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Abstract 

 Increased species diversity has strong positive effects on both the productivity and 

functioning of ecosystems.  Therefore, understanding the ecological processes that drive 

coexistence in communities is of fundamental importance.  A characteristic held in common for 

many of these processes, such as niche partitioning, consumer effects, and disturbance, is that 

they counteract, in theory, the fundamental effects of the competitive exclusion principle.  Much 

ecological theory is based on the assumption that competition, if not neutralized by other factors, 

will drive weaker competitors out of the system and decrease diversity.  Other theory poses that 

competition can be non-transitive (non-hierarchical) and that networks of competing species may 

actually promote coexistence, but empirical evidence for this theory is minimal.  Here, I used a 

novel replacement species experiment in the field to demonstrate that competition among species 

assembled into complex groups is fundamentally different from competition among the same 

species in classic pairwise experiments.  In groups, competition was much weaker than in 

pairwise arrangements and facilitative interactions emerged so that competition was considerably 

dampened, which should promote coexistence, but without the occurrence of non-transitive 

loops.  These results suggest that ecological differentiation is not necessary for highly attenuated 

competition among plant species and their coexistence, and that current theory based on 

competitive hierarchies and exclusion, or on non-transitive competition in complex networks, is 

incomplete.  Instead, coexistence may be enhanced in species rich assemblages by emergent 

processes derived from complex suites of direct and indirect interactions among groups of 

competitors that neutralize the competitive exclusion principle. 

Keywords:  competition, coexistence, Centaurea stoebe, hierarchy, indirect interactions, non-

transitive. 



High species diversity increases the productivity and functioning of ecosystems (Hooper 

2005), therefore understanding the processes that promote coexistence in communities is crucial.  

Most theory for coexistence finds common ground in explaining how the effects of interspecific 

competition, or the “competitive exclusion principle” (Hardin 1960), might be avoided (Chesson 

2000).  This theory can be most simply organized into three categories: 1) avoidance of 

competition through spatial or temporal niche partitioning (Hutchinson 1959, MacArthur and 

Levins 1964, 1967, Warner and Chesson 1985), 2) weakening of strong competitors thru non-

equilibrium forces such as disturbance and herbivory (Connell 1978, McNaughton 1979, Pickett 

1980), and 3) disrupting competitive exclusion through non-transitive competitive interactions 

(Buss and Jackson 1979).   This theoretical focus on mechanisms that reduce the effects of 

interspecific competition derives from the perspective that unfettered competition must lead to 

lower diversity.  In other words “ecological differentiation is the necessary condition for 

coexistence” (Hardin 1960), a perspective based to a large degree on classic two-species models 

and experiments (Volterra 1926, Gause 1934).  However, competitors rarely occur in pairs in 

nature, and theoretical models suggest that non-transitive direct interactions or “competitive 

loops” among groups of competitors may promote coexistence among competitors – a striking 

contrast to the competitive exclusion principle (Laird and Schamp 2006).  Non-transitive 

interactions require that at least one competitively subordinate species in a group outcompete at 

least one species higher on the competitive hierarchy and provides an explanation for how direct 

competition might be attenuated.   Experiments have demonstrated strong indirect interactions 

among competitors (Miller 1994, Levine 1999, Callaway and Pennings 2000); however, there is 

no empirical evidence for such loops in communities of competing plants. 



Here I show that strong interspecific competition is highly attenuated, and even reversed 

to facilitative interactions, when species compete simultaneously in groups.  In some cases, the 

“modified interactions” that occur in groups of competitors may help to explain why some 

diverse communities in nature appear to be far more inherently stable than predicted by two 

species models and experiments.  In a three year field experiment, five native North American 

prairie grasses and forbs and one highly invasive European forb, Centaurea stoebe¸ were grown 

alone, in all pairwise combinations, and in a novel replacement series with Latin square matrix 

plot combinations that allowed for all possible combinations of contacts among species.  By 

iteratively omitting each species from multispecies plots I was able to compare the net 

competitive effects and response of species in two-species and multi-species community settings. 

  I calculated direct effects using Relative Interaction Intensity indices (RII; Armas et al. 

2004) to make comparisons of competitive performance.  RII is a measure of the strength of 

interaction between species centered on zero with negative interactions (competition) indicated 

by values between 0 and -1, and positive interactions (facilitation) indicated by values between 0 

and +1.  RII allows for simple comparisons of interaction strength across taxa and treatments.   

In pairwise competition 8 of 16 interactions were significantly negative, or competitive, 

interactions (Figure 1), consistent with the idea that competition has the potential to eliminate 

some species.  In addition, three interactions tended towards competition, but were not 

significant (P<0.10).  However, when the same native species competed in complex 

communities with other natives, only 4 of the 16 interactions were significant and all were 

competitive.  Lastly, when natives competed with other natives in complex communities that had 

been invaded by C. stoebe, only 2 of the 16 interactions among natives were significant; and one 

of the significant interactions was competitive and one was facilitative.  Two other interactions 



in the invaded community tended towards significance (P<0.10), one negative and one positive.  

These apparently strong differences in the number of interactions between treatments, however, 

are subjective due to limitations of the existing testing strategy which prevents statistical 

comparisons.  

