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Shakarjian, Mikel, J., M.S., May 1997 Environmental Studies

Life History and Distribution of a Rare Stonefly {Isogenoides zionensis) in Relation to 
Extreme Environmental Variation

Committee Chair: J.A. Stanford

Isogenoides zionensis can be collected throughout the southwest; however, it is rarely 
reported in abundance. Within the N. F. Virgin River, /. zionensis was found in densities 
up to 110/nf. Water development projects planned upstream of Zion National Park 
stimulated research on this species and its relationship to temperature and discharge, 
variables likely to be altered by regulation. The objectives of this study were to: i.) 
determine the life history of I. zionensis in relation to temperature and discharge, ii.) 
evaluate the role of temperature as an emergence cue, and iii.) characterize the distribution 
within the upper Virgin River basin and identify differences in the thermal regime, growth 
or abundance among sites.

Monthly collections revealed I. zionensis has a univoltine life cycle, no egg diapause and 
an extremely synchronized emergence. Discharge is unpredictable on both an annual and 
daily basis, as influenced by annual snowpack and flashfloods. The highly synchronized 
emergence suggests discharge does not have an direct observable influence on the life 
cycle. Discharge is likely related as it may influence instream temperatures.

The response of mature nymphs reared at constant temperatures showed the emergence 
cue for this species is not related to the average daily temperature, the accumulation of 
degree-hours or an absolute temperature. Experimental results and emergence under 
ambient conditions suggest emergence synchrony was related to diel periodicity.

The distribution of /. zionensis in the upper Virgin River extends from the headwaters 
through the rhitron-potomon transition, which encompasses a wide range of biophysical 
conditions. Sites exhibited similar average daily temperatures and seasonal heat 
accumulation; however, diel amplitudes varied among sites (range: 16.8-5.0"C).

Longitudinal differences in abundance was likely related to substratum, productivity and 
other factors including the thermal regime. Differences in growth rates of /. zionensis 
between sites was related to diel variation. Temperature duration curves illustrated 
differences in the thermal regima associated with the diel periodicity. The downstream 
distribution of this species was related to the cumulative effect of time spent at potentially 
lethal or metabolically costly temperatures.

Reservoirs in the headwaters of the N.F. Virgin River and subsequent flow regulation 
would have altered the thermal regimes that control the emergence, growth and 
distribution o f/, zionensis. Partly as a result of this research, /. zionensis and the riverine 
resources of Zion National Park are protected in perpetuity by a Federal Reserve Water 
Right (1997)
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PREFACE

Water is considered one of our most valuable resources. In the United States, 

nowhere is this resource more coveted than in the desert environment of the southwest. 

The human legacy includes silt-filled reservoirs, dewatered rivers, and declining 

biodiversity (Minckley and Deacon 1991). The smaller drainages that until recently have 

remained largely intact, are now coveted for their water. The Virgin River system in 

southwestern Utah is a good example. Many of the tributaries to the lower Virgin River 

already have dams in place and the mainstem is heavily diverted in several locations. 

Because localized growth is predicted for the headwaters region and alternative water 

sources are lacking, the North and East Forks of the Virgin River are at risk of flow 

manipulation.

The problems associated with river regulation have been extensively studied. 

Dams and diversions disrupt the continuity of a river ecosystem and can serve to alter 

every physical, chemical and biological characteristic of a lotie system (Ward and 

Stanford 1979). In the Virgin River system, the impacts of past mistakes are clear. Many 

native fish species have been extirpated and the populations that remain are fragmented 

(Deacon 1993). However, the North Fork of the Virgin River in the vicinity of Zion 

National Park, is minimally affected by anthropocentric change and native species 

dominate the fish assemblage (Deacon 1993). In addition, a rare stonefly, Isogenoides 

zionensis (Plecoptera) inhabits the North and East Forks of the Virgin River. Insects as
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well as other aquatic biota, are extremely sensitive to changes in river conditions, 

especially temperature, one of the major variables that may be affected by river 

regulation.

Negotiations to adjudicate a Federal Reserve Water Right for Zion National Park 

(ZNP) began in 1993. The issue was contentious because the State of Utah proposed to 

construct several reservoirs at the upstream end of the Park boundary. Construction of 

the impoundments would help satisfy the increasing demand for water by the growing 

city of St. George, almost 128 kilometers (80 miles) downstream, by using the N.F. 

Virgin River through ZNP as a conduit. The boundary of Zion National Park does not 

extend to the headwaters and water rights predating the park existed upstream. The 

combination of the ever growing demand for water and its scarcity in this region, coupled 

with the existence of senior water rights above the Park’s boundary, provided the 

backdrop for a legal battle between the state and the federal government over water.

In order to evaluate the potential impacts of water regulation on the terrestrial and 

aquatic resources of ZNP, many scientific experts, including Dr. Jack Stanford, my 

advisor, were gathered together by the Park Service to present their opinions and 

empirical data on the State’s proposal. Based on the information provided by the 

scientific review panel, it was determined that proposed reservoirs would have a 

significant impact on the Park’s resources.

The strength of the federal case was based on strong scientific information and an 

out-of-court settlement was reached. Negotiations concluded with the adjudication of a 

Federal Reserve Water Right for ZNP (1997), that allowed the construction of several

IV



very small impoundments on the East Fork of the Virgin River. These small 

impoundments will have no measurable effect on flow or other important biophysical 

attributes of ZNP.

Stoneflies are widely recognized for their usefulness as biological indicators due 

to their sensitivity to environmental conditions. The rarity of /. zionensis throughout its 

range and its abundance within the N.F. Virgin River suggested that conditions within the 

Park are optimal for this species. Research on 7. zionensis began in 1994, in an effort to 

provide Zion National Park with basic information of the life history of this species and 

its response to temperature and discharge, two critical variables that would be altered by 

water regulation. Based on the results of my research, water regulation, due to its 

influence on temperature would have risked the viability of this rare population. The 

Federal Water Rights Agreement for Zion National Park signed in 1996, will serve to 

protect this unique system and the biotic life associated with it.
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INTRODUCTION

The upper Virgin River watershed lies within the canyonlands of the southern 

Rocky Mountain region, an area characterized by abrupt environmental gradients and a 

high level of endemism. The variation in topography creates distinct lotie environments 

associated with the high desert plateau and deep narrow canyons. Covering an altitudinal 

gradient of 1140m (3740ft.), conditions in the North Fork of the Virgin River would be 

considered extreme by most biotic standards. Organisms must cope with dynamic 

regimes including intense flashfloods that can alter streamfiow by several orders of 

magnitude and drastic temperature fluctuations as high as 16.8°C in a single day. Within 

this unique environment, in the vicinity of Zion National Park, a rare stonefly with broad 

zoogeographical distribution, Isogenoides zionensis (Plecoptera: Perlodidae), exists in the 

canyon influenced environment

The life history characteristics of aquatic insects can vary among individuals or 

populations in response to environmental factors (Butler 1984). The most significant 

factor may be the thermal regime, which can influence distribution and abundance on 

both local and geographical scales (Ward and Stanford 1982). Insects as well as other 

aquatic biota are extremely sensitive to changes in river conditions, especially 

temperature, one of the major variables that may be affected by river regulation. Water 

development projects planned upstream of Zion National Park stimulated this study on 

the life history, distribution and abundance of Isogenoides zionensis in relation to
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temperature and discharge in the upper Virgin River, the variables most likely to be 

significantly altered by water regulation.

Widely distributed, members of the family Perlodidae demonstrate the ability to 

adapt and sustain populations in a vast array of environments. This family includes 

species that inhabit subalpine lakeshores in Norway, spring brook streams in Michigan, 

montane streams, large silty rivers and desert streams in the southwest USA (Sheldon 

1972, Baumann et al. 1977, Brittian 1983, Haro and Wiley 1992). Twenty-two out of the 

27 Perlodid genera found in North America are considered endemic, and many are purely 

eastern or western in distribution (Hynes 1988).

Members of genera Isogenoides exhibit continentality (distributed across North 

America) suggesting that this genus may be derived from ancient invaders. Many species 

in this genus appear to be restricted to the east or west coast, indicating spéciation may 

have resulted from isolation during or since the Pleistocene glaciation (Stewart et al. 1974, 

Hynes 1988). The Colorado cordillera region has been identified as part of a 

southwestern réfugia for Plecoptera during glaciation, after which many populations 

became isolated (Stewart et al. 1974). Of the three Rocky Mountain species, only I. 

zionensis appears to be confined to the southern Rocky Mountains of the Colorado 

cordillera.

The rarity of I. zionensis within its range (Ward and Kondratieff 1992) suggests 

this species became geographically isolated as the post-Pleistocene climate became 

increasingly warmer and dryer. As the proportion of favorable habitat within its range
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decreased, the limited dispersal capabilities of I. zionensis may have assisted localized 

specialization and adaptation to the native regime.

Plecoptera are widely recognized for their use as biological indicators due to their 

sensitivity to environmental conditions. Because Plecoptera are considered such sensitive 

representatives of the aquatic fauna, rarely does one expect to find these taxa in areas

experiencing severe environmental variation. In the upper N. F. Virgin River, I. zionensis

2
was found in abundant numbers (up to 110/m ), exhibiting a patchy distribution in the 

Virgin River watershed (Fox and Eddy 1977, Boyle et. al 1993), highly associated with 

the canyon influenced environment. Populations of this species are rare, but widely 

distributed across the Colorado Cordillera region (Ward and Kondratieff 1992). The 

abundance of 7. zionensis in the N.F. Virgin R. watershed suggests that current 

conditions are optimal for perpetuation of this species in the canyon influenced 

environment.

The environmental variability experienced by aquatic insects acts as a selective 

pressure influencing the life history and distribution of a species. The response of aquatic 

insects to their environment includes life history traits that are advantageous within a 

particular habitat and promote species persistence under the conditions at which they 

evolved. For example, droughts and flashfloods commonly occur in desert streams. Life 

history adaptations to desiccation and scour include nondiapausing eggs, rapid 

development and continuous reproduction (Gray 1981). Life history traits can also vary
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intraspecifîcally among populations in response to localized environmental conditions 

(Lillehammer 1987, Sweeney 1984, Frutigar 1996). For this reason, the variability of 

environmental regimes is often thought of as a driving factor in the life history of aquatic 

insects (Ward and Stanford 1982, Sweeney 1984, Power et al. 1988, Resh 1988).

