
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1982

Object oriented techniques in genetic algorithms for optimization Object oriented techniques in genetic algorithms for optimization

Kevin S. Lohn
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Lohn, Kevin S., "Object oriented techniques in genetic algorithms for optimization" (1982). Graduate
Student Theses, Dissertations, & Professional Papers. 7331.
https://scholarworks.umt.edu/etd/7331

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F7331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/7331?utm_source=scholarworks.umt.edu%2Fetd%2F7331&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

Copying allowed as provided under provisions
of the Fair Use Section of the U.S.

COPYRIGHT LAW, 1976.
Any copying for commercial purposes

or fInancM gain may be underWcen only
with the author’s written consent.

University ofMontana

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Object Oriented Techniques in Genetic
Aigorithms for Optimization

by

Kevin S. Lohn

B.S., University of Montana, 1983

Presented in partial fulfillment of the requirements

for the degree of

Master of Science

in Computer Science

University of Montana

1991

A pproved by

C hairm an, Thesis C om m ittee

d ^a n , G raduate School f

 ^ 7 . / f
Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EP38132

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
UMI EP38132

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 -1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lohn, Kevin S., MS, March 1991 Computer Science
Object Oriented Techniques in Genetic Algorithms for
Optimization (102 pp.) ^

Director: Alden H. W r i g h t fr

This paper concerns the invention of several object
oriented structures and their application to simulation
programs; specifically genetic algorithms. The application
of these constructs then contribute to a working program and
an examination of two implementations of genetic algorithms:
Binary Genetic Algorithms and Real Vector Genetic
Algorithms. The examination shows that it is possible to
construct a model of a binary encoded genetic algorithm
using only vectors of floating point numbers.

The need for a reporting and monitoring system in a
simulation prompts the development of Probes. These objects
consist of associations of code and data that can be
dynamically attached to the program at run time. This means
that reporting facilities gain significant flexibility.

The users' interaction in controlling experiments in a
simulation motivate the invention of Iterators. Iterators
serve as an intermediary between the user and the
simulation. They provide the user with a consistent
interface, while providing the simulation with a uniform
control structure.

The structure of the genetic algorithm program
demonstrates the power of an object oriented framework. The
details of the construction of the framework are discussed
along with techniques for extending them.

The program is set up for the implementation of two
genetic algorithm variants. These variants are then
compared using several of the classic deJong problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table Of Contents
In tro d u c tio n ..1

O bject O riented Program m ing B a ckg ro u n d ...2

M easuring and Reporting - P robes.. 5

Stages o f R eporting .. 5

Im plem entation O ptions...6

G lobal M ethod..7

OOP M ethod O ne..9

OOP M ethod T w o ...11

OOP M ethod T h ree ...12

List D eploym ent C onsiderations.................................. 14

An Im plem entation...14

O ther Uses o f P ro b e s .. 21

D ebugg ing ... 21

Active P robes...22

C onclusion...22

Experim ent C ontrol - Ite ra tors... 24

Nested L o o p s ..a .. 25

Loops as D ata...27

The User In te rfa ce .. 32

Im plem enta tion.. 34

The Base C lass Ite ra to r...34

Ite ra to rS e t...36

C onclusion... 39

The G enetic A lg o rith m .. 41

Genetic A lgorithm B ackground..41

ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Real V ector Genetic A lg o rith m s... 44

The F ram ew ork .. 45

Ind iv idua ls...46

R ealParam eterlndividuals...50

R eallndividualC ... 53

B inary In d iv id ua ls ...55

R ea llnd iv iduaH ... 58

P opu lation..67

G enesisP opu la tion ...70

G enetic..73

P ro b e s ..79

P robeL ls ts ...79

Population Dum p P ro b e .. 81

BestPopulation P robe..82

AverageM easurem ents P robe 83

O nline P ro b e ..84

O ffline P ro b e ..8 5

Ite ra tors...8 6

M isce llaneous.. 89

F unctionD lspa tche r... 90

F ileM anager...92

Real Individual M anager... 94

M ainline P rog ram .. 94

C om paring BVGA and RVGA..97
% .

A dapting to O ther P roblem s T yp e s ... 100

C o n c lu s io n ..105

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eferences...106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction
Program s from the class o f program s know n as sim ulations share som e

com m on features. They require a reporting and m on itoring system tha t facilita tes

rapid increm ental program developm ent and debugging, a user in terface tha t

allow s flexib le con tro l o f experim ents, and a flexib le overall fram ew ork tha t a llow s

easy program m aintenance and m odification. There has been little e ffo rt to create

standardized techniques to address these needs. O bject oriented program m ing

languages provide a pow erfu l base on w hich to bu ild these too ls. T h is paper

explores several ob ject oriented constructs tha t can serve to m eet the

requirem ents o f sim ulation program s. By applying these constructs to an

optim ization program using a genetic a lgorithm , the ir pow er is dem onstra ted.

The firs t constructs discussed in th is paper are Probes. Probes are defined

as a uniform m ethod o f im plem enting statistica l m easurem ents, reports and

debugging code. C onsisting o f associa tions o f executable code and data, they

can be dynam ically hooked to locations in the program at run tim e. They perform

the ir functions w henever the code to w hich they are attached is active.

Iterators are defined and im plem ented as in term ediaries betw een the

needs o f the user and the requirem ents o f the sim ulation. They provide a uniform

interface tha t a llow s the user to con tro l experim ents w ith the sim ulation, in the

program they provide a con tro l structure fo r experim ents, iso la ting them from the

user.

The th ird section discusses the fram ew ork o f the genetic a lgorithm

program . Extensive use o f the ob ject oriented concep ts o f encapsulation and

inheritance as w ell as ttie exp lo ita tion o f Ite rators and Probes m akes the program

extrem ely flexib le. Im plem entation o f a w ide varie ty o f genetic a lgorithm variants is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2
facilita ted by the reusable ccxJe concept. Several Inheritance h ierarchies are

im plem ented w ith in the program .

Once the program is com ple te ly defined, an experim ent is conducted by

im plem enting Real V ecto r and B inary G enetic A lgorithm s w ith in the program

fram ew ork. The goal is to construct a Real V ecto r G enetic A lgorithm tha t c losely

sim ulates a B inary G enetic A lgorithm . The experim ent consists o f using each o f

the tw o techniques to optim ize several o f the c lassic deJong te s t problem s. The

perform ance o f each o f the tw o techniques is then com pared. Success is

m easured by how closely the Real V ecto r G enetic A lgorithm m im ics the B inary

G enetic A lgorithm .

1.1. Object Oriented Programming Background
O bject oriented program m ing (OOP) is a program m ing paradigm th a t is

data driven. Rather than constructing a h ierarchy o f functions and procedures

tha t invoke each other, an OOP program establishes a h ierarchy o f data

structures and the ir in teractions. OOP languages enable a c loser link betw een the

real w orld problem and the program .

The objects o f ob ject oriented program m ing are a m etaphor fo r ob jects in

the real world. They are organized in to classes o f ob jects o f the sam e type. A

class is essentially a type tha t defines a data s tructure fo r the properties o f a real

w orld object. For exam ple, if a m odel w ere to be constructed o f a ra ilroad, one

class m ight be a G enericR ailroadCar. The properties, called instance variables,

cou ld be data such as O wner, Num berO fW heels and Length. It is then possib le to

create ob jects o f the type G enericR ailroadCar. A n ob ject o f a type tha t is a class is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

called an instance o f the class. Instances can be m anipulated like any o ther data

structure .

One im portant feature o f OOP languages, is the ab ility to define the

in terface o f an ob ject. The interface is a se t o f functions (m ethods, in som e

languages) tha t m anipulate the data o f an ob ject. G enerally, these functions have

exclusive access to the data o f the ob ject. If any o ther function needs to access

the data o f an object, it m ust do so th rough the functions tha t define tfie ob ject’s

interface. No outside function needs to know abou t the internal representation o f

the data w ith in a class. A change can be m ade in the internal representation

w ithou t changing the interface. For exam ple, an internal linked list cou ld be

changed to a tree structure transparently. Th is fac ilita tes increm ental

developm ent and sim plifies program m aintenance.

Inheritance is another im portant fea ture o f OOP languages. In the ra ilroad

car exam ple above, a very generic rail ca r w as defined. A box ca r de fin ition

should contain the generic rail car de fin ition in add ition to several o ther features.

C ubicC apacity and N um berO fD oors m ight be appropria te . A tank ca r de fin ition

m ay need F luidC apaclty and M axim um Pressure. Both TankC ar and B oxC ar can

be m ade to 'Inherit" the properties o f a generic ra ilroad car. Each o f the tw o new

classes also have the ir ow n in terfaces to the ir properties. The generic ra ilroad ca r

class is referred to as the base class. B oxC ar and TankC ar are derived classes.

The depth o f inheritance can be greater than tw o levels; it w ould be sim ple to

create a specialized type o f TankC ar w ith add itiona l properties. It is a lso possib le

to inherit from m ore than one class. It w ou ld be helpfu l fo r TankC ar and BoxC ar

to inherit from a linked lis t node class. T h is w ould enable tra ins to be linked

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

together from m any types o f railroad cars. The fac ility o f inheritance encourages

reusability o f code and rapid pro totyp ing.

Derived classes can redefine functions o f the in terface. The redefin itions

supersede those defined in the base class. For exam ple, the G enericR ailroadC ar

c lass m ight have a function called IsH azardous tha t a lw ays re turns tfie value "no ".

By default, a ll classes derived from G enericR ailroadC ar w ill respond "no" to the

IsHazardous function . The TankC ar class m ight redefine the function to check the

contents o f the tank ca r and com pare it w ith a lis t o f know n hazardous m aterials.

An instance o f TankC ar w ould no t respond "no" by default, it w ould respond as

determ ined by its redefin ition o f the IsH azardous function .

C onsider a tra in com posed o f a linked list o f ra ilroad cars. T o determ ine if a

tra in carries hazardous m aterials it m ust app ly the IsH azardous function to a ll o f its

railroad cars. The tra in does not have to know the types o f cars it conta ins, it m ust

ju s t traverse its list applying the IsH azardous function to all cars. The ob ject

oriented language takes care o f the details o f ca lling the co rre c t version o f the

IsHazardous function fo r each car. A TankC ar instance w ill use the TankC ar

version o f the IsHazardous function . Railroad cars tha t do no t have a redefin ition

o f the IsHazardous function , w ill use the de fau lt function from the

G enericR ailroadCar class. T h is feature is called v irtua l functions in C + + .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Measuring and Reporting - Probes
A program im plem enting a genetic a lgorithm takes in itia l data and

transform s it to a new form . The transform ation m ay take m any hours and consist

o f m illions o f individual steps. Because the a lgorithm produces no ou tpu t until the

very end, it is d ifficu lt to know how the a lgorithm is progressing. Both the

processes o f debugging the program and experim enting w ith the program can

suffer from a lack o f m ethods o f m easuring and reporting on the a lgo rithm ’s

progress.

The process o f conceiving and im plem enting reports regard ing the

progress o f a program th rough an algorithm , is both tim e consum ing and d ifficu lt.

Each report requires its ow n unique supporting structure . A s m ore reports are

im plem ented, the ohginal code begins to su ffe r from excessive m odification. The

frequent changes can breed elusive bugs. It is apparent tha t an im portan t p rio rity

is to create a generalized m ethod fo r the creation o f new perform ance m easures

tha t is flexib le, m inim izes im pact on existing code and is easy to m anipulate.

2.1. Stages of Reporting
The processes o f generating reports have com m on elem ents regard less o f

con ten t o f the report. Reporting consists o f fo u r stages: in itia lization in

preparation of gathering data, gathering data from the source, m anipulating the

data and generating a report. A s an exam ple, consider the generation o f an

average tem perature report fo r a w eather m on itoring station.

The firs t step is used to reset the sta tistica l m easures tha t m akeup the

report. T o calculate an average tem perature, tw o variab les are needed: the sum

o f the tem peratures and a coun te r fo r the num ber o f tem peratures in the sum .

This firs t step w ould se t bo th values to zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

The second step, consisting o f gathering data, is typ ica lly repeated m any

tim es. The data is e ither stored o r processed im m ediately. For exam ple, w eather

m onitoring stations co llect data about cu rren t cond itions m any tim es per day.

D uring th is step fo r an average tem perature report, the cu rren t tem perature is

added to the running tem perature to ta l and the coun te r is increm ented.

The processing is the th ird o f the fo u r stages. It transform s the data in to a

m ore useful form . This step can be coup led d irectly w ith the second stage or

postponed until it can process data in a batch. It is even possib le to com bine th is

stage w ith the fina l reporting stage. For a w eather m on itoring station, th is th ird

stage cou ld consist o f actually m aking the ca lcu la tion o f an average w ind speed o r

tem perature.

The fina l stage is the actual report generation. This can cons is t o f the

dissem ination o f e ither the raw data o r the data as it w as transform ed by the th ird

stage. Generally, the report is routed to a file o r prin ter, bu t there is no reason th a t

the ou tpu t cannot be routed to another process.

2.2. Implementation Options
There are several op tions in im plem enting the fo u r stages o f report

generation. A ll o f the m ethods, how ever, have an in trusive nature in com m on.

The ob ject tha t is the source o f the data canno t be m onitored entire ly passively

w ithou t som e so rt o f concurren t processing ab ility. M ost conventional com puter

languages do not have th is inherent ability. It is necessary fo r the m on itoring

ta rge t to cooperate in the m onitoring process. T h is necessarily consists o f

m odifying the code associa ted w ith the ta rg e t.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

2 .2 .1 . Global Method

The least desirable m ethod o f Im plem enting a report involves the extensive

use o f g lobal variables. If the goal is to calculate the average o f a value over

several iterations o f a loop in an existing program , a g lobal variable can serve as a

sum and another can serve as an iteration counter. The code to in itia lize the

variables, co llect the values, calculate the averages and then generate the report

m ust be em bedded Into the existing program .

T his m ethod obviously has several draw backs. It requires tha t the existing

code be m odified and recom piled. If the source code is unavailable fo r

m odification, th is technique cannot w ork. If the source code Is available, Its

m odification in im plem enting a statistica l m easure can Introduce side e ffects. If

the statistica l m easure is tem porary o r needed on ly periodica lly, it Is undesirable to

c lu tte r the orig inal code. C lutte r m akes the orig ina l code d ifficu lt to m aintain,

especially if there are several o f these statistica l m easures im plem ented.

In conventional languages (no t ob ject orien ted) the data from w hich a

report is generated is no t necessarily found grouped together. The code required

to co llect data may have to be scattered th roughou t a w ide set o f routines. It is

very tem pting to em bed the data co llection code in the routine tha t is the m ost

convenient. W hile th a t cho ice m ight m ake the report easier to create, it is no t

necessarily the best cho ice w hen attem pting to m aintain a program ’s s tric t

m odularity.

The program con tro lling a w eather sta tion m ight consist o f one large loop

in the m ain line code. Inside the loop, routines are called to con tro l the various

devices in the w eather station. The therm om eter, the barom eter and the w ind

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

gauge m ight each have con tro lling routines tha t are called repeatedly in the loop.

F igure 2.1 gives an exam ple,

main loop
call the thermometer routine
call the barometer routine
call the wind gauge routine
end main loop

FIG URE 2.1

The addition o f jus t three reports can com plicate the code to the po in t

where the orig inal purpose is lost in the clu tte r. Here, in F igure 2.2, da ily average

tem perature, m onthly average tem perature and daily average w ind speed reports

are inserted.

main loop
if it is a new day
reset daily average temperature variables
reset average wind speed variables

end if
if it is a new month
reset monthly average temperature variables

end if
call the thermometer routine
call the barometer routine
call the wind gauge routine
if it is the end of a day
calculate the daily average temperature
report the daily average temperature
calculate the daily wind speed
report the daily wind speed

end if
if it is the end of the month
calculate the monthly average temperature
report the monthly average temperature

end if
end main loop

FIG UR E 2 .2

The reports m ust execute the ir firs t stage (rese t) functions inside the loop.

B ut because the routines should no t be called on every iteration, cond itiona ls are

added to restric t the ir execution. The data co llection routine w ill have to be placed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g

inside the appropria te routine fo r the gauge being m onitored. The tem perature

averaging routines need to co llec t data inside the therm om eter routine. The

average w ind speed report m ust co llect its data from the w ind gauge routine. The

calculation and reporting routines m ust a lso be placed inside the loop. Again,

the ir execution m ust be restricted by conditionals.

This means tha t the variables used to ca lcu la te an average m ust be

accessib le not only from the m ain loop, bu t from the appropria te gauge 's routine.

Hence the necessity fo r g lobal defin itions o f these variables. A s the num ber o f

reports m ultiples, the task o f adm in istering the g lobal variab les expands to

becom e unm anageable.

2.2 .2 . OOP Method One

O bject oriented program m ing a llow s fo r the encapsulation of related data.

The running to ta l and iteration counte r o f a m easurem ent ca lcu la ting an average

can be set up to be visib le only to a certa in g roup o f routines. These variables,

called instance variables, are local to an object. O nly the routines tha t are

designed fo r the ob ject can have access to its instance variables.

The w eather m onitoring station exam ple cou ld be an ob ject orien ted

p ro g ra m . One class cou ld represent the therm om eter, another class cou ld

represent the w ind gauge. Average tem perature is stra ightforw ard to im plem ent.

The sum and counte r variab les can be added as an instance variab les to the

therm om eter class. W hen the therm om eter’s code is running, the code to

calculate the average w ill a lso run. O f course, it is s till necessary to restric t the

average calculation w ith cond itiona ls so tha t it w ill be calcu la ted only a t

appropria te tim es.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
Using Instance variables to Im plem ent sta tistica l m easures and reports on ly

partia lly solves the problem s of the g lobal Im plem entation. The Intrusive code is

Internal to one class. W hile th is encapsulation m ay aide in avo id ing undesirable

side effects, it still requires tha t the source code fo r the class be available. The

routines to co llect data w ill still need to be em bedded in to the orig ina l code. In

addition, the reduction o f the clu tte ring com es a t the expense o f d im in ished pow er

over the global technique.

The possib ility tha t a report m ay need to ga ther Inform ation from m ore than

one class com plicates th is technique. New m ethods m ust be added to all classes

Involved in the statistica l m easurem ent to enable the data to be collected.

A m biguities also arise regard ing the proper location o f the Instance variables.

Reasons fo r selecting one class over another fo r the location o f the Instance

variables becom e com plex.

The calculation o f w ind ch ill Is a report tha t Is no t easy to Im plem ent. If an

Instance variable fo r w ind ch ill is set up in the tem perature class, a m ethod o f

retrieving the w ind speed from the w ind gauge class needs to be devised. A dding

th is m ethod seem s to vio late the basic m odularization tha t ob ject oriented

program m ing provides. The tem perature class should cons is t o f m ethods fo r

m onitoring and reporting tem peratures. The on ly reason to add a m ethod fo r

retrieving the w ind speed. Is fo r a report tha t on ly Incidentally needs the curren t

tem perature. The sam e problem occurs if the Instance variable is m oved to w ind

gauge class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11
2 .2 .3 . OOP Method Two

A step in the righ t d irection is to m ake a class fo r the statistica l

m easurem ent itself. It can encapsulate all o f the variab les necessary fo r the

calculation o f the sta tistic in one place. The routines fo r actua lly ca lcu la ting the

average are then a lso encapsulated in the class.

In the w eather station exam ple, a w ind ch ill c lass can be created. W hen it

needs to m ake its ca lcu la tion o f w ind chill, it s im ply queries the tem perature class

and the w ind gauge class fo r the ir curren t values. No routines need to be added

to eitiner o f those classes, therefore the ir source code is no t needed. This

technique reduces the num ber o f locations tha t the in trusive code m ight be found.

The on ly intrusive aspect o f th is Im plem entation o f a w ind ch ill report, is adding the

code to activate the appropria te m ethods o f the w ind chill c lass a t the p roper

tim es.

C luttering is on ly s ligh tly better w ith th is technique than w ith the g lobal

m ethod. Since each statistica l m easure m ust go th rough the fo u r stages o f the

reporting process, there w ill exist a t least fo u r lines o f code added to the source

code som ewhere. As the num ber o f statistica l m easures increases, the in trusive

code problem can cause d ifficu lties. Again, w ith tem porary m easures or

m easures needed on ly periodica lly, the source code becom es unreadable.

The intrusive code consists o f a reference to a m easurem ent and an

associa ted function fo r tha t m easure. An exam ple o f a m easurem ent w ould be

the class tha t calculates W indC hill. An associated function w ould be its routine

tha t queries the therm om eter and the w ind gauge. Think o f these as a

m easurem ent/function pair. The W indC hill c lass and its routine tha t generates the

printed report w ou ld be another m easurem ent/function pair. The fun ction pa rt of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12
a m easurem ent/function pa ir is d irectly related to one o f the fo u r stages o f

reporting.