The summed competitive effects of native species on each other (the total additive net 

direct effects) were much weaker in multi-species communities.  In pairwise competition the 

mean of the summed competitive effects (RII) for each native species on each other was -

1.03±0.30 (Figure 2).  In multi-species communities composed only of natives the mean of the 

summed RIIs decreased by a factor of three, to -0.31±0.09 (P = 0.008).  When native 

communities contained C. stoebe, the mean of the summed RIIs was significantly different than 

pairwise competition (P = 0.05) but not different from that in the uninvaded communities (P = 

0.47).  However, the means of summed RIIs in invaded communities were not significantly 

different from zero (P = 0.971). 

When natives competed with each other in multispecies communities invaded by C. 

stoebe, the individual effects of each single species on another either diminished in strength or in 

one case, changed direction.  In the presence of C. stoebe, Gaillardia aristata, a perennial forb, 

significantly facilitated Pseudoroegneria spicata, a dominant bunchgrass.  Gaillardia aristata 

also tended to facilitate Festuca idahoensis in the invaded community, but this effect was not 

significant.  

The competitive effects of the invasive C. stoebe on native species were far stronger than 

those measured among natives, ranging from RIIs of -0.20±0.09 to -0.80± 0.08 in pairwise 

interactions (Figure 3), but from -0.08±0.11 to -0.34±0.10 in multispecies communities.  The 

competitive effects of C. stoebe were significantly dampened for three of the four native species 



when in communities than in pairwise arrangements, but the RII for the dominant native 

competitor, Pseudoroegneria spicata, was not significantly different in multi-species 

communities.  The average net direct effect of C. stoebe on native species was an RII of -

0.50±0.16 in pairwise arrangements versus -0.26±0.06 in multispecies arrangement, but these did 

not differ significantly (P = 0.22), suggesting that stronger invaders (Ortega and Pearson 2005) 

do not compete by the same rules as natives.  

As the diversity of competitors increases in native communities, the strong competitive 

effects of species on each other that are predicted by two-species models and measured in simple 

experiments waned substantially and shifted toward weak facilitative interactions (Figure 1).  

Such shifts suggest that the fundamental role of interspecific competition in communities may be 

profoundly different than presumed in the ecological theory of the competitive exclusion 

principle – I found little evidence that competition among groups of native species, whether 

invaded or not, would lead to competitive exclusion.  However, the consistently strong 

competitive effects of the invader were consistent with the competitive exclusion principle.  Thus 

competition among species may actually promote diversity in some species-rich communities, 

and therefore the loss of some species may have cascading or accelerating effects on the 

diversity of communities.  The idea that competition may promote coexistence through the 

emergence of indirect positive effects as a result of complex multi-species interactions is not 

predicted by classic competition theory. 

The strong decrease in competitive intensities that occurred in multi-species communities 

are almost certainly due to indirect effects.  Indirect effects among competitors have been 

demonstrated in a number of field experiments (Miller 1994, Levine 1999, Callaway and 

Pennings 2000, Callaway and Howard 2007, Weigelt et al. 2007, Saccone et al. 2010, Michalet 



et al. 2011) but have proved difficult to separate from direct effects or separate fully from the 

effects of disturbance.  In a groundbreaking study of indirect interactions among plant 

competitors Miller (1994) used removal experiments to model important indirect positive effects 

among five exotic old-field plant species.  Our empirical results strongly support his findings but 

are derived from experimental communities in which the effect of a single native perennial 

species on another has been experimentally quantified both in pairwise interactions and in 

complex communities without the disturbance of removals – i.e. without creating potential non-

equilibrium conditions.  To our knowledge all field studies of indirect interactions have utilized 

removal experiments.  In addition to introducing non-equilibrium conditions, removal 

experiments do not account for interactions that occur prior to removal, which may leave 

confounding legacies on the strength and direction of competition. 

Centaurea stoebe appears to be an exceptionally strong competitor in intermountain 

prairies, based on its ability to replace natives and form near monocultures in nature (Ridenour 

and Callaway 2001) and its very strong effects in experiments (Maron and Marler 2008).  I 

included this strong competitor in pairwise interactions against all natives and in full native 

communities and found that the invader had very strong net effects in all experimental contexts.  

Surprisingly, in the presence of the invader the total net effect of native species on each other 

when competing in communities collapsed to summed values not significantly different from 

zero.  This provides a novel perspective on the way that invaders alter native landscapes through 

their unusually strong competitive effects (Maron and Marler 2008).  Not only do they suppress 

natives themselves, they may alter the way that natives interact with each other.  In this same 

context, our results add to the potential mechanisms by which diversity might resist exotic 

invasion.  Strong invasive competitors may eventually exclude natives, as indicated by my 



experiments, but also alter interaction intensities among native species in ways so that they 

compete far more weakly with each other and even facilitate each other.  If increasing native 

diversity consistently decreases net interaction strengths among natives in invaded systems and 

the mean competitive effects of invaders, this may provide a novel form of biotic resistance that 

is inherent to diverse communities.  To be clear, I did not test the effects of diversity, per se, in 

our experiment, yet our results infer a new mechanism by which diversity may contribute to 

biotic resistance to invasion.   

An explicit understanding of how species on the same trophic level interact in groups is 

crucial if we are to understand the mechanisms that drive the emergent properties of groups – 

e.g. the relationship between species diversity and ecosystem function.  It is clear that niche 

complementarity (Hector et al. 1999, Tilman et al. 2001) and non-equilibrium processes (Connell 

1978, White 1979, Miller 1982) have powerful effects on coexistence and diversity; however our 

results empirically demonstrate that classic theory based on two species models and experiments 

substantially overestimate the competitive exclusion principle in multi-species communities, but 

that this overestimation is not dependent on non-transitive interactions (Stone and Roberts 1991, 

Laird and Schamp 2006).  Instead, indirect effects within trophic levels in species rich 

communities are maintained in part by the emergent properties of species interacting 

simultaneously in groups. 

