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CHAPTER I

INTRODUCTION

Proposed land development raises concerns about risks to public health and 

safety and overall costs to society. Many of these concerns could be addressed by 

assessing the requirements of the proposed use and the capacity of the land to 

satisfy those requirements. Where discrepancies exist, potential conflicts, that 

result in increased building costs or property damage, may occur. The ability to 

predict potential conflicts between land use and land suitability may help minimize 

public risks and liabilities. This paper presents a method for predicting potential 

conflicts by comparing the intensity and location of projected land use with an 

analysis of land suitability.

Successful planning requires an evaluation of existing conditions before 

recommending options for future use. For this reason, suitability analysis are 

often conducted prior to developing community plans (Steiner 1991). The 

ultimate purpose of a land suitability analysis is to reduce potential conflicts by 

identifying land use constraints inherent to the landscape. A suitability analysis 

cannot, by itself, predict conflicts. Prediction requires both a knowledge of the 

future land use as well as an understanding of the ability of the land to provide 

for that use.
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A landscape may be predisposed to a particular use by virtue of a variety of 

factors including its history, adjacent land use, existing land use controls, and the 

demand for a particular use (Sedway 1988). These factors provide the elements to 

model the pattern and intensity of future use. Communities which have instituted 

land use controls, such as zoning, may have considered many of these factors 

before developing the zoning plan. For this reason, zoning can be an important 

element for predicting land use. Demand for a particular use is, in part, driven by 

the cost to develop that use (Sedway 1988). Development costs, therefore, are 

also important factors in modeling future land use.

The primary objective of this study is to predict conflicts between land 

suitability and future land use. A secondary objective is to evaluate the 

effectiveness of existing land use controls at protecting the public health and 

safety and minimizing overall costs to the community. The results of the study 

may be used to support or contest current zoning designations and provide 

rational for recommended changes.

The Rattlesnake Valley, a neighborhood in Missoula, Montana, was chosen for 

the study area because of its diverse landscape and unique regulatory status. The 

Rattlesnake Valley possesses a wide range of physical attributes that ensure a 

complete range of suitabilities will be represented. Furthermore, the study area is 

currently zoned for various levels of residential development but is still mostly
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Figure 1. Procedural flowchart for predicting conflicts between physical attributes 
and development potential.

undeveloped. All of these conditions are necessary to assess potential conflicts.

Figure 1 illustrates a general procedure for predicting potential conflicts 

between different levels of residential land use and ranks of land suitability in the 

Rattlesnake Valley. The technique compares the suitability of the land, based on 

certain construction requirements, to a modeled buildout of residential 

development. The result is an ordinal ranking of the potential conflicts.



CHAPTER II

BACKGROUND

An amendment to the Missoula Urban Comprehensive Plan for the 

Rattlesnake Valley was adopted by the City and the County of Missoula in 1988 

(City of Missoula 1988). The purpose of the plan was to establish community 

objectives and provide policy to guide neighborhood development. The plan 

describes the attributes and character of Rattlesnake Valley and assesses the need 

for public services and facilities. As a result of this assessment, thirteen goals and 

objectives for future development were identified. These goals and objectives call 

for preserving air and water quality, maintaining open space and wildlife habitat, 

enhancing both urban and natural forests, and improving traffic circulation and 

safety. Additionally, a system to monitor the continued effects of growth was 

requested. A  residential density cap of 5500 was also proposed based on the 

capacity of the main sewer line serving the area.

The lower Rattlesnake Valley is within City limits and has been zoned for 

moderate (four to six dwelling units per acre) density, single-family dwellings since 

1932. The upper and middle portions of the Valley were annexed into the City in 

1989. At this time, moderate to low density (less than four dwelling units per 

acre), single family residential zoning was applied. This interim zoning closely
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matched the zoning previously assigned to these lands while under the jurisdiction 

of the County. All interim zoning expired in June, 1992, leaving much of the 

study area unzoned.

In January, 1991, a citizen’s committee was formed to develop proposals for 

permanent zoning for the recently annexed lands, with the assistance of the 

Missoula Office of Community Development (OCD). A necessary part of this 

task was to update the 1988 Rattlesnake Valley Comprehensive Plan Amendment 

to reflect the change in jurisdictional boundaries and supplement resource 

information (City of Missoula 1992a). The resulting zoning proposal presented to 

the Missoula City Council in March, 1993, was based largely on the goals outlined 

in the updated Amendment. This zoning proposal attempted to adhere to the 

land-sensitive policy stated in the updated Amendment:

...future development in the Rattlesnake is not simply a numbers game.
The number of additional dwelling units to allow is only part of the equation 
in looking to guide future development. Future development should occur 
where it is most appropriate generally, and in a manner which is appropriate 
for the particular site conditions. Appropriate in this context means two 
thing: that the natural environment is protected, and that the public health, 
safety, and welfare are protected" (City of Missoula 1992).

In June, 1993, the Missoula City Council majority rejected the zoning proposal 

leaving much of the Rattlesnake Valley unzoned. Without a ratified zoning plan, 

subdivision and building applications must be reviewed according to their 

compliance with the goals of the 1992 Comprehensive Plan Amendment and 

previous County zoning designations.



The resource data compiled for the updated 1992 Comprehensive Plan 

Amendment is used in this study to establish land suitability. In unzoned portions 

of the study area, previous County zoning designations are applied for modeling 

development potential.

Study Area

The study area is approximately eight square miles and includes land 

administered by the City and County within the lowermost Rattlesnake watershed 

(Figure 2). This area was chosen because of its diverse physical characteristics 

which present various constraints to development. The area is sparsely populated 

and much of it was subdivided for future building. Excluded from the study area 

is the medium to high density residential development located on the valley 

bottom and lower hillsides. This exclusion divides the study area into two 

subareas: East Rattlesnake and West Rattlesnake.

Land Use

The most recent large-scale subdivision of land in the Rattlesnake was in the 

late 1980s when Entech, Inc. (formerly Sunlight Development Corporation, a 

subsidiary of Montana Power Company), sold its interest in 939 acres. Most of 

this land is privately owned and was subdivided into parcels ranging from 1 acre to
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80 acres. As of August, 1993, only three of these parcels have new construction. 