This technique does no t address the problem o f m on itoring an ob ject w hile

it is perform ing one o f its ow n tasks. A m easurem ent/function pa ir cou ld be

inserted in to the code o f an object, bu t the code w ill s till have to be m odified every

tim e a new m easurem ent o r report is needed. W hile th is m odifica tion m ight be

sim pler than w ith the global technique, it s till has m any o f the sam e problem s.

The goal is to create a technique tha t w ill trea t all m easurem ents and

reports the sam e way. M odifying the code o f an existing ob ject should be lim ited

to jus t once. W hen a new report is conceived, existing ob jects should be capable

o f exp lo iting it w ithou t m odification.

2 .2 .4 . O OP M ethod T h re e

The solution is to trea t m easurem ent/function pairs as data. O bject

oriented program m ing facilita tes a technique o f dynam ically creating and

m anipulating an association o f an ob ject and one o f its functions. O nce defined,

these associations can be treated like any o ther data. It is possib le to create

arrays or linked lists o f them . A t any tim e, the function in the associa tion can be

invoked in a generic way.

The pseudo code exam ple o f figu re 2.3 is designed to dem onstrate the

flex ib ility o f the m easurem ent/function pair concept. In the figure, a variable called

MFP o f the type M easurem entFunctionPair is created. T h is variable w ill ho ld an

associa tion o f a m easurem ent and one o f its functions. Next, a m easurem ent

called Average is declared, th is cou ld be any so rt o f m easurem ent like the

W indChill exam ple from above. On the fo llow ing line, the associa tion o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

A verage m easurem ent and its function , C ollect, are assigned to the variab le MFP.

Im m ediately thereafter, the pair is invoked from the variab le MFP. Realistically,

param eters w ould have to be passed, bu t they are ignored in th is exam ple. MFP

is then assigned a new pa ir and then they are invoked. It is im portan t to note tha t

the invocation o f the tw o pairs is handled identica lly from the po in t o f view o f MFP.

No m atter w hat association is in the variable MFP, the invocation is tfie same.

MeasurenentFunctionPair MFP
Measurement Average
MFP = [Average, Collect]
MFP.Invoke
MFP = [Average, GenerateReport]
MFP.Invoke

Figure 2.3

Applying th is system to the reporting problem involves crea ting a set o f

variable length lists o f these associations. Each lis t is associated to a location in

the code o f an object. W hen, in the execution o f an ob ject’s code, a lis t o f

m easurem ent/function pairs is encountered, execution proceeds by traversing

the list, invoking the function on the m easurem ent w hile passing the ob ject as a

param eter. The pairs can be dynam ically added o r rem oved from lists.

This m ethod lim its the in trusive code to a reference to a list; in fact, the

code is reduced to on ly one line. Th is is true regardless o f the num ber and

com plexity o f m easurem ents tha t have been defined and p laced on the list.

O bjects’ source code needs to be m odified on ly once to install the lists. W hile th is

requires the source code to be available, it is lim ited to one tim e. O nce the lists

have been installed, the source code never needs to be m odified again, even

w hen new m easurem ents are developed. Newly deve loped reports need on ly be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

"hooked" to the appropria te lists. This is a very generalized m ethod o f dealing w ith

m easurem ents and reports.

2 .2 .5 . List Deployment Considerations

In the firs t reporting m ethod discussed above, g lobal variab les w ere used

to a llow access from anywhere. This im plies tha t the in trusive code fo r a given

m easurem ent o r report cou ld reside anyw here. H opefully, the m ost appropria te

sites w ould have been selected fo r the in trusive code. Im plem entation o f the

m easurem ent/function lists w ill require a lim ited num ber o f sites to be used.

C hoosing these sites necessitates som e heuristics.

There are key sites In the code o f a program tha t m any reports o r

m easurem ents m ight find appropria te fo r data co llection . Before and a fte r loops

o f a m ajor function are often good places fo r lis t o f m easurem ent/function pairs.

M onitoring a process on each itera tion o f a loop is a lso useful. G enerally, lists

should be assigned to locations before and a fte r critica l sections o f code. There is

no guarantee that these generalized locations w ill be appropria te fo r all

conceivable m easurem ents, however, the m ajority can function from those

places. If no appropria te site is available fo r a new m easurem ent, it is no t

excessively d ifficu lt to assign a new lis t to the location. C areful se lection o f list

locations w ill prevent th is from happening often.

2.3. An Implementation
The im plem entation o f th is schem e requires the exp lo ita tion o f the

inheritance fac ility o f an ob ject oriented language. The entries in the lis t o f

m easurem ent/function pairs m ust be trea ted uniform ly. There is no w ay fo r the

program to know a t com pile tim e w hat specific m easurem ents m ight be in a lis t at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

any given po int. If all m easurem ents are derived from the sam e base class, they

can be treated in a standard way.

The generic m easurem ent base class should define the in terface fo r a ll

m easurem ents derived from it. The process o f m easuring and reporting can be

broken in to fo u r steps d iscussed above. These fo u r steps m ake an ideal interface

fo r a generic m easurem ent. M easurem ents derived from the base class w ill m ake

the ir ow n defin itions o f the fo u r stages. Since m easurem ents and the ir reporting

functions are assigned to lists as a pair, the p roper com bination is assured.

The C + + im plem entation o f th is m ethod uses three basic classes: Probe,

P robeAction and ProbeList. P robe is the base class from w hich all m easurem ents

and reports are derived. P robeAction is a class tha t defines the associa tion o f a

specific probe and one o f its functions. It serves as a con ta iner to ho ld one

association. C ollects o f P robeA ctions are kep t in instances o f the P robeList class.

F igure 2.4 show s the C + + de fin ition o f the class Probe.

class Probe
{
protected:
char ProbeHaœe[30];
FILE* OutputDestination;
public:
Probe (void);

virtual void Reset (void*) {}
virtual void Collect (void*) {)
virtual void Calculate (void*) {)
virtual void ReportHeader (void*) {}
virtual void Report (void*) {}
virtual double GetProbeValue (void*) { return 0.0; }

inline char* GetNane () { return ProbeName; }
);

Figure 2.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

The class Probe does no t stand alone. It is a tem plate from w hich useful

m easurem ents can be constructed. O nly the derived classes w ill need to define

the variables necessary fo r the ca lcu la tion o f a g iven statistica l m easurem ent.

This generic class needs to define on ly the fie lds tha t every m easurem ent w ill

need. The class Probe defines tw o variables. These are the ProbeNam e and

O utputD estination variables. These variables are useful in generating printed

reports. The ProbeNam e is a string o f characters tha t cou ld be used to nam e the

m easurem ent. "Average Tem perature" o r "W ind C hill Factor" are exam ples.

O utputD estination is a po in te r to an ou tpu t file to w hich reports m ay be sent.

A probe derived from the base class defines the virtua l functions as is it

deem s appropria te fo r the m easurem ent. These functions are d irectly re lated to

the fo u r stages o f reporting . Reset is the function fo r the firs t sfâge o f the

reporting process. The function C ollect is the representative fo r the second stage.

C alculate processes the co llected data fo r the th ird stage. Finally, R eportH eader

and Report fill ou t the fou rth step. The additional function G etProbeValue allow s

the probe itself to be m onitored by another probe. The function a llow s the second

probe to co llect data from the firs t.

Each o f the v irtua l functions is passed a po in ter to the ob ject t iia t invoked

the m easurem ent/function pa ir. Th is is the m echanism tha t a llow s a probe to

co llect data. Probes can be constructed to be h igh ly specialized. Typ ica lly, the

C o llect routine fo r a p robe w ill assum e tha t the po in te r passed to it refers to an

ob ject o f the type tha t it is expecting to m onitor. It sim ply uses th is po in te r to

invoke any o f the pub lic m em ber functions o f the ob ject it is m onitoring. In th is

fash ion, it can co llec t its data abou t the ob ject it is m onitoring.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

In the fo llow ing exam ple o f figu re 2 .5 , a com ple te de fin ition o f a probe is

created. The probe ’s purpose is to m onitor som e o ther c lass tha t represents a

therm om eter. The therm om eter class is responsib le fo r determ in ing on ly the

curren t tem perature. The probe, called AverageTem perature, gathers in form ation

from the therm om eter in o rder to calculate an average tem perature over som e

period.

class AverageTeiperature : public Probe
{
double SunnlngTotal;
int NumberOfCollections;
public:
ÀverageTeiçerature (void);
void Reset (void*);
void Collect (void*);
void Report (void*);

AverageTeiperature: :AverageTenperature (void)
strcpy (ProbeName, "Average Temperature");
OutputDestination = stdout;

void AverageTemperature::Reset (void*)

RunningTotal = 0.0;
NumberOfCollections = 0;

void AverageTemperature::Collect (void* t)

RunningTotal += ((Thermometer*)t)->GetCurrentTemperature();
NumberOfCollections++;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
void AveraqeTemperature::Report (void*)
{
fprintf (OutputDestination, "Average Temperature is : Uf",

RunningTotal / NumberOfCollections);
]

Figure 2.5

The functions tha t represent the stages o f reporting are defined com plete ly

by th is class. The Reset function sets the internal counte r and sum variab les to

zero. The C ollect routine queries the therm om eter fo r the curren t tem perature.

The Report function prin ts the average tem perature. Because the actua l

ca lcu la tion o f an average is triv ia l, it is incorpora ted in to the prin ting o f the report

instead o f be ing placed in a separate routine. The C alculate function defined in

the base class is no t used by th is probe.

The associa tion o f a Probe and one o f its functions is a

m easurem ent/function pair. They are represented in a list as an instance o f the

c lass ProbeAction. Inheriting the properties o f a L ink Node enables an instance o f

P robeAction to be a m em ber o f a linked list. Details o f the linked list

im plem entation are hidden and are un im portan t to class ProbeAction. The C + +

de fin ition o f the class P robeA ction is show n in figu re 2.6.

typedef void (Probe::*ActionFunction){void*);
class ProbeAction : public LinkNode
{
Probe* P;
ActionFunction Action;

public:
ProbeAction (Probe*, ActionFunction);
inline void TakeAction (void* o) { (P->*Action)(o); }
void Print (FILE*);
};

Figure 2.6

ProbeActions ho ld a po in te r to the probe th a t Is to be used, as w ell as a

po in te r to one o f the p robe ’s m em ber functions. W hen traversing a list o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

ProbeActions, the m em ber function TakeA ction is called fo r each P robeAction

found . T h is has tiie e ffect o f applying one o f fo u r stage reporting functions to the

probe. A po in ter to the ob ject tha t is being m onitored is passed to the reporting

function as a param eter. The probe then takes w hatever actions d icta ted by its

reporting function .

class ProbeList ; public LinkedList
{
public:
void TakeProbeActions (void*);
void Insert (Probe*, ActionFunction);

);
Figure 2.7

A ProbeList is a lis t o f P robeActions. It inherits a lm ost all o f its properties

from the base class LinkedList. It adds on ly tw o new functions.

TakeProbeActions traverses the lis t o f P robeA ctions invoking the TakeA ction

function fo r each in tu rn . Insert enters a po in ter to a probe and a po in ter to one of

the p robe ’s reporting functions as a P robeAction on to the list.

Techniques fo r m anagem ent o f P robeLists inside classes is flexib le.

Typically, a class tha t is to be m onitored w ill have several P robeLists associated

w ith it. Each list w ill represent a certa in location in the code fo r the m onitored

class. The ta rget c lass defines how m any ProbeLists there are and w here they are

used. It is the responsib ility o f the c lass be ing m on itored to invoke the

TakeProbeActions function fo r a given list a t the appropria te tim e. T h is is the

Intrusive code outlined earlier.

The act o f assign ing a m easurem ent/function pa ir to a specific list is a lso

the responsib ility o f the c lass be ing m onitored. A m em ber function m ust be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20
created to take a m easurem ent/function pa ir and assign it to the appropria te list.

An array o f lists can be m aintained w ith each elem ent being a list associa ted w ith a

specific location in the code. A ssign ing a m easurem ent/function pa ir to a specific

location is as sim ple as provid ing the index to the array tha t corresponds to the list

fo r the desired code location. C onstants setup w ith appropria te nam es can m ake

the code m ore readable. An exam ple fo llow s in figu re 2.8.

const int BEFO8E_TEKPERAT0KE_EETRIEVAL = 0
const int AFTER TEJPEItATURE KETEIEVAL = 1
AverageTeiperature AT;
Thermometer T;
T.AssignProbe (AFTEBJEMPERATOBEJETRIEVAL, iAT, SProbe:;Collect);

Figure 2.8

in th is exam ple, tw o ob jects are defined: a Therm om eter ob ject ca lled T

and a probe to calculate the average tem perature called AT. Assum e tha t the

therm om eter class acqu ires its tem perature th rough som e m ethod fo r w hich there

Is a "before " and "after " phase. T w o ProbeLists exist in the Therm om eter class.

The firs t list is traversed in the "before " phase and the second is traversed in the

"after" phase.

The last line o f the exam ple invokes the m em ber function o f T called

A ssignProbe. This takes a po in te r to the probe (&AT) and a po in ter to the

reporting function (&PrcÆ)e::Gollect) and places them in to a list as a

m easurem ent/function pair. The P robeList itse lf handles the conversion o f the

m easurem ent/function pa ir in to a P robeAction.

ThermometerProbeLists[BEFORE_TEHPERATüIiE_RETRIEVAL].TakeActions (this);
... do whatever necessary to acquire temperature ...
ThermometerProbeLists{AFTER_TEHPERATÜRE_RETRIEVAL].TakeActions (this);

Figure 2.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

These tw o lines represent the in trusive code inside the Therm om eter class.

The probe designed to rep o rt on the average tem perature w ill co llect its data

w henever the last line o f exam ple above is executed. "This" in the param eter list o f

the TakeA ctions ca ll is a po in ter to the instance o f the Therm om eter class (T).

The o ther reporting functions o f the AverageTem perature probe do not

have to be assigned to th is class. The Therm om eter class m ay be part o f a la rger

schem e contro lled by an overa ll W eathersta tion class. The Reset and Report

functions o f the AverageTem perature probe m ight, m ore appropriate ly, be placed

in P robeLists w ith in th a t class. There are no restrictions preventing a p robe 's

reporting functions from be ing assigned to several classes. A single function m ay

be assigned to several classes. It is v ita lly im portan t to endow the function w ith

the ab ility o f d iffe rentia ting the classes tha t m ight be passed to it.

2.4. Other Uses of Probes
Probes are very flexib le constructions. T he ir ab ility to take part in the on

going process o f a program m akes them useful fo r m ore than jus t reports.

2.4 .1 . Debugging

Program s such as the genetic a lgorithm o r sim ulations m ay take m any

hours to run. There m ay be little o r no ou tpu t du ring the process. The debugging

stages o f developm ent fo r program s such as these can be extraord inarily d ifficu lt.

T raditional debuggers are no t very he lp fu l because they require constan t

hum an in teraction. They m ay be able to report on the values o f variab les a t

certa in po in ts in the execution, bu t few debuggers can detect re lationships

betw een variables. For exam ple, a debugger can de tect ou t o f range values o f a

variable and s top a program a t the po in t o f the exception. However, if the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

defin ition o f "out o f range" is dependent on o ther variab les is the program , a

trad itiona l debugger is useless.

It becom es necessary to insert code in to the program to de tect subtile

re lationships betw een variab les. W hen an inappropria te re lationship is detected,

the inserted code m ust s top the program and report the problem . A fte r the

insertion o f several sets o f e rro r de tecting code, the orig ina l code becom es

clu ttered.

This is exactly the problem tha t P robes can alleviate. The creation o f a

probe to tes t fo r the subtile re la tionsh ips is stra ightforw ard. Any num ber o f probes

can be added w ith m inim al m odifica tions to the orig ina l code. W hen the probes

are no longer needed, they can be easily rem oved. If they should becom e needed

again in the fu ture , adding them back in is sim ple.

2.4 .2 . Active Probes

Because probes can ca ll any o f the pub lic m ethods o f the ob ject they are

m onitoring, the doo r is open fo r probes to take a m ore active role. It is possib le

fo r a probe to call a rou tine tha t w ill cause the ob ject it is m onitoring to take an

action.

C onsider a probe tha t is m on itoring the W indG auge ob ject o f a w eather

station. It can co llec t the cu rren t w ind speed in form ation. If the w ind speed

exceeds a certa in th resho ld , the probe can o rd e r the w ind gauge to shu t itself

dow n, avo id ing dam age.

2.5. Conclusion
Probes im plem ented as defined above are c learly very flexib le . A probe

can be defined to take e ither active o r passive ro les. The fram ew ork to support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

probes in existing code requires m inim al m odifica tion. S im ply add ing ProbeLists

a t key locations in the code as w ell as an assignm ent function is suffic ient. Once

the fram ew ork is in place, new probes can be developed, tested and pu t in to use

w ithou t any recom pilation o f the code th a t the probe m onitors. P robes m inim ize

the am ount o f w ork necessary in the developm ent o f new m easurem ents and

reports.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Experiment Control - iterators
In m any types o f program s, especially sim ulations, it is desirable to a llow

the user to vary the program ’s con tro lling param eters a t w ill. Th is facilita tes

experim entation by a llow ing the user to exp lore d iffe ren t com binations o f

param eters. D iffering com binations m ay induce d iffe ring behaviors from the

program w hich in tu rn can produce an ins igh t abou t the real w orld system tha t the

program m odels. The process o f exp lo ring the behavior o f a m odel under varying

conditions is a v ita l to o l fo r develop ing an understanding o f the real w orld system .

The flex ib ility o f a sim ulation in a llow ing an experim enter to explore, is often

synonym ous w ith the pow er o f the sim ulation. The techn iques used to construct

the sim ula tion define the flex ib ility o f the m odel. If the sim ulation program is bu ilt in

a rig id m anner tha t does no t a llow the user to vary the con tro lling param eters, the

program clearly is no t very flexible.

C onsider a m odel o f the popu la tion dynam ics o f an ecosystem . The

con tro lling param eters cou ld cons is t o f the in itia l popu la tion sizes o f the preda tor

and prey species a long w ith the ir reproductive rates. The user cou ld exp lore the

m odel by repeatedly invoking the program and provid ing varying values fo r the

fo u r con tro lling param eters. W ith each execution o f the program the user w ould

du tifu lly enter the new in form ation and record the results.

If the execution tim e o f the sim ulation is long, then the cycle o f entering new

in form ation and record ing results becom es very ted ious. The user m ight have to

s it and w a it betw een iterations. If the user cou ld specify a series o f va lues fo r the

program ’s con tro lling param eters and the program cou ld execute them one a t a

tim e w ithou t user in tervention, the program w ou ld be m ore flexible.

S im ulation program s are o ften dynam ic program s. As the process o f

exp lo ring the m odel proceeds, shortcom ings o f the program can becom e

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

apparent. New con tro lling param eters m ay have to be added to m ake the

program m ore accurate o r useful. A nother m easure o f a s im u la tion 's pow er is

how easily these param eters can be added. C learly, the sim ple ecosystem m odel

m entioned above w ill exh ib it shortcom ings very qu ick ly if it on ly takes in to accoun t

one type o f predator and one type o f prey.

The problem is to develop a system fo r con tro lling a program tha t facilita tes

both the user in the process o f experim entation and the program m er in the

process o f enhancing the program . The focus here is on program m ing structures

tha t a llow fo r the easy add ition o f flexib le user con tro ls. H ow the param eters are

used w ith in the sim ulation are outside the bounds o f th is d iscussion.

3.1. Nested Loops
Loops are the firs t m ethod tha t com es to m ind w hen the problem Is to vary

the value o f a param eter over a range. Nested loops are a fam ilia r and standard

m ethod fo r accom plish ing th is. Each variab le tha t is to be con tro lled is assigned a

nesting level. The loop code is tiie n constructed to re flect the nesting level and

the starting value, ending value and increm ent fo r each variable.

