2) the Stillwater Complex 

crystallized 2,700 Ma from either a undepleted chondritic source or a depleted source, that 

was contaminated with older continental crust that exhibited enrichment in incompatible 

elements (Lambert et al., 1985). Isotopic evidence further suggests that numerous 

metamorphic events have effected the complex. Since middle Eocene time, the Stillwater 

Complex has been subjected to erosion, uplift, glaciation, and minor faulting (Page, 1977).

III. GEOLOGY

Applying the nomenclature o f McCallum et al. (1980), the Stillwater Complex has 

been divided into three main units: the Basal, Ultramafic, and Banded series (Fig.l). The 

Basal Series is laterally continuous, variable in thickness, and locally up to more than 100 m 

thick. The unit primarily comprises o f  orthopyroxenites with subordinate underlying norites. 

Massive accumulations o f base-metal sulfide minerals, locally PGE-rich, occur throughout 

the Basal series. Sulfide occurrence increases downsection toward the basal contact, but is 

locally interrupted by reversals and discontinuities (Zientek et al., 1985). The Basal series is 

bound above by a sharp contact with the lowermost olivine cumulates o f the Ultramafic 

series.

The Ultramafic series is divided into two subunits: the lower Peridotite zone and the 

overlying Bronzitite zone. The Lower Peridotite Zone consists o f cyclic poikilitic (bronzite) 

harzburgite (olivine cumulate) with locally PGE-enriched chromite, granular harzburgite 

(olivine-bronzite cumulate), that is overlain by bronzitite (bronzite cumulate). The number 

o f cyclic units varies along strike. Between 8  and 21 cyclic units have been recognized 

throughout the Peridotite zone (Zientek et al., 1985). The disappearance o f cumulate olivine 

marks the sharp contact between the Peridotite and Bronzite zones. The Bronzitite zone



consists o f  size-graded and laminar-bronzite cumulates. Local cumulus olivine and chromite 

occur in thin layers within the Bronzitite zone (Raedeke and McCallum, 1984).

The contact between the Ultramafic and Banded series is marked by the lowest 

occurrence o f cumulate plagioclase. The plagioclase-rich cumulates o f the Banded series are 

up to 4.5 km thick, and make up more than three fourths o f the exposed Stillwater Complex. 

The Banded series is divided into the Lower, Middle, and Upper Banded subseries. It is 

further subdivided into twelve zones by cumulate mineralogy (Fig. 1) (McCallum et al., 

1980). The Lower Banded series is approximately 1,590 m thick and contains norites and 

gabbronorites with minor occurrences o f anorthosite, pyroxenite, and troctolite. The An 

content o f the plagioclases decreases up section from An 82 to An 75, which may suggest 

fractional crystallization from a basaltic magma (Raedeke and McCallum, 1980). The Lower 

Banded series is host to the laterally continuous, PGE-rich J-M R eef with an average grade 

of 20-25 ppm Pd+Pt (Leroy, 1985). The upper boundary o f the Lower Banded Series is 

located at the contact o f the first thick anorthosite unit (AN I).

The Middle Banded series is approximately 1,750 m thick and contains the two thick 

anorthosite units, AN-I (350 m thick) and AN-II (570 m thick). AN-II is further divided into 

a basal coarse-grained anorthosite (—560 m thick) and is overlain by a medium-grained 

anorthosite (—10 m thick) (Boudreau and McCallum, 1985) (see also Fig. 6 ). Situated 

between AN-I and AN-II are two olivine-bearing zones, OB-III (400 m) and OB-IV (430 m 

thick). Most rock types found within the olivine-bearing units are troctolites, gabbros, and 

gabbronorites, with the exception o f a 90-m anorthosite in OB-IV. Two major pétrographie 

deviations occur within the Middle Banded series; 1) The remainder o f the complex is 

enriched in plagioclase (82 volume percent) which is more than the 60 volume percent 

expected from fractional crystallization o f a noritic magma under the inferred pressures, and

10



2) The average An content remains consistent throughout the two thick anorthosite units at 

An 7 6 , with the exception o f the base o f AN-I where it is An go (Raedeke and McCallum, 

1980). Mineralogy o f the two anorthosite units, AN-I and AN-II, consists o f approximately 

90 volume-percent plagioclase, intercumulate olivine, intercumulate augite and inverted 

pigeonite, with local intercumulate sulfide minerals and oxides. Intercumulus sulfide and 

oxide mineralogy consists o f magnetite, ilmenite, pyrrhotite, pentlandite, chalcopyrite, minor 

pyrite, and PGEs. Detailed petrography and mineralogy o f AN-II are discussed below. The 

upper boundary o f  the Middle Banded series is marked by the reappearance o f olivine, and is 

placed at the upper contact o f AN-II with the overlying troctolite o f the olivine-bearing zone 

V (OB-V).

The Upper Banded series is approximately 1,130 m thick and divided into two zones, 

the lower olivine-bearing zone (OB-V), and upper gabbronorite zone (Gabbronorite III). The 

lower OB-V (~95 m thick) is characterized by variable sequences o f troctolites, anorthosites, 

norites, and gabbronorites. Gabbronorite III, approximately 1,035 m thick, is a uniform 

gabbronorite with cotectic proportions o f plagioclase, augite, and low-Ca pyroxene. The An 

contents for the plagioclase in the Upper Banded series are, bottom to the top. An 73 to An 5 2  

from the. This is consistent with the fractional crystallization model (Raedeke and 

McCallum, 1980). An unknown amount o f the top o f the Upper Banded series has been lost 

to erosion (Helz, 1995). Paleozoic sedimentary rocks unconformably overlie the upper 

contact.

11



CHAPTER TWO: THE PICKET PIN PGE DEPOSIT

I. GEOLOGIC SETTING OF THE PICKET PIN PGE DEPOSIT

The Picket Pin PGE deposit is a zone o f disseminated PGE-bearing sulfide 

approximately located throughout the uppermost 150 m o f  the coarse-grained and medium- 

grained anorthosites o f AN-II (Fig. 6 ). The deposit is a vertically intermittent but laterally 

continuous zone o f PGE-bearing sulfide mineralization along the entire 22 km o f exposed 

strike o f the deposit. The sulfide distribution typically occurs as recurrent stratabound, 

podiform, and lenticular concentrations o f 1  to 1 0  percent sulfide minerals occupying 

intercumulate grain boundaries o f plagioclase within the upper portion o f AN II (Fig. 7). The 

sulfide mineralogy consists o f  pyrrhotite (Fei.xS), chalcopyrite (CuFeS2 ), pentlandite ((Fe, 

Ni)9 Sg), braggite ((Pt, Pd)S), and minor pyrite (FeS), in decreasing order o f abundance. 

Sperrylite (PtAs) was identified by SEM. Mineralized pods range in diameter from 

centimeters to meters; the lenses attain a maximum thickness o f approximately 1.5 meters, 

with a lateral extent o f tens o f meters (Boudreau and McCallum, 1985). Sulfide 

mineralization is less abundant in the overlying medium-grained anorthosite and troctolite of 

OB V. Where it is present, it generally lacks significant PGE content (<5ppb).

II. Previous work and Exploration o f the Picket Pin

Howland and Peoples were the first to find PGE-bearing sulfide minerals in the 

Banded series (Howland et al., 1936). They found two distinct sulfide-bearing horizons in 

the upper portion o f the complex. The uppermost zone o f anomalous PGEs, appears to 

describe the Picket Pin deposit (Boudreau and McCallum, 1985). Jones et al. (1960) noted 

disseminated sulfide minerals beneath the troctolite at Picket Pin Mountain. Hess (1961)

12



further noted 3 layers containing 1-2% sulfide minerals 0.25 to 0.5 meters apart near the top 

o f the anorthosite. He believed that they correlated with the uppermost PGE anomaly of 

Howland et al. (1936).

The Manville Corporation (formerly the Johns-Manville Corporation) initiated an 

exploration effort in 1967 to discover PGE potential within the Stillwater Complex. Manville 

geologists found PGE-bearing mineralization associated with a large lens o f bronzitite within 

the Banded series, at the contact o f the Ultramafic series and the Banded series (currently 

considered the Volatile Enriched Zone, VEZ), at the contact between Stillwater Complex 

rocks and a young intrusive granite stock south o f Picket Pin Mountain, and in the discovery 

o f the Howland R eef o f OB I (more commonly known as the J-M Reef). The Manville 

geologists did not include the Picket Pin deposit in their work.

The Picket Pin deposit was staked in 1979 by the Anaconda Minerals Company, and 

mapping confirmed the lateral continuity o f the deposit. Anaconda evaluated the deposit 

with two deep diamond drill holes, 30 shallow “winkie” drill holes, and by numerous grab 

samples along 17 km o f the deposit from east o f the Boulder River to the most-easterly 

exposure o f the deposit (Fig. 8 ). Anaconda found anomalous concentrations o f PGE 

associated with 1 to 2 percent disseminated sulfide in up to six discontinuous layers. The 

location o f these anomalous PGE sulfide layers is in the anorthosite (An II) just below the 

contact with the overlying troctolite o f OB V. The highest grades encountered in drill cores 

were 1.37 g/tonne (0.04 ounce per tonne, hereafter opt) platinum and 3.09 g/tonne (0.09 opt) 

palladium over 1.04 m. Surface grab samples obtained slightly higher grades o f 3.77 g/tonne 

(0.11 opt) platinum and 4.11 g/tonne (0.12 opt) palladium. Anaconda’s exploration program 

found the Pt/Pd ratio to be approximately 1:1 (Marshall, 1992).
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International Platinum picked up the claims in 1989, and conducted an exploration 

program on the eastern 10 km o f the Picket Pin horizon. The program consisted o f mapping, 

ground geophysics, trenching, and 14 diamond drill holes. Four distinct types o f PGE- 

bearing sulfide zones were encountered in drill core. The four types range from very finely 

disseminated to coarsely intergranular sulfide mineralization. The intergranular, 1 to 5 

percent sulfide zone contained the highest grades o f 4.6 g/tonne (0.14 opt) Pt + Pd over 0.61 

m. This higher-grade zone was within a larger, 9.9 m-thick zone containing 2.33 g/tonne 

(0.07 opt) Pt + Pd. The Pt/Pd ratios were approximately 1:1. This mineralized zone is 

similarly located at the contact o f the anorthosite (An II) and overlying troctolite o f OB V 

(Marshall, 1992).

Idaho Consolidated Metals Corporation holds the Picket Pin claims and is currently 

exploring the deposit. The exploration effort consists o f mapping and grab samples; no 

drilling had commenced as o f December, 2001. The highest grades found are 1.955 g/tonne 

Pt, 2.520 g/tonne Pd, and 0.093 g/tonne Rh for a combined total PGE assay o f 4.568 g/tonne 

(0.143 opt). Although active exploration continues, little has been published on the Picket 

Pin deposit. Further, there remains a poor understanding o f sulfide emplacement, and 

models are vigorously debated.

III. Origin o f Anorthosite II

Any attempt to understand the transport and deposition o f ore-body mineralization 

must include the effects on and the origin o f the host rock. The origin of the two thick 

anorthosites o f the Middle Banded zone o f the Stillwater Complex, and anorthosites in 

general, pose a major petrologic problem. Models o f the origin o f anorthosites can be 

roughly divided into two groups: 1) An anorthositic magma either from the mantle or from
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melting high Ca and A1 sediments, and 2) Segregation and concentration o f plagioclase by 

some physical process such as settling or floating o f cumulus plagioclase grains. In the case 

o f the Picket Pin deposit, and the Stillwater Complex, critical review o f proposed models can 

lead to plausible inferences. A description o f the models leads to a more critical review in 

the discussion section below.

Hess (1960) suggests that plagioclase was formed near the roof o f the intrusion and 

moved downward by intermittent convection currents. Before the plagioclase could settle, 

the next density flow o f magma would carry the crystals upward. Hess believed that the 

central part o f the intrusion contained enough superheat to resorb the plagioclase, and 

therefore push the magma composition well into the plagioclase crystallization field. It 

follows that plagioclase would precipitate for long periods during crystallization of the 

Middle Banded zone. In opposition, the amount o f superheat needed for this process seems 

unlikely since considerable crystallization in the chamber that had already taken place.

Raedeke (1979), Raedeke and McCallum (1980), and McCallum et al. (1980) 

expanded on the hypothesis first put forward by Hess (I960). They noted that the plagioclase 

composition is o f near-constant composition throughout the Middle Banded zone, and that 

the plagioclase grains within the thick anorthosites are on average twice the size o f those in 

the norites, gabbronorites, and troctolites which make up most of the Middle Banded zone. 

They suggested that plagioclase crystallization was confined to the upper part o f the chamber 

due to suppression o f  crystallization relative to mafic mineral crystallization at higher 

pressure. The plagioclase would remain in suspension because of its relative low density 

compared to the mafic magma and is suggested to have remained in compositional 

equilibrium. McCallum et al. (1980) suggested a similar mechanism as Irvine (1980) for 

deposition o f the plagioclase as a crystal mush carried in density flows. They suggest that
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because the ratio o f plagioclase to trapped melt was large, the plagioclase remained at a near

constant composition, whereas the mafic-mineral composition was variable due to the 

variable amounts o f trapped melt. On the other hand, the intricate zoning and resorption 

textures within the plagioclase suggest that the plagioclase is unlikely to have remained in 

compositional equilibrium with the evolved magma.

Irvine et al. (1983) and Todd et al. (1982) suggest that the anorthosites formed from 

one o f two parental magmas responsible for the Stillwater Complex as a whole. They 

suggest that the near-consistent composition of the plagioclase may be due to the lateral 

advance o f the crystallization front into a magma column stratified by double-diffusive 

convection. This process may have been responsible for the deposition of the cumulate 

plagioclase. However, the observed segregation o f pyroxene-rich and pyroxene-poor 

domains along with the large pyroxene oikocrysts suggest limited mixing o f the interstitial 

fluid. Boudreau (1986) argues that the crystallization sequence o f this model has olivine 

after plagioclase, and therefore should have olivine as a common interstitial mineral. 

Boudreau (1986) reported intercumulate olivine as a rare occurrence within AN 11. The 

present study has identified large olivine oikocrysts and the intercumulate mafic mineralogy 

consists o f approximately 10% olivine.

The complex zoning patterns o f the plagioclase, which include normal, reverse, 

patchy, and oscillatory zoning, was first considered within the model proposed by Scheidle et 

al. (1982). This model proposed that the plagioclase intruded as a crystal mush. Scheidle 

(1983) later suggested that the stratigraphie compositional variations in plagioclase separates 

represents a mixing o f two magmas, the first magma on an olivine-plagioclase cotectic with a 

second magma on the plagioclase-pyroxene cotectic to produce a hybrid magma within the 

plagioclase field.
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In contrast to Scheidle (1983), Salpas et al. (1983, 1984) found the amount of 

stratigraphie compositional variation within An II to reflect outcrop-scale heterogeneities. 

This early study o f Salpas et al. (1983, 1984) examined the trace-element distribution within 

the interstitial mineral assemblage. A true comparison between Scheidle (1983) and Salpas 

et al. (1983, 1984) may not be appropriate. Scheidle (1983) studied plagioclase separates, 

whereas Salpas et al. (1983, 1984) studied the interstitial mineralogy, which consist mainly 

o f mafic-mineral phases. Salpas et al. (1983, 1984) concluded that the bulk o f the pyroxene 

has a cumulus chemical signature and formed at the nucléation front o f a solidifying magma. 

They suggested that the quartz and other minor phases such as sulfide minerals crystallized 

from the minor (<5%) trapped melt. They further suggested that the irregular distribution of 

the pyroxene oikocrysts suggests substantial interstitial-melt migration. Haskin and Salpas 

(1992) studied a 10 m X 10 m outcrop o f AN II and describe how the two anorthosites may 

have been constructed from plagioclase crystals and magma. The work was initiated to 

understand the seemingly random compositional variations observed from traverses across 

AN I and AN II in the previous work o f Salpas et al. (1983). They suggest that an average of 

67% cumulus plagioclase formed a stable framework o f complexly zoned plagioclase within 

a melt. The interstitial space within the framework filled in part with plagioclase and 

pyroxene that crystallized in equilibrium with the bulk melt. The remaining interstitial space 

filled with pyroxene and plagioclase that crystallized from the trapped melt. Haskin and 

Salpas (1992) do not attempt to address the origin o f the original framework plagioclase.

IV. Stratieraohv and General Geology

Due to the variability in nomenclature from author to author, the U. S. Geological 

Survey modified the nomenclature used by McCallum et al. (1980) in an attempt to unify the
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stratigraphie nomenclature (Zientek, 1985). Further subdivisions o f Anorthosite zone II have 

been proposed by Boudreau (1986) and are used in this study (Fig. 6). Anorthosite zone II 

(AN II) has been divided into the following two members:

Coarse-srained anorthosite member (Fis. 9): This member comprises most (ca.

600 m) o f AN II, and is distinguished from the overlying medium-grained anorthosite 

member by a marked change in plagioclase grain size and pyroxene mode. The average 

plagioclase grain size o f this unit is 2-3 times larger (up to 2.5 cm) than the plagioclase 

within the troctolites, norites, and gabbronorites that make up most o f the Banded Series 

(McCallum et al., 1980; Scheidle, 1983). This unit is massive and unlayered with non- 

uniform, variable pyroxene percentage (see also Fig. 3). This unit consists o f cumulus 

plagioclase with up to 20% interstitial mafic minerals- augite, inverted pigeonite, and olivine, 

in decreasing order o f abundance. On an outcrop scale the interstitial mafic minerals exhibit 

two different textures. In most outcrops the mafic minerals form an extensive 

interconnected network, whereas discrete 2 to 10 cm pyroxene oikocrysts are predominant in 

others.

The average reported composition o f plagioclase is approximately the same for AN I 

and AN II (McCallum et al., 1980; Scheidle, 1983; Czamanske and Scheidle, 1985). The An 

content for AN I and AN II is between An?; and An??, with no apparent change in 

composition with stratigraphie height (Loferski and Arculus, 1993). However, Czamanske 

and Scheidle (1985) identified numerous complexly zoned plagioclase grains with 

compositional variations o f as much as 12 mol% An. Plagioclase grains show normal, 

reverse, oscillatory, and patchy zoning within single thin sections. From the several thousand 

electron-microprobe analyses o f the plagioclase grains from both AN I and AN II, four main 

points are revealed: I) it is difficult, if  not impossible to recognize adcumulate growth; 2)
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associated grains show no evidence of growth in a common equilibrium environment, or 

uniform response to system wide perturbations; 3) many grains show highly irregular 

contacts and dissolution along these contacts as revealed by truncated compositional zones; 

and 4) the zoning patterns may be either regular or more commonly broad, convolute and 

non-concentric (Czamanske and Scheidle, 1985).

M edium-plained anorthosite member Œiiî.îO): Although both thick anorthosites 

(AN I, AN II) are characterized by a variable 1-2 m relatively fine-grained, locally laminated 

anorthosite at their upper and lower contacts, the top o f AN II contains an anomalous 5-15 m 

relatively fine-grained, locally laminated anorthosite, named the medium-grained anorthosite 

by Boudreau (1986). This unit shows a marked textural and modal change. The plagioclase 

grain size, averaging approximately 2 mm, is similar to that o f the overlying troctolite and 

other rocks within the Banded series. Commonly, this anorthosite is monomineralic (Fig.

10), but may contain less than 5% interstitial pyroxene and rare olivine. Where pyroxene is 

present, it forms skeletal, 2 to 6 cm oikocrysts, and imparts a mottled appearance to the rock 

in outcrop. The contact between the medium- and coarse-grained anorthosites is generally 

sharp and planar. Where well-exposed in the field, the contact is less than a centimeter thick. 

Locally, this contact may be irregular and sinuous on a scale o f centimeters. This contact is 

further complicated by lenses and layers o f coarse-grained plagioclase within the medium- 

grained unit. These coarse-grained layers are generally associated with abundant 

intercumulus mafic minerals. Layers approximately 1 meter thick that contain intercumulate 

olivine occur locally (Boudreau, 1986). The medium-grained unit may show modal layering.
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Figure 9. Plain light photograph o f the coarse-grained 
member o f AN II. Lplg = large plagioclase, Splg = 
intercumulate plagioclase, Bmz = bronzite. Width o f  
Dhoto is 35 mm.

Figure 10. Plain light photograph o f medium-grained 
member o f AN II. Pig = plagioclase,
Brz = bronzite. Width o f photo is 35 mm.

f

Figure 11. Plain light photograph o f troctolite member 
o f the overlying Upper Banded Series. Note small 
plagioclase (Pig) grain size. Cumulate olivine (Olv) is 
rimmed by bronzite (Brz).
Width o f photo is 35 mm.
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Locally this unit shows lamination and foliation o f the plagioclase. Sulfide minerals are 

much less common within this medium-grained unit. Where sulfide minerals are present, 

they are generally devoid o f  PGE content (Boudreau, 1986).

Troctolite subzone o f  Olivine-bearine subzone V (OB V)(Fis. 11): The contact 

between Anorthosite zone II and the overlying troctolites and anorthosites o f Olivine-bearing 

series V mark the beginning of the Upper Banded series. The troctolite subzone is in sharp 

contact with the overlying medium-grained anorthosite o f AN II. This subzone consists 

mainly o f troctolite with subordinate anorthosite. Olivine and plagioclase are the main 

cumulate minerals within the lower few meters. Pyroxene is absent near the lower contact 

but increases in modal abundance up section. Bronzite occurs as rims around the olivine and 

as oikocrysts. Augite occurs as a subordinate interstitial mineral. The troctolite shows both 

modal and inch-scale layering (Fig. 11). This unit shows crossbedding and cut-and-fill 

structures which suggest flow banding in a semi-consolidated crystal mush (Boudreau,

1986). These features are exposed at the summit o f Picket Pin Mountain.