Montana Power continues to own the land beneath and adjacent to the 

Rattlesnake Dam, the westside substation, and several utility corridors. The City 

of Missoula, which owns approximately 352 acres of open space park land, is the 

largest landowner. Property boundaries within the study area are shown in Figure

3.

The primary land use in the Rattlesnake Valley is single family housing. In 

addition, there are several duplexes, apartment buildings, schools, churches, group 

homes, and a nursing, home. None of these institutions is within the study area. 

Most of the residential development is confined to the valley bottom, although a 

few subdivisions are situated on lower hillslopes. In the early twentieth century 

the valley was used for hunting and fishing by the local residents, and later for 

agricultural purposes (Poe and Poe 1992). Horse, cattle, and llama grazing is the 

dominant agricultural use today.

Approximately ninety percent of the study area can be classified as 

undeveloped open space. The development ’’rights" of some of the open space 

lands are owned by the City of Missoula or have been transferred to land trusts 

(City of Missoula 1992a). The majority of this open space is privately owned, and 

because of current zoning, may be urbanized.
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Physical Setting

The Rattlesnake Valley is located on the northeast edge of the Missoula 

Valley. Within the study area, the valley trends north-south and is approximately 

four miles long. Rattlesnake Creek flows through the middle, from north to 

south. Fifteen hundred feet north of the confluence of Rattlesnake Creek and the 

Clark Fork River the valley bottom is approximately two thousand feet wide. The 

adjacent hillslopes are underlain by shallow bedrock and rise steeply from glacial 

outwash and alluvial terraces. The valley expands to approximately one mile wide 

approximately one and one half miles north of the south entrance. The hillslopes 

at this point are gentle to moderately steep, and the material consists of 

unconsolidated clay-rich sediments. One mile north of the widest part, the valley 

narrows, and is again confined on both sides by steep bedrock.

Mid-elevation south-facing hillslopes are dominantly open grasslands. Douglas 

firs dominate north-facing slopes and higher elevations. Remnant native 

vegetation on the valley bottom consists of ponderosa pine, black cottonwood, and 

a wide variety of riparian shrubs, forbes, and sedges (Habeck 1984).

Topography

The south quarter of the East Rattlesnake is dominated by Mount Jumbo.

The mountain is gently rounded and rises abruptly from the valley bottom at 

approximately 3400 feet to its highest point of 4768 feet in less than 3000 

horizontal feet. Slopes are generally greater than 40 percent along the north, 

south, and west faces. Mount Jumbo is separated from a steep north-south
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trending ridge to the north by a low, nearly flat saddle. The lowest point of the 

saddle is approximately 4000 feet. North of the saddle, a ridge rises steeply to an 

elevation of 4800 feet, the highest point in the study area. The west-facing slopes 

of this ridge are greater than 30 percent. Woods Gulch, Danny O’Brien Gulch, 

and numerous smaller east-west trending drainages dissect the East Rattlesnake.

The West Rattlesnake is characterized by more numerous hills and irregular 

topography. The southwest portion is divided into two, parallel, north-south 

trending hills, collectively referred to as Waterworks Hill. These hills are similar 

to Mount Jumbo because they also rise steeply from the valley bottom at slopes of 

35 to 40 percent. The crests of these hills are relatively flat, and reach elevations 

of 3600 to 3800 feet. The two hills coalesce approximately one mile north of the 

south study area boundary. At this point there is an abrupt transition from a 

steep hillside to a gentle bowl-like feature which dominates the middle portion of 

the West Rattlesnake. The bowl is approximately a mile and a half wide, north to 

south, and one mile wide east to west. It is bounded by steep slopes on the north 

and south sides. East to west, the slopes rise gently and are characterized by low 

north-south trending ridges and broad drainages. Slopes range between 0 to 15 

percent in this area. North of the bowl, the topography steepens abruptly. The 

northwest portion rises to a elevation of 4700 feet, and then drops rapidly to the 

elevation of Sawmill Gulch, about 3800 feet. The topography in this area is 

irregular and forms numerous, small bowl-like depressions separated by narrow 

ridges. Locations and names of geographic features are shown on the overlay to
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Figure 2 (Figure 2a).

Elevations were obtained from the U.S. Geological Survey Missoula Northeast 

and Missoula Southeast 7.5 minute topographic maps. The elevation contours 

within the study area were digitized and the slope was calculated using IDRISI, a 

raster-based geographic information system. A map portraying the study area 

divided into three slope classes is shown in Figure 4. Class boundaries are based 

on engineering constraints recognized by state and local health and building codes 

(City of Missoula 1992b, City and County of Missoula, 1991).

Geology

Bedrock geology in the Rattlesnake Valley was mapped by the U.S. Geological 

Survey (Nelson and Dobell 1961) and surface geology by Van der Poel (Van der 

Poel 1978). Both maps are consistent in their overall interpretation of the 

geologic events of the Rattlesnake watershed.

Bedrock consists of Precambrian metasediments which outcrop and form talus 

slopes on the steep sides of Mount Jumbo and Waterworks Hill. These rocks 

belong to the Belt Supergroup, a regional rock unit consisting of weakly 

metamorphosed clastic and carbonate sediments. Regional thrust faulting and 

recurrent normal and strike-slip faulting displaced the Precambrian sediments 

during the late Cretaceous and early Tertiary periods (McMurtrey, Konizeski, and 

Brierkrietz 1965). During the Tertiary, sediments derived from local bedrock and 

volcanic ash from distant sources filled the existing valleys. These sediments 

overlie bedrock on portions of Mount Jumbo and Waterworks Hill and were



Figure 4. Slope Classification, Rattlesnake Valley.
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involved in most of the landslides found in the study area. Some landslides are 

interglacial and probably occurred between the recurrent filling and draining of 

Glacial Lakes Missoula. Horizontal benches of reworked littoral gravels, visible 

on the west slopes of Mount Jumbo are also vestiges of periodic Lake stands. 