In the ecosystem exam ple, the param eters th a t need varying m ight be the

initia l population sizes fo r lions, gazelle, zebra and giraffes. The user w ou ld be

prom pted fo r a range o f these in itia l values a long w ith an increm ent. A loop w ould

con tro l each param eter.

prompt for LionsLow, LlonsHigh and Lionslnc
prompt for GazelleLow, GazelleHigh, Gazelleinc
prompt for 2ebraLow, ZebraHigh and Zebrainc
prompt for GiraffeHigh, GiraffeLow, Giraffeinc
for (Lions = LionsLow to LionsHigh; inc Lions by Lionslnc)

for (Gazelle = GazelleLow to GazelleHigh; inc Gazelle by Gazelleinc)
for (Zebra = ZebraLow to ZebraHigh; inc Zebra by Zebrainc)

for (Giraffe = GiraffeLow to GiraffeHigh; inc Giraffe by Giraffeinc)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26
LionPopulation.Size = Lions
GazellePopulatlon.Size = Gazelle
ZebraPopulation.Size = Zebra
GiraffePopulation.Size = Giraffe
EcosystenHodel (LionPopulation, GazellePopulation,

ZebraPopulation, GiraffePopulation);
Figure 3.1

This system w orks ju s t fine. The user cou ld specify the lion popu la tion to

range from tw o thousand to three thousand by increm ents o f five hundred.

S im ilar ranges cou ld be specified fo r the o ther anim als. The program w ould then

run the sim ulation fo r a ll com binations o f the values specified fo r each anim al. The

user has to run the sim ulation only once to ge t m any sets o f output.

The firs t problem w ith th is technique occu rs w hen the user w ants to run the

program w ith a nonlinear se t o f values fo r a param eter. For exam ple, the desired

population size o f lions m ay be 1000, 1500, 3000, and 5000. A norm al loop can

only handle th is indirectly. The input routine m ust a llow the user to inpu t a list o f

values w hich are then stored in an array. The loop then iterates over the array.

The values fo r popula tion are p icked ou t o f the array based on the loop coun te r as

an index.

The second problem com es from the user be ing unable to specify the

o rder in w hich the experim ents take place. The firs t invocation o f the ecosystem

m odel uses the firs t value from a ll the loops. The second invocation uses the firs t

value o f all bu t the innerm ost loop. The innerm ost loop is dedicated to the g iraffe

population and H is destined to cycle th rough all o f its possib le values be fore the

ou ter loops advance to the ir next values. The user canno t change the nesting

level in o rde r to set, fo r exam ple, the lion popu la tion to the innerm ost loop.

From the program m er’s po in t o f view , the classic nesting o f loops is no t a

very flexib le structure . The in troduction o f a new param eter to the program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

translates in to the add ition o f a new level o f nesting. It is undesirable to a llow the

nesting level to ge t to o deep. T h is is no t necessarily a subjective aesthetic

lim itation, som e program m ing languages have lim its on nesting depth.

The structure o f nested loops is a lso to o rig id in o ther w ays. C onsider the

com plications if the user is a llow ed to se lect w h ich anim als the sim ulation is to use

ou t o f a list o f one hundred anim al species. Each anim al w ou ld have a param eter

fo r the in itia l population size. A given anim al cou ld have additional param eters tha t

no o ther anim al m ight have.

It is clearly im practica l to program a nesting o f loops fo r every possib le

com bination tha t cou ld be se lected by the user. It is a lso im practica l to a ttem pt to

w rite nested loops to a depth tha t w ou ld be required if the user opted to use all the

anim als. If each anim al w ere to have tw o param eters associated w ith it and there

w ere one hundred anim al species, there w ould be a t least tw o hundred nested

loops.

3.2. Loops as Data
A loop represents a series o f values fo r a variab le. The variab le beg ins w ith

the firs t value. A t the end o f the firs t ite ra tion o f the loop, the variable sk ips to the

next value. This con tinues until the last value is used, w hereas the loop

term inates. The process is typ ica lly im plem ented using "for" loops. The series o f

values is calculated on each itera tion o f the loop. T h is ties the series o f values

tigh tly to the code o f the fo r loop. There are o the r m ethods tha t liberate the values

from the close bond w ith the code.

D issecting the functiona lity o f a "for" loop reveals tha t it is m erely a varia tion

o f a "while" loop. It de fines a pa ir o f standard opera tions to sequence th rough a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

list. These operations are in itia liz ing the cu rren t value to the beginn ing o f the

series and advancing the cu rren t value po in ter to the next value.

A loop can be represented as an associa tion o f tw o th ings: a list o f values

and a po in ter to the cu rren t value. In addition , there can be a variable, called the

target, tha t is to receive the series o f values. O perations can be defined to act on

an associa tion tha t m im ic the internal opera tion o f a "for" loop. Then by using a

"while" statem ent, the functiona lity o f a "for" loop can be achieved w ithou t using

one. A dd itiona l operations, beyond those o f a "for" loop, can a lso be defined.

This a llow s the association, the lis t o f values and the curren t value pointer, to be

d ivorced from the loop. The associa tion becom es a param eter fo r a g roup o f

opera tions tha t im plem ent a loop. Several opera tions can be defined th a t use an

association: initialize, reset, next, te s t and get value.

The initia lize routine fe tches the values in the list. It cou ld be done by

querying the user o r by som e o ther m ethod. The deta ils are no t im portan t a t th is

stage. The list itse lf can be im plem ented in any ordered m anner: an array, linked

list, e t cetera.

The reset and next opera tions both concern the po in te r to the curren t value

in the list. The reset fun c tion w ould se t the po in te r to the firs t value in the list. The

next operation m oves the po in te r to the next value in the list. If the end o f the list is

reached, the next opera tion should no t w rap back to the firs t value.

The te s t function checks the position o f the cu rren t value pointer. If the

po in ter has gone beyond the end o f the list, th is function should signal tha t the

loop is com pleted.

The ge t value opera tion is m ost o ften used fo r assignm ent. It a llow s the

ta rge t variab le to use the po in te r to get a va lue fo r itself. T h is operation is separate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

from the ’next’ opera tion fo r flex ib ility reasons. The associa tion betw een the

ta rge t variable and the o ther tw o com ponents o f the loop is a one w ay

association. The ta rg e t variab le "knows " abou t the loop from w hich it gets its

values. The loop, how ever, does no t "know " anyth ing about the ta rge t variable.

This a llow s fo r a greate r degree o f flex ib ility a t a la ter stage in the im plem entation

of th is schem e. The ta rg e t variab le does no t need to be consisten tly the sam e

variable. Several variables can share the ro le o f be ing the target. It is even

possible tha t the ta rg e t variab le is a llocated and deallocated w ith in the body o f the

loop. W ith every iteration, there m ay be a new ta rg e t variable.

LoopAssociation.Initialize = {2.89, 3.14, 6.023, -97.8}
LoopAssociation.Beset ()
do

print LoopAssociation.GetUalue ()
LoopAssociation.Next ()

while LoopAssociation.Test () does not signal end-of-loop
Figure 3.2

This exam ple dem onstra tes how th is type o f loop cou ld w ork In a quasi-

ob ject oriented language. The associa tion o f the lis t and the po in ter are

represented by an ob ject ca lled LoopA ssociation. The list is assigned a series of

values in the firs t line. The po in te r is then reset to the firs t value from the list. The

body o f the loop m ust be p laced in a trad itiona l loop ing structure, in th is case, a

do...w hite. The body o f the loop consis ts o f sim ply p rin ting the cu rren t value o f the

loop. Here, ta rge t variab le is unnam ed. It can be considered to be som e

tem porary location w ith in the p rin t function . The next function con tro ls the w hile

loop. It m oves the po in te r to the next va lue and the w hile loop repeats. If there is

no next value to m ove to , the next fun c tion signa ls the end o f the loop and the

w hile loop term inates. The ou tpu t o f th is exam ple should be the list o f fo u r values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Nested loops can be though t o f as a set o f series o f values fo r a set o f

variables. W hen the body o f the loop Is com pleted, on ly the Inner m ost variable

changes to the next value. If the Innerm ost variab le w as on Its last value, then It

resets back to Its firs t value. The next ou term ost variab le then proceeds to Its next

value. W hen the abso lu te ou term ost variab le has used Its last value, the nested

loops term inate.

A nesting o f loops can be constructed by linking several loop associa tions

together in an ordered set. The set then can respond to a sim ple g roup o f

operations tha t w ill a ffect a ll o f the loops Internal to the set. The operations

Include: assign a single loop to the set, reset and step.

The assign function associa tes a single loop w ith the set. Th is operation

m ust be Invoked once fo r each loop tha t is to be pa rt o f the loop. By defin ition , the

order In w hich the loops are added to the set d irectly corresponds to the nesting

order o f the loops. The firs t loop added to the set w ill be the ou term ost loop. The

last loop added to the se t w ill be the Innerm ost loop.

The reset opera tion causes the set to traverse Its lis t o f loops te lling each to

reset Itself. The result Is to have all o f the po in ters In the various loops set the ir

firs t values from the ir respective lists.

The step opera tion causes the innerm ost loop to proceed to Its next value.

It does th is by Invoking the next function fo r tha t loop. If the loop signals Its

com pletion, the reset function is Invoked and the next ou te r lo op 's next function Is

Invoked. Th is action progressive ly bubb les ou t to the ou term ost loop. W hen the

ou term ost loop signa ls tha t it has com pleted, the step function signals the

com pletion and the entire set o f nested loops term inates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

The exam ple in figu re 3 .3 nests three loops. The loops are se t up in the

firs t three lines. A ssigning the loops to the set in the fo llow ing three lines places

L o o p i in the position o f outerm ost. Loop3 serves as the innerm ost loop. A ll three

loops are reset by resetting the se t in the next line.

Loopl.Initialize = {2.89, 3,14, 6.023, -97.8)
Loop2.Initialize = {14.0, 15.0}
Loop3.Initialize = {1, 2, 3, 4}
LoopSet.Assign (Loopl)
LoopSet.Àssign (Loop2)
LoopSet.Assign (Loop3)
LoopSet.Reset
do

print Loopl.GetValueO, Loop2.GetValue(), Loop3.GetValue()
while LoopSet.StepO does not signal end-of-nested-loops

Figure 3.3

A single do ...w h ile loop con tro ls the entire se t o f loops. Since a ll the loops

have been reset, the firs t itera tion causes the values 2.89, 14.0 and 1 to be

printed. The invocation o f the loop se t’s step function , in the cond ition o f the w hile

loop, causes the innerm ost loop to proceed to its next value. The p rin t line then

produces the ou tpu t 2 .89 , 14.,0 and 2. The process w ill p roceed until the fina l

ou tpu t o f -97 .8 , 15.0 and 4. A t th is po in t, the step function signals the end o f all

the loops and the do ...w h ile loop term inates.

In the exam ple above, any num ber o f loop associa tions cou ld have been

given to the set. The num ber o f loop associa tions has no bearing on the fo rm a t o f

the do ...w h ile loop.

This techn ique addresses a ll o f the problem s encountered in the

ecosystem exam ple. Because the series o f values th a t a loop associa tion uses is

stored in a list, a non linear se t o f values can be specified. The last exam ple

dem onstrates th is.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Since th is m ethod trea ts the loop associa tions as data, the associa tions

can be m anipulated like any o ther piece o f in form ation. This m eans tha t they can

be created and assigned to a set dynam ically. In the ecosystem exam ple, the

user w as allow ed to se lect any anim al from a list o f m any species. As the user

selects each species, the appropria te num ber o f loop associations cou ld be

created and assigned to a set. The user, a t th is po in t, cou ld be prom pted fo r the

values fo r the series in the list. The set w ill have exactly the co rre c t num ber o f

loop associations. The nested loops have been set up w ithou t any need fo r

reprogram m ing.

Devising m ethods o f rearranging the o rder o f the nesting are not d ifficu lt.

The user can be given the oppo rtun ity to so rt the set in any m anner. A function

cou ld be added to the set tha t w ould a llow the user to prioritize the loop

associations. In a g raph ica lly based program , th is cou ld be done visually by

rearranging icons tha t represent the nesting levels. A lternative ly, the user cou ld

couple a num ber w ith each loop associa tion. The num ber cou ld be in terpre ted as

the nesting level num ber. S orting the set by the num ber before use w ould

effective ly change the nesting.

3.3. The User Interface
The ob jective o f th is m ethod o f hand ling loops is to m ake the con tro lling

param eters o f a sim ula tion frien d ly and pow erfu l fo r bo th the program m er and the

user. The w ork ings o f loops, as they have been suggested here, provide a

fram ew ork fo r a flex ib le system . S ince the loops are trea ted in a un iform m anner,

it is on ly natural th a t the user in terface o f these loops are a lso consistent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

The in itia lization step o f a loop associa tion calls fo r the list to be given a

series o f values. T h is m eans tha t the user is to provide the values. It is im portant

to provide suitable prom pting to illic it a co rre c t response from the user. The

in itia lization step should provide facilities to p rom pt the user w ith an appropria te

phrase, as w ell as in form the user if there are any de fau lt responses.

If the user responds to the prom pt w ith ju s t a carriage return, the series

should take on the defau lt value. A lternative ly, the user can type a series o f

values. To m ake a long linear series easier, the user should have the op tion o f

specifying a low value, a high value and an increm ent.

Enter the initial population of lions [1000]; <cr>
Enter the initial population of gazelle [10000j: 8000 8500 8750
Enter the initial population of zebra [50001: (4000 8000 1000)
Enter the initial population of giraffe [3000]: (2000 4000 500) 5000 6000

Figure 3.4

The com puter p rom pts the user w ith the underscored tex t in th is exam ple

o f F igure 3.4. On the firs t line, the sim ulation w ants the num ber o f lions in the

initial population. It specifies tha t the de fau lt is 1000. The user responds w ith just

the carriage return w h ich accepts the default. In the second line the defau lt fo r the

initial population o f gazelte is 10000. Instead o f accepting th is value, the user

specifies three values. The correspond ing loop associa tion w ill initialize its list to

the values specified by the user. On the th ird line the user specifies five values

instead o f accepting the de fau lt single value o f 5000. In the parenthesized form

specified by the user, the firs t value is the low ; the second value is the high; the

th ird value is the increm ent. In the loop associa tions list, the input translates to the

five values: 4000, 5000, 6000, 7000, 8000. On the last line, the user com bines

d iscrete values w ith an itera ted group. The values used by the loop associa tion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

w ill be: 2000, 2500, 3000, 3500, 4000, 5000, 6000. The user may specify any

com bination o f iterated g roups o r d iscrete values.

3.4. Implementation
O bject oriented program m ing provides m any o f the to o ls necessary fo r the

sim ple im plem entation o f th is schem e. Loops need not be restricted to floa ting

po in t values. Through the OOP features o f inheritance and virtua l functions, loops

can be expanded in type to include integers, long in tegers and strings.

The loop associa tion base class defines the in terface fo r all types o f loops.

Regardless o f the actual data type used by the loop, every loop associa tion needs

to be able to respond to the five basic loop functions: initialize, reset, next, tes t and

get value. The base class a lso defines the com ponents o f a loop tha t are

com m on to all types. T h is includes the variab les necessary fo r im plem enting the

user interface.

3.4.1 . The Base Class iterator

class Iterator
{ char DefaultString[HAX_IHPUT LENGTH];
char InputString[MAX INPUT LENGTH];
char Proipt[HAX_INPUT_LENGTH];
int NunberOfValues;
int CurrentPosition;
public:
Iterator (void);
void Getlterator (char *, char *, FILE*);
inline int IsDone (void);
inline void Next (void);
inline void Reset (void);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

virtual void Parselnput (char*) = 0;
)

Figure 3.5

Because the itera tors derived from th is base class im plem ent loops using

d iffe rent variable types, it is the derived types ' responsib ility to define the list

conta in ing the series. However, the curren t value po in ter can be im plem ented in

the base class because it is sim ply an index in to the list. The variable

C urrentPosition serves in tha t capacity. The variab le Num berO fValues, keeps

track o f the length o f the series.

The three characte r strings defined a t the beginn ing are used to im plem ent

the user interface. W hen an ite ra tor is created, a p rom pt and defau lt are specified.

These w ill be presented to the user during the ite ra to r’s in itia lization process. The

exact input given by the user is reta ined in the characte r array U serlnput. The

input is kep t so tha t it can be used as ou tpu t in a report. Th is cou ld a llow

experim ents to be repeated w ithou t re typ ing the input, in add ition to verify ing the

input during an aud it procedure.

The routine G etlte ra to r serves as the in itia lization o f the iterator. It sets the

values fo r Itie defau lt and the prom pt. It then uses them to ge t input from the user.

Because each derived ite ra tor uses a d iffe ren t data type, it is the derived ite ra to r’s

responsib ility to parse the inpu t from the user. This is done w ith the Parselnput

routine. A ll derived types o f itera tors m ust define the ir ow n Parselnput routine.

Ideally, each Parse lnput rou tine should a llow the sam e form of input. In other

w ords, all types o f ite ra tors should a llow the user to input d iscrete values as w ell

as iterated groups. H ow ever, there Is no fac ility to en force th is.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

The Reset function sim ply returns the C urrentP osition variable to the

beginn ing o f the lis t The N ext function increm ents the C urrentPosition. IsDone

com pares the C urrentP osition w ith the N um berO fValues. If C urrentPosition is

beyond the end o f the list, IsDone returns a true condition .

The G etValue function is not defined by the base class. This is because

each derived class w ill re turn a value o f a d iffe ren t type. Therefore each derived

class is responsib le fo r defin ing its ow n G etValue function.

In tlte ra to r in figu re 3.6, defines a typ ica l derived iterator. Its purpose is to

a llow the user to iterate over a series o f in tegers. This is the ite ra tor th a t w ould be

chosen fo r the initial popu la tion size o f an anim al in the ecosystem exam ple.

class Intlterator : public Iterator
{ int Values[HÀX_NÜHBER_OF_VALÜES];
public:
Intlterator (void);
int GetValue (void) { return Values[GetCurrentPosition()]; }
virtual void Parselnput (char *);

1»

Figure 3.6

The In tlte ra to r p rovides an array o f Integers to serve as the list o f values.

The GetValue function retu rns the value o f a position in the array using the

C urrentPosition index from the base class. The ite ra to r a lso defines the

m andatory P arse lnputFunction.

3.4 .2 . IteratorSet

The IteratorSet m anages a lis t o f Iterators. By m aintaining a list o f Iterators,

the class is able to im plem ent a ll the fea tures o f dynam ically nested loops.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37
class IteratorSet
{ FILE* Source;

Iterator* Iterators[50];
int NumberOfIterators;
public:
IteratorSet (FILE*);
Iterator* Allocatelterator (int, char*, char*);
void Reset (void);
int Step (void);
void Printlterators (FILE*);
void Save (void);

};
Figure 3.7

The list o f Ite rators is sto red in the fo rm o f an array o f po inters called

Iterators. The N um berO fIterators keeps track o f the nesting depth.

To add an ite ra tor to the set, the A lloca te lte ra to r function is used. It m ust

be provided w ith a flag identify ing the type o f ite ra to r desired, the p rom pt and the

default value. The process o f crea ting ite ra tors invokes the ite ra tors’ user

interface. If the variable Source is po in ting to the standard inpu t (std in), the user is

prom pted fo r the series fo r the new iterator. If the variable Source instead po in ts

to a file , the series o f values is read in from the file . In e ither case, the function

returns a po in ter to the new ly created iterator. The ob ject th a t requested the

allocation o f a new ite ra to r w ill then use the po in te r to retrieve the series o f values.

The Save fun c tion a llow s the user the op tion o f saving the responses given

to the ite ra tors’ prom pts. An ou tpu t file m ust be specified if the user chooses to

save. The IteratorSet then cycles th rough its lis t o f ite ra tors causing each to

ou tpu t the response tha t w as given to it.. The file saved in th is m anner is in a form

tha t can be used as inpu t in the ite ra tor a llocation process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

O nce an o f the ite ra tors have been created, the nesting o f loops is ready to

use. The Reset function w ill cycle th rough the lis t o f a ll the itera tors causing each

to reset to the ir firs t value. The Step function causes the ite ra tors to proceed to

the next values in the m anner outlined above, tf the ou term ost itera tor has used

its last value, the Step fun c tion returns a fa lse cond ition indicating tha t the loops

are com plete.

void Lion::SetupIterators (IteratorSet* IS)
{ InltialPopiilationlterator = (Intlterator*) IS.AIlocatelterator

(INT ITERATOR, "Initial Population Size",
"1500");

AttritionRatelterator = (Doublelterator*) IS.AIlocatelterator
(DOOBLEJTERATOR, "Attrition Rate by Disease",
".40"

ReproductiveRatelterator = (Doublelterator*) IS.AIlocatelterator
(DOUBLE ITERATOR, "Reproductive Rate", "1.2");

)
Figure 3.8

The ecosystem sim ulation provides a good exam ple o f the IteratorS et’s

use. The popula tion o f lions m ust iterate over th ree values: the in itia l popu la tion

size, a ttrition rate due to disease and reproductive rate. W hen the user selects

lions to be pa rt o f the ecosystem , the class lion requests three itera tors from the

itera tor set. ft provides prom pts and de fau lts fo r each o f the itera tors and then

saves the poin ters it receives.

void Lion::GetNevValues (void)
{ PopulationSize = InitialPopulationItertor->(3etValue();
AttritionRate = AttritionRateIterator->GetValue();
ReproductiveRate = ReproductiveRateIterator->GetValue();

}
Figure 3.9

A t the beginn ing o f each itera tion o f the ite ra to r set, the ob jects tha t have

a llocated itera tors m ust be a llow ed to retrieve new values. In th is exam ple, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

class Lion has a function specifica lly fo r ge tting the new value o f its three iterated

variables. For th is exam ple consider th is function to be repeated fo r each anim al

class tha t w as available fo r the user.