V. Sulfide distribution

The Anaconda Minerals Corporation completed the most-detailed survey o f sulfide 

mineral occurrence within the Picket Pin PGE deposit. Anaconda drill logs show the 

variation o f mineralization along strike (see also Figs. 7 & 8) (Boudreau, 1986). Most o f the 

sulfide mineralization o f the Picket Pin deposit occurs within the uppermost 20 m of AN II. 

Major accumulations o f  sulfide minerals are found at and below the contact o f the coarse

grained and medium-grained anorthosites o f AN II (Boudreau and McCallum, 1985).

24



Locally, the PGE-bearing sulfide minerals also occur up to the contact with the overlying 

troctolite. Minor sulfide minerals within the troctolite unit are typically barren o f PGEs.

Mineralization o f the Picket Pin deposit on a regional scale is stratabound, but more 

accurately it occurs as podiform and lenticular concentrations o f 1 to 5% sulfide minerals. 

The sulfide minerals fill the intercumulate space between plagioclase grains. Mineralized 

pods range in size from centimeters to several meters. The sulfide lenses are approximately 

1.5 meters thick and attain a lateral extent o f 30 meters. The lateral variation o f 

mineralization occurs on a scale o f tens o f meters, where well-mineralized areas are 

separated by regions o f unmineralized rock. This unmineralized rock locally contains 

patches o f magnetite and ilmenite.

PGE-bearing podiform and transgressive pipe-like bodies occur to a depth of 150 m 

in the coarse-grained anorthosite below the ore zone. The pipe-like bodies locally crosscut 

stratigraphy for over 50 m with a width ranging from 1 to 1.5 m, and in some cases lead to 

well mineralized lenses and pods. Mineralization within the pipelike bodies is similar to the 

stratabound lenses with 1-5% PGE-bearing sulfide minerals. They may have spotty 

mineralization for a few meters both above and below. The pipe-like bodies are not related 

to growth faults, fractures, or intrusive bodies that occur within AN II (Boudreau, 1986).
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CHAPTER THREE: PETROGRAPHY

Coarse-srained anorthosite member:

Plagioclase is the principal component making up from 80 to 87% of the anorthosite; 

the grains form a interconnected network (see also Fig. 9). Grains range from lath-shaped to 

equant and from anhedral to subhedral. Haskin and Salpas (1992) divided the plagioclase 

grains into two groups: Large (>0.5 cm) framework plagioclase, and small (<0.5 cm) 

plagioclase. The large framework grains are interpreted to be original cumulate minerals and 

make up from 43 to 50% of the anorthosite. The small plagioclase grains occupy the space 

between the large grains, and are interpreted to be intercumulate plagioclase (Haskin and 

Salpas, 1992). Where the large, framework plagioclase grains appear to be consistent in size, 

the small, intercumulate plagioclase grains are not. The ratio o f large to small plagioclase 

grains increases towards mineralization, and is highest in the mineralized samples. Thus, 

mineralization is concentrated within the coarser-grained intercumulate plagioclase rocks. 

The significance o f this is that there is a minimum o f okocrystic mafic minerals, which may 

act as a cement and restrict hydrothermal fluid flow.

Unusual erosional textures are apparent within the large plagioclase grains. These 

erosional textures appear to be either more abundant or more prominent away from 

mineralization. Numerous grains show a ragged, dissolution texture, whereas others have 

smooth grain boundaries. The large plagioclase grains are partly altered to sericite, epidote, 

and clinozoisite along grain boundaries. Many o f the plagioclase grains are complexly zoned 

with a compositional variation o f up to 12 mol% An. The zoning patterns may be either 

regular or more commonly broad, convolute, and non-concentric (Czamanske and Scheidle, 

1985). Zoning patterns are difficult to identify microscopically, but appear to be either
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oscillatory or reverse. This zoning appears to be randomly distributed from sample to 

sample. An interesting feature o f these large plagioclase grains is the apparent lack of 

adcumulate growth. It has been reported that the composition o f the plagioclase throughout 

Anorthosite zone I and Anorthosite zone II is consistent and do not change with stratigraphie 

height (McCallum et al., 1980; Scheidle, 1983; Czamanske and Scheidle, 1985).

Intercumulus pyroxenes typically make up 10 to 15 percent o f individual samples, 

but range from trace to 20 percent (see also Fig. 5). Approximately 75% of the intercumulate 

pyroxene is clinopyroxene (augite), 15% is orthopyroxene (inverted pigeonite); the 

remaining 10% is olivine. The orthopyroxene contains blebs and lamellae o f clinopyroxene 

and the clinopyroxene contains exsolution lamellae of orthopyroxene. The pyroxenes appear 

to be zoned by mineralogy. Bronzite is more abundant, making up 70% o f the intercumulate 

mafic minerals, within the pyroxene-rich domains, and clinopyroxene is dominant (85%) 

within the pyroxene-poor domains. This may reflect a compositional change within the melt. 

The pyroxene alteration products include serpentine, amphibole, albite, and chlorite.

Intercumulate olivine has been identified in approximately 10% o f the total samples 

in this study. The olivine may be optically continuous poikilocrysts that enclose one half of a 

thin section. The olivine occurs most predominantly within the 15-20% group (pyroxene 

plus olivine) and locally within the 10-15% group. It does not occur in any sample 

containing less than 10% intercumulate mafic-minerals. Alteration o f olivine grades from 

iddingsite-magnetite, serpentinized with veins o f magnetite, to only slightly altered, with a 

rim o f serpentine. Most olivine falls into this last group.

The intercumulate mafic-mineral mode is not uniform within the coarse-grained 

anorthosite, and has been divided into ranges that fell within 0-5% pyroxene, 5-10%, 10- 

15%, and 15-20% pyroxene (Haskin and Salpas, 1992). The subdivisions into modal
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pyroxene groups are important in delineating the sulfide-bearing horizons, which occur in the 

0-5% range, the most altered pyroxenes. The modal divisions are also important in 

understanding the formational dynamics o f AN II. Point counts on a Leitz/Wetzlar 

microscope fitted with a James Swift auto-stage and a Hacker Instruments Prior Model G 

counter were used to determine percentages (Table I). Three thin sections from each 

pyroxene group was sampled with 1,000 counts, for a total o f 12,000 counts. The variation 

between orthopyroxene and clinopyroxene was sampled with 4500 total counts. Below are 

the pétrographie analyses o f these divisions within the study area.

0-5% pyroxene:

The major modal abundances o f this group are: plagioclase (87%), sulfide minerals (10%), 

and relict clinopyroxene (2%). This division consists o f a framework o f large (0.5-2 cm), 

lath-shaped plagioclase grains. These large plagioclase grains are sericitized, highly altered 

to clinozoisite, and make up 46% o f this rock type. Resorption textures occur on 

approximately 60% o f the large plagioclase grains. Small (<0.5 cm), blocky plagioclase 

grains, also altered, make up 40% o f this group (Fig. 12). The large to small plagioclase 

grain ratio is approximately 1:2, suggesting that the small plagioclase grains are one half the 

size o f the large plagioclase grains. Clinozoisite and epidote (14%) occurs as a replacement 

within the plagioclase and as an alteration zone surrounding the sulfide minerals (Fig. 13). 

The sulfide minerals (up to 11%) fill the intercumulate spaces. Individual sulfide grains are 

also rimmed by quartz and albite. The relict pyroxene is altered to chlorite, albite, sulfide 

minerals, and epidote (Figs. 14 & 15).
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Figure 12. Crossed-polarized photomicrograph o f the 0-5% pyroxene group. 
Clinozoisite/epidote (Cln/ep) forms extensive alteration along plagioclase grain boundaries. 
Note coarse grain size o f the small plagioclase (Splg).
Lplg = large plagioclase, Splg = small intercumulate plagioclase, Cln/ep = 
clinozoisite/epidote alteration, Sf = sulfide grain (black). Width o f photo is 25 mm.

Figure 13. Plain-light microphotograph of the 0-5% pyroxene group. The clinozoisite/epidote 
alteration halo (alt) is obvious in this photo. Lplg = large plagioclase, Splg = small 
intercumulate plagioclase, sf = sulfide grains, alt = alteration halo. Length o f photo is 35 mm.
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Figure 14a. Energy Dispersive Spectrometry photomicrograph o f a relict 
clinopyroxene grain. The PGE-bearing sulfide (blue-green) is unevenly 
distributed and follows the pyroxene lamellae. This distribution may 
suggest infiltration and subsequent deposition o f PGE-bearing sulfides 
from a hydrothermal fluid. Ca = red, S = yellow, Pt = blue.

%
Figure 14b. Altered pyroxene (alt pyx) replaced by sulfide grain.
Note comb texture o f the clinozoisite/epidote into sulfide grain. This texture 
suggests that the emplacement o f the sulfide grain is either contemporaneous 
or after crystallization o f the clinozoisite. plag = plagioclase, cln = 
clinozoisite, ep = epidote, alb = albite, po = pyrrhotite, pn = pentlandite, ccp 
= chalcopyrite. Length o f photo approximately 5 mm.
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Figure 15. Pyroxene grains from the 0-5% group altered to clinozoisite and chlorite. 
Length o f ohoto is 10 mm.

Figure 16. Crossed-polarized photomicrograph o f the 5-10% proxene group. Lplg = large 
plagioclase, Splg = small intercumulate plagioclase, Bmz = bronzite, Alt = alteration. 
Length o f photo is 25 mm.

Figure 17. Relict pyroxene (0-5% group) altered to albite (light areas) and chlorite 
(dark area). Alteration follows the original lamellae o f the clinopyroxene. This sample 
was taken 50 m down section and may suggest movement o f fluids.
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5-10% pyroxene:

The major modal (by volume) abundances o f this group are: plagioclase (87%), 

clinopyroxene (8%), sulfide minerals/oxides (3%), and bronzite (2%) (Fig. 16). The large 

plagioclase grains (0.5-2 cm) are slightly altered, and make up 43% of this rock type. 

Resorption textures occur on 77% o f the large plagioclase grains. The small plagioclase 

grains (<0.5 cm) form 44% o f this group. When the total number o f individual grains are 

counted, the large to small plagioclase grain ratio is approximately 1:4. The increase o f the 

grain-to-grain ratio, when compaired to the 0-5% group, implies that the small, intercumulate 

plagioclase grains are reducing in size. The pyroxene (5-10%) is highly altered and shows 

very little o f its original composition (Fig. 17). The pyroxene is completely replaced by 

amphibole, chlorite, clinozoisite, and albite. Clinozoisite (4%) replaces the plagioclase and 

forms at grain contacts. Minimal sulfide minerals are found within this group.

10-15% pyroxene:

The major modal (by volume) abundances o f this group are: plagioclase (83%), 

clinopyroxene (12%), bronzite (3%), oxides (2%), ± olivine (Fig. 18). The large plagioclase 

grains (52%) within this group are fresh with minor local alteration. Approximately 94% of 

the large plagioclase grains within this group show resorption textures. The small 

plagioclase grains (35%) are also fresh with minor local alteration. When the total number of 

individual grains are counted, the large to small plagioclase grain ratio is 1: 5.4, further 

implying the reduction in the small plagioclase grain size. The pyroxene (inverted pigeonite 

and augite) is locally altered to amphibole. Clinozoisite is a minor constituent (<4%); it 

locally replaces the plagioclase at grain boundaries. No sulfide minerals are present within
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Figure 18. Crossed-polarized photomicrograph o f the 10-15% pyroxene 
group. Lplg = large plagioclase, Splg = small intercumulate plagioclase, Aug 
= augite, Bmz = bronzite. Length o f photo is 15 mm.

Figure 19. Crossed-polarized photomicrograph o f the 15-20% pyroxene group. 
Lplg = large plagioclase, Splg = small intercumulate plagioclase, Bmz = 
bronzite. Length o f photo is 15 mm.
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this group. Interstitial oxides, magnetite and ilmenite, locally comprise up to 2%. Epidote is 

the common alteration mineral surrounding the oxides. The compositional change in the 

alteration assemblage from clinozoisite to epidote suggests a local change in equilibration of 

the hydrothermal fluid.

15-20% pyroxene;

The major modal abundances o f this group are: plagioclase (80%), bronzite (13%), 

clinopyroxene (5%), oxides (2%), ± olivine (Fig. 19). The large (50%) and small (30%) 

plagioclases are fresh and unaltered. Numerous grains show complex, diffuse zonation. 

Resorption textures (Figs. 19, 20) occur on 95% o f the large plagioclase grains. When the 

total number o f individual grains are counted, the ratio o f large to small plagioclase grains is 

1:6.3, suggesting that the smallest intercumulate plagioclase grain size are within the highest 

modal pyroxene group. Pyroxenes in this group include orthopyroxene (inverted pigeonite) 

and clinopyroxene (augite). The pyroxenes are only locally altered to amphibole. 

Intercumulate olivine is locally present. No clinozoisite or sulfide mineralization is visible in 

thin section. Magnetite and ilmenite are present in trace amounts (>2%).
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Table 1. Point count data.

J-s% pyroxen e sam ple  NumDer Lrg. Piag Sm. Plag Pyroxene suiTideroxide Clinozoisite Total
percent percent percent percent percent percent percent

ëW iO ia — 5T 444 “ 5 ÎT 6 Ô ^.2 46 12.4 62 15 6 78 500
808101b 22 4 112 34.8 174 0 0 116 58 15 75 16.2 81 500

tam ple average 20.9 39.1 0 10.4 13.7 15.9 too

808201a 11-2 56 35.4 177 0 0 14.8 74 19 8 99 18 8 94 500
808201b 20.6 103 44 4 222 0 0 12.6 63 14.6 74 7.6 38 500

sample average 15.9 39.9 0 13.7 17.3 13.2 100

811106a 26 130 41.2 206 5.4 27 8.6 43 8.8 44 10 50 SCO
811106b 14 70 45.4 227 4.2 21 10.6 53 14.8 74 11 55 500

sample average 20 43.3 4.8 9.8 11.8 10.5 100

Total average 19 41 2 11 14 13 3000

sam ple  Number Lrg Plag Sm. Plag pyroxene SuKidetOxlde Clirtozoisite Other Total
percent percent percent count percent count percent percenl

808002a 322 161 47.6 238 7.6 38 3 15 2 2 11 7.4 37 500
808002b 34.6 173 43 215 8.8 44 3.6 18 4 20 6 30 500

sample average 33.4 45.3 8.2 3.3 3.1 6.7 100

811101a 19 95 58.8 294 10.4 52 2.8 14 3.4 17 5.6 28 500
811101b 27 6 138 45.8 229 8.6 43 4.4 22 5.4 27 8 2 41 500

sample average 23.3 52.3 9.5 3.6 4.4 6.9 100

808006a 41 6 30.6 153 10 50 2.è 14 6.4 32 8 6 43 500
808006b 32 8 164 40.4 202 10.8 54 3 15 3.2 16 9.8 49 500

sample average 37.2 35.5 10.4 2.9 4.8 9.2 100

Total Average 31 44 9 3 4 8 3000

10-15% pyroxene Sample Number Lrg Plag Sm Plag Pyroxene suifideroxide Clinozoisite Other Total
percent percent count percent percent percent percent percent

808102a 552 276 26.2 131 14.4 72 1.4 7 1.2 6 1.6 8 500
808102b 42.6 214 37 185 16.8 84 0.6 3 1.8 9 1 5 500

sample average 49 31.6 15.6 1 1.5 1.3 100

811007a 35 175 43.8 219 12.8 64 0.6 3 3.8 19 4 20 500
811007b 45 225 34 170 14.8 74 0.4 2 3.3 16 2.6 13 500

sample average 40 38.9 13.8 0.5 3.55 3.3 100

800007a u 270 22.4 112 13.6 68 1.2 6 4 20 4.8 24 500
808007b 43 4 217 25 6 128 20.6 103 2.2 11 4 20 4 2 21 500

sample average 48.7 24 17.1 1.7 4 4.5 100

Total Average 46 32 16 1 3 3 3000

i5-zü% pyroxene Sam ple Numtser Lrg. Plag sm . Plag Pyroxene Sulfltfe/Oxide Clinozoisite Ouier Total
percent count percent percent percenl percenl count percent count percenl

808004a 41 2 206 32.6 163 24 6 123 0.6 3 0.2 1 0.8 4 500
808004b 47 235 31 2 156 18.8 94 0.6 3 0.8 4 16 6 500

sample average 44.1 31.9 21.7 0.6 O.g 1.2 100

808003a 552 276 19 95 12.6 63 5 25 5 25 3.2 16 500
808003b 586 293 16.4 82 14.4 72 3.4 17 4.6 23 2.6 13 500

sample average 56.9 17.7 13.5 4.2 4.8 2.9 too

81101 la - 38.6 193 40.6 203 19.2 96 0.4 2 0.2 1 1 5 500
811011b* 44 220 33 165 18.4 92 0.2 1 1.8 9 2.6 13 500

sample average 41.3 36.8 18.8 0.3 1 1.8 100

Total Average 47 29 18 2 2 2 3000
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Figure 20. Crossed-polarized micrograph o f resorption textures within the large, 'framework' 
plagioclase grains. Width o f photograph approximately 5 mm.

Figure 21. Plain light photomicrograph o f the alteration halo enveloping the sulfide 
grains. Lplg = large plagioclase, Splg = small plagioclase, S f = sulfide grains, Alt = 
alteration halo. Width o f  photo is 35 mm.
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II. Sulfîdc Mineralogy

The sulfide minerals can be divided into two groups: Large (millimeter scale), blocky 

grains occupy most o f the intercumulate space; and patches o f numerous small (micron 

scale) grains occur within the alteration assemblage o f clinozoisite/epidote-quartz that 

envelopes the large sulfide grains (Fig. 21). Albite is common at the contact o f the large 

sulfide grains and the plagioclase grains which may suggest exsolution o f albite from the 

plagioclase grains in contact with hydrothermal solutions. Analysis with SEM and EDS 

reveals a sulfide compositional zoning pattern between pyrrhotite, pentlandite, chalcopyrite, 

and the PGE-bearing sulfide minerals. The sulfide grains are roughly concentrically zoned 

with pyrrhotite, pentlandite in the center enveloped by chalcopyrite and PGE, which is 

further enveloped by distal oxides. The large sulfide grains are mainly pyrrhotite with 

exsolution and zoning o f pentlandite (Fig. 22). Pentlandite occurs as blade-like inclusions 

within the pyrrhotite, or is concentrated to the rim o f the pyrrhotite. The patches o f small 

sulfide grains are commonly chalcopyrite and braggite. Chalcopyrite is commonly present as 

small (<0.25 mm) isolated grains and is concentrated to the rims o f both pyrrhotite and 

pentlandite within the clinozoisite/epidote-quartz halo (Fig. 23). Discrete PGE-bearing 

sulfide minerals occur as isolated 25-micron grains (Fig. 24) that also occur within the 

alteration halo. There is a negative correlation between the sulfide grains and the PGEs (Fig. 

25). The PGEs mainly occur along the Fe-sulfide grains boundaries. Trace PGE occur 

within the large pyrrhotite grains, which suggest that PGEs either occur in fluid inclusions, 

ionic replacement o f Fe, Ni, or S, or the PGE are trapped within the crystal lattice o f the 

pyrrhotite. Plotting the apparent sulfide zoning pattern on an Eh/pH diagram shows a trend 

from reduced to neutral with the PGEs occurring at near-neutral conditions (Fig. 26).
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FIGURE 22. Elemental photomicrographs o f a typical large sulfide grain. The lower left 
photograph shows blade-like inclusions o f pentlandite within pyrrhotite suggestive o f original 
exsolution textures. Note trace amounts o f Pt within the sulfide grain.
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300 |jm

FIGURE 23. Elemental photomicrographs o f a typical large sulfide grain showing compositional 
zoning o f pyrrhotite (Fei-xS) and pentlandite ((Fe, Ni)9Sg). Chalcopyrite occurs as isolated grains in 
the upper right and lower left o f the large Fe-sulfide grain. Note the isolated Pt grain (right side 
center) on the lower right photograph. This Pt grain is typical o f the Picket Pin deposit. The 
surrounding material is mostly clinozoisite with minor epidote.
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FIGURE 24. Elemental photomicrographs o f an isolated bragite ((Pt, Pd)S) grain typical of the 
Picket Pin deposit. The surrounding material is mostly clinozoisite with minor quartz.
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Figure 25. Linear EDS traverses across a portion o f a thin section. Note the negative 
correlation between the Fe-sulfide grains and the PGE-enriched areas. Blue = PGE; Red = Fe- 
sulfides. Scale is in counts per second.
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Oxides

Intercumulate ilmenite and magnetite occur away from sulfide mineralization, within 

the 5-10% pyroxene zones o f AN II. The ilmenite may contain manganese and vanadium. 

Quartz and apatite are more abundant close to the oxides. Epidote with trace clinozoisite 

encloses all oxide grains. The close relationship between epidote and the oxides clearly 

suggests a higher oxidation state o f the melt or fluid that precipitated these phases. A linear 

trend is apparent when the oxides are plotted on the above Eh/pH diagram which may 

suggest evolution o f  the ore-bearing fiuids. No PGE-bearing sulfide minerals are present 

near the oxides.

