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This paper concerns the invention of several object
oriented structures and their application to simulation
programs; specifically genetic algorithms. The application
of these constructs then contribute to a working program and
an examination of two implementations of genetic algorithms:
Binary Genetic Algorithms and Real Vector Genetic
Algorithms. The examination shows that it is possible to
construct a model of a binary encoded genetic algorithm
using only vectors of floating point numbers.

The need for a reporting and monitoring system in a
simulation prompts the development of Probes. These objects
consist of associations of code and data that can be
dynamically attached to the program at run time. This means
that reporting facilities gain significant flexibility.

The users’ interaction in controlling experiments in a
simulation motivate the invention of Iterators. 1Iterators
serve as an intermediary between the user and the
simulation. They provide the user with a consistent
interface, while providing the simulation with a uniform
control structure.

The structure of the genetic algorithm progran
demonstrates the power of an object oriented framework. The
details of the construction of the framework are discussed
along with techniques for extending them.

The program is set up for the implementation of two
genetic algorithm variants. These variants are then
compared using several of the classic dedJong problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table Of Contents

1511w [8Tot 1 o] o OO UTRS 1
Object Oriented Programming Background...........cccceeevvvvunnccrnnnnns 2
Measuring and Reporting - Probes ............ciiiiiiiiiiiiiiiiiicins 5
Stages of RePOrtiNg ....ccuuiieuiiiiiiiiiiiiietceniiit i 5
Implementation OptiONS ...t 6
Global Method...... ..o s 7
OOP MethOod One........oo i crrvcerrarenncesereascanerasrannes 9
OOP Method TWO ...ttt 11
OOP MethOd Three.... ..ottt 12
List Deployment Considerations........cocceveiiiiiiieiicriiinnnecnes 14
AN IMPIEMENTAtION. ...t cene et rr e e s e e 14
Other Uses of Probes ...t 21
(571018 [ {1 91 IO RO SRR 21
ACtiVe Probes.. ... oo e 22
CONCIUSION. .. ieeeee e ert et e ire s assescenseresseseasenssanssnnaensensasns 22
Experiment Control - Rerators.. ... 24
Nested LOOPS ...cvveveeecciiicincieccncenenn et rn e e aaans 25
LOOPS @S Data.......civviiieiic e 27
The USer INtErface ... ..ottt eve e eanas 32
IMPIEMENIBHON ... 34
The Base Class terator............cciiiiiiiiiicceee e 34
REIAEOISOL ..o e cee et remte e e e ae e e aearann e annnaaeasas 36
CONCIUSION. ..ottt et et et e e e e om e eeee e ana e 39
The Genetic AIGOMHAM ........cveveeerercereeeeeeeeeeeeeeeeeeeeeeereeeeene e 41
Genetic Algorithm Background........ ..o 41
iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Real Vector Genetic Algorithms............ooooiiiiiiiiniii e, 44

The FrameworK ... et ceie e e e e rnaeansseeneasaeanan 45
INAIVIAUAIS .ot e e s e na e e 46
RealParameterindividuals .............cc.oeiiiiiiiiiinneinnn.e. 50
ReallndividualO ...... ..o 53
Binarylndividuals ... 55
Reallndividual .......co. i e 58

POPUIAtION .. ...t 67
GenesiSPOPUILION .........ooviiuiieieeeieeee e 70

GENELIC. ...ceoiiiieieie et e ciee e e e et e et e re e e e eeraa s aeranes 73
Probes ...t et ea e 79
Probeblists ..o 79

Population Dump Probe ........cooveiiiiiiiiieiieeens 81
BestPopulation Probe...... ..o 82
AverageMeasurements Probe...........coooocuiiiine, 83

Online Probe ..o 84

Offlin€ Probe .......oouiiieeiiiiiaeieeee e 85

1 (=1 £= 1 (o] 4= U USRI 86
MISCEIIANEOUS ... e s reaaeeeans 89
FunctionDispatcher ........cccviriiiii e, 90

FileManager ... 92
ReallndividualManager............ccccceiiiiiiiiniiniii. g4

Mainling Program ...t 94
Comparing BVGA and RVGA......... e, 97
Adapting to Other Problems TypesS ......ccoviiiiiiiiiiieeie et 100

CONCIUSION ...ttt ettt ettt ee e e e m e reaensaasanaannsannasasnsrsennennnss 105
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 (53 (=1 4= (o= SR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. Introduction

Programs from the class of programs known as simulations share some
common features. They require a reporting and monitoring system that facilitates
rapid incremental program development and debugging, a user interface that
allows flexible control of experiments, and a flexible overall framework that allows
easy program maintenance and modification. There has been little effort to create
standardized techniques to address these needs. Object oriented programming
languages provide a powerful base on which to build these tools. This paper
explores several object oriented constructs that can serve to meet the
requirements of simulation programs. By applying these constructs to an
optimization program using a genetic algorithm, their power is demonstrated.

The first constructs discussed in this paper are Probes. Probes are defined
as a uniform method of implementing statistical measurements, reports and
debugging code. Consisting of associations of executable code and data, they
can be dynamically hooked to locations in the program at run time. They perform
their functions whenever the code to which they are attached is active.

lterators are defined and implemented as intermediaries between the
needs of the user and the requirements of the simulation. They provide a uniform
interface that allows the user to control experiments with the simulation. In the
program they provide a control structure for experiments, isolating them from the
user.

The third section discusses the framework of the genetic algorithm
program. Extensive use of the object oriented concepts of encapsulation and
inheritance as well as the exploitation of lterators and Probes makes the program

extremely flexible. implementation of a wide variety of genetic algorithm variants is
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facilitated by the reusable code concept. Several inheritance hierarchies are
implemented within the program.

Once the program is completely defined, an experiment is conducted by
implementing Real Vector and Binary Genetic Algorithms within the program
framework. The goal is to construct a Real Vector Genetic Algorithm that closely
simulates a Binary Genetic Algorithm. The experiment consists of using each of
the two techniques to optimize several of the classic deJong test problems. The
performance of each of the two techniques is then compared. Success is
measured by how closely the Real Vector Genetic Algorithm mimics the Binary

Genetic Algorithm.

1.1. Object Oriented Programming Background

Object oriented programming (OOP) is a programming paradigm that is
data driven. Rather than constructing a hierarchy of functions and procedures
that invoke each other, an OOP program establishes a hierarchy of data
structures and their interactions. OOP languages enable a closer link between the
real world problem and the program.

The objects of object oriented programming are a metaphor for objects in
the real world. They are organized into classes of objects of the same type. A
class is essentially a type that defines a data structure for the properties of a real
world object. For example, if a model were to be constructed of a railroad, one
class might be a GenericRailroadCar. The properties, called instance variables,
could be data such as Owner, NumberOfWheels and Length. It is then possible to

create objects of the type GenericRailroadCar. An object of a type thatis a class is
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3
called an instance of the ciass. Instances can be manipulated like any other data
structure.

One important feature of OOP languages, is the ability to define the
interface of an object. The interface is a set of functions (methods, in some
languages) that manipulate the data of an object. Generally, these functions have
exclusive access to the data of the object. If any other function needs to access
the data of an object, it must do so through the functions that define the object’s
interface. No outside function needs to know about the internal representation of
the data within a class. A change can be made in the internal representation
without changing the interface. For example, an internal linked list could be
changed to a tree structure transparently. This facilitates incremental
development and simplifies program maintenance.

Inheritance is another important feature of OOP languages. In the railroad
car example above, a very generic rail car was defined. A box car definition
should contain the generic rail car definition in addition to several other features.
CubicCapacity and NumberOfDoors might be appropriate. A tank car definition
may need FluidCapacity and MaximumPressure. Both TankCar and BoxCar can
be made to "inherit" the properties of a generic railroad car. Each of the two new
classes also have their own interfaces to their properties. The generic railroad car
class is referred to as the base class. BoxCar and TankCar are derived classes.
The depth of inheritance can be greater than two levels; it would be simple to
create a specialized type of TankCar with additional properties. Itis also possible
to inherit from more than one class. It would be helpful for TankCar and BoxCar

to inherit from a linked list node class. This would enable trains to be linked
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4
together from many types of railroad cars. The facility of inheritance encourages
reusability of code and rapid prototyping.

Derived classes can redefine functions of the interface. The redefinitions
supersede those defined in the base class. For example, the GenericRailroadCar
class might have a function called IsHazardous that always returns the value "no".
By default, all classes derived from GenericRailroadCar will respond "no" to the
IsHazardous function. The TankCar class might redefine the function to check the
contents of the tank car and compare it with a list of known hazardous materials.
An instance of TankCar would not respond "no" by default, it would respond as
determined by its redefinition of the IsHazardous function.

Consider a train composed of a linked list of railroad cars. To determine if a
train carries hazardous materials it must apply the IsHazardous function to all of its
railroad cars. The train does not have to know the types of cars it contains, it must
just traverse its list applying the IsHazardous function to all cars. The object
oriented language takes care of the details of calling the correct version of the
IsHazardous function for each car. A TankCar instance will use the TankCar
version of the IsHazardous function. Railroad cars that do not have a redefinition
of the IsHazardous function, will use the default function from the

GenericRailroadCar class. This feature is called virtual functions inC + +.
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2. Measuring and Reporting - Probes

A program implementing a genetic algorithm takes initial data and
transforms it to a new form. The transformation may take many hours and consist
of millions of individual steps. Because the algorithm produces no output until the
very end, it is difficult to know how the algorithm is progressing. Both the
processes of debugging the program and experimenting with the program can
suffer from a lack of methods of measuring and reporting on the algorithm’s
progress.

The process of conceiving and implementing reports regarding the
progress of a program through an algorithm, is both time consuming and difficult.
Each report requires its own unique supporting structure. As more reports are
implemented, the original code begins to suffer from excessive modification. The
frequent changes can breed elusive bugs. Itis apparent that an important priority
is to create a generalized method for the creation of new performance measures

that is flexible, minimizes impact on existing code and is easy to manipulate.

2.1. Stages of Reporting

The processes of generating reports have common elements regardiess of
content of the report. Reporting consists of four stages: initialization in
preparation of gathering data, gathering data from the source, manipulating the
data and generating a report. As an example, consider the generation of an
average temperature report for a weather monitoring station.

The first step is used to reset the statistical measures that makeup the
report. To calculate an average temperature, two variables are needed: the sum
of the temperatures and a counter for the number of temperatures in the sum.

This first step would set both values to zero.
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The second step, consisting of gathering data, is typically repeated many
times. The data is either stored or processed immediately. For example, weather
monitoring stations collect data about current conditions many times per day.
During this step for an average temperature report, the current temperature is
added to the running temperature total and the counter is incremented.

The processing is the third of the four stages. It transforms the data into a
more useful form. This step can be coupled directly with the second stage or
postponed until it can process data in a batch. It is even possible to combine this
stage with the final reporting stage. For a weather monitoring station, this third
stage could consist of actually making the calculation of an average wind speed or
temperature.

The final stage is the actual report generation. This can consist of the
dissemination of either the raw data or the data as it was transformed by the third
stage. Generally, the report is routed to a file or printer, but there is no reason that

the output cannot be routed to another process.

2.2. Implementation Options

There are severatl options in implementing the four stages of report
generation. All of the methods, however, have an intrusive nature in common.
The object that is the source of the data cannot be monitored entirely passively
without some sort of concurrent processing ability. Most conventional computer
languages do not have this inherent ability. It is necessary for the monitoring
target to cooperate in the monitoring process. This necessarily consists of

modifying the code associated with the target .
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2.2.1. Global Method

The least desirable method of implementing a report involves the extensive
use of global variables. If the goal is to calculate the average of a value over
several iterations of a loop in an existing program, a global variable can serve as a
sum and another can serve as an iteration counter. The code to initialize the
variables, collect the values, calculate the averages and then generate the report
must be embedded into the existing program.

This method obviously has several drawbacks. It requires that the existing
code be modified and recompiled. If the source code is unavailable for
modification, this technique cannot work. If the source code is available, its
modification in implementing a statistical measure can introduce side effects. If
the statistical measure is temporary or needed only periodically, it is undesirable to
clutter the original code. Clutter makes the original code difficult to maintain,
especially if there are several of these statistical measures implemented.

In conventional languages (not object oriented) the data from which a
report is generated is not necessarily found grouped together. The code required
to coliect data may have to be scattered throughout a wide set of routines. ltis
very tempting to embed the data collection code in the routine that is the most
convenient. While that choice might make the report easier to create, it is not
necessarily the best choice when attempting to maintain a program’s strict
modularity.

The program controlling a weather station might consist of one large loop
in the main line code. Inside the loop, routines are called to control the various

devices in the weather station. The thermometer, the barometer and the wind
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gauge might each have controlling routines that are called repeatedly in the loop.
Figure 2.1 gives an example.

main loop

call the thermometer routine
call the barometer routine
call the wind gauge routine
end main loop

FIGURE 2.1
The addition of just three reports can complicate the code to the point
where the original purpose is lost in the clutter. Here, in Figure 2.2, daily average

temperature, monthly average temperature and daily average wind speed reports

are inserted.

main loop

if it is a new day
reset daily average temperature variables
reset average wind speed variables

end if

if it is a new month
reset monthly average temperature variables

end if

call the thermometer routine

call the barcmeter routine

call the wind gauge routine

if it is the end of a day
calculate the daily average temperature
report the daily average temperature
calculate the daily wind speed
report the daily wind speed

end if

if it is the end of the month
calculate the monthly average temperature
report the monthly average temperature

end if

end main loop

FIGURE 2.2

The reports must execute their first stage (reset) functions inside the loop.
But because the routines should not be called on every iteration, conditionals are

added to restrict their execution. The data collection routine will have to be placed
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inside the appropriate routine for the gauge being monitored. The temperature
averaging routines need to collect data inside the thermometer routine. The
average wind speed report must collect its data from the wind gauge routine. The
calculation and reporting routines must also be placed inside the loop. Again,
their execution must be restricted by conditionals.

This means that the variables used to calculate an average must be
accessible not only from the main loop, but from the appropriate gauge’s routine.
Hence the necessity for global definitions of these variables. As the number of
reports multiples, the task of administering the global variables expands to

become unmanageable.

2.2.2. OOP Method One

Object oriented programming allows for the encapsulation of related data.
The running total and iteration counter of a measurement calculating an average
can be set up to be visible only to a certain group of routines. These variables,
called instance variables, are local to an object. Only the routines that are
designed for the object can have access to its instance variables.

The weather monitoring station example could be an object oriented
program . One class could represent the thermometer, another class could
represent the wind gauge. Average temperature is straightforward to implement.
The sum and counter variables can be added as an instance variables to the
thermometer class. When the thermometer’s code is running, the code to
calculate the average will also run. Of course, it is still necessary to restrict the
average calculation with conditionals so that it will be calculated only at

appropriate times.
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Using instance variables to implement statistical measures and reports only
partially solves the problems of the global implementation. The intrusive code is
internal to one class. While this encapsulation may aide in avoiding undesirable
side effects, it still requires that the source code for the class be available. The
routines to collect data will still need to be embedded into the original code. In
addition, the reduction of the cluttering comes at the expense of diminished power
over the giobal technigue.

The possibility that a report may need to gather information from more than
one class complicates this technique. New methods must be added to all classes
involved in the statistical measurement to enable the data to be collected.
Ambiguities also arise regarding the proper location of the instance variables.
Reasons for selecting one class over another for the location of the instance
variables become complex.

The calculation of wind chill is a report that is not easy to implement. If an
instance variable for wind chill is set up in the temperature class, a method of
retrieving the wind speed from the wind gauge class needs to be devised. Adding
this method seems to violate the basic modularization that object oriented
programming provides. The temperature class should consist of methods for
monitoring and reporting temperatures. The only reason to add a method for
retrieving the wind speed, is for a report that only incidentally needs the current
temperature. The same problem occurs if the instance variable is moved to wind

gauge class.
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11
2.2.3. OOP Method Two

A step in the right direction is to make a class for the statistical
measurement itself. It can encapsulate all of the variables necessary for the
calculation of the statistic in one place. The routines for actually caiculating the
average are then also encapsulated in the class.

in the weather station example, a wind chill class can be created. When it
needs to make its calculation of wind chill, it simply queries the temperature class
and the wind gauge class for their current values. No routines need to be added
to either of those classes, therefore their source code is not needed. This
technique reduces the number of locations that the intrusive code might be found.
The only intrusive aspect of this implementation of a wind chill report, is adding the
code to activate the appropriate methods of the wind chill class at the proper
times.