Of the ecologically significant environmental factors that influence aquatic 

insects, the most important may be the thermal regime\W ard and Stanford 1982). A 

wide range of responses to temperature have been identified for a number of plecopterans, 

usually under constant, experimental conditions. This literature suggests that temperature 

can influence any phase of the life cycle; the success and timing of embryogenesis, 

nymphal growth, adult development and emergence (see Nebeker and Gaufin 1967, 

Markarian 1980, Lillehammer et al. 1989, Marten 1991, Marten and Zwick 1989). Some 

insects respond to absolute temperature units (i.e. degree days or specific temperature) 

while others appear to exhibit temperature independence during embyrogenesis or 

nymphal development (Khan 1965, Mutch and Pritchard 1986). Recent evidence 

suggests that fluctuating thermal regimes may also influence the life cycle processes at 

various stages (Sweeney and Schnack 1977, Lillehammer et al. 1991, Frutigar 1996). 

However, very little research has focused on the temporal variability of the thermal 

regime and its consequences for life cycle strategies or adaptation.

‘ Thermal regime is used in this paper as defined by Ward and Stanford (1982): a 
composite of patterns including absolute temperatures, diel and seasonal amplitudes, rates 
of change and all phase relationships.
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The response of insects reared under constant versus fluctuating temperature 

environments is usually found to be different (Hagstrum and Hagstrum 1970, Ratee 

1985). Enhanced growth and development under a fluctuating thermal regime appears to 

be species-specific and may differ among populations. Unfortunately, the majority of 

experiments incorporating a fluctuating regime in the design, fail to describe the native 

thermal regime of the experimental population (Humpesch 1982, Elliott 1988, Zwick 

1996). Without this information, it is impossible to determine if the thermal history of 

the organism or population includes exposure to a dynamic temperature regime. 

Experienced on a predictable basis, temperature fluctuations could provide a selective 

pressure prompting a life history response or adaptation (Newell 1973). The thermal 

history of an organism may help explain the varied responses of a species or population to 

a fluctuating temperature regime.

Thermal variability, both seasonal and diel, may be incorporated into an 

organisms’ response to temperature, providing a thermal cue for specific life history 

stages or events (Ward and Stanford 1982). The response of an organisms to either 

temporal scale may be influenced by the thermal history of the organism (Peters et al. 

1987). For example, in an environment where temperatures fluctuate dramatically on a 

daily basis, this level of variability may be incorporated into a species-specific thermal 

cue. Furthermore, the mean temperature of a thermally dynamic environment may 

represent the temperature insensitive phase for organisms adapted to a fluctuating regime 

(Hoffmann 1985). Hence, physiological cues and metabolic adaptations to dynamic
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temperature regimes may manifest at the extreme ends of the variation (daily or seasonal) 

(Hoffmann 1985, Huey and Bennett 1990).

Within the canyonlands of the Virgin River, temperature patterns are highly 

influenced by the climate and topography. Seasonal and diel temperature fluctuations 

within the range of I. zionensis are dramatic and may be incorporated into this species 

response to temperature. Virtually nothing is known about the life history of I. zionensis 

or the environmental factors that influence its longitudinal distribution in the upper 

Virgin River system.

Lotie characteristics of the river continuum are often utilized to differentiate 

between the unique and ecologically significant rhithron and potomon environments 

within the longitudinal profile (See lilies and Botosaneanu 1963, Ward 1986, Ward and 

Stanford 1991, Stanford and Ward 1993, Stanford 1994). The rhithron environment 

typically includes low to mid-order streams with coarse substratum, cool temperatures 

(<20^C) and high water velocities. Potomon reaches are characterized by warmer 

(>20"^C), lower velocity waters with small substrate and often turbid waters (Ward and 

Kondratieff 1992). These habitat characteristics vary as a function of environmental 

gradients, creating ecologically significant spatial variations that may influence the 

longitudinal distribution of species.

The purpose of this paper is to evaluate the role and consequences of natural 

environmental variability, especially the thermal regime, on the distribution and life 

history of 7. zionensis in the upper Virgin River basin. The phenology of Isogenoides
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zionensis, in relation to temperature and discharge, was evaluated at a single location. Big 

Bend, in Zion National Park (Fig. 1). The distribution and relative densities of I. 

zionensis throughout the Upper Virgin River Basin were determined by quantitative 

sampling at sites along the elevational gradient. The relationship between distribution 

and the thermal regime was evaluated using temperature data gathered at several locations 

including sites within and outside the range of this species. Two experiments were 

conducted on mature nymphs near emergence to determine the role of temperature on this 

event. In the first experiment, nymphs were exposed to a constant temperature simulating 

the mean daily temperature during emergence in the field. In a second experiment, 

nymphs were exposed to a constant temperature simulating the daily minimum 

temperature at time of collection. I assumed this temperature would mask any further 

thermal cues associated with seasonal or daily temperature fluctuation.



STUDY AREA

The North and East Forks of the Virgin River originate in the high desert plateau 

country of southwestern Utah, forming the headwaters region of the Virgin River (Fig. 1). 

At their confluence, the North and the East Forks are fourth order streams (sensu Strahler 

1957) that drain large watersheds, 569.7 km^ and 658.2 km^ (354 mi^ and 409 mi^ ), 

respectively (Diaz 1992).

The study area is considered semiarid; however, local precipitation patterns vary 

significantly as influenced by topography and climate (Heilweil and Freethey 1992). 

Precipitation patterns in the study area follow a central north-south orientation of 

decreasing precipitation from 68.5 to 25.4 cm (27 to 10 inches) annually, following the 

topographic gradient as the high desert mesas dominating the north central region give 

way to the lower elevation alluvial valleys in the canyons of the southern portion.

The high desert plateau is characterized by colder and wetter seasons, with 

average air temperatures near or below freezing from mid-November through March (- 

3.2-0.9°C) reaching an annual high of 17-19“C during July and August (Alton Weather 

Station, NCDC420086, U.S. Historical Climatology Network 1997). In contrast, in Zion 

Canyon the valley floor rarely experiences winter temperatures below 4°C (Zion N.F. 

Weather Station, NCDC429717, U.S. Historical Climatology Network 1997) and receives 

significantly less snowfall, due to the low elevation and surrounding topography.

Summer air temperatures in the valley regularly fluctuate 20”C daily, with maximum



daily temperatures from June through September of over 38°C (100°F).

Seasonal stream temperatures within the study area reflect both the altitudinal 

gradient, climate and topography. During the winter, the exposed, high elevation sites on 

the North Fork may experience temperatures at or near freezing for several months, 

whereas in the valley, temperature data indicates stream temperature rarely fluctuates 

below 5°C. Vernal warming may also occur sooner in the valley, delayed at higher 

elevations due to the cooler climate and snowmelt.

A snowmelt hydrograph may dominate the discharge pattern of the N.F. Virgin 

River in some years; however, in low water years, a snowmelt event may not occur (Fig. 

2). The magnitude and duration of the spring runoff event is dependent upon annual 

snowpack and the rate of vernal warming. The spring runoff period can occur from late 

March through early June, providing the bulk of the mean annual flow (96.9hm^/y r or 

78,600 ac-ft/yr) and transporting 80% of the average annual sediment load (Andrews 

1994, Hereford et al. 1995).

The annual peak flood can occur any time of the year and equal or exceed the 

magnitude of the spring runoff event. The annual flood most frequently occurs in the 

summer and is of short duration (Hereford et al. 1995). Seasonal precipitation events 

during the summer, fall or winter may determine a high water year and have significantly 

declined during the period of record (Hereford et al. 1995). It appears that the frequency 

of these seasonal events has declined over time, rather than the magnitude of individual 

storms.
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The N.F. Virgin River originates from a spring at approximately 2295m (7,530ft.) 

in elevation, flowing a total of 40 km (35.6 miles) through the rhithron-potomon 

transition before its confluence with the East Fork at approximately 1149m (3770ft.) in 

elevation (Pacific Southwest Inter-Agency Committee 1974). The watershed of the North 

Fork is relatively undisturbed. For most of its length, the North Fork is within the 

boundaries of Zion National Park, excluding the first 16 kilometers (10 miles) where 

ownership is a composite of Bureau of Land Management, Forest Service and private 

lands. Below the park, the river is surrounded by the town of Springdale. One 

impoundment exists on a small tributary, Kolob Creek; however, it does not affect the 

historic discharge regime (Hereford et al. 1995) and its effect on streamfiow in the North 

Fork appears negligible under normal dam operating conditions. Small diversions above 

and below the Park account for 3.7% of the mean annual flow (Diaz and Hansen 1994).

For the majority of its length, the North Fork exhibits rhithral characteristics, as it 

flows through a deeply incised canyon, commonly known as the "Virgin River Narrows" 

(Fig. 1). Within the Narrows, the vertical canyon walls reach approximately 304m 

(1000ft.) overhead. Areas exist where the river is completely bound by canyon walls only 

10-30 meters apart and stream gradients are in excess of 10%. As the North Fork 

meanders through wider areas, riparian vegetation is present on high terraces.

Substratum in the canyon is highly variable, influenced by stream gradient and 

valley width. Riffles are dominated by sandstone cobbles (20-30cm) with some gravel. 

Large boulders (l-6m) broken free from the canyon walls, create deep pools. In the
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narrowest sections of the canyon, long, deep glides of sand substrate are created. Stream 

gradient is steep (28.7m/km) and high intensity, short duration flashfloods are common. 

The deep canyon provides significant shade, creating a cool environment at a low 

elevation.

The canyon walls gradually begin to widen in an area known as "Zion Canyon" 

(RM 12.2), 0.8 river kilometers (0.5 river miles) upstream of the main study site at Big 

Bend (RMl 1.7, Fig. 1.). The floodplain at Big Bend is approximately 500m wide and 

well shaded due to the height of the canyon walls. The active channel is approximately 

20m wide with stabilized segments on the east side to support Zion Canyon Drive. To 

the west of the active channel lie historic channels and terraces. Substratum at Big Bend 

is mostly large cobble (25 cm) with some gravel. A large spring, known as Menu Falls, is 

approximately 60m upstream and groundwater seeps are common along the margins of a 

midstream island. The Big Bend site is located 19 river kilometers (11.7 river miles) 

upstream of the confluence with the East Fork Virgin River.