III. Alteration Mineralogy

Clinozoisite, epidote , albite , quartz, and apatite, in decreasing order o f abundance, 

accompany the sulfide mineralization (Fig. 26). Abundant clinozoisite with minor epidote 

enclose all sulfide grains. This apparent alteration halo erodes the plagioclase grain 

boundaries and locally cross-cuts the large pyrrhotite grains. Where the plagioclase grain 

boundaries are preserved, and in contact with the large sulfide grains, they are altered to 

albite (Fig. 28). Minor amounts o f this alteration may locally occur away from sulfide 

mineralization (10-15% group), but only at plagioclase grain boundaries. The highest 

amount o f alteration is associated with sulfide mineralization (0-5% pyroxene group). 

Alteration drastically decreases away from the sulfide mineralization (5-10% group), and 

occurs only locally within the pyroxene-rich rocks (10-15% and 15-20% groups). This 

alteration pattern suggests the hydrothermal fluid selectively migrated in the rocks with low- 

pyroxene content, and may suggest a physical constraint (low pyroxene content and coarser- 

grain plagioclase) for the migration o f the hydrothermal fluid.
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In the field, clinozoisite and epidote form 0.5 to 5 cm circular patches that lead 

upward in the section to more abundant sulfide mineralization (Fig. 29). Microscopic 

investigation o f one such patch reveals a 1 mm central oxide (magnetite) grain surrounded by 

0.5 mm envelope o f epidote, which is further enclosed by 1 cm o f clinozoisite, an outward 

decrease in iron. This outward decrease in iron is opposite o f the outward increase in iron 

proximal to the sulfide horizons where magnetite and epidote is outward o f clinozoisite and 

the sulfide minerals. Discrete PGE and apatite grains occur between the alteration boundary 

and the unaltered rock (Fig. 30). The clinozoisite patches have obliterated both plagioclase 

and pyroxene grains. Only near the margin of the clinozoisite patch can relict plagioclase be 

inferred. The clinozoisite patches appear to be a good field indicator o f high-grade sulfide 

mineralization. Multiple random samples o f clinozoisite patches totaling 5 kg were analyzed 

(Table 2) to test the relationship between the clinozoisite patches and sulfide mineralization. 

The clinozoisite samples were collected throughout the eastern section of An II and away 

from visible sulfide mineralization. Anomalous PGE and Au within the samples may 

support an intimate connection between the ore-bearing fluid and the clinozoisite.

Interstitial quartz and minor apatite occur locally and may form a halo surrounding 

the sulfide minerals. Quartz and apatite may also be found as discrete anhedral secondary 

grains within the clinozoisite envelope. Quartz and apatite appears to be more abundant near 

the oxides.

41



Kl  ̂4''
Medium-grained anorthosite # 7 :: a

I
•o-o

iiypgw

Coarse-grained anorthosite

Figure 26. Schematic o f alteration halo enclosing the sulfides.
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I
Cin/ep iPo, Pn

Figure 27. Polarize photomicrographs o f two sulfide grains. The surrounding material on the grain 
on the right is less altered than the grain on the left. However, both grains are rimmed by albite and 
contain intergrowths o f clinozoisite. Po = pyrrhotite, Pn = pentlandite. Cep = chalcopyrite. Alb = 
albite, Qtz = queirtz, Cln/ep = ciinozoisite/epidote.

r

V

Figure 28. Outcrop photograph o f clinozoisite patches. Significant sulfide mineralization is less than 1 
m below the right-hand comer o f photograph. Up-section is towards lower right-hand comer.
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Figure 29. Idealized cross-section o f a clinozoisite patch. Note the 
trend from the central oxidized zone outward to the reduced, PGE- 
bearing sulfides.

Table 2. Clinozoisite analysis.

T102 AI203 Fe203 MnO MgO CaO Na20 K20
Clinozoisite 1 0 . 2 7.68 1.84 0 . 2 0.46 3.2 0.67 0.09
Clinozoisite 2 0 . 1 1 2 . 2 1.55 0 . 2 0.52 4.86 1.34 0 . 2 1 2

Average t% ) 0.15 9.94 1.7 0.2 0.5 4.0 1.0 0.15

Cu Ni Cr Co Sr Ba La
Clinozoisite 1 49 0 237 44 8 32 1 0 1 0

Clinozoisite 2 427 304 39 1 2 51 2 0 1 0

Average (Dpm> 459 271 42 10 42 15 10

Pt Pd Au Ag
Clinozoisite 1 320 320 41 2 0 0

Clinozoisite 2 241.5 2 2 0 18 2 0 0

Average toDb) 281 270 30 200
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CHAPTER FOUR: GEOCHEMISTRY

I. Review  o f  recent literature

Com parison betw een recent literature and the data presented below  is difficult. 

Excluding the w ork done by Haskin and Salpas (1992), the analyses involved in recent 

literature do not divide the Ethologies into pyroxene-content groups. The divisions made 

in previous research are between sulfide-rich/pyroxene-poor and sulfide-poor/pyroxene- 

rich zones w hich roughly correlate to the 0-5% and 15-20% groups respectively, applied 

to this contribution. Broad correlations, however, can be made for m ajor and trace- 

element trends.

Salpas et al. (1983) have shown that the sulfide-rich/pyroxene-poor rocks are 

preferentially enriched in incompatible trace elements. H askin and Salpas (1992) show 

that Si0 2 , T iO i, AI2 O 3 , N a 2 0 , and K 2 O correlate negatively w ith MgO. They also found 

negative correlations betw een M gO and the rare-earth elements, Zr, Hf, Ta, Th, U, Rb,

Cs, Sr, Ba, and Br. Research by Boudreau (1986) displays a negative correlation between 

Sc and Ni, suggesting that the sulfide minerals are replacing the pyroxene as the 

intercum ulate phase. A strong positive Eu anomaly w ithin the overlying troctolite and 

m edium -grained anorthosite mem bers as well as the sulfide-poor zones in AN II suggest 

the plagioclase grains accum ulated from a melt that had not yet crystallized substantial 

amounts o f  plagioclase. A  slight negative Eu anomaly, suggestive o f  removal o f 

plagioclase, w ithin the sulfide-rich zones is interpreted to suggest these plagioclase grains 

were derived from a  trapped m elt (Boudreau, 1986). This m elt was not in communication 

w ith the m ain m elt cham ber o f  the complex which would be replenished w ith Eu with 

each new  pulse o f  m agm a into the chamber. Boudreau further suggests that the sulfide
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minerals replacing the pyroxene do not account for the enrichm ent o f  incom patible trace 

elements w ithin the sulfide-rich rocks. M ore recent research (M eurer et al., 1999) 

provides a cautionary note on the interpretation o f  the o f  whole-rock trace-elem ent trends 

since the trace-elem ent concentrations may have been strongly m odified by migrating 

fluids without changing the major-elem ent compositions.

Enrichm ent o f  the incompatible trace and m ajor elements within the sulfide- 

bearing zone suggests that the sulfide-bearing zones formed either from an evolved melt, 

or were enriched by a later hydrothermal event. This argum ent is used in favor o f  the 

hydrothermal origin for the sulfide-bearing zones. The magm atic origin model for the 

sulfide m inerals (see below), however, hypothesizes that a m ix o f  a prim itive and more- 

evolved m elt resulted in sulfide saturation and hence, sulfide precipitation. Since both 

arguments may be valid, therefore, incompatible elem ent trends should be used with 

caution when deriving a genetic model for the origin o f  sulfide precipitation.

II. W hole-rock Analvses

In the present study the rocks o f  An II have been divided by m odal pyroxene 

percentage. Therefore the whole-rock analyses (see appendix I) confirm  the obvious (that 

MgO is higher in rocks w ith higher pyroxene content). The apparent lack o f stratigraphie 

variation in the plagioclase com position within the two anorthosites (AN I and AN II) 

(M cCallum  and others) may reflect m ixing and mingling o f  two compositionally distinct 

melts to form A n II. However, there are revealing trends from this data that m ust be
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considered for m odels o f  the form ation and precipitation o f  the PGE-bearing sulfide 

m inerals (Fig, 30).

The whole-rock geochemical trends o f Mg, Fe, Na, and K versus pyroxene mode 

confirm  the above interpretations that the sulfide-bearing samples are enriched in Na, K, 

and incom patible trace elem ents and depleted in M g (Boudreau, 1986; Salpas et al., 

1983). This trend m ay suggest that the intercumulate m elt fractionated outward from the 

high-pyroxene zones toward the low-pyroxene and sulfide-bearing zones. These data in 

conjunction w ith the m icroprobe data (see below) for the plagioclase grains suggest that 

the sulfide-bearing zones were the last to crystallize and were enriched in volatiles. 

Alternatively, a  hydrotherm al fluid influx would enrich the sulfide-bearing zones with 

Na, K, incom patible trace elements, and volatiles. M icroprobe data on the intercumulate 

plagioclase grains (An >74 ) w ithin the sulfide-bearing zones supports that at least some 

o f the incom patible-elem ent enrichment may have been derived from the m elt as opposed 

to complete enrichm ent by a  hydrothermal fluid.

As suggested above, both N a and K  show enrichment towards the low-pyroxene, 

sulfide-bearing group. This enrichment may overstate the obvious that N a and K do not 

go into the pyroxene lattice and are therefore enriched in the pyroxene-poor areas. This 

trend does support differentiation outward from the m ore-m afic regions. Both N a and K 

deviate from  this trend w ithin the 5-10% pyroxene group. The pyroxenes within this 

group are highly altered to chlorite and albite, and this deviation m ay be due to the 

hydrotherm al alteration. This may suggest that the intercum ulate m elt fractionated, 

concentrating the incom patible elements in the sulfide-bearing zones and a later 

hydrotherm al event further enriched the zone.
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The relationship between Fe and modal percent pyroxene displays obvious Fe 

enrichment as the result o f sulfide and oxide concentrations in the low-pyroxene groups (0 - 

5% and 5-10% groups). Upon closer examination (Fig. 31) the relative Fe enrichment within 

the sulfide/oxide zones can be approximated. The importance o f this approximation is to 

examine whether the sulfide/oxide assemblages could be formed directly from the alteration 

o f pyroxene, which textural evidence suggests, or if the hydrothermal fluid contained Fe.

This Fe enrichment is discussed in detail below.

The relationship between Pt, Pd and pyroxene mode confirms the exclusivity of the 

PGEs to occur within the pyroxene-poor regions of AN II. Therefore, the PGEs are also 

associated with the incompatible major and trace elements. As mentioned above, this 

evidence argues against the magmatic model which would place the sulfide minerals and 

PGEs in a zone o f more primitive composition. In contrast, this relationship between the 

sulfide minerals, PGEs and incompatible elements supports the late-stage fluid or 

hydrothermal hypothesis. Alternatively, the PGEs and immiscible sulfide melt may have 

migrated into these zones before precipitation of the sulfide minerals.
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Figure 30. Relationships between whole-rock major elements and pyroxene modal percent.
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Figure 31. Fe enrichment per pyroxene group. The lower curve were derived from 

microprobe data o f  the pyroxenes.
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Figure 32. Cr abundance in pyroxene modal groups, medium-grained anorthosite, and 

clinozoisite patches. Note that the amount o f Cr in the clinozoisite patches is equivalent to 

that o f the medium-grained anorthosite unit. Cln patch = clinozoisite patches,

Med. An = Medium-grained anorthosite unit.
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The Cr content in relationship to the modal percentage pyroxene groups, the clinozoisite 

patches, and the medium-grained anorthosite unit (Fig. 32) shows that the average Cr content 

is higher in the hydrothermally altered zones in comparison to the olivine-bearing zones.

The increase o f Cr within the hydrothermal fluids suggests that Cr is mobile under low- 

temperature (500-600®C), oxidized conditions. The comparably high Cr value in the 

medium-grained anorthosite unit suggests that the medium-grained unit may have been 

effected by late-stage fluids, or infiltraited by hydrothermal fluids. Boudreau (1986) suggests 

that the high level o f Cr may be due to metasomatism that would have effected this unit by 

up-welling late-stage magmatic fluids because Cr does not enter the plagioclase crystal 

structure.

In Figure 33 the PGEs are compared to S, P, and the chalcophile elements. No good 

relationship is observed which suggests the PGE’s have precipitated in phases other than the 

sulfide minerals and may have been adsorbed on silicate grain boundaries. Boudreau (1986) 

noted that the PGEs show a good regression with As and Sb. He then suggests that these 

discrete phases o f  PGE and arsenic and antimony exsolved from a high-temperature 

monosulfide solution but presents no data to support the suggestion. Both As and Sb migrate 

freely in hydrothermal fluids. The lack o f a good correlation between the PGEs and the 

sulfide phases supports the hypothesis that the PGEs have migrated in a hydrothermal event. 

This may suggest that deposition of the sulfide minerals and the PGEs involved two different 

events or a gradual change in alteration-fluid composition. If  the elements responsible for 

the sulfide phases migrated with the PGEs, then better
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Figure 33. PGE relationship with sulfur, phosphorus and chalcophile elements.
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correlations between these elements might be expected. This lack o f correlations also affects 

the magmatic emplacement hypothesis that proposes that the PGEs were 

scavenged by sulfide droplets migrating through the melt. Again, if  the sulfide melt model 

were valid, then better correlations would be expected. It has been suggested by many 

authors that the abundance o f the phosphate mineral chlorapatite implies that the PGEs 

migrated in a Cl-rich fluid. Numerous apatite grains were identified proximal to sulfide 

grains. The slightly positive correlation between P and the PGEs which may support the 

hypotheses that the PGEs migrated in a Cl-rich fluid although background values of P 

prohibit any definite relationship. The random occurrence o f chlorapatite throughout AN II 

(see below) does suggest that AN II formed from an unusually volatile-rich melt, or that the 

volatiles were concentrated at this level o f the Stillwater Complex. This weak correlation and 

the abundant albitic alteration may imply that a sodium-rich fluid was responsible for PGE 

mineralization. Figure 31 may suggest a relationship between sodium and PGE 

mineralization. Potassium and the PGEs also show a weak correlation. This may suggest 

that the hydrothermal event responsible for PGE mineralization also may have been 

responsible for the enrichment in incompatible elements.

III. Microprobe Analvses

Representative samples from each of the four pyroxene groups, the medium-grained 

anorthosite member, and the troctolite member o f Olivine-bearing V (OB V), a total o f 6  

polished sections, were prepared for microprobe analyses. Silicate mineral compositions and 

zoning patterns were determined by microprobe analyse at Washington State University on a 

Cameca MBX microprobe with four wavelength dispersive spectrometers, with automation 

provided by Advanced Microbeam Inc. The microprobe used 12 nanoamps beam current, 20
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kilovolts accelerating voltage, with a beam width o f 2 microns. Multiple well-constrained 

standards were used to calibrate the microprobe (see appendix II).

Microprobe analyses established major-element compositions, chemical zonation on 

a grain scale, and determination of variations in silicate chemistry within each of the 

pyroxene groups. The two main research questions proposed were: 1.) Is there evidence of 

mingling and mixing o f two compositionally distinct melts? 2.) What is the compositional 

trend between the unmineralized groups (15-20%, 10-15% and 5-10% modal pyroxene) and 

the mineralized group (0-5% modal pyroxene)?, and 3) If  there was evidence of mingling 

between two melts, what is the compositional trend o f this melt?

Plagioclase Analvses

In the present study the plagioclase was divided by grain size into two groups: Large 

grains o f ‘framework’ (cumulate) plagioclase (>0.5 cm ), and small, intercumulate 

plagioclase (<0.5 cm). The division was arbitrarily chosen after pétrographie thin section 

analyses, and further inspired from the previous work by Czamanske and Scheilde (1985). 

Czamanske and Scheilde (1985) found the large plagioclase to be reversely zoned with a 

variation in An content up to 12% within a single grain. In contrast, the intercumulate 

plagioclase grains were more calcic and exhibited less compositional zoning.

Two different compositional trends are apparent in Figure 34: 1) a dissimilar average 

An content o f the large and small plagioclase grains within the 0-5% pryoxene group, and 2) 

a noticeable decline in An content in both plagioclase groups from the high to low-pyroxene 

modal division. They are most sodic near sulfide mineralization. The decline in An content 

in the large plagioclase group (5%) may be close to the margin o f error, whereas the small 

plagioclase group is significant (10%). This may support the hypothesis that the
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intercumulate melt was trapped and fractionated outwards from the high-pyroxene (15-20%) 

group to the low-pyroxene group (0-5%) and may explain the enrichment in Na, K, and the 

incompatible elements within the 0-5% group. Alternatively, this enrichment and 

plagioclase compositional trend may be the result o f the migration o f late-stage melt 

concentrating in the low-pyroxene group as proposed by Boudreau (1986) and Czamanske 

and Loforski (1996). Conversely, Sheidel (1983) suggests that the depletion in An content 

resulted from albitization, which the present study found to be significant in the 0 -5 % 

pyroxene group.

The variation between An content and distance from the core o f each grain was 

plotted for both large and small plagioclase grains from each pyroxene group (Fig. 35). The 

small plagioclase grains show normal zoning and show no oscillations suggesting that they 

formed from a melt without perturbations or mingling of a compositionally different melt. 

This may further support that melt 2, the intercumulate melt, was trapped and did not have 

communication with the remainder o f the main melt in the chamber. The large plagioclase 

grains are reversely zoned and show wild oscillations o f up to 12% molar Ca near the rims. 

Further inspection suggests that the large plagioclase grains are zoned normal from the core 

outward for some distance then began to oscillate and ultimately end up reversely zoned. 

Thus, the normal-zoned core may be the original cumulate grain whereas the oscillations and 

high-Ca rims are adcumulate and perhaps derived from the intercumulate melt (Fig. 35a-b). 

To verify this, the An content o f the rims o f the large plagioclase grains were plotted with the 

cores o f the small plagioclase grains per pyroxene group (Fig. 36). The An content o f the 

rims match the An content o f the cores well within the margin o f error. Detailed 

pétrographie analyses o f the large plagioclase grains to identify the adcumulate growth. The 

results o f the pétrographie analyses were marginal. Very few grains displayed a ‘dusty’
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outline o f the original grain. Numerous grains displayed a significant increase in inclusions 

within the reversely zoned margin o f the plagioclase grains. More detailed pétrographie 

analyses are needed to discern the possible adcumulate growth o f the large plagioclase 

grains.
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Figure  34. Relationship between the average An content o f the large and small plagioclase

grains and pyroxene group.
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Figure 35b. Compositional zoning o f small plagioclase grains for each pyroxene group.
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Pyroxene

The plagioclase analyses suggest that the small (intercumulate) plagioclase grains 

were derived from a more primitive melt than the large (cumulate) plagioclase grains. The 

data also suggest that this intercumulate melt fractionated and became more sodic from the 

high-pyroxene (15-20% group) zones to the low-pyroxene (0-5% group) zones. To test this 

hypothesis, the intercumulate pyroxenes and olivines were analyzed with the microprobe. If 

the intercumulate melt was indeed trapped and fractionated, then the Mg number (Mg/(Mg + 

Fe)) o f the mafic minerals should show Fe enrichment in the more-fractionated, pyroxene- 

poor (0-5% group) zones. Due to the oikocrystic nature o f the intercumulate mafic minerals, 

grain orientation, i.e., compositional zoning patterns, is difficult to control. Therefore, a 

microprobe traverse perpendicular to mineral zoning patterns is similarly difficult, or 

impossible. Pyroxenes also exhibit considerable subsolidus diffusion in their exsolution 

lamellae; therefore the pyroxene compositional trends may not reflect the compositional 

trends o f the original melt. Also the much smaller Mg and F e ^  can diffuse more easily than 

the Si and A1 o f plagioclase that are locked into the tetrahedral lattice structure.

In the 15-20% pyroxene group the orthopyroxenes and olivines are homogeneous and 

contain 70 mol % Mg end-member. The compositional zoning fluctuations are insignificant 

and below the margin o f error at 1 mol % Mg end-member. The Mg-number, which does not 

support a primitive melt, and the lack of compositional zoning may suggest a 

compositionally stable environment for crystallization o f the mafic minerals within the 15- 

2 0 % pyroxene group.

In contrast, the pyroxenes o f the 10-15% group typically display modest Mg 

enrichment (75 mol % Mg end-member) and considerable compositional variation (up to 12 

mol % Mg) within a single grain. The Mg-number varies slightly across the clinopyroxene
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lamellae within the orthopyroxene grain (±1 molar % Mg), but is below the margin of error 

and therefore is considered insignificant. This variation and enrichment may reflect a mixing 

and mingling o f a more-primitive Mg-rich melt. Alternatively, this Mg enrichment may be 

the result o f  subsolidus diffusion, as mentioned above.