Glacial outwash forms the uppermost terrace in the valley bottom, within which 

more recent alluvial terraces have been developed. The youngest alluvia consist 

active floodplain and fan deposits at the mouths of steep gullies.

A map of surface geology is presented in Figure 5. Geologic structural 

elements have been omitted because there is insufficient data to evaluate the 

significance of faulting and bedding plane attitude with regard to land use 

suitability. The map units relevant to the suitability analysis are:

Qal - Quaternary alluvial deposits. These are composed of locally derived, well 

to poorly sorted, unconsolidated gravel, sand, and silt transported by recent 

fluvial activity. These sediments are confined to lower alluvial terraces and 

floodplains.

Qc - Quaternary colluvial deposits. These accumulations of angular-to-

subrounded rock fragments form moderately thick (up to 20 feet) deposits 

of regolith. The material is locally derived, either from Tertiary deposits or 

from debris accumulated at the base of Belt outcrops. These deposits are 

found primarily on hilltops and slopes.
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Qf - Quaternary alluvial fan deposits. Fan deposits consist of unconsolidated 

silt, sand, gravel, cobbles, and boulders and occur at the mouths of gullies 

and high gradient streams. The material is locally derived from Tertiary or 

pre-Tertiary sediments. Alluvial fans are generally conical in cross-section 

and map view and typically overlie or interfinger with the uppermost glacial 

outwash terraces.

Qls - Quaternary landslide deposits. Landslides are composed of highly variable 

material derived from Tertiary sediments. Most of these features 

developed during interglacial periods (15,000 - 2,000 years ago) and were 

probably facilitated by saturation of the clay-rich fraction within the failed 

mass. The most significant paleoslide underlies the entire middle portion 

of the West Rattlesnake. The main scarp parallels the west watershed 

boundary and numerous north-trending transverse ridges and swales can be 

identified throughout the slide. Numerous smaller slumps and earthflows 

have been mapped within the Tertiary sediments and some within older 

slides.

Qat - Quaternary alluvial terrace deposits. Unconsolidated deposits of gravel, 

sand, and silt comprise these paleoalluvial deposits. The terraces form 

narrow and discontinuous benches approximately 10 to 50 feet above the 

active stream channel.
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Qo - Quaternary outwash deposits. Poorly-to-well sorted cobbles, gravel, and silt 

cover the uppermost alluvial surface of the valley bottom. These deposits 

were laid down by glacial meltwater and typically retain braided channel 

features on their surfaces.

Tu - Tertiary deposits, undifferentiated. These basin fill deposits consist of

sandstone, siltstone, shale, conglomerate, with some intercalated coal and 

ash beds. Compositionally, these deposits are highly variable both laterally 

and horizontally, and often are contorted by landslides and faulting. The 

shales typically contain expandable, montmorillonite clays derived from 

volcanic ash. Tertiary deposits cover some of the mid-elevation hillsides 

such as the saddle of Mount Jumbo and portions of Waterworks Hill.

Pt - pre-Tertiary deposits, undifferentiated. Precambrian metasediments

comprise the bedrock formations in the Rattlesnake watershed. These 

formations are part of the Belt Supergroup and are composed primarily of 

red and green argillites, grey to tan calcareous siltstone, and pink to tan 

quartzites. These rocks outcrop on Mount Jumbo and the ridge north, on 

Waterworks Hill and at higher elevations in the northwest portion of the 

study area. Also included in this mapping unit are narrow dikes of mafic 

intrusive found near the top of Mount Jumbo.



Soil Classification

Soil series for the study area were mapped by the U.S. Soil Conservation 

Service (1983). The series were subclassified into twenty-one map units according 

to the average percent slope or slope aspect.

Map units are classified into three types. Monotaxic units, or units with one 

major soil series, are characterized by at least 85 percent coverage of soil with 

similar profile characteristics (Dutton 1981). These units include the Bigarm, 

Bignell, Grantsdale, Moiese, Repp, Totelake, and Winkler series. The Mitten- 

Tevis and the Bigarm-Rock associations, which are found on the steeper slopes of 

the study area, are classified as complexes. A complex contains two or three 

major soil series in which individual series have similar properties but occur at a 

scale too small to map accurately. The Argiborolls-Haploborolls complex is 

considered a special mapping unit because the two soil series are very dissimilar, 

yet are sufficiently intermixed within a small area that mapping individual units is 

difficult. A map of soil classes is shown in Figure 6, and the following 

descriptions correspond to the general map units.

Argiborolls-Haploborolls complex. This unit is about 50 percent Argiborolls and 

40 percent Haploborolls. Argiborolls developed from Tertiary sediments, 

and the texture varies considerably. These soils occur on gently-sloping
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foothills. The surface layer is typically gravelly loam to very gravelly silt 

loam. The subsoil may be extremely gravelly clay loam to entirely clay.

The clay exhibits high shrink-swell potential. Permeability is very low to 

moderate and runoff is slow. Runoff rates increase with increasing slopes.

Haploborolls are generally more coarsely textured, although 

compositionally extremely variable. The surface layer is composed of 

gravelly loam to very gravelly silt loam. Subsurface material is typically 

gravelly loamy sand to extremely gravelly loam. Permeability of these soils 

is moderate to very high and runoff is slow. Runoff rates increase as 

slope increases.

Bigarm gravelly loam. This soil derives from alluvium and colluvium, and is very 

coarsely textured. This unit occurs on the lower elevation foothills in the 

study area. The surface layer is typically a gravelly loam about 15 inches 

thick. The subsoil is gravelly sandy loam to extremely gravelly loamy sand. 

Permeability of these soils is high because they are very porous. Runoff 

rate is generally slow although it increases rapidly as slope increases.

Bigarm-Rock outcrop complex. This soil is found on the steep west slopes of

Mount Jumbo. The map unit is approximately 70 percent Bigarm gravelly 

loam and 15 percent Rock outcrop. The soil develops from colluvium 

composed of Precambrian argillite and quartzite. The Rock outcrops are 

argillite and quartzite. Permeability is moderately high and runoff rate is 

rapid.
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Bignell gravelly loam. This soil, found in the northwest quarter of the study area, 

derives from a mixture of Tertiary sediments and glacial till. Surface 

material is generally decomposed forest litter underlain by gravelly loam. 