Under baseflow conditions the North and East Forks are relatively clear, 

indicating that sediment transport at this time is low. However, both streams carry a high 

silt load during spring runoff and flashflood events, causing the water to become very 

turbid rather unpredictably, due to abrupt changes in discharge. In addition, the Narrows 

and Zion canyons are composed of highly erodible sandstone that occasionally sloughs 

off, depositing large quantities of rock in the river channel. Within Zion Canyon, 

approximately 2.4 river kilometers (1.5 river miles) downstream from the Big Bend site.
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an active landslide area exists. Historically, this area was responsible for the creation of a 

lake after a large rockfall dammed the North Fork forcing water to back up into the 

canyon past the Big Bend site (Hereford et al. 1995). Within the last 100 years, at least 3 

major rock slides have occurred in this area (Cline 1995). The most recent slide occurred 

in April of 1995, depositing over 7079 cubic meters (250,000 cubic-feet) of material in 

the riverbed. This slide temporarily dammed the river to a depth of approximately 12.1m 

(40ft.), forcing the river to break through the debris flow, and washing out over 182m 

(200 yards) of roadway (Cline 1995).

The East Fork of the Virgin River starts at an elevation of approximately 2,500m 

(8202ft.) in elevation and flows 76km (46 miles) through agricultural, urban and 

residential lands in an unconfined valley for the majority of its length (Fig. 1). The East 

Fork enters Zion National Park just 16 river kilometers (10 river miles) upstream from the 

confluence with the North Fork, as it flows through the constricting Parunaweap Canyon. 

Agricultural, domestic and municipal water demands result in extensive dewatering 

upstream from the Park at Mount Carmel (Fig. 16) (B. Hansen, Pers. Comm 1995).

Much of the flow downstream from this point is attributable to groundwater accretion 

associated with the Navajo Aquifer, contained in the Navajo Sandstone Formation.

The Navajo Sandstone Formation is a porous and fractured formation confined by 

the less permeable overlying Carmel Formation and the underlying Kayenta Formation.

As a result, vertical groundwater movement is impeded and discharge from the Navajo 

Aquifer is associated with exposed outcrops and deep canyons throughout the study area
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(Heilweil and Freethey 1992). Navajo Sandstone is the dominate rock surface in the 

Narrows, Zion and Parunaweap Canyons, providing baseflow for each river from 

numerous springs and seeps (Hereford et al. 1995).
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METHODS 

FIELD STUDY

Discharge: North Fork Virgin River at Visitor Center (RM5,0)

Discharge data for the N.F. Virgin River was obtained from a U.S. Geological 

Survey gauge installed at Visitor Center site (USOS 09405500) within Zion National 

Park. Discharge data was used to characterize the hydrologie regime of the N.F Virgin 

River and the Big Bend site during the study period. Due to the lack of any major 

tributaries between the Big Bend site and the Visitor Center discharge station, any 

increase in flow was considered insignificant.

Thermal Regime: North Fork Virgin River

Temperature data from the Big Bend (RM 11.7) site was collected using 

Stow A way temploggers (Onset Instruments®) placed in the stream to continuously 

monitor ambient conditions. Dataloggers recorded temperatures every 45 to 120 minutes 

and were downloaded every 4-6 months. Data was then interpolated to give estimates of 

hourly temperatures at the site. Harsh flow conditions at Big Bend resulted in the loss of 

a datalogger during Spring 1995, limiting the temperature data to July 1995 - October
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1996.

In April 1996, Stow Away temploggers were installed at two additional locations 

on the North Fork: North Fork above Narrows (RM26.8) and the Visitor Center (RM5.0) 

sites. Continuous temperature data were collected from these sites, April 11-August 31, 

1996 and interpolated to estimate hourly temperatures at each site. Total degree-hours 

(dhrs) were calculated for Big Bend, N.F. above Narrows and the Visitor Center sites by 

summing the average hourly temperature for each day.

FIELD STUDY

Life History o f Isogenoides zionensis at Big Bend

The life history of Isogenoides zionensis was evaluated at a single location, Big 

Bend (RM 11.7), in Zion Canyon (Fig. 1). This site was chosen due to the abundance of 7. 

zionensis at this location, ease of access and the availability of discharge records from a 

nearby location.

Benthic organisms were collected by Park Service employees at approximately 

monthly intervals from November 1993 to July 1996 using a hand held dip net. Collected 

specimens were preserved in 10% formalin and ethyl alcohol and shipped to the 

University of Montana Flathead Lake Biological Station for evaluation. Interocular
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distance (to nearest .05mm) was measured to evaluate growth and approximate the hatch 

time of I. zionensis at Big Bend. Emergence timing was determined by checking the site 

frequently near the expected time of emergence activity.

A total of 459 7. zionensis adults (231 female, 228 male) were collected from the 

Big Bend site on May 8, 1996 and shipped to the Biological Station. Adults were placed 

in screened cages for observation, with vegetation and petri dishes filled with water.

A reference collection of all benthic organisms found during this study within 

Zion National Park has been provided to the park and voucher specimens stored in a 

permanent collection at the Flathead Lake Biological Station.

Distribution, Density and Size o f Isogenoides zionensis within North Fork Virgin River.

In September 1995, quantitative sampling at twelve sites throughout the North and 

East Forks was completed to determine the distribution and relative abundance of 

Isogenoides zionensis in the basin. Riffles representative of each site location were 

chosen and zoobenthos were collected from a 0.25m“ area by dislodging the organisms 

with hand and foot action into a modified Nitex (240um pore size) kicknet held 

downstream (after Hauer and Stanford 1981). A total of three replicate samples were 

collected from each site and preserved in 10% formalin and ethyl alcohol. Isogenoides 

zionensis were removed from each sample, enumerated and interocular distance 

measured, to reveal any significant difference in abundance or size among sites. Students
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t-test was used to determine the significance of seasonal size differences among sites on 

various sampling dates. Observations from each site include stream width and depth, 

periphyton biomass and benthic community characteristics (Table 1).

LABORATORY STUDY

Ejfect o f Temperature on the Emergence o f Isogenoides zionensis

Late stage nymphs were collected 4 weeks prior to emergence, on April 10, 1996, 

from the Big Bend site and transferred to the wet laboratories at the University of 

Montana Flathead Lake Biological Station. Nymphs were divided between two artificial 

lotie microcosms, acclimated and then exposed to experimental temperatures within the 

diel range of variation normally experienced by this species. Temperature data and 

monitoring of emergence activity at Big Bend provided a reference under ambient 

conditions.

The experimental troughs were approximately 2.0 x 0.3 x 0.3m (7x1x1 ft.) in 

dimension and lined with a natural cobble substrate. Styrofoam pieces, woody debris and 

exposed cobbles provided potential terrestrial habitat for emergence. Troughs were 

enclosed by screen mesh and fashioned with sealable hatches, used to collect adults and 

add food. Benthic organisms and allochthonous matter from nearby Yellow Bay and 

Roy’s Creeks provided the main food source for each trough. To ensure food was
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abundant and favorable, additions were made at least every other day and feeding activity 

was observed at night using a red light source.

Water for the troughs was supplied using untreated, potable water piped into the 

laboratory from a spring on the Biological Stations grounds. The spring provides a 

thermally stable water source with dissolved oxygen levels at or above saturation year 

round (Stanford 1975). In each trough, a continuous flow-through of water was 

maintained at a depth of 12.5cm (5in.) from an water inlet at the upper end of the trough 

and a screened drain at the opposite end.

Water temperature in each trough was recorded every 15 minutes using Hobo 

temploggers (Onset Instruments®) and adjusted using hot and cold taps. Photoperiod in 

the wet lab was regulated at 12 hour light and dark intervals. Each trough was checked 

daily for behavioral activity, signs of nymph emergence (exuvia), adults and mortalities. 

Nymphs were carefully observed for four days to ensure acclimation to the trough 

environment prior to the experimental manipulation of temperature.

Once the nymphs were acclimated, two separate experiments were performed. In 

Experiment A, two hundred and sixty two nymphs were exposed to a gradually increasing 

constant temperature simulating the average daily temperature during emergence at Big 

Bend (14.5 +/-0.5®C) in 1996. I assumed this temperature regime would provide the 

proper emergence cue. In Experiment B, one hundred and eighty nymphs were exposed 

to a relatively constant temperature (8.7+/- l.O^C) simulating the daily minimum
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temperature experienced at Big Bend at the time of collection. The constant cold 

temperature was assumed to mask any further environmental cue associated with vernal 

warming. Total degree hour accumulation at the time of 50% emergence was calculated 

for both the experimental population and the control population at Big Bend.
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RESULTS AND DISCUSSION

Hydrosraph o f the North Fork Virsin River 1995-1996

Water years 1995 and 1996 encompass the extreme flow variability that can occur 

within the N.F. Virgin River on both an annual and daily basis. A snowmelt hydrograph 

dominated the discharge pattern of 1995, with high flows occurring from early May 

through June (Fig. 2). In addition, several short duration, high magnitude flashfloods 

occurred. The most notable flashflood during the 1995 water year occurred on February 

14, 1995, increasing the flow from 63 cfs (1.78 mVs) on the previous day to 665 cfs 

(18.83 mVs). In contrast, the hydrograph for the 1996 water year shows almost no spring 

runoff event and only one conspicuous flashflood, also occurring in February and of 

similar magnitude. Because the bulk of the annual flow was provided by the spring 

snowmelt event, the annual discharge for 1996 (56,495 mVyr; 45,780 ac-ft/yr) was only 

32% of the total volume discharged in 1995 (172,192 m^/yr; 139,540 ac-ft/yr). The 

discharge patterns from the 1995 and 1996 water years are significantly different; 

however, this level of variability is not uncommon in the N.F. Virgin River (Fig.3).

Water years 1996 and 1996 are characteristic of typical high and low water years on the 

N.F.Virgin River.

A possible explanation for the variation in flows observed during the study period 

may be the influence of global climate patterns. Annual climatic patterns in the
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southwestern U S are influenced by the El Nino Southern Oscillation, which increase 

precipitation during the winter. These events are highly correlated with the spring runoff 

period, and have been shown to increase seasonal discharge by as much two to three 

orders of magnitude in some southwestern rivers (Molles and Dahm 1990). The longest 

duration El Nino event ever recorded occurred during 1990-1995, influencing weather 

patterns throughout western North America (Trenberth and Hoar 1996). In contrast, 1996 

was not influenced by an El Nino event and may have been influenced by the opposite 

climatic event known as a La Nina. La Nina events have also been shown to be highly 

correlated with streamflow, significantly decreasing the spring runoff in the southwest 

(Molles and Dahm 1990).