Within the 5-10% group, the pyroxenes are mostly altered to chlorite. Microprobe 

analysis o f the unaltered parts o f pyroxene grains show a drastic decrease in Mg for an 

average Mg-number o f —20 mol % Mg end-member. Direct comparison between chlorite 

and the clinopyroxene it replaced may not be valid, but does warrant interpretation. Chlorite 

is similarly Fe-enriched with an average Mg-number o f -2 0  mol % Mg end-member. If the 

chlorite does reflect the Mg-number o f the original pyroxene, then that pyroxene is extremely 

enriched in Fe. This may reflect a compositional change within the melt. If this were strictly 

due to compositional change in the melt, then this would support the hypothesis that the melt 

was trapped within the plagioclase framework and did not communicate with the melt within 

the Stillwater Complex chamber. Alternatively, this Fe enrichment may be caused by Fe-rich 

hydrothermal fluids that altered the clinopyroxenes. Further support o f this hypothesis is the 

high Fe content within the clinozoisite patches (up to 2 mol % Fe), which are hydroxide 

minerals o f unquestionably hydrothermal origin. The above microprobe and whole-rock 

geochemistry data have strong implications for the origin o f the sulfide-bearing horizons and 

may support either a model o f remobilization o f the sulfide minerals or that the sulfide 

minerals are o f strictly hydrothermal origin.

Within the 0-5% group all pyroxenes are altered to albite, chlorite, zoisite, 

clinozoisite, and quartz, or are replaced by sulfide minerals. Microprobe data o f these altered 

pyroxenes show a similar enrichment in Fe (<20 mol % Mg end-member) in the above 5- 

10% group and may suggest the fluid responsible for alteration was enriched in Fe.
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Minerals Enclosing the Sulfide Grains

Microprobe analyses were made along the sulfide-silicate boundary within the 0-5% 

group. These data confirmed the presence o f albitic rims enclosing all the sulfide grains. 

These data also show the compositional trend for the ciinozoisite/epidote grains that 

accompany the sulfide/oxide minerals. Clinozoisite, a monoclinic hydrous calcium- 

aluminum-iron silicate, changes structure to orthorhombic zoisite where less than 7% of the 

octahedral sites are occupied by Fe^^. Conversely, clinozoisite and epidote form a 

continuous solid-solution series with the substitution o f Fe^^ for in the octahedral sites. 

Clinozoisite with greater than 15% Fe^^ in the site changes optic sign to become 

epidote. Therefore, zoisite, clinozoisite and epidote are useful indicators o f the iron content 

and oxidation state o f the hydrothermal fluid that they are derived from.

Microprobe analyses revealed a compositional trend between zoisite, clinozoisite, 

and epidote. From immediately adjacent to the sulfide grains outward to the iron oxide 

minerals, the compositional trend is zoisite, clinozoisite, and epidote. This may appear 

obvious in that the sulfide minerals are reduced and the oxides are oxidized, but this trend 

can also be used to interpret the change in the composition o f the hydrothermal fluid. If an 

oxidized hydrothermal fluid was transporting Fe amongst other metals and began to 

precipitate the oxides ilmenite and magnetite, the fluid would become more reduced. 

Further, if the hydrothermal fluid, now reduced, became saturated in Fe, it would be more 

able to precipitate Fe-sulfide minerals. Alternatively, the oxidized hydrothermal fluid may 

have been flushed out by an invading reduced and sulfide-bearing fluid, or the oxidized 

hydrothermal fluid came in contact with a magmatic sulfide horizon, reacted and deposited
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the metals. The latter would support the remobilization or hydrothermal hypothesis for the 

origin o f the sulfide horizons.

IV. Fluid Inclusions

Within the two thick anorthosites (AN I, AN II) and other rocks o f the Middle 

Banded series, multiphase inclusions o f pyroxene + ilmenite + apatite have been found in the 

cumulus plagioclase grains (Loferski and Arculus, 1993). Most inclusions are 50-150 

microns across, although some inclusions are up to several hundred microns. Most 

inclusions occur within the interior o f plagioclase grains and along twin planes; they are not 

related to fractures within the grains o f plagioclase. Most inclusions are clinopyroxene with 

a variety of shapes: many are rounded, whereas others are elongate with a length to width 

ratio o f 4:1. Textures and consistant mineralogy suggest that these inclusions have been 

incorporated in the plagioclase as liquid droplets rather than solid aggregates. The 

clinopyroxene inclusions enclose single or multiple grains o f ilmenite and apatite. The larger 

inclusions consist o f all three phases and the clinopyroxene may have 1 2 0 ° triple junctions 

between grains. Distinctively manganiferous ilmenite and the presence o f baddeleyite (ZrOz) 

suggest the inclusions formed from a liquid o f unusual composition. Apatite within the 

inclusions has a high percentage of the halides F and Cl. Microprobe analyses of apatite, 

from AN II with interstitial olivine, had up to 3.2 wt.% F, whereas samples from AN II 

without olivine contained up to 2.7 wt.% Cl (Loferski and Arculus, 1993). The presence of 

these halides may be significant and is considered crucial for the transport o f the PGEs 

(Boudreau and McCallum, 1989).

From the multiphase inclusion data Loferski and Arculus (1993) suggest a model of 

origin for the two thick anorthosites (AN I and AN II) and other rocks within the Middle
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Banded series. They hypothesized that the inclusions formed from droplets o f immiscible 

liquid that exsolved from the main liquid responsible for the crystallization o f the 

anorthosites. This is supported by the overlap o f compositions o f interstitial and inclusion 

pyroxene and ilmenite. However, the timing of crystallization o f both the inclusions and the 

interstitial fluid is not known. Secondly, if the inclusions exsolved from the initial melt and 

therefore separated from the melt, then the final compositions o f the two should not be the 

same. The composition o f the interstitial melt is assumed to not change over time, because 

any change would only affect the open system o f the interstitial melt, and obviously not the 

composition o f the inclusions. Loferski and Arculus (1993) suggest a two-melt system for 

the origin o f the anorthosites: one was highly polymerized aluminosilicate melt (analogous to 

Haskin and Salpas, (1992) ‘framework’ plagioclase) and the other, depolymerized. They 

suggest that highly polymerized, low-density melt separated from lower in the magma 

chamber and moved upward as diapirs to form large zones (AN I and AN II), suggesting 

both a compositionally and density-stratified magma chamber. They further suggest that 

crystallization o f the anorthosites from a mixing o f a polymerized melt with a non

polymerized melt may account for distinctive features such as the coarse grain size and 

complex plagioclase zoning.

Prior to this study fluid inclusions o f the Picket Pin deposit have only been studied by 

Boudreau (1986). Boudreau found fluid inclusions in the interstitial quartz of both 

mineralized and unmineralized coarse-grained anorthosite. Most o f the inclusions are only a 

few microns in diameter, secondary, and difine trails and planes. Many contain a vapor 

bubble, a cubic daughter crystal (NaCl?), dark rod-shaped crystals (rutile?), and/or highly 

biréfringent crystals (carbonate?). A wide range of homogenization temperatures may reflect
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the variety o f compositions within the inclusions. Boudreau found the range of temperatures 

(200-500*^C) to be consistent with greenschist facies alteration.

In contrast to the inclusion data o f Loferski and Arculus (1993), the primary fluid 

inclusions within this study area range from < 2 pm up to 20 pm in diameter. Geometries o f 

the inclusions are: circular to roughly circular single phase, circular with vapor bubble, rod

shaped single phase, rod-shaped with vapor bubble, and circular three-phase with vapor 

bubble and cubic crystals (NaCl?), in descending order o f abundance. The rod-shaped 

inclusions may contain opaque minerals ( rutile?, sulfide minerals?) next to sulfide grains. 

Many fluid inclusions proximal (< 1 cm) to sulfide grains appear to enclose a sulfide phase. 

Numerous, small (<5 pm) apatite grains were identified within the zoisite and clinozoisite 

that surrounds sulfide grains.

Analyses o f  the fluid inclusions was problematic. The temperature of 

homogenization for the inclusions away from sulfide mineralization was above the 

maximum temperature (>700^C) o f the analytical methods used. Within the sulfide-bearing 

samples the iron oxides derived from weathering and the murky nature o f the 

ciinozoisite/epidote made analyses difficult to obtain, and in most cases, impossible. The 

small size o f most inclusions further inhibited analyses. In view o f the difficulties, only the 

most reliable 45 analyses are plotted below (Fig. 37). Due to the difficulties, caution is 

recommended for interpretation from the data.

The identification o f several fluid inclusions which include cubic crystals (NaCl?) is 

indicative o f a highly saline fluid that contained 26 wt % NaCl, CaCb, or KCl. This, along 

with the albitic rims surrounding the sulfide grains and the alteration o f the pyroxenes 

support the presence o f a Na-rich hydrothermal fluid. The large number and small (<5 pm) 

size o f the inclusions is generally interpreted as the result o f rapid cooling. Rapid cooling is.
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however, in conflict with the obvious slow cooling history o f the Stillwater Complex. This 

interpretation is either erroneous or the inclusions formed from a post-magmatic 

hydrothermal fluid emplaced after the complex cooled significantly. The temperature of 

homogenization data concentrates into five groups with average temperatures of: 348, 435, 

470, 570, and >700°C. Interestingly, the temperature o f homogenization increases away from 

the sulfide grains (Fig. 37). From this data, it appears that the hydrothermal fluid near the 

sulfide grains cooled last. Caution should be used in any interpretation due to the extreme 

difficulty in obtaining the data.

F igure  37. Fluid inclusion temperature o f homogenization 
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C H A PT ER  FIV E: PLA TIN U M  G RO U P ELEM EN T D ISTRIBU TIO N

I. PGE Distribution in the Stillwater Complex

The Picket Pin deposit is typical o f the other PGE-bearing zones within the Stillwater 

Complex with a thickness that varies from centimeters to a meter. The PGEs occur in 

discordant sulfide pods and lenses that lead up-section to the strata-bound horizon ("reef). 

Pyrrhotite, pentlandite, chalcopyrite, and millerite are the main sulfide minerals within the 

deposit. Up to 20 different platinum group minerals have been identified; most important are 

moncheite, braggite, vysotskite, cooperite, sperrylite, and ferroplatinum (Stumpfl, 1985) (Fig. 

38). The maximum values o f  total PGE in the J-M reef are in excess o f 15 oz/ton (Barnes 

and Naldrett, 1985). Exploration and assay values to date suggest that the Picket Pin deposit 

averages a low-grade (0.15 oz/ton) PGE deposit (Corkery, 2001).

F igure 38. STILLWATER ORE MINERALOGY

Braggite (Pt, Pd, Ni) S
Cooperite (Pt, Pd, Ni) S
Isoferroplatinum Pt Fes
Moncheite (Pt, Pd) (Te, Bi)s
Sperrylite PtAsz
Vysotskite (Pd, Ni, Pt) S
* Approximately 80% o f Pd in the JM Reef is hosted as solid-solution or 
submicroscopic inclusions in:
Pentlandite (Fe, Ni)g Sg

The sulfide minerals occupy intercumulus spaces, on grain boundaries, and in 

complex intergrowths with hydrous silicate minerals (Cabri, 1981). Sulfide minerals also 

crosscut olivine grains within a rim o f serpentine which suggest a deposition, or redeposition 

temperature o f 500° C. Boudreau and McCallum (1985) found that the PGEs occur in
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pyroxene-poor, quartz-rich zones, whereas the PGE-barren zones are marked by pyroxene- 

rich zones that contain magnetite. This zonation pattern may suggest a redox interface 

between the oxidized, magnetite-bearing rocks and the reduced, sulfide-bearing rocks. There 

is a strong positive correlation between the distribution o f  sulfide minerals and the amount of 

the hydrous silicates amphibole, micas, talc, and serpentine (Barnes and Naldrett, 1985). 

Some authors have suggested that both the sulfide and hydrous minerals precipitated from a 

fluid phase (Boudreau and McCallum, 1985, Bames and Naldrett, 1985). Upward migration 

o f Cl-rich fluids is supported by evidence presented by Boudreau and McCallum (1985).

They describe transgressive sulfide pipes with silicate assemblages enriched in incompatible 

elements and in hydrous minerals below the Picket Pin deposit supporting upward migration 

of volatiles. Secondly, they describe pegmatitic rocks with 60% olivine, chlorapatite, 

graphite, and Cl-rich biotite that occur below the JM Reef.

II. PGE Distribution in other deposits

High concentrations o f PGE’s have been found in both marine and non-marine 

sedimentary deposits. The Kupferschiefer-type deposits have recently described to contain 

high concentrations o f PGEs, with a maximum value o f 200 ppm Pt. Kucha (1981) was the 

first to survey the mineralogy of PGEs within the Polish Kupferschiefer. Above-average 

concentrations o f PGE, Au, and Ag have been mapped with a stratigraphie thickness of 1 

meter, and a lateral extent o f 1500 meters. The discrete PGEs occur in the contact zone 

between a white sandstone (oxidizing), and a black shale (reducing). The Kupferschiefer 

mineralization is considered to be entirely a hydrogeological process acting at redox 

interfaces, with the organic material acting as a catalyst. The organic material within the 

shale may supply an excess o f carbon, therefore keeping the migrating fluids under a
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reducing condition. When the fluids reach the white (oxidized) sandstone, the fluids oxidize 

and the PGEs precipitate out (Kucha, 1981). Conversely, the fluids may have migrated 

within the oxidized sandstone and precipitated when in contact with the reduced shale. This 

evidence further supports the intimacy between a redox reaction and PGE transport and 

deposition.

The distribution o f PGEs in marine sediments has only recently been investigated 

(Stumpfl, 1985). The concentration o f PGEs in ferromanganese nodules and crusts have 

average values o f  293 ppb Pt, and 0.68 ppb Pd (Hodge et al., 1985). The relative enrichment 

of platinum over palladium can be ascribed to more intensive complexing with chlorine and 

bromine (Boudreau and McCallum, 1985). In seawater, platinum and palladium are present 

as doubly negative tetrachloro anions (Hodge et al., 1985), and iridium as iridium 

hexafluoride (Zoller et al., 1983) which are then incorporated into the hydrous minerals o f 

manganese nodules (Hodge et al., 1985).

The New Rambler Pt-Cu-Au deposit, Wyoming, has been interpreted as an 

intermediate-temperature (200-700° C) deposit with remobilization of PGEs by hydrothermal 

fluids (McCallum et al., 1976, Nyman et al., 1990). Evidence that suggests a hydrothermal 

origin includes: 1 ) ore textures that suggest replacement by a hydrothermal process, 2 ) 

association o f PGEs with hydrothermal alteration assemblages (chlorite + epidote + 

clinozoisite + albite + magnetite), 3) higher concentrations o f soluble PGEs (Pt and Pd) 

relative to the less soluble PGE’s (Ru, Rh, Os, and Ir), 4) enrichment o f other elements (Hi, 

Cu, Au, and Ag) in the altered host-rock (Nyman et al., 1990). Fluid inclusions from this 

deposit have homogenization temperatures that range from 335 and 365°C, which further 

support a hydrothermal origin (Nyman et al., 1990). The composition of the fluid inclusions 

in the New Rambler are similar to inclusions found in the Bushveld Complex. The gross
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compositional similarities are; 1 ) pure condensed gaseous inclusions (CO 2  and N 2 ) and 2 ) 

aqueous brines composed o f NaCl, CaCb and ± M gCb (Nyman et al. 1990). These 

similarities may suggest a common origin between PGE deposits. The Picket Pin deposit 

parallels these similarities.

Although the above environments are very different (Bushveld, New Rambler, 

Kupferschiefer), they share common traits and associations. In the above examples, the 

PGEs are transported, or at least affiliated with the halides. In the Picket Pin, the PGEs are 

accompanied by the halide minerals chlorapatite and clinoamphibole (fluorine). Similar 

halides are found in all the above examples o f different PGE deposits. Furthermore, PGE 

deposition in both the Picket Pin and the Kupferschiefer is associated with redox interfaces. 

The Kupferschiefer PGE deposition occurs between a reduced black shale and an oxidized 

white sandstone. The Picket Pin deposit PGE deposition occurs between sulfide-rich 

(reduced) zones and magnetite-rich (oxidized) zones.

The above evidence suggests that it is possible to view transport, formation and 

mineralization o f the strata-bound, reef type, PGE deposits o f layered mafic complexes as a 

result o f complex evolution o f melt-fluid systems (Ballhaus et al., 1985). The progression of 

melt-fluid evolution leading to the formation o f reef type PGE deposits may be as follows: 1) 

Mantle melting +/- contamination of C and S, 2) Differentiation of silicate melt, 3) Melt/fluid 

segregation, formation o f pegmatites, strongly reducing conditions with the formation of 

graphite, sulfide minerals, and PGEs, 4) Injection o f a new pulse o f magma, 5) Mingling of 

the reduced fluids and oxidizing new magma, 6 ) Precipitation o f sulfide minerals and PGEs 

at redox interface, 7) Low temperature (500*^C ) alteration, local remobilization and 

deposition o f PGEs (Ballhaus et al., 1985).
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III. Experimental PGE Fractionation and Solubility

Experimental and theoretical PGE fractionation and solubility should be compared 

to the alteration mineral assemblage within natural systems. The alteration assemblage 

should yield important information on the fluids involved in the transport and deposition of 

the PGE-bearing minerals. The alteration assemblage in this study has been divided into 

high-grade and low-grade. High-grade (>3 ppm PGE) alteration assemblages are 

clinozoisite»quartz>albite>epidote with numerous inclusions of apatite within the 

clinozoisite. Low-grade (<3 ppm PGE) alteration assemblages are quartz>albite>> 

clinozoisite>epidote. From the evidence above, the fluid responsible for the alteration 

assemblage can be inferred to contain: (OH), Na, Cl, Fe^^, and SiO]. Metallic elements in 

the oxide/sulfide phases that may have been transported in the hydrothermal fluid are: Ti, 

F e ^ ,  F e^ , Cu, Ni, PGE, S, O, and As.

There remains a lack o f published experimental data on the hydrothermal solubilities 

o f the PGEs. Most solubility data has been extrapolated from experiments that range in 

temperatures from 25 to 300°C (Mountain and Wood, 1988; Wood, 1987; Gammons and 

Bloom, 1992; Gammons et al., 1992; Fleet et al., 1999). Experimental and theoretical 

(thermodynamic) data strongly disagree as to which model o f PGE transport each author 

favors. The natural systems alteration assemblages which co-exist with the PGE-bearing 

minerals were not considered by the authors in interpreting their experimental data. There 

exists one example o f a natural system (McKibben et al., 1990), and one comparison 

between theoretical data and a natural system (Mathez, 1989). The evedence from natural 

systems is discounted by numerous ‘experimental’ authors, and the experimental work is not 

addressed by Mathez.
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McKibben et al. (1990) studied the solubility and transport of PGEs and Au in a 

geothermal well in the Salton Sea geothermal field. They found the Salton Sea brines could 

transport up to 1 ppb o f PGEs and Au at temperatures near 300°C at a near-neutral pH (5 .4 ), 

and with an oxidation state near aqueous SO4-H2S equilibrium. They suggest the lack of 

PGE enrichment in downhole scale deposits is consistent with transport o f these elements 

mainly as chloride complexes. McKibben et al. (1990) found a four to six orders of 

magnitude increase in PGE concentrations compared with predicted by published 

experimental models. They conclude that a saline, relatively oxidized hydrothermal fluids 

can transport much greater amounts o f PGEs than is currently believed. Minéralogie and 

geochemical evidence from the current study support this conclusion where PGE enrichment 

co-exists with saline (albite), oxidized (epidote), hydrothermal fluids (zoisite, clinozoisite, 

chlorite).

Mathez (1989) compares oxygen fugacity to temperature for drill cores from the 

Makaopuhi lava lake, MORB, QFM, and Fe-Ti oxides from a drill core of MORB (Fig. 39). 

The data from Makaopuhi lava lake displays a rapid increase in oxygen fugacity as the 

magma cooled from between 750 to 700®C. The increase in oxygen fugacity remains high 

until approximately 570°C then reduces to a level near the QFM buffer below 500°C. 

Although the author makes a significant conclusion, that the increase in oxidation is due to 

the influx o f meteoric waters, he ignores this process in the transport o f the PGEs. It appears 

that the experimental and theoretical research on the solubility and transport o f the PGEs is 

biased towards high-temperature transport o f the PGE’s to the point o f ignoring data from 

natural systems.

Theoretical work by Sassani and Shock (1990) acknowledges the constraints o f the 

co-existing mineral assemblages. They suggest that the data from mineralogy, mineral
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an influx o f meteoric waters can greatly increase the oxidation state o f a melt. The PGEs 
migrate most effectively in a saline, oxidized fluid at temperatures between 400 and 600°C.

chemistry, and fluid inclusions correspond to temperatures o f 500-800C, oxidation value of 

the QFM buffer, pH in the range o f 4-6, and total chloride concentrations o f up to 10 m. 

Under these conditions their calculations indicate that Pd solubility could reach 0.1 ppm and 

would be sensitive to changes in pH and oxidation. Their calculations further suggest that 

even at modest NaCl concentrations, chloride complexes are the predominate Pd^^ species.