IteratorSet IS(stdin);
ListOfAllSelectedAnimals = AllowUserToSelectAniinals();
for each animal i in ListOfAllSelectedAnimals do:

i->SetupIterators();
IS.Beset{) ,*
do
{ for each animal i in ListOfAllSelectedAnimals do:

i->GetHevValues();
EcosystenHodel (ListOfAllSelectedAnimals);

} while (IS.Step(i);
Figure 3.10

This pseudo-C + + code fragm ent dem onstra tes a com ple te dynam ic

nesting o f loops. The IteratorS et is crea ted on the firs t line, specifying tha t input is

to com e d irectly from the user instead o f a file . A lis t o f anim als to be included in

the sim ulation is the created by the user. The S etup lte ra tors function is called fo r

each o f the anim als selected. T h is causes the user to be prom pted fo r w hatever

series values are needed fo r each anim al. Th is a llocates new iterators, w hich are

placed in the ite ra tor set. The ite ra tor set is then reset and the nested loops begin.

The firs t step in the loop is re trieving values from the itera tors. The ecosystem

sim ulation is then g iven the list o f anim als w ith the ir cu rren t values. W hen the

sim ulation ends, the Ite ratorS et steps to the next value and the loop repeats.

3.5. Conclusion
Ite rators and IteratorSets define a very flexib le m ethod o f im plem enting

loops in a sim ulation program . N ot on ly do they a llow loops to be created

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

dynam ically, bu t they a lso a llow fo r dynam ic nesting. This solves the in flexib ility

problem s found w ith trad ition loop ing structures. The user in terface aspects of

Iterators create a com ple te un ified package tha t can be used to con tro l a

sim ulation o r a sim ilar program .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. The Genetic Algorithm
OBJGEN is an ob ject oriented program fo r use in experim entation w ith

genetic a lgorithm s fo r optim ization. It is based on a fram ew ork designed to

provide m axim um flex ib ility as an experim enta l p latform . The program and its

fram ew ork are m alleable; m any d iffe ren t varia tions o f genetic a lgorithm s can be

constructed w ith a m inim um am ount o f recoding. Iterators, Probes and the

hierarchical inheritance structu res o f ob ject o rien t program m ing provide m uch o f

the flexib ility.

4.1. Genetic Algorithm Background
Binary G enetic A lgorithm s are search a lgorithm s tha t are based on the

m echanics o f natural se lection and natural genetics [1]. G iven a param etric

equation to be optim ized (the ob jective function) and a set o f bounds on the

param eters, a genetic a lgorithm w ill search fo r a g lobal optim um . G enetic

a lgorithm s have been show n to be effective over a w ide variety o f d iffe ren t

optim ization problem types. In add ition to real param eter optim izations, genetic

a lgorithm s have a lso been applied to com binatoria l problem s.

G enetic a lgorithm s begin w ith a set o f random ly chosen po in ts in the

search space. Each po in t is considered an individual m em ber o f a population.

Through the processes o f the a lgorithm , a popu la tion w ill spaw n a succeeding

generation. S ubsequent popu la tions w ill begin to converge to one area o f the

search space.

A typ ica l exam ple o f a genetic a lgorithm is the one em bodied in the

GENESIS program [2]. GENESIS can be used fo r optim ization o f param etric

functions w ith real param eters. Internally, the position o f a po int in the search

space is encoded as a b inary string . There is one section o f the binary string fo r

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

each param eter o f the ob jective function . The b inary string can be though t o f as

the analog o f DNA in b io log ica l genetics. The b inary string is the genetic m aterial

tha t holds all the in fo rm ation tha t defines the ind iv idua l’s position in the search

space.

Each individual in the initia l popu la tion is rated on perform ance. This is

done by decoding the b it s tring and then applying the po in t it represents to the

objective function . The ob jective fur>ction retu rns a floa ting po in t value w hich is

then associa ted w ith the individual as the ind iv idua l’s perform ance.

C om parison o f the perform ances o f ind ividuals in a population determ ines

the fitte s t individuals. These best ind ividuals are then selected to form a new

population. Ind ividuals th a t w ere no t selected do no t survive. M etaphorically, th is

is the survival o f the fitte s t as defined by Darw in. The a lgorithm used by GENESIS

to e ffect the selection is a nondeterm in istic techn ique called the Baker selection

m ethod [3]. A selected individual w ill generate a num ber o f o ffspring in d irect

proportion to its relative fitness com pared w ith the o ther selected individuals. In

other w ords, if the norm alized fitness o f an individual is tw ice tha t o f another

individual, the firs t ind ividual w ith have on average tw ice the num ber o f o ffsp ring in

the succeeding generation.

Selection pressure is on ly one aspect o f the process o f advancing from one

generation to the next in b io log ica l evo lu tion . G enetic a lgorithm s usually sim ulate

m utation and m ating in add ition to selection.

M utation acts on the b inary string . A th resho ld know n as the m utation rate

con tro ls m utation. The th resho ld represents the p robab ility o f a g iven b it in a

g iven string w ill be inverted. The inversion o f a b it has the e ffect o f m oving the

individual to a new po in t In the search space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

The exchange o f genetic m aterial betw een tw o individuals in a genetic

a lgorithm is know n as crossover. In the m etaphor w ith b io log ica l evolution, th is is

the m ating o f tw o individuals to produce o ffspring . Unlike the b io log ica l m odel,

how ever, the union o f tw o genetic a lgorithm individuals alw ays produces tw o

o ffspring and destroys the parents. T w o positions random ly chosen in the b it

string determ ine a segm ent o f genetic m aterial tha t is exchanged betw een the tw o

parents. W hen the exchange occurs, the individuals tha t w ere the parents

becom e the o ffspring . In e ffect, crossover fo rces the population to try d iffe ren t

com binations o f param eters.

C rossover know s no th ing o f the boundaries betw een the param eters in the

binary string, thus an exchange o f genetic m aterial is no t sim ply an exchange o f

param eters betw een individuals. W hen a crossover po in t fa lls inside a param eter,

the e ffect is a perturbation o f the param eter in bo th individuals [4].

A tria l is an invocation o f the ob jective function on an individual tha t has not

been tested in the past. A ny individual tha t is changed by m utation o r crossover is

considered a new untried individual and is there fore applied to the ob ject function

fo r evaluation and coun ted as a tria l. If an individual survives in to a succeeding

generation and m anages to ge t by m uta tion and crossover w ith no changes to its

b inary string, it is no t app lied to the ob jective fun ction and therefore a tria l has not

occurred. The num ber o f tria ls can be tho ug h t o f as rough ly the num ber o f po ints

in the search space tha t have been exam ined.

O nce selection, m uta tion and crossove r have acted on a popu la tion the

process o f advancing to the next generation is com plete . The a lgorithm repeats

until a stopp ing crite ria had been met.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

W ithout know ing the global optim um beforehand, it is very d ifficu lt to

determ ine if a popula tion has converged. It is necessary to devise o ther m ethods

to stop the a lgorithm . One m ethod uses the concep t o f tria l. A t the start o f an

experim ent a m axim um num ber o f tria ls is selected. W hen the m axim um is

achieved, the a lgorithm stops. This sam e idea can be applied to the num ber of

generations. If several generations go by w ith no changes in the num ber o f tria ls,

the algorithm stops. T h is is called the sp inn ing thresho ld.

Several m easurem ents o f the perform ance o f genetic a lgorithm s have been

devised. O ff-line and O n-line perform ance m easures rely on the concep t o f a trial.

O ff-line perform ance is geared tow ard m easuring convergence w hile on-line

m easures ongo ing perform ance [1].

4.1.1 . Real Vector Genetic Algorithms

In an RVGA, the encod ing o f the param eters in to b inary strings is bypassed

[4, p8]. Each individual now ho lds a vecto r o f real num bers tha t are used as the

param eters fo r the ob jective function . In theory th is varia tion on a genetic

a lgorithm may be m ore e ffic ien t because it e lim inates the overhead o f the binary

string conversions. The d iffe rences in the representation o f the "genetic m aterial"

necessitate the redefin ition o f several o f the processes o f the genetic a lgorithm .

M unition is redefined to ac t d irectly on the po in ts o f the popula tion rather

than the encoding o f ttie po in ts. The m utation rate can now be considered the

probability tha t a param eter w ill be pe rtu rbed by m utation. The actual process of

m utation can be done in several w ays. One possib ility is to sim ply a llow a new

value to be selected fo r a g iven param eter in a range centered on the o ld value of

the param eter. The size o f the in terval can be determ ined a t run tim e w ith a setting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

called M utationS ize expressed as a percentage o f the entire range o f possib le

values fo r a param eter. A nother a lternative th a t w ou ld facilita te com parison o f

BG A 's w ith RVGA’s w ou ld be to sim ulate m utation o f b inary individuals.

C rossover is redefined to be an exchange o f param eters between

individuals. For exam ple, if individual one has param eter values ABGD and

individual tw o has values EFGH a crossover m ight produce tw o new individuals

w ith param eters o f AFGD and EBCH. U nlike crossover in BGA’s, crossover in

RVGA’s cannot take place in the m iddle o f a param eter. This m eans tha t

crossover in a RVGA does no t perturb param eters.

A ll o ther techniques involved in genetic a lgorithm s rem ain the sam e fo r

RVGA’s. The selection m ethod as w ell as the m easures o f o ff-line and on-line

perform ance do no t need to be changed.

4.2. The Framework
The OBJGEN program consists o f an im plem entation o f the genetic

a lgorithm using the ob ject orien ted language C + + . The program is based on a

fram ew ork tha t Is Independent o f the type o f genetic a lgorithm im plem ented in the

program . The fram ew ork p rovides the flex ib ility and m uch o f the pow er o f the

program .

There are five m ajor fam ilies o f c lasses th a t m ake up OBJGEN: Individuals,

Populations, G enetic, Ite rators, and Probes. In add ition there are three auxiliary

classes tha t serve in supporting ro les: F ileM anager, FunctionD ispatcher, and

IndividualM anager.

The fram ew ork p rov ides a ske le ton o f a genetic a lgorithm . A ll o f the m ajor

functions o f the a lgorithm are im plem ented in a generalized m anner. Th is a llow s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

the fram ew ork to function w ith a w ide num ber o f varia tions o f genetic a lgorithm s.

Part o f the flex ib ility o f the program stem s from the fa c t tha t new fea tures can be

added w ithou t rew riting o r recom piling the fram ew ork.

4 .2 .1 . Individuals

Ind ividual is the base class from w h ich a ll types o f individuals are derived.

This m eans tha t Ind ividual defines the basic a ttribu tes o f individuals w ithou t

defin ing the im plem entation details. The classes derived from Individual are

responsib le fo r filling in the details. For exam ple, an individual tha t is used in a

genetic a lgorithm fo r so lv ing a com binatoria l problem w ill have its genetic m aterial

represented In a m anner appropria te fo r com binatoria l problem s. An individual

from a genetic a lgorithm tha t optim izes param etric ob jective functions w ith floa ting

po in t param eters w ou ld have a d iffe ren t representation. Both types o f ind ividuals

w ould derive from the sam e ancesto r using the ob ject oriented fea ture o f

inheritance.

There are tw o constructo rs fo r th is class, each is used in a d iffe ren t

situation. The firs t con struc to r is used to crea te the p ro to type individual. In the

crea tion o f th is Ind ividual, the user is prom pted, th rough the use o f itera tors, fo r

key values tha t con tro l fea tu res o f the individual.

The pro to type ind iv idua l’s so le purpose is to spaw n new individuals. The

pro to type individual is g iven to the c lass tha t represents a population. The

popula tion fills itself by c lon ing the p ro to type individual. In th is m anner, a

popu la tion is Independent o f the type o f ind ividuals it carries. Any deriva tion o f an

ind ividual can be g iven to a popu la tion and the popu la tion can successfu lly use it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

The process o f c lon ing an Individual uses the second constructor. The

second construc to r queries the itera tors ra ther than the user fo r the con tro lling

values fo r the ind iv idua l’s features.

The class Individual, show n in figu re 4.1, declares the interface tha t is

com m on to all types o f ind ividuals. The in terface consists o f functions though

w hich a ll actions involving individuals are routed. It does no t define the details o f

the im plem entation o f the in terface, it s im ply declares tha t these routines w ill exists

fo r all types o f Individuals. Each type o f ind ividual is required to define in detail the

im plem entation o f these routines. A given type o f individual m ay add new routines

to the interface. The base class Ind ividual m erely states tha t the routines it defines

are the bare m inim um tha t a derived type o f ind ividual m ust have.

class Individual
{ static FunctionDispatcher* FD;

static IteratorSet* IS;
static int FunctionNunber;
static Iterator* IndividuallT;
static int Osage;
int NeedsEvaluation;
double Performance;
public:
virtual int CalcPerformance (void) = 0;
virtual Individual* Clone (void) = 0;
virtual void Copy (Individual*);
virtual void Crossover (Individual*) = 0;
virtual void Nutate (void) = 0;
virtual void Print (FILE*);
virtual int operator== (Individual*) = 0;
virtual void RandomSetup (void) = 0;

}
Figure 4.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

The C alcPeform ance routine is Intended to cause an Individual to invoke

the evaluation function . The evaluation function is passed the ind iv idua l's genetic

m aterial and then return a single floa ting po in t num ber representing the Individuals

perform ance. The ind iv idua l m ust then sto re tha t value.

The C lone routine creates a new individual, based on the type o f the

curren t individual, using the second constructo r. The genetic m aterial o f the

curren t individual is no t cop ied . The routine resu lts in a brand new "em pty"

individual.

The C opy rou tine Is very sim ple. It cop ies the genetic m aterial o f the

individual passed to it. Th is enables an individual to becom e an identical tw in o f

another individual.

The C ro sso ve r rou tine im plem ents the crossover operation betw een tw o

individuals. The ind ividual passed to th is rou tine and the curren t individual w ill

exchange genetic m aterial in a m anner appropria te fo r the ind iv idua ls ’ type.

M utate Is the rou tine th a t accom plishes the m utation operation.

Print is used to dum p the con ten ts o f an individual to an ou tpu t device o r

file. The p rin t destina tion m ust be passed to th is rou tine in the fo rm o f a po in ter to

a file.

O perator = = is a rou tine th a t com pares the genetic m aterial o f tw o

individuals. If they con ta in the sam e in fo rm ation th is routine returns a one, if they

are d iffe rent it re tu rns a zero.

Random Setup sets an ind iv idua l's gene tic m aterial to a random state. This

routine is used a t the beg inn ing o f an experim ent to initia lize an individual.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

In add ition to de fin ing the in terface fo r individuals, the class Individual holds

in form ation tha t is com m on to a ll individuals. Regardless o f the variant o f

individual in use, the re are properties tha t a ll ind ividuals have.

Individuals m ust be able to be evaluated; there fore each individual m ust

ho ld a value representing its ow n perform ance. Each individual has its ow n

variable to ho ld its perform ance. A ppropria te ly, th is variable is called

Perform ance. The flag , N eedsEvaluation, is used to signal if an individual’s

perform ance needs updating. If crossover o r m utation results in a change in an

ind ividual's genetic m aterial, the individual needs réévaluation. It is the

responsib ility o f the ind iv idua l’s C ro sso ve r and M utation routines to set th is flag.

Each instance o f an individual has its ow n cop y o f the variables

NeedsEvaluation and Perform ance. There are five variables fo r w hich there is

only one copy. These variab les are com m on to all instances o f Individual.

FD is a variab le th a t ho lds a po in te r to a function d ispatcher. A function

d ispatcher is an ob ject th a t m anages a lis t o f ob jective functions. W hen an

individual needs access to an ob jective fun ction to evaluate itself, it s im ply asks

the function d ispa tcher fo r the function . The fun ction d ispa tcher then returns the

appropriate ob jective fu n c tio n in the fo rm o f a po in ter. The individual then can

invoke the ob jective fu n c tio n via the po inter.

An individual in fo rm s the function d ispa tcher w h ich objective function it

needs, through the use o f the FunctionN um ber variab le. Th is variable is

contro lled by the user v ia an ite ra tor.

The variable Ind iv idua llT is a po in te r to the Ite ra tor tha t con tro ls the

FunctionN um ber variab le. W hen a new g ro u p o f ind ividuals is created, the firs t

individual m akes an inqu iry to th is Ite ra tor. The Ite ra tor re tu rns the num ber o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Objective function tha t w ill be in use during the cu rren t experim ent. The individual

in tu rn w ill use th is value to ge t the ob jective function from the function dispatcher.

The po in te r IS is a po in te r to an IteratorSet, The IteratorSet is an ob ject tha t

con tro ls all o f the Ite ra tors in the program . Its value is set during the creation o f a

pro to type individual. W hen a new ite ra to r is needed, it can be a llocated by a

request to the IteratorSet. T h is value is no t used, except in the creation o f the

FunctionN um ber Ite ra tor in the firs t constructo r. Its presence is m erely a

convenience to fac ilita te fu tu re expansion.

Usage is a coun te r tha t keeps track o f the num ber o f individuals tha t have

been created. The p ro to type ind ividual is excluded from th is count.

4 .2 .1 .1 . R ealParam eterlndividuals

The class R ealParam eterIndividual, show n in F igure 4.2, is an interm ediate

level in the im plem entation o f the ind iv idua ls in the RVGA. It is a class derived

from the base class Ind ividua l and it the re fo re inherits a ll o f the properties o f tha t

class. A s a derived class, it has the responsib ility o f defin ing the deta ils th a t are

left ou t o f the base class. Th is includes the actua l representation o f the genetic

m aterial and all o f the in te rface rou tines th a t the base class declared bu t d id not

define. Because th is c lass Is an in term edia te level, it can pass the responsib ility

fo r defin itions o f the in te rface rou tines on to c lasses tha t w ill be derived from it.

class HealParaieterlndividual : public Individual
{ static DoubleFunctionPointer Evaluator;

static double *RealNinimums;
static double *SealRanges;
static int NunberOfParaneters;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51static double MutationRate;
static Iterator *RealIndividualIT[2];
static int Osage;
double *RealParaneters;

}

Figure 4.2

The genetic m aterial o f an instance o f c lass RealParam eterl ndividual

consists o f a vec to r o f floa ting po in t values. The size o f the vecto r is dependent

on the num ber o f param eters needed by the ob jective function . This vecto r is

called RealParam eters and is im plem ented as a po in te r to a double. M em ory fo r

the vecto r is a llocated a t the tim e o f the crea tion o f the individual in the second

constructor. RealParam eter is the on ly instance variab le in th is class.

A ll o ther variab les are c lass variab les. T ha t m eans there is on ly one copy

o f these variab les used by a ll instances o f the class. The values o f these variables

need to be set on ly once a t the beg inn ing o f an experim ent. The Usage variable

contro ls th is. Th is variab le coun ts the num ber o f R eallndividuals tha t have been

created. O nly during the firs t one ’s crea tion w ill con s truc to r execute the code to

initialize the values o f the c lass variables.

Evaluator is a c lass variab le tha t ho lds a po in te r to an ob jective function.

This Is the objective fun c tion th a t is re turned by the function dispatcher. This

variable exists fo r speed considera tions. It Is certa in ly possib le to go through the

function d ispatcher w henever the ob jective fun c tion is required. However, the

overhead o f do ing so w ou ld cause the program to s low considerably. A sim ple

solution is get and sto re the po in te r to the fun c tion once.

The Evaluator variab le is sto red in the R eallnd ividual class instead o f the

base class fo r flex ib ility reasons. Pointers to fun c tion s in C + + are typed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

accord ing to the ir re turn value and the ir param eters. These together are called

the signature o f a function . The R eallndividual c lass is designed to w ork w ith

functions th a t have floa ting po in t param eters. P lacing th is value in the base class

w ould restric t all derived classes to w ork ing w ith floa ting po in t param eters. This is

not desired behavior. It w ould elim inate the possib ility o f using the program ’s

fram ew ork w ith o the r types problem s.

The function d ispa tcher is used to d issem inate in form ation abou t the

objective function be ing used. T hrough an inqu iry to the function d ispatcher, the

num ber o f param eters in the cu rren t ob jective function is stored in the variable

Num berO fParam eters. Again, the fun ction d ispa tcher cou ld be queried w henever

the num ber o f param eters is needed, bu t speed considera tions necessitated

querying only once.