Thermal Resime o f Sites on North Fork Virsin River

From April to August 1996, the average daily temperatures at Big Bend 

(RM 11.7), N.F. above Narrows (RM26.8) and the Visitor Center (RM5.0) sites showed 

only slight seasonal differences, despite an altitudinal difference of 680m (2230ft.) 

between the sites (Fig. 4). The daily average at the Above Narrows site was consistently 

lower than both downstream sites, as would be expected due to the difference in elevation 

(Table 1). However, during the study period, the Above Narrows site on average was 

only 1.5°C colder than the Big Bend site. A similar difference was observed at the Visitor 

Center site, where the daily temperatures averaged 1.3°C warmer than those at Big Bend.
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Based on the spring and late summer temperatures from 1996, it appears these sites 

exhibit the least difference during July and August, the warmest months of the year.

Although the Above Narrows site was consistently colder on average, this site 

also experienced the highest maximum stream temperatures (Fig. 5). Daily maximum 

temperatures at the Above Narrows site normally exceeded those at Big Bend, and 

equaled or exceeded temperatures at the Visitor Center site (Fig. 5). During July and 

August 1996, maximum temperatures at the Above Narrows site averaged 23.9°C, in 

comparison to 20.9°C and 22.9°C at Big Bend and the Visitor Center sites.

Much of the difference in thermal regime observed among these three sites 

occurred as a result of diel fluctuations as influenced by elevation and the surrounding 

topography (Fig. 6). The lack of shade from steep canyon walls at the Above Narrows 

site allows direct insolation to raise stream temperatures rapidly during the day, while the 

high elevation results in night time cooling, resulting in a high average diel amplitude for 

the summer months (June 11- August 31) of 12.1^C (Fig. 6). The maximum amplitude 

experienced at any site in a 24 hour period was a change of 16.8°C, at the exposed, high 

elevation Above Narrows site on July 27, 1996.

In contrast, as the North Fork flows downstream through the Narrows Canyon, 

temperatures are moderated by shading provided by canyon walls. This canyon-cool 

environment is reflected in the diel variation experienced at Big Bend (Fig. 6). The Big 

Bend site located just downstream 0.8 river kilometers (0.5 river miles) from where the 

canyon walls begin to widen, experiences the lowest of diel amplitudes of the three sites.
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averaging 5.1®C during the summer season. In contrast, the Visitor Center, located only 

10.7 river kilometers (6.7 river miles) downstream from Big Bend, exhibits an average 

diel amplitude almost 2°C greater (6.7°C) than Big Bend. Canyon walls still provide 

some shading at this location; however, the floodplain is much wider, exposing the 

channel to direct insolation for the majority of the day, allowing stream temperatures to 

rise accordingly. Due to the low elevation and greater volume of water at this location, 

night time cooling does not offset the high daytime temperatures, resulting in the highest 

average daily temperature among the sites and a reduced diel variation when compared 

with the exposed, high elevation site (Fig.4 and 6).

The variation in thermal regime among sites can be clearly illustrated using a 

frequency distribution, showing the duration or the total number of hours, spent at each 

temperature from April through August 1996 (Figs. 7 and 8). As would be expected 

because of the moderating influence of the canyon. Big Bend exhibits the narrowest range 

of temperatures (6-25^C), with the majority of hours spent at or below 20°C. At both the 

Above Narrows and Visitor Center sites temperatures regularly fluctuate above this 

threshold. However, these sites exhibit completely different temperature patterns over 

time as influenced by diel variation. During the summer months when the daily average 

temperatures exhibit the least between site difference, they also display the greatest 

within site variation, due to the temporal pattern of the thermal regime at each location 

(Fig. 8). The majority of hours at the Visitor Center site are spent at stream temperatures 

above 20°C. In contrast, the variation in temperature and duration experienced at the
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Above Narrows and Big Bend sites result in the majority of hours being spent at 

temperatures below 20”C.

Total degree-hour accumulations at each site also reflect the variability of the 

thermal regime among these sites (Fig. 9). Total degree hours accumulated at the Above 

Narrows site (49645dhrs) were almost 10% less than at the Big Bend site (55027dhrs). 

The Visitor Center site had the highest cumulative degree hours (59353dhrs) among the 

sites, almost 8% more than that of Big Bend.

Life History o f Isosenoides zionensis at Bis Bend, North Fork Virsin River

Isogenoides zionensis at the Big Bend site (RM 11.7) had a univoltine life cycle 

(Fig. 10). This species did not exhibit egg diapause and growth was rapid inunediately 

after the eggs hatched in May or June. Differentiation of the sexes could not be 

established until December or January, when wing pad development easily distinguished 

the sexes. Males were brachypterous and significantly smaller than the females. During 

the winter, as the growth of both sexes slowed, female wing development continued.

Newly hatched nymphs were very difficult to find during the first 12 weeks of 

growth (June, July, August). The density of /. zionensis at Big Bend seemed to increase 

over time, maximizing just prior to emergence in the spring. When sampling at Big Bend 

in April 1996, 3 weeks prior to emergence, a total of 64 individuals were collected from 

beneath a single cobble.
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During 1995, rapid growth of I. zionensis occurred at Big Bend during the 

warmest time of the year (Fig. 11). Emergence was nocturnal and highly synchronized, 

from approximately May 5 - May 15, 1996 at the Big Bend site (Fig. 11). The average 

daily temperature during the emergence period of /. zionensis at Big Bend was 12.6- 

15.8°C (Fig. 11). In the lab, I observed the newly emerged adults drinking water and 

mating in vegetation or under litterfall in the cages. After mating for approximately 4-6 

hours, females displayed avoidance behavior, placing their wings over their backs to 

discourage males from mounting. As air temperature in the observation room reached the 

daily maximum (approximately 23°C), females began flight patterns in the cages, 

ovipositing eggs for 2-3 hours. This behavior continued for 3-4 days until the female’s 

egg supply was exhausted. The duration of the adult stage of /. zionensis was 

approximately 9 days, based on laboratory observations.

The univoltine life cycle, male brachyptery and sexual dimorphism exhibited by 

/. zionensis in the N.F. Virgin River are characteristics commonly reported among the 

Perlodidae (Minshall and Minshall 1966, Sheldon 1972, Gather and Gaufin 1975,

Stanford 1975, Obemdorfer and Stewart 1977, Short and Ward 1980). Egg hatch 

followed by a period of rapid larval growth and the overwintering of near to full grown 

nymphs, has also been displayed by other members of this family. Most Perlodid species 

appear to have very slow, but continuous growth during the colder seasons.

The average daily temperature during the emergence period of 7. zionensis at Big 

Bend was similar to that reported for several North American Perlodidae (e.g.
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Arcynopteryx curvata, A. picticeps, A. aurea, Diurna knowltoni, Hydroperla crosbyi, 

Megarcys signata, Isoperla clio)( Minshall and Minshall 1966, Gather and Gaufin 1975, 

Sheldon 1972, Obemdorfer and Stewart 1977). This species displayed a highly 

synchronized emergence at Big Bend, with emergence of upstream populations occurring 

progressively later. The delayed emergence of upstream populations is a common 

phenomenon among aquatic insects that is usually associated with an decrease in thermal 

units accumulated at each location (Sweeney 1984).

Emergence at Big Bend in 1996 preceded the time period when sustained high 

flows of the spring snowmelt would be expected in years with regular snowpack. 

Emergence prior to this seasonal event has distinct advantages; therefore, the timing of 

this event may be the result of long term selective pressures on the life history of this 

organism. The sustained flows in the spring are responsible for the majority of 

geomorphic change in the river (Hereford et al. 1995). During these events, the stability 

of the substratum is significantly reduced, creating a hostile environment for large 

nymphs. Floods that equal or exceed the magnitude of the spring runoff may occur any 

month of the year (Fig. 2) likely alter substratum characteristics substantially. However , 

the relative predictability of the springtime flows may have allowed for a long term 

evolutionary response (Resh et al. 1988, Poff and Ward 1989).

The long term discharge records for the North Fork indicate that in most years, 

high springtime flows are a normal occurrence (Fig. 3). However, the annual flow pattern 

is highly variable among years, as illustrated by the extremely different regimes
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experienced during this study (Fig. 2). This suggests that a long term response to spring 

flows may play an evolutionary role in the seasonal timing of emergence, but the extreme 

flow variability among years indicate that the annual emergence cue for I. zionensis is 

unlikely to be correlated with this highly unpredictable event.

Extreme temperatures of the summer may also provide a selective pressure 

influencing the phenology of I. zionensis, Plecoptera have been described as being to 

alpine or densely forested streams, mainly due to their intolerance of warmer waters 

(Hynes 1976). For this reason, high temperatures during the summer are more likely 

lethal than cold temperatures experienced during the winter.

Due to the limited dispersal capability and univoltine life cycle of /. zionensis, 

synchronized emergence for successful reproduction is essential for population viability. 

The spring runoff period and extreme summer temperatures may provide a certain level 

of annual predictability to the system; however, the timing, magnitude and duration of 

these events vary annually. Confined to a relatively brief period dictated by vernal 

warming and in some years, discharge patterns, the successful reproduction of this 

population may depend upon its ability to respond to environmental variation at various 

temporal scales, by means of a precise environmental cue (Ward and Stanford 1982, Huey 

and Bennett 1990).
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Experiment A: Response o f Mature Nymphs Exposed to the Average Daily Temperature 

Durins Ambient Emersence

Egg development, length of hatch, larval growth rates and emergence timing of 

Plecoptera have all been related to temperature (See Nebeker 1971, Schraer 1971, 

Stanford 1975, Brittian 1983, Lillehammer et al. 1989, Marten and Zwick 1989, Marten 

1991). For many aquatic organisms, the success and timing of life cycle phenomena 

exhibit a species-specific temperature dependence where environmental cues may serve 

to initiate and synchronize the event. For organisms living in highly variable or dynamic 

systems, such as I. zionensis, reproductive success and population viability may be 

dependent upon a life history strategy that incorporates natural variation on a daily and 

seasonal basis into a thermal cue.