These data fit well with the observed minéralogie, geochemical, and temperature 

estimates o f the current study. This evidence suggests that the PGEs were transported in an 

oxidized hydrothermal fluid at a near-neutral pH between 500 and 550°C. A rapid change in
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oxidation state to a more reduced condition; the PGEs were no longer soluble and 

precipitated. This rapid change in oxidation state may be the result o f the hydrothermal fluid 

encountering a sulfide horizon.
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CHAPTER SIX: DISCUSSION

I. Magmatic Origin o f PG E's

The following is a review o f modem concepts and experimental results for a 

magmatic-sulfide melt as presented by Naldrett (1989). The main hypothesis o f the 

formation o f magmatic sulfide minerals is that the sulfide melt segregates from the silicate 

melt to form an immiscible sulfide/oxide melt that becomes concentrated in a particular 

location. This sulfide melt is thought to settle gravitationaly since sulfide liquid specific 

gravity is >4 and the silicate magma <3. Partitioning o f transition group VII metals Fe, Co, 

Ni, Pd, Pt, Rh, Ru, Ir, and Os with Cu, and Au into the sulfide/oxide melt may occur. Sulfide 

droplets that segregate should be in equilibrium with the melt where the sulfide droplet 

composition is controlled by the magma composition. If at equilibrium, the silicate and 

sulfide melt should have the same Fe2 /Fe 3  ratio. Natural magmas have limited range of FeO 

content and oxidation state. If  the sulfide melt is at equilibrium it should exhibit the same 

restricted range o f FeO content and oxidation state. Fudali (1965) suggests that the /O 2  of 

mantle sources for magmatic sulfide melts are in the FMQ buffer (10‘* /O 2  at 1200®C), then 

magnetite should precipitate first. In contrast, Cermer (1987) notes that the oxygen content 

depends on the Fe/Ni+Cu ratio. The presence o f Ni+Cu may lower the oxygen so that it 

falls in the pyrrhotite field instead o f the magnetite field.

For the Fe-S-O system, the eutectic temperature o f sulfide melt is assumed to depend 

on Fe/S ratio where the Fe-rich eutectic is 988® C, and the sulfur-rich eutectic is 1083° C. 

Therefore the sulfide melt should start to crystallize between 1160 and 1120° C based on 

thermodynamic data. The model suggests that this crystal/melt mixture would be able to 

migrate, and therefore this temperature is considered a minimum temperature for 

mobilization in a partly liquid state. This model is based on a 60.5 wt. % Fe system, which is
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predicted to have a solidus temperature o f between 1010 and 1050 °C. Experimental work 

suggests that the addition o f up to 20% Ni has no measurable effect on the solidus 

temperature. However, the addition o f 2 wt % Cu lowers the solidus by 20® C. The addition 

of more than 2 wt % Cu would have a greater effect and would distinctly lower the solidus 

temperature. The amount o f sulfur within a natural melt is problematic and therefore crustal 

sulfur is extremely important in the magmatic sulfide model. However, isotopic research has 

shown that all the worlds major Ni-Cu deposits, the Bushveld, and possibly the Stillwater 

Complex exhibit a variety o f crustal contamination o f sulfur (Naldrett, 1989).

With the volatiles, incompatible elements and excess SiO: would also segregate from 

a mafic silicate melt and perhaps mix with the sulfide/oxide melt. No research has 

attempted to measure the distribution or amounts o f these volatiles and elements or their 

effects on the sulfide/oxide melt. The volatile content o f a mafic melt is considered too low 

to have any significant effect on the system as a whole. It seems most likely that these 

elements would have an effect on the oxidation state, solidus temperature, and composition 

o f the sulfide/oxide melt. Further, the effect o f buoyancy on the sulfide melt due to volatile 

content has never been addressed. Perhaps these volatiles and elements act as a catalyst to 

partition and scavenge the transition metals and cause the melt to reach sulfur-saturation, 

which may result in the establishment o f an immiscible sulfide/oxide melt.

The magmatic sulfide theory as it pertains to the Stillwater Complex has been 

proposed by many authors. Bames and Naldrett (1986) suggest that a mixing o f two 

different melts occurred to form the JM Reef, the presently exploited PGE-bearing sulfide 

interval. The first magma, A-type, is on the plagioclase solidus and near sulfide saturation, is 

mixed turbulently with the second more-primitive melt on the olivine + chromite solidus 

(Fig. 40). The sulfide droplets would be mixed turbulently and ultimately achieve the high
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Figure 40. Magmatic sulfide model as 
proposed by Naldrett (1989). A 
primitive melt (BO/B1 ) is injected 
between a norite (N) and anorthosite 
(A 1-2) layer, mixes turbulently (C) 
scavenging PGEs, downspouts (d) to a 
neutral buoyancy to form a layer 
('reef) o f PGE-enriched sulfides.
From Naldrett (1989).

PGE content by scavenging the PGE during this turbulent mixing. The evidence for this 

mixing is: the resorbed, reverse zoned plagioclase o f the probable A-type melt; the 

ameboidal olivine suggested to have formed by rapid growth from the primitive trapped melt; 

and the resorbed olivine jacketed with bronzite from further impulses o f primitive melt. 

Sulfide saturation was achieved from the most persistent pulse o f primitive melt that formed 

the JM Reef. In order to accommodate the large quantity o f sulfide in this pulse, they 

suggest that any sulfide associated with other pulses was resorbed into the melt until sulfur 

saturation (Naldrett, 1989). However, there are numerous, albeit minor, strata-bound sulfide 

occurrences below the JM Reef (Corkery, 2001, 2002). The sulfide occurrences within the 

Stillwater Complex are located a meter above, below or straddling a major change in modal
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abundance o f  mafic minerals. This may suggest a reaction involving a partially solidified 

melt on the plagioclase solidus, influx of a primitive mafic melt, a release o f volatiles, and 

subsequent precipitation o f sulfide minerals.

The first part o f the Naldrett (1989) model is applicable to the Picket Pin deposit.

AN II displays resorption textures and reverse zoning in the plagioclase grains. The high 

Mg-number and high An content o f the intercumulate mafic minerals and plagioclase grains 

suggests mingling o f a more primitive melt with a more-fractionated melt. Grains o f apatite 

and baddeleyite (ZrO]), and the oikocrystic nature o f the intercumulate mafic minerals may 

suggest that volatiles including H 2 O were a significant part o f sulfide formation. Further, the 

sulfide minerals occur in the most fractionated area o f the melt, i.e., both K and Na increase 

significantly local to sulfide mineralization. This suggests that if the sulfide minerals were 

magmatic, they remained mobile and did not precipitate until the melt was almost completely 

crystallized. Alternatively, the incompatible elements may have been transported by a later 

hydrothermal event. This may negate the requirment o f the hypothesis that an injection of a 

more primitive melt to trigger sulfide saturation .

Other models for the formation o f the PGE-enriched sulfide horizons are divided into 

late-stage magmatic and hydrothermal-fluid theories. It seems the difference in 

nomenclature is less important, because these models, as with all models o f formation, are 

synchronous with magmatic crystallization, sulfide formation, and PGE-enrichment, and 

ultimately involve a magmatic origin. To minimize the confusing terminology, all models 

that involve late-stage magmatic fluids will be called such, whereas the term hydrothermal 

fluids is here reserved for post-magmatic fluids (Fig.41).
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II. Late-Stage Magmatic Origin o f PGEs

Models proposed by Vermaak (1976), von Gruenewaldt (1979), Ballhaus and 

Stumpfl (1985), and Boudreau (1988) all involve late-stage fluids rich in Cl migrating 

upwards to scavenge and deposit the PGEs at sulfide horizons. The models differ in where 

the fluid was derived. The early models suggest that the Cl-enriched fluids were derived 

from the intercumulate melt. Alternatively Boudreau (1988) suggests that the PGE-enriched 

sulfide minerals were derived from migrating fluids moving upwards through the cumulate 

pile. All o f these models are synchronous with magmatic crystallization and sulfide 

precipitation.

The model suggested by Ballhaus and Stumpfl (1985), is summarized as a 

progression o f melt-fluid evolution leading to the formation o f reef-type PGE deposits as 

follows: 1) Mantle melting +/- contamination by C and S, 2) Differentiation of silicate melt, 

3) Melt/fluid segregation, formation o f pegmatites, strongly reducing conditions with the 

formation o f graphite, sulfide minerals, and PGEs, 4) Injection o f a new pulse of magma, 5) 

Mingling o f the reduced fluids and oxidizing new magma, 6 ) Precipitation of sulfide 

minerals and PGEs at redox interface, 7) Low temperature (200®C ) alteration, local 

remobilization and deposition o f PGEs (Ballhaus et al., 1985).

The model favored by Boudreau (1988) can be summarized as follows: at some point 

in the crystallization o f the cumulus pile, a lithologie change acted as a trap for the upwardly 

migrating, volatile-rich fluids. Partial re-melting occurred after some amount o f volatile-rich 

fluid was trapped. The cumulus plagioclase dissolved to produce reversely zoned, and 

embayed grains. This fluid also led to the destruction o f pyroxene which produced olivine,
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chromite, and local ilmenite/magnetite by the incomplete equation:

(Mg,Fe)2 Si2 0 6  + H 2 O (Mg,Fe ) 2  Si0 4  + SiOs.
orthopyroxene fluid olivine quartz

This equation suggests a transfer o f mafic components toward the fluid-rich regions and the 

plagioclase components outward. This transfer is suggested to create the characteristic 

olivine-rich rock/anorthosite association. The thickness o f this zone increases with the 

increase o f fluids. The result is suggested to have formed a stratigraphie horizon of 

pegmatitic rocks enriched in sulfide minerals and chromite.

However, the mafic components did not migrate to the fluid-rich zones, nor the 

plagioclase away from the fluid-rich zones as implied by this model. The opposite is found 

to be true in the current study. The mafic components are not spatially related to the fluid- 

rich (Na, K, REE, and PGE enriched zone), whereas the plagioclase-rich zones are. The Cr 

content is highest within the hydrothermally altered zones which include the altered 

pyroxene zones. If  the Cr were derived from the alteration o f the pyroxenes and migrated 

into the sulfide-bearing zones as suggested by Boudreau, then the altered pyroxene zones 

would be expected to have the lowest concentration o f Cr, which they do not. No textural or 

geochemical evidence supports the sequence o f pyroxene altered to form olivine. The 

pyroxene-rich zones that contain olivine, display no signs o f alteration. As mentioned above, 

the pyroxenes are clearly altered to albite and chlorite. They are enriched in incompatible 

elements and Cr. Further, the pyroxenes are clearly being replaced by PGE-bearing sulfide 

minerals (see also Fig. 14 ).
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II. Remobilization Origin o f PGE’s

Although the remobilization hypothesis begs the question; Remobilized from where?, 

significant isotopic and textural evidence indicates that the PGE-bearing sulfide minerals 

have been remobilized (McCallum et al., 1999, Zientek and Ripley, 1990). It has been 

suggested that sulfur in the sulfide minerals within the Stillwater Complex is dominantly 

crustal ly derived. Certainly the emplacement o f the Stillwater Complex involved 

considerable incorporation o f crustal material into the melt. McCallum et al., (1999) show 

that the sulfide minerals contain a radiogenic Pb isotopic signature whereas the silicate 

minerals contain a primitive Pb isotopic signature. Therefore, the sulfide minerals are not in 

Pb isotopic equilibrium with the coexisting plagioclase that crystallized from the parental 

Stillwater magmas. Moreover, the textural evidence that the sulfide grains contain inclusions 

o f hydrous minerals is similar to the textural evidence found in this study. This strongly 

suggests sulfide recrystallization after formation o f the hydrous minerals. I conclude that the 

sulfide minerals are partly or totally precipitated or recrystallized by hydrothermal fluids 

after emplacement o f the Stillwater Complex.

IV. Interpretation

Mineralogical and textural evidence presented here suggest three main events for the 

formation o f the Picket Pin PGE deposit. These three events in chronological order these 

are: 1 ) the formation o f the large, framework plagioclase grains, 2 ) crystallization of the 

intercumulate pyroxenes and plagioclase grains, 3) infiltration o f hydrothermal fluids, 

alteration, and subsequent precipitation o f the PGE-bearing sulfide minerals.
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Origin o f the large, framework plagioclase

The coarse grain size o f the plagioclase suggests one or more conditions: 1) slow 

cooling, 2 ) the presence o f volatile to slow nucléation, 3 ) an increase in pressure, and 4 ) a 

mixing o f a more primitive melt which may result in reversely zoned adcumulate growth to 

the plagioclase grains. Slow cooling may have significant effect on the grain size. 

Considering the location o f An II, roughly interpreted as located in the middle o f the 

complex, heat loss would be at a minimum. The melt would cross the solidus curve at a very 

slow rate. Further, the melt would spend extended time in the melt+crystals field which may 

slow crystallization. The expected compositional zoning pattern may be broad and diffuse, 

which is a commonly observed feature o f these grains. This assumes that no other melt was 

being injected above the position o f An II to increase the pressure. Combining slow cooling 

and a gradual increase in pressure would increase the residence time within the melt+crystals 

field and further slow crystallization. If the overlying pressure increased drastically, such as 

by thrusting, any grain that had formed could be partially or totally resorbed into the melt. 

The zoning pattern would be expected to show single or multiple resorption textures within a 

single grain. Excluding the prominent resorption textures on the grain boundaries, unusual 

textures do exist within the grains and may record such an event. These large, framework 

plagioclase grains make up approximately 50 percent o f the rocks throughout An II.

Alternatively, resorption textures and reverse zoning in the large plagioclase grains 

that may indicate a mixing and mingling with a more primitive melt. Microprobe evidence 

presented in the present study suggests that the reversely zoned rims o f the large plagioclase 

compositionally match the composition o f the small, intercumulate plagioclase grain cores. 

Both the large and small plagioclase grains have distinct compositional trends implying they 

were derived from two separate melts. The large plagioclase grains may have formed
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elsewhere in the chamber (along the walls or the roof) and may have been emplaced along 

the floor o f the chamber by a physical mechanism. The Stillwater Complex exhibits 

numerous sedimentary features suggestive o f turbulent flows, cross-bedding, slump 

structures, and cut and fill structures. The large plagioclase grains o f AN II may have been 

deposited in a fashion similar to that proposed by Haskin and Salpas (1992) and Loforski and 

Arcturus (1990). With this turbulent emplacement o f the large plagioclase grains, the 

intercumulate melt was displaced by a more-primitive melt. The obvious lineation of the 

overlying medium-grained anorthosite may have formed from a similar process.

Crvstallization o f the intercumulate minerals

The intercum ulate plagioclase grains exhibit a  compositional trend from more- 

primitive in the high-pyroxene group (15-20%) to strongly fractionated in the low- 

pyroxene group (0-5% ). This trend m ay suggest that the intercumulate melt fractionated 

outward from the high-pyroxene zones toward the low-pyroxene and sulfide-bearing 

zones. The pyroxene compositional trend further supports this fractionation trend. In the 

m ost-altered zones the pyroxene is altered to Fe-rich chlorite and albite. The high-Fe 

content o f the chlorite may sugget that the original pyroxene was extremely enriched in Fe. 

Such an enrichment would reflect a compositional change within the melt. If this were 

strictly due to compositional change in the melt, then this would support the hypothesis that 

the melt was trapped within the plagioclase framework and did not communicate with the 

main body o f melt within the Stillwater Complex chamber.

Perhaps more likely, this Fe-enrichment may be caused by Fe-rich hydrothermal 

fluids that altered the clinopyroxenes. Further support o f this hypothesis is the high whole- 

rock Fe content within the clinozoisite patches (up to 2 wt % Fe), which are hydroxide

83



minerals o f unquestionably hydrothermal origin. Clinozoisite contains very little Fe, 

therefore the hydrothermal fluid that formed the clinozoisite was significantly enriched in Fe 

(2 wt % Fe for the clinozoisite samples compared to a background value o f > 1 wt % Fe).

This data have strong implications on the origin o f the sulfide-bearing horizons. The data 

support either a remobilization o f the sulfide minerals or that the sulfide minerals are strictly 

hydrothermal. This data in conjunction with the microprobe data for the plagioclase 

grains suggest that the sulfide-bearing zones were the last to crystallize and were enriched 

in volatiles. A lternatively, a hydrothermal fluid influx would enrich the earlier sulfide- 

bearing zones w ith Na, K, incom patible trace elements, and volatiles. M icroprobe data 

on the apparently m agm atic intercumulate plagioclase grains (An >74 ) within the sulfide- 

bearing zones supports that at least some o f  the incom patible-element enrichment may 

have been derived from  the m elt as opposed to complete enrichment by a hydrothermal 

fluid.

Primary and Secondary Sulfide Emplacement

No direct evidence o f primary (magmatic) sulfide emplacement exists in the study 

area. The PGE-bearing sulfide minerals are associated with the incompatible major and trace 

elements, and occur in the most-fractionated area of the melt, i.e., both K and Na increase 

significantly local to sulfide mineralization. This suggests that if  the sulfide minerals were 

magmatic (primary), they remained fluid or mobile and did not precipitate until the melt was 

almost completely crystallized. This appears to conflict with the hypothesis that an injection 

o f a more primitive melt triggered sulfide saturation which would place the sulfide minerals 

and PGE s in a zone o f  more primitive composition. Alternatively, the incompatible 

elements may have been transported by a later hydrothermal event. In contrast, the
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intercumulate plagioclase grain cores from the 0 -5 % pyroxene group are relatively sodic 

suggesting they precipitated from a fractionated melt. This relationship between the sulfide 

minerals, PGEs and incompatible elements supports a late-stage fluid or hydrothermal 

hypothesis. Alternatively, the PGE-bearing sulfide minerals may have been remobilized 

hydrothermally to be reprecipitated in their present location.

The lack o f a good spatial correlation between the PGEs and the sulfide phases 

supports the hypothesis that the PGEs may have migrated in a hydrothermal event. Thus, 

the sulfide minerals and the PGEs may represent two different events. If  the fluids 

responsible for the sulfide phases migrated with the PGEs, then better correlations between 

these elements would be expected. The lack of correlations also argues against the aspect of 

the magmatic emplacement hypothesis that proposes that the PGEs were scavenged by 

sulfide droplets migrating through the melt.

V. Proposed Model

New data collected for the present study leads to the following interpretations of the 

timing o f mineralization and ore-forming conditions o f the Picket Pin deposit (Fig. 42). 

Sulfide mineralization in it’s present form appears to have been post-magmatic as suggested 

by the pyroxene alteration halo. Mineralization preferentially occurred where the pyroxene 

content was below 5  percent and where the large- to small-plagioclase grain size ratio was 

greatest and more coarsely grained. This may be attributed to more numerous grain-to-grain 

contacts creating greater surface area for alteration-fluid contact. Grains o f apatite and 

baddeleyite, and the oikocrystic nature o f the intercumulate mafic minerals may suggest 

volatiles including H 2 O were an important part o f sulfide formation. The relationship 

between Pt, Pd and pyroxene mode confirm the preference o f the PGEs to occur within the
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pyroxene-poor regions o f AN II. Therefore, the PGEs are also associated with the 

incompatible major and trace elements.

As mentioned above, this evidence is in contrast to the magmatic model which 

should place the sulfide minerals and PGEs in a zone o f more primitive composition.

Sulfide mineralization is also accompanied by chlorite, zoisite, clinozoisite, and 

epidote, which can be used to constrain the temperature and oxidation state o f the ore- 

bearing fluid. The intimate relationship between clinozoisite and the sulfide minerals may 

suggest a precipitation temperature for the sulfide minerals between 500-550®C using the 

quartz-c 1 inozoisite system o f Holloway (1964). The relationship o f clinozoisite with the 

sulfide minerals, and epidote with the oxides, suggests precipitation o f the PGE-sulfide 

minerals requires a change in oxidation state. It is likely that the PGEs, Fe, and Cu migrated 

in an oxidized hydrothermal fluid. This interpretation is supported by the experimental 

results o f Sassani and Shock (1990). The lack o f a clear spatial association between the 

PGEs and the sulfide phases supports the hypothesis that the PGEs migrated in a 

hydrothermal event. When this fluid came into contact with a primary sulfide horizon, the 

fluid became reduced and precipitated the PGE-bearing sulfide minerals. This is further 

supported by the close relationship between PGE-sulfide minerals and chalcopyrite, which 

occur textural ly on grain boundaries o f pyrrhotite and as isolated grains within the alteration 

mineralogy.

Information presented here suggests that the PGEs can be transported in a oxidized 

saline hydrothermal fluid with a temperature range o f 500-550®C. They precipitated by 

reduction on coming into contact with the primary sulfide minerals.

86



00

□  o
I—[Plagioclase 
I—.Growth

Interface

Turbulent Mixing

Cumulates

Figure 42. Proposed model. P arti. Accumulation of plagioclase 
grains on chamber sides and roof.

Turbulent Mixing

Cumulates

Part 2. Physical emplacement of plagioclase grains (Turbitity
Flow?).



Turnulent Mixing

I— I

nnnned MeK

Cumulates

Part 3. Physical emplacement of plagioclase traps a more-primitive 
melt in the intercumulate spaces.

oo
00

n a Ûiiiiori
0

m

o O °
Am laige, ‘Frameworic* plagioclase (An 78) mixing with a 

more primative trapped melt (An ~84).

W Q Êm ^:

Ba Cnrstallization of inteicumnlate olivine (Mg# 70) *  

plagioclase (An »83). Adcumulate grewth on 
■Framewoik* plagioclase creating reveisely zoned grains.

Migration of Hicompatihe elements

C > Tkapped intercumulate melt moves into the bronzite *  

plagioclase field. The brenztte display a modest Mg 
enrichment (Mg#78), whereas the An content of the 
plagioclase decreases (An 80). ‘Frameworic* 
plagioclase grains continue to  he reversely zoned.

Part 3A-G. Crystallization sequence of trapped intercumulate melt (see above). 
Cumulate plagioclase no longer in equilibrium, resulting in resorption and 
reverse-zoned adcumulate growth. Release of volatiles from trapped melt and 
resorbed plagioclase.



Migration of inoomgntibie eiemcnts

intoraumuiate meit moves into the angite + giagiociase 
fieid. The comgosition of the angite grains is masked hy 
iater Fe-rich aKeration. The inteicumulate giagioclase 
grains have a comgosition of An 76̂  whiie the 
Frameworif giagiociase grains continue to he rasoihed.