Cluttering is only slightly better with this technique than with the global
method. Since each statistical measure must go through the four stages of the
reporting process, there will exist at least four lines of code added to the source
code somewhere. As the number of statistical measures increases, the intrusive
code problem can cause difficulties. Again, with temporary measures or
measures needed only periodically, the source code becomes unreadable.

The intrusive code consists of a reference to a measurement and an
associated function for that measure. An example of a measurement would be
the class that calculates WindChill. An associated function would be its routine
that queries the thermometer and the wind gauge. Think of these as a
measurement/function pair. The WindChill class and its routine that generates the

printed report would be another measurement/function pair. The function part of
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a measurement/function pair is directly related to one of the four stages of
reporting.

This technique does not address the problem of monitoring an object while
it is performing one of its own tasks. A measurement/function pair could be
inserted into the code of an object, but the code will still have to be modified every
time a new measurement or report is needed. While this modification might be
simpler than with the global technique, it still has many of the same problems.

The goal is to create a technique that will treat all measurements and
reports the same way. Modifying the code of an existing object should be limited
to just once. When a new report is conceived, existing objects should be capable

of exploiting it without modification.

2.2.4. OOP Method Three

The solution is to treat measurement/function pairs as data. Object
oriented programming facilitates a technique of dynamically creating and
manipulating an association of an object and one of its functions. Once defined,
these associations can be treated like any other data. ltis possible to create
arrays or linked lists of them. At any time, the function in the association can be
invoked in a generic way.

The pseudo code example of figure 2.3 is designed to demonstrate the
flexibility of the measurement/function pair concept. In the figure, a variable called
MFP of the type MeasurementFunctionPair is created. This variable will hold an
association of a measurement and one of its functions. Next, a measurement
called Average is declared, this could be any sort of measurement like the

WindChill example from above. On the following line, the association of the
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Average measurement and its function, Collect, are assigned to the variable MFP.
Immediately thereafter, the pair is invoked from the variable MFP. Realistically,
parameters would have to be passed, but they are ignored in this example. MFP
is then assigned a new pair and then they are invoked. It is important to note that
the invocation of the two pairs is handled identically from the point of view of MFP.
No matter what association is in the variable MFP, the invocation is the same.

NeasurenentFunctionPair MFP

Measurement Average

MFP = [Average, Collect]

NFP. Invoke

MFP = [Average, GenerateReport]
MFP. Invoke

Figure2.3

Applying this system to the reporting problem involves creating a set of
variable length lists of these associations. Each list is associated to a location in
the code of an object. When, in the execution of an object’s code, a list of
measurement/function pairs is encountered, execution proceeds by traversing
the list, invoking the function on the measurement while passing the object as a
parameter. The pairs can be dynamically added or removed from lists.

This method limits the intrusive code to a reference to a list; in fact, the
code is reduced to only one line. This is true regardless of the number and
complexity of measurements that have been defined and placed on the list.
Objects’ source code needs to be modified only once to install the lists. While this
requires the source code to be available, it is limited to one time. Once the lists
have been installed, the source code never needs to be modified again, even

when new measurements are developed. Newly developed reports need only be
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"hooked" to the appropriate lists. This is a very generalized method of dealing with

measurements and reports.

2.2.5. List Deployment Considerations

In the first reporting method discussed above, global variables were used
to allow access from anywhere. This implies that the intrusive code for a given
measurement or report could reside anywhere. Hopefully, the most appropriate
sites would have been selected for the intrusive code. Implementation of the
measurement/function lists will require a limited number of sites to be used.
Choosing these sites necessitates some heuristics.

There are key sites in the code of a program that many reports or
measurements might find appropriate for data collection. Before and after loops
of a major function are often good places for list of measurement/function pairs.
Monitoring a process on each iteration of a loop is also useful. Generally, lists
should be assigned to locations before and after critical sections of code. There is
no guarantee that these generalized locations will be appropriate for all
conceivable measurements, however, the majority can function from those
places. If no appropriate site is available for a new measurement, it is not
excessively difficult to assign a new list to the location. Careful selection of list

locations will prevent this from happening often.

2.3. An implementation

The implementation of this scheme requires the exploitation of the
inheritance facility of an object oriented language. The entries in the list of
measurement/function pairs must be treated uniformly. There is no way for the

program to know at compile time what specific measurements might be in a list at
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any given point. If all measurements are derived from the same base class, they
can be treated in a standard way.

The generic measurement base class should define the interface for all
measurements derived from it. The process of measuring and reporting can be
broken into four steps discussed above. These four steps make an ideal interface
for a generic measurement. Measurements derived from the base class will make
their own definitions of the four stages. Since measurements and their reporting
functions are assigned to lists as a pair, the proper combination is assured.

The C + + implementation of this method uses three basic classes: Probe,
ProbeAction and ProbeList. Probe is the base class from which all measurements
and reports are derived. ProbeAction is a class that defines the association of a
specific probe and one of its functions. It serves as a container to hold one
association. Collects of ProbeActions are kept in instances of the ProbeL.ist class.

Figure 2.4 shows the C + + definition of the class Probe.

class Probe

{ protected:
char ProbeName[30};
FILE* OutputDestination;

public:
Probe (void);

virtual void Reset (void*) (}

virtual void Collect (void*) (}

virtual void Calculate (void*) {)

virtual void ReportHeader (void*) {}

virtual void Report (void*) {)

virtual double GetProbeValue (void*) { return 0.0; )

inline char* GetName () { return ProbeName; )}

}:
Figure2.4
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The class Probe does not stand alone. it is a template from which useful
measurements can be constructed. Only the derived classes will need to define
the variables necessary for the caiculation of a given statistical measurement.

This generic class needs to define only the fields that every measurement will
need. The class Probe defines two variables. These are the ProbeName and
OutputDestination variables. These variables are useful in generating printed
reports. The ProbeName is a string of characters that could be used to name the
measurement. "Average Temperature" or "Wind Chill Factor”" are examples.
OutputDestination is a pointer to an output file to which reports may be sent.

A probe derived from the base class defines the virtual functions as is it
deems appropriate for the measurement. These functions are directly related to
the four stages of reporting. Reset is the function for the first stage of the
reporting process. The function Collect is the representative for the second stage.
Calculate processes the collected data for the third stage. Finally, ReportHeader
and Report fill out the fourth step. The additional function GetProbeValue allows
the probe itself to be monitored by another probe. The function allows the second
probe to collect data from the first.

Each of the virtual functions is passed a pointer to the object that invoked
the measurement/function pair. This is the mechanism that aliows a probe to
collect data. Probes can be constructed to be highly specialized. Typically, the
Collect routine for a probe will assume that the pointer passed to it refers to an
object of the type that it is expecting to monitor. It simply uses this pointer to
invoke any of the public member functions of the object it is monitoring. In this

fashion, it can coliect its data about the object it is monitoring.
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In the following example of figure 2.5, a complete definition of a probe is
created. The probe’s purpose is to monitor some other class that represents a
thermometer. The thermometer class is responsible for determining only the
current temperature. The probe, called AverageTemperature, gathers information
from the thermometer in order to calculate an average temperature over some
period.

class AverageTemperature : public Probe

{
double RunningTotal;

int NumberOfCollections;

public:
AverageTemperature (void);

void Reset (void*);

void Collect (voidx);

void Report (voidx);
}

AverageTemperature: : AverageTemperature (void)

strcpy (ProbeName, "Average Temperature®);
OutputDestination = stdout;

}

void AverageTemperature::Reset (voidk)

{
RunningTotal = 0.0;
NumberOfCollections = 0;

}

void AverageTemperature::Collect (void* t)

£
RunningTotal += ((Thermometer*)t)->GetCurrentTemperature();

NumberOfCollections++;
}
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void AverageTemperature::Report (voidk)

{
fprintf (OutputDestination, "Average Temperature is : $1f",
RunningTotal / NumberOfCollections);

}
Figure2.5

The functions that represent the stages of reporting are defined completely
by this class. The Reset function sets the internal counter and sum variables to
zero. The Collect routine queries the thermometer for the current temperature.
The Report function prints the average temperature. Because the actual
calculation of an average is trivial, it is incorporated into the printing of the report
instead of being placed in a separate routine. The Calculate function defined in
the base class is not used by this probe.

The association of a Probe and one of its functions is a
measurement/function pair. They are represented in a list as an instance of the
class ProbeAction. Inheriting the properties of a LinkNode enables an instance of
ProbeAction to be a member of a linked list. Details of the linked list
implementation are hidden and are unimportant to class ProbeAction. The C+ +
definition of the class ProbeAction is shown in figure 2.6.

typedef void (Probe::*ActionFunction){void#);

class ProbeAction : public LinkNode

{
Probe* P;
ActionFunction Action;

public:
ProbeAction (Probe*, ActionFunction);
inline void TakeAction (void* o) { (P->*Action)(0); }
void Print (FILE*);
)i
Figure2.6

ProbeActions hold a pointer to the probe that is to be used, as well as a

pointer to one of the probe’s member functions. When traversing a list of
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ProbeActions, the member function TakeAction is called for each ProbeAction
found. This has the effect of applying one of four stage reporting functions to the
probe. A pointer to the object that is being monitored is passed to the reporting
function as a parameter. The probe then takes whatever actions dictated by its
reporting function.

class ProbeList : public LinkedList

{ public:

void TakeProbehctions (voidk);
void Insert (Probe*, ActionFunction);

Figure}é.'?

A ProbelList is a list of ProbeActions. It inherits almost all of its properties
from the base class LinkedList. It adds only two new functions.
TakeProbeActions traverses the list of ProbeActions invoking the TakeAction
function for each in turrl_ insert enters a pointer to a probe and a pointer to one of

the probe’s reporting functions as a ProbeAction onto the list.

Techniques for management of ProbelL.ists inside classes is flexible.
Typically, a class that is to be monitored will have several ProbeLists associated
with it. Each list will represent a certain location in the code for the monitored
class. The target class defines how many ProbelLists there are and where they are
used. Itis the responsibility of the class being monitored to invoke the
TakeProbeActions function for a given list at the appropriate time. This is the
intrusive code outlined earlier.

The act of assigning a measurement/function pair to a specific list is also

the responsibility of the class being monitored. A member function must be
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created to take a measurement/function pair and assign it to the appropriate list.
An array of lists can be maintained with each element being a list associated with a
specific location in the code. Assigning a measurement/function pair to a specific
location is as simple as providing the index to the array that corresponds to the list
for the desired code location. Constants setup with appropriate names can make
the code more readable. An example follows in figure 2.8.

const int BEFORE_TEMPERATURE_RETRIEVAL = 0
const int APTER_TEMPERATURE RETRIEVAL = 1

AverageTemperature AT;

Thernometer T;
T.AssignProbe (AFTER_TEMPERATURE RETRIEVAL, &AT, &Probe::Collect);

Figure 2.8

In this example, two objects are defined: a Thermometer objectcalled T
and a probe to calculate the average temperature called AT. Assume that the
thermometer class acquires its temperature through some method for which there
is a "before” and "after” phase. Two Probelists exist in the Thermometer class.
The first list is traversed in the "before" phase and the second is traversed in the
“after" phase.

The last line of the example invokes the member function of T called
AssignProbe. This takes a pointer to the probe (&AT) and a pointer to the
reporting function (&Probe::Coliect) and places them into alistas a
measurement/function pair. The ProbeList itself handles the conversion of the
measurement/function pair into a ProbeAction.

ThermometerProbeLists[BEFORE_TENPERATURE RETRIEVAL].TakeActions (this);

... do whatever necessary to acquire temperature ...
ThermometerProbeLists{AFTER_TEMPERATURE_RETRIEVAL].TakeActions (this);

Figure2.9
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These two lines represent the intrusive code inside the Thermometer class.
The probe designed to report on the average temperature will collect its data
whenever the last line of example above is executed. "This" in the parameter list of
the TakeActions call is a pointer to the instance of the Thermometer class (T).

The other reporting functions of the AverageTemperature probe do not
have to be assigned to this class. The Thermometer class may be part of a larger
scheme controlled by an overall WeatherStation class. The Reset and Report
functions of the AverageTemperature probe might, more appropriately, be placed
in Probel.ists within that class. There are no restrictions preventing a probe’s
reporting functions from being assigned to several classes. A single function may
be assigned to several classes. Itis vitally important to endow the function with

the ability of differentiating the classes that might be passed to it.

2.4. Other Uses of Probes
Probes are very flexible constructions. Their ability to take part in the on

going process of a program makes them useful for more than just reports.

2.4.1. Debugging

Programs such as the genetic algorithm or simulations may take many
hours to run. There may be little or no output during the process. The debugging
stages of development for programs such as these can be extraordinarily difficult.

Traditional debuggers are not very heipful because they require constant
human interaction. They may be able to report on the values of variables at
certain points in the execution, but few debuggers can detect relationships
between variables. For example, a debugger can detect out of range values of a

variable and stop a program at the point of the exception. However, if the
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definition of "out of range" is dependent on other variables is the program, a
traditional debugger is useless.

it becomes necessary to insert code into the program to detect subtile
relationships between variables. When an inappropriate relationship is detected,
the inserted code must stop the program and report the problem. After the
insertion of several sets of error detecting code, the original code becomes
cluttered.

This is exactly the problem that Probes can alleviate. The creation of a
probe to test for the subtile relationships is straightforward. Any number of probes
can be added with minimal modifications to the original code. When the probes
are no longer needed, they can be easily removed. If they should become needed

again in the future, adding them back in is simple.

2.4.2. Active Probes

Because probes can call any of the public methods of the object they are
monitoring, the door is open for probes to take a more active role. It is possible
for a probe to call a routine that will cause the object it is monitoring to take an
action.

Consider a probe that is monitoring the WindGauge object of a weather
station. It can collect the current wind speed information. If the wind speed
exceeds a certain threshold, the probe can order the wind gauge to shut itself

down, avoiding damage.

2.5. Conclusion
Probes implemented as defined above are clearly very flexible. A probe

can be defined to take either active or passive roles. The framework to support
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probes in existing code requires minimal modification. Simply adding ProbeL.ists
at key locations in the code as well as an assignment function is sufficient. Once
the framework is in place, new probes can be developed, tested and put into use
without any recompilation of the code that the probe monitors. Probes minimize
the amount of work necessary in the development of new measurements and

reports.
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3. Experiment Control - Iterators

In many types of programs, especially simulations, it is desirable to allow
the user to vary the program’s controlling parameters at will. This facilitates
experimentation by allowing the user to explore different combinations of
parameters. Differing combinations may induce differing behaviors from the
program which in turn can produce an insight about the real world system that the
program models. The process of exploring the behavior of a model under varying
conditions is a vital tooi for developing an understanding of the real world system.

The flexibility of a simulation in allowing an experimenter to explore, is often
synonymous with the power of the simulation. The techniques used to construct
the simulation define the flexibility of the model. If the simulation program is built in
a rigid manner that does not aliow the user to vary the controlling parameters, the
program clearly is not very flexible.

Consider a model of the population dynamics of an ecosystem. The
controlling parameters could consist of the initial population sizes of the predator
and prey species along with their reproductive rates. The user could explore the
model by repeatedly invoking the program and providing varying values for the
four controlling parameters. With each execution of the program the user would
dutifully enter the new information and record the results.

if the execution time of the simulation is long, then the cycle of entering new
information and recording results becomes very tedious. The user might have to
sit and wait between iterations. If the user could specify a series of values for the
program’s controlling parameters and the program couid execute them one at a
time without user intervention, the program would be more flexible.

Simulation programs are often dynamic programs. As the process of
exploring the mode! proceeds, shortcomings of the program can become

24
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apparent. New controlling parameters may have to be added to make the
program more accurate or useful. Another measure of a simulation’s power is
how easily these parameters can be added. Clearly, the simple ecosystem model
mentioned above will exhibit shortcomings very quickly if it only takes into account
one type of predator and one type of prey.

The problem is to develop a system for controlling a program that facilitates
both the user in the process of experimentation and the programmer in the
process of enhancing the program. The focus here is on programming structures
that allow for the easy addition of flexible user controls. How the parameters are

used within the simulation are outside the bounds of this discussion.