Each o f the param eters in a real vec to r ob jective function m ust be

bounded. The tw o arrays RealM inim um s and RealRanges store the bounds on

each o f the param eters. T here are as m any elem ents in each o f these arrays as

there are param eters requ ired by the ob jective function . The values o f these

arrays are set th rough the fu n c tio n d ispa tcher. W hen the firs t Reallndividual is

created, the con struc to r queries the fun ction d ispa tcher fo r po in ters to these

arrays.

The m utation opera tion fo r a R eallnd ividual needs one contro lling

param eter: M utationRate. T h is value is con tro lled by an itera tor and thus

ultim ately by the user. T he Ite ra to r po in ted to by the variab le ReallndividuallT

contro ls th is value.

Further de fin ition o f m uta tion is le ft ou t o f th is class. It is up to derived

classes to define the exact in te rp re ta tion o f M utationR ate and ac t on the genetic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

m aterial. Th is a llow s several types o f ind iv idua ls to be created tha t w ork w ith

d iffe ren t m ethods o f m utation.

C rossover is a lso le ft undefined by th is class. The classes derived from th is

one are free to define crossover in w hat ever m anner they see fit.

4 .2 .1 .2 . ReallndividualO

The ReallndividualO c lass derives from RealParam eterlndividual and is the

com plete de fin ition o f the RVGA. It m akes de fin itions fo r M utation and C rossover

tha t and defines the auxilia ry variab les needed to im plem ent them .

class ReallndividualO : public RealParameterlndividual
{ static double *MutationRanqe;

static Iterator *RealIndividualOIT;
static double HutationSize;
static int Osage;
public:

virtual Individual* Clone (void) { return new RealIndividualO(); }
virtual void Crossover (Individual*);
virtual void Nutate (void);
};

Figure 4.3

The m utation rate fro m the pa ren t c lass RealParam eterlndividual is

interpreted as the p robab ility th a t a g iven param eter o f the real vecto r w ill be

m utated by the m utation routine. W hen the M utate function is invoked fo r an

individual, the firs t a c t is to decide if the m uta tion is to be effective. This is done by

generating a random num ber betw een ze ro and one and com paring it w ith the

m utation rate. If the random num ber is less than o r equal to the m utation rate, the

m utation proceeds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

M utation consis ts o f pertu rb ing the value o f param eter in the vecto r o f

param eters o f an individual. The M utationS ize variab le places a bound on the size

o f the perturbation . F or exam ple, a value o f .2 w ould a llow a param eter to be

changed up o r dow n by ten percen t o f the to ta l range o f the param eter. The

m utation size is con tro lled by an iterator.

The actua l p rocess o f m utation firs t se lects the d irection o f the m utation;

e ither positive o r negative. Second, a range o f possib le new values o f the

param eter is ca lculated. The range is ad justed to rem ain w ith in the bounds o f the

param eter. Then a new value o f the param eter is selected uniform ly from the

range.

For exam ple, cons ide r the value o f a param eter to be 89 and the bounds o f

the param eter give it a possib le range o f 0 to 100. A m utation size o f .25 w ould

represent a m utation range o f p lus o r m inus 12.5. Because 89 plus 12.5 is

greater than 100 (the upper bound on the param eter) the m utation range is

adjusted to be m inus 12.5 to p lus 11. If the m utation w ere chosen to be negative,

the new value fo r the param eter w ou ld be chosen from the range o f 76 .5 to 89. If

the m utation were chosen as positive, the value w ou ld be in the range o f 89 to

100.

The variable M utationR ange is an array used to store the m axim um size of

the m utation range fo r each param eter. Th is a rray w as added fo r speed

considerations. It is be s t to ca lcu la te th is on ly once and then lookup the value

rather than ca lcu la ting it each tim e the value is needed. The value o f th is array is

calculated in the second con struc to r.

C rossover exchanges gene tic m ateria l betw een tw o individuals. For

Reallndividuals th is is s im p ly an exchange o f a s tring o f param eters. Selection o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

the string Is done by firs t se lecting a starting and an ending point. These can be

though t o f as the cu t po in ts. The param eters betw een the tw o cu t po in ts are then

exchanged betw een the tw o individuals. If one individual has a param eter list

[12 .4 , 16.8, 3 .1 , 8 .9 , 6 .6] and the o ther has [11 .4 , 15.3, 5.6, 8 .8 ,4 .5], crossover

cu t po in ts a t 1 and 3 w ou ld resu lt in the param eters lists being; [12 .4 15.3 5.6, 8.9

6 .6] and [11 .4 , 16.8, 3 .1 ,8 .8 , 4 .5].

4 .2 .1 .3 . B inarylnd ividua ls

B inarylnd ividua ls w ere created to m im ic the behavior o f the individuals in

the GENESIS program exactly. The im plem entation o f a lgorithm s used in

GENESIS are sim ilar bu t in m ost cases are n o t exact m atches to the

im plem entations used here. W here the d iffe rences are significant, it w ill be noted.

B inarylnd ividua ls are derived from the interm ediate class

R ealParam eterlndividual. B inarylnd iv idua l adds a new representation o f the

genetic m aterial to the vec to r o f floa ting po in t num bers provided by

RealParam eterlndividual. The new representa tion is the ta rge t o f the m utation and

crossover operations. W hen it is tim e to evaluate a B inarylnd ividual, the

representation is transla ted and sto red in the vec to r o f floa ting po in t num bers from

RealParam eterlndividual. T h is g ives B inarylnd iv idua ls the flexib ility o f using its

own genetic m aterial representa tion w hile s till be able to exp lo it the features

inherited from R ealParam eterlndividual.

class Binarylndividual : public Reallndividual
{ static int ListLength;
static int NuiberOfBytes;
static int BitsPerParaneter;
static int HaxValueOfBitPattem;
static int HuHext;
static int OseCraycode;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56static Iterator ‘BinaryIT;
static int Osage;
unsigned char ‘List;
public;
void Decode (void);
void Putltem (unsigned char, int);
unsigned char Getltem (int);

)
Figure 4.4

The representation o f the genetic m aterial o f a B inarylnd ividual is a string o f

bits. The b it string is re fe rred to by the po in te r List. The routines Putltem and

G etltem allow fo r easy access to the individual b its w ith in the string as if the list

were an array o f b its. L ist is the on ly instance variab le added by th is class.

ListLength ho lds the num ber o f b its th a t are used as the genetic m aterial.

The Num berO fBytes variab le s to res the size in bytes o f the list. Because the

num ber o f b its used is no t necessarily evenly d iv is ib le by eight, there w ill be

several unused b its a t the end o f the list. The B itsPerParam eter variable stores the

num ber o f b its tha t are a lloca ted fo r each param eter o f the ob jective function.

This value is con tro lled by an ite ra to r and the re fo re by the user.

The b it pattern is conve rted in to the floa ting po in t values used by the

objective function. The b it pattern can be in te rpre ted in one o f tw o ways: e ither as

a binary num ber o r a g ray cod ed b inary num ber. The variable UseG raycode

determ ines how the b it pa tte rn is transla ted . U seG raycode is indirectly contro lled

by an iterator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

The b it pattern is transla ted in to an in teger tha t is then scaled in to a range

tha t is appropria te fo r the param eter tha t the b its represent. The process o f

scaling is assisted by the variab le M axValueO fB itPattern.

M utation fo r a B inarylnd iv idua l is done by inverting the value o f a specific b it

in the b it string . B inarylnd iv idua l uses the m utation rate from R eallndividual to

determ ine if a m utation occurs. However, the value is re interpreted to mean the

probab ility tha t a g iven b it is m utated ra ther than a given param eter is m utated.

One w ay o f im plem enting m utation fo r B inarylnd ividua ls, w ould be to cycle

through all b its, generating a random num ber fo r each and com paring it w ith the

m utation rate. Th is techn ique, w h ile effective, w ou ld be very slow . Instead o f

cycling th rough all b its, the num ber o f b its betw een m utations can be calculated.

M uNext is the variab le th a t ho lds th is in terval. A s each individual in a population is

considered, th is value is decrem ented acco rd ing to the num ber o f b its in an

individual. A s soon as the value o f M uN ext is less than the num ber o f b its in an

individual, M uNext is used to ca lcu la te an index to the b it tha t is to be m utated.

The m utation occurs and then a new M uN ext is ca lcu la ted based on the m utation

rate.

Like m utation, c rosso ve r opera tes on the bft string . Tw o individuals are

chosen and tw o cu t po in ts are se lected w ith in the b it strings. The portion between

the cut points is sw apped. The cu t po in ts are no t lim ited to the boundaries

between param eters. G reat care is taken du ring the execution o f the crossover

function to avo id unnecessary w ork. If the reg ions inside o r outside o f the cu t

points o f the tw o ind iv idua ls a re Identical, the crossove r w ould result in no change

to the individuals. If th is con d ition is fou nd to be true , the crossover does not take

place.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

B inarylnd ividua ls have an additional step added to the process o f

evaluation. It is necessary to transla te the b it s tring in to a vecto r o f floa ting point

num bers. The D ecode rou tine accom plishes th a t task. Im m ediately before the

ob jective function is app lied to the individual in the C alcPerform ance routine, the

D ecode routine is invoked.

4 .2 .1 .4 . R eallndividual 1

Reallndividual 1 is another class based on RealParam eterlndividual. It

defines its ow n versions o f crossover and m utation in a d iffe ren t m anner than

ReallndividualO. Its de fin itions are crea ted to sim ulate the m utate and crossover

functions o f B inarylnd ividua ls. R eallndividual 1 does no t include its ow n defin ition

o f the genetic m aterial In the m anner o f the c lass B inarylnd ividual, it uses the array

o f floa ting po in t num bers p rovided by the base class RealParam eterlndividual.

class Eeallndividuall : public RealParameterlndividual
{ static Iterator *RealIndividuallIT;
static int VirtualBitsPerParaieter;
static int HaxValueOfBitPattem;
static int Usage;
void MutateParameter (int);
public:

virtual Individual* Clone (void) (return new Reallndividuall(); }
virtual void Crossover (Individual*);
virtual void Kutate (void);

};
Figure 4.5

M utation in R eallnd ividual 1 is designed to sim ulate the m utation technique

found in the class B inarylnd iv idua l w ith ou t using the B inarylnd ividual genetic

m aterial representation. T o fac ilita te th is , a c lass variab le called

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

VirtualB itsPerParam eter is defined. This value is the equivalent o f the

B itsPerParam ater variab le found in B inarylnd ividua l and serves a very sim ilar

purpose. Just as the size o f a given m utation is d irectly related to the num ber o f

b its per param eter in a B inarylnd ividua l, the size o f a Reallndividual 1 m utation is

dependent on V irtualB itsPerParam eter.

W hen a B inarylnd ividua l perform s a m utation, it sim ply flip s the value o f one

of the b its in Its genetic m aterial. Th is causes a perturbation in the value o f the

param eter from w hich the b it w as selected. C onsider a B inarylnd ividual using a

stra ight b inary encod ing fo r each param eter. If Rj is the range o f a param eter Xj,

then m utating b it num ber k causes a pe rtu rba tion o f the size R;2-k. The sign o f the

perturbation depends on the orig ina l value o f the b it. If the orig inal value w ere 0,

then the perturba tion w ou ld be positive. A negative perturbation w ould result if the

original value had been 1.[4 , p 7]

M utationRate is in te rpre ted by R eallndividuaH in the sam e m anner tha t it is

interpreted by B inarylnd iv idua l: the m utation rate re flects the probability tha t a

given b it w ill be m utated. R eallnd ividual 1 m akes its decision to m utate on a

param eter by param eter basis. S ince the m uta tion rate specifies the probability

that a b it is m utated and each param eter represents a co llection o f bits, the

m utation routine com pares a un ifo rm ly se lected random num ber w ith the m utation

rate m ultiplied by the num ber o f v irtua l b its pe r param eter. If the random num ber

is less than the p roduct, a m uta tion occurs.

S im ulation o f b ina ry m uta tion beg ins w ith the selection o f virtua l bit, k. This

bit determ ines the m axim um size o f the perturba tion . It calculates a m axim um

perturbation size w ith a fo rm u la th a t is the equiva len t o f Rj2-k m ultip lied by 2.

Then a new value fo r the param eter is chosen un iform ly from the range o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

cu rren t value to the cu rren t p lus o r m inus the m axim um size o f the perturbation.

The s ign o f the pertu rba tion is chosen random ly. The m ultip lication by 2 is to

ad just the average pe rtu rba tion size to the sam e size as the m utation size in b inary

m utation. If add ing o r sub tracting the m axim um value o f the perturbation results

in a num ber th a t is ou t o f range fo r the param eter, the m axim um value o f the

perturbation is ad justed. T h is prevents the value o f the param eter from stepping

beyond its lim its.

For exam ple, a g iven param eter m ight have a range o f 0 .0 to 10.24 w ith ten

virtual b its per param eter. If v irtua l b it num ber five is selected fo r m utation, th is

corresponds to a m utation range o f plus o r m inus 0 .32. The actual m utation

proceeds from th is po in t in the sam e m anner as the m utation from the class

ReallndividualO.

S im ulation o f c rossove r o f B inarylnd iv idua ls is a tw o stage process. The

firs t stage exchanges param eters betw een tw o Individuals using tw o crossover

points. The second stage pertu rbs one o f the param eters a t each crossover

point. This is in line w ith the e ffects o f c rossove r on a B inarylndividual. In the case

o f a B inarylndividual, a ll the b its betw een the crossove r po in ts are exchanged

between the tw o individuals. T h is co u ld resu lt in an exchange o f the entire

representation o f severa l param eters. A c rosso ve r po in t can fa ll w ith in the b it

pattern o f a param eter o f a B inarylnd iv idua l. Th is resu lts in an exchange o f b its

between the param eters o f the tw o ind iv idua ls involved. In effect, th is is a

perturbation o f the param eters.[4 , p 5]

In the beginn ing o f the firs t stage, tw o crossove r po ints are selected.

These points are se lected to c ross betw een the param eters. The param eters

between the crossover po in ts are sw apped in the sam e m anner tha t crossover

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

takes place fo r class ReallndividualO . One specia l case exists fo r the real

param eter crossing : the tw o crossover po in ts can be equal. W hile th is is not

a llow ed to happen in the case o f c rossover fo r the c lass ReallndividualO,

R ea llnd iv idua ll uses th is occurrence to sim ulate bo th crossover po in ts in the

sam e param eter. W hen the tw o crossover po in ts are the sam e, no exchange of

param eters happens. The crossover rou tine proceeds d irectly to the second

stage.

The second stage o f c rossover pe rtu rbs a param eter im m ediately adjacent

to each crossover po in t. It accom plishes th is using a m ethod very sim ilar to

m utation. However, the techn ique is a little m ore com plex, because It m ust

sim ulate the exchange o f several b its betw een the param eters o f tw o individuals.

Exam ining the e ffec ts o f the pe rtu rba tion o f b inary crossover in m ore detail

w ill m ake the reasoning behind the sim ula tion techn iques clearer. C onsider the

effects o f crossover fo r the tw o ind iv idua ls be low :

1 0 1 0 1 1 0 0 1 1
1 1 0 1 1 0 1 1 0 0

The b it strings are arranged w ith the b its num bered from zero to nine from

right to left. The least s ign ifican t b it is num bered w ith the zero. The crossover

points are also num bered from zero to nine, w ith crossover po in t zero im m ediately

to the right o f b it zero. If a c rosso ve r p o in t fa lls a t position tw o, the

B inarylndividuals w ill exchange th e ir tw o least s ign ifican t bits. In th is exam ple, the

firs t individual has 11 in the least s ign ifican t positions, how ever it cou ld have any

o f the fou r possib le va lues fo r those tw o b its. The sam e Is true fo r the o ther

individual. A t m ost, the new value th a t an Individual receives fo r its tw o b its w ill be

a difference o f three from the o ld value. If the orig ina l b it pattern w as 11 and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

new b it pattern is 00, the d iffe rence is three. G raphing the outcom e of all possible

com binations o f orig ina l and new b it patterns y ie lds figu re 4.6.

Distribution Of Differences For 2 Bit Exchange

1

-3 -2 -1 0 1
Difference

Figure 4.6

R eallnd iv idua ll se lects a value by w h ich to perturb a param eter by

selecting a perturba tion fro m a d is tribu tion sim ilar to the one in figu re 4.6. The

maximum size o f the pe rtu rba tion is determ ined by selecting the lesser o f tw o

values calculated using tw o d iffe ren t m ethods.

In the firs t m ethod, R eallnd ividual 1 se lects a v irtua l crossover po in t based

on the num ber o f v irtua l b its pe r param eter. T h is is very sim ilar to the m ethod

used to select the m uta tion size in the M utate routine. This value becom es the firs t

m ethod's candidate fo r the m axim um pertu rba tion size.

W hen a popu la tion o f b inary Ind ividuals is approach ing convergence, they

begin to look very sim ilar. In o th e r w o rds, as the ind ividuals begin to cluster

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

around the sam e values o f the ir param eters, the b inary encod ings o f the

param eters becom e m ore and m ore alike. The probab ility tha t the exchange of

b its in a b inary crossover results in a perturba tion begins to drop. T o take th is

situa tion in to account, the second m ethod o f determ in ing a perturbation size

sim ply ca lcu la tes the d iffe rence betw een the tw o param eters from the tw o

individuals. It uses th is value as its candidate fo r the m axim um perturbation.

The lesser o f the tw o values ca lcu la ted by the tw o m ethods is selected as

the m axim um pertu rba tion size. The actual pertu rba tion Is chosen from the

d istribu tion given in figu re 4 .7 sca led in to a range appropria te fo r the param eter

tha t is to be perturbed.

The probab ility density fun c tion fou nd in figu re 4 .7 represents a continuous

version o f the righ t ha lf o f the graph in figu re 4 .6 . It shares the sam e d istribu tion o f

values as the absolute value o f the b it d iffe rences. The value zero occu rs fou r

tim es as o ften as the value th ree in bo th graphs.

Probability Density Function

4

3

2

1

0
4320 1

Figure 4.7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

A random num ber can be selected from the d istribu tion by firs t selecting a

random num ber r un ifo rm ly from the range o f 0 .0 to 1.0. The num ber is then

transform ed by the equation: 1 .0 - sq rt (1 .0 - r). Th is num ber can then be scaled

in to the appropria te range and the s ign selected random ly. The function o f figure

4 .8 is a rou tine tha t w ill se lect a random num ber from the righ t half o f the

d istribu tion . W hen th is routine is used to generate a random num ber from the

d istribu tion to be used as a perturba tion , it is necessary to calculate the sign o f the

resu lt separately.

double SandKangeLinear (double lov, double high)
{ return ((1.0 - sqrt (1.0 - Random())) * (high - low)) + low;
}

Figure 4.8

There is one fu rth e r com p lica tion be fore the perturba tion can be applied to

the param eter. S ince param eters are bounded, a fac ility m ust be created tha t w ill

prevent them from ove r stepp ing the ir lim its. In the case o f m utation, th is is done

by restricting the size o f the range from w hich the new value is seiected. Since

m utation uses a un iform d is tribu tion fo r se lection, the range restriction has no side

effects. W ith the pe rtu rba tion selection, the d is tribu tion is no t uniform . Sim ply

restricting the range from w h ich the value is selected skew s the d istribution.

Figure 4.9 show s the p rob lem s w ith restric ting the range o f the m axim um

perturbation size. The figu re show s tha t fo r a g iven param eter, the maximum

perturbation size is fo u r. H ow ever, the cu rre n t value is such tha t adding a value of

four w ould pu t the param eter ove r its upper bound. In fact, the perturbation m ust

be selected to be one o r less to p reven t an o u t o f range problem . The line

com posed o f dashes represents the d is tribu tion if the perturbation range is sim ply

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

lim ited to a size o f one. The e ffective d is tribu tion show s tha t it is very d ifficu lt fo r

the param eter to ever reach its upper lim it.

Limit on Perturbation
Value

4

3

2 Original Distribution

Effective \
Distribution1

0
0 1 2 3 4

F ig u re 4 .9

One possib le so lu tion to th is problem is illustra ted in figure 4.10. Here, the

original d istribu tion from the rig h t o f the lim it is translated, scaled and then added

to the orig inal d is tribu tion on the le ft o f the lim it. Th is produces the d istribu tion

shown by the Une com posed o f dashes. W hile th is so lu tion does skew the original

distribution, it does n o t su ffe r from preventing the orig ina l param eter from

reaching its bounds.
Limit on Perturbation

7 ValueEffective
Distribution6

5

4

3
Original Distribution2

1

0
4320 1

Figure 4.10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66
This so lu tion requ ires a m od ifica tion to the routine o f figu re 4 .8 tha t selects

a random num ber. A th resho ld value correspond ing to the lim it o f the param eter

is specified. The th resho ld partitions the range o f the un iform ly selected random

variable, r, in to tw o sections. Values be low the th resho ld are used w ithout

m odification. Values above the th resho ld are translated to below the threshold.