Concentration of the incomgatihie elements

The remainder of the intereumuiate melt moves into the 
giagiociase + angite fieid. The intereumuiate giagiociase 
grains have a comgosition of An 75̂  and are enriched in 
the incomgatihie elements: Na, K, P, Cr, and H2&

Post-ciystaiiization hydretheimai fluid enriched in Na, Ci, P, Fe, Cu, 
PGEs, and H2O migrates threugh region vrith the least amount of
intereumuiate gyrexene (G>5% greng).

0 0



Piproxene Group:
1S-20% 5-10%

0-5% 10-15%

D

High An content 
Resoihed Pianiociase

Concentration of iacompatable element 
Low An content

Proposed origin of variable pyroxene content (pyroxene groups)

8



□  a
a

o o  
o  □

o

□
Turbulent Mixing

primitive meit o

W w,^_sulfiiles

àinterface

Cumulates

Part 4. Volatiles migrate upwards and react with primitive melt 
resulting in sulfur saturation, and subsequent precipitation of 
pyrrhotite and pentlandite.

Turbulent Mixing

primitive melt

a

o

0

sulflUe horizon

■Cumulates

Part 5. Formation of sulfide horizon. Sulfides may sink into lower 
cumulates to seek neutral density.



Turbulent Mixing 

primitive melt
a

CD

Interface

=evei1ying cumulates

sumde honzon

PGE-Beanng Hydrotheimal Fluids

Cumulates

Part 6. Post-crystallization migration of oxidized hydrothermal fluids. These fluids scavenge and 
transport Au, Ag, and PGEs. The PGE’s were then deposited and concentrated when the fluids encountered 
the reduced environment of the sulfide horizon.

K>



REFERENCES

Alvarez, L.W., Alvarez, W., Asaro, P., Michel, H.W., 1980. Extraterrestrial cause for the Cretateous- 
Tertiary extinction. Science, 208: 1095.

Ballhaus, C., Stumpfl, E.F., 1986. Fluid inclusions in Merensky and bastard reefs, Western BushveId 
complex. Economie Geology, 4th international platinum symposium.

Ballhaus, G., Stumpfl, E.F.,1985. Occurrence and petrological significance o f graphite in the Upper Critical 
Zone, western Bushveld Complex, South Africa. Earth and Planetary Science Letters, 74: 58-68.

Barnes, S.J., Naldrett, A.J., 1985. Geochemistry o f the J-M reef o f the Stillwater Complex, Minneapolis 
Adit. Economic Geology, 80: 627-645.

Barrie, C.T., 1996, Magmatic Platinum-Group elements; in Geology o f Canadian Mineral Deposit Types
(Eckstrand, O.R., Sinclair, W.D., and Thorpe, R.I., eds); Geologic survey o f Canada, no. 8, p. 605- 
614.

Blackerby, B.A., 1968, Convolute zoning o f plagioclase phenocrysts in Miocene volcanics from the western 
Santa Monica Mountains, California, The American Mineralogist, v. 53, p. 954-962.

Boudreau, A.E., Stewart, M.A., and Spivack, A.J., 1997, Stable Cl isotopes and origin of high-Cl magmas 
of the Stillwater Complex, Montana, Geology, v. 9, p. 791-794.

Boudreau, A.E., and McCallum, S., 1992, Concentration o f Platinum-group elements by magmatic fluids in 
layered intrusions, Economic Geology, v. 87, p. 1830-1848.

Boudreau, A.E., 1988, Investigations o f the Stillwater Complex. IV. The role o f volatiles in the petrogenesis 
o f the JM Reef, Minneapolis Adit section, Canadian Mineralogist, v. 26, p. 193-208.

Boudreau, A.E., 1986, Platinum-Group metals in the Stillwater Complex, Montna, Ph.D. dissertation. 
University o f Washington.

Boudreau, A.E., McCallum, I S., 1985. Evidence for mineral reactions and metasomatism by silica-
undersaturated Cl-rich fluids in the main pt-pd zone, Stillwater Complex, Montana. Canadian 
Mineralogist, 23: 296.

Boudreau, A.E., McCallum, I.S., 1985. Evidence for mineral reactions and metasomatism by silica-
undersaturated Cl-rich fluids in the main pt-pd zone, Stillwater Complex, Montana. Canadian 
Mineralogist, 23: 296.

Boudreau, A.E., McCallum, I S., 1985. The Picket Pin deposit, Stillwater Complex, Montana. Canadian 
Mineralogist, 23: 295.

Boudreau, A.E., and McCallum, S., 1985, Features o f the Picket Pin Pt-Pd deposit: The Stillwater
Complex, Montana: Geology and Guide (G.K. Czamanske and M. L. Zientek, eds.), Montana 
Bureau o f Mines and Geology Special Publication 92, p. 346-357.

Bow, C., Wolfgram, D., Turner, A., Barnes, S., Evans, J., Zdepski, M., and Boudreau, A., 1982,
Investigations o f the Howland Reef o f the Stillwater Complex, Minneapolis adit area: stratigraphy, 
structure, and mineralization. Economic Geology, v. 77, p. 1481-1492.

Cameron, E.N., 1982, The Upper Critical Zone o f the eastern Bushveld Complex - precursor of the 
Merensky Reef, Economic Geology, v. 77, p. 1307-1327.

93



Cabri, L.J., 1981. PGEs: mineralogy, geology, recovery. CM! Special Volume 23, 267 pp.

Conn, K.H., 1979, The Johns-Manville platinum-palladium prospect, Stillwater Complex, Montana, U.S.A., 
Canadian Mineralogist, v. 17, p. 463-468.

Corkery, J.T., 2002, Mineralogy, petrography, and geochemistry o f the Picet Pin PGE deposit, Stillwater 
Complex, Montana, Economic Geology aimual meeting program with abstracts.

Corkery, J.T., 2001, Petrograpgy and Mineralogical Investigations o f the Picket Pin PGE deposit, Stillwater 
Complex, Mt: Preliminary Results. Northwest Geology, v. 30, pp. 21-31.

Crocket, J.H., Fleet, M E., and Stone, W.E., 1997, Implications o f composition for experimental
partitioning o f platinum-group elements and gold between sulfide liquid and basalt melt: the 
significance o f nickel content, Geochimica et Cosmochimica Acta, v. 61, p. 4139-4149.

Czamanske, G.K., and Loferski, P.J., 1996, Cryptic trace-element alteration o f anorthosite, Stillwater 
Complex, Montana, Canadian Mineralogist, v. 34, p. 559-576.

Czamanske, G.K., Zientek, M.L., and Manning, C.E., 1991, Low-K granophyres of the Stillwater Complex, 
Montana, American Mineralogist, v. 76, p. 1646-1661.

Czamanske, G.K., and Scheidle, D.L., 1985, Characteristics o f the Banded-series anorthosites. The
Stillwater Complex, Montana: Geology and Guide (G.K. Czamanske and M. L. Zientek, eds.), 
Montana Bureau o f Mines and Geology Special Publication 92, p. 334-346.

DePaolo, D.J., Wasserburg, G.J., 1979. Sm-Nd age o f the Stillwater Complex and the mantle evolution 
curve for neodymium. Geochemica et Cosmochemica Acta, v. 43, pp. 999-1008.

Dressier, B.O., and Sharpton, V.L., 1998, Comment on Isotopic evidence for distinct crustal sources of the 
North and South Range ores, Sudbury Igneous Complex*, Geochimica et Cosmochimica Acta, v.
62, p. 315-317.

Faure, G., 1986. Principles o f  isotope geology. Wiley and sons. New York, 587p.

Fleet, M E., Crocket, J.H., Liu, M., and Stone, W.E., 1999, Laboratory partitioning o f platinum-group
elements and gold with application to magmatic sulfide-PGE deposits, Lithos, v. 47, p. 127-142.

Gammons, C.H., and Bloom, M.S., 1992, Experimental investigation o f the hydrothermal geochemistry of 
platinum and palladium: I. solubility o f platinum and palladium sulfide minerals in NaCl/H2S04 
solutions at 300C, Geochimica et Cosmochimica Acta, v. 56, p. 3881-3894.

Gammons, C.H., and Bloom, M.S., 1993, Experimental investigation o f the hydrothermal geochemistry of 
platinum and palladium: II. The solubility o f PtS and PdS in aqueous sulfide solutions at 300C, 
Geochimica et Cosmochimica Acta, v. 57, p. 2451-2467.

Geraghty, E.P., 1999. Drillhole test o f Beartooth Uplift frontal fault; offset estimates and continuation at 
depth o f  the J-M Pd-Pt zone, Stillwater Complex, Montana. AAPG Bulletin, v. 83, #7, p. 1182- 
1183.

Graham, C., 1983, The epidote jigsaw. Nature, v. 305, p. 279.

Handler, M R. and Bennett, V.C., 1999, Behaviour o f Platinum-group elements in the subcontinental mantle 
o f eastern Australia during variable metasomatism and melt depletion, Geochimica et 
Cosmochimica Acta, v. 63, p. 3597-3618.

94



Haskin, L A., and Salpas, P.A., 1992, Genesis o f compositional characteristics of Stillwater AN-I and AN II 
thick anorthosite units, Geochimica et Cosmochimica Acta, v. 56, p. 1187-1212.

Haughton, D.R., Roeder, P.L., and Skinner, B.J., 1974, Solubility o f sulfur in mafic magmas, Economic 
Geology, v. 69, p. 451-467.

Higgins, M.D., 1998, Origin o f anorthosite by textural coarsening: Quantitative measurements o f a natural 
sequence o f textural development. Journal o f Petrology, v. 39, p. 1307-1323.

Helz, R.T., 1995, The Stillwater Complex, Montana: a subvolcanic magma chamber?, American 
Mineralogist, v. 80, p. 1343-1346.

Hess, H.H., 1960, Stillwater igneous complex, Montana -  a quantitative mineralogical study: Geol. Soc. 
Am., Mem. 80.

Hodge, V.F., Stallard, M., Koide, M., Goldberg, E.D., 1985. Platinum and the platinum anomaly in the 
marine environment. Earth and Planetary Science Letters, 72: 158-162.

Holdaway, M.J., 1966, Hydrothermal stability o f clinozoisite plus quartz, American Journal of Science, v. 
264, p. 643-667.

Howland, A.L., Peoples, J.W., Sampson, E., 1936, The Stillwater igneous complex and associated 
occurrences o f nickel and platinum metals: Mont. Bur. Mines and Geol. Misc. Contrib. 7.

Irvine, T.N., Keith, D.W., Todd, S.G., 1983. The J-M reef o f the Stillwater Complex, Montana II.
Economic Geology, 78: 1287-1334.

Irvine, T.N., 1980. Magmatic density currents and cumulus processes. American Journal of Science, v. 
280-a, pp. 1-58.

Jenkins, D.M., Newton, R.C., and Goldsmith, J R., 1983, Fe-ffee clinozoisite stability relative to zoisite. 
Nature, v. 304, p. 622-623.

Kucha, H., 1981. PGEs in the Zechstien Copper deposits, Poland. Economic Geology, 77:1587-1591.

Labotka, T. C., and Kath, R.L., 2001, petrogenesis o f the contact-metamorphic rocks beneath the Stillwater 
Complex, Montana, GSA Bulletin, v. 113, no. 10, p. 1312-1323.

Lambert, D.D., Morgan, R.J., Walker, R.J., Shirley, S B., Carlson, R.W., Zientek, M L , Koski, M.S., 1989. 
Rhenium-osmium and samarium-neodymium isotopic systematics o f the Stillwater Complex, 
Science, v. 244, pp. 1169-1174.

Lambert, D.D., Foster, J.G., Frick, L.R., Ripley, E.M., and Zientek, M L., 1998, Geodynamics of magmatic 
Cu-Ni-PGE sulfide deposits: New insights fi-om the Re-Os isotope system. Economic Geology, v. 
93, p. 121-136

Lambert, D.D., Unruh, D M., Simmons, E C., 1985. Isotopic investigations o f the Stillwater Complex: A 
review. Montana Bureau o f Mines and Geology Special Publication #92, p. 46-53.

Leroy, L.W., 1985. Troctolite-Anorthosite Zone I and the JM Reef: Frog Pond Adit to Graham Creek area. 
Montana Bureau o f  Mines and Geology Special Publication 92, p.325-333.

Loferski, P.J., and Arculus, R.J., 1993, Multiphase inclusions in plagioclase from anorthosites in the
Stillwater Complex, Montana: implications for the origin o f the anorthosites, Contrib. Mineral 
Petrol, V. 114, p. 63-78.

95



Maier, W.D., and Bames, S-J, 1999, PGE in the western Bushveld Complex, Journal o f Petrology, v. 10, p. 
1650-1671.

Manhes, G,, Allegre, C. J., Dupre, B, Hamelin, B., 1980, Pb Isotope study o f basic-ultrabasic layered 
complexes. Earth and Planetary Science Letters, v. 47, p. 370-382.

Markl, G., Frost, B.R., and Bucher, K., 1998, The origin o f anorthosites and related rocks form the Lofoten 
Islands, Northern Norway: I, Field relations and estimations o f intrinsic variables. Journal of 
Petrology, v. 39, p. 1425-1452.

Marshall, D M., 1994, Geology and mineralization o f the Picket Pin platinum-palladium horizon, Stillwater 
Complex, South-Central Montana, Northwest Geology, v . , p. 63-64.

Mathez, E.A., and Peach, C .L., 1989, The geochemistry o f the Platinum-group elements in mafic and 
ultramafic rocks, (Naldrett, A.J. ed.) Economic Geology Special Publication: Magmatic Ore 
Deposits, p. 33-41.

McBimey, A.R., and Nicolas, A., 1997, The Skaergaard Layered Series. Part II. Magmatic flow and 
dynamic layering, Journal o f Petrology, v. 38, p. 569-580.

McCallum IS ., Thurber, M.W., O'Brian, HE., Nelson, B.K., 1999. Lead isotopes in sulfides from the 
Stillwater Complex, Montana, Contrib. Mineral Petrol, v. 137, pp. 206-219.

McCallum, I S., Raedeke, L.D., and Mathez, E.A., 1980, Investigations o f the Stillwater Complex: part I, 
Stratigraphy and structure o f the Banded zone, American Journal o f Science, v. 280-A, p. 59-87.

McKibben, M.A., Williams, A.E., and Hall, G.E., 1990, Solubility and transport o f Platinum-group
elements and Au in saline hydrothermal fluids: constraints from geothermal brine data. Economic 
Geology, v. 85, p. 1926-1934.

Meurer, W.P., Willmore, C.C., and Boudreau, A.E., 1999, Metal redistributionduring fluid exsolution and 
migration in the Middle Banded Series o f the Stillwater Complex, Montana, Lithos, v. 47, p. 143- 
156.

Meurer W.P. and Boudreau, A.E., 1998, Compaction o f igneous cumulates Part I: Geochemical
consequences for cumulates and liquid fractionation trends. Journal of Geology, v. 106, p. 281- 
292.

Meurer W.P. and Boudreau, A.E., 1998, Compaction o f igneous cumulates Part II: Compaction and the 
development o f  igneous foliations, Journal o f Geology, v. 106, p. 293-304.

Moody, J.B., Jenkins, J.E., and Meyer, D,, 1985, An experimental investigation of the albitization of 
plagioclase, Canadian Mineralogist, v. 23, p. 583-596.

Mountain, B.W., and Wood, S.A., 1988, Chemical controls on the solubility, transport, and deposition od 
platinum and palladium in hydrothermal solutions: A thermodynamic approach. Economic 
Geology, v. 83. p. 492-510.

Naldrett, A.J., 1989, Sulfide melts- Crystallization temperatures, solubilities in silicate melts, and Fe, Ni, 
and Cu partitioning between basaltic magmas and olivine, (Naldrett, A.J. ed.) Economic Geology 
Special Publication: Magmatic Ore Deposits, p. 5-19.

Naldrett, A.J., 1969, A portion o f the system Fe-S-O between 900 and 1080 C and its applications to sulfide 
ore magmas. Journal o f Petrology, v. 10, p. 171-201.

96



Nunes, P.D.,1981. The age o f the Stillwater Complex-a comparison o f U-Pb zircon and Sm-Nd isochron 
systematics. Geochemica et Cosmochemica Acta, v. 45, pp. 1961-1963.

Nunes,P.D., Tilton , G.R.,1971. U-Pb ages o f  minerals from the Stillwater Complex and associated rocks, 
Montana, GSA Bulletin, v. 82, pp. 2231-2250.

Nyman, M.W., Sheets, R.W., and Bodnar, R.J., 1990, Fluid-inclusion evidence for the physical and
chemical conditions associated with intermediate-temperature PGE mineralization at the New 
Rambler deposit. Southeastern Wyoming, Canadian Mineralogist, v. 28, p. 629-638.

Page, N.J. and Moring, B.C., 1990, Petrology o f the noritic and gabbronoritic rocks below the JM Reef in 
the Mountain View area, Stillwater Complex, Montana, USGS Open File report, Bulletin no. 1674.

Page, N.J., Prichard, H.M., 1985. Platinum group minerals. Metallogeny of Basic and ultrabasic rocks, 375- 
469.

Page, N.J., 1977. Stillwater Complex, Montana: Rock successions, metamorphism and structure of the 
complex and adjacent rocks. U.S.G.S. Professional paper, 999: 79.

Pass, K., 1993, Isotopic investigations o f the Stillwater Complex, Masters Thesis, Auburn University, 
Auburn, Alabama

Poli, S., and Schmidt, M.W., 1998, The high-pressure stability o f zoisite and phase relationships of zoisite- 
bearing assenblages, Contrib Mineral Petrol, v. 130, p. 162-175.

Premo, W.R., Helz, R.T., Zientek, M.L., Langston, R.B.,1990. U-Pb and Sm-Nd ages for the Stillwater 
Complex and its associated sills and dikes, Beartooth Mountains, Montana: Identification of a 
parental magma? Geology, v. 18, pp. 1065-1068.

Raedeke, L.D., McCallum, I S., 1984. Investigations o f the Stillwater Complex: Part II. Petrology and 
petrogenesis o f the Ultramafic series. Journal of Petrology, v. 25, p. 395-420.

Raedeke, L.D., McCallum, I S., 1980. A comparison o f fractionation trends in the lunar crust and the 
Stillwater Complex. Proc. Conf. Lunar Highlands Crust.. Pergamon, New York; pp. 133-153.

Rehkamper, M., Halliday, A.N., Alt, J., Fitton, J.G., Zipfel, J. and Takazawa, E., 1999, Non-chondritic 
platinum-group element ratios in ocean mantle lithosphere: petrogenetic signature of melt 
percolation?, Bart and Planetary Science Letters, v. 172, p. 65-81.

Sassani, D C., and Shock, E.L., 1998, Solubility and transport o f platinum-group elements in supercritical 
fiuids: Summary and estimates o f thermodynamic properties for ruthenium, rhodium, palladium, 
and platinumsolids, aqueous ions, and complexes to lOOOC and 5 kbar, Geochimica et 
Cosmochimica Acta, v. 62, p. 2643-2671.

Sassani, D C., and Shock, E.L., 1990, Spéciation and solubility o f palladium in aqueous magmatic- 
hydrothermal solutions. Geology, v.lO, p. 925-928.

Schmidt, G., Palme, H. Kratz, K.L., and Kurat, G., 2000, Are highly siderophile elements (PGE, Re, and 
Au) frationated in the upper mantle o f the Earth? New results on peridotites from Zabargad, 
Chemical Geology, v. 163, p. 167-188.

Schoenberg, R., Kruger, F.J., Nagler, T.F., Meisel, T., and Kramers, J., 1999, PGE enrichment in chromitite 
layers and the Merensky Reef o f the western Bushveld Complex: a Re-Os and Rb-Sr isotope study. 
Earth and Planetary Science Letters, v. 172, p. 49-64.

97



Seitz, H-M, and Keays, R.R., 1997, Platinum-group element segregation and mineralization in a noritic ring 
complex formed from Proterozoic siliceous high-magnesium basalt magmas in the Vestfold Hills, 
Antarctica, Journal o f Petrology, v. 38, p. 703-725.

Sharpe, M.R., 1982, Noble metals in the marginal rocks od the Bushveld Complex, Economic Geology, v. 
77, p. 1286-1295.

Simmons, E.G., Lambert, D.D., 1982. Magma evolution in the Stillwater Complex, Montana, Montana 
Bureau o f Mines and Geology Special Publication # 84, p. 91-106.

Stumpfl, E.F., 1985. Distribution, transport and concentration o f platinum group elements. Metallogeny of 
Basic and ultrabasic rocks, 379-394.

Talkington, R.W., and Lipin, B.R., 1986, Platinum-group minerals in chromite seams o f the Stillwater 
Complex, Montana, Economic Geology, v. 81, p. 1179-1186.

Todd, S.G., Keith, D.W., Le Roy, L.W., Schissel, D.J., Mann, E.L., and Irvine, T.N., 1982, The JM 
platinum-palladium Reef o f the Stillwater Complex, Montana: I. Stratigraphy and petrology. 
Economic Geology, v. 77, p. 1454-1480.

Vance, J.A., 1964, Zoning in igneous plagioclase: patchy zoning, American Journal o f Science, v. 270, p. 
746-760.

Vance, J.A., 1962, Zoning in igneous plagioclase: normal and oscillatory zoning, American Journal of 
Science, v. 260, p. 746-760.