3.1. Nested Loops

Loops are the first method that comes to mind when the problem is to vary
the value of a parameter over a range. Nested loops are a familiar and standard
method for accomplishing this. Each variable that is to be controlled is assigned a
nesting level. The loop code is then constructed to reflect the nesting level and
the starting value, ending value and increment for each variable.

In the ecosystem example, the parameters that need varying might be the
initial population sizes for lions, gazelle, zebra and giraffes. The user would be
prompted for a range of these initial values along with an increment. A ioop would
control each parameter.

prompt for LionsLow, LionsHigh and LionsInc
prompt for GazelleLow, GazelleHigh, Gazellelnc
proopt for Zebralow, ZebraHigh and Zebralnc
prompt for GiraffeBigh, Giraffelow, Giraffelnc
for (Lions = LionsLow to LionsHigh; inc Lions by LionsInc)
for (Gazelle = GazelleLow to GazelleHigh; inc Gazelle by Gazellelnc)

for (Iebra = IebraLow to ZebraHigh; inc Zebra by Zebrainc)
for (Giraffe = Giraffelow to GiraffeHigh; inc Giraffe by Giraffelnc)
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LionPopulation.Size = Lions

GazellePopulation.Size = Gazelle

ZebraPopulation.Size = Zebra

GiraffePopulation.Size = Giraffe

EcosystemModel (LionPopulation, GazellePopulation,
ZebraPopulation, GiraffePopulation);

Figure 3.1

This system works just fine. The user could specify the lion population to
range from two thousand to three thousand by increments of five hundred.

Similar ranges could be specified for the other animals. The program would then
run the simulation for all combinations of the values specified for each animal. The
user has to run the simuiation only once to get many sets of output.

The first problem with this technique occurs when the user wants to run the
program with a nonlinear set of values for a parameter. For example, the desired
population size of lions may be 1000, 1500, 3000, and 5000. A normal loop can
only handle this indirectly. The input routine must allow the user to input a list of
values which are then stored in an array. The loop then iterates over the array.
The values for population are picked out of the array based on the loop counter as
an index.

The second problem comes from the user being unable to specify the
order in which the experiments take place. The first invocation of the ecosystem
model uses the first value from all the loops. The second invocation uses the first
value of all but the innermost loop. The innermost loop is dedicated to the giraffe
population and it is destined to cycle through all of its possible values before the
outer loops advance to their next values. The user cannot change the nesting
level in order to set, for example, the lion population to the innermost loop.

From the programmer’s point of view, the classic nesting of loops is not a

very flexible structure. The introduction of a new parameter to the program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27
translates into the addition of a new level of nesting. It is undesirable to allow the
nesting level to get too deep. This is not necessarily a subjective aesthetic
limitation, some programming languages have limits on nesting depth.

The structure of nested loops is also too rigid in other ways. Consider the
complications if the user is allowed to select which animals the simulation is to use
out of a list of one hundred animal species. Each animal would have a parameter
for the initial population size. A given animal couid have additional parameters that
no other animal might have.

It is clearly impractical to program a nesting of loops for every possible
combination that couid be selected by the user. Itis also impractical to attempt to
write nested loops to a depth that would be required if the user opted to use all the
animals. If each animal were to have two parameters associated with it and there
were one hundred animal species, there would be at least two hundred nested

loops.

3.2. Loops as Data

A loop represents a series of values for a variable. The variable begins with
the first value. At the end of the first iteration of the loop, the variable skips to the
next value. This continues until the last value is used, whereas the loop
terminates. The process is typically implemented using “for” loops. The series of
values is calculated on each iteration of the loop. This ties the series of values
tightly to the code of the for loop. There are other methods that liberate the values
from the close bond with the code.

Dissecting the functionality of a “for" loop reveals that it is merely a variation

of a "while" loop. It defines a pair of standard operations to sequence through a
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list. These operations are initializing the current value to the beginning of the
series and advancing the current value pointer to the next value.

A loop can be represented as an association of two things: a list of values
and a pointer to the current value. In addition, there can be a variable, called the
target, that is to receive the series of values. Operations can be defined to act on
an association that mimic the internal operation of a “for" loop. Then by using a
“while" statement, the functionality of a "for" loop can be achieved without using
one. Additional operations, beyond those of a "for” loop, can also be defined.
This allows the association, the list of values and the current value pointer, to be
divorced from the locop. The association becomes a parameter for a group of
operations that implement a loop. Several operations can be defined that use an
association: initialize, reset, next, test and get value.

The initialize routine fetches the values in the list. It could be done by
querying the user or by some other method. The details are not important at this
stage. The list itself can be implemented in any ordered manner: an array, linked
list, et cetera.

The reset and next operations both concern the pointer to the current value
in the list. The reset function would set the pointer to the first value in the list. The
next operation moves the pointer to the next value in the list. If the end of the listis
reached, the next operation should not wrap back to the first value.

The test function checks the position of the current value pointer. if the
pointer has gone beyond the end of the list, this function should signal that the
loop is completed.

The get value operation is most often used for assignment. it allows the

target variable to use the pointer to get a value for itself. This operation is separate
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from the ’next’ operation for flexibility reasons. The association between the
target variable and the other two components of the loop is a one way
association. The target variable "knows" about the loop from which it gets its
values. The loop, however, does not "know" anything about the target variable.
This allows for a greater degree of fiexibility at a later stage in the implementation
of this scheme. The target variable does not need to be consistently the same
variable. Several variables can share the role of being the target. Itis even
possible that the target variable is allocated and deallocated within the body of the
loop. With every iteration, there may be a new target variable.

LoopAssociation.Initialize = {2.89, 3.14, 6.023, -97.8)
LoopAssociation.Reset ()
doprint LoopAssociation.GetValue ()

LoopAssociation.Next ()
while LoopAssociation.Test () does not signal end-of-loop

Figure3.2

This example demonstrates how this type of loop could work in a quasi-
object oriented language. The association of the list and the pointer are
represented by an object called LoopAssociation. The list is assigned a series of
values in the first line. The pointer is then reset to the first value from the list. The
body of the Ioop must be placed in a traditional looping structure, in this case, a
do...while. The body of the loop consists of simply printing the current value of the
loop. Here, target variable is unnamed. It can be considered to be some
temporary location within the print function. The next function controls the while
loop. It moves the pointer to the next value and the while loop repeats. If there is
no next value to move to, the next function signails the end of the loop and the

while loop terminates. The output of this example should be the list of four values.
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Nested loops can be thought of as a set of series of values for a set of
variables. When the body of the loop is completed, only the inner most variable
changes to the next value. If the innermost variable was on its last value, then it
resets back to its first value. The next outermost variable then proceeds to its next
value. When the absolute outermost variable has used its last value, the nested
loops terminate.

A nesting of loops can be constructed by linking several loop associations
together in an ordered set. The set then can respond to a simple group of
operations that will affect all of the loops internal to the set. The operations
include: assign a single loop to the set, reset and step.

The assign function associates a single loop with the set. This operation
must be invoked once for each loop that is to be part of the loop. By definition, the
order in which the loops are added to the set directly corresponds to the nesting
order of the loops. The first loop added to the set will be the outermost loop. The
last loop added to the set will be the innermost loop.

The reset operation causes the set to traverse its list of ioops telling each to
reset itself. The resuilt is to have all of the pointers in the various loops set their
first values from their respective lists.

The step operation causes the innermost loop to proceed to its next vaiue.
it does this by invoking the next function for that loop. If the loop signals its
completion, the reset function is invoked and the next outer loop’s next function is
invoked. This action progressively bubbles out to the outermost loop. When the
outermost loop signals that it has completed, the step function signais the

completion and the entire set of nested loops terminates.
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The example in figure 3.3 nests three loops. The loops are set up in the

first three lines. Assigning the loops to the set in the following three lines places
Loop1 in the position of outermost. Loop3 serves as the innermost loop. All three
loops are reset by resetting the set in the next line.

Loopl.Initialize = (2.89, 3,14, 6.023, -97.8}

Loop2.Initialize = {14.0, 15.0})

Loop3.Initialize = (1, 2, 3, 4}

LoopSet.Assign (Loopl)

LoopSet.Assign (Loop2}

LoopSet.Assign (Loop3)

LoopSet.Reset

do

print Loopl.GetValue(), Loop2.GetValue(), Loop3.GetValue()
vhile LoopSet.Step() does not signal end-of-nested-loops

Figure 3.3

A single do...while loop controls the entire set of loops. Since all the loops
have been reset, the first iteration causes the values 2.89, 14.0 and 1 to be
printed. The invocation of the loop set’s step function, in the condition of the while
loop, causes the innermost loop to proceed to its next value. The print line then
produces the output 2.89, 14.,0 and 2. The process will proceed until the final
output of -97.8, 15.0 and 4. At this point, the step function signals the end of all
the loops and the do...while ioop terminates.

In the example above, any number of loop associations could have been
given to the set. The number of loop associations has no bearing on the format of
the do...while loop.

This technique addresses all of the problems encountered in the
ecosystem example. Because the series of values that a loop association uses is

stored in a list, a non linear set of values can be specified. The last example

demonstrates this.
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Since this method treats the loop associations as data, the associations
can be manipulated like any other piece of information. This means that they can
be created and assigned to a set dynamically. In the ecosystem example, the
user was allowed to select any animal from a list of many species. As the user
selects each species, the appropriate number of loop associations could be
created and assigned to a set. The user, at this point, could be prompted for the
values for the series in the list. The set will have exactly the correct number of
loop associations. The nested loops have been set up without any need for
reprogramming.

Devising methods of rearranging the order of the nesting are not difficult.
The user can be given the opportunity to sort the set in any manner. A function
could be added to the set that would allow the user to prioritize the loop
associations. In a graphically based program, this could be done visually by
rearranging icons that represent the nesting levels. Alternatively, the user could
couple a number with each loop association. The number could be interpreted as
the nesting level number. Sorting the set by the number before use would

effectively change the nesting.

3.3. The User Interface

The obijective of this method of handling loops is to make the controlling
parameters of a simulation friendly and powerful for both the programmer and the
user. The workings of loops, as they have been suggested here, provide a
framework for a flexible system. Since the loops are treated in a uniform manner,

it is only natural that the user interface of these loops are also consistent.
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The initialization step of a loop association calls for the list to be given a
series of values. This means that the user is to provide the values. It is important
to provide suitable prompting to illicit a correct response from the user. The
initialization step should provide facilities to prompt the user with an appropriate
phrase, as well as inform the user if there are any default responses.

If the user responds to the prompt with just a carriage return, the series
should take on the default value. Alternatively, the user can type a series of
values. To make a long linear series easier, the user should have the option of

specifying a low value, a high value and an increment.

Enter the initial population of lions [1000]: <cr>
Enter the initial population of gazelle [10000]: 8000 8500 8750
Enter the initial population of zebra {5000]: (4000 8000 1000)
Enter the initial population of giraffe [3000]: (2000 4000 500) 5000 6000
Figure3.4
The computer prompts the user with the underscored text in this example
of Figure 3.4. On the first line, the simulation wants the number of lions in the
initial population. It specifies that the default is 1000. The user responds with just
the carriage return which accepts the default. In the second line the default for the
initial population of gazelle is 10000. Instead of accepting this value, the user
specifies three values. The corresponding loop association will initialize its list to
the values specified by the user. On the third line the user specifies five values
instead of accepting the defauit single value of 5000. In the parenthesized form
specified by the user, the first value is the low; the second value is the high; the
third value is the increment. In the loop associations list, the input translates to the
five values: 4000, 5000, 6000, 7000, 8000. On the last line, the user combines

discrete values with an iterated group. The values used by the loop association
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will be: 2000, 2500, 3000, 3500, 4000, 5000, 6000. The user may specify any

combination of iterated groups or discrete values.

3.4. Implementation

Object oriented programming provides many of the tools necessary for the
simple implementation of this scheme. Loops need not be restricted to floating
point values. Through the OOP features of inheritance and virtual functions, loops
can be expanded in type to include integers, long integers and strings.

The loop association base class defines the interface for all types of loops.
Regardiess of the actual data type used by the loop, every loop association needs
to be able to respond to the five basic loop functions: initialize, reset, next, test and
get value. The base class also defines the components of a loop that are
common to all types. This includes the variables necessary for implementing the

user interface.

3.4.1. The Base Class Iterator

class Iterator

{
char DefaultString[MAX INPUT LENGTH];
char InputString{MAX_INPUT_LENGTH);
char Prowpt[MAX INPUT_LENGTH];
int NumberOfValues;
int CurrentPosition;

public:

Iterator (void);

void GetIterator (char *, char *, FILE*);
inline int IsDone (void);

inline void Next (void);

inline void Reset (void);
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virtual void Parselnput (char*) = 0;

} ves
Figure 3.5

Because the iterators derived from this base class implement loops using
different variable types, it is the derived types’ responsibility to define the list
containing the series. However, the current value pointer can be implemented in
the base class because it is simply an index into the list. The variable
CurrentPosition serves in that capacity. The variable NumberOfValues, keeps
track of the length of the series.

The three character strings defined at the beginning are used to implement
the user interface. When an iterator is created, a prompt and default are specified.
These will be presented to the user during the iterator’s initialization process. The
exact input given by the user is retained in the character array Userinput. The
input is kept so that it can be used as output in a report. This could allow
experiments to be repeated without retyping the input, in addition to verifying the
input during an audit procedure.

The routine Getlterator serves as the initialization of the iterator. it sets the
values for the default and the prompt. It then uses them to get input from the user.
Because each derived iterator uses a different data type, it is the derived iterator’s
responsibility to parse the input from the user. This is done with the Parselnput
routine. All derived types of iterators must define their own Parselnput routine.
Ideally, each Parselnput routine should atlow the same form of input. In other
words, all types of iterators should allow the user to input discrete values as well

as iterated groups. However, there is no facility to enforce this.
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The Reset function simply returns the CurrentPosition variable to the
beginning of the list. The Next function increments the CurrentPosition. IsDone
compares the CurrentPosition with the NumberOfValues. If CurrentPosition is
beyond the end of the list, IsDone returns a true condition.

The GetValue function is not defined by the base class. This is because
each derived class will return a value of a different type. Therefore each derived
class is responsible for defining its own GetValue function.

Intiterator in figure 3.6, defines a typical derived iterator. Its purpose is to
allow the user to iterate over a series of integers. This is the iterator that would be
chosen for the initial population size of an animal in the ecosystem example.

class IntIterator : public Iterator
int Values[MAX NUMBER OF VALUES;
public:
IntIterator (void);

int GetValue (void) { return Values[GetCurrentPosition()]; }
virtual void ParseInput (char *);

}:...
Figure 3.6

The Intlterator provides an array of integers to serve as the list of values.
The GetValue function returns the value of a position in the array using the
CurrentPosition index from the base class. The iterator also defines the

mandatory ParselnputFunction.

3.4.2. iteratorSet
The lteratorSet manages a list of lterators. By maintaining a list of lterators,

the class is able to implement all the features of dynamically nested loops.
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class IteratorSet
{

FILE* Source;

Iterator* Iterators[50];

int NumberOfIterators;

public:

TteratorSet (FILE*};

Iterator* Allocatelterator (int, char*, char*);

void Reset (void);

int Step (void);

void PrintIterators (FILE*);

void Save (void);

}i o
Figure3.7

The list of lterators is stored in the form of an array of pointers called
iterators. The NumberOfiterators keeps track of the nesting depth.

To add an iterator to the set, the Allocatelterator function is used. It must
be provided with a flag identifying the type of iterator desired, the prompt and the
default value. The process of creating iterators invokes the iterators’ user
interface. If the variable Source is pointing to the standard input (stdin), the user is
prompted for the series for the new iterator. If the variable Source instead points
to a file, the series of values is read in from the file. In either case, the function
returns a pointer to the newly created iterator. The object that requested the
allocation of a new iterator will then use the pointer to retrieve the series of values.