 

  



References 

Armas, C., Ordiales, R. & Pugnaire, F. (2004) Measuring plant interactions: A new comparative 

index. Ecology, 85, 2682-2686. 

Buss, L.W. & Jackson, J.B.C. (1979) Competitive networks: Nontransitive competitive 

relationships in cryptic coral reef environments. American Naturalist, 113, 223-234. 

Callaway, R. & Howard, T. (2007) Competitive networks, indirect interactions, and allelopathy: 

A microbial viewpoint on plant communities. Progress in botany (ed U. L. K. Esser, W. 

Beyschlag and Jin Murata), pp. 317-335. Springer Berlin Heidelberg. 

Callaway, R.M. & Aschehoug, E.T. (2000) Invasive plants versus their new and old neighbors: A 

mechanism for exotic invasion. Science, 290, 521-523. 

Callaway, R.M. & Pennings, S.C. (2000) Facilitation may buffer competitive effects: Indirect 

and diffuse interactions among salt marsh plants. American Naturalist, 156, 416-424. 

Chesson, P. (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology 

and Systematics, 31, 343-366. 

Connell, J.H. (1978) Diversity in tropical rain forests and coral reefs. Science 199, 1302-1310. 

Gause, G.P. (1934) The struggle for existence. Williams & Wilkins, Baltimore, Maryland, USA. 

Hardin, G. 1960. The competitive exclusion principle. Science 131:1292-1297. 

Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M.C., Diemer, M., Dimitrakopoulos, P.G., 

Finn, J.A., Freitas, H., Giller, P.S., Good, J., Harris, R., Högberg, P., Huss-Danell, K., 

Joshi, J., Jumpponen, A., Körner, C., Leadley, P.W., Loreau, M., Minns, A., Mulder, 

C.P.H., O'Donovan, G., Otway, S.J., Pereira, J.S., Prinz, A., Read, D.J., Scherer-

Lorenzen, M., Schulze, E.-D., Siamantziouras, A.-S.D., Spehn, E.M., Terry, A.C., 



Troumbis, A.Y., Woodward, F.I., Yachi, S. & Lawton, J.H. (1999) Plant diversity and 

productivity experiments in european grasslands. Science, 286, 1123-1127. 

Hooper, D., Chapin Iii, F., Ewel, J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J., Lodge, D., 

Loreau, M. & Naeem, S. (2005) Effects of biodiversity on ecosystem functioning: A 

consensus of current knowledge. Ecological Monographs, 75, 3-35. 

Hutchinson, G. E. (1959). Homage to Santa Rosalia or Why Are There So Many Kinds of 

Animals? The American Naturalist 93:145-159. 

Laird, R.A. & Schamp, B.S. (2006) Competitive intransitivity promotes species coexistence. 

American Naturalist, 168, 182-193. 

Levine, J.M. (1999) Indirect facilitation: Evidence and predictions from a riparian community. 

Ecology, 80, 1762-1769. 

MacArthur, R. & Levins, R. (1964) Competition, habitat selection, and character displacement in 

a patchy environment. Proceedings of the National Academy of Sciences, 51, 1207. 

MacArthur, R. & Levins, R. (1967) The limiting similarity, convergence, and divergence of 

coexisting species. American  Naturalist, 101, 377. 

McNaughton, S. (1979) Grazing as an optimization process: Grass-ungulate relationships in the 

serengeti. American Naturalist, 113, 691-703. 

Miller, T.E. (1982) Community diversity and interactions between the size and frequency of 

disturbance. American Naturalist, 120, 533-536. 

Miller, T.E. (1994) Direct and indirect species interactions in an early old-field plant community. 

American Naturalist, 143, 1007-1025. 

Ortega, Y. K. and D. E. Pearson. 2005. Weak vs. strong invaders of natural plant communities: 

Assessing invasibility and impact. Ecological Applications 15:651-661. 



Pickett, S.T.A. (1980) Non-equilibrium coexistence of plants. Bulletin of the Torrey Botanical 

Club, 107, 238-248. 

Ridenour, W.M. & Callaway, R.M. (2001) The relative importance of allelopathy in interference: 

The effects of an invasive weed on a native bunchgrass. Oecologia, 126, 444-450. 

Saccone, P., Pagès, J.-P., Girel, J., Brun, J.-J. & Michalet, R. (2010) Acer negundo invasion 

along a successional gradient: Early direct facilitation by native pioneers and late indirect 

facilitation by conspecifics. New Phytologist, 187, 831-842. 

Stone, L. & Roberts, A. (1991) Conditions for a species to gain advantage from the presence of 

competitors. Ecology, 72, 1964-1972. 

Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, T. & Lehman, C. (2001) Diversity and 

productivity in a long-term grassland experiment. Science, 294, 843-845. 

Volterra, V. (1926) Fluctuations in the abundance of a species considered mathematically I. 

Nature, 118, 558-560. 

Warner, R.R. & Chesson, P.L. (1985) Coexistence mediated by recruitment fluctuations: A field 

guide to the storage effect. American Naturalist, 769-787. 