Vaniman, D.T., Labotka, T.C., Papike, J.J., 1980, Contact-metamorphic effects of the Stillwater Complex, 
Montana: Eos, v. 60, p.422.

Volborth, A., Tarkian, M, Stumpfl, E.F., and Housley, R.M., 1986, A survey o f the Pt-Pd mineralization 
along the 35 km strike o f the JM Reef, Stillwater Complex, Montana, Canadian Mineralogist, v. 
24, p. 329-346.

Watkinson, D.H. and Melling, D R., 1992, Hydrothermal origin o f Platinum-Group Mineralization in low- 
temperature copper sulfide-rich assemeblages. Salt Chuck Intrusion, Alaska, Economic Geology,
V. 87, p. 175-184.

Watkinson, D.H., and Dunning, G., 1979, Geology and platinum-group mineralization. Lac des lies. 
Northwest Ontario, Canadian Mineralogist, v. 17, p. 453-462.

Wood, S.A, Mountain, B.W., and Fenlon, B.J., 1989, Thermodynamic constraints on the solubility of 
platinum and palladium in hydrothermal solutions: reassassment o f hydroxide, bisulfide, and 
ammonia complexing. Economic Geology, v. 84, p. 2020-2028.

Zientek, M L. 1993, Mineral resource appraisal for locatable minerals: the Stillwater Complex: U.S. Geol.
Surv., Open-File Rep. 93-207, F1-F83.

Zientek, M L., Czamanske, G.K., Irvine, T.N., 1985. Stratigraphy and nomenclature o f the Stillwater 
Complex, Montana Bureau o f Mines and Geology Special Publication #92, p. 21-32.

Zientek, M.L., 1983. Petrogenesis o f the Basal zone o f the Stillwater Complex, Montana. Ph.D. Thesis, Stanford 
University, Stanford, California: 246 pp.

98



Zoller, W.H., Farrington, J R., 1983. Indium enrichment in airborne particles from Kilauea volcano. Science, 222: 
1118-1121.

99



Appendix I

Pyroxene %

0-5%

TI02
in percen t

0.1

AI203

25.25

Fe203

3.47

MnO MgO

0.018

CaO

0.54 9.56

N a20 K20

2.9 0.182
0-5% 0.1 22 92 4.17 0.018 0.42 8.72 2.55 0.121
0-5% 0.1 23.55 4.06 0.019 0.46 8.84 2.58 0.121
0-5% 0.1 28.5 2.41 0.026 0.96 12.02 3.18 0.121
0-5% 0.1 12.3 1.87 0.012 0.94 9 3.12 0.06
0-5% 0.1 18.33 2.57 0.02 1.44 6.16 2 06 0.121
0-5% 0.1 18.88 3.6 0.014 0.56 6.72 2.24 0.121
0-5% 0.1 19.4 3.12 0.026 0.76 9.4 2.3 0.182
0-5% 0.1 27.75 2.88 0.016 0.68 11.82 3.36 0.182
0-5% 0.1 16.45 3.42 0.022 0.8 13.52 1.87 0.182
0-5% 0.1 28.63 3.53 0.021 0.46 12.36 2.45 0.182
0-5% 0.3 20.5 2.95 0.012 0.62 15.28 1.03 0.121
0-5% 0.4 21.15 3 0.019 1.08 9.88 2.39 0.03
0-5% 0.3 19.25 2.72 0.05 0.68 9.08 2.21 0.212
0-5% 0.1 24.1 2.78 0.026 2.58 13.68 3.72 0.151
Average 0.1467 21.8 3.103 0.021 0.865 10.4 2.531 0.139

5-10% 0.1 26.63 3.41 0.082 3.42 11.68 3.15 0.121
5-10% 0.1 26.5 1.97 0.034 1.84 10.38 2.7 0.09
5-10% 0.1 27.75 3.05 0.04 1.64 12.1 3.93 0.181
5-10% 0.4 20.83 3.64 0.02 0.25 9.98 3.3 0.121
5-10% 0.1 28.88 3.75 0.04 1.27 12.42 2.48 0.091
5-10% 0.1 27.5 3.72 0.044 1.81 12.08 0 03 0.121
5-10% 0.1 27.25 2.84 0.03 1.24 10.52 2.54 0.152
5-10% 0.5 27.13 3.28 0.04 0.72 12.1 1.63 0.125
5-10% 0.1 27.75 3.5 0.09 1.96 11.66 3.57 0.212
5-10% 0.4 28.63 2.73 0.044 0.92 12.12 3.06 0.122
5-10% 0.1 31 2.77 0.032 0.98 12.84 3.36 0.09
5-10% 0.3 22.2 3.1 0.028 1.24 12.88 3.24 0.121
5-10% 0.1 31 3.05 0.044 0.34 11.85 2.9 0.181
Average 0.1923 27.16 3.139 0.044 1.356 11.74 2.761 0.133

10-15% 0.15 28.66 2.81 0.034 1.37 15.23 2.4 0.086
10-15% 0.135 28.21 2.92 0.039 1.56 1528 2.35 0.091
10-15% 0.238 28.89 2.71 0.033 1.18 15.35 2.37 0.087
10-15% 0.23 27.7 3.28 0.042 1.86 15.41 2.27 0.074
10-15% 0.138 27.27 3.57 0.047 2.15 14.68 2.26 0.077
10-15% 0.133 26.67 3.87 0.057 2.71 14.69 2.12 0.061
10-15% 0.155 28.75 2.74 0.04 1.28 14.87 2.48 0.111
10-15% 0.183 29.05 2.33 0.031 0,87 14.99 2.48 0.138
10-15% 0.13 27.28 3.43 0.049 2.46 15.04 2.17 0.073
Average 0.1658 28.05 3.073 0.041 1.716 15.06 2.322 0.089

15-20% 0.15 27.69 3.42 0.049 2 2 2 14.78 2.21 0.075
15-20% 0.155 26.33 3.86 0.056 2.74 15.05 2.11 0.079
15-20% 0.143 28.16 3.08 0.04 1.95 15.25 2.37 0.079
15-20% 0.133 26.09 3.73 0.059 2.96 14.98 2.12 0.064
Average 0.1453 27.07 3.523 0.051 2.468 15.02 2.203 0.074

Med. Grained An. 0.1 4.55 2.67 240 1.22 1.18 0.151 0.03
Med. Grained An. 0.1 19.05 1.4 240 1.62 7.2 2.03 0.121
Med. Grained An. 0.1 26.88 1.88 180 1.02 10.7 2.96 0.121
Med. Grained An. 0.1 28.5 3.85 200 1.02 9 2.18 0.09
Average 0.1 19.75 2.45 215 1.22 7.02 1.83 0.091

Clinozoisite 0.2 7.68 1.84 200 0.46 3.2 0.67 0.09
Clinozoisite 0.1 12.2 1.55 200 0.52 4.86 1.34 0.212
Average 0.15 9.94 1.695 200 0.49 4.03 1.005 0.151

100



Pt

< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5

< 5
<.5
<.5
< 5
< 5

Pd
b

Au

2470 1840 240
1095 1350 280
1030 1350 310
768 896 96

1664 960 128
1024 1024 192
640 2176 160

2560 1984 128
576 1600 160
384 1024 132

1984 1020 210
960 2304 192

1216 1088 160
576 448 220

1024 1088 192
1198 1343 186.67

64 64
171.5 440 1

32 64 1
280 260 1

75 64 1
50 35 1

0.5 2 <1
0.5 2 <1

3 1 <1
2 1 <1

0.5 1 <1
54 50 <1

0.5 1 <1
56.42 75.77 1

0.5 <1 <1
0.5 <1 <1

<1 <1
<1 <1
<1 <1
<1 <1
<1 <1
<1 <1
<1 <1
<1 <1

<1 <1
<1 <1
<1 < t
<1 <1
<1 < t

Ag

Appendix I 
Whole-rock Geochemistry

352
1
4

896
313.3

320
141.5
230.8

860
0.02

4
768
408

320
120
220

<200
<200

<200
<200

18
1

18
96

33.25

41
18

29.5

1800
1800
2000

800
1000
1400
1600

800
800

1000
2800
1200
1200
100
600

1260

200
300

350
200
200

200
200
200

231.25

<200
<200
<200
<200
<200
<200
<200
<200
<200
<200

<200
<200
<200
<200
<200

1000
200
200
800
550

200
200
200

Cu Ni 
in ppm

5160
5840
6050
3060
2200
4080
5180
4150
3130
4140
3160
3480

663
1290
5690
3818

56
1450

180
4820
3070
3060
2320

923
191
539

80
23.5
328

1311

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA

704
19

964
2000

922

490
427
459

Or Co Sr Ba Sc La

2390 29 74 105 10 <1 <10
3320 17 106 91 10 <1 <10
3190 17 102 93 10 <1 <10
1015 18 36 122 20 <1 <10
1215 39 46 43 10 2 <10
1315 47 44 72 10 <1 <10
1715 23 62 76 10 <1 <10
1985 35 72 80 10 <1 <10
797 23 36 109 10 2 <10

1680 24 62 63 10 <1 <10
1975 48 67 134 20 <1 <10
1465 49 95 98 10 <1 <10
718 41 56 87 20 <1 <10

1715 58 52 71 20 <1 <10
185 27 11 25 10 <1 <10

1645 33 61.4 85 12.7 <1 <10

313 26 42 122 30 <1 <10
590 23 31 108 10 <10 <10
109 30 52 122 40 <1 <10

3250 68 86 152 30 <1 <10
1435 27 58 92 20 <1 <10
1015 34 48 131 30 <1 <10
939 31 39 127 20 <1 <10
721 45 45 124 30 <1 <10

49.7 31 27 124 10 <1 <10
1130 19 9 163 10 <1 <10
29.3 31 10 133 30 <1 <10

27 23 39 84 20 <1 <10
2350 45 27 125 30 <1 <10

919.8 33 39 114 22.2 <1 <10

10 8.34 9 159 42 7.43
26 9.47 10.16 189 41 8.2
18 7.75 8.08 199 43 6.78
27 16.3 11.88 188 41 10 3
26 8.93 14.38 198 41 8 86
43 14.8 17.05 160 30 9.73
19 3.96 8.32 184 52 5 3
8 3.42 6.07 176 64 4.64

47 18 14.63 163 36 10.1
24.89 10 11.1 180 43.3 7.9

34 13.7 13.66 181 36 7.53
55 22.4 16.71 152 33 11.9
24 12.6 11.28 209 47 8.16
58 29.5 17.01 155 28 12.5

42.75 20 14.7 174 36 10

87 48 3 10 10 10
34 27 5 85 10 10

517 31 17 112 10 10
960 60 23 97 10 10

399.5 42 12 76 10 10

237 44 8 32 10 10
304 39 12 51 20 10

270.5 42 10 42 15 10
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Appendix II 
Microprobe Analyses

Line Numbers S i02 Oxide Percents AI203 Oxide Percents FeO Oxide Percents N a20 Oxide Percents 
STDS; 1 4 62 1
Un 4 808109 
feldspar

472 48.81 31.30 0.40 3.17
Un 5 8819lp

473 49.95 32.83 0.37 3.03
474 49.41 33.66 0.39 2.48
475 54.84 32 80 0.43 4.79
476 48.77 34.03 0.56 2.21
477 48.42 34.24 0.37 2.25
478 47.65 27.57 2.02 4.91
479 48.32 33.40 0.48 2.16
480 49.67 33.12 0.40 2.73

Un 7 8819Ip2
481 48.44 33.91 0.49 2.33
482 47.78 32.96 0.40 2.23
483 48.06 32.70 0.37 2 63
484 48.58 32.29 0.34 2.78
485 48.13 32.53 0.44 2.50
486 47.98 32.42 0.48 2.40
487 48.63 31.83 0.46 2.78
488 49.02 31.90 0.36 2.89
489 48.48 31.96 0.46 2.84
490 47.69 32.56 0.51 2.43

Un 8 8819tp3
491 49.61 33.42 0.37 2.55
492 48.77 33.83 6.59 2.27
493 49.89 33.43 0.40 2.74
494 48.84 34.04 0.43 2.19
495 48.97 33.80 0.52 2.26
496 104.77 0.22 0.09 0.03
497 49.07 33.68 0.39 2.40
498 48.13 32.95 0.45 2.47
499 48.31 32.47 0.44 2.68

Un 9 8819sp1
500 48.71 32.46 0.26 2.73
501 49.35 32.02 0.36 3.09
502 49.04 31.93 0.37 2.97
503 48.90 31.98 0.40 2.92
504 53.79 33.09 0.32 4.25

Un 10 8819sp2
505 49.44 32.88 0.38 3.08
506 48.94 32.92 0.39 2.77
507 49.14 33.58 0.39 2.46
508 49.39 33.54 0.43 2.60
509 49.63 33.70 0.36 2.40

Un 11 8819sp3
510 81.07 4.49 2.95 2.11
511 49.74 32.11 0.43 3.03
512 48.93 32.56 0.39 3.05
513 49.19 32.72 0.44 2.87

Un 12 
8819sprim

514 42.87 35.56 2.11 0 00
Un 13
8819clno ^ _

515 42.85 35.67 13.19 0.02
516 37.63 29.61 4.81 0.03
517 38.64 32.09 2.16 0.13
518 32.81 20.78 6.11 0.37
519 38.21 28.87 6.81 0 02
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Un 14 8812lp1
520

Un 15 8812lp1
521
522
523
524
525
526
527
528
529
530
531
532
533
534

Un 16 8812lp2
535
536
537
538

Un 17 8812lp2
539
540
541
542
543
544
545
546
547
548
549
550

Un 18 8812lp3
551
552
553
554
555
556
557
558
559
560

Un 19 8812sp1
561
562
563
564

Un 20 8812sp2
565
566
567
568

Un 21 8812sp3
569
570
571
572
573
574

Un 22 8812sp4
575

45.18

48.64
48.13
48.63
47.97
47.17
45.71
46.71 
46.68 
47.00
36.08
46.93
47.09 
46.58
46.32

47.71 
47.90
48.77
34.41

45.83
46.78 
46.47
47.66 
47.27
35.02
48.02
46.62 
47,29 
47.46 
47.88
49.33

45.26
44.17
48.77
50.36
49.17
48.63
48.93 
48.62 
46.85
48.41

46.45
46.67
47.96 
47.38

42.66
48.64 
48.20
47.37

52.77
48.79 
49.07 
48.51
47.94
47.97

48.23

34.35

33.03
32.72
32.39
32.85 
32.68 
31.75
32.70
32.36 
31.91
20.85
33.08
32.17 
32.66 
32.43

33.25 
33.79 
33.10

9.94

32.87
32.86
30.36
33.08
33.81 
25.90 
32.32
32.86 
33.06 
33.00 
33.12 
32.84

30.26 
30.95
33.26
32.24
33.26 
32.93
32.62
33.71 
33.14 
32.30

0.83
31.59
32.41
33.17

2.52
32.51
31.77
32.56

1.98
31.63 
32.74
32.56
32.24
32.81

33.18

0.33

0.51
1.18
0.48
0.59
0.49
0.49
0.42
0.48
0.49

21.33 
0.50 
0.57 
0.52 
0.60

0.40
0.45
0.45

17.06

0.42
0.36
1.26
0.37
0.41

15.02
0.52
0.54
0.49
1.64
0.47
0.41

0.42
0.50
0.50
0.46
0.51
0.48
0.41
0.59
0.49
0.33

18.59
0.40
0.48
0.51

15.88
0.33
0.44
0.42

18.34 
0.39 
0.48 
0.40 
0.51 
0.47

0.41

1.48

2.65
2.76
2.87
2.64
2.49
2.45
2.36
2.49 
2.57 
1.09 
2.28 
2.51 
2.28 
2.28

2.36 
2.33
2.50 
0.08

2.72
2.37
2.50 
2.54 
2.20 
1.02
2.47 
2.08 
2.13
2.38 
2.32
2.71

2.73 
2.24
2.51 
3.23 
2.61 
26 0  
2.75 
2.19 
2.04 
2.83

0.00
2.60
2.48 
2.11

0.13
2.85
2.85 
2.37

0.10
2.64 
2.79
2.65
2.72
2.45

2.47
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576
577
578
579
580

Un 28 8812plg 
627

Un 32 
8812rimplg1

646
Un 34 
8812rimplg2

647
Un 35 
8812rimplg3

648
Un 36 
8812rimplg4

649
Un 37 
8612rimplg5

650
Un 38 
8812rimplg6

651
Un 39 
8812rimplg7

652
Un 40 
8812rimplg8

653
Un 41 
8812rimplg9

654
Un 42 
8812rimplg10

655 
Un 43 898lp1

656
657
658
659
660 
661 
662
663
664
665

Un 44 8981p2
666
667
668
669
670
671

Un 45 898lp2
672
673
674

Un 46 898lp3
675
676
677
678
679
680 
681 
682 
683

47.69
48.48 
48.73
48.55 
46.47

48.82

45.62

47.02 

46.32

46.91

48.12

28.94 

46.89 

47.60

47.92

46.57

47.56 
47.88 
47.98 
49.24
48.84
50.02 
49.39 
49.68
34.85
51.20

48.49
47.95
48.12
49.02
51.96
48.21

49.64
48.85 
48.31

48.48
47.22 
48.16 
45.84
49.58 
48.54
63.12
67.66
49.67

33.69
33.84 
33.18 
32.94
31.23

30.02

34.31

32.22 

32.39 

34.55 

34.01

17.24 

33.44

33.16

32.86

31.87

33.43
33.84 
33.53
33.22
33.67
32.76 
33.60 
33.78 
26.73 
32.28

32.07
32.16
32.68
29.76 
21.72
32.46

31.92
32.46
32.70

33.09
33.37
30.26
31.32 
33.12
32.03 
24.19 
21.82 
31.67

0.41
0.41
0.41
0.43
1.95

0.30

0.46

0.39

0.46

0.53

0.33

20.82

0.53

0.38

0.35

0.44

0.44
0.33
0.49
0.42
0.43
0.36
0.51
0.45
7.28
0.38

0.52
0.41
0.46
4.32
0.08
0.41

0.34
0.39
0.46

0.41
0.33
0.65
7.13
0.78
0.52
0.22
0.06
0.53

2.29
2.38 
2.55 
2.54 
2,12

0.94

1.71 

2.68

2.57

1.84 

2.18 

0.41

2.27

2.53

2.58

2.68

2.36
2.28
2.37
2.75 
2.49 
2.96 
235  
2.62 
2.33
3.37

2.85
2.76
2.57 
3.05
5.58 
2.63

3.39
2.85
2.54

2.58 
2.08
3.71
1.71 
4.16 
2.94 
9 65

10.43
2.85
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684 48.20 32.55 0.48 2.60
685 51.65 30.99 1.18 3.54
686 49.80 32.00 0.30 3.14
687 47.64 3289 0.48 23 2
688 48.50 32.72 0.68 2.68
689 48.14 33.08 0.44 2.59
690 48.57 32.70 0.40 2.77
691 48.73 32.22 0.24 3.03
692 47.37 32.56 0.39 2.50
693 48.69 32.65 0.42 2.76
694 48.74 32.44 0.31 2.98

Un 47 898lp3a
695 59.58 23.92 0.04 7.48
696 47.93 32.80 0.46 2.45
697 47.46 32.78 0.48 2.44
698 48,30 32.96 1.57 0.85
699 48.16 31.53 0.49 3.08

Un 48 898lp4
700 46.78 34.09 0.33 2.16
701 47.25 33,85 0.39 2.13
702 48.20 33.24 0.39 2.47
703 49.44 33.51 0.39 2.78
704 48.93 32.24 0.69 2.96
705 49.51 33.44 0.41 2.78
706 49.32 33.63 0.45 2.82
707 47.56 33.43 0.59 2.32
708 46.28 32.00 0.39 2.94
709 47.74 32.71 0.38 2.51

Un 49 898sp1
710 101.30 0.45 0.24 0.02
711 102,08 0.00 0.00 0.00
712 68.76 20.26 0.21 11.53

Un 50 898sp2
713 48.70 33.39 0.43 2.86
714 49.00 32.17 0.37 3.19
715 47.45 33.36 0.42 2.40
716 47.66 33.52 0.40 2.53

Un 51 898sp3
717 61.95 28.51 0.25 9.13
718 47.98 33.60 0.48 2.29
719 48.39 33.08 0.47 2.64
720 49.87 32.68 0.35 3.11

Un 52 898sp4
721 47.62 32.74 0.52 2.74
722 47.66 31.31 0.66 4.29
723 48.59 33.36 0.54 3.49
724 49.53 32.17 0.36 2.95

Un 53 898sp5
725 48.53 33.36 0.47 2.51
726 48.04 32.80 0.35 2.89
727 47.68 32.88 0.41 262
728 48.80 32.58 0.32 2.88

Un 55
898rmplg1

737 64.14 17.43 0.17 9.92
Un 56
898rmplg2

738 66.44 20.75 0.06 10.35

Un 57
898rmplg3

739 67.01 20.88 0.11 10.68

Un 58
898rmplg4

740 38.61 31.62 3.44 0.00

Un 60 883lp1
742 46.54 36.51 0.42 1.30

743 49.88 34.46 0.46 2.66
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744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