The Save function allows the user the option of saving the responses given
to the iterators’ prompts. An output file must be specified if the user chooses to
save. The lteratorSet then cycles through its list of iterators causing each to
output the response that was given to it.. The file saved in this manner is in a form

that can be used as input in the iterator allocation process.
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Once all of the iterators have been created, the nesting of loops is ready to
use. The Reset function will cycle through the list of all the iterators causing each
to reset to their first value. The Step function causes the iterators to proceed to
the next values in the manner outlined above. if the outermost iterator has used
its last value, the Step function returns a false condition indicating that the ioops
are complete.
void Lion::SetupIterators (IteratorSet* IS)
InitialPopulationIterator = (IntIterator*) IS.AllocateIterator
(INT_ITERATOR, "Initial Population Size",
"1500") :
AttritionRateIterator = (Doublelterator*) IS.AllocateIterator
(DOUBLE_ITERATOR, "Attrition Rate by Disease",
" 40"

ReproductiveRateIterator = (DoubleIterator*) IS.AllocateIterator
(DOUBLE_ITERATOR, ™Reproductive Rate", "1.2");

}
Figure3.8

The ecosystem simulation provides a good example of the lteratorSet’s
use. The population of lions must iterate over three values: the initial population
size, attrition rate due to disease and reproductive rate. When the user selects
lions to be part of the ecosystem, the class lion requests three iterators from the
iterator set. K provides prompts and defaults for each of the iterators and then
saves the pointers it receives.

void Lion::GetNewValues (void)

{
PopulationSize = InitialPopulationItertor->GetValue();

AttritionRate = AttritionRateIterator->GetValue():
ReproductiveRate = ReproductiveRatelterator->GetValue();

)
Figure3.9

At the beginning of each iteration of the iterator set, the objects that have

allocated iterators must be allowed to retrieve new values. In this example, the
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class Lion has a function specifically for getting the new value of its three iterated
variables. For this example consider this function to be repeated for each animai
class that was available for the user.

IteratorSet IS(stdin);

iiétOfAIISelectedAnimals = AllowUserToSelectAnimals();

for each animal i in ListOfAllSelectedinimals do:
i->SetupIterators();

ié:Reset():

do

{
for each animal i in ListOfAllSelectedAnimals do:

i->GetNewValues();
EcosystemModel (ListOfAllSelectedAnimals);
} while (IS.Step()):

Figure.é: 10

This pseudo-C + + code fragment demonstrates a complete dynamic
nesting of loops. The lteratorSet is created on the first line, specifying that input is
to come directly from the user instead of a file. A list of animals to be included in
the simulation is the created by the user. The Setuplterators function is called for
each of the animals selected. This causes the user to be prompted for whatever
series values are needed for each animal. This allocates new iterators, which are
placed in the iterator set. The iterator set is then reset and the nested loops begin.
The first step in the loop is retrieving values from the iterators. The ecosystem
simulation is then given the list of animals with their current values. When the

simulation ends, the IteratorSet steps to the next value and the loop repeats.

3.5. Conclusion
lterators and lteratorSets define a very flexible method of implementing

loops in a simulation program. Not only do they allow loops to be created
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dynamically, but they also allow for dynamic nesting. This solves the inflexibility
problems found with tradition looping structures. The user interface aspects of
lterators create a complete unified package that can be used to control a

simulation or a similar program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. The Genetic Algorithm

OBJGEN is an object oriented program for use in experimentation with
genetic algorithms for optimization. It is based on a framework designed to
provide maximum flexibility as an experimental platform. The program and its
framework are malleable; many different variations of genetic algorithms can be
constructed with a minimum amount of recoding. iterators, Probes and the
hierarchical inheritance structures of object orient programming provide much of

the flexibility.

4.1. Genetic Algorithm Background

Binary Genetic Algorithms are search algorithms that are based on the
mechanics of natural selection and natural genetics [ 1]. Given a parametric
equation to be optimized (the objective function) and a set of bounds on the
parameters, a genetic algorithm will search for a global optimum. Genetic
algorithms have been shown to be effective over a wide variety of different
optimization problem types. In addition to real parameter optimizations, genetic
algorithms have also been applied to combinatorial problems.

Genetic algorithms begin with a set of randomly chosen points in the
search space. Each point is considered an individual member of a population.
Through the processes of the algorithm, a population will spawn a succeeding
generation. Subsequent populations will begin to converge to one area of the
search space.

A typical example of a genetic algorithm is the one embodied in the
GENESIS program [2]. GENESIS can be used for optimization of parametric
functions with real parameters. Internally, the position of a point in the search

space is encoded as a binary string. There is one section of the binary string for
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each parameter of the objective function. The binary string can be thought of as
the analog of DNA in biological genetics. The binary string is the genetic material
that holds all the information that defines the individual’s position in the search
space.

Each individual in the initial population is rated on performance. This is
done by decoding the bit string and then applying the point it represents to the
objective function. The objective function returns a floating point value which is
then associated with the individual as the individual’s performance.

Comparison of the performances of individuals in a population determines
the fittest individuals. These best individuals are then selected to form a new
population. Individuals that were not selected do not survive. Metaphorically, this
is the survival of the fittest as defined by Darwin. The algorithm used by GENESIS
to effect the selection is a nondeterministic technique called the Baker selection
method [3]. A selected individual will generate a number of offspring in direct
proportion to its relative fitness compared with the other selected individuals. In
other words, if the normalized fitness of an individual is twice that of another
individual, the first individual with have on average twice the number of offspring in
the succeeding generation.

Selection pressure is only one aspect of the process of advancing from one
generation to the next in biological evolution. Genetic algorithms usually simulate
mutation and mating in addition to selection.

Mutation acts on the binary string. A threshold known as the mutation rate
controls mutation. The threshold represents the probability of a given bitin a
given string will be inverted. The inversion of a bit has the effect of moving the

individual to a new point in the search space.
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The exchange of genetic material between two individuals in a genetic
algorithm is known as crossover. In the metaphor with biological evolution, this is
the mating of two individuals to produce offspring. Unlike the biological model,
however, the union of two genetic algorithm individuals always produces two
offspring and destroys the parents. Two positions randomly chosen in the bit
string determine a segment of genetic material that is exchanged between the two
parents. When the exchange occurs, the individuals that were the parents
become the offspring. In effect, crossover forces the population to try different
combinations of parameters.

Crossover knows nothing of the boundaries between the parameters in the
binary string, thus an exchange of genetic material is not simply an exchange of
parameters between individuals. When a crossover point falls inside a parameter,
the effect is a perturbation of the parameter in both individuals [4].

A trial is an invocation of the objective function on an individual that has not
been tested in the past. Any individual that is changed by mutation or crossover is
considered a new untried individual and is therefore applied to the object function
for evaluation and counted as a trial. If an individual survives into a succeeding
generation and manages to get by mutation and crossover with no changes to its
binary string, it is not applied to the objective function and therefore a trial has not
occurred. The number of trials can be thought of as roughly the number of points
in the search space that have been examined.

Once selection, mutation and crossover have acted on a population the
process of advancing to the next generation is complete. The algorithm repeats

until a stopping criteria had been met.
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Without knowing the global optimum beforehand, it is very difficult to
determine if a population has converged. It is necessary to devise other methods
to stop the algorithm. One method uses the concept of trial. At the start of an
experiment a maximum number of trials is selected. When the maximum is
achieved, the algorithm stops. This same idea can be applied to the number of
generations. If several generations go by with no changes in the number of trials,
the algorithm stops. This is called the spinning threshold.

Several measurements of the performance of genetic algorithms have been
devised. Off-line and On-line performance measures rely on the concept of a trial.
Off-line performance is geared toward measuring convergence while on-line

measures ongoing performance [1].

4.1.1. Real Vector Genetic Algorithms

In an RVGA, the encoding of the parameters into binary strings is bypassed
[4, p8]. Each individual now holds a vector of real numbers that are used as the
parameters for the objective function. In theory this variation on a genetic
algorithm may be more efficient because it eliminates the overhead of the binary
string conversions. The differences in the representation of the "genetic materiai*
necessitate the redefinition of several of the processes of the genetic algorithm.

Mutation is redefined to act directly on the points of the population rather
than the encoding of the points. The mutation rate can now be considered the
probability that a parameter will be perturbed by mutation. The actual process of
mutation can be done in several ways. One possibility is to simply allow a new
value to be selected for a given parameter in a range centered on the old value of

the parameter. The size of the interval can be determined at run time with a setting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45
calted MutationSize expressed as a percentage of the entire range of possible
values for a parameter. Another alternative that would facilitate comparison of
BGA’s with RVGA’s would be to simulate mutation of binary individuals.

Crossover is redefined to be an exchange of parameters between
individuals. For exampile, if individual one has parameter values ABCD and
individual two has values EFGH a crossover might produce two new individuals
with parameters of AFGD and EBCH. Unlike crossover in BGA’s, crossover in
RVGA’s cannot take place in the middie of a parameter. This means that
crossover in a RVGA does not perturb parameters.

All other techniques involved in genetic algorithms remain the same for
RVGA'’s. The selection method as well as the measures of off-line and on-line

performance do not need to be changed.

4.2. The Framework

The OBJGEN program consists of an implementation of the genetic
algorithm using the object oriented language C+ +. The program is based on a
framework that is independent of the type of genetic algorithm implemented in the
program. The framework provides the flexibility and much of the power of the
program.

There are five major families of classes that make up OBJGEN: Individuals,
Populations, Genetic, Iterators, and Probes. In addition there are three auxiliary
classes that serve in supporting roles: FileManager, FunctionDispatcher, and
IndividuaiManager.

The framework provides a skeleton of a genetic algorithm. All of the major

functions of the algorithm are implemented in a generalized manner. This allows
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the framework to function with a wide number of variations of genetic algorithms.
Part of the flexibility of the program stems from the fact that new features can be

added without rewriting or recompiling the framework.

4.2.1. Individuals

Individual is the base class from which all types of individuals are derived.
This means that Individual defines the basic attributes of individuals without
defining the implementation details. The classes derived from Individual are
responsible for filling in the details. For example, an individual that is used in a
genetic algorithm for solving a combinatorial problem will have its genetic material
represented in a manner appropriate for combinatorial problems. An individual
from a genetic algorithm that optimizes parametric objective functions with floating
point parameters would have a different representation. Both types of individuals
would derive from the same ancestor using the object oriented feature of
inheritance.

There are two constructors for this class, each is used in a different
situation. The first constructor is used to create the prototype individua!l. In the
creation of this individual, the user is prompted, through the use of iterators, for
key values that control features of the individual.

The prototype individual’s sole purpose is to spawn new individuals. The
prototype individual is given to the class that represents a population. The
population fills itself by cloning the prototype individual. In this manner, a
population is independent of the type of individuals it carries. Any derivation of an

individual can be given to a population and the population can successfully use it.
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The process of cloning an individual uses the second constructor. The
second constructor queries the iterators rather than the user for the controlling
values for the individual’s features.

The class Individual, shown in figure 4.1, declares the interface that is
common to all types of individuals. The interface consists of functions though
which all actions involving individuals are routed. It does not define the details of
the implementation of the interface, it simply declares that these routines will exists
for all types of individuals. Each type of individual is required to define in detail the
implementation of these routines. A given type of individual may add new routines
to the interface. The base class Individual merely states that the routines it defines
are the bare minimum that a derived type of individual must have.

class Individual

{
static FunctionDispatcher* FD;

static IteratorSet* IS;
static int FunctionNumber;
static Iterator* IndividuallT;

static int Usage;

int NeedsEvaluation;
double Performance;

public:

virtual int CalcPerformance (void) = 0;
virtual Individual* Clone (void) = O;
virtual void Copy {Individual*);
virtual void CrossOver (Individual*) = 0;
virtual void Mutate (void) = 0;
virtual void Print (FILE%);
virtual int operator== (Individual*) = 0;
virtual void RandomSetup (void) = 0;
}
Figure4.1
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The CalcPeformance routine is intended to cause an individual to invoke
the evaluation function. The evaluation function is passed the individual’s genetic
material and then return a single floating point number representing the individuals
performance. The individual must then store that value.

The Clone routine creates a new individual, based on the type of the
current individual, using the second constructor. The genetic material of the
current individual is not copied. The routine resuits in a brand new "empty"
individual.

The Copy routine is very simple. It copies the genetic material of the
individual passed to it. This enables an individual to become an identical twin of
another individual.

The CrossOver routine implements the crossover operation between two
individuals. The individual passed to this routine and the current individual will
exchange genetic material in a manner appropriate for the individuals’ type.

Mutate is the routine that accomplishes the mutation operation.

Print is used to dump the contents of an individual to an output device or
file. The print destination must be passed to this routine in the form of a pointer to
a file.

Operator = = is a routine that compares the genetic material of two
individuals. If they contain the same information this routine returns a one, if they
are different it returns a zero.

RandomSetup sets an individual’s genetic material to a random state. This

routine is used at the beginning of an experiment to initialize an individual.

P
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In addition to defining the interface for individuals, the class Individual holds
information that is common to all individuals. Regardless of the variant of
individual in use, there are properties that all individuals have.

Individuals must be able to be evaluated; therefore each individual must
hold a value representing its own performance. Each individual has its own
variable to hold its performance. Appropriately, this variable is called
Performance. The flag, NeedsEvaluation, is used to signal if an individual’s
performance needs updating. If crossover or mutation results in a change in an
individual’s genetic material, the individual needs reevaluation. Itis the
responsibility of the individual’s CrossOver and Mutation routines to set this flag.

Each instance of an individual has its own copy of the variables
NeedsEvaluation and Performance. There are five variables for which there is
only one copy. These variables are common to all instances of Iindividual.

FD is a variable that holds a pointer to a function dispatcher. A function
dispatcher is an object that manages a list of objective functions. When an
individual needs access to an objective function to evaluate itself, it simply asks
the function dispatcher for the function. The function dispatcher then returns the
appropriate objective function in the form of a pointer. The individual then can
invoke the objective function via the pointer.

An individual informs the function dispatcher which objective function it
needs, through the use of the FunctionNumber variable. This variable is
controlled by the user via an iterator.

The variable IndividuallT is a pointer to the Iterator that controls the
FunctionNumber variable. When a new group of individuals is created, the first

individual makes an inquiry to this Iterator. The Iterator returns the number of the
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objective function that will be in use during the current experiment. The individual
in turn will use this value to get the objective function from the function dispatcher.

The pointer IS is a pointer to an lteratorSet. The IteratorSet is an object that
controis all of the lterators in the program. Its value is set during the creation of a
prototype individual. When a new iterator is needed, it can be allocated by a
request to the lteratorSet. This value is not used, except in the creation of the
FunctionNumber Rerator in the first constructor. Its presence is merely a
convenience to facilitate future expansion.

Usage is a counter that keeps track of the number of individuals that have

been created. The prototype individual is excluded from this count.

4.2.1.1. RealParameterindividuals

The class RealParameterindividual, shown in Figure 4.2, is an intermediate
level in the implementation of the individuals in the RVGA. It is a class derived
from the base class Individual and it therefore inherits all of the properties of that
class. As a derived class, it has the responsibility of defining the details that are
left out of the base class. This includes the actual representation of the genetic
material and all of the interface routines that the base class declared but did not
define. Because this class is an intermediate level, it can pass the responsibility
for definitions of the interface routines on to classes that will be derived from it.

class RealParameterIndividual : public Individual

{
static DoubleFunctionPointer Evaluator;

static double *RealNinimums;
static double *RealRanges;
static int NumberOfParameters;
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static double MutationRate;
static Iterator #*RealIndividuallIT[2];
static int Usage;
double #*RealParameters:

LN

}
Figure4.2

The genetic material of an instance of class RealParameterindividual
consists of a vector of floating point values. The size of the vector is dependent
on the number of parameters needed by the objective function. This vector is
called RealParameters and is implemented as a pointer to a double. Memory for
the vector is allocated at the time of the creation of the individual in the second
constructor. RealParameter is the only instance variable in this class.

All other variables are class variables. That means there is only one copy
of these variables used by all instances of the class. The values of these variables
need to be set only once at the beginning of an experiment. The Usage variable
controls this. This variable counts the number of Realindividuals that have been
created. Only during the first one’s creation will constructor execute the code to
initialize the values of the class variables.

Evaluator is a class variable that holds a pointer to an objective function.
This is the objective function that is returned by the function dispatcher. This
variable exists for speed considerations. It is certainly possible to go through the
function dispatcher whenever the objective function is required. However, the
overhead of doing so would cause the program to slow considerably. A simple
solution is get and store the pointer to the function once.

The Evaluator variable is stored in the Reallndividual class instead of the

base class for flexibility reasons. Pointers to functions in C+ + are typed
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according to their return value and their parameters. These together are called

the signature of a function. The Reallndividual class is designed to work with
functions that have floating point parameters. Placing this value in the base class
woulld restrict all derived classes to working with floating point parameters. This is
not desired behavior. it would eliminate the possibility of using the program’s
framework with other types problems.