Weigelt, A., Schumacher, J., Walther, T.I.M., Bartelheimer, M., Steinlein, T.O.M. & Beyschlag, 

W. (2007) Identifying mechanisms of competition in multi-species communities. Journal 

of Ecology, 95, 53-64. 

White, P.S. (1979) Pattern, process, and natural disturbance in vegetation. The Botanical Review, 

45, 229-299. 

 

  



Figure Legends 

 

Figure 1.  Net direct effects between species grown in either pairwise, native multi-species 

groups, or invaded multi-species groups.  Solid arrows are negative interactions and dotted lines 

are positive interactions.  Black arrows represent significant interactions (P < 0.05) and light 

gray arrows represent non-significant interactions.  Arrow thickness represents interaction 

strength.  All native pairwise interactions are redrawn (light gray are non significant and dark 

gray are significant) for reference in the C. stoebe pairwise panel. 

 

Figure 2.  Total summed effects (RII values) of all native species on each other in either 

pairwise, native multi-species community plots, or invaded multi-species community plots.  

Asterisks represent significant interactions and letters represent significant difference between 

means of treatments (P < 0.05). 

 

Figure 3. Direct effects (RII) of the invader, Centaurea stoebe, on native species in either 

pairwise or invaded multi-species communities.  Asterisks represent significant interactions ( P < 

0.05). 
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Supplementary Material 

 
Methods 

In the summer of 2007 I created 322 experimental plots varying in species composition 

and complexity.  I chose three perennial bunchgrasses (Pseudoroegneria spicata, Festuca 

idahoensis, Stipa comata), two forbs (Linum lewisii and Gailardia aristata) and one highly 

invasive species (Centaurea stoebe) that are common in intermountain prairie in the northern 

Rocky Mountains.  Communities were built in 0.25 m2 plots in an experimental site at the Fort 

Missoula Biological Field Station, Missoula, Montana (46°50'16.92"N, 114° 3'24.58"W; 960 m).  

Plots were established in an area with homogeneous soil and solar exposure, and were subjected 

to the same water regimes.  The site was fenced and thus free from large herbivores and 

disturbance.   Prior to planting, the site was sprayed with the herbicide glyphosate to remove all 

vegetation and tilled to ensure highly uniform conditions. 

To quantify and compare direct and indirect interactions, all species were grown alone, 

and in pairwise and iterative omission Latin square matrix plot designs that allowed for all 

possible combinations of contact among species (Figure 1).  Plants were first grown in 100 mL 

“conetainers” (2.5cm x 16.5 cm; Stuewe and Sons, Corvallis, OR) from purchased seed in a 

greenhouse.  We outplanted seedlings in July 2007 and provided supplemental water during the 

first growing season to improve transplant success.  Following planting and for three growing 

seasons, I weeded all plots by hand to minimize the effects of garden weeds on the interactions 

among target species.  After three growing seasons, I harvested, dried in drying ovens for 72 

hours at 60° C, and weighed all above ground biomass for each individual. 

Drought either killed or prevented the resprouting of large numbers of one native forb, 

Gaillardia aristata, and the invasive forb, Centaurea stoebe, during the last two months of the 



experiment.  Thus I was able to quantify 16 of the 20 possible direct effects among native 

species, and the effects, but not the response, of C. stoebe in our experimental treatments. I 

calculated direct effects using the Relative Interaction Intensity index (RII; Armas et al. 2004).  

RII is calculated by dividing the difference between the biomass of the treatment and control by 

the sum of the biomass of the treatment and control ((BT-BC)/(BT+BC)).  Standard error was 

calculated using the formula provided by Armas et al. (2004, Appendix A).  RII is a measure of 

the strength of interaction between species centered on zero with negative interactions 

(competition) indicated by values between 0 and -1, and positive interactions (facilitation) 

indicated by values between 0 and +1.  RII allows for simple comparisons of the impact of 

species on each other across taxa and treatments.   

For all species in pairwise plots I calculated RIIs (Table 1) using the mean biomass of 

plants grown alone as controls and the mean biomass of plants in pairwise competition as the 

treatment.  For all species grown in multi-species experimental plots (native and invaded 

treatments), RIIs for the net direct effect of a single species on another in the context of 

communities were calculated by using the mean biomass of individuals grown in four species 

plots as controls and the mean biomass of individuals grown in complete five species 

assemblages as the treatment.   In order to avoid pseudoreplication I took the mean size of the 

surviving individuals of each species in each plot and used it to calculate overall treatment means 

and standard errors.  I excluded all mortalities from our analysis.  Statistical tests were performed 

on RIIs using t-tests (Excel 2007) to determine if interactions were significantly different from 

zero.  All statistical comparisons of RIIs among different species or between treatments utilized 

either a one-way ANOVA with Tukey post hoc comparisons or two sample means t-tests 

(Sigmaplot 11.2, Systat Software). 



 

 

Figure 1.  Experimental design for iterative omission, Latin square plot design.  All species were 

planted 10 cm apart horizontally and 14 cm on diagonal.  All plot designs were replicated (n=10 

for species grown alone and in pairs, n=8 for species grown in native four species plots, n=10 for 

native five species, n=10 for invaded four native species plots, and n=12 for invaded five species 

plots) with all possible combinations of species.  All species occupied all possible locations 

within each plot via replication to avoid bias in location within the plot.  