The value is then scaled by a fa c to r tha t is d irectly related to the relative sizes of

the ranges above and be low the thresho ld .

For exam ple, the goal m ight be to se lect a perturbation from a range where

the m inim um is 0 .0 and the m axim um is 4 .0 . But the param eter that is to be

perturbed is 1.0 aw ay from its upper bound. Th is m eans tha t the perturbation

m ust be selected fro m a range o f 0 .0 to 1.0.

The firs t step is to chose a un iform random num ber, r, between 0 .0 and

1.0. Th is range represents then entire 0 .0 to 4 .0 range o f the perturbation. Since

the lim it on the pe rtu rba tion is 25 percen t o f the orig ina l m axim um perturbation

size, a thresho ld value o f 0 .25 is chosen. A ny value o f r above the thresho ld o f

0.25 w ill be m odified. If the se lected num ber w ere .085, it w ould be translated by

subtracting th resho ld to a value o f 0 .25 , g iv ing a value o f 0.6. Since the

proportion o f the ranges above and be low the th resho ld is 1 /3 , the value is scaled

by dividing it by 3. T h is y ie lds a value o f .2. Th is value is then used as the value r.

This new value can then be app lied to the equation: 1.0 - sqrt (1 .0 - r), yie ld ing a

norm alized perturbation. T h is value is then scaled back to the orig inal range o f

0.0 to 4.0 given a real pe rtu rba tion size o f 0 .8 . The rou tine o f figure 4.11

implements th is technique.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

double RandRangeLinearThreshold (double low, double high, double threshold)
{ double r = (1.0 - sqrt (1.0 - Randoii()));

if (threshold < high)
{ double NormalizedThreshold = (threshold - low) / (high - low);

if (r > NormalizedThreshold) r = (r - NormalizedThreshold) *
Normali zedThreshold /
(1.0 - NormalizedThreshold);

}return (r * (high - low)) + low;
}

Figure 4.11

4.2 .2 . Population

Population Is a base class w h ich serves as a starting place fo r the

construction o f popu la tions. The class declares all o f the features tha t a

population m ust have w h ile declin ing to m ake specific requirem ents about

im plem entation details. The c lass Population is show in figu re 4.12.

Just like the class Ind ividual, P opulation has tw o constructors. The firs t

constructo r is used to crea te a p ro to type popu la tion . The second constructo r is

used in the process o f c lon ing the pro to type.

class Population
{ static IteratorSet* IS;
int PopulationSize;
double AveragePerformance;
Individual **List;
int EvaluationHadeFlag;
double CurrentPerformance;
protected:
static ProbeList Probes[10];
Iterator* PopulationIT[2];
Individual* WorstHember;
Individual* BestNenber;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68public:
virtual Population* Clone (void) = 0;
virtual int AdvanceOneGeneration (Population*) = 0;
virtual int MeasurePerfomance (void);
virtual void Print (FILE*);

}
Figure 4.12

The PopulationS ize variab le is the on ly pa rt o f the base class Population

tha t is under the con tro l o f an itera tor. The variab le PopulationIT poin ts to the

iterator. PopulationS ize co n tro ls the size o f the list o f individuals in the population.

L ist is the variab le tha t m aintains the list o f individuals. Actually, L ist points

to an array o f po in te rs to Individuals. The array is dynam ically a llocated according

to the PopulationS ize variab le. The array is o f po in ters to individuals rather than

individuals, fo r tw o reasons. F irst, th is a llow s the individuals to be o f any type

derived from the base class Individual. If an array o f Individuals were used,

Population w ou ld have to be recoded fo r every varian t o f individual created.

Second, the array o f po in te rs a llow s the lis t to be sorted o r m anipulated in a m ore

efficient m anner. S orting requ ires on ly th a t the po in te rs be m oved. If po in ters

were not used, it w ou ld be necessary to cop y the individuals in o rder to move

them. Pointers are s ign ifican tly fas te r to m anipulate.

Population m ainta ins som e basic in fo rm ation abou t the Individuals it holds.

AveragePerform ance is ca lcu la ted over the en tire popu la tion w henever the

population is evaluated. In add ition , the popu la tion m aintains tw o variables

pointing to w o rs t and the b e s t m em ber individuals.

Like the class Ind ividual, Population does no t stand alone. It requires tha t a

derivative class be crea ted to fill in de ta ils o f the im plem entation. It specifies a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

m inim um Interface th a t the derived class m ust define. Included in the m inim al

in terface are tw o routines: AdvanceO neG eneration and C lone. There are a lso tw o

functions tha t a derived popu la tion type m ay redefine: M easurePerform ance and

Print.

AdvanceO neG eneration is required to be defined by the derived population

type. This rou tine de fines the techn ique th a t m oves a population from one

generation to the next. It shou ld ou tline each step o f the process applying them to

the ind ividuals in the popula tion.

C lone is a m ethod o f crea ting a popu la tion. W hen invoked, it should return

a po in ter to a new popu la tion o f the sam e type as the current population. It is not

necessary fo r the new popu la tion to be fu lly popula ted w ith individuals.

M easurePerform ance is fu lly defined by class Population. It cycles through

the population app ly ing each ind iv idua l's C alcPerform ance function . D uring th is

process, the popu la tion m aintains its in form ationa l variables

AveragePerform ance, B estlnd iv idua l and W orstlnd ividua l. A derived population

may redefine th is function as it sees fit. H ow ever, it is probably not necessary to

do so.

There are tw o variab les, C urrentP erform ance and EvaluationM ade which

contain in form ation regard ing the sta tus o f the evaluation process during the

execution o f M easurePerform ance. C urrentP erform ance is m aintained w ith the

value o f the perform ance o f the ind iv idua l m ost recently evaluated.

EvaluationM ade is a fla g sta tes if the cu rre n t ind ividual being m easured was

applied to the ob jective fun c tion . If an individual survived crossover and m utation

w ith no changes, then it does no t need to be reapplied to the objective function .

The old value o f perform ance is still up to date. These tw o variables are created

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

as a conven ience fo r the probes O nline and O ffline tha t m easure the on going

perform ance o f the a lgorithm .

The Print routine is a lso fu lly defined by the class Population. It sim ply

cycles th rough the lis t o f ind ividuals invoking the Print function o f each. In

addition , it reports on the cu rren t value o f AveragePerform ance and the best and

w orst individual pointers.

4 .2 .2 .1 . G enesisPopulation

G enesisPoputation is a c lass derived from the base class Population. It is

designed to con form w ith the perform ance o f the GENESIS program . The

functiona lity o f popu la tions in GENESIS have been transla ted in to the fram ew ork

o f the base class Population.

class GenesisPopulation : public Population
{ static double *WorstWindow;

static double Worst;
static int WorstWindowSize;
static int WorstWindowPosition;
static double GapSize;
static int *Sanple;
static int *Sample2;
static Iterator* GenesisPopulationIT[4];
static int UseElitist;
static double CrossoverRate;
static int LastCrossoverlndex;
static Osage;
protected:
void Gap (void);
void GenerateHewWorst (void);
void ClearWorstWindov (void);
double AdjustWorstPerfonnance (double Adjustee);
inline int GetLastCrossoverlndex (void);
inline double GetCrossoverRate (void);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71public:
virtual int AdvanceOneGeneration(Population*);
virtual Population* Clone (void);
virtual void Crossover (void);
virtual void Mutate (void);
virtual void Select (Population*);

};
F ig u re 4 .1 3

M any o f the variab les tha t w ere im plem ented as global variables in

GENESIS have been p laced as class variab les in th is class. This technique holds

these variables in c lo se r associa tion to the code tha t uses them . Encapsulation in

th is m anner, is an im portan t fea tu re o f ob ject oriented languages. Rather than

discussing each variab le individually, the d iscussion w ill be included w ith the

routines tha t use the variables.

The A dvanceO neG eneration rou tine orchestrates the actions o f a

population evo lving fro m one generation to the next. It is given a po in ter to the

population from the previous generation. It invokes the Select routine w ith that

population. This crea tes the list o f ind ividuals th a t w ill becom e the new

generation. The lis t o f ind ividuals is then associa ted w ith the population from

which the AdvanceO neG eneration rou tine was invoked. It then executes the

Mutate and C rossover rou tines on the lis t o f new individuals. If the e litis t strategy

is enabled and if the best m em ber from the parent (previous) generation is not

present in the new lis t o f ind iv idua ls, it is added. Th is im itates the e litis t strategy

found in GENESIS. AdvanceO neG eneration then evaluates its list o f individuals by

invoking the M easurePerform ance routine.

The Select rou tine fro m GENESIS uses an technique called the Baker

Selection A lgorithm . Space in the new popu la tion is a llocated to individuals based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

on th e ir re lative ranking. A given individual m ay be represented in the subsequent

generation several tim es if its perform ance is suffic ien tly above tha t o f Its peers.

The new popu la tion is assem bled in the Select routine by firs t filling an array called

Sam ple w ith the ind ices o f ind ividuals w ith in the parent population. For exam ple, if

the Select rou tine determ ines th a t the firs t individual from the parent population is

to be represented fo u r tim es in the new generation, the index 1 w ill be placed in

the firs t fo u r positions o f the Sam ple array. If the second individual from the parent

popula tion w ere to have a p o o r perform ance relative to the other m em bers o f the

population, it m ight no t survive in to the next generation. The num ber 2 w ould not

be placed in the Sam ple array. G enerally if the norm alized fitness o f an individual

is tw ice tha t o f another, it w ill be a llocated tw ice the space in the new generation.

Once the Sam ple array is filled , it is shuffled and used to copy individuals from the

parent generation in to the new population.

A t the d iscre tion o f the user, a generation gap m ay com e in to play during

the selection process. The generation gap specifies a m inim um percentage o f a

population tha t is to survive in to the succeeding generation w ithout regard to the

Baker Selection a lgorithm . Im m ediately a fte r the array Sample is filled by the

Select routine, the Gap rou tine m od ifies the array. It overw rites elem ents o f the

Sample array w ith ind ices se lected random ly from the parent population using the

array Sample2 as an in term ediate array. It rep laces a percentage o f the Sample

array specified by one m inus the variab le GapSize. GapSize is contro lled by an

iterator. If GapSize w ere to be specified as .6, a t least fo rty percent o f the parent

population w ould survive in to the new generation.

The C rossover rou tine app lies the C rossover operation to pairs of

individuals in the popu la tion . C rossoverR ate, con tro lled by an iterator, specifies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

the percentage o f the popu la tion th a t is sub jected to th is process. If the

C rossoverR ate w ere specified to be 0 .6 and there w ere one hundred individuals in

the popula tion, the firs t s ix ty ind ividuals w ou ld be crossed in pairs. The variable,

LastC rossoverlndex, is ca lcu la ted to be the index o f the last individual to be

sub jected to crossover. In the above exam ple, the value in LastC rossoverlndex

w ould be sixty. T h is variab le is ca lcu la ted by the construc to r o f the

G enesisPopulation. It s im p lifies the ca lcu la tion in the loop tha t applies the

crossover to the individuals.

The C lone rou tine is a s tra igh t fo rw ard im plem entation o f the requirem ents

o f the base class Population. C lone sim ply creates and returns a new instance of

the class G enesisPopulation.

The M utation rou tine is a lso very s tra igh tfo rw ard . It cycles th rough the list

o f individuals, applying the M utation opera tion on each.

4 .2 .3 . G en e tic

The class G enetic is the superv isor fo r con tro lling the process o f the

genetic a lgorithm . It is responsib le fo r the creation and disposal o f populations. It

orchestrates experim ents by track in g each generation. It m akes the decisions

that result in the te rm ination o f experim ents. Experim ents are clustered in

experim ent sets. T he G enetic c lass d irects the advancem ent from one experim ent

to the next in an experim ent set.

class Genetic
{

long InitialSeed;
int ExperinentsPerSetting;
int HaxGenerations;
int HaxTrials;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74int HaxSpin;
int GenerationNunber;
int Trials;
Individual* Prototypelndividual;
Population* PrototypePopulation;
Population* Parents;
Population* Children;

public:
void GeneticAlgorithm (void);
void RunExperinentSet (void);
void Evolve (void);

}
Figure 4.14

A single experim ent Is executed by the G enetic class w ith Its Evolve routine.

This routine sets up the in itia l popu la tion and then guides it through the process of

a genetic a lgorithm . D uring the process, the G enetic class m onitors the

population while w a iting to de tect the experim ent stopp ing criteria. As soon as it

senses the stopp ing crite ria , the G enetic c lass c loses dow n the experim ent in an

orderly manner.

The Genetic c lass uses th ree techn iques fo r s topp ing an experim ent.

These are m axim um num ber o f generations, m axim um num ber o f tria ls and

maximum spin.

The M axG enerations variab le is con tro lled by an iterator. The Genetic

class never lets an experim ent con tinue past th is ce iling on the num ber of

generations.

A tria l is defined as the app lica tion o f the ob jective function on an individual

that has not been tested in the past. The G enetic c lass counts the num ber o f tria ls

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

in each generation. If the num ber o f tria ls exceeds the M axTrials threshold, the

experim ent is term inated. The M axTrials variab le is con tro lled by an iterator.

M axSpin is related to both the num ber o f generations and the num ber o f

tria ls. A sp in is counted if a generation passes w ith no tria ls occurring. The

M axSpin variab le pu ts an upper lim it on the num ber o f generations tha t can pass

w ithou t a tria l. M axSpin is a lso con tro lled by an iterator.

Before the beg inn ing o f an experim ent, a sam ple population is created.

This sam ple popu la tion is called the P rototypePopulation. This population is never

used in the actua l processing o f the genetic a lgorithm . It purpose is to spaw n new

popula tions o f its type a t the beg inn ing o f each experim ent. In the OBJGEN

program , the P roto typeP opula tion w ill be a G enesisPopulation. However, using

the P rototypeP opulation schem e, th is does no t alw ays have to be true. If a new

type o f Population is derived, it can be passed in as the pro totype. G enetic class

w ill then create popu la tions o f the new type w ithou t any recoding necessary.

Parents = PrototypePopulation->Clone();
Parents->Populate (Prototypelndividual);
Parents->Initialize ();
SaveRandoiSeed ();
Children = PrototypePopulation->Clone();
diildren->Populate (Prototypelndividual);
Trials = Parents->MeasurePerformance();

Figure 4.15

A sim ilar schem e is in p lace fo r Ind ividuals. The G enetic class is given a

P rototypelndividual. T h is ind iv idua l is never processed through the algorithm , it is

sim ply cloned to fill o u t popu la tions a t the beginn ing o f an experim ent. Again, th is

allows new variants o f Ind iv idua ls to be created and used w ith no recoding o f the

Genetic class o r P opulation needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

The firs t responsib ility o f the G enetic c lass in its Evolve routine is the

crea tion o f the popu la tion. It actua lly uses tw o popula tions w hich alternate roles

as the previous (parent) popu la tion and succeeding (ch ild ren) population. The

Population po inters, Parent and C hildren, each re fer to one o f the tw o populations.

The Parent popu la tion is crea ted firs t by c lon ing the P rototypePopulation. The

Parent popu la tion is then fille d w ith ind ividuals by c lon ing the Prototypelndividual.

The new ly created individuals are in itia lized to a random state by the Initialize

routine.

The second popu la tion is created by clon ing the PrototypePopulation again

and then assign ing the resu lt to the C hildren poin ter. The new population is then

filled w ith ind ividuals o f the appropria te type by clon ing the P rototypelndividual.

These new ind ividuals are no t in itia lized to a random state.

The fina l step in the in itia liza tion process is to evaluate the perform ance of

the firs t population. T h is is done by Invoking the M easurePerform ance function

on the Parent popu la tion po in ter. It re turns the num ber o f tria ls in the firs t

generation; invariably th is is equal to the size o f the population. The population is

then ready to begin the p rocess o f evo lu tion.

for (GenerationHumber = 1; (GenerationNunber < HaxGenerations) &&
(Trials < HaxTrials)
&& (GenerationSpin < HaxSpin);
GenerationNumber++)

{ PreviousMunberOfTrials = Trials;
Trials += Children->AdvanceOneGeneration (Parents);
T = Parents;
Parents = Children;
Children = T;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77
if (Trials == PreviousHumberOfTrials)
GenerationSpin++;

else
GenerationSpin = 0;

}
Figure 4.16

The loop fo llow ing the in itia lization phase o f the Evolve routine is the m ain

p rocesso r o f the genetic a lgorithm . W ith each iteration o f the loop, another

generation passes. The loop is con tro lled by the three stopp ing crite ria d iscussed

above.

The AdvanceO neG eneration rou tine applied to the C hildren popu la tion

causes individuals to be selected from the Parents popula tion. The selected

individuals are cop ied in to the C hildren popula tion. The processes o f advancing

one generation (M utation, C rossover, E litist and M easurePerform ance in the case

o f a G enesisP opulation) then a c t on the C h ild ren population.

The next step sw aps the popu la tion po in ters. The new ly com pleted

C hildren popu la tion becom es the new Parent popula tion. The o ld ind ividuals in

the o ld parent popu la tion w ill be superseded In the next invocation o f

AdvanceO neG eneration. In th is m anner, the tw o popu la tions trade roles in being

the parent and ch ild ren.

Before the next ite ra tion o f the loop, the s topp ing crite ria are checked. If

one o f the three is deem ed to be true , the loop is te rm inated. The tw o popu la tions

are then deallocated and the Evolve rou tine is com ple ted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78
void Genetic::RunExperinentSet (void)
{

for (int i = 0; i < ExperinentsPerSetting; i++)
{ Evolve ();
}

} ” *

Figure 4.17

The Evolve rou tine represents on ly one experim ent. M ultiple Invocations o f

the Evolve rou tine constitu te an experim ent set. The RunExperlm entSet routine

does exactly that. It Is a sim ple loop tha t ca lled the Evolve routine m ultip le tim es.

The Experim entsPerSettIng variab le pu ts an upper lim it on the num ber o f

experim ents th a t are run. Experim entsPerSettIng Is con tro lled by an Iterator.

void Genetic::GeneticAlgorithm (void)
{ InitialSeed = ((Longlntlterator*) GeneticIT[8])->GetValue();

do
{ HaxGenerations = ((Intlterator*) GeneticIT[0])->GetValue();
MaxTrials = ((Intlterator*) GeneticIT(l])->GetValue();
MaxSpin = ((Intlterator*) GeneticIT[2])->GetValue();
ExperinentsPerSetting = ((Intlterator*) GeneticIT[3])->GetValue();
RunExperinentSet ();

)while (IS->StepO);
}

Figure 4.18

The G enetlcA lgorithm rou tine o f c lass G enetic con tro ls all experim ent sets.

It also Is responsib le fo r con tro lling the Ite ra torS et w h ich In tu rn con tro ls all o f the

variables tha t have associa ted ite ra tors.

The m ain loop o f th is rou tine runs experim ent sets. It begins by re trieving

values fo r its ow n variab les fro m the Ite ra tors th a t co n tro l them . It then invokes the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

R unExperlm entSet routine. T h is w ill run a num ber o f experim ents depending on

the value o f Experim entsPerSettIng. A ll variab les tha t have associa ted itera tors

w ill re ta in the ir values across an entire experim ent set.

The lo op is con tro lled by the IteratorS et IS. A t the end o f the loop, the S tep

function is called fo r the IteratorSet. Th is causes the ite ra tors to advance to the ir

next values. If a ll the ite ra to rs have exhausted the ir ranges o f values, the Step

rou tine retu rns a zero and the loop term inates. If the itera tors have no t exhausted

the ir ranges, the loop continues. The variab les con tro lled by itera tors w ill p ick up

the ir new values and an experim ent se t w ill be run w ith those new values.

4.2 .4 . Probes

Probes are used extensive ly in the genetic a lgorithm and are responsib le

fo r a great deal o f the p rogram ’s pow er. The p robes defined in the cu rren t version

o f the program span from very sim ple "variable dum p" probes to com plex probes

tha t m on ito r o ther probes.

4 .2 .4 .1 . P robeLists

ProbeLists are d is tribu te d in the P opulation, G enesisPopulation and

G enetic classes in the program . T h is a llow s probes to m on ito r the progress o f the

genetic a lgorithm a t m ost o f the c ritica l p rocessing areas.