In the N.F. Virgin River, thermal fluctuations occur on annual and diel scales with 

some predictability; however, extremely unpredictable flashfloods can result in large, 

instantaneous changes in temperature and discharge (Figs 2 and 4). Exposed to this level 

of variability, an advantageous life history would include rapid response upon cue 

initiation. Several investigators have concluded that exposure to a thermal cue 24 to 48 

hours prior to an event may initiate the emergence response (Peters et al. 1987), while for 

other organisms precise temperature thresholds can exist (Macan and Maudsley 1965, 

Danks and Oliver 1972, Trottier 1973, Wartinbee 1979). Very little research has been 

conducted to determine cues initiating emergence in stoneflies; however, the sensitivity



29

of this group to temperature suggests that for some species, a distinct thermal cue may 

exist. In a study of emergence patterns in Sagehen Creek, Sheldon (1972) attributed 

delayed emergence, followed by increased emergence intensity of several perlodid species 

to short term temperature variation associated with a cold spell followed by a warm day. 

For my experimental purposes, I assumed that a thermal emergence cue for I. zionensis in 

the N.F. Virgin River to be associated with the average daily temperature during the time 

of emergence.

Late stage I. zionensis nymphs transferred from Big Bend (RM 11.7) to the wet 

laboratory experienced very little mortality (n=3) during the five day acclimation period, 

and behavior appeared normal. The nymphs were influenced by photoperiod, moving to 

the surface only during dark hours. At night, nymphs were active feeding on live prey 

and other food items. No aggressive or competitive behavior among the nymphs was 

observed. Clusters of males seemed to form small groups (2-5) assembling around 

individual females. Similar behavior has been reported for near emergent Perlodidae 

(Cather and Gaufin 1975).

Experimental manipulation began on April 16, when the temperature was 

increased 5°C over a 6 hour period, to a final temperature of 12°C for 24 hours (Fig. 12). 

On April 17, the temperature was increased 1.5®C over 12 hours to 13.5°C. No mortality 

was experienced and changes in the behavior or morphology of the nymphs was not 

observed.
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On April 18, the temperature was increased by 1°C, to 14.5°C. (Fig. 12) Several 

hours later, during the light period, a drift response was initiated resulting in the majority 

of nymphs at one end of the trough, near the drain. During the dark hours, nymphs 

seemed to reposition themselves by spreading out, but most remained in hiding and those 

that did come out were very slow moving. No morphological changes were observed and 

three mortalities occurred.

On April 19, the temperature increased 0.5°C, from 14.5 to 15.0°C (Fig. 12). The 

nymphs were very stressed and no longer influenced by photoperiod. Drifting continued 

and the numbers of nymphs around the drain increased. Very little activity was observed 

and no morphological changes were observed. Two mortalities occurred.

From April 20-28, the temperature ranged from 14.5 to 15.5^C. Behavior 

continued to show signs of stress. Many nymphs began to crawl out of the water. The 

wing pads of a few individuals had blackened tips, but none attempted to emerge. During 

this period, mortality increased significantly, eventually resulting in 100% mortality.

Mature nymphs did not emerge in response to the constant experimental 

temperatures (12-15.0°C) simulating the daily average during the emergence period (12.6- 

15.8°C) of the native population in the field at Big Bend (Fig. 12). These results illustrate 

that exposure to a constant temperature within the range of ambient conditions normally 

experienced by mature nymphs, even the average daily temperature, only three weeks 

prior to natural emergence can result in 100% mortality. These data suggest that a 

thermal cue for I. zionensis is more complex than the average daily temperature at time of
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emergence. Moreover, the range of temperatures experienced at Big Bend on a daily 

basis expose I. zionensis nymphs to potentially lethal temperatures for several hours a day 

as a result of diel fluctuations.

The response of Plecoptera to an increase in temperature is species-specific, and 

accelerated development and emergence has been observed for a number of species 

(Nebeker 1971, Schraer 1972, Lillehammer et al. 1989). However, long term exposure to 

chronic nonlethal temperatures can also result in mortality (Schraer 1972). Since the 

experimental individuals seemed to have acclimated to the troughs, it seems they died as 

a result of constant exposure to temperatures within the range of conditions they would 

experience in the wild. Therefore, it is likely that these temperatures are stressful, but can 

be tolerated for many hours a day, day after day.

The natural range of variation experienced in lotie habitats includes stressful 

events. However, it is the duration, magnitude and predictability of these events that may 

manifest a life history response or adaptation. Daily averages represent the composite of 

temperatures experienced over a 24 hour period. For many hours during the day, 

temperatures at Big Bend are much lower or higher than the average daily temperature.

Hence, it is plausible that temperatures above 14.5^C, or an unknown threshold, induce 

heat stress under constant conditions, whereas, exposure for a short period of time at or 

above this threshold is not harmful. Furthermore, temperatures above this threshold may 

be incorporated into a thermal emergence cue, based on the duration or magnitude of the
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high temperatures experienced or the transition between the maximum and minimum 

daily temperatures as influenced by diel periodicity. In this experiment, I did not allow 

for the diel fluctuations that would occur in the field. All emergence at Big Bend was 

nocturnal, suggesting that if emergence is associated with the thermal regime, it may 

incorporate ends of the daily thermal variation to correctly time the event with favorable 

terrestrial conditions.

The thermal history of an organism, particularly its previous exposure to 

fluctuating temperatures, may dictate its response to acute (short term) or chronic (long 

term) temperatures (Huey and Bennett 1990). Some organisms that are exposed to a high 

level of thermal variability, such as intertidal animals, have developed metabolic 

adaptations to acute temperatures and exhibit short term temperature independence 

(Newell and Northcroft 1967). This phenomenon has also been shown for some 

Perlodidae that inhabitat dynamic thermal regimes (Schrear 1972). Another possible 

explanation includes a short term response of thermal resistance known as heat 

hardening, as a result of previous exposure or acclimation to sublethal temperatures 

(Cossins and Bowler 1987). Although no examples are available for stoneflies. Brown 

and Feldmeth (1971) demonstrated heat hardening in the desert pupfish {Cyprinodon 

nevadensis), where increased thermal tolerance was associated with acclimation 

temperatures.

It is impossible from the results of this experiment to determine the exact 

mechanism incorporated by 7. zionensis to survive potentially lethal temperatures in their
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native habitat. However, it is clear that the favorable temperature range of an organism 

under constant conditions can not be derived from the average daily temperature on site, 

especially for species whose native thermal regime is dynamic. Short term physiological 

adaptations or acclimation responses may exist that modify the effects of potentially 

lethal temperatures based on exposure time. However, these short term responses may 

provide only limited protection under potentially lethal circumstances, at the expense of 

other ecologically important parameters, such as growth and development.

Experiment B: Response o f Mature Nymphs to the Daily Minimum Temperature at Time 

o f Collection.

Similar to the nymphs in the warm water experiment, I. zionensis experienced 

very little mortality (n=l) during the acclimation period. Behavior patterns were 

responsive to photoperiod and activity levels appeared normal. Water temperatures 

during this experiment simulated the daily minimum temperature experienced in the field 

at the time of collection (Fig. 13). During the emergence period at Big Bend (May 5-15, 

1996), the daily minimum temperatures ranged from 11.4-13.4°C (Fig. 13). In contrast, 

the constant temperatures during the experimental emergence (May 2-June 3) were 7.8- 

9.TC.
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The emergence period (30 days) of experimental individuals was extended (May 

2-June 2), relative to the ten day synchronized emergence experienced from the 

population at Big Bend. Fifty percent of the experimental population successfully 

emerged, while the same proportion died (Fig. 14). Fifteen percent of all mortalities 

occurred during unsuccessful ecdysis. Emergence and mortality under experimental 

conditions displayed a similar relationship with time, maximum mortality and emergence 

occurring on May 19 and May 20, respectively (Fig. 14).

The wings of experimental females indicated adult tissue development was 

problematic. Forty percent of successfully emerged females exhibited signs of 

incomplete wing formation while, sixty percent of emerged females (n=18) experienced 

complete wing formation. (Fig. 14). In contrast, the wings of adult females (n=231) that 

emerged under ambient conditions at Big Bend were individually checked and did not 

show any signs of incomplete wing formation.

As a result of the uniform cold temperatures, 11% fewer degree hours were 

accumulated by the experimental population prior to 50% emergence (6726.2 dhrs) than 

required by the Big Bend population (7559.5 dhrs). Time at 50% emergence was May 17 

for experimental individuals, and May 10, at Big Bend.

Constant temperature experiments and distributional studies on members of the 

Perlodidae have found that species with limited distributions (e.g. Dinocras cephalotes, 

Isoperla grammatica, Isogenoides frontalis) or those occupying a fluctuating thermal 

environment (e.g. Hydroperla crosbyi, Isogenus decisus) often exhibit restrictive
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temperature ranges for growth, development and emergence (Nebeker 1971, Lillehammer 

et al. 1989, Minshall and Minshall 1966, Obemdorfer and Stewart 1977). The response 

of I. zionensis exposed to the constant cold temperature (7.8-9.7°C) suggests that 8-9“C is 

near the minimum temperature required for complete metamorphosis and emergence of I. 

zionensis. Perhaps a slightly warmer constant temperature (10-11°C) would have resulted 

in lower mortality and higher percentage of females with normal wings. However, 

nymphal response to a constant temperature of 14.5°C included catastrophic drift, 

eventually resulting in complete mortality. Based on the results of both experiments, 

under constant temperature conditions, /. zionensis requires a very narrow temperature 

range to complete its life cycle.

Exact temperature thresholds for ecdysis have been reported for some aquatic 

insects (Macan and Maudsley 1966, Danks and Oliver 1972, Trottier 1973, Peters and 

Peters 1977); however, 50% of the individuals attempted to emerge, suggesting that this 

species does not require an absolute temperature cue and these conditions were within a 

favorable range for emergence. Although 50% of the population successfully emerged 

under the constant cold conditions, reproductive success was cut in half due to mortality 

and 40% of the females displayed abnormal adult tissue development. This temperature 

may have provided the minimum required physiologically, but these conditions were less 

than ideal for metamorphosis and emergence.