The subsoil is very gravelly clay. The soil has been mapped on slopes 

greater than eight percent. Permeability is moderate and runoff rate is 

medium.

Grantsdale loam. A very small portion of the central West Rattlesnake is covered 

by this soil, which is developed from alluvium. The upper surface is loam 

grading into extremely gravelly loamy sand at depth. Permeability is high 

and runoff rate is slow.

Mitten-Tevis complex. This map unit occurs in the northeast portion of the study 

area, generally along steep drainage slopes. Forty-five percent of the unit 

is Mitten gravelly silt loam and 34 percent is Tevis gravelly loam. The 

Mitten series forms in colluvium derived from Precambrian argillite and 

quartzite. The surface horizon has a high component of volcanic ash. 

Subsurface material ranges from very gravelly sandy loam to extremely 

gravelly sandy loam. Permeability is moderately high and runoff rate is 

rapid due to the steepness of slope.

The Tevis series also derives from clastic bedrock. Surface material is 

gravelly loam, and subsurface material grades from very gravelly sandy loam 

to extremely gravelly sandy loam. Permeability of this soil is also 

moderately high and runoff rate is rapid.
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Moiese gravelly loam. This alluvial soil is found on alluvial and fans above the 

active Rattlesnake Creek floodplain. The surface material is very gravelly 

sand loam which grades to extremely gravelly loamy sand and extremely 

gravelly sand at depth. Permeability is very high and runoff rate is slow.

Repp very gravelly loam and Repp very gravelly loam, cool. These two map units 

are distinguished primarily by slope aspect. The cool variant occurs on the 

north-facing slopes of the Sawmill Gulch drainage in the northeast portion 

of the study area. The south-facing slopes of the drainage are underlain by 

warmer, drier soils. These soils are develop over limestone and calcareous 

argillite bedrock. They grade from primarily very gravelly loam at the 

surface to extremely gravelly loam at depth. Both units exhibit similar 

hydrologic properties; permeability is moderate and runoff rate is rapid.

Totelake gravelly loam. This soil, derived from alluvium and glacial outwash, is 

situated on the first terrace above the active floodplain. It has a very 

coarse texture which grades from gravelly loam at the surface to extremely 

gravelly loamy sand at depth. Permeability is moderately high to high and 

runoff rate is slow due to slope.

Winkler very gravelly sandy loam, gravelly sandy loam and gravelly loam, cool. 

These map units are variants of a coarsely textured soil derived from 

Precambrian argillite and quartzite. Typically, they are found on steep 

forested slopes. The surface horizons are primarily gravelly sandy loam 

grading to extremely gravelly sandy loam at depth. Permeability in all these
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soils is high and runoff rates are rapid.

A gravel pit was mapped in the lower southwest portion of the study area.

This unit, designated G.P., was omitted from the suitability analysis.



CHAPTER III

SUITABILITY ANALYSIS

Suitability analysis is the process by which the intrinsic character of the land is 

evaluated with regard to providing for a specific use (Steiner 1991). In the case of 

this study, the use is residential housing, which requires certain conditions for 

construction, specifically, level building sites, adequate drainage, and stable 

foundation conditions. The selection of physical criteria to evaluate suitability is 

based on the degree to which they influence construction conditions. The three 

physical attributes analyzed for suitability are slope, drainage, and slope stability.

Suitability ranks provide a rough estimate of anticipated development costs 

and health and safety risks (Steiner 1991). In general, the less suitable the site, 

the greater the expense required to adapt to its physical limitations. Steep slopes, 

for example, require extensive cutting and filling or elaborate engineering design. 

Unstable foundation conditions may cause structural problems resulting in high 

maintenance and repair costs.

Methods

The method used to assess suitability follows procedures described by McHarg 

(1969), the U.S. Geological Survey (Laird and others 1979), and the U.S. Soil 

Conservation Service (1975). These techniques share the same initial procedures
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which were summarized by Hopkins (1977):

1. Identify land use;
2. Establish relationship of land use to physical attributes;
3. Map physical attributes;
4. Rank physical attributes related to land use requirements;
5. Combine ranked physical attributes according to established criteria
for suitability; and
6. Rank the results of the combination to express a range of suitabilities.

Data Collection 

Map Data Entry

Soil, geology, and elevation data were initially digitized using ROOTS, a 

digitizing program developed by the Laboratory for Computer Graphics and 

Spatial Analysis, Harvard University Graduate School of Design (ROOTS, Rel. 1). 

These data were originally compiled on paper base maps for the Rattlesnake 

Valley Comprehensive Plan Amendment Update (City of Missoula 1992a). All 

maps were registered to a 16,200 by 26,600 foot cartesian grid for digitizing. Grid 

coordinates were later converted to grid cell positions during the rasterizing 

process.

The digitized vector images were exported to IDRISI, a raster-based 

geographic information system developed by Clark University, Graduate School of 

Geography (IDRISI, Ver. 4.0). Vectors were converted to raster images, a 

process by which numeric values representing a vector feature are assigned to a 

grid cell. Each grid cell measures 100 feet by 100 feet or 10,000 square feet, an 

area which may reasonably be occupied by a single house and surrounding living
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space.

Slope data were developed by first transforming the vector elevation contours 

into a digital elevation model (DEM) using the interpolation algorithm in IDRISI. 

The DEM was then used to calculate slope. Slope data are presented as 

percentages and are subdivided into three classes.

Database Development

Databases for both the soil and geology attributes were compiled in Quattro 

Pro, a commercial spreadsheet program (Quattro Pro, Ver. 4.0). Database files 

were exported as dBase files (dBase IV, Ver. 2.0), a format compatible with 

IDRISI. These database files are linked to map features by a unique identifier 

code.

The soil database contains twenty-one records which are classified and ranked 

according to permeability rate, runoff rate, and presence of expandable clay. The 

eight geologic map units were subdivided and ranked based on landslide criteria.

Data Analysis 

Slope

Slope is a key factor in determining suitability for residential development.