 

 

Stipa comata

Gailardia aristata

Linum lewisii

Pseudoroegneria spicata

Festuca idahoensis

Centaurea stoebe

Four native species plots Five native species plots

Invaded four native species plots Invaded five native species plots



 

Table 1.  Net direct effects (RII) of each species interaction in pairwise, native multi-species 

community and invaded multi-species community plots.  Bold values represent significant 

interactions (P<0.05) and asterisks indicate marginally significant interactions (P<0.10). 

 

Pairwise Interactions 

 Pseudoroegneria 

spicata 

Festuca 

idahoensis 

Stipa 

comata 

Linum lewisii 

P. spicata  -0.30 ± 0.09 -0.58 ± 0.11 -0.23 ± 0.13* 

F. idahoensis -0.13 ± 0.11  -0.43 ± 0.19 -0.24 ± 0.13* 

S. comata -0.20 ± 0.08 -0.07 ± 0.10  -0.30 ± 0.15* 

L. lewisii -0.26 ± 0.10 -0.38 ± 0.11 -0.45 ± 0.12  

Gailardia 

aristata 

-0.11 ± 0.13 -0.12 ± 0.10 -0.43 ± 0.13 +0.10 ± 0.16 

Centaurea 

stoebe 

-0.20 ± 0.09 -0.80 ± 0.08 -0.77 ± 0.09 -0.24 ± 0.11 

     

  



Native Community Interactions 

 Pseudoroegneria 

spicata 

Festuca 

idahoensis 

Stipa comata Linum lewisii 

P. spicata  -0.14 ± 0.07 -0.22 ± 0.09 -0.10 ± 0.11 

F. idahoensis +0.02 ± 0.13   -0.10 ± 0.15 -0.11 ± 0.10 

S. comata -0.01 ± 0.12 +0.08 ± 0.06  +0.12 ± 0.11 

L. lewisii -0.10 ± 0.10 -0.18 ± 0.08 -0.36 ± 0.14  

Gailardia 

aristata 

-0.15 ± 0.09 +0.08 ± 0.05 +0.11 ± 0.20 -0.20 ± 0.16 

 

 

 

 

Invaded Community Interactions 

 Pseudoroegneria 

spicata 

Festuca 

idahoensis 

Stipa comata Linum lewisii 

P. spicata  -0.29 ± 0.12 -0.02 ± 0.15 -0.25 ± 0.12* 

F. idahoensis 0.00 ± 0.11  +0.02 ± 0.12 -0.02 ± 0.11 

S. comata -0.04 ± 0.13 +0.08 ±0.16  -0.08 ± 0.10 

L. lewisii -0.16 ± 0.10 -0.05 ± 0.14 +0.11 ± 0.19  

Gailardia 

aristata 

+0.20 ± 0.09 +0.27 ± 0.14* +0.10 ± 0.14 +0.15 ± 0.09 

Centaurea 

stoebe 

-0.34 ± 0.10 -0.34 ± 0.10 -0.29 ± 0.12 -0.08 ± 0.11 
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Abstract 

The role of competition in assembling communities has been conceptualized in two 

fundamentally different ways.  The first is hierarchical, or transitive, and in this view 

competition functions as a strong force against coexistence.  The second conceptual perspective 

is non-hierarchical, or non-transitive, and in this view competition does not act as a strong force 

against coexistence and can even increase the potential for coexistence among species.  I used a 

novel replacement series field experiment with prairie plant species from the northern Rocky 

Mountains and path analysis models in order to compare the outcomes of pairwise and 

multispecies competition and to search for non-transitivity in multispecies communities.  

Competition had profoundly different outcomes in pairwise experiments than in multispecies 

communities indicating that pairwise experiments and thus hierarchical models function poorly 

to predict the role of competition in the assembly of complex, diverse plant communities.  In 

addition, I found no evidence for explicitly non-transitive assembly rules; there were no reversals 

in competitive rankings resulting in competitive loops.  Thus I propose a third perspective on the 

role of competition in the organization of communities that has not been previously formalized in 

the literature in which “interaction modifications” function to strongly buffer, attenuate, or even 

reverse competitive outcomes, without non-transitive interactions, in ways that sustain 

coexistence and biological diversity in plant communities.  

 

 

 

 

 



Introduction 

The processes that determine species coexistence, and thus determine the distributions of 

species in communities, have interested ecologists for decades.  These processes include those 

that occur when communities are at or near equilibrium such as species-specific adaptation to 

unique niches (Hutchinson 1959, Silvertown 2004), regulation by regional “species pools” 

(Zobel 1997), and temporal niche fluctuation such as storage effects (Chesson 2000).  Also, non-

equilibrium processes such as disturbance and herbivory can allow species with different life 

histories to coexist by creating situations where species that tolerate disturbance and compete 

well after the effect of the disturbance subsides are favored (Connell 1978, Reice 1994).  

Importantly, both equilibrium and non-equilibrium processes are thought to counteract the 

effects of competition in some way in order to promote coexistence.  This is because classic 

competition theory suggests that competition always leads to the exclusion of less competitive 

species – the competitive exclusion principle (Hardin 1960).  However, classic competition 

theory is largely derived from models and experiments that evaluate interactions between two 

species (Volterra 1926, Gause 1934, Tilman 1982) or sets of pairwise interactions (Keddy and 

Shipley 1989).  But natural communities generally have many more species which interact with 

each other and the same time, thus it is crucial to ask questions about coexistence in diverse 

communities where the effects of interspecific competition at equilibrium may be much different 

than predicted by classic theory (Stone and Roberts 1991, Miller 1994).   