Survival of an organism can be directly affected by absolute temperatures or 

exposure time; however, secondary, sublethal effects may influence normal activity and
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development, altering the reproductive success and future viability of the species. For 

example, small changes in the thermal regime of a first order stream in Ontario altered the 

phenology and significantly reduced the adult body size of the stonefly, Nemoura 

trispinosa (Hogg et al. 1995). The relationship between adult body size and fecundity has 

been clearly established (Vannote and Sweeney 1980) and although the altered thermal 

regime did not extirpate the population of N. trispinosa, it reduced the potential 

reproductive capacity of the population. For aquatic organisms that rely upon particular 

aspects of the thermal regime for an environmental cue (e.g. embryogenesis or 

metamorphosis), the effect on a population may be more direct. Lehmkuhl (1974) found 

that the mayfly, Ephoron album, was completely eliminated from a regulated river due to 

the loss of annual thermal variability required as stimuli during several phases of its life 

cycle.

The constant cold thermal regime was not absolutely lethal to the experimental 

individuals. However, removal of seasonal and diel temperature fluctuations, only three 

weeks prior to emergence, resulted in sublethal effects, influencing mortality, emergence 

synchrony and female adult tissue development. These sublethal effects illustrate the 

extreme sensitivity of this species to temperature. Sweeney and Vannote (1980) 

hypothesized that there is a distinct difference between larval and adult tissue 

development, and the latter is less likely to be influenced by temperature. This hypothesis 

was based on observations of decreasing adult size during the emergence period 

indicating that a given temperature threshold may exist simulating adult tissue
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development for all individuals regardless of nymphal size (Sweeney and Vannote 1981). 

Data on the size of newly emerged adults was not collected for this study; however, 

emergence was highly synchronized under ambient conditions and the females examined 

from Big Bend showed no signs of incomplete wing formation. Therefore, the removal 

of the seasonal or diel fluctuations may have affected proper wing formation, despite the 

propensity for complete adult tissue development under nonlethal temperatures. Similar 

findings by Wright and Mattice (1981) illustrate that at a nonlethal temperature, body size 

of Hexagenia bilineata was maximized, but the emergence period was prolonged and 

metamorphosis problematic, resulting in significant mortality. Wright and Mattice (1981) 

concluded the loss of thermal variability was responsible for the asynchronous emergence 

and mortality.

Synchronized emergence is often thought of as a reproductive advantage (Vannote 

and Sweeney 1980), initiated by a thermal cue. Emergence timing and the degree of 

synchrony has been related to temperature in many studies and appears to be a species- 

specific response associated with degree-day accumulations or a particular aspect of the 

thermal regime (e.g. minimum or maximum temperature). For example, the emergence 

timing of P. badia has been directly correlated to degree-day accumulations, whereas the 

intensity of the emergence may be attributed to nearshore temperatures or, under 

experimental conditions, warmer waters (Stanford 1975). Some species may respond to 

both absolute temperatures and the variability of the thermal regime. Danks and Oliver 

(1972) found the emergence timing of some Chironomids to be directly related to
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absolute water temperatures, whereas the degree of synchrony was negatively correlated 

to the magnitude of diel fluctuations. The degree of emergence synchrony differed for 

populations of Megarcys signata in Mill Creek, Utah. The shortest emergence period 

was less than 14 days occurring at an exposed, high elevation site (Gather and Gaufin

1975), suggesting diel fluctuations may influence emergence intensity. Still other 

research has shown that an absolute water temperature may be responsible for initiating a 

cue to emerge, but daily emergence intensity was species-specific and associated with diel 

fluctuations and/or photoperiod (Danks and Olivier 1972, Wartinbee 1979).

Several studies have attributed the asynchronous emergence of aquatic insects at 

constant temperatures to the loss of natural thermal variability (Wright and Mattice 1981, 

Marten 1991), while others have attributed a synchronized response to short term 

temperature fluctuations (Sheldon 1972, Peters et al. 1982). It is plausible that the cue 

required for emergence of /. zionensis incorporates both degree-hour accumulation and 

diel fluctuations in temperature. The emergence period of experimental individuals was 

lengthened by the cold, constant temperatures, but 50% of the nymphs successfully 

emerged within 1 week of the population at ambient conditions, and required 11 % less 

thermal units (dhrs) to do so. Furthermore, the time of 50% emergence was not 

temporally distinct from the Big Bend population (May 17 vs. May 10). This suggests 

that emergence timing (cue) may be independent of temperature and degree-hour 

accumulations, or vernal warming experienced prior to removal from ambient conditions 

had provided nymphs with some aspect of an thermal emergence cue.
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Based on the temperature sensitivity of mature nymphs, it is highly unlikely that 

the emergence timing of 7. zionensis is independent of the thermal regime. The influence 

of seasonal warming in the N.F. Virgin River would force nymphs from the water in 

order to survive. This was observed in the constant warm water experiment where many 

nymphs exited the unsuitable water, crawling back in only when disturbed by activity in 

the laboratory. The difference in degree-hours coupled with peak emergences nearly 

coinciding under drastically different thermal regimes (Experiment B vs. Big Bend) 

suggests emergence timing for /. zionensis is not solely dependent upon thermal demand. 

A potential explanation for the synchrony in emergence timing may be associated with 

exposure at ambient conditions prior to experimental manipulation. The mature nymphs 

were only 3 weeks away from natural emergence and vernal warming a priori may have 

provided a cue for adult maturation processes to begin. If a cue had been initiated prior to 

experimental manipulation this would explain the similarity in timing, but not the 

prolonged emergence period.

The extended emergence suggests that a second thermal cue, potentially short 

term in nature, may be required for synchronous emergence. The correlation between 

short term temperature fluctuations and emergence has been demonstrated for only a few 

species (Trottier 1973, Wartinbee 1979, Peters et al. 1987); however, there are benefits to 

a short term response in a dynamic system. Diel temperature fluctuations reflect the 

environmental conditions of a site, both terrestrial and aquatic. Incorporating daily 

fluctuations into a life history response would allow nymphs to correctly time
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synchronous emergence with favorable environmental conditions for ecdysis and 

reproduction.

Stream temperatures reflect favorable atmospheric conditions, providing a 

mechanism to avoid potentially lethal temperatures (too cold or hot) or extremely dry 

conditions. Under ambient conditions emergence was nocturnal and early morning 

observations suggest that the majority of nymphs that emerged over night had completed 

ecdysis and moved into vegetation by sunrise, leaving only their skins behind exposed on 

the river bank. Based on behavior in the field and the experimental results, it seems 

plausible that emergence synchrony is a short term response to temperatures experienced 

below at least 14.5°C and above 8-9°C. Figure 15 illustrates the time period for May 1 fi­

l l ,  1996 at Big Bend during which emergence could occur based on the results of these 

experiments.

Isogenoides zionensis proved extremely sensitive to temperature, despite the 

thermal variability experienced on both an annual and diel basis within its native habitat. 

Although this species is very responsive to temperature, it is a time dependent adaptation 

where the rate and magnitude of the variability is not of lethal consequence, only the 

duration. These results indicate that /. zionensis has invoked a life history strategy more 

complex than the summing of degree-hours, an absolute temperature, or even the average 

daily temperature, which may be linked at several temporal scales to the timing and 

synchrony of emergence.
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Distribution o f Isosenoides zionensis in the North and East Forks Virgin River

Sampling sites covered an altitudinal gradient of 2261m to 1158m (7420-3798ft.) 

on the North and East Forks of the Virgin River. The location of sampling sites and the 

range of /. zionensis are shown in Figure 16. Site descriptions and observations are 

located in Table 1.

The distribution of I. zionensis in the Fast Fork Virgin River was limited to the 

upper watershed above 1800 m, at the Glendale site (RM 186.6). Although I. zionensis 

was found at this location, the community appeared to be dominated by Hydropsyche 

spp.. Fox and Fddy (1977) report similar findings from this location.

The distribution of /. zionensis in the North Fork drainage was much more 

extensive, extending from the headwaters around 2261 m to 1310 m (7420-4296ft.). 

Sampling revealed that the distribution of /. zionensis did not extend as far downstream as 

the Springdale site (RM2.0). The Visitors Center site (RM5.0), located between the Big 

Bend site and the Springdale site, was not quantitatively sampled, due to unsuitable 

substratum. Qualitative sampling at the Visitor Center in September 1995, April 1996 

and September 1996 failed to find 7, zionensis at this location. Further attempts to narrow 

the range of I. zionensis in April 1996 determined that the distribution of /. zionensis 

extended less than 1 kilometer downstream of Big Bend.

Determining the role of abiotic controls, such as substratum, discharge and
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temperature, on the distribution and abundance of aquatic organisms is often a central 

theme in ecological studies (e.g. Ward and Stanford 1982, Statzner and Higler 1986, 

Death 1995). Correlations are often used to explain observations. However, rarely are 

they corroborated by experimental studies (Power et. al. 1988) or undertaken at the 

population level in different habitats (Sweeney 1984). For the majority of aquatic 

species, basic life history information is lacking (Power et al. 1988, Naiman et al. 1995), 

let alone which abiotic variables may be most influential.

In the upper Virgin River watershed, lotie attributes vary both spatially and 

temporally within the distributional range of I. zionensis (Table 1). Heterogeneous 

channel characteristics include exposed, first order streams, canyon confined sections and 

wide alluvial valleys. The entire spectrum of substrate can be encountered from sand to 

very large boulders, and the physical characteristics of elevation, climate and topography 

modify aspects of the thermal regime at each location. Hence, the longitudinal 

distribution of I. zionensis includes a wide range of ecologically significant factors (i.e. 

substratum, discharge, temperature).

In the North Fork of the Virgin River longitudinal variation in community 

composition can be associated with altitudinal zonation and the canyon attributes of the 

system. Data from Fox and Eddy (1976) and Boyle et al. (1993) indicate that several 

species (Suwallia spp., Rhithrogena spp.) are restricted to the headwaters region (above 

2133m or 7000 ft) whereas others (Atherix spp., Taenionema nigripenne, P. badia) 

exhibit a distinct zonation downstream, restricted to the middle-lower rhithron segments.
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The rhithron-potomon transition appears to delineate the upstream boundary for 

Corydalus spp. and Petrophilia spp. (Boyle et al. 1993, Addley and Hardy 1993), species 

commonly associated with potomal habitats in the Southern Rocky Mountain Region 

(Ward 1986, Ward and Stanford 1991).