With other factors held constant, the greater the slope, the more site preparation 

is required (Uniform Building Code 1988). Building on steeper slopes also poses 

a greater health and safety problem than developing more gentle slopes because 

of the potential for effluent seepage (Dutton 1981). The Missoula City and
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County Health Code restricts housing development on slopes greater than 25 

percent by prohibiting on-site septic systems (Missoula City and County 1991). 

Slopes 16 percent to 25 percent are recognized as problematic because of special 

engineering designs required for stabilization. Slopes less than 15 percent are 

generally considered acceptable for residential development without restrictions 

(Uniform Building Code 1988).

Slope classes were determined based on local building and health code 

criteria. Relative suitability ranks were assigned to each class. These ranks 

consider the constraints imposed on development because of slope. The highest 

suitability rank is applied to areas with the lowest slopes. The ranks were then 

converted to numeric values in order to manipulate them mathematically. The 

resulting values provide an ordinal classification of the appropriateness of the land 

for residential development. Table 1 lists the relationship between slope class, 

suitability rank and associated numeric value.

Table 1 .- Suitability ranking for slope.

SLOPE CLASS SUITABILITY RANK NUMERIC VALUE

>25% Poor 1
16 - 25% Marginal 2
0 - 15% Good 3

Figure 7 portrays suitability ranks for the study area based on slope.
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Drainage

Drainage refers to the removal of surface and shallow subsurface water from a 

building site. Ideal on-site conditions would permit rapid percolation of 

subsurface water and removal of surface water through rapid runoff. The 

significant factors involved in assessing drainage conditions are soil permeability 

rates, runoff rates, and depth to groundwater (Dunne and Leopold 1978). 

Permeability and runoff rates are a function of soil structure, depth, texture, slope, 

and aspect. Depth to the water table was not factored into the analysis because 

soil profiles in the study area are rarely saturated.

The drainage attributes of each soil map unit were ranked by the SCS (1983) 

in relative descriptive terms such as "slow", "moderate", and "rapid". Each map 

unit was thus assigned a single descriptor for runoff and permeability rates. The 

Argiborolls-Haploborolls complex, however, presented a problem for 

interpretation because it exhibits properties at both ends of the ranking scale. In 

this case, only the lowest ranks, or the least favorable ranks, were considered for 

suitability analysis. This conservative approach ensures that suitability is based on 

the worst case scenario given the available data.

The ranks were converted to numeric equivalents for purposes of combining 

the attribute values. A value of one is considered least favorable and three is 

considered most favorable. Table 2 lists the ranking for permeability and runoff 

rates for each map unit and the corresponding numeric values.
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Soil Map Unit Permeability Numeric
Value

Runoff Numeric
Value

A rg ib o ro lI -H a p lo b o ro lI  Complex 0-4% slow to  f a s t 1 slow 1
A rg ib o ro l l -H ap lo b o ro l l  Complex 4-15% slow to  f a s t 1 slow 1
A rg ib o ro lI -H ap lo b o ro lI  Complex 15-30% slow to  f a s t 1 slow 1
A rg ib o ro l l -H ap lo b o ro l l  Complex 30-60% slow to  f a s t 1 slow 1
Bigarm g r a v e l ly  loam, 0-4% moderate 2 slow 1
Bigarm g r a v e l ly  loam, 4-15% moderate 2 medium 2
Bigarm g r a v e l ly  loam, 15-30% moderate 2 medium 2
Bigarm g r a v e l ly  loam, 30-60% moderate 2 ra p id 3
Bigarm Rock o u tc ro p  Complex, 30-60% moderate 2 ra p id 3
B ig ne l l  g r a v e l ly  loam, 8-30% slow 1 medium 2
G ran tsd a le  loam, 0-2% f a s t 3 slow 1
M it ten -T ev is  Complex, 30-60% f a s t 3 rap id 3
Moiese g r a v e l ly  loam, 0-2% f a s t 3 slow 1
Repp very  g r a v e l ly  loam, 30-60% moderate 2 ra p id 3
Repp very  g r a v e l ly  loam, c o o l ,  30-60% moderate 2 ra p id 3
T ote lake  g r a v e l ly  loam, 2-8% f a s t 3 slow 1
Winkler v e ry  g r a v e l ly  sandy loam, 8-30% f a s t 3 medium 2
Winkler very  g r a v e l ly  sandy loam, 30-60% f a s t 3 ra p id 3
Winkler v ery  g r a v e l ly  sandy loam, coo l ,  

8-30%
f a s t 3 medium 2

Winkler very  g r a v e l ly  sandy loam, coo l ,  
30-60%

f a s t 3 rap id 3

Suitability ranks for drainage were calculated by summing the rank values for 

permeability and runoff rates. The resulting values ranged from two to six. The 

range was divided into three suitability ranks. Each rank was reassigned a final 

numeric value. The relationship of summed values, suitability ranks and final 

numeric values is shown in Table 3.

Table 3 -- Suitability rankings for drainage.

PERMEABILITY + RUNOFF SUITABILITY RANK NUMERIC VALUE

2-3 Poor 1
4 Marginal 2
5-6 Good 3

The suitability ranks for drainage are portrayed in Figure 8.
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Slope Stability

Slope failure refers to the instantaneous downslope movement of earth 

material that is driven primarily by gravity (Brooks and others 1991). Slope 

stability implies a resistance to earth movement. The U.S. Geological Survey 

(USGS) has identified four major factors responsible for common types of slope 

failures such as landslides, earth flows, slumping and rock falls. The factors are 

(1) the nature of the underlying bedrock or unconsolidated deposit, (2) the angle 

of slope, (3) rainfall, and (4) the presence of older landslide deposits (Nilson and 

others 1979). Each of these factors, except for rainfall, were evaluated in the 

study area to determine slope stability suitability. The amount of rainfall was 

treated as constant throughout the study area and was not factored in the ranking 

scheme.

Geologic attributes were ranked, on a nominal scale, for the presence of older 

landslides. Landslide deposits were mapped by the USGS (Nelson and Dobell 

1961) and Van der Poel (1978) within the study area. A numeric value of one was 

assigned to landslide deposits and zero for non-landslide deposits.