Early attempts to characterize the fundamental nature of plant communities, and thus the 

forces that organize them, produced largely mutually exclusive concepts.  For example, 

Clements (1916) theorized that plant communities were tightly knit and predictable associations, 

and that these associations may even possess coevolved relationships among plants.  In contrast, 



Gleason (1926) suggested that plant communities are loosely assembled by random dispersal 

events into areas where abiotic conditions either permit or exclude a particular species.  This 

Gleasonian view led to a wide acceptance of the individualistic perspective on communities 

(Whittaker 1951, 1975, Curtis 1959, McIntosh 1967, Peet 1981, Ter Braak and Prentice 1988, 

Austin 1990).  These divergent views on the nature of plant communities have influenced much 

of modern plant community theory, including theory on how species coexist (Lortie et al. 2004).  

For instance, the individualistic paradigm is reflected in theory that focuses on explaining species 

coexistence in the context of competition for resources (Tilman 1982), the null model of 

community assembly (Connor and Simberloff 1979), and neutral theory (Hubbell 2001).  Classic 

competition theory, in which exclusion is the inevitable outcome of competition at equilibrium, 

fits well with the construct of individualistic theory.  As a result, while we know much about the 

effects of species on each other via direct, pairwise interactions, less is understood regarding how 

competition functions within communities. 

Recently, ecologists have suggested that rather than communities being organized along 

the extremes advocated by Gleason or Clements, a “middle ground” view is more in line with 

empirical evidence (Lortie et al. 2004, Brooker et al. 2008).  This is in part due to research over 

the last 30 years that suggests indirect interactions may be important in determining the structure 

of plant communities.  For example, Miller (1994) manipulated the presence-absence of five old-

field annual plant species in a field study and consistently found indirect facilitative effects 

among competitors.  Levine (1999) experimentally demonstrated that Carex nudata, a riparian 

sedge, had strong direct competitive effects on most species that occurred within its tussocks.  At 

the same time, C. nudata had a strong positive indirect effect on the liverwort Conocephalum 

conicum by reducing the abundance of Mimulus guttatus which strongly suppresses 



Conocephalum.   Theory and experimentation with indirect effects as potentially important 

drivers of coexistence have provided an intriguing alternative to the dominant paradigm for the 

way that competition may influence the assembly and maintenance of biodiversity in plant 

communities.   This has also stimulated a renewed interest to understand indirect interactions 

among competitors of the same trophic level (Stone and Roberts 1991, Callaway and Pennings 

2000, Pages and Michalet 2003, Callaway and Howard 2007, White et al. 2006, Weigelt et al. 

2007, Koorem and Moora 2010, Saccone et al. 2010).  If in multispecies groups species interact 

in ways that attenuate the intensity of competition through the creation of indirect facilitative 

interactions, then competitive exclusion may be less of a fixed outcome in communities in nature 

(Huisman and Weissing 2001).   

One broad approach that has been used to link competitive interactions into a predictive 

framework for community structure has been the study of “assembly rules”.  However, to my 

knowledge there have been no efforts to link conceptual progress made through research on 

indirect interactions and coexistence with the study of assembly rules.  Such a link has a great 

deal of potential for exploring the two general categories of assembly rule theories for how plant 

communities assemble under equilibrium conditions.  The first assumes that plant communities 

are competitively transitive in nature (Goldsmith 1978, Mitchley and Grubb 1986; Keddy and 

Shipley 1989).  In other words, all species in a given pool, or community, can be ranked in a 

simple linear hierarchy of competitive ability.  The strict “pecking order” that results provides a 

predictive tool for community organization.  The crucial conceptual outcome of a transitive, or 

hierarchical, perspective on assembly rules is that communities will consistently move towards 

dominance by the best competitor in the hierarchy through competitive exclusion.  In transitive 

or hierarchical communities the weaker competitors will be excluded given enough time and the 



absence of non-equilibrium processes.  In this paradigm only non-equilibrium filters or abiotic 

heterogeneity can prevent the formation of monocultures or dominance by a small number of the 

most competitive species in the pool.   

A major criticism of hierarchal assembly theory is that transitive properties have rarely 

been demonstrated in the field in natural communities (although see Miller and Werner 1987; but 

see Silvertown and Dale 1991).  In addition, the majority of evidence supporting hierarchical 

assembly rules is derived from highly artificial protocols (Silvertown and Dale 1991).  The most 

common experiments investigating hierarchical assembly rules are performed with 

“phytometers”. Generally conducted in greenhouses, each member of a community is grown in 

competition in a pot with a species that is not found in the community of interest, and generally 

thought to be a moderate to weak competitor.  The competitive effect of the phytometer species 

on each individual in the community is quantified and used to rank all species along a 

continuum.  By this approach a hierarchy is established and community assembly is predicted.   