Un 61 883lp2
762
763
764
765
766
767
768
769
770
771

Un 62 883lp3
772
773
774
775
776
777
778
779
780
781

Un 63 883sp1
782
783
784
785
786

Un 64 883sp2
787

Un 65 883sp2
788
789
790
791

Un 66 883sp3
792
793
794
795

Un 67 883sp4
796
797
798
799
800 

CaO Oxide

47.14
48.29
49.25
54.04
47.80 
47.69 
41.88
48.09
48.05 
46.79
47.75 
47,52 
47.36 
46.83
47.71
47.10 
48.73
46.25

45.90 
47.66 
49.51
47.14 
47.95
48.64
47.87
47.87
47.65
45.42

48.08
47.00 
49.02
46.98 
47.50
46.48
46.99
45.29 
42.86
46.65

46.76
45.42
45.66
45.67 
46.28

45.16

45.21
44.65
44.71
42.81

47.11 
46.63
46.01
46.67

48.38
49.48 
47.40
47.88
46.90

K 20 Oxide

32.94
32.73 
32.52 
2951
32.82 
33.54
30.30
32.94 
33.01 
32.98 
32.56
33.25
32.96
32.95
33.41 
32.94 
32.28
33.12

31.51
34.12 
33.07 
35.65
33.97
34.33
33.74
34.00
33.12
34.31

32.85
31.82
32.98
33.75 

1.49
32.23
33.12 
33.43
31.33 
32.17

32.06
33.06 
32.88 
32.92 
32.30

31.12

32.68
32.23 
32.37
34.12

1.15
32.16
32.42
32.01

33.06 
34.22 
33.48 
33.36
33.26

0.52
0.59
0.47
0.68
0.53
0.61
0.53
0.61
0.55
0.62
0.59
0.55
0.46
0.67
0.52
0.42
0.44
0.50

0.39
0.58
0.50
0.77
0.48
0.55
0.56
0.57
0.44
0.40

0.51
1.70
0.79
0.61
9.32
1.46
0.54
0.56
0.54
0.47

0.62
0.49
0.43
0.52
0.51

0.35

0.48
0.48
0.61
0.47

17.62
0.44
0.50
0.52

0.39
0.69
0.48
0.50
0.85

Oxide |S i Formula

2.58
2.53 
2.83 
5 13
2.29 
2.28
1 94 
2.36
2.30 
2.28
2.30
2.27
2.30 
2.11 
2.18 
2.21 
2.80 
2.01

2.71
2.02
272
1.55
208
2.23 
2.11 
2.12 
2.62
1.54

2.61
2.60
2.77 
2.26 
0.31
2.50
2.50
2.03
2.04 
2.57

2.78
2.23 
2.32
2 15
2.50

2.44

2.25
2.19 
2.17
1.28

0.02
2.65
2.35
2.59

2.64
2.65
2.54
2.36
2.20
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Percents Percents Totals
4

14.20

14.85
15.81
12.03
16.10
16.20

8.89
16.18
15.27

15.75
15.90
15.47
15.42
15.69
15.63
14.99
14.65
15.21
15.77

15.58
8.04

15.30
16.30  
16.00

0.08
15.89
15.92
15.50

15.09
14.70
14.68
14.91
12.98

14.91
15.36
15.64
15.64  
15.32

0 .19
14.43
14.90
15.12

23.81

22 .73

6

0.11

0.12
0.10
0.11
0.10
0.07
0.24
0 .09
0 .07

0.08
0.08
0.13
0.10
0.09
0.09
0.11
0.13
0.12
0.10

0.10
0.13
0.08
0.07
0.09
0.01
0.10
0.09
0.09

0.12
0.14
0.13
0.13
0.21

0.10
0.12
0.10
0.09
0.10

0.02
0.15
0.12
0.12

0.01

0.01

98.01

101.17
101.87
105.02
101.79
101.56

91.30
100.65
101.27

101.01
99.37
99.35
99.53
99.43
99.03
98.83
98.95
99.08
99.10

101.66
99.64

101.85
101.89
101.67
105.20
101.57
100.03

99.50

99.36
99.68
99.11
99.26

104.64

100.82
100.50  
101.35  
101.73
101.51

90.83
99.95
99.95  

100.48

104.40

114.49

472
Un 5  
8819lp

473
474
475
476
477
478
479
480

Un 7 
8819lp2

481
482
483
484
485
486
487
488
489
490

Un 8 
8819lp3

491
492
493
494
495
496
497
498
499

Un 9 
8819sp1

500
501
502
503
504

Un 10 
8819sp2

505
506
507
508
509

Un 11 
8 819sp 3

510
511
512
513

Un 12 
8819sprim

514
Un 13 
8819clno

515

Atoms

2.275

2.255
2.220
2.363
2.196
2.185
2.379
2.201
2.241

2.196
2.204
2.217
2.236
2.219
2.221
2.252
2.263
2.242
2.209

2.231
2.245
2.238
2.197
2.206
3.989
2.212
2.207
2.225

2.241
2.263
2.261
2.254
2.332

2.242
2.229
2.218
2.222
2.231

3.710
2.272
2.240
2.240

1.949

1.861
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24.22
23 .13
18.59
23.51

17.28

15.20
15.18
14.88  
15.41 
15.55  
16.01
15.88  
15.67
14.93  

5.26
16.03
15.18
15.94  
15.85

15.28
15.59
15.16

0.30

15.21
14.60
12.93
14.64
15.55

4 .77
15.46
16.18
16.24
15.11
15.97
15.44

14.45
15.15  
15.76  
14.56  
15.53  
15.49  
15.35
16.16  
16.39  
15.24

0 .93
15.06
15.53
16.49

0.02
0.00
0.21
0.01

0.04

0.12
0.12
0.14
0.10
0.09
0.20
0.07
0.10
0.10
0.02
0.09
0.10
0.10
0.09

0.10
0.08
0 .09
0.07

0 .09
0 .09
0.11
0.09
0.08
0.05
0.09
0.07
0.08
0.52
0.09
0.11

0.10
0.08
0 .09
0 .13
0.12
0.10
0.12
0.08
0.09
0.09

0.01
0.08
0.10
0.05

96.38
96.18
78.90
97.48

98.66

100.19
100.31

99.41
99.60
98.50
96.65
98.17
97.78
97.03
84.64  
98.94
97.64  
98.11 
97.59

99.15
100.17
100.10

61.87

97.18
97.09
93.67
98.44
99.35
81.81
98.93
98.42
99.31

100.19
99.88

100.87

93.23
93.12

100.89
101.02
101.24
100.29
100.20
101.38

99.03
99.20

67.10
96.43
99.01
99.72

516
517
518
519

Un 14 
8812lp1

Un 15 
8812lp1

520

521
522
523
524
525
526
527
528
529
530
531
532
533
534

Un 16 
8812lp2

535
536
537
538

Un 17 
8812lp2

539
540
541
542
543
544
545
546
547
548
549
550

Un 18 
S812lp3

551
552
553
554
555
556
557
558
559
560

Un 19 
8812sp1

561
562
563
564

Un 20  
8812sp2

1.909
1.923
2.052
1.929

2.109

2.223
2.207
2.239
2.209
2.198
2.181
2.186
2.193
2.219
2.161
2.180
2.212
2.183
2.183

2.202
2.190
2.227
2.723

2.167
2.201
2.266
2.212
2.179
2.082
2.225
2.178
2.187
2.187  
2.199  
2.238

2.227
2.182
2.215
2.277
2.224
2.221
2.236
2.199
2.175
2.235

3.337
2.219
2.220 
2 .184
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1.31
15.31
15.07
15.68

0 .80
15.33
15.25
15.38
15.15
15.49

15.73
16.25
16.15
15.54
15.54  
13.79

21 .90

16.97

15.11

15.51

16.64

16.34  

1.06

16.38

15.75

15.61

15.35

14.39
16.32
15.97
15.38  
15.96
14.38  
15.95

0.07
0.11
0.10
0.08

0 .03
0.10
0.12
0.11
0.23
0.08

0.09
0.09
0.08
0 .09
0 .09
0.12

0.03

0.04

0.06

0.08

0.05

0.08

0.12

0.07

0.10

0.08

0.09

0.08
0.09
0.06
0.10
0.10
0.10
0.08

62.74
99.77
98.49
98.49

74.22
98.94

100.48
99.65
98.83
99.30

100.13
100.44
101.37
100.54
100.11

95.69

102.04

99.14

97.47

97.35

100.54

101.06

68.59

99.60  

99.53  

99.40

97.01

98.26
100.76
100.41
101.14
101.50
100.58
101.89

565
566
567
568

Un 21 
8812sp 3

569
570
571
572
573
574

Un 22  
8812sp4

575
576
577
578
579
580

Un 28  
8812plg

627
Un 32  
8812rimplg1

646
Un 34  
8812rimplg2

647
Un 35  
8812rimplg3

648
Un 36  
8812rimplg4

649
Un 37  
8812rimplg5

650
Un 38  
8812rimplg6

651
Un 39  
8812rimptg7

652
Un 40  
8812rimplg8

653
Un 41 
8812rimplg9

654
Un 42  
8812rimplg1 
0

655
Un 43  
898lp1

656
657
658
659
660  
661 
662

3.254
2.233
2.242
2.205

3.360
2.257
2.236
2.229
2.225
2.213

2.207
2.180
2.193
2.219
2.221
2.230

2.227

2.120

2.211

2.187

2.144

2.184

2.156

2.166

2.194

2.209

2.205

2.208
2.181
2.192
2.228
2.206
2.266
2.219
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15.35
0.55

14.17

15.08
15.36
15.70
11.41

5.91
15.49

14.41
15.15
15.67

15.45
16.32
10.32 
21.16 
15.17 
14.29

2.52
2.02

14.74
15.58
12.75 
14.65 
16.10
15.59 
15.78
15.33 
15.10 
15.89 
15.42 
15.08

5.67
15.71
15.97

5.30
14.84

15.36
15.47
15.06 
14.96 
10.54
15.14
15.06
16.15 
14.93 
15.58

0.01
0.01
0.19

0.09
0.26
0.11

0.12
0.09
0.08
0.13
0.10
0.09

0.11
0.11
0.09

0.08
0.09
0.79
0.06
0.15
0.23
0.42
0.03
0.11
0.09
0.05
0.05
0.09
0.08
0.08
0.09
0.09
0.09
0.11
0.13

0.03
0.09
0.09
9.19
0.10

0.07
0.07
0.09
0.10
0.92
0.09
0.10
0.08
0.10
0.10

0.02
0.01
0.02

102.00
72.02

101.54

99.18
98.74
99.63
97.69
85.35
99.32

99.84
99.83
99.82

100.10
99.43
93.90 

107.23 
102.98
98.59

100.11
102.02
99.58
99.55

100.18
99.96
99.54

100.27
100.15
99.91
99.44 
98.82

100.07
99.71

96.73
99.47
99.25
98.20
98.22

98.80
99.19
99.48

101.21
96.30

101.39
101.41
100.14

98.67
99.02

102.03
102.11
100.96

Un 44 
898lp2

Un 45 
898lp2

Un 46 
898lp3

663
664
665

666
667
668
669
670
671

672
673
674

675
676
677
678
679
680 
681 
682
683
684
685
686
687
688
689
690
691
692
693
694

Un 47 
898lp3a

Un 48 
898lp4

Un 49 
898sp1

Un 50

695
696
697
698
699

700
701
702
703
704
705
706
707
708
709

710
711
712

2.226
2.211
2.297

2.240
2.226
2.215
2.313
2.696
2.224

2.271
2.239
2.219

2.217
2.180
2.328
2.067
2.219 
2.251 
2.782 
2.906 
2.278
2.220 
2.345 
2.274 
2.198 
2.220 
2.205 
2.226 
2.243 
2.201 
2.229 
2.237

2.726
2.209
2.196
2.292
2.247

2.167
2.180
2.215
2.231 
2.300
2.232 
2.224 
2.182 
2.240 
2.210

3.980
3.999
2.975
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14.35
14.60
15.76
15.70

5.61
15.97
15.07
14.04

15.64
2.69

15.53
14.58

15.75
15.61
15.36
15.20

0.92

1.17

1.21

24.39

17.77
15.65 
15.60
15.66
15.27
11.28
15.85 
16.18
15.77
15.96
15.86 
16.01 
15.90
15.97 
16.13 
16.05 
16.32 
16.36 
15.29 
16.47

15.23
16.45
15.19
17.34

0.08
0.13
0.09
0.10

0.19
0.08
0.47
0.15

0.11
0.29
0.15
0.13

0.09
0.09
0.10
0.10

0.02

0.02

0.03

0.01

0.03
0.08
0.10
0.12
0.08
0.12
0.11
0.09
0.09
0.10
0.08
0.09
0.10
0.10
0.10
0.08
0.10
0.08
0.12
0.07

0.10
0.07
0.11
0.05

99.82
99.49
99.51
99.93

105.64
100.41
100.15
100.21

99.41
86.91

101.68
99.73

100.70
99.78
99.09
99.88

92.61

98.81

99.93

98.08

102.59
103.20
98.92
99.96

100.46
100.79
99.41

100.40
90.55

100.07
99.88
98.81
99.22
99.68 
99.36 
98.72

100.25
99.15
99.69 
98.45

95.87
100.93
101.14
102.50

898sp2

Un 51 
898sp3

Un 52 
898sp4

Un 53 
898sp5

713
714
715
716

717
718
719
720

721
722
723
724

725
726
727
728

Un 55 
898rmplg1

737
Un 56 
898rmplg2

738
Un 57 
898rmplg3

739
Un 58 
898rmplg4

740
Un 60 
883ip1

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

Un 61 
883lp2

762
763
764
765

2.226
2.252
2.187
2.188

2.615
2.191
2.216
2.267

2.201
2.406
2.199
2.267

2.209
2.209 
2.205 
2.236

3.021

2.938

2.934

1.905

2.088
2.211
2.189 
2.216 
2.244 
2.429 
2.206
2.183 
2.138 
2.206 
2.206 
2.178 
2.209
2.189
2.190 
2.181 
2.186
2.184 
2.239 
2.162

2.200
2.169
2.238
2.118
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Al Formula 
Atoms

16.18 0.09 100.78 766 2.182
16.30 0.08 102.13 767 2.185
16.48 0.09 100.84 768 2.181
16.23 0.09 100.89 769 2.178
15.50 0.11 99.48 770 2.197
17.26 0.03 98.96 771 2.114

15.68 0.07 99.83

Un 62 
883lp3

772 2.210
14.34 0.14 97.64 773 2.215
15.12 0.10 100.81 774 2.228
16.02 0.11 99.74 775 2.165
22.12 0.01 81.23 776 2.920
14.07 0.63 97.40 777 2.199
15.84 0.09 99.11 778 2.179
16.76 0.08 98.18 779 2.129
16.28 0.08 93.17 780 2.129
15.51 0.10 97.49 781 2.198

15.47 0.11 97.83

Un 63 
883sp1

782 2.199
16.14 0.09 97.46 783 2.147
15.92 0.07 97.30 784 2.159
16.19 0.09 97.56 785 2.156
15.70 0.10 97.40 786 2.185

14.55 0.12 93.76

Un 64 
883sp2

787 2.207

16.20 0.09 96.94

Un 65 
883sp2

788 2.150
16.33 0.08 95.98 789 2.147
15.99 0.08 95.97 790 2.148
17.51 0.03 96.23 791 2.059

1.11 0.01 67.35

Un 66 
883sp3

792 3.344
15.45 0.11 97.46 793 2.198
15.65 0.10 97.07 794 2.179
15.34 0.07 97.23 795 2.204

15.39 0.11 100.01

Un 67 
883sp4

796 2.215
15.66 0.11 102.86 797 2.205
16.00 0.10 100.05 798 2.178
15.98 0.09 100.21 799 2.193
16.18 0.02 99.42 800 2.171

Fe Formula Na Formula Ca Formula K Formula Formula
Atoms

1.719

Atoms

0.015 0.287

Atoms Atoms Totals 

0.709 0.006 13.012

1.747 0.014 0.265 0.718 0.007 13.007
1.782 0.015 0.216 0.761 0.006 13.000
1.666 0.015 0.401 0.556 0.006 13.007
1.806 0.021 0.193 0.777 0.006 13.000
1.821 0.014 0.197 0.783 0.004 13.005
1.623 0.084 0.476 0.476 0.015 13.054
1.793 0.018 0.191 0.790 0.005 12.999
1.761 0.015 0.239 0.738 0.004 12.999

1.812 0.019 0.205 0.765 0.005 13.002
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1.821 0.017 0.206 0.764 0.005 13.004
1.781 0.017 0.221 0.742 0.005 12.995
0.927 1.129 0.012 0.025 0.007 12.823

1.832 0.017 0.249 0.771 0.006 13.043
1.822 0.014 0.217 0.736 0.005 12.997
1.745 0.051 0.237 0.676 0.007 12.982
1.809 0.015 0.229 0.728 0.006 12.999
1.837 0.016 0.197 0.768 0.005 13.002
1.815 0.747 0.118 0.304 0.004 13.071
1.765 0.020 0.222 0.767 0.005 13.006
1.809 0.021 0.189 0.810 0.004 13.012
1.802 0.019 0.191 0.805 0.005 13.009
1.792 0.063 0.212 0.746 0.031 13.035
1.793 0.018 0.207 0.786 0.005 13.009
1.756 0.016 0.239 0.751 0.006 13.006

1.755 0.017 0.260 0.762 0.006 13.028
1.801 0.021 0.214 0.802 0.005 13.026
1.781 0.019 0.221 0.767 0.005 13.008
1.718 0.017 0.283 0.705 0.007 13.008
1.773 0.019 0.229 0.753 0.007 13.006
1.773 0.018 0.231 0.758 0.006 13.009
1.756 0.016 0.244 0.751 0.007 13.011
1.797 0.022 0.192 0.783 0.004 13.000
1.813 0.019 0.184 0.815 0.005 13.012
1.757 0.013 0.253 0.754 0.005 13.016

0.070 1.117 0.000 0.071 0.001 12.613
1.770 0.016 0.240 0.767 0.005 13.018
1.768 0.019 0.223 0.770 0.006 13.008
1.802 0.020 0.188 0.814 0.003 13.011

0.227 1.013 0.019 0.107 0.007 12.636
1.758 0.013 0.253 0.753 0.007 13.017
1.742 0.017 0.257 0.751 0.006 13.017
1.787 0.016 0.214 0.782 0.005 13.010

0.149 0.976 0.013 0.054 0.003 12.564
1.724 0.015 0.237 0.760 0.006 13.001
1.758 0.018 0.247 0.744 0.007 13.011
1.763 0.015 0.236 0.757 0.007 13.009
1.763 0.020 0.245 0.753 0.014 13.022
1.784 0.018 0.219 0.766 0.005 13.006

1.790 0.016 0.219 0.771 0.005 13.009
1.815 0.015 0.203 0.796 0.005 13.015
1.805 0.015 0.209 0.783 0.005 13.011
1.781 0.016 0.225 0.758 0.005 13.005
1.776 0.017 0.225 0.761 0.005 13.006
1.766 0.078 0.197 0.709 0.008 12.989

1.614 0.011 0.083 1.070 0.002 13.008

1.879 0.018 0.154 0.845 0.002 13.019

1.785 0.015 0.244 0.761 0.003 13.020

1.802 0.018 0.235 0.785 0.005 13.031

1.861 0.020 0.163 0.815 0.003 13.008

1.818 0.013 0.192 0.795 0.004 13.005
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1.762 0.019 0.238 0.736 0.007 13.002
1.888 0.029 0.135 0.835 0.003 13.007
1.822 0.018 0.183 0.789 0.005 13.000
1.817 0.021 0.194 0.784 0.005 13.006
1.811 0.021 0.186 0.804 0.005 13.009
1.823 0.022 0.187 0.791 0.005 13.007
1.800 0.017 0.234 0.766 0.007 13.022
1.883 0.015 0.139 0.861 0.002 13.015

1.779 0.020 0.233 0.772 0.004 13.018
1.768 0.067 0.238 0.724 0.008 13.022
1.767 0.030 0.244 0.736 0.006 13.013
1.833 0.023 0.202 0.791 0.006 13.022
0.108 0.479 0.037 1.457 0.001 13.023
1.797 0.058 0.229 0.713 0.038 13.035
1.810 0.021 0.225 0.787 0.005 13.030
1.852 0.022 0.185 0.844 0.005 13.039
1.834 0.022 0.197 0.866 0.005 13.054
1.786 0.019 0.235 0.783 0.006 13.028

1.777 0.025 0.253 0.780 0.006 13.041
1.842 0.019 0.204 0.817 0.005 13.036
1.832 0.017 0.212 0.807 0.004 13.032
1.831 0.020 0.197 0.819 0.005 13.029
1.797 0.020 0.229 0.794 0.006 13.033

1.793 0.014 0.231 0.762 0.007 13.015

1.831 0.019 0.208 0.825 0.006 13.040
1.827 0.019 0.204 0.841 0.005 13.043
1.833 0.024 0.202 0.823 0.005 13.037
1.934 0.019 0.120 0.902 0.002 13.035

0.097 1.046 0.003 0.085 0.001 12.592
1.787 0.017 0.242 0.780 0.006 13.032
1.810 0.020 0.216 0.794 0.006 13.025
1.782 0.020 0.237 0.776 0.004 13.025

1.784 0.015 0.235 0.755 0.006 13.012
1.797 0.026 0.229 0.748 0.006 13.013
1.813 0.018 0.226 0.788 0.006 13.031
1.801 0.019 0.209 0.784 0.005 13.013
1.815 0.033 0.197 0.802 0.001 13.020
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