The distribution of /. zionensis and longitudinal changes in community 

composition (Fox and Eddy 1977, Boyle et. al. 1993, Addley and Hardy 1993), suggest 

the distribution of I. zionensis extends from the headwaters downstream into the rhithron- 

potomon transition zone. Faunal composition of sites farthest downstream include the 

typical potomal species, Corydalus spp. and Petrophilia spp., in addition to /. zionensis 

(Boyle et al. 1993, Addley and Hardy 1993). Although I did not collect water quality data 

for this study, results from earlier studies do not indicate any limiting parameters for 

aquatic biota within the N.F. Virgin River. Fox and Eddy (1977) conducted a complete 

water quality analysis within the study area and found all parameters met water quality 

standards. Similar findings were reported from a study conducted in 1993, adding that 

seasonal differences among sites were correlated with discharge (Boyle et al. 1993).

The thermal regimes of sites on the N.F. Virgin River vary as a function of 

elevation and other physical attributes. Variation in the thermal regime among sites may 

explain longitudinal changes in community composition. For example, several studies 

have shown cold stenotherms generally dominate the rhithron community (Ward and 

Kondratieff 1992) and often exhibit a discontinuous distribution, dropping out of the 

benthos prior to potomal conditions (Ward 1986, Ward et al. 1986,Ward and Stanford
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1991,Ward et al. 1994). Few Plecoptera are tolerant of temperatures above 25°C (Hynes

1976) limiting the distribution of most species to the rhithron environment.

Shifts in faunal composition can be associated with longitudinal gradients, 

especially temperature, within the river continuum. The Above Narrows site consistently 

exhibited lower average temperatures than both downstream sites for the period of April 

10- August 31, 1996 (Fig. 4), although the daily maximum temperatures experienced at 

this location generally exceeded the maximum temperatures at Big Bend, and equaled or 

exceeded that experienced at the Visitor Center site (Fig. 5). In addition, the Above 

Narrows site experienced the most extreme diel variation (Fig. 6). The average daily 

temperatures (Fig. 4) remained well below 20°C, indicating rhithral characteristics.

Due to the moderating influence of the Narrows and Zion canyons, average daily 

temperatures at Big Bend indicate the rhithron segment is extended on the North Fork 

(Fig.4). Qualitative sampling downstream from this site revealed that /. zionensis drops 

out almost 5 river miles upstream from the Visitor Center (RM5.0). Although there is 

only a slight difference in both average daily temperatures and degree-hours between the 

Visitor Center and Big Bend sites, the thermal regime experienced at both sites differ due 

to diel fluctuations. Many more hours are spent above 20°C at the Visitor Center, than at 

either Big Bend or Above Narrows sites (Fig 7 and 8). Hence, the distribution of I. 

zionensis may be influenced by slight differences in the thermal regime associated with 

the duration of exposure to marginally stressful temperatures, as a result of diel 

fluctuations.
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Longitudinal Density o f Isosenoides zionensis in the N.F. Virsin River

Sampling in the N.F. Virgin River revealed differences in the density of I. 

zionensis among sites during the September 1995 sampling period (Fig. 17, Table 1).

The distribution of I. zionensis included four within canyon sites on Deep Creek, a major 

tributary to the North Fork: Virgin Flats (RM5.6), Hogs Heaven (RM4.0), Box Canyon 

(RM 1.8) and Above NF Confluence (RM0.1)(Fig. 16). The density (average! Istd) of 7. 

zionensis at each of the Deep Creek sites ranged from 18.7±18.0/m^ to 9.3±2.3/m^. These 

densities are most similar to those of the canyon-influenced sites on the North Fork, Big 

Spring (RM 17.0) and Big Bend (34.7±14.0/m^ and 36.0 ±14.0/m^).

At the Headwaters site, the density of /. zionensis (22.0 ±18.9/m^) was 

comparable to the other North Fork and Deep Creek sites. However, /. zionensis was not 

the most abundant species at this location. Pteronarcella badia (88.0±53.0/m^) 

dominated the community at the Headwaters site, far exceeding the numbers of I. 

zionensis at this location. The exposed, high elevation Above Narrows site (RM26.8), 

exhibited the highest density of 7. zionensis (68.0±25.7/m“), in comparison to the canyon- 

influenced sites. Although each site exhibited a high within site variability, this data 

suggest that longitudinal differences in the density of 7. zionensis in the N.F. Virgin River 

may be associated with canyon-influenced lotie characteristics, including the thermal 

regime.
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Seasonal Size Differences Antons Sites: Above Narrows (RM26.8) V5. Bis 

Bend(RMlL7)

Seasonal collections at the Above Narrows site during September 1995 and 1996 

revealed size differences among /. zionensis in the N.F. Virgin River basin. Isogenoides 

zionensis collected from the Above Narrows site (RM26.8) in both September 1995 and 

1996 were significantly larger than those collected from Big Bend (Student’s t-test, p< 

.001, p<.0001), respectively (Fig. 18). However, no significant difference in size was 

found among individuals from the Above Narrows and Big Bend sites in April 1996 (Fig. 

18).

These results illustrate the different growth rates of /. zionensis at these sites 

during the period of rapid growth (June-September 1996). This result was surprising 

because it was the opposite of what would be expected based on longitudinal emergence 

patterns; individuals at Big Bend emerged earlier than those at the Above Narrows site. 

This suggests that the greater nymphal size achieved by individuals at the Above 

Narrows site, occurred in a shorter period of time.

During the summer months, the Above Narrows and Big Bend sites experienced 

very similar average daily temperatures (Fig. 4), suggesting that the observed size 

differences among sites are not correlated to this parameter. Numerous studies have 

illustrated a difference in the growth rate of Plecoptera under various constant 

temperatures ( See Branham et al. 1975, Heiman and Knight 1975, Lillehammer 1985,
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Lillehammer 1987, Lillehammer et al. 1989). However, I am not aware of any studies 

that have examined the difference in nymphal growth rates under experimentally 

fluctuating conditions. This phenomena has been observed for several species 

experiencing different thermal regimes in the field (Gather and Gaufin 1975, Oblad 1991, 

Haro and Wiley 1992); however, the temporal variation of the thermal regime was not 

examined.

Despite their similarity in average daily temperatures, significant differences in 

the thermal regime exist between the Above Narrows and Big Bend sites that may explain 

the observed differences in nymph size. Thermal accumulation is usually calculated 

based on the mean daily temperature and reported as degree-days (Sweeney 1984). For 

this study, degree-hours were used as a measurement of thermal accumulation at each 

site. During the summer growing season. Big Bend accumulated almost 10% more 

degree-hours (55027 dhrs) than at the Above Narrows site (49645dhrs), indicating more 

time on an hourly basis may be spent at unfavorable growing conditions at the lower 

elevation site (Fig. 8).

During the summer growing season, the majority of time at the Big Bend site is 

spent at high temperatures, between 16-22°C (Fig. 8). In contrast, the Above Narrows 

site may reach a higher maximum daily temperature, but less hours are spent at high 

temperatures on a daily and seasonal basis due to night-time cooling (Fig. 7 and 8).

These results indicate that an absolute temperature threshold may exist, above which the 

energetic cost of metabolic processes may reduce the energy available for growth
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(Vannote and Sweeney 1980). Increased rates of growth observed under fluctuating 

thermal regimes suggest that the metabolic rate is not independent of the temperature 

fluctuations (Sweeny and Schnack 1977, Hoffmann 1985). Therefore, the pattern of 

temperatures experienced at the Above Narrows site may provide a metabolic advantage 

during the summer due to more time spent under favorable conditions for growth (below 

a critical threshold associated with metabolic costs) as a result of diel periodicity.

Although /. zionensis may experience a growth advantage during the summer at 

the Above Narrows site, it is a seasonal phenomenon. No significant differences in the 

size among late stage nymphs (males or females) from the Above Narrows and Big Bend 

sites were found in April 1996 (Student’s t-test, p=.603, p=.927). These results indicate 

that temperature patterns during the winter and spring seasons at Big Bend allow these 

individuals to increase in size by late spring, eliminating the difference in size observed at 

the end of the previous summer growing season.

A possible explanation associated with the thermal regime may explain the lack of 

seasonal size differences observed among the sites in April 1996. Unfortunately, I do not 

have winter or early spring temperature data from the Above Narrows site. However, the 

climate, elevation and emergence in 1996, suggest this site experiences harsher winter 

conditions and delayed vernal warming, when compared to the low elevation site at Big 

Bend. Therefore, the differences in elevation and climate may result in significantly 

warmer winter or spring temperatures at Big Bend. Minimum temperatures required for 

growth have been identified for a number of species, including Plecoptera (Markarian
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1980). This suggests slightly warmer conditions at Big Bend may allow growth to occur 

during the winter or spring, whereas the colder temperatures at the high elevation site 

may retard the growth of L zionensis during these seasons.
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SUMMARY AND CONCLUSIONS

The phenology and distribution of I. zionensis in the N.F. Virgin River is highly 

associated with the thermal regime as illustrated by both field data and experimental 

results in this study.

The annual and daily discharge pattern of the N.F. Virgin River is highly variable, 

influenced by seasonal snowpack, global climatic conditions and the unpredictable 

occurrence of flashfloods. Spring snowmelt events can occur and seasonal emergence 

prior to this event has distinct advantages, which may manifest as a long term selective 

pressure influencing the life history of this organism. Discharge was not directly 

associated with the timing of emergence in 1996 and probably plays only a secondary role 

in the life cycle of I. zionensis because of its relationship with temperature. Stream 

temperatures are, in part, a function of volume. In low flow years such as 1996, the 

stream probably warmed sooner than in 1995 due to the lack of spring runoff which likely 

moderates the effect of vernal warming on water temperatures. Therefore, discharge 

plays an indirect role on the life cycle of /. zionensis, as it may influence temperature and 

the timing of thermally controlled physiological cues.

Despite the range of temperatures experienced on a daily basis by this species, I. 

zionensis proved to be extremely sensitive to this variable as a function of the duration of 

exposure, even when only a few weeks away from emergence. Experimental results 

using late stage nymphs under constant temperature conditions simulating the average
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daily temperature during ambient emergence resulted in 100% mortality. These results 

illustrate the chronic effect of exposure to sublethal temperatures normally experienced 

only for short periods of time, as a result of diel fluctuations.

The sensitivity of this species to the fluctuating thermal regime was also 

illustrated experimentally by removing the diel periodicity and exposing late stage 

nymphs to a constant thermal regime simulating the daily minimum temperature 

experienced at the time of collection. Although conditions were not ideal, 50% of the 

population emerged, indicating the experimental temperature was within the range of 

favorable conditions necessary for the completion of the life cycle. However, 

reproductive success was cut in half due to mortality (50%). Likewise, 40% of the 

emerged females exhibited signs of abnormal wing development. In addition, the 

emergence period was prolonged under experimental conditions and emergence timing 

was temporally indistinct. These results can not be explained by degree-hour 

accumulation, suggesting the adult maturation process had begun a priori and that a 

second thermal cue is required to synchronize emergence. Therefore, exposure at the 

constant cold temperature provided the minimum temperature necessary, physiologically, 

but these conditions were less than ideal for metamorphosis and recruitment.