The function dispatcher is used to disseminate information about the
objective function being used. Through an inquiry to the function dispatcher, the
number of parameters in the current objective function is stored in the variable
NumberOfParameters. Again, the function dispatcher could be queried whenever
the number of parameters is needed, but speed considerations necessitated
querying only once.

Each of the parameters in a real vector objective function must be
bounded. The two arrays RealMinimums and RealRanges store the bounds on
each of the parameters. There are as many elements in each of these arrays as
there are parameters required by the objective function. The values of these
arrays are set through the function dispatcher. When the first Reallndividual is
created, the constructor queries the function dispatcher for pointers to these
arrays.

The mutation operation for a Realindividual needs one controlling
parameter: MutationRate. This value is controlled by an iterator and thus
ultimately by the user. The Iterator pointed to by the variable RealindividualiT
controls this vaiue.

Further definition of mutation is left out of this class. It is up to derived

classes to define the exact interpretation of MutationRate and act on the genetic
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material. This allows several types of individuais to be created that work with
different methods of mutation.

Crossover is also left undefined by this class. The classes derived from this

one are free to define crossover in what ever manner they see fit.

4.2.1.2. RealindividualO
The ReallindividualO class derives from RealParameterindividual and is the
complete definition of the RVGA. It makes definitions for Mutation and Crossover
that and defines the auxiliary variables needed to implement them.
class RealIndividualO : public RealParameterIndividual

{
static double *MutationRange;

static Iterator *ReallndividualOIT;
static double MutationSize;
static int Usage;
"public:
virtual Individual* Clone (void) { return new Reallndividual0(); )
virtual void CrossOver (Individual*);
virtual void Mutate (void);
IH
Figure4.3
The mutation rate from the parent class RealParameterindividual is
interpreted as the probability that a given parameter of the real vector will be
mutated by the mutation routine. When the Mutate function is invoked for an
individual, the first act is to decide if the mutation is to be effective. This is done by
generating a random number between zero and one and comparing it with the
mutation rate. If the random number is less than or equal to the mutation rate, the

mutation proceeds.
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Mutation consists of perturbing the value of parameter in the vector of

parameters of an individual. The MutationSize variable places a bound on the size
of the perturbation. For example, a value of .2 would allow a parameter to be
changed up or down by ten percent of the total range of the parameter. The
mutation size is controlled by an iterator.

The actual process of mutation first selects the direction of the mutation;
either positive or negative. Second, a range of possibie new values of the
parameter is calculated. The range is adjusted to remain within the bounds of the
parameter. Then a new value of the parameter is selected uniformiy from the
range.

For example, consider the value of a parameter to be 89 and the bounds of
the parameter give it a possible range of 0 to 100. A mutation size of .25 would
represent a mutation range of plus or minus 12.5. Because 89 plus 12.5is
greater than 100 (the upper bound on the parameter) the mutation range is
adjusted to be minus 12.5 to plus 11. [f the mutation were chosen to be negative,
the new value for the parameter would be chosen from the range of 76.5 to 89. If
the mutation were chosen as positive, the value would be in the range of 89 to
100.

The variable MutationRange is an array used to store the maximum size of
the mutation range for each parameter. This array was added for speed
considerations. It is best to calculate this only once and then lookup the value
rather than calculating it each time the value is needed. The value of this array is
calculated in the second constructor.

Crossover exchanges genetic material between two individuals. For

Realindividuals this is simply an exchange of a string of parameters. Selection of
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the string is done by first selecting a starting and an ending point. These can be

thought of as the cut points. The parameters between the two cut points are then
exchanged between the two individuals. If one individual has a parameter list
[12.4, 16.8, 3.1, 8.8, 6.6] and the other has [11.4, 15.3, 5.6, 8.8, 4.5], crossover
cut points at 1 and 3 would result in the parameters lists being: [12.4 15.3 5.6, 8.9
6.6]and [11.4, 16.8, 3.1, 8.8, 4.5].

4.2.1.3. Binaryindividuals

Binaryindividuals were created to mimic the behavior of the individuals in
the GENESIS program exactly. The implementation of algorithms used in
GENESIS are similar but in most cases are not exact matches to the
implementations used here. Where the differences are significant, it will be noted.

Binaryindividuals are derived from the intermediate class
RealParameterindividual. Binaryindividual adds a new representation of the
genetic material to the vector of floating point numbers provided by
RealParameterindividual. The new representation is the target of the mutation and
crossover operations. When it is time to evaluate a Binaryindividual, the
representation is translated and stored in the vector of floating point numbers from
RealParameterindividual. This gives Binaryindividuals the flexibility of using its
own genetic material representation while still be able to exploit the features
inherited from RealParameterindividual.

class BinaryIndividual : public RealIndividual

{
static int ListLength;

static int NumberOfBytes;

static int BitsPerParameter;
static int MaxValueOfBitPattern;
static int NuNext;

static int UseGraycode;
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static Iterator *BinaryIT;

static int Usage;
unsigned char *List;
public:

;8id Decode (void):

void PutItem (unsigned char, int);
unsigned char GetItem (int);

} s
Figure 4.4

The representation of the genetic material of a Binaryindividual is a string of
bits. The bit string is referred to by the pointer List. The routines Putitem and
Getltem allow for easy access to the individual bits within the string as if the list
were an array of bits. List is the only instance variable added by this class.

ListLength holds the number of bits that are used as the genetic material.
The NumberOfBytes variable stores the size in bytes of the list. Because the
number of bits used is not necessarily evenly divisible by eight, there will be
several unused bits at the end of the list. The BitsPerParameter variable stores the
number of bits that are allocated for each parameter of the objective function.

This value is controlled by an iterator and therefore by the user.

The bit pattern is converted into the floating point values used by the
objective function. The bit pattern can be interpreted in one of two ways: either as
a binary number or a gray coded binary number. The variable UseGraycode
determines how the bit pattern is translated. UseGraycode is indirectly controlied

by an iterator.
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The bit pattern is translated into an integer that is then scaled into a range

that is appropriate for the parameter that the bits represent. The process of
scaling is assisted by the variable MaxValueOfBitPattern.

Mutation for a Binaryindividual is done by inverting the value of a specific bit
in the bit string. Binarylndividual uses the mutation rate from Realindividual to
determine if a mutation occurs. However, the value is reinterpreted to mean the
probability that a given bit is mutated rather than a given parameter is mutated.

One way of implementing mutation for Binarylndividuals, would be to cycle
through all bits, generating a random number for each and comparing it with the
mutation rate. This technique, whiie effective, would be very slow. Instead of
cycling through all bits, the number of bits between mutations can be calculated.
MuNext is the variable that holds this interval. As each individual in a population is
considered, this value is decremented according to the number of bits in an
individual. As soon as the value of MuNext is less than the number of bits in an
individual, MuNext is used to calculate an index to the bit that is to be mutated.
The mutation occurs and then a new MuNext is caiculated based on the mutation
rate.

Like mutation, crossover operates on the bit string. Two individuals are
chosen and two cut points are selected within the bit strings. The portion between
the cut points is swapped. The cut points are not limited to the boundaries
between parameters. Great care is taken during the execution of the crossover
function to avoid unnecessary work. If the regions inside or outside of the cut
points of the two individuals are identical, the crossover would result in no change
to the individuals. If this condition is found to be true, the crossover does not take

place.
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Binarylndividuals have an additional step added to the process of
evaluation. It is necessary to translate the bit string into a vector of floating point
numbers. The Decode routine accomplishes that task. Immediately before the
objective function is applied to the individual in the CalcPerformance routine, the

Decode routine is invoked.

4.2.1.4. Reallndividual 1

Realindividual1 is another class based on RealParameterindividual. it
defines its own versions of crossover and mutation in a different manner than
ReallndividualO. Its definitions are created to simulate the mutate and crossover
functions of Binaryindividuals. Reallndividual1 does not include its own definition
of the genetic material in the manner of the class Binarylindividual, it uses the array
of floating point numbers provided by the base class RealParameterindividuat.

class RealIndividuall : public RealParameterIndividual

{
static Iterator *RealIndividualllIT;

static int VirtualBitsPerParameter;
static int MaxValueOfBitPattern;
static int Usage;

void MutateParameter (int);

public:

virtual Individual* Clone (void) { return new Reallndividuall(); }
virtual void CrossOver (Individualt);
virtual void Mutate (void);
Iy
Figure4.5
Mutation in Reallndividual1 is designed to simulate the mutation technique
found in the class Binaryindividual without using the Binarylindividual genetic

material representation. To facilitate this, a class variable called
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VirtualBitsPerParameter is defined. This value is the equivalent of the

BitsPerParamater variable found in Binarylndividual and serves a very similar
purpose. Just as the size of a given mutation is directly related to the number of
bits per parameter in a Binarylndividual, the size of a Realindividual1 mutation is
dependent on VirtualBitsPerParameter.

When a Binaryindividual performs a mutation, it simply flips the value of one
of the bits in its genetic material. This causes a perturbation in the value of the

parameter from which the bit was selected. Consider a Binaryindividual using a
straight binary encoding for each parameter. If R; is the range of a parameter x;,

then mutating bit number k causes a perturbation of the size R;2°K. The sign of the

perturbation depends on the original value of the bit. If the original value were 0,
then the perturbation woulid be positive. A negative perturbation would result if the
original value had been 1.[4, p7]

MutationRate is interpreted by Reallndividual 1 in the same manner that it is
interpreted by Binaryindividual: the mutation rate reflects the probability that a
given bit will be mutated. Realindividual1 makes its decision to mutate on a
parameter by parameter basis. Since the mutation rate specifies the probability
that a bit is mutated and each parameter represents a collection of bits, the
mutation routine compares a uniformly selected random number with the mutation
rate multiplied by the number of virtual bits per parameter. If the random number
is less than the product, a mutation occurs.

Simulation of binary mutation begins with the selection of virtual bit, k. This
bit determines the maximum size of the perturbation. It calculates a maximum

perturbation size with a formula that is the equivalent of Ri2'k muiltiplied by 2.

Then a new value for the parameter is chosen uniformly from the range of the
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current value to the current plus or minus the maximum size of the perturbation.

The sign of the perturbation is chosen randomly. The muiltiplication by 2 is to
adjust the average perturbation size to the same size as the mutation size in binary
mutation. If adding or subtracting the maximum value of the perturbation results
in a number that is out of range for the parameter, the maximum value of the
perturbation is adjusted. This prevents the value of the parameter from stepping
beyond its limits.

For example, a given parameter might have a range of 0.0 to 10.24 with ten
virtual bits per parameter. If virtual bit number five is selected for mutation, this
corresponds to a mutation range of plus or minus 0.32. The actual mutation
proceeds from this point in the same manner as the mutation from the class
RealindividualO.

Simulation of crossover of Binarylndividuals is a two stage process. The
first stage exchanges parameters between two individuals using two crossover
points. The second stage perturbs one of the parameters at each crossover
point. This is in line with the effects of crossover on a Binarylndividual. In the case
of a Binaryindividual, all the bits between the crossover points are exchanged
between the two individuals. This could result in an exchange of the entire
representation of several parameters. A crossover point can fall within the bit
pattern of a parameter of a BinaryIndividual. This results in an exchange of bits
between the parameters of the two individuals involved. In effect, thisis a
perturbation of the parameters.[4, p5]

In the beginning of the first stage, two crossover points are selected.

These points are selected to cross between the parameters. The parameters

between the crossover points are swapped in the same manner that crossover
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takes place for class RealindividualD. One special case exists for the real

parameter crossing: the two crossover points can be equal. While this is not
allowed to happen in the case of crossover for the class ReallndividualO,
Reallndividual 1 uses this occurrence to simulate both crossover points in the
same parameter. When the two crossover points are the same, no exchange of
parameters happens. The crossover routine proceeds directly to the second
stage.

The second stage of crossover perturbs a parameter immediately adjacent
to each crossover point. it accomplishes this using a method very similar to
mutation. However, the technique is a little more complex, because it must
simulate the exchange of several bits between the parameters of two individuals.

Examining the effects of the perturbation of binary crossover in more detail
will make the reasoning behind the simulation techniques clearer. Consider the
effects of crossover for the two individuals below:

1010110011
1101101100

The bit strings are arranged with the bits numbered from zero to nine from
right to left. The least significant bit is numbered with the zero. The crossover
points are also numbered from zero to nine, with crossover point zero immediately
to the right of bit zero. If a crossover point falls at position two, the
Binaryindividuals will exchange their two least significant bits. In this example, the
first individual has 11 in the least significant positions, however it could have any
of the four possible values for those two bits. The same is true for the other
individual. At most, the new value that an individual receives for its two bits wilt be

a difference of three from the old value. If the original bit pattern was 11 and the
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new bit pattern is 00, the difference is three. Graphing the outcome of all possible

combinations of original and new bit patterns yields figure 4.6.

Distribution Of Differences For 2 Bit Exchange

2 ’ ,,,,, P
0 i — .
-3 -2 -1 0 1 2 3
Difference
Figure4.6

Reallndividual1 selects a value by which to perturb a parameter by
selecting a perturbation from a distribution similar to the one in figure 4.6. The
maximum size of the perturbation is determined by selecting the lesser of two
values calculated using two different methods.

in the first method, Realindividual 1 selects a virtual crossover point based
on the number of virtual bits per parameter. This is very similar to the method
used to select the mutation size in the Mutate routine. This value becomes the first
method’s candidate for the maximum perturbation size.

When a population of binary individuals is approaching convergence, they

begin to look very similar. In other words, as the individuals begin to cluster
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around the same values of their parameters, the binary encodings of the

parameters become more and more alike. The probability that the exchange of
bits in a binary crossover results in a perturbation begins to drop. To take this
situation into account, the second method of determining a perturbation size
simply calculates the difference between the two parameters from the two
individuals. It uses this value as its candidate for the maximum perturbation.

The lesser of the two values calculated by the two methods is selected as
the maximum perturbation size. The actual perturbation is chosen from the
distribution given in figure 4.7 scaled into a range appropriate for the parameter
that is to be perturbed.

The probability density function found in figure 4.7 represents a continuous
version of the right half of the graph in figure 4.6. It shares the same distribution of
values as the absolute value of the bit differences. The value zero occurs four

times as often as the value three in both graphs.

Probability Density Function

Figure4.7
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A random number can be selected from the distribution by first selecting a
random number r uniformly from the range of 0.0 to 1.0. The number is then
transformed by the equation: 1.0 - sqrt (1.0 - r). This number can then be scaled
into the appropriate range and the sign selected randomly. The function of figure
4.8 is a routine that will select a random number from the right half of the
distribution. When this routine is used to generate a random number from the
distribution to be used as a perturbation, it is necessary to calculate the sign of the
result separately.

double RandRangeLinear (double low, double high)

return ((1.0 - sqrt (1.0 - Random())) * (high - low)) + low;
)
Figure4.8

There is one further complication before the perturbation can be applied to
the parameter. Since parameters are bounded, a facility must be created that will
prevent them from over stepping their limits. In the case of mutation, this is done
by restricting the size of the range from which the new value is selected. Since
mutation uses a uniform distribution for selection, the range restriction has no side
effects. With the perturbation selection, the distribution is not uniform. Simply
restricting the range from which the value is selected skews the distribution.
Figure 4.9 shows the problems with restricting the range of the maximum
perturbation size. The figure shows that for a given parameter, the maximum
perturbation size is four. However, the current value is such that adding a value of
four would put the parameter over its upper bound. In fact, the perturbation must
be selected to be one or less to prevent an out of range problem. The line

composed of dashes represents the distribution if the perturbation range is simply
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limited to a size of one. The effective distribution shows that it is very difficult for

the parameter to ever reach its upper limit.

4 - Limit on Perturbation
N Value

Original Distribution

Effective \,
Distribution

A

A
s
e

0 1 2 3 4

0

—t

Figure4.9

One possible solution to this problem is illustrated in figure 4.10. Here, the
original distribution from the right of the limit is translated, scaled and then added
to the original distribution on the left of the limit. This produces the distribution
shown by the line composed of dashes. While this solution does skew the original
distribution, it does not suffer from preventing the original parameter from

reaching its bounds.
Limit on Perturbation

7 [ Effective Value
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Figure4.10
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This solution requires a modification to the routine of figure 4.8 that selects

a random number. A threshold value corresponding to the limit of the parameter
is specified. The threshold partitions the range of the uniformly selected random
variable, r, into two sections. Values below the threshold are used without
modification. Values above the threshold are translated to below the threshold.
The value is then scaled by a factor that is directly related to the relative sizes of
the ranges above and below the threshold.