There are major problems with this approach.  First, the resource-rich and low-stress life 

in a greenhouse is likely to overemphasize the importance of competition relative to what might 

be observed in natural systems where physical stress has the potential to reduce competitive 

intensities (Grime 2001, Besaw et al. in press).  In addition, this approach assumes that plants 

compete only in ways that can be encapsulated in general traits such as the mean size or 

allocation ratios of a species, species-specific light requirements, or species-specific nutrient 

uptake rates (Gaudet and Keddy 1988), all of which are likely influenced by greenhouse 

conditions.  This overemphasis of simple competitive traits is further exaggerated by forcing 

plants to grow in the same space in pots, which eliminates most potential for spatial niche 

partitioning.  Importantly, spatial niche partitioning is considered to be a fundamental 



determinant of coexistence (Parrish and Bazzaz 1976) even within the paradigm of hierarchical 

assembly rules.  The phytometer approach also ignores facilitative interactions (Bertness and 

Callaway 1994, Callaway 2007), indirect interactions (Miller 1994, Levine 1999), and evolved 

relationships that may attenuate the potential effects of competition and promote coexistence 

(Callaway and Aschehoug 2000, Thorpe et al. in press).  It is hard to see how anything but a 

hierarchy could be determined from phytometer-based measurements, and not surprisingly, 

phytometer-based approaches consistently support theory for hierarchical community 

organization (Keddy et al. 2000; Fraser and Keddy 2005; Storkey et al. 2010).   

While most attempts to detect and quantify community assembly rules have used the 

phytometer approach described above, other methods account for natural differences in 

competitive effect and competitive response between species within a community.  Competitive 

effect, or the ability of a species to suppress its neighbor, differs from competitive response, 

which is the ability of a plant to resist its neighbor’s negative impacts (Goldberg and Werner 

1983, Goldberg and Landa 1991).  Pairwise studies have been used to quantify the competitive 

effects and responses of species that comprise communities in fully iterative designs.  This 

approach allows all plants to directly compete with all other species in pots and although 

pairwise comparisons have some of the same experimental constraints as phytometer 

experiments using pairwise comparisons among all or most community members more 

accurately incorporates ecologically relevant direct effects among species.  Most importantly, 

pairwise experiments are not experimentally restricted to a hierarchical outcome.   

Objections to the theory of hierarchal assembly rules generally derive from evidence that 

the nature of interactions among plants interacting in natural communities, or simultaneously in 

groups, are far more complex than those measured in simplified or highly controlled conditions 



(Herben and Krahulec 1990, Perkins et al. 2007, Engel and Weltzin 2008).  The incorporation of 

complex interactions among groups of plant species may lead to very different conclusions about 

how competition acts within plant communities.  When many species interact simultaneously in 

space and time, non-transitive, or non-hierarchical, community assembly rules can emerge 

(Jackson and Buss 1975, May and Leonard 1975, Petraitis 1979).  For example, theoretical 

models and experiments have shown that if community members interact in non-transitive ways, 

coexistence may be maintained among large pools of species even in the absence of abiotic 

heterogeneity or non-equilibrium processes (Buss 1980, Laird and Schamp 2006).  Hierarchical 

organization is best described mathematically as A>B>C, whereas non-hierarchical organization 

occurs when loops form in the hierarchy such as A>B>C>A.  In other words, species C 

indirectly benefits species B by having a direct negative impact on species A.  Given the right 

starting point, a simple loop within a suite of competing species can result in a perpetually 

shifting state in which all three species coexist indefinitely.  This coexistence is based entirely on 

the balance of direct competitive interactions, but leads to the formation of complex networks of 

species interactions.  Mathematical evaluations of non-transitive loops among competitors have 

demonstrated that communities of multiple species can coexist (Karlson and Jackson 1981, Laird 

and Schamp 2006, 2008).  

 Theory for non-hierarchical community assembly is well developed; however, 

experimental demonstration of the effects of competitive networks on community diversity and 

the coexistence of species has proved highly intractable.  Because of this, most evidence for non-

hierarchical assembly has relied on mathematical modeling or indirect evidence derived from 

removal experiments.  For example, Miller (1994) used a field based removal design to model 

direct and indirect effects among five old-field annual plant species and consistently found 



important indirect positive effects among species that also had strong direct competitive effects 

on each other.  This approach can address how an existing set of plant species responds to the 

absence of a single community member, but the remaining species may still be interacting in 

either transitive or non-transitive ways that are not measured, and disturbance from the removal 

of the species can introduce non-equilibrium effects.  Regardless, removal experiments that show 

strong increases in abundance for some species and strong decreases for other species provide 

critical evidence for a non-hierarchical perspective on the effects of competition on coexistence 

in natural and complex communities. 

Hierarchical and non-hierarchical paradigms for how competition affects the way species 

assemble into communities are fundamentally different.  Hierarchical assembly rules function 

under the assumption that competition inexorably acts to exclude poor competitors from 

communities, whereas non-hierarchical assembly rules suggest that competition can actually 

contribute to coexistence among species in communities.   

Thus we have three general ways in which to conceptualize the role of competition in 

assembling communities.  The first is hierarchical, or transitive, and in this view competition 

functions as a strong force against coexistence and the stability of diversity.  The fundamental 

problem with this perspective is that how species interact in communities is assumed to be the 

same as how they act in pairwise interactions.  The second conceptual perspective is non-

hierarchical, or non-transitive, and in this view competition may reduce coexistence, but with the 

appropriate competitive loops among species, competition can function to sustain or promote 

coexistence.  The fundamental problem with this perspective is that no empirical data from 

complex plant communities support the existence of competitive loops.  The third perspective 

has not been clearly articulated or formalized in the literature prior to my research and stems 



from a small but growing body of literature showing that competition in multispecies 

communities is “modified” in ways that strongly buffer, attenuate, or even reverse competitive 

outcomes, but without non-transitive interactions.     Despite the importance of resolving these 

three conceptual perspectives on the effects of competition on coexistence and diversity in 

complex communities, there have been no experiments designed to isolate the ways that 