The nature of the underlying material was determined from both geologic and 

soil attributes. Geologic units known to be susceptible to slope failure, yet still 

stable, were given a value of one, and the remaining deposits were assigned a 

value of zero. Susceptibility was based on whether landslides were documented in 

the same geologic units outside the study area. Landslide susceptibility of local 

geologic units are referenced in McMurtrey and others (1965), Nelson and Dobell
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(1961), Van der Poel (1978), and Weber (1978).

Soil map units were given a value of one if expandable clays were identified as 

a significant attribute of that unit by the Soil Conservation Service. Expandable 

clays contribute to slope failure potential because of their ability to retain water. 

Water adds weight, decreases friction, and raises the internal pore pressure 

(Nilson and others 1979). This combination of factors greatly reduces the ability 

of the material to resist gravitational stress. Tables 4 and 5 list the rank values for 

geology and soil attributes.

Table 4 -  Geologic map units ranked for landslide attributes.

Geologic Map Unit Landslides
Present

Numeric
Value

Landslide
Susceptibility

Numeric
Value

Quaternary alluvial deposits no 0 no 0
Quaternary fan deposits no 0 no 0
Quaternary colluvium deposits no 0 no 0
Quaternary alluvial terraces no 0 no 0
Quaternary outwash deposits no 0 no 0
Quaternary landslide yes 1 yes 1
Tertiary undifferentiated yes 1 yes 1
Pre-Tertiary deposits. no 0 no 0

Table 5 -- Soil map units ranked for presence of expandable clays.

Soil Map Unit Expandable Clays Numeric Value
_______________________________________ Present_____________________________

Argiboroll-Haploboroll Complex 0-4% yes 1
Argiboroll-Haploboroll Complex 4-15% yes 1
Argiboroll-Haploboroll Complex 15-30 yes 1
Argiboroll-Haploboroll Complex 30-60% yes 1
Bigarm gravelly loam, 0-4% no 0
Bigarm gravelly loam, 4-15% no 0
Bigarm gravelly loam, 15-30% no 0
Bigarm gravelly loam, 30-60% no 0
Bigarm Rock outcrop Complex, 30-60% no 0
Bignell gravelly loam, 8-30% yes 1
Mitten-Tevis Complex, 30-60% yes 1
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Table 5 -  Continued 

Soil Map Unit Expandable Clays 
Present

Numeric Value

Grantsdale loam, 0-2% no 0
Moiese gravelly loam, 0-2% no 0
Repp very gravelly loam, 30-60% no 0
Repp very gravelly loam, cool, 30-60% no 0
Totelake gravelly loam, 2-8% no 0
Winkler very gravelly sandy loam, 8-30% no 0
Winkler very gravelly sandy loam, 30-60% no 0
Winkler very gravelly sandy loam, cool, no 0

8-30%
Winkler very gravelly sandy loam, cool, no 0

30-60%

Ranks for landslide susceptibility, landslide occurrence, and the presence of 

expandable clays were summed for each map grid cell. The sum of these 

attributes were then weighted according to the slope class in which they occur. 

Weighting was accomplished by multiplying the sum of the rank values by the 

numeric value of the slope class in the corresponding grid cell. The relationship 

between slope angle and slope stability is a function of the sine of the slope angle 

(Carson and Kirkby 1972). As slope increases, the ability of material to resist 

gravity decreases. The intent of this weighting scheme is to reflect this 

relationship between slope angle and slope stability. The resulting values ranged 

between zero and twelve. The range of values were reclassed to reflect three 

suitability ranks for slope stability. The suitability ranks were finally assigned a 

corresponding numeric value. Table 6 lists the range of combined attribute values, 

the corresponding suitability rank and the final numeric value.
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Table 6 -  Suitability ranking for slope stability.

ATTRIBUTE COMBINATION VALUES SUITABILITY RANKS NUMERIC VALUES

2-3 Poor 1
4 Marginal 2
5-6 Good 3

Figure 9 presents the suitability map for the study area with regard to slope 
stability.
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CHAPTER IV

RESIDENTIAL BUILDOUT MODEL

Models are decision-making tools for land use planning (Kilbridge, O’Block, 

and Teplitz 1970). Land use models typically attempt to predict future use based 

on some prevailing theory. A theory simplifies reality by using a few dominant 

factors to predict outcome (Hammond and McCullagh 1989). The pattern and 

density of residential growth may be predicted by analyzing key factors that favor 

expansion, or buildout, from established urban centers. The buildout model 

described in this study assumes that residential development in the Rattlesnake 

Valley depends on two primary variables, the cost of building and allowable 

density. It differs from other land use models in that it does not attempt to 

predict whether or not residential development will occur. Instead, the buildout 

model assumes that development will occur. The main function of this model is 

to predict the location and intensity of that development.

The criteria used to estimate building costs and allowable densities were 

selected because both are measurable and spatially defined. Many factors, such as 

personal preference of construction materials, size, and view, contribute to the 

cost of building but are not predictably quantifiable. These were not considered 

in the analysis. Similarly, densities may be dictated by unpredictable factors such
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as future subdivisions or planned unit developments. Because of this 

unpredictability, only existing landownership was evaluated. As important as 

measurable qualities are, it is also necessary that they be expressed geographically. 

Geographically-oriented information permits spatial analysis and map portrayal.

Estimating Relative Cost 

The buildout model assumes that the relative cost of building a single family 

dwelling in the study area may be influenced by three principle factors; 1) 

proximity to roads, 2) slope percent, and 3) floodplain designation. All other 

factors, such as dwelling size and material costs, were held constant. The model 

assumes that the construction cost to a homeowner is least when the unit is built 

adjacent to a road or right of way. This assumption derives from the observation 

that existing infrastructure tends to promote development, an argument used 

extensively in growth management strategies (Mantell and others 1990).

The second assumption is that it costs less to build on level ground than on 

steep ground. Even on slopes greater than 25 percent, building is not entirely 

prohibited, it merely becomes more expensive to comply with the building codes 

and regulations. Special engineering designs require additional time and materials 

to construct, as do required off-site sewage disposal systems. Similar cost 

constraints hold true for floodplain designations. In the City of Missoula and 

Missoula County, floodplain development is allowed, but it is extremely costly to 

comply with the floodplain regulations. Property owners must demonstrate that 

structures will not significantly increase flood velocities or depths or alter stream
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courses (City of Missoula, 1991).

Proximity to roads was calculated by digitizing existing roads and rights of way 

within the study area and converting the vectors to a raster image. The distance 

of each grid cell from the nearest road was then calculated. Finally, the distances 

were divided into four classes based on quarter-mile intervals. Each class was 

assigned a numeric value. Slope percent values were also divided into four classes 

and a numeric value was assigned to each class. Table 7 lists the classification for 

distance to roads and slope and the corresponding numeric values for each class.

Table 7 -- Road distance and slope classification.

RO AD DISTANCE CLASS NUMERIC VALUE SLOPE CLASS NUMERIC VALUE

0 - .25 mile 4 o 00 $ 4
.26 - .50 mile 3 9 - 15% 3
.51 - .75 mile 2 16 - 25% 2
>.75 mile 1 >.25% 1

Relative costs of building were estimated for each grid cell by combining the 

values of each criterion class. A matrix was constructed to determine the range of 

values possible by multiplying the numeric value of the road distance class with 

the numeric value of the slope class. The values ranged from 1 to 16. This range 

was divided into three classes, and each class was assigned a rank reflecting the 

relative cost of building. Areas designated as 100-year floodplain by the U.S. 

Federal Emergency Management Agency (1988) were assigned the highest cost 

rank. Figure 10 shows the study area ranked on the basis of relative cost of 

building.
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Estimating Allowable Density 

Allowable density refers to the number of dwelling units per acre permitted 

within a residential zoning district (Kelly 1988). The study area is composed of 

seven zoning districts, each with its own density allocation. The majority of the 

study area lies within a C-Al designation, which permits 1 dwelling unit per forty 

acres. Table 8 lists the zoning districts and the allowable densities. A zoning map 

is presented in Figure 11.

Table 8 -- City and County zoning applied to the Rattlesnake Valley and
corresponding density values.

Zone Description (Jurisdiction) Allowable density Density Value (dwelling unit/acre)

RR-1 Urban Residential (City) Five dwelling units/acre 5
R 'l Urban Residential (City) Four dwelling units/acre 4
C-RR3 Suburban Residential (County) Four dwelling units/acre 4
C-RR2 Suburban Residential (County) Two dwelling units/acre 2
C-RR1 Suburban Residential (County) One dwelling unit/acre 1
C -Al Resource Land (County) One dwelling unit/forty acres .025
P-l Parks and Open Space (City) No development allowed 0

Allowable densities were calculated on a per-property basis by multiplying the 

acreage of each property by the corresponding density value for the zoning district 

in which that property occurs. The resulting dwelling unit value represents the 

number of dwelling units that could be built on the property. Because a grid cell 

measures 10,000 square feet, approximately the size of a typical single family 

house and surrounding living space, a single grid cell corresponds to a single 

dwelling unit. The number of dwelling units that could be constructed on a
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property is represented by the same number of grid cells.

The final step in the allowable density calculation was to determine the 

probability that a dwelling unit would be built in a each grid cell. Probabilities for 

every grid cell in each property were calculated by dividing the number of grid 

cells in a particular property which could be developed (n) by the total number of 

grid cells in that property (N). The resulting probabilities provide an index 

indicating the likelihood that residential development will occur based on 

allowable densities (n/N). The probabilities ranged from 0.1 percent to 100 

percent. These values were further subdivided into three density probability 

ranks; high, medium and low. Figure 12 shows the density probability ranks for 

individual properties in the study area. Property owned by Montana Power 

Company, Mountain Water Company, and the City of Missoula were assigned a 

zero density probability. Fully developed properties which are partially overlapped 

by the study area were also assigned a zero density probability.

Estimating Development Potential 

To complete the buildout model, the relative cost values for each grid cell 

were multiplied by the corresponding density probability values. The resulting 

values ranged from one to nine. This range was then divided to create three 

ranked classes of development potential. Values of one or two, represent a 

situation where both buildout factors are ranked low or one is ranked low and the 

other moderate. This corresponds to a low development potential. A moderate 

development potential results when both factors rank moderate or one is low and
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the other is high. The highest development potential results when at least one 

factor is ranked high and the other moderate or both factors are ranked high. 

Figure 13 shows the study area ranked for development potential.
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CHAPTER V

PREDICTING POTENTIAL CONFLICTS

The term suitability implies a compatibility between land and its corresponding 

use. The highest rank of suitability infers that the land can accommodate, without 

negatively affecting public health and safety or increasing building costs, the 

greatest intensity of the proposed use. Alternatively, a low ranking of suitability 

implies the greatest potential for negative consequences or conflicts. In order to 

assess the potential for conflicts, projected land use must be compared with land 

suitability.

Ranks of development potential generated by the buildout study for each grid 

cell represent the intensity of projected residential land use. The numeric values 

for development potential ranks were compared, grid cell by grid cell, with the 

numeric values for the three suitability maps. Assessment of conflict potential was 

based on this comparison. The criteria by which conflict potential was determined 

were:

No conflict potential: - Areas where no development is projected.

Low conflict potential: - Areas in which suitability is good and
development potential is high, medium or low, or 
- Areas in which suitability is marginal but 
development potential is low.

Moderate conflict potential: - Areas in which suitability is marginal and
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development potential is moderate, or
- Areas in which suitability is poor and 
development potential is low.

High conflict potential: - Areas in which suitability is poor and
development potential is moderate or high, or
- Areas in which suitability is marginal and 
development potential is high.

Map comparison was performed using the cross-tabulation function in IDRISI. 

The grid cell values of one map were compared to those in a second map and a 

third map was produced in which a unique numeric value was assigned to each 

possible combination. The resulting combination values represent the conflict 

criteria described above. The final step in estimating conflict was to subdivide the 

range of combination values into three ranks. Results of the cross-tabulation for 

each suitability analysis are provided in Appendix A.

Discussion of Results

Slope

A map ranking potential conflicts between slope suitability and development 

potential is presented in Figure 14. The map shows that only moderate potential 

conflicts exist in most of the study area. This result is misleading because much of 

the area is underlain by slopes 25 percent or greater. Slopes this great were 

previously classified as poorly suited for residential use. The final output for the 

potential conflict, however, takes into account the corresponding low development 

potential. According to the rules outlined above, areas in which slope suitability is
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poor but development potential is low are ranked moderate.

The remaining portion of the study area is ranked low for potential conflicts. 

This indicates that these areas are ranked good (0-15 percent) for slope suitability 

at any level of development potential, or ranked marginal (15 - 25 percent) at low 

development potential.

Drainage

Most of the study area is underlain by soil units which produce moderate to 

rapid runoff and are highly to moderately permeable. These conditions typically 

provide adequate drainage. The exceptions are clay-rich soils derived from 

Tertiary sediments. The clay content in these soils, coupled with the low slopes 

on which most occur, cause these areas to be poorly drained. These soils tend to 

be present in areas ranked moderate to high for development potential. 

Consequently, the potential for conflict is high. Ranking for potential conflict 

between drainage suitability and development potential is shown in Figure 15.

Slope Stability

Potential conflicts are indicated within areas underlain by existing landslides or 

by material susceptible to failure. The conflict is greatest where these conditions 

exist and slopes exceed 25 percent. The conflict potential also reflects the high 

development potential for these areas. As with drainage, there is a strong 

negative correlation between slope stability suitability and development potential. 

Consequently, the potential for conflicts is great in some areas. Figure 16 shows
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the ranking for potential conflict between lands ranked for slope stability 

suitability and development potential.

Interpretation

Current zoning will permit high density development in some areas that are 

marginally or poorly suited for residential use. The building costs incurred by 

developing these areas are anticipated to be high relative to the costs of building 

in other areas. Similarly, the risk to public health and safety is increased.

Many suitable sites exist within the study area which have the capacity to 

provide level building sites, adequate drainage, and stable foundation conditions, 

but few offer the advantage of all three. Some sites, which emerge as appropriate 

from the standpoint of slope, are not conducive to adequate drainage or stable 

foundations. This inconsistency is particularly true on or near the large landslide 

which dominates the central portion of both the East and West Rattlesnake.

Here the land was reduced by slumping and weathering of clay-rich soils to flat 

ridges, swales and gentle slopes. If slope were the only constraint, this area would 

satisfy building requirements. However, the underlying materials are poorly suited 

for building with regard to other constraints of drainage and slope stability. The 

results of the three conflict assessments are difficult to combine because the 

significance of each is lost in the synthesis.



CHAPTER VI 

SUMMARY AND CONCLUSIONS

The ability to predict conflicts may help evaluate the risk to public health and 

safety and costs to society resulting from land development. Absolute predictions, 

however, are difficult when considering a large number of factors. The method 

presented in this study substitutes nominal ranking of potential conflicts for 

absolute predictions. By comparing development potential and land suitability, the 

study area was ranked according to the severity of potential conflicts.

Land suitability ranks for the Rattlesnake Valley, were determined for certain 

conditions favorable to residential development, specifically, level building sites, 

adequate drainage, and stable foundation conditions. The quality of these 

conditions determines the potential for damage to property or risks to public 

health and safety or both. Attributes of slope, soil, and geology were analyzed to 

rank the suitability of the study area with regard to slope, drainage, and slope 

stability.

The three suitability analyses identified some areas that are more appropriate 

than others for residential development. The results of the drainage and slope 

stability analyses correlate well with each other. This is due, in part, because the 

some of the same factors which influence drainage behavior also control slope
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stability. Slope suitability results, however, do not correlate well with the other 

two analyses due to opposing factors. Steep slopes, which decrease slope 

suitability, tend to improve drainage and, within the study area, are often 

associated with more stable material.

Residential buildout for the Rattlesnake Valley was determined by combining 

building costs with density allowances. The relative cost of building was estimated 

from the slope of the building site, the distance of the site from an existing road 

or right of way, and proximity to the floodplain. Densities were initially calculated 

for each property using current zoning density allowances. The probability that a 

dwelling unit would be constructed at any given location was determined using the 

property density allowances. The buildout model indicates that most future 

development in the study area will occur on or adjacent to the valley bottom, near 

existing roads.

Future conflicts may result when building occurs on unsuitable land. The 

severity of these conflicts depends on the number of dwelling units and the 

corresponding suitability rank. Zoning contributes significantly to the outcome of 

conflict assessment because it is a major factor used to model development 

potential. The results of the three conflict assessments suggest that existing 

zoning accounts for slope conditions but does not consider drainage of slope 

stability conditions.

The opportunity exists to revise zoning in the Rattlesnake Valley because a 

final zoning proposal has not yet been adopted. The suitability analyses presented
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in this study provide objective criteria necessary to develop zoning districts that 

are more land sensitive. A comprehensive analysis is required however, that 

should examine additional development constraints and critical landscape qualities 

before implementing zoning.
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Cross tabulation between slope stability suitability ranks and development potential 
ranks. Values on left were divided into three conflict potential classes: 1-4 = no conflict; 
6, 7, 10, and 13 = low conflict; 5, 9, and 12 = moderate conflict; 8 and 11 = high 
conflict. □
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Cross tabulation between drainage suitability ranks and development potential ranks. 
Values on left were divided into three conflict potential classes: 1-5 = no conflict; 7, 8, 
and 12 = low conflict; 6, 11, and 14 = moderate conflict; 10 and 13 = high conflict.
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Cross tabulation between slope suitability ranks and development potential ranks. Values 
on left were divided into three conflict potential classes: 1-4 = no conflict; 6, 7, 10, and 
13 = low conflict; 5, 9, and 11 = moderate conflict; 8 = high conflict. □

1: 0 1 0

2: 1 | 0

3: 2 I 0

4: 3 I 0

5: 4 I 0

6: 1 | 1
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