For example, the goal might be to select a perturbation from a range where
the minimum is 0.0 and the maximum is 4.0. But the parameter that is to be
perturbed is 1.0 away from its upper bound. This means that the perturbation
must be selected from a range of 0.0 to 1.0.

The first step is to chose a uniform random number, r, between 0.0 and
1.0. This range represents then entire 0.0 to 4.0 range of the perturbation. Since
the limit on the perturbation is 25 percent of the original maximum perturbation
size, a threshold value of 0.25 is chosen. Any value of r above the threshold of
0.25 will be modified. If the selected number were .085, it would be transiated by
subtracting threshold to a value of 0.25, giving a value of 0.6. Since the
proportion of the ranges above and below the threshold is 1/3, the value is scaled
by dividing it by 3. This yields a value of .2. This value is then used as the value r.
This new value can then be applied to the equation: 1.0 - sqrt (1.0 - r), yielding a
normalized perturbation. This value is then scaled back to the original range of
0.0 to 4.0 given a real perturbation size of 0.8. The routine of figure 4.11

implements this technique.
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double RandRangeLinearThreshold (double low, double high, double threshold)
{
double r = (1.0 - sqrt ( 1.0 - Random{)});
if (threshold < high)
double NormalizedThreshold = (threshold - low) / (high - low);
if (r > NormalizedThreshold) r = (r - NormalizedThreshold) *
NormalizedThreshold /
(1.0 - NormalizedThreshold);

return (r * (high - low)) + low;

Figure}4.1 1
4.2.2. Population

Population is a base class which serves as a starting place for the
construction of populations. The class declares all of the features that a
population must have while declining to make specific requirements about
implementation details. The class Population is show in figure 4.12.

Just like the class Individual, Population has two constructors. The first
constructor is used to create a prototype population. The second constructor is
used in the process of cloning the prototype.

class Population
static IteratorSet* IS;
int PopulationSize;
double AveragePerformance;

Individual **List;

int EvaluationMadeFlag:
double CurrentPerformance;

protected:

static ProbeList Probes[10];
Iterator* PopulationIT[2]};
Individual* WorstMember;
Individual* BestMember;

LR S
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public:

virtual Population* Clone (void) = 0;
virtual int AdvanceOneGeneration (Population*) = 0;

virtual int MeasurePerformance (void);
virtual void Print (FILE%);

}..
Figure4.12

The PopulationSize variable is the only part of the base class Population
that is under the control of an iterator. The variable PopulationIT points to the
iterator. PopulationSize controls the size of the list of individuals in the population.

List is the variable that maintains the list of individuals. Actually, List points
to an array of pointers to individuals. The array is dynamically allocated according
to the PopulationSize variable. The array is of pointers to individuals rather than
individuals, for two reasons. First, this allows the individuals to be of any type
derived from the base class Individual. if an array of Individuals were used,
Population would have to be recoded for every variant of individual created.
Second, the array of pointers allows the list to be sorted or manipulated in a more
efficient manner. Sorting requires only that the pointers be moved. If pointers
were not used, it would be necessary to copy the individuals in order to move
them. Pointers are significantly faster to manipulate.

Population maintains some basic information about the individuals it holds.
AveragePerformance is calculated over the entire population whenever the
population is evaluated. In addition, the population maintains two variables
pointing to worst and the best member individuals.

Like the class Individual, Population does not stand alone. It requires thata

derivative class be created to fill in details of the implementation. It specifies a
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minimum interface that the derived class must define. Included in the minimal

interface are two routines: AdvanceOneGeneration and Cione. There are also two
functions that a derived population type may redefine: MeasurePerformance and
Print.

AdvanceOneGeneration is required to be defined by the derived population
type. This routine defines the technique that moves a population from one
generation to the next. It should outline each step of the process applying them to
the individuals in the population.

Clone is a method of creating a population. When invoked, it should return
a pointer to a new population of the same type as the current population. It is not
necessary for the new population to be fully populated with individuals.

MeasurePerformance is fully defined by class Population. It cycles through
the population applying each individual’s CalcPerformance function. During this
process, the population maintains its informational variables
AveragePerformance, Bestindividual and Worstindividual. A derived population
may redefine this function as it sees fit. However, it is probably not necessary to
do so.

There are two variables, CurrentPerformance and EvaluationMade which
contain information regarding the status of the evaluation process during the
execution of MeasurePerformance. CurrentPerformance is maintained with the
value of the performance of the individual most recently evaluated.
EvaluationMade is a flag states if the current individual being measured was
applied to the objective function. If an individual survived crossover and mutation
with no changes, then it does not need to be reapplied to the objective function.

The old value of performance is still up to date. These two variables are created

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

as a convenience for the probes Online and Offline that measure the on going
performance of the algorithm.

The Print routine is also fully defined by the class Population. It simply
cycles through the list of individuals invoking the Print function of each. In
addition, it reports on the current value of AveragePerformance and the best and

worst individual pointers.

4.2.2.1. GenesisPopulation

GenesisPopulation is a class derived from the base class Population. Itis
designed to conform with the performance of the GENESIS program. The
functionality of populations in GENESIS have been transiated into the framework
of the base class Population.

class GenesisPopulation : public Population
{

static double *WorstWindow;

static double Worst;

static int WorstWindowSize;

static int WorstWindowPosition;

static double GapSize;

static int #Sample;

static int *Sample2;

static Iterator* GenesisPopulationIT[4]:

static int UseElitist;

static double CrossoverRate;

static int LastCrossoverIndex;

static Usage;

protected:

void Gap (void);

void GenerateNewWorst (void);

void ClearWorstWindow (void);

double AdjustWorstPerformance (double Adjustee);
inline int GetLastCrossoverIndex (void);

inline double GetCrossoverRate (void);
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public:

virtual int AdvanceOneGeneration(Population*);
virtual Population* Clone (void);
virtual void Crossover (void);

virtual void Mutate (void);
virtual void Select (Populationx);

Figure}t'l. 13

Many of the variables that were implemented as global variables in
GENESIS have been placed as class variables in this class. This technique holds
these variables in closer association to the code that uses them. Encapsulation in
this manner, is an important feature of object oriented languages. Rather than
discussing each variable individually, the discussion will be included with the
routines that use the variables.

The AdvanceOneGeneration routine orchestrates the actions of a
population evolving from one generation to the next. It is given a pointer to the
population from the previous generation. It invokes the Select routine with that
population. This creates the list of individuals that will become the new
generation. The list of individuals is then associated with the population from
which the AdvanceOneGeneration routine was invoked. it then executes the
Mutate and Crossover routines on the list of new individuals. [f the elitist strategy
is enabled and if the best member from the parent (previous) generation is not
present in the new list of individuals, it is added. This imitates the elitist strategy
found in GENESIS. AdvanceOneGeneration then evaluates its list of individuals by
invoking the MeasurePerformance routine.

The Select routine from GENESIS uses an technique called the Baker

Selection Algorithm. Space in the new population is allocated to individuals based
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on their relative ranking. A given individual may be represented in the subsequent

generation several times if its performance is sufficiently above that of its peers.
The new population is assembled in the Select routine by first filling an array called
Sample with the indices of individuals within the parent population. For example, if
the Select routine determines that the first individual from the parent population is
to be represented four times in the new generation, the index 1 will be placed in
the first four positions of the Sample array. If the second individual from the parent
population were to have a poor performance relative to the other members of the
population, it might not survive into the next generation. The number 2 would not
be placed in the Sample array. Generally if the normalized fitness of an individual
is twice that of another, it will be allocated twice the space in the new generation.
Once the Sample array is filled, it is shuffled and used to copy individuals from the
parent generation into the new population.

At the discretion of the user, a generation gap may come into play during
the selection process. The generation gap specifies a minimum percentage of a
population that is to survive into the succeeding generation without regard to the
Baker Selection algorithm. Immediately after the array Sample is filled by the
Select routine, the Gap routine modifies the array. It overwrites elements of the
Sampie array with indices selected randomly from the parent population using the
array Sample2 as an intermediate array. It replaces a percentage of the Sample
array specified by one minus the variable GapSize. GapSize is controlled by an
iterator. If GapSize were to be specified as .6, at least forty percent of the parent
population would survive into the new generation.

The Crossover routine applies the Crossover operation to pairs of

individuals in the population. CrossoverRate, controlled by an iterator, specifies
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the percentage of the population that is subjected to this process. If the

CrossoverRate were specified to be 0.6 and there were one hundred individuals in
the population, the first sixty individuals would be crossed in pairs. The variable,
LastCrossoverindex, is calculated to be the index of the last individual to be
subjected to crossover. In the above example, the value in LastCrossoverindex
would be sixty. This variable is calculated by the constructor of the
GenesisPopulation. It simplifies the caiculation in the loop that applies the
crossover to the individuals.

The Clone routine is a straight forward implementation of the requirements
of the base class Population. Clone simply creates and returns a new instance of
the class GenesisPopulation.

The Mutation routine is also very straightforward. It cycles through the list

of individuals, applying the Mutation operation on each.

4.2.3. Genetic

The class Genetic is the supervisor for controlling the process of the
genetic algorithm. It is responsible for the creation and disposal of populations. It
orchestrates experiments by tracking each generation. it makes the decisions
that result in the termination of experiments. Experiments are clustered in
experiment sets. The Genetic class directs the advancement from one experiment
to the next in an experiment set.

class Genetic

{

long InitialSeed;

int ExperimentsPerSetting;
int MaxGenerations;

int MaxTrials;
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int MaxSpin;

int GenerationNumber;
int Trials;

Individual* Prototypelndividual;
Population* PrototypePopulation;

Population* Parents;
Population* Children;

public:
void GeneticAlgorithm (void);

void RunExperimentSet (void);
void Evolve (void);

}
Figure4.14

A single experiment is executed by the Genetic class with its Evolve routine.
This routine sets up the initial population and then guides it through the process of
a genetic algorithm. During the process, the Genetic class monitors the
population while waiting to detect the experiment stopping criteria. As soon as it
senses the stopping criteria, the Genetic class closes down the experiment in an
orderly manner.

The Genetic class uses three techniques for stopping an experiment.
These are maximum number of generations, maximum number of trials and
maximum spin.

The MaxGenerations variable is controlled by an iterator. The Genetic
class never lets an experiment continue past this ceiling on the number of
generations.

A trial is defined as the application of the objective function on an individual

that has not been tested in the past. The Genetic class counts the number of trials
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in each generation. if the number of trials exceeds the MaxTrials threshold, the
experiment is terminated. The MaxTrials variable is controlled by an iterator.

MaxSpin is related to both the number of generations and the number of
trials. A spin is counted if a generation passes with no trials occurring. The
MaxSpin variable puts an upper limit on the number of generations that can pass
without a trial. MaxSpin is also controlled by an iterator.

Before the beginning of an experiment, a sample population is created.
This sample population is called the PrototypePopulation. This population is never
used in the actual processing of the genetic algorithm. It purpose is to spawn new
populations of its type at the beginning of each experiment. in the OBJGEN
program, the PrototypePopulation will be a GenesisPopulation. However, using
the PrototypePopulation scheme, this does not always have to be true. If a new
type of Population is derived, it can be passed in as the prototype. Genetic class
will then create populations of the new type without any recoding necessary.

Parents = PrototypePopulation->Clone();

Parents->Populate (PrototypeIndividual):
Parents->Initialize ();

SaveRandomSeed ();

Children = PrototypePopulation->Clone();

Children->Populate (PrototypeIndividual);
Trials = Parents->MeasurePerformance();

Figure4.15

A similar scheme is in place for Individuals. The Genetic class is given a
Prototypelndividual. This individual is never processed through the algorithm, it is
simply cloned to fill out populations at the beginning of an experiment. Again, this
allows new variants of Individuals to be created and used with no recoding of the

Genetic class or Population needed.
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The first responsibility of the Genetic class in its Evolve routine is the

creation of the population. It actually uses two populations which alternate roles
as the previous (parent) population and succeeding (children) population. The
Population pointers, Parent and Children, each refer to one of the two populations.
The Parent population is created first by cloning the PrototypePopulation. The
Parent population is then filled with individuals by cloning the Prototypelindividual.
The newly created individuals are initialized to a random state by the Initialize
routine.

The second population is created by cloning the PrototypePopulation again
and then assigning the result to the Children pointer. The new population is then
filled with individuals of the appropriate type by cloning the Prototypeindividual.
These new individuals are not initialized to a random state.

The final step in the initialization process is to evaluate the performance of
the first population. This is done by invoking the MeasurePerformance function
on the Parent population pointer. It returns the number of trials in the first
generation; invariably this is equal to the size of the population. The population is
then ready to begin the process of evolution.

for (GenerationNumber = 1; (GenerationNumber < MaxGenerations) &&
{(Trials < MaxTrials)

&& (GenerationSpin < MaxSpin);
GenerationNumber++)

{
PreviousNumberOfTrials = Trials;
Trials += Children->AdvanceOneGeneration (Parents):
T = Parents;

Parents = Children;
Children = T;
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if (Trials == PreviousNumberOfTrials)
GenerationSpint+;
else
GenerationSpin = 0;
}

Figure4.16

The loop following the initialization phase of the Evolve routine is the main
processor of the genetic algorithm. With each iteration of the loop, another
generation passes. The loop is controlled by the three stopping criteria discussed
above.

The AdvanceOneGeneration routine applied to the Children population
causes individuals to be selected from the Parents population. The selected
individuals are copied into the Children population. The processes of advancing
one generation (Mutation, Crossover, Elitist and MeasurePerformance in the case
of a GenesisPopulation) then act on the Children population.

The next step swaps the population pointers. The newly completed
Children population becomes the new Parent population. The old individuals in
the old parent population will be superseded in the next invocation of
AdvanceOneGeneration. In this manner, the two populations trade roles in being
the parent and children.

Before the next iteration of the loop, the stopping criteria are checked. If
one of the three is deemed to be true, the loop is terminated. The two populations

are then deallocated and the Evolve routine is completed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78
void Genetic::RunExperimentSet (void)

{

for (int i = 0; i < ExperimentsPerSetting; it++)

Evolve ();
)
}
Figure4.17

The Evolve routine represents only one experiment. Multiple invocations of
the Evolve routine constitute an experiment set. The RunExperimentSet routine
does exactly that. 1t is a simple loop that called the Evolve routine muiltiple times.
The ExperimentsPerSetting variable puts an upper limit on the number of
experiments that are run. ExperimentsPerSetting is controlied by an iterator.

void Genetic::GeneticAlgorithm (void)

InitialSeed = ((LongIntIterator*) GeneticIT[8])->GetValue();

do

{
MaxGenerations = ((IntIterator*) GeneticIT[0])->GetValue();
NaxTrials = ({IntIterator*) GemeticIT[1])->GetValue():
MaxSpin = ((IntIterator*) GeneticIT[2])->GetValue();
ExperimentsPerSetting = ({IntIterator*) GeneticIT[3])->GetValue();

RunExperimentSet ();
}
vhile (IS->Step()):

}
Figure4.18

The GeneticAlgorithm routine of class Genetic controls all experiment sets.
It also is responsible for controlling the iteratorSet which in turn controls all of the
variables that have associated iterators.

The main loop of this routine runs experiment sets. It begins by retrieving

values for its own variables from the iterators that control them. |t then invokes the
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RunExperimentSet routine. This will run a number of experiments depending on
the value of ExperimentsPerSetting. All variables that have associated iterators
will retain their values across an entire experiment set.

The loop is controlled by the lteratorSet IS. At the end of the loop, the Step
function is called for the iteratorSet. This causes the iterators to advance to their
next values. If all the iterators have exhausted their ranges of values, the Step
routine returns a zero and the loop terminates. If the iterators have not exhausted
their ranges, the loop continues. The variables controlled by iterators will pick up

their new values and an experiment set will be run with those new values.

4.2.4. Probes

Probes are used extensively in the genetic algorithm and are responsible
for a great deal of the program’s power. The probes defined in the current version
of the program span from very simple "variable dump” probes to complex probes

that monitor other probes.

4.24.1. Probel.ists

Probel.ists are distributed in the Population, GenesisPopulation and
Genetic classes in the program. This allows probes to monitor the progress of the
genetic algorithm at most of the critical processing areas.

In the Genetic class there are five ProbeLists. They are associated with the
following locations: before a set of experiments; after a set of experiments; before
an experiment; after an experiment; and after the initial generation of an
experiment is created. Assignment of a probe to one of these locations is done in

a straight forward manner; a constant used to identify the location. The routine
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AssignProbe is used to associate the measurement/function pair to the
appropriate location.

Since GenesisPopulation is a derived class of Population, they share a set
of Probel.ists and the assignment function. The ProbeLists are physically within
the Population class, but only two of them are associated with code locations in
the methods of class Population. The others are left for allocation by derived
classes. GenesisPopulation uses five of the ProbeLists.

in Population, the two Probel.ists are used in the MeasurePerformance
routine. One resides inside the inner most loop and is traversed after each
Individual is measured for performance. The other is traversed after all of the
measuring of Individuals is complete.

In GenesisPopulation, the lists are traversed after each stage of
transforming a population from generation to the next. These are located in order
at: after selection, after mutation, after crossover, after elitist and after the
population is evaluated. This provides a good covering of possible locations for
probes to work.

Figure 4. 19 represents all of the existing ProbelL.ists throughout the
OBJGEN program. The table shows the location of each list by class name and
function name. The flag is the location code that is used when assigning a probe

to a location. The flag also provides a terse description of the location.
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Class Function Flag

Genetic RunExperimentSet GENETIC PRE EXPERIMENT SET

Genetic RunExperimentSet GENETIC POST EXPERIMENT SET

Genetic Evolve GENETIC PRE EXPERIMENT

Genetic Evolve GENETIC POST FIRST GENERATION

Genetic Evolve GENETIC POST EXPERIMENT
Population MeasurePerformance |POPULATION IN MEASUREPERFORMANCE
Population MeasurePerformance POPULATION_POST_MEASURE-

PERFORMANCE

GenesisPopulation | AdvanceOneGeneration]| GENESIS POPULATION POST SELECT
GenesisPopulation | AdvanceOneGeneration| GENESIS POPULATION POST MUTATE

GenesisPopulation | AdvanceOneGeneration GENESIS POST CROSSOVER
GenesisPopulation | AdvanceOneGeneration GENESIS POST ELITIST
GenesisPopulation | AdvanceOneGeneration| GENESIS_POPULATION_POST_MEASURE-
PERFORMANCE
Figure4.19
4.2.4.2. Population Dump Probe

The population Dump Probe is very simple probe. It collects no
information. It periodically tells the population that it monitors to print itself. This is
equivalent to the dump interval found in Genesis. The user selects the interval in
units of generations and a destination for the report. The effect is to see each
individual in a population every n (specified by the user) generations during the
run of the program.

Dump defines the first (initialization) stage of the reporting stages and the
last stage (reporting). It does not collect or manipulate any information, therefore
it can ignore those stages.

The initialization stage simply resets its internal counter that tracks how
many generations have passed. The Dump probe and its Reset function are
assigned to the "before experiment" ProbelList of the Genetic class. This means
that the probes internal counter will be reset at the beginning of each new

experiment.
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The report stage is assigned to the "after measurement" ProbeL.ist of the
Population class. After a population is evaluated, this probe will be invoked with
its Report function. Since the function will receive a pointer to the Population as a

parameter, the probe simply invokes the Population’s print routine.

4.2.4.3. BestPopulation Probe

The BestPopulation class draws its lineage from both the Probe base class
and the Population class. The objective of this class is to monitor each generation
in an experiment and collect copies of the best individuals found. It gets the ability
to hold a group of individuals from the class Population. The probe uses the
methods from that class to manage its population of individuals. The user
specifies how large the population is to be. As a probe, this class has the
capability of browsing through a population to find the best individuals.

The first stage of reporting is implemented in BestPopulation’s Reset
function. Assigned to the "before experiment" ProbeL.ist of the Genetic class, this
function initializes the best population to the current type of individual. It
accomplishes this through the use of the Prototypeindividual. It gains access to
the Prototypelindividual through the pointer to the Genetic class instance that it
receives as a parameter.

The Collect function is assigned to the "after measurement" Probel.ist of the
class Population. After all the individuals in a population have been evaluated, this
probe compares the best individuals to the individuals it has already collected. If
the best in the newly evaluated population is better than the worst of the collected
population, the probe takes action. It copies the best individual it found over the

worst it had collected previously.
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The Report function is assigned to the "after experiment" ProbeList of the
Genetic class. When an experiment ends, the Report function invokes the Print
function from the probe’s Population heritage. The effect is to have a list of the

best individuals from an experiment printed at the end of each experiment.

4.2.44. AverageMeasurements Probe

The AverageMeasurements probe is an extendable probe. It maintains a
list of other probes for which it calculates averages. In addition to inheriting the
properties of a probe, it also inherits the capabilities of a linked list. This enables it
to manage its list in a manner synchronized with its duties as probe.

The list of this probe consists of nodes called Averagers. This class inherits
from the LinkNode class. The class Averager consists of the variables necessary
for the calculation of an average and a standard deviation: a sum, a sum of the
squares and counter of the number of elements to be averaged. in addition there
is a pointer to a probe from which the data will be collected. The Collect routine of
this class causes the Averager to get the current value of the probe it is
monitoring. It uses the probe’s GetProbeValue function. It takes the value it
receives from the probe and adds it to its sum variable. it also tracks the sum of
the squares of the values it receives. When requested through calling its
GetAverage or GetStdDev it will make the appropriate calculations and return a
value.

The AverageMeasurements probe will create and add to its list an Averager
when it is given a pointer to a probe. It is, of course, important to give
AverageMeasurements a probe of suitable type. A suitable type is a probe that

collects floating point measurements.
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The Reset function of AverageMeasurements traverses its list of Averagers
invoking their Reset functions. The effect is to cause all Averagers to clear their
sums and element counters. The Reset function is assigned to the “before
experiment set" ProbeList of the Genetic class.

The Collect function traverses the list and induces the Averagers to poll
their respective probes. Since the Collect function is assigned to the "after
experiment” ProbelList, the MeasurementAverager class collects only the ending
value of each probe. The consequence is to calculate an average of probe values
over a set of experiments.

The Report function is assigned to the "after experiment set" ProbeList.
When an set of experiments is completed, the MeasurementAverager reports the
average and standard deviation of the probes it monitored. By traversing its list
twice, printing the names of the probes it monitored in the first pass and printing
the averages in the second pass, the MeasurementAverager prints a formatted

report.

4.2.4.5. Online Probe

The Online evaluation of performance from the original Genesis program is
implemented as a probe in OBJGEN. The Online measure of performance
measures on going performance by generating an average of the performance of
all new individuals. A new individual is defined as an individual that has been
applied to the objective function. This the same concept as a trial. Whenever an
individual is applied to the objective function a trial occurs. Online performance

calculates an average of the performances from each trial.
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Online’s Reset function is assigned to the beginning of each experiment.
The running total of performances as well as the counter of the number of trials
are set to zero by this function.

The Collect function is assigned a location within the code of the
MeasurePerformance routine of the class Population. MeasurePerformance
cycles through the list of Individuals in the population and applies the objective
function. Only individuals that are modified by Mutation or Crossover are
subjected to the objective function. The ProbeL.ist that Online’s Collect function is
assigned to is within the loop that cycles through the individuals. After each
iteration of the loop, the probe list is traversed. If a trial has occurred, the Collect
function will add the performance of the current individual to its running total and
increment its trial counter.

Online’s Report function is not assigned to a probe list. Online is assigned
to the AverageMeasurements probe. The AverageMeasurements probe tracks
the value of Online through the use of Online’s GetProbeValue function. In this
manner, Online abdicates its reporting responsibility and gives it to the

AverageMeasurement probe.

4.2.46. Offline Probe

The Offline probe works almost identically to the Online probe. The
intention of this probe is to measure convergence by generating an average of the
best individuals. Whenever a trial occurs, the probe adds the best individual's
performance to its running total and increments its trial counter.

For example, the sequence of trials might produce individuals with the

following performances: 3.1, 2.8, 6.2, 5.4, 1.8 and 2.3. Since a better
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performance is considered to be a lower number, the offtine measure will add the
following sequence to its running total: 3.1, 2.8, 2.8, 2.8, 1.8 and 1.8. Ateach
step, only the best performance seen so far will be added to the running total.

The distribution of Offline’s functions are the same as Online’s. The Reset
function is placed on a probe list at the beginning of each experiment. The Collect
function is on the probe list in the loop of the MeasurePerformance routine of the
class Population. The Report function is not assigned. AverageMeasurements

takes over the reporting function.

4.2.5. iterators

lterators are used extensively in the OBJGEN program. They provide the
user with control over the parameters for the genetic algorithm. All incoming
communication from the user that is intended to direct the controlling parameters
of the genetic algorithm is fielded by iterators. Because lterators provide a simple
and consistent interface for the user, they are used even where muitiple values for
parameters are not allowed.

in the family of classes that comprise individuals, there are two
constructors. The first constructor is used to create the prototype individual. This
individual is created at the beginning of the program and is used there after to
spawn all other individuals. These first constructors allocate iterators to control
the variable parameters of individuals. Examples include the objective function
number from the base class, and the number of bits per parameter from the
derived class Binaryindividual.

When an individual is created, all of the constructors traced back to the

base class are executed. If a Binarylindividual is created, the constructor for class
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Individual is executed first. When that constructor completes, the next constructor
down the inheritance chain begins. This means that the RealParameterindividual
constructor is next. Finally the Binarylndividual constructor executes.

This implies that iterators allocated by the base class constructor are
created first. Therefore, the user is prompted for values for these iterators first.
The iterators for RealParameterindividual are next, followed immediately by the
iterators for Binaryindividual. This ordering is also important for determining the
nesting levels of the parameters. The first iterator allocated is the outermost in
terms of nesting.

Once the prototype individual has been created, the first of the two
constructors for each class is retired. They will not be used again during the
execution of the program. Later, when filling out populations with individuals, the
second constructors are used. Rather than allocating new iterators, these
constructors use the iterators that already exist. The constructors query the
iterators for the values needed to create individuals. For example, the second
constructor for the class Binaryindividual needs to allocate memory for the binary
string that is to be the genetic material for the individual. It queries the iterator that
was allocated by the first constructor for the bits per parameter value. The iterator
returns the current value for bits per parameter and the second constructor then
uses it in a calculation to determine how much memory to allocate.

The family of classes for populations follows the same scheme of having
two constructors. The first constructor allocates iterators and the second
constructor uses them. Examples of parameters controlled by iterators in

populations include: the population size and the crossover rate.
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The class Genetic allocates several iterators in its constructor. It does not

have a second constructor. The iterators are queried for their values during the
processing of other functions of the class.

Genetic controls has control of the program’s only IteratorSet. The nesting
of loops defined by iterator set is executed in the GeneticAlgorithm function of this
class. See the code fragment on page 78 for a listing of GeneticAlgorithm.

The following table outlines the use of iterators within the code of OBJGEN.
The first column indicates the classes that use iterators. The second column
reveals the functions within the classes that allocate iterators. The third column
indicates the function from which the iterators’ GetValue function is called. The
name of the parameters controlled by iterators is in the fourth column. The type of
the parameter is given in the fifth column. Finally, the sixth column indicates if the

user is allowed to supply muitiple values for the parameter.
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Class Allocating Used in Parameter Type |Multiple
Function Function Controlled Values
Individual Constructor #1] Constructor #2 FunctionNumber int yes
RealParameter- [Constructor #1| Constructor #2 MutationRate double yes
Individual
Reallndividual0 |Constructor #1] Constructor #2 MutationSize double yes
Reallndividual1 [Constructor #1| Constructor #2 VirtualBitsPer- int yes
Parameter
Binaryindividual |Constructor #1| Constructor #2 NumberOfBits int yes
Binarylndividual [Constructor #1| Constructor #2 UseGraycode string yes
Population  [Constructor #1| Constructor #2 PopulationSize int yes
Genesis- [Constructor #1| Constructor #2 CrossoverRate double yes
Population
Genesis- [Constructor #1] Constructor #2 | WorstWindowSize int yes
Population
Genesis- Constructor #1| Constructor #2 GenerationGap double yes
Population
Genesis- Constructor #1| Constructor #2 UseElitist string yes
Population
Genetic Constructor |GeneticAlgorithm| MaxGenerations int yes
Genetic Constructor |GeneticAlgorithm MaxTrials int yes
Genetic Constructor |GeneticAlgorithm MaxSpin int yes
Genetic Constructor _|GeneticAlgorithm InitialSeed long no
Reallndividual- | Constructor Constructor Individual Type* int no
Manager
BestPopulation | Constructor Constructor Output File Name* | string no
PopulationDump | Constructor Constructor Dumplinterval int no
PopulationDump | Constructor Constructor Output File Name* | string no
Average- Constructor Constructor Output File Name* | string no
Measurements

* The parameters controlled by these iterators are used only once. There is no variable name
with greater than tocal scope associated with these iterators.

Figure4.20

4.2.6. Miscellaneous

There are several classes that serve in auxiliary roles in OBJGEN. These

classes handle allocation chores for resources needed by the genetic algorithm.

Included in the auxiliary classes are: FunctionDispatcher, OutputFileManager and

Individual Manager.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90
4.2.6.1. FunctionDispatcher

Function dispatchers provide a method of handling a group of objective
functions. When an individual needs an objective function, it can request one from
the function dispatcher. Because of the huge variety of functions that might be
needed by the various types of individuals, the class FunctionDispatcher defines
very little. Derivatives of this class must be defined to handle all but the most basic
of functions. In fact, FunctionDispatcher is so general in scope, it can handie only
the names of functions. It cannot even handle the functions by itself.

This limitation is due to fact that the language C + + requires that pointers
to functions be typed by their signature: the return type and parameter list. An
individual designed for a combinatorial problem needs an entirely different sort of
objective function than an individual designed for a parametric equation. These
functions have different signatures and therefore require a different type of
function pointer. Requiring derived types to define a pointer to the correct type of
function is simpler than using a generic pointer type in the base class. The generic
pointer would require casting to the correct type whenever the pointer was used.

class DoubleFunctionDispatcher : public FunctionDispatcher

{
DoubleFunctionPointer *Functions;

int *NumberOfParameters;
double **Ranges;
double **Ninimums;

public:
DoubleFunctionDispatcher (int);

DoubleFunctionPointer GetFunction (int n) { return Punctions[n); }
void SetFunctions (DoubleFunctionPointer* fp) { Functions = fp; }

int GetNumberOfParameters (int n) { return NumberOfParawetersin}; }
void SetNumberOfParameters (int *np) { NumberOfParameters = np; }
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dogble* GetRanges (int n) { return Rangesin]; )
vold SetRanges (double** r) { Ranges = r; }

double* GetNinimums {int n) { return Minimumsinj; }
void SetMinimums(double** w) { Ninimums = m; }

I
Figure4.21

The DoubleFunctionDispatcher is designed for managing a list of functions
with real parameters. Initialization consists of providing an array of pointers to
functions. In addition, DoubleFunctionDispatcher is capable of dispensing
information about the functions it contains. This information consists of: the
number of parameters required by the function, and the bounds on each
parameter in the form of a minimum value and a range. Because
DoubleFunctionDispatcher inherits from FunctionDispatcher, it is also able to
return the name of the function.

char Function0_Name[] = "Function0";

const int Function0 NumberOfParameters = 2;
double FunctzonO_Ranges[] { 10.0, 10.0};
double Function0 Minimums{] = { -5.0, -5.0 };
double Function0 (double* x)

return x[0] * x[1}];
}

char Functionl Name[] = "Functionl";
const int Functionl NumberOfParameters = 4;
double Functionl Ranges[] { 10.0, 10.0, 10.0, 10.0};
double Functionl Minimums{] = { 0.0, 0.0, -10.0, -10.0 };
double Functionl (double* x)
{
return x[0] * x[2] + x[1] * x[3];
}

DoubleFunctionPointer Functions[] = { Function0, Functionl };

char *FunctionNames[] = { Function0O_Name, Functionl Name }:

int NumberOf FunctionParamters[] = { Function0_NumberOfParameters,
Punctionl NumberOfParameters }:

{ Punction0 Ranges, Functionl Ranges };

= { Function0 Minimums, Function0_Ninimums }:

double *FunctionRanges[] =
double *PunctionNinimums|]
Figure4.22
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In this example, two functions and all of their auxiliary information are
defined. The information is then collected into arrays. The arrays are accessed in
parallel. The DoubleFunctionDispatcher is initialized using a series of functions
that notify the manager of the existence of the arrays. These functions are:
SetFunctions, SetNumberOfParameters, SetRanges and SetMinimums. The
function names are assign to the DoubleFunctionDispatcher by the inherited
routine SetNames.

Once the arrays have been assigned to the DoubleFunctionDispatcher, an
individual may retrieve any element of one the arrays through the use of a function
and an index. For example, if an individual wants to use the second function, it
can get a pointer to the function by invoking the GetFunction method on the
DoubleFunctionDispatcher. The individual must pass the number one with its
request for the objective function. The functions GetNumberOfParameters,
GetName, GetRanges and GetMinimums allow the individual to retrieve the

auxiliary information from the DoubleFunctionDispatcher.

4.2.6.2. FileManager

The FileManager class was created to eliminate conflicts between Probes
that need to write to the same output file. Every probe has the ability to write its
report to an output file. It cannot be guaranteed that a probe will be constructed to
cooperate with other probes in opening and closing files. Data would be lost if two
or more probes open the same file independently and both attempt to write to the
file.

One method of preventing conflicts is to require that a probe open its

output file immediately before writing to it then requiring the probe to close the file
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immediately afterward. Since no parallel processing is available in this program,
this technique would insure that no two probes have the same file open at the
same time. Unfortunately, if a probe is writing its output often, this technique
suffers from excessive overhead. Opening and closing files are not quick
processes.

The FileManager solves the problem very easily. Rather than opening files
themselves, probes request files to be opened by the FileManager. The
FileManager will open the file and return a file pointer for the probe to use. If the
file has been opened previously by another probe, the FileManager will return the
file pointer that has already been created. This insures that there will be only one
file pointer per output file. Two or more probes may have the same pointer, but
this is not a conflict. Probes may write to their output file completely unaware that
other probes are using the same file.

class QutputFileNanager

{
char *FileNames[MAX OUTPUT FILES];

FILE *FilePointers[MAX_OUTPUT_FILES];
int Index;

public:
OutputFileManager (void);
~OutputFileNanager (void);
FILE* OpenFile (char*);
}:
Figure4.23

The output file manager maintains two arrays. The first array is a list of the
names of the open files. The second is a parallel array of the pointers that are
associated with the file names. The routine OpenFile is given a name of a file to
open. It first searches the list of names for the name it was given. If it finds the

name, it returns the associated file pointer from the pointer list. If the name was
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not found, it copies the name into the first free space in the name list and then
opens the file. When the destructor is called for the OutputFileManager, all of the
output files are closed. The probes that use the file manager do not have be

concerned about closing the files.

4.2.6.3. RealindividualManager

The sole purpose of the IndividualManager is to allow the user of OBJGEN
to select the prototype individual from several types of individuals. The
constructor simply lists the types available and allocates an iterator to prompt the
user. The user selects the number corresponding to the individual type desired
for the run of OBJGEN. The user is not allowed to type more than one response.
The constructor then creates an individual based on the user’s selection

The function GetPrototype returns a pointer to the individual it created.
OBJGEN then continues, using IndividualManager’s individual as the prototype

individual.

4.2.7. Mainline Program

OBJGEN’s mainline program does little more than declare instances of the
major classes, provide links between them and then invoke their actions. it does
not have to mange any output or work in any supervisory capacity.

The code fragment of figure 4.24, demonstrates how the IteratorSet is
constructed. If an input file was provided on the command line, itis opened. If no
input file was specified, the standard input (terminal) is selected for input. The

IteratorSet requires only a source file for initialization.
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FILE *Source = (argc > 1) ? fopen (argv[1l], "r") : stdin;

if (!Source)

{
printf ("Cannot find $s\n", arqv[1]);
exit (-1);

}

IteratorSet IS(Source);
Figure4.24

The function dispatcher is set up by merely declaring its existence and size.
The functions and information about them are assigned to the dispatcher in
groups.
DoubleFunctionDispatcher DFD(11);
DFD.SetFunctionNames (FunctionNames);
DFD.SetFunctions (Functions);
DFD.SetNumberOf Parameters (NumberOfFunctionParamters);

DFD.SetRanges (FunctionRanges);
DFD.SetMinimums (FunctionMinimums);

Figure4.25

The OBJGEN program is set up to work with three types of Individuals:
Reallndividual0, Reallndividual1 and Binaryindividuals. The Prototypelndividual
must be set to be one of these types. The RealindividualiManager allows any of
the types to be selected by the user. In this code fragment, the
ReallndividualManager is declared and invoked. The GetPrototype routine
queries the user for the type of individual desired and then returns an individual of
the user’s choice.

RealIndividualManager RIN (&IS, &DFD, Source);
Individual* Ind = RIM.GetPrototype():

Figure4.26
The next step declares the PrototypePopulation that will be used. This

program is dedicated to using a GenesisPopulation. Immediately afterward, the
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instance of the Genetic class is declared and given pointers to the lteratorSet and
the population and individual prototypes.

GenesisPopulation GP (&IS);
Genetic GA (&IS, &GP, Ind);

Figure 4.27

The next step is to create the Probes that will be used in the program. Each
one is declared and then its functions are assigned to locations within the code of
the rest of the program.

BestPopulation BP(&IS);

BP.Populate (Ind);

GA.AssignProbe (&BP, PROBE RESET, GENETIC_PRE_EXPERINENT):
GA.AssignProbe (&BP, PROBE | _REPORT, GENETIC _POST_EXPERINENT);
GP.AssignProbe (&BP, PROBE__COLLECT POPULATION_POST__]{EASUREPERFORHANCE):

PopulationDump PD(&IS);
GA.AssignProbe (&PD, PROBE_RESET, GENETIC PRE_EXPERIMENT);
GP.AssignProbe (&PD, PROBE | _REPORT, POPULATION _POST MEASUREPERFORMANCE);

OffLineNeasurement OFF(&BP);
GA.AssignProbe (&OFF, PROBE_RESEY, GENETIC PRE_EXPERTMENT);
GP.AssignProbe (&OFF, PROBE COLLECT POPULATION IN_MEASUREPERFORMANCE) ;

OnLineMeasurement ON;
GA.AssignProbe (&ON, PROBE_RESET, GENETIC_PRE_EXPERIHENT);
GP.AssignProbe (&ON, PROBE_COLLECT, POPULATION IN MEASUREPERFORMANCE);

AverageMeasurements AN (&IS);

AM.AddMeasurement (&BP);

AN.AddMeasurement (&OFF);

AN.AddNeasurement (&ON);

GA.AssignProbe (&AM, PROBE_RESET, GENETIC_PRE_EXPERIMENT SET);
GA.AssignProbe (&AN, PROBE COLLECT, GENETIC POST ' EXPERINENT);
GA.AssignProbe (&AM, PROBE " REPORT, GENETIC | POST EXPERINENT_SET);

Figure 4.28
The last step is to invoke the genetic algorithm. The routine
GeneticAlgorithm starts the experiments, executes them, and then shuts them

down. When this routine is complete, the program is finished.
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GA.GeneticAlgorithm ();

Figure 4.29

4.3. Comparing BVGA and RVGA

The classes derived from Individual, Binaryindividual and Reallndividuali,
are designed to give similar results while exploiting different techniques.
Binarylndividuals imitate the GENESIS program using the same methods
employed in that program. The class Reallndividual1 simulates the class
Binarylndividual using a different data representation (see page 58).
Reallndividual 1, using only a floating point vector genetic material representation,
should deliver results very similar to those given by Binarylindividual using a bit
string genetic material representation.

The OBJGEN program can be used to run experiments with either type of
individual. The same objective functions can also be applied to either type. Since
OBJGEN generates reports that are independent of the type of individual it uses, it
is set up ideally for the comparison of muiltiple types of Individuals.

The experiments were set up with the first five of the classic deJong
problems (F 1 through F5) [5]. The sixth problem (F6) is deJong’s problem
number five (Shekel’s Foxholes) rotated thirty degrees in the plane [4].

Figure 4.30 shows the input file used to run the program for
Binaryindividuals on five of the six problems. The second line shows the input that
informed the program to run the functions numbered 1, 2, 3, 5, and 6. Each of
these functions used ail the combinations of the other parameters. Function
number 4 was excluded from this list to allow for a different number of bits per

parameter than the other functions. As the figure shows, the use of graycode and
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the crossover rate were the only two other settings that were given multiple

values.
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Figure 4.30

;Individual Type

sFunction Number +

sMutation Rate +

iBits Per Parameter +

:Use Graycode +

;Population Size +

;Crossover Rate +

sWorst Window Size +
;Generation Gap +

:Use Elitist +

;Maximum Generations +

sMaximum Trials +

sMaximum Spin +

sExperiments Per Setting +
;Initial Seed

sPopulation Size +

:Best Population Report Destination
sPopulation Dump Interval
sPopulation Dump Destination
sNeasurement Report Destination

A file, very similar to the one in figure 4.30, was constructed for the run of

the program with Reallndividual1. Of course, the file for Realindividual1 did not

have an option for graycode. All the other parameters were run with the same

settings found in figure 4.30.

The Offline measure of performance (see page 85) was used as the metric

for comparison. In this measure, a lower value corresponds to "better" results.

The first experiment ran with no crossover. This isolated the mutation

operation and provided the opportunity to examine the effectiveness of the

Realindividual1 mutation technique. In all cases, the Reallndividual 1performed at

least as well as the Binarylndividual tests. With the exception of F5 and F6,
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Realindividual1 performed similarly with Binarylndividual. The chart in figure 4.31
shows the Offline performance data.

Offline Perdormance with No Crossover

B Real

L] Binary

Binary Graycode

-2 F1— F2

Figure4.31

Examining the data for Offline performance with crossover in figure 4.32
reveals a very similar performance profile. InF1 through F4, the performance of
the Reallndividuali is very close to that of the no graycode experiment for
Binarylndividual. However, the performance recorded in F5 and F6 is again very
different. This is evidence that for the first four deJong test problems,
Reallndividual1 is successful in simulating a binary genetic algorithm.

The lack of success with functions F5 and F6 is interesting. Reallndividual
out performs both binary and graycode versions of Binaryindividual. This is
possibly because of the continuous nature of the mutation defined within

Reallndividual1. Further research in the future may explain the discrepancy.
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Oftline Performance

B Real

(] Binary

Binary Graycode

Figure4.32

4.4. Adapting to Other Problem Types

The framework on which the OBJGEN program is based, is flexible enough
to allow many different types of objective functions to be optimized. OBJGEN
focuses on parametric objective functions with real parameters. This program
does not need extensive modification to enable it to optimize other types of
problems.

The first step in this process is to define the representation of the genetic
material and then create an individual type that uses it. Creating a new type of
individual will involve deriving a new class from the base class individual. The
representation of the genetic material will have to be coded into the derived class.
The definitions of mutation, crossover and the other functions that individual

leaves undefined will also have to be supplied.
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The second step is to create a function dispatcher for functions that accept

the new genetic material representation as input and return a floating point
number as a performance measure. This is done by deriving a new class from the
class FunctionDispatcher. This is a simple operation because the function
dispatcher does no processing of its own. Itis just a repository for information
about functions. It's only responsibility is dispensing the information on request.

The final step requires a simple modification to the OBJGEN mainline
program. If there is only one variant of the new individual type, the prototype
individual can be made directly in the mainline routine. This is done by defining a
variable of the new individual type while passing pointers to the IlteratorSet and
the FunctionDispatcher to the constructor. In the case where there is more than
one type of variant of the new individual class available, it is necessary to provide
a facility that allows the user to select which variant to use. The
RealindividualManager can be used a guide for constructing a simple object that
encapsulates the creation of a prototype individual.

As an example, consider the possibility of creating a type of individual
where the genetic material is represented by a tree structure [6]. The objective
function could accept the tree and evaluate it based on some criteria. The
objective function would then return a value that would represent the performance
of the individual.

class TreeIndividual : public Individual
static TreeFunctionPointer Evaluator;
Tree* Root;
public:

TreeIndividual (TreeFunctionDispatcher*, IteratorSet*);
TreeIndividual ();
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virtual int CalcPerformance (void);
virtual Individual* Clone {void);
virtual void Copy (Individualk);
virtual void CrossOver (Individual#);
virtual void Mutate (void);
virtual void Print (FILE*);
virtual int operator== (Individual¥);
virtual void RandomSetup (void);
}
Figure4.30

Here a Treelndividual is defined as an individual that has a Tree as its
genetic material. It uses an evaluation function that accepts a Tree as its input.
The constructors need to fetch a pointer to the objective function from a function
dispatcher. The pointer should be stored in the class variable Evaluator.

Each of the other functions must be defined as outlined in the section
above about the class Individual. The RandomSetup routine would create a tree
randomly. Mutation on a tree could be defined as adding or deleting nodes at
random positions in the tree. Alternatively mutation could simply rearrange
existing nodes in the tree. Crossover could exchange branches between the trees
of two Treelindividuals.

typedef double (*TreeFunctionPointer)(Tree*);
class TreeFunctionDispatcher : public FunctionDispatcher

{

TreeFunctionPointer Functions;

public: o
TreeFunctionDispatcher (int n) : FunctionDispatcher (n) (}

void SetFunctions (Tree* f) { Functioms = f; } '
TreePunctionPointer GetFunction (int n) { return Punctions[n]; }

}i
Figure4.31
This is the complete definition of a derivative of a FunctionDispatcher for
objective functions requiring a pointer to a Tree as input. Initializing the list of

functions is also very simple.
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char TreeFunctionlName[] = "Punction 1";

double TreeFunctionl (Treex t)

{

}

char TreeFunction2Name[] = "Function 2";

double TreeFunction2 (Treet t)

{

}

char* TreeFunctionNames{] = { TreeFunctionlName,

TreeFunction2Name };
TreeFunctionPointer TreeFunctions[] = { TreeFunctionl,

TreeFunction2 };

main (...)

{

TreeFunctionDispatcher TFD(2);

TFD.SetFunctionNames (TreeFunctionNames);

TFD.SetFunctions (TreeFunctions);

Individual* PrototypeIndividual = new TreeIndividual (&TFD, &IS);

} e
Figure4.32

In this example, two objective functions and their names are defined.
Pointers to the functions are then collected into an array called TreeFunctions.
Pointers to the names are also collect into an array called TreeFunctionNames. In
the main line code, a TreeFunctionDispatcher called TFD is created. The
constructor is passed the value of two, in order to prepare it to receive two
functions. The following lines assign the function pointer array and the function
name array to the function dispatcher. At this point, the function dispatcher is
complete and ready to use. Ilts usage consists of merely passing it to the

constructor of the prototype individual.
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The other classes in OBJGEN will use the new individual type without
modification. There is no need to alter the population classes, the probe classes
or the Genetic class. These classes perform their functions on generic individuals

without caring about the individuals’ internal implementations.
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5. Conclusion

The OBJGEN program and the framework on which it is based, are very
robust. They can be applied to a wide variety of problems without needing major
amounts of rewriting and recompiling. This robustness stems from the
exploitation of the power of object oriented programming. The OOP features
contribute to the construction and flexibility of Probes and Iterators.

The malleability of the program was of great assistance in devising the
comparison of the two implementations. Since one program handled both types
of individuals, there was no overhead involved in juggling two programs. Most of
the code of the genetic algorithm served both types of individuals. All of the class
hierarchies in OBJGEN work independently of the type of individual in use.

The ability of Probes to monitor the progress of the genetic algorithm
without regard to the type of individual in current use, provided a uniform test bed
environment. No special coding was necessary to provide the performance
metrics of each type of individual. Probes provided a consistent report form.

The capabilities of lterators to run most of the experiments in batches
facilitated the experimental process. The experiments were set up and they ran
with out any need for user intervention. The lterators and Probes worked together
to provide reports that were easy to analyze. Probes provided the data collection,
while the iterators kept a record of the current parameter settings.

OBJGEN, when used with individuals of the class Reallndividual1 is
successful in simulating a binary genetic algorithm with most of the deJong test
problems. However, the success is muted by the performance discrepancies with
the functions five and six. OBJGEN provides the tools for deeper research into

the problem.
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