competition functions in multispecies experiments.  This is in part due to methodological 

problems, but also because detection of very subtle changes in how plants interact can easily be 

confounded by covariation in the environment, consumer effects, and disturbance.  Here, I 

studied the role of competition in assembling or disassembling communities by experimentally 

comparing the outcome of a classic pairwise competition experiments to that of a novel 

replacement series experimental design with Latin square matrix plot combinations that allowed 

for all possible combinations of contact among species.  By iteratively omitting each species 

from multispecies plots I measured the net competitive effects and response of species in two-

species and multi-species community settings without the potentially confounding effects of pre-

removal interactions, microsite preference, disturbance caused by removals, and age-based 

priority effects.  By comparing the results of pairwise to multispecies interactions I test the 

assumption that pairwise effects are equivalent to effects in multispecies communities- i.e. do 

hierarchical assembly rules predict interaction outcomes in both pairwise and multispecies 

communities?  I then tested whether or not non-transitive interactions occurred in the 

multispecies communities – i.e. are reversals in competitive outcomes necessary to explain 

differences between pairwise and multispecies interactions or do emergent “interaction 

modifications” occur  without non-transitive competition?   

 



Methods 

In the summer of 2007 I built 322 experimental plots varying in species composition and 

complexity.  I chose three perennial bunchgrasses (Pseudoroegneria spicata, Festuca idahoensis, 

Stipa comata), two forbs (Linum lewisii and Gailardia aristata) and one highly invasive species 

(Centaurea stoebe) that are common in intermountain prairie in the northern Rocky Mountains.  

Communities were built in 0.25 m2 plots in an experimental common garden at the Fort Missoula 

Biological Field Station, Missoula, Montana (46°50'16.92"N, 114° 3'24.58"W; 960 m elevation).  

Plots were established in an area with homogeneous soil and solar exposure, and were subjected 

to the same water regimes.  The garden was fenced and thus free from large herbivores and 

disturbance.   Prior to planting, the site was sprayed with the herbicide glyphosate to remove all 

vegetation and tilled to ensure highly uniform conditions. 

To quantify and compare direct and indirect interactions, all species were grown alone, 

and in pairwise and iterative omission Latin square matrix plot designs that allowed for all 

possible combinations of contact among species (Figure 1).  Plants were first grown in 100 mL 

“conetainers” (2.5cm x 16.5 cm; Stuewe and Sons, Corvallis, OR) from purchased seed in a 

greenhouse.  I outplanted seedlings in July 2007 and provided supplemental water during the 

first growing season to improve transplant success.  Following planting and for three growing 

seasons, I weeded all plots by hand, but without disturbing the soil, to minimize the effects of 

garden weeds on the interactions among target species.  After three growing seasons, I harvested, 

dried in drying ovens for 72 hours at 60° C, and weighed all aboveground biomass for each 

individual. 

I built pairwise and multispecies communities with only native species in order to 

evaluate hierarchical and non-hierarchical interactions, but also included the invader C. stoebe 



(Figure 1) in all treatments to test whether or not a very powerful competitor might demonstrate 

strong hierarchical effects or alter interactions among natives in ways that produce non-transitive 

competition or more easily measured interaction modifications. 

Unusual heat and drought either killed or prevented the resprouting of large numbers of 

one native forb, G. aristata, and the invasive forb, C. stoebe, during the last two months of the 

experiment.  Thus I was able to quantify 16 of the 20 possible direct effects among native 

species, and the effects, but not the response, of C. stoebe in my experimental treatments.  I 

calculated direct effects using the Relative Interaction Intensity index (RII; Armas et al. 2004).  

RII is calculated by dividing the difference between the biomass of the treatment and control by 

the sum of the biomass of the treatment and control ((BT-BC)/(BT+BC)).  RII and the standard 

error was calculated after Armas et al. (2004, Appendix A).  RII is a measure of the strength of 

interaction between species centered on zero with negative interactions (competition) indicated 

by values between 0 and -1, and positive interactions (facilitation) indicated by values between 0 

and +1.  RII allows for simple comparisons of interaction strength across taxa and treatments.   

For all species in pairwise plots I calculated RIIs using the mean biomass of plants grown 

alone as controls and the mean biomass of plants in pairwise competition as the treatment.  For 

all species grown in multi-species experimental plots (native and invaded treatments), RIIs for 

the net direct effect of a single species on another in the context of communities were calculated 

by using the mean biomass of individuals grown in four species plots as controls and the mean 

biomass of individuals grown in complete five species assemblages as the treatment.   In order to 

avoid pseudoreplication I took the mean size of the surviving individuals of each species in each 

plot and used it to calculate overall treatment means and standard errors.  I excluded all mortality 

from my analysis.  Statistical tests were performed on RIIs using t-tests (Excel 2007) to 



determine if interactions were significantly different from zero.  All statistical comparisons of 

RIIs among different species or between treatments utilized either a one-way ANOVA with 

Tukey post hoc comparisons or two sample means t-tests (Sigmaplot 11.2, Systat Software).   

I used path analysis models to quantitatively explore two interaction scenarios for indirect 

interactions in my experimental system.  I built path analysis models using RII effects from 

pairwise interaction plots as path coefficients to predict the effects of a single species on another 

in multi-species assemblages.  In these models, I included all 20 native species interactions.  For 

all other analyses, I omitted the effects of native species on Gailardia aristata because of the low 

sample sizes