The results from these experiments suggest that the emergence cue is not 

associated with the composite value of the average daily temperature, and instead is likely 

related to the transition between the maximum and minimum daily temperature or the 

duration and magnitude of these extremes. Hence, /. zionensis has invoked a life history
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Strategy more complex than the summing of degree-hours, an absolute temperature, or 

even the average daily temperature, which is linked at several temporal scales to the 

timing and synchrony of emergence.

The extreme sensitivity of I. zionensis to temporal aspects of thermal variability, 

may also serve to limit the range of this species within the upper Virgin River watershed. 

Within the North and East Forks many ecologically significant abiotic factors vary as a 

function of elevation and topography influencing the thermal regime and the location of 

the rhitron-potomon transition.

The distribution of I. zionensis in the North and East Forks extends from the 

headwaters to the rhithron-potomon transition characterized by community composition 

and temperature. Within the range of this species, substratum characteristics, the thermal 

regime and the aquatic community shift as influenced by elevation and canyon shading. 

On the East Fork , the distribution of /. zionensis is limited to above 1798m (5900ft.), 

below this point the river flows through an exposed, unconfined valley dropping in 

elevation, inhabited by potomon species. In contrast, rhithral characteristics on the North 

Fork are shifted downstream due to the influence of canyon shading, extending favorable 

habitat for many species, including 7. zionensis.

The range of I. zionensis on the North Fork extends from 2261m (7420 ft.) in 

elevation to less than 1280m (4200 ft.), including exposed areas on the high desert 

plateau and a wide alluvial valley at the most downstream end. Substratum includes 

sand, boulders and deep pools; and riffles can be composed of small gravel to large
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cobbles. Stream characteristics of the North Fork are highly influenced by the canyon 

environment, as is the thermal regime.

Sites within and outside of the distributional range of I. zionensis on the North 

Fork have only slight differences in average daily temperatures (<2°C), and less than 10% 

difference in degree-hours. Similar to the emergence cue for this species, the distribution 

may not be explained by thermal variability between these sites based on these 

parameters. Large diel fluctuations and the highest maximum temperatures are 

experienced at the site where /. zionensis appears to be most abundant and attains the 

largest body size after the summer growing season. These results may illustrate the 

cumulative effect of environmental conditions as they influence the energy balance of this 

species (Hall et al. 1992).

Within the range of I. zionensis, aspects of the thermal regime vary which may 

cause energetic costs at some locations to be greater than at others, resulting in variations 

in the size and abundance of a species at different locations. These results indicate that 

the thermal regime, particularly diel fluctuations, may provide a growth and reproductive 

advantage under favorable conditions along a gradient. Similarly, diel fluctuations may 

also serve to limit the downstream distribution of this species as influenced by the 

duration of time spent above a critical temperature, by increasing maintenance costs or 

sublethal effects at a critical temperature.

The role of the thermal regime in the life history and distribution of aquatic 

organisms is central to understanding the ecological significance of natural environmental
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variability. The range of natural variability undoubtedly includes potentially lethal effects 

that may manifest at various temporal and spatial scales (Frissel and Bayles 1996). As 

the results of this study illustrate, the relatively predictable pattern of the thermal regime 

as described by the temporal variability on a daily basis includes critical aspects for life 

cycle processes and the distribution of /. zionensis. Therefore, it is not enough to describe 

the critical habitat characteristic of temperature by convenient measures such as a daily 

average, when some species respond to the entire range of temperatures and temporal 

patterns.

A Federal Reserve Water Rights Agreement (1997) for Zion National Park will 

preserve the dynamic integrity of the N.F. Virgin River and serve to protect I. zionensis 

and many other species, associated with the canyonlands in Zion National Park.
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FIGURES

Figure 1. North Fork Virgin River study area.
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Figure 2. Hydrographs of water years 1995 and 1996 for the North Fork Virgin River 
at the Visitor Center (RM5.0) site. Mean daily discharge shown in in cubic feet per 
second.
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Figure 3. Hydrographs of the North Fork Virgin River at the Visitor Center (RM5.0) 
site for water years 1977-1993. Mean daily discharge in cubic feet per second.
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Figure 4. Average daily temperatures at the Above Narrows (RM26.8), Big Bend 
(RM 11.7) and Visitor Center (RM5.0) sites, April 10-Au gust 31, 1996.
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Figure 5. Maximum daily temperature at the Above Narrows (RM26.8), Big Bend 
(RM 11.7) and Visitor Center (RM5.0) sites, April 10- August 30, 1996.
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Figure 6. Diel amplitude at sites on the North Fork Virgin River,

a.) Above Narrows (RM26.8)
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Figure 7, Temperature duration curves illustrating the number of hours spent at each 
temperature interval, April 11 - August 31, 1996, at the Above Narrows (RM26.8), Big 
Bend (RMl 1.7) and Visitor Center (RM5.0) sites.
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Figure 8. Temperature duration curve illustrating the number of hours spent at each 
temperature interval, June 1 - August 31, 1996, at the Above Narrows (RM26.8), Big 
Bend (RMl 1.7) and Visitor Center (RM5.0) sites.
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Figure 9. Heat accumulation, shown as total degree-hours, for the North Fork Virgin 
River at the Above Narrows(RM26.8), Big Bend (RM 11.7) and Visitor Center (RM5.0) 
sites, April 11 - August 31, 1996.
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Figure 10. Growth, measured using interocular width (mm), of Isogenoides zionensis 
nymphs at Big Bend (RMl 1.7) from November 1993 through April 1996. Average size 
of all nymphs shown by blue bars. Average size of males (■) and females (A) denoted.

3.5 

3

2.5 

2

1.5 

1

Emergence

- . . t

0.5
CO05
>
o

CO
0 5
Ü
CDQ

CD
CD

Tj- in If) If) in in in ID CO CO CO CO
0 5 05 0 5 <35 05 05 <35 <35 <35 <35 C35 <35 <35 <35 <35 <35 c p

CO CC
C
3

- 5

CD
3
<

Q .
05
C/D

é
z

C
CO

—5
CO Q .

<
~3
—5

Q .
CD

C/D
Oo

CD
CD

Q

C
CO

—5

iL
CO CL

<
c
3

~ 5

November 1993 - April 1996



71

Figure 11. Growth and emergence of Isogenoides zionensis at the Big Bend (RMl 1.7) 
site, July 1995-August 1996, in relation to the thermal regime (average daily 
temperature). Average daily temperature at Big Bend shown in blue. Average size of all 
nymphs indicated by triangles (black), average size of male and female nymphs shown as 
squares (dark blue) and circles (pink), respectively.
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Figure 12. Experiment A: Mature nymphs from Big Bend (RMl 1.7) exposed to the 
average daily temperature in the field during natural emergence. Hourly temperatures 
during experiment (April 11-April 28, 1996) shown in green. Hourly temperatures at Big 
Bend under ambient field emergence conditions (May 4-21, 1996) shown in black. 
Response of nymphs to experimental temperatures indicated.
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Figure 13. Experiment B: Mature nymphs from Big Bend (RMl 1.7) exposed to the 
minimum daily temperature at time of collection (April 10, 1996). Green dots illustrate 
the daily average experimental temperature. Hourly temperatures in the field at Big Bend 
shown in black. Emergence period under ambient and experimental period illustrated.
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Figure 14. Results from Experiment B: total mortality, emergence and female wing 
development.
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Figure 15. Ambient conditions experienced in a 24 hour period during the emergence at 
Big Bend (RMl 1.7). Favorable temperatures range for emergence illustrated.
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Figure 16. Distribution of Isogenoides zionensis and sampling sites in the upper Virgin 
River watershed.
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Figure 17. Longitudinal density of Isogenoides zionensis within the North Fork Virgin 
River basin. Error bars ± 1 standard deviation.
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Figure 18. Size of Isogenoides zionensis from the Above Narrows (RM26.8, blue) and 
Big Bend (RM 11.7, pink) in September 1995 and 1996. Significant differences in size 
are denoted by asterisks (P<.001=* and P< .0001=**). Error bars indicate ± 1 standard 
deviation.
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Figure 19. Size of Isogenoides zionensis females and males from Above Narrows (blue) 
and Big Bend (pink) sites. No significant difference in size of either sex between sites (P 
=.9217 and P =.6032). Error bars indicate ± 1 standard deviation.
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Table 1: Site Descriptions and Density o f Isogenoides zionensis

Elevation Channel Depth Periphvton
Densitv of 
/. zionensis (m/^)

East Fork Virgin River (m, ft.) Width fm) (cm) (Mean± STD)

EF at Glendale (RM 186.6) 1974 (5900) 1.5 30.0 moderate 13.3 ±6.1
Mt. Carmel (RM 176.9) 1562 (5140) 10.6 15.0 low 0
Parunaweap (RM 157.3) 1200 (3950) 12.1 30.0 low 0

Deep Creek 

Virgin Flats (RM5.6) 1763 (5800) 7.6 30.0 low 18.7 ± 1 8 .0
Hogs Heaven (RM4.0) 1690(5560) 7.6 30.0 low 12.0 ± 6 .0
Box Canyon (RM 1.8) 1629 (5360) 7.6 30.0 low 9.3 ± 2 .3
Above NF Confluence (RMO. 1) 1602(5270) 7.6 30.0 low 16.0 ± 8 .0

North Fork Virgin River

Headwaters (RM29.5) 2256(7420) 1.1 12.0 low 22.0 ± 18.9
Above Narrows (RM26.8) 1885 (6200) 4.6 15.0 low 68.0 ± 42.3
Big Spring (RM 17.0) 1581(5200) 7.6 30.0 low 34.7 ± 14.0
Big Bend (RMl 1.7) 1307 (4300) 12.1 25.0 low 36.0 ±14.0
Visitor Center (RM5.0) 1207 (3970) 4.5 60.0 moderate 0*
Springdale (RM2.0) 1155 (3800) 7.6 45.0 moderate 0

* Quantitative sampling was not conducted due to unsuitable substrate.
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