In the G enetic c lass the re are five P robeLists. They are associa ted w ith the

fo llow ing locations: be fo re a se t o f experim ents; a fte r a set o f experim ents; before

an experim ent; a fte r an experim ent; and a fte r the in itia l generation o f an

experim ent is created. A ssignm ent o f a p robe to one o f these locations is done in

a straight fo rw ard m anner; a constan t used to iden tify the location. The routine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

A ssign Probe is used to associa te the m easurem ent/function pa ir to the

appropria te location.

S ince G enesisPopulation is a derived class o f Population, they share a set

o f P robeLists and the assignm ent function . The ProbeLists are physically w ith in

the Population class, bu t on ly tw o o f them are associa ted w ith code locations in

the m ethods o f class Population. The o thers are le ft fo r a llocation by derived

classes. G enesisP opulation uses five o f the ProbeLists.

In Population, the tw o ProbeLists are used in the M easurePerform ance

routine. One resides inside the inner m ost loop and is traversed a fte r each

Individual is m easured fo r perform ance. The o ther is traversed a fte r all o f the

m easuring o f ind iv idua ls is com plete.

In G enesisPopulation, the lis ts are traversed a fte r each stage o f

transfo rm ing a popu la tion from generation to the next. These are located in o rder

at: a fte r selection, a fte r m utation, a fte r crossover, a fte r e litis t and a fte r the

popula tion is evaluated. T h is p rov ides a good covering o f possib le locations fo r

probes to w ork.

F igure 4 .19 represents a ll o f the existing P robeLists th roughou t the

OBJGEN program . The tab le show s the loca tion o f each list by class nam e and

function name. The fla g is the loca tion code tha t is used w hen assign ing a probe

to a location. The fla g a lso provides a terse descrip tion o f the location.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81
C lass Function Flag
Genetic RunExperlmentSet GENETIC PRE EXPERIMENT SET
Genetic RunExperlmentSet GENETIC POST EXPERIMENT SET
Genetic Evolve GENETIC PRE EXPERIMENT
Genetic Evolve GENETIC POST FIRST GENERATION
Genetic Evolve GENETIC POST EXPERIMENT

Population MeasurePerformance POPULATION IN MEASUREPERFORMANCE
Population MeasurePerformance POPULATION POST MEASURE­

PERFORMANCE
GenesisPopulation AdvanceOneGeneration GENESIS POPULATION POST SELECT
GenesisPopulation AdvanceOneGeneration GENESIS POPULATION POST MUTATE
GenesisPopulation AdvanceOneGeneration GENESIS POST CROSSOVER
GenesisPopulation AdvanceOneGeneration GENESIS POST ELITIST
GenesisPopulation AdvanceOneGeneration GENESIS POPULATION POST MEASURE­

PERFORMANCE
Figure 4.19

4 .2 .4 .2 . P opulation D um p Probe

The popu la tion Dum p Probe is very sim ple probe. It co llects no

in form ation. It period ica lly te lls the popu la tion tha t it m onitors to p rin t itself. Th is is

equivalent to the dum p Interval found In G enesis. The user selects the Interval in

un its o f generations and a destina tion fo r the report. The e ffect is to see each

individual in a popu la tion every n (specified by the user) generations during the

run o f the program .

Dum p defines the firs t (In itia lization) stage o f the reporting stages and the

last stage (reporting). It does no t co llec t o r m anipulate any in form ation, there fore

It can ignore those stages.

The in itia lization stage sim p ly resets Its Internal coun te r tha t tracks how

m any generations have passed. The D um p probe and its Reset function are

assigned to the "before experim ent" P robeLlst o f the G enetic class. T h is m eans

tha t the probes Internal cou n te r w ill be reset a t the beg inn ing o f each new

experim ent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

The report stage is assigned to the "a fter m easurem ent" P robeList o f the

Population class. A fte r a popu la tion is evaluated, th is probe w ill be invoked w ith

its R eport function . S ince the function w ill receive a po in ter to the Population as a

param eter, the probe s im p ly invokes the Population’s p rin t routine.

4 .2 .4 .3 . BestPopulation Probe

The BestP opula tion class draw s its lineage from bo th the Probe base class

and the Population class. The ob jective o f th is c lass is to m on itor each generation

in an experim ent and co lle c t cop ies o f the best ind ividuals found, it gets the ability

to ho ld a g roup o f ind iv idua ls from the class Population. The probe uses the

m ethods from tha t c lass to m anage its popu la tion o f individuals. The user

specifies how large the popu la tion is to be. A s a probe, th is class has the

capab ility o f brow sing th rough a popu la tion to fin d the best individuals.

The firs t stage o f reporting is im plem ented in B estP opulation’s Reset

function . Assigned to the "before experim ent" P robeList o f the G enetic class, th is

function in itia lizes the best popu la tion to the cu rre n t type o f individual. It

accom plishes th is th rough the use o f the P roto type lnd iv idua l. It gains access to

the P roto typelnd ividua l th ro ug h the po in te r to the G enetic c lass instance th a t it

receives as a param eter.

The C ollect fu n c tio n is assigned to the "a fter m easurem ent" ProbeList o f the

class Population. A fte r a ll the ind iv idua ls in a popu la tion have been evaluated, th is

probe com pares the best ind iv idua ls to the ind iv idua ls it has already co llected. If

the best in the new ly eva luated popu la tion is be tte r than the w o rst o f the co llected

population, the probe takes action . It cop ies the best individual it found over the

w orst it had co llected previously.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

T he R eport function is assigned to the "after experim ent" ProbeList o f the

G enetic class. W hen an experim ent ends, the R eport function invokes the Print

fu n c tio n from the p ro b e ’s Population heritage. The e ffect is to have a list o f the

best ind ividuals from an experim ent prin ted a t the end o f each experim ent.

4 .2 .4 .4 . AverageM easurem ents Probe

The AverageM easurem ents probe is an extendable probe. It m aintains a

list o f o the r probes fo r w h ich it ca lcu la tes averages. In add ition to inheriting the

p roperties o f a probe, it a lso Inherits the capab ilities o f a linked list. T h is enables it

to m anage its lis t in a m anner synchron ized w ith its duties as probe.

The lis t o f th is p robe consis ts o f nodes called Averagers. This c lass inherits

from the L inkN ode class. The class A verager consis ts o f the variables necessary

fo r the ca lcu la tion o f an average and a standard devia tion; a sum , a sum o f the

squares and coun te r o f the num ber o f elem ents to be averaged. In add ition there

is a po in te r to a p rc ^e from w h ich the da ta w ill be co llected. The C ollect routine o f

th is class causes the A verager to ge t the cu rren t value o f the probe It is

m onitoring. It uses the p ro b e ’s G etProbeValue function . It takes the value it

receives from the p robe and adds it to its sum variable. It a lso tracks the sum o f

the squares o f the va lues it receives. W hen requested through ca lling its

G etAverage o r G etS tdD ev It w ill m ake the appropria te ca lcu la tions and re turn a

value.

The A verageM easurem ents probe w ill crea te and add to its lis t an A verager

when it is given a po in te r to a probe. It is, o f course, im portan t to give

AverageM easurem ents a p robe o f su itab le type. A suitab le type is a probe tha t

collects floa ting po in t m easurem ents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

The Reset function o f AverageM easurem ents traverses its lis t o f A veragers

invoking th e ir Reset functions. The e ffect is to cause a ll Averagers to c lear the ir

sum s and elem ent counters. The Reset function is assigned to the "before

experim ent set" P robeList o f the G enetic class.

The C o llect function traverses the list and induces the A veragers to poll

the ir respective probes. S ince the C o llect function is assigned to the "after

experim ent" P robeList, the M easurem entAverager class co llects on ly the ending

value o f each probe. The consequence is to ca lcu la te an average o f probe values

over a set o f experim ents.

The R eport fun c tion is assigned to the "a fter experim ent set" ProbeList.

W hen an se t o f experim ents is com ple ted, the M easurem entAverager reports the

average and standard devia tion o f the probes it m onitored. By traversing its list

tw ice, prin ting the nam es o f the probes it m onitored in the firs t pass and prin ting

the averages in the second pass, the M easurem entAverager prin ts a fo rm atted

report.

4.2.4.S . O nline Probe

The O nline eva luation o f perfo rm ance from the orig inal G enesis program is

Im plem ented as a probe in O BJG EN. The O nline m easure o f perform ance

m easures on go ing perfo rm ance by generating an average o f the perform ance o f

all new individuals. A new ind iv idua l is de fined as an individual tha t has been

applied to the ob jective fun ction . Th is the sam e concep t as a trial. W henever an

individual Is app lied to the ob jective fun c tion a tria l occurs. O nline perform ance

calculates an average o f th e perfo rm ances fro m each tria l.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

O nline’s Reset function is assigned to the beginn ing o f each experim ent.

The running to ta l o f perform ances as w e ll as the coun te r o f the num ber o f tria ls

are se t to zero by th is function .

The C o llect fun c tion is assigned a location w ith in the code o f the

M easurePerform ance routine o f the class Population. M easurePerform ance

cycles th rough the list o f Ind ividua ls in the popu la tion and applies the ob jective

function . O nly ind ividuals th a t are m odified by M utation o r C rossover are

sub jected to the ob jective function . The P robeList tha t O nline’s C ollect function is

assigned to is w ith in the loop tha t cycles th rough the individuals. A fte r each

iteration o f the loop, the p robe lis t is traversed. If a tria l has occurred, the C o llect

function w ill add the perform ance o f t iie cu rren t individual to its running to ta l and

increm ent its tria l counter.

O nline’s R eport fun c tion is no t assigned to a probe list. O nline is assigned

to the A verageM easurem ents probe. The AverageM easurem ents probe tracks

the value o f O nline th ro ug h the use o f O nline ’s G etProbeValue function . In th is

m anner, O nline abd icates its reporting responsib ility and g ives it to the

AverageM easurem ent probe.

4.2.4.G. O ffline Probe

The O ffline p robe w o rks a lm ost identica lly to the O nline probe. The

intention o f th is p robe is to m easure convergence by generating an average o f the

best individuals. W henever a tria l occu rs, the probe adds the best ind iv idua l’s

perform ance to its runn ing to ta l and increm ents its tria l counter.

For exam ple, th e sequence o f tria ls m ight p roduce individuals w ith the

fo llow ing perform ances: 3 .1 , 2 .8 , 6 .2 , 5 .4 , 1.8 and 2.3. S ince a be tte r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

perform ance is considered to be a low er num ber, the o ffline m easure w ill add the

fo llow ing sequence to its running to ta l: 3 .1 , 2 .8 , 2 .8 , 2.8 , 1.8 and 1.8. A t each

step, on ly the best perform ance seen so fa r w ill be added to the running to ta l.

The d is tribu tion o f O ffline 's functions are the sam e as O nline’s. The Reset

fun c tion is p laced on a probe list a t the beginn ing o f each experim ent. The C ollect

fun c tion is on the probe lis t in the loop o f the M easurePerform ance routine o f the

c lass Population, The R eport function is no t assigned. AverageM easurem ents

takes over the reporting function .

4 .2 .5 . Iterators

Ite rators are used extensive ly in the OBJGEN program . They provide the

user w ith con tro l over the param eters fo r the genetic a lgorithm . A ll incom ing

com m unication from the user tha t is in tended to d irect the con tro lling param eters

o f the genetic a lgorithm is fie lded by itera tors. Because Iterators provide a sim ple

and consisten t in terface fo r the user, they are used even w here m ultip le values fo r

param eters are no t a llow ed.

In the fam ily o f classes tha t com prise individuals, there are tw o

constructors. The firs t co n s tru c to r is used to create the pro to type individual. Th is

individual is crea ted a t the beg inn ing o f the program and is used there a fte r to

spaw n all o ther individuals. These firs t con struc to rs a llocate iterators to con tro l

the variab le param eters o f ind ividuals. Exam ples include the ob jective function

num ber from the base class, and the num ber o f b its per param eter from the

derived class B inarylnd ividua l.

W hen an individual is crea ted, a ll o f the con s truc to rs traced back to the

base class are executed. If a B inary lnd iv idua l is crea ted , the con struc to r fo r c lass

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Ind ividual is executed firs t. W hen th a t con struc to r com pletes, the next construc to r

dow n the inheritance cha in begins. Th is m eans tha t the RealParam eterlndividual

co n s tru c to r is next. F inally the B inarylnd ividua l constructo r executes.

T h is im plies tha t ite ra tors a llocated by the base class constructo r are

crea ted firs t. Therefore, the user is p rom pted fo r values fo r these itera tors firs t.

The ite ra tors fo r R ealParam eterlndividual are next, fo llow ed im m ediately by the

ite ra to rs fo r B inarylnd ividua l. T h is o rdering is a lso im portant fo r determ ining the

nesting levels o f the param eters. The firs t ite ra tor a llocated is the outem nost in

te rm s o f nesting.

O nce the p ro to type individual has been created, the firs t o f the tw o

constructo rs fo r each c lass is retired. They w ill no t be used again du ring the

execution o f the program . Later, w hen filling ou t popula tions w ith individuals, the

second con struc to rs are used. Rather than a llocating new iterators, these

constructo rs use the ite ra to rs th a t a lready exist. The constructo rs query the

itera tors fo r the values needed to crea te individuals. For exam ple, the second

constructo r fo r the c lass B inarylnd iv idua l needs to a llocate m em ory fo r the b inary

string tha t is to be the genetic m aterial fo r the individual. It queries the ite ra to r tha t

was a llocated by the firs t co n s tru c to r fo r the b its per param eter value. The ite ra tor

returns the curren t value fo r b its per param eter and the second constructo r then

uses it In a ca lcu la tion to determ ine how m uch m em ory to allocate.

The fam ily o f c lasses fo r popu la tions fo llow s the sam e schem e o f having

tw o constructors. The firs t co n s tru c to r a llocates ite ra tors and the second

constructor uses them . Exam ples o f param eters con tro lled by ite ra tors in

populations include; the popu la tion size and the crossover rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

The class G enetic a llocates several Iterators in its constructor. It does not

have a second constructo r. The itera tors are queried fo r the ir values during the

processing o f o ther functions o f the class.

G enetic con tro ls has con tro l o f the p rogram ’s on ly IteratorSet. The nesting

o f loops defined by ite ra to r set is executed in the G enetlcA lgorithm function o f th is

class. See the code fragm ent on page 78 fo r a listing o f G enetlcA lgorithm .

The fo llow ing tab le ou tlines the use o f ite ra tors w ith in the code o f OBJGEN.

The firs t co lum n ind icates the classes th a t use iterators. The second colum n

reveals the functions w ith in the classes th a t a llocate iterators. The th ird colum n

indicates the function from w h ich the ite ra to rs ’ G etValue function is called. The

name o f the param eters con tro lled by ite ra tors is in the fou rth colum n. The type o f

the param eter is g iven in the fifth colum n. F inally, the sixth colum n indicates if the

user is a llow ed to supp ly m ultip le values fo r the param eter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89
Class A llocating

Function
Used in

Function
Param eter
C ontro lled

Type M ultip le
Values

Individual Constructor #1 Constructor #2 FunctionNumber int yes
RealParameter­

lndividual
Constructor #1 Constructor #2 MutationRate double yes

ReallndividualO Constructor #1 Constructor #2 MutationSize double yes
ReallndividuaH Constructor #1 Constructor #2 VirtualBitsPer-

Parameter
int yes

Binarylndividual Constructor #1 Constructor #2 NumberOfBits int yes
Binarylndividual Constructor #1 Constructor #2 UseGraycode string yes

Population Constructor #1 Constructor #2 PopulationSize int yes
Genesis­

Population
Constructor #1 Constructor #2 CrossoverRate double yes

Genesis­
Population

Constructor #1 Constructor #2 WorstWindowSize int yes

Genesis­
Population

Constructor # 1 Constructor #2 GenerationGap double yes

Genesis­
Population

Constructor #1 Constructor #2 UseElitist string yes

Genetic Constructor GenetlcAlgorithm MaxGenerations int yes
Genetic Constructor GenetlcAlgorithm MaxTrials int yes
Genetic Constructor GenetlcAlgorithm MaxSpin int yes
Genetic Constructor GenetlcAlgorithm InitialSeed long no

Reallndividual-
Manager

Constructor Constructor Individual Type* int no

BestPopulation Constructor Constructor Output File Name* string no
PopulationDump Constructor Constructor Dumplnterval Int no
PopulationDump Constructor Constructor Output File Name* string no

Average­
Measurements

Constructor Constructor Output File Name* string no

* The parameters controlled by these iterators are used only once. There is no variable name
with greater than local scope associated with these iterators.

Figure 4.20

4 .2 .6 . Miscellaneous

There are several c lasses th a t serve In auxilia ry ro les in OBJGEN. These

classes handle a llocation chores fo r resources needed by the genetic a lgorithm .

Included in the auxilia ry c lasses are: FunctionD ispatcher, O utputF ileM anager and

Individual M anager.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

4 .2 .6 .1 . FunctionD ispatcher

Function d ispa tchers provide a m ethod o f handling a group o f ob jective

functions. W hen an Individual needs an ob jective function , It can request one from

the function d ispatcher. Because o f the huge varie ty o f functions that m ight be

needed by the various types o f individuals, the class FunctionD ispatcher defines

very little . D erivatives o f th is class m ust be defined to handle all bu t the m ost basic

o f functions. In fact, F unctionD ispatcher is so general in scope, it can handle on ly

the nam es o f functions. It canno t even handle the functions by itself.

T h is lim ita tion is due to fa c t tha t the language C + + requires tha t po in ters

to functions be typed by the ir s ignature: the re turn type and param eter list. An

individual designed fo r a com binatoria l problem needs an entire ly d iffe ren t so rt o f

ob jective function than an individual designed fo r a param etric equation. These

functions have d iffe ren t s igna tu res and the re fo re require a d iffe rent type o f

function po in ter. R equiring derived types to define a po in te r to the co rrect type o f

function is sim pler than using a generic po in te r type in the base class. The generic

pointer w ould require casting to the co rre c t type w henever the po in te r w as used.

class DoubleFunctionDispatcher : public FunctionDispatcher
DoubleFunctionPointer «Functions;
int «NuBberOfParameters;
double ««Ranges;
double ««Minimums;
public:
DoubleFunctionDispatcher (int);
DoubleFunctionPointer GetFunction (int n) { return Functions[n]; }
void SetPunctions (DoubleFunctionPointer« fp) (Functions = fp; }
int GetHumberOfParameters (int n) { return NumberOfParameters(n]; }
void SetMumberOfParameters (int *np) { NumberOfParameters = np; }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91
double* GetRanges (int n) { return Ranges[n]; }
void SetRanges (double** r) { Ranges = r; }
double* GetKinimms (int n) { return Minimums[n]; }
void SetHiniiUBs(double** m) { Minimums = m; }

}»
F ig u re 4 .21

The D oubleFunctionD ispatcher is designed fo r m anaging a list o f functions

w ith real param eters. In itia lization consists o f p rovid ing an array o f po in ters to

functions. In addition , D oubleFunctionD ispatcher is capable o f dispensing

in form ation abou t the functions it conta ins. Th is in form ation consists of: the

num ber o f param eters required by the function , and the bounds on each

param eter in the fo rm o f a m inim um value and a range. Because

D oubleFunctionD ispatcher inherits from FunctionD ispatcher, it is also able to

return the nam e o f the function .

char FunctionO_Hame[] = "FunctionO”;
const int FunctionO_HumberOfParameters = 2;
double PunctionO_Ranges[] = (10.0, 10.0};
double FunctionO_Hinimums[] = (-5.0, -5.0 };
double FunctionO (double* x)

return x[0] * x[l|;
}

char Functionl_Name[] = "Functionl";
const int Functionl NumberOfParameters = 4;
double Functionl_Ranges[] = (10.0, 10.0, 10.0, 10.0};
double Functionl_Hinimums[] = { 0.0, 0.0, -10.0, -10.0 };
double Functionl (double* x)
{ return x[0] * x[2] + x[l] * x[3];
}

DoubleFunctionPointer Functions[J = { FunctionO, Functionl };
char *FunctionHames[] = { FunctionO Name, Functionljfame };
int HumberOfFunctionParamters[] = { FunctionO NumberOfParameters,

Functionl_HumberOfParameters };
double *FunctionRanqes[] = [FunctionO Ranges, Functionl_Ranges };
double *FunctionHinimums[] = { FunctionO Minimums, FunctionO_Minimums };

F igu re 4 .2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

In th is exam ple, tw o functions and all o f the ir auxiliary in form ation are

defined. The in form ation Is then co llected in to arrays. The arrays are accessed in

parallel. The D oubleFunctionD ispatcher is in itia lized using a series o f functions

th a t no tify the m anager o f the existence o f the arrays. These functions are;

SetPunctions, SetN um berO fParam eters, SetRanges and SetM inim um s. The

function nam es are assign to the D oubleFunctionD ispatcher by the inherited

routine SetNam es.

O nce the arrays have been assigned to the D oubleFunctionD ispatcher, an

individual m ay retrieve any e lem ent o f one the arrays th rough the use o f a function

and an index. For exam ple, if an individual w ants to use the second function , it

can ge t a po in te r to the fun ction by invoking the G etFunction m ethod on the

D oubleFunctionD ispatcher. The Individual m ust pass the num ber one w ith its

request fo r the o b ^ c tiv e function . The functions G etNum berO f Param eters,

GetNam e, G etRanges and G etM inim um s a llow the individual to retrieve the

auxiliary in form ation fro m the D oubleFunctionD ispatcher.

4 .2 .6 .2 . F ileM anager

The F ileM anager c lass w as crea ted to elim inate con flic ts between Probes

tha t need to w rite to the sam e o u tp u t file . Every probe has the ability to w rite its

report to an ou tput file . It canno t be guaranteed th a t a probe w ill be constructed to

cooperate w ith o the r p robes in open ing and c los ing files. Data w ould be lost if tw o

or m ore probes open the sam e file independently and bo th attem pt to w rite to the

file.

One m e tiiod o f p reven ting co n flic ts is to require th a t a probe open its

ou tpu t file im m ediately be fo re w riting to it then requ iring the probe to close the file

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

im m ediately afterw ard. Since no parallel processing is available in th is program ,

th is techn ique w ould insure tha t no tw o probes have the sam e file open a t the

sam e tim e. U nfortunately, if a probe is w riting its output often, th is technique

suffers from excessive overhead. O pening and closing files are not quick

processes.

The F ileM anager solves the problem very easily. Rather than opening files

them selves, probes request files to be opened by the FileManager. The

F ileM anager w ill open the file and return a file po inter fo r the probe to use. If the

file has been opened previously by another probe, the FileM anager w ill return the

file po in te r th a t has a lready been created. This insures tha t there w ill be only one

file po in te r per ou tpu t file . T w o o r m ore probes may have the same pointer, but

th is is no t a con flic t. P robes m ay w rite to the ir ou tput file com pletely unaware that

o ther p robes are using the sam e file.

class OutputFileHanager
{ char *FileHa«es[HAX OÜTPÜTJILES];

FILE *FilePointers[HAX_OUTPÜT_FILES];
int Index;
public:
OutputFileHanager (void);
-OutputFileHanager (void);
FILE* OpenFile (char*);

};
Figure 4.23

The ou tpu t file m anager m aintains tw o arrays. The firs t array is a list o f the

nam es o f the open files. The second is a parallel array o f the pointers tha t are

associated w ith the file nam es. The routine OpenFile is given a name of a file to

open. It firs t searches the list o f names fo r the name it w as given. If it finds the

name, It re turns the associa ted file po in ter from the po in ter list. If the name w as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

no t found , It cop ies the name Into the firs t free space In the name list and then

opens the file . W hen the destructo r is ca lled fo r the O utputF lleM anager, a ll o f the

ou tpu t files are closed. The p robes tha t use the file m anager do not have be

concerned abou t c los ing the files.

4.2.6.S . R eallndivldualM anager

The sole purpose o f the Ind lvldualM anager Is to a llow the user o f OBJGEN

to se lect the p ro to type ind iv idua l from several types o f individuals. The

con struc to r s im ply lis ts the types available and a llocates an Iterator to p rom pt the

user. The user se lects the num ber correspond ing to the Individual type desired

fo r the run o f OBJGEN. The user Is no t a llow ed to type m ore than one response.

The co n s tru c to r then crea tes an individual based on the user’s selection

The function G etP rototype re turns a po in te r to the Individual it created.

OBJGEN then continues, using Ind ividual M anager’s Individual as the p ro to type

Individual.

4 .2 .7 . Mainline Program

OBJGEN s m ainline program does little m ore than declare Instances o f the

m ajor classes, p rovide links betw een them and then Invoke the ir actions. It does

not have to m ange any o u tp u t o r w o rk in any supervisory capacity.

The code frag m e n t o f figu re 4 .24 , dem onstra tes how t ie IteratorSet is

constructed. If an Input file w as p rov ided on the com m and line, it Is opened. If no

Input file w as specified, the standard inpu t (term inal) is selected fo r Input. The

IteratorSet requires on ly a sou rce file fo r In itia lization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95FILE *Source = (argc > 1) ? fopen (argv[l], "r") : stdin;
if (!Source)
{ printf ("Cannot find %s\n", argv[l]);
exit (-1);

}

IteratorSet IS(Source);
Figure 4.24

The function d ispa tcher Is se t up by m erely declaring its existence and size.

The functions and Inform ation about them are assigned to the d ispatcher in

groups.

DoubleFunctionDispatcher DFD(ll);
DFD.SetFunctionNames (FunctionNaies);
DFD.SetFunctions (Functions);
DFD.SetNumberOfParameters (NumberOfFunctionParamters);
DFD.SetRanges (FunctionRanges);
DFD.SetNinisuBS (FunctionHininuns);

Figure 4.25

The OBJGEN program Is set up to w ork w ith three types o f Individuals:

ReallndlvldualO, ReallndividuaH and B inarylnd ividuals. The P rototypelnd lvidual

m ust be set to be one o f these types. The R ealindividualM anager a llow s any o f

the types to be se lected by the user. In th is code fragm ent, the

R eallndivldualM anager is decla red and Invoked. The G etPrototype routine

queries the user fo r the type o f Ind ividual desired and then returns an Individual o f

the user's choice.

RealindividualManager RIM (&IS, &DFD, Source);
Individual* Ind = RIM.GetPrototype();

Figure 4.26

The next step decla res the P roto typeP opula tlon tha t w ill be used. This

program is dedicated to using a G enesisP opulatlon. Im m ediately afterw ard, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

instance o f the G enetic c lass is declared and given po in ters to the IteratorSet and

the popu la tion and individual pro totypes.

GenesisPopulation GP (SIS);
Genetic GA (SIS, SGP, Ind);

Figure 4.27

The next step is to create the Probes tha t w ill be used in the program . Each

one is declared and then its functions are assigned to locations w ith in the code of

the rest o f the program .

BestPopulation BP(SIS);
BP.Populate (Ind);
GA.AssignProbe (SBP, PROBEJESET, GENETIC PRE EXPERIMENT);
GA.AssignProbe (SBP, PROBE_REPORT, 6ENETIC_P0ST_EXPERIHEHT);
GP.AssignProbe (SBP, PROBE_COLLECT, POPÜLATIOH_POST_KEASOREPERFORMAHCE);
PopulationDuBp ED(SIS);
GA.AssignProbe (SPD, PROBEJESET, GENETIC PRE EXPERIMENT);
GP.AssignProbe (SPD, PROBE~REPORT, POPULATION”pOST_HEASOREPERFORHANCE);
OffLineHeasurenent OFF(SK>);
GA.AssignProbe (SOFF, PROBE RESET, GENETIC_PRE EXPERIMENT);
GP.AssignProbe (SOFF, PROBE'cOLLECT, POPÜLATIOM_IH_MEASüREPERFORMANCE);
QnLineHeasurenent ON;
GA.AssignProbe (SON, PROBE_RESET, GENETIC PRE EXPERIMENT);
GP.AssignProbe (SON, PROBE_OOLLECT, POPOLATIOM_IN_HEASOREPERFORHANCE);
AverageHeasureients AM (SIS);
AM.AddMeasurement (SBP);
AM.AddNeasurement (SOFF);
AH.AddHeasurenent (SON);
GA.AssignProbe (SAM, PROBE RESET, GENETIC PRE EXPERIMENT SET);
GA.AssignProbe (SAM, PROBE COLLECT, GEHETÎC_PÔST EXPERHŒNT);
GA.AssignProbe (SAM, PR0BE"REP0RT, GENETIC_POStJ xPERIMENT_SET);

Figure 4.28

The last step is to invoke the genetic a lgorithm . The routine

G eneticA lgorithm sta rts the experim ents, executes them , and then shuts them

down. W hen th is rou tine is com ple te , the program is fin ished.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97
GA.GeneticAlgorithm ();

Figure 4.29

4.3. Comparing BVGA and RVGA
The classes derived from Individual, B inarylnd ividual and R eallnd ividuah,

are designed to give sim ilar results w hile exp lo iting diffe rent techniques.

B inarylnd iv idua ls im itate the GENESIS program using the sam e m ethods

em ployed in tha t program . The class R eallnd ividuah sim ulates the class

B inarylnd iv idua l using a d iffe ren t data representation (see page 58).

R ea llnd iv iduah, using on ly a floa ting po in t vecto r genetic m aterial representation,

shou ld de liver resu lts very s im ilar to those given by B inarylndividual using a b it

s tring genetic m aterial representation.

The OBJGEN program can be used to run experim ents w ith e ither type o f

individual. The sam e ob jective functions can also be applied to either type. Since

OBJGEN generates reports tha t are independent o f the type o f individual it uses, it

is set up ideally fo r the com parison o f m ultip le types o f Individuals.

The experim ents w ere set up w ith the firs t five o f the classic deJong

problem s (F1 th rough F5) [5]. The sixth problem (F6) is deJong’s problem

num ber five (Shekel’s Foxholes) rota ted th irty degrees in the plane [4].

F igure 4 .30 show s the inpu t file used to run the program fo r

B inarylndividuals on five o f the six problem s. The second line show s the input tha t

inform ed the program to run the functions num bered 1 , 2 , 3 , 5 , and 8. Each o f

these functions used a ll the com b ina tions o f the o the r param eters. Function

num ber 4 was exc luded fro m th is lis t to a llow fo r a d iffe ren t num ber o f b its per

param eter than the o th e r functions. A s the figu re show s, the use o f graycode and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

the crossove r rate w ere the on ly tw o o ther se ttings tha t were given m ultiple

values.

2 ;Individual Type
1 2 3 5 6 ;Function Number +0.01 ,‘Mutation Rate +10 ?Bits Per Parameter +
y n ,*Ose Graycode +50 ;Population Size +0.0 0.8 /‘Crossover Rate +5 ;Worst Window Size +1.0 ;Generation Gap +
y ;Ose Elitist +
2000 ,‘Haximum Generations +2000 /Maximum Trials +
10 /Maximum Spin +
1000 /Experiments Per Setting +
876543 /Initial Seed
5 /Population Size +
nul /Best Population Report Destination
0 /Population Dump Interval
stdout /Population Dump Destination
all_2_r.xls /Measurement Report Destination

Figure 4.30

A file , ve ry s im ila r to the one in figu re 4.30, w as constructed fo r the run o f

the program w ith R eallnd iv lduaH . O f course, the file fo r R eallndividuah did not

have an option fo r g raycode. A ll the o ther param eters w ere run w ith the same

settings fo u n d in fig u re 4 .30 .

The O ffline m easure o f perform ance (see page 85) w as used as the m etric

fo r com parison. In th is m easure, a low er value corresponds to "better" results.

The firs t experim ent ran w ith no crossover. Th is isolated the m utation

operation and p rov ided the op po rtun ity to exam ine the effectiveness o f the

Reallndividuah m uta tion techn ique . In a ll cases, the R eallndividuah perform ed at

least as w ell as the B inary lnd iv idua l tests. W ith the exception o f F5 and F8,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

R eallnd iv iduah perform ed sim ilarly w ith B inarylnd ividual. The chart in figure 4.31

show s the O ffline perform ance data.

Offline Performance with No Crossover

18
16
14
12
10
8
6
4
2
0

-2
-4

-F 1 -

H Real

□ Binary

m Binary Graycode

Figure 4.31

Exam ining the data fo r O ffline perform ance w ith crossover in figu re 4 .32

reveals a very s im ila r perform ance pro file . In F 1 through F4, the perform ance of

the R eallnd ividuah is very c lose to tha t o f the no graycode experim ent fo r

B inarylndividual. H ow ever, the perform ance recorded in F5 and F6 is again very

different. This is evidence th a t fo r the firs t fo u r deJong tes t problem s,

R eallndividuah is successfu l in sim u la ting a b inary genetic algorithm .

The lack o f success w ith functions F5 and F6 is interesting. R eallnd ividuah

out perform s both b ina ry and graycode vers ions o f B inarylndividual. This is

possibly because o f the con tinuous nature o f the m utation defined w ith in

R eallnd ividuah. F urthe r research in the fu tu re m ay expla in the discrepancy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Offline Performance

16
14
12
10

£a£2 £a

H Real

□ Binary

B Binary Graycode

F ig u re 4 .3 2

4.4. Adapting to Other Problem Types
The fram ew ork on w h ich the OBJGEN program is based, is flexib le enough

to allow m any d iffe ren t type s o f ob jective functions to be optim ized. OBJGEN

focuses on param etric ob jective functions w ith real param eters. This program

does no t need extensive m od ifica tion to enable it to optim ize o ther types of

problem s.

The firs t step in th is p rocess is to de fine the representation o f the genetic

m aterial and then crea te an ind iv idua l type th a t uses it. C reating a new type o f

individual w ill involve de riv ing a new class from the base class Individual. The

representation o f the genetic m aterial w ill have to be coded in to the derived class.

The defin itions o f m uta tion , c ro sso ve r and the o th e r functions tha t Individual

leaves undefined w ill a lso have to be supplied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

The second step is to create a function d ispatcher fo r functions tha t accept

the new genetic m aterial representation as input and return a floa ting po in t

num ber as a perform ance m easure. This is done by deriving a new class from the

class FunctionD ispatcher. This is a sim ple operation because the function

d ispa tcher does no processing o f its ow n. It is just a repository fo r in form ation

abou t functions. It’s on ly responsib ility is d ispensing the inform ation on request.

The fina l step requires a sim ple m odifica tion to the OBJGEN m ainline

program . If there is on ly one varian t o f the new individual type, the pro to type

individual can be m ade d irectly in the m ainline routine. This is done by defin ing a

variable o f the new ind iv idua l type w hile passing po in ters to the IteratorSet and

the FunctionD ispatcher to the constructo r. In the case where there is m ore than

one type o f varian t o f the new individual class available, it is necessary to provide

a fac ility tha t a llow s the user to se lect w h ich variant to use. The

R ealindividualM anager can be used a gu ide fo r constructing a sim ple ob ject tha t

encapsulates the crea tion o f a p ro to type individual.

As an exam ple, cons ide r the possib ility o f creating a type o f individual

where the genetic m ateria l is represented by a tree structure [6]. The objective

function cou ld accep t the tree and evaluate it based on som e criteria. The

objective function w ou ld then re tu rn a value th a t w ou ld represent the perform ance

of the individual.

class Treelndividual : public Individual
{ static TreeFunctionPointer Evaluator;
Tree* Root;
public:Treelndividual (TreeFunctionDispatcher*, IteratorSet*) ;
Treelndividual {);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

virtual int CalcPerformance (void);
virtual Individual* Clone (void);
virtual void Copy (Individual*);
virtual void Crossover (Individual*);
virtual void Mutate (void);
virtual void Print (FILE*);
virtual int operator== (Individual*);
virtual void RandomSetup (void);

)
F ig u re 4 .3 0

Here a T reeInd iv idua l is defined as an individual tha t has a Tree as its

genetic m aterial. It uses an evaluation function tha t accepts a Tree as its input.

The constructo rs need to fe tch a po in te r to the ob jective function from a function

d ispatcher. The po in te r shou ld be stored in the class variable Evaluator.

Each o f the o the r functions m ust be defined as outlined in the section

above abou t the c lass Ind ividual. The Random Setup routine w ould create a tree

random ly. M utation on a tree cou ld be defined as adding o r deleting nodes a t

random positions in the tree . A lternative ly m utation cou ld sim ply rearrange

existing nodes in the tree . C rossover cou ld exchange branches between the trees

o f tw o T reeind ividua ls.

typedef double (*TreeFunctionPointer)(Tree*);
class TreeFunctionDispatcher ; public FunctionDispatcher

TreeFunctionPointer Functions;
public:
TreeFunctionDispatcher (int n) : FunctionDispatcher (n) {}
void SetFunctions (Tree* f) { Functions = f; }
TreeFunctionPointer GetFunction (int n) (return Functions[n]; }

};
F igu re 4 .31

This is the com p le te de fin ition o f a deriva tive o f a FunctionD ispatcher fo r

objective functions requ iring a po in te r to a T ree as input. Initia lizing the list o f

functions is also very sim ple.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

char TreeFunctionlMaaet] = "Function 1";
double TreeFunctionl (Tree* t)
{

}

char TreeFunction2Nane[] = "Function 2";
double TreeFunction2 (Tree* t)
{

}

char* TreeFunctionNames[] = { TreeFunctionlHame,
TreeFunction2Name };

TreeFunctionPointer TreeFunctions[) = { TreeFunctionl,
TreeFunction2);

main (...)
{

TreeFunctionDispatcher TFD(2);
TFD.SetFunctionHames (TreeFunctionNames);
TFD.SetFunctions (TreeFunctions);
Individual* Prototypelndlvidual = new Treelndividual (&TFD, &IS);

}

F ig u re 4 .3 2

In th is exam ple, tw o ob jective functions and the ir nam es are defined.

Pointers to the fu n c tio n s are then co llected in to an array called TreeFunctions.

Pointers to the nam es are a lso co llec t in to an array called TreeFunctionNam es. In

the main line code, a T reeF unctionD ispa tcher called TFD is created. The

constructor is passed the value o f tw o, in o rde r to prepare it to receive tw o

functions. The fo llo w in g lines assign the function po in ter array and the function

name array to the fu n c tio n d ispa tcher. A t th is po int, the function d ispatcher is

com plete and ready to use. Its usage cons is ts o f m erely passing it to the

constructor o f the p ro to type ind ividual.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

The o the r classes in OBJGEN w ill use the new individual type w ithout

m od ifica tion . There is no need to a lter the popu la tion classes, the probe classes

o r the G enetic class. These classes perform the ir functions on generic individuals

w ithou t ca ring abou t the ind iv idua ls ' internal im plem entations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Conclusion
The OBJGEN program and the fram ew ork on w hich it is based, are very

robust. T hey can be applied to a w ide variety o f problem s w ithou t needing m ajor

am ounts o f rew riting and recom piling. This robustness stem s from the

exp lo ita tion o f the pow er o f ob ject oriented program m ing. The OOP features

con tribu te to the construction and flex ib ility o f P robes and Iterators.

The m alleability o f the program w as o f great assistance in devising the

com parison o f the tw o im plem entations. S ince one program handled both types

o f Ind ividuals, there w as no overhead involved in jugg ling tw o program s. M ost o f

the code o f the genetic a lgorithm served both types o f individuals. A ll o f the class

h ierarchies in OBJGEN w ork independently o f the type o f individual in use.

The ab ility o f P robes to m on itor the progress o f the genetic a lgorithm

w ithou t regard to the type o f individual in cu rren t use, provided a uniform test bed

environm ent. No specia l cod ing w as necessary to provide the perform ance

m etrics o f each type o f ind ividual. P robes provided a consistent report form .

The capab ilities o f Ite ra tors to run m ost o f the experim ents in batches

facilitated the experim enta l process. The experim ents w ere set up and they ran

w ith ou t any need fo r user in tervention. The Iterators and Probes w orked together

to provide reports th a t w ere easy to analyze. Probes provided the data collection,

while the itera tors ke p t a reco rd o f the cu rren t param eter settings.

OBJGEN, w hen used w ith ind ividuals o f the class Real Individual 1 is

successful in sim u la ting a b ina ry genetic a lgorithm w ith m ost o f the deJong test

problems. However, the success Is m uted by the perform ance discrepancies w ith

the functions five and six. O BJG EN prov ides the to o ls fo r deeper research in to

the problem.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

1 Goldberg, David E. (1989) Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley. pi

2Grefenstette, John J. (1984) GENESIS: A system for using geneticsearch procedures.
Procedings of the 1984 Conference on inteliigent Systems and Machines

3 Baker. James E. (1987) Reducing bias and inefficiency in the selection algorithm. Genetic
Algorithms and Thier Applications: Procedings of the Second International
Conference. pp l4-2l

4 Wright. Alden H. (1990) Genetic Algorithms for Real Parameter Optimization
5 DeJong, K. A. (1975) “Analysis of the Behavior of a Class of Genetic Adaptive Systems.”

Ph.D. Dissertation. Department of Computer and Communications Sciences. University
of Michiga, Ann Arbor. Ml.

6 Koza. John R. (1990) “Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems," Computer Science
Department. Stanford University. Stanford, CA.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Object oriented techniques in genetic algorithms for optimization
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.A7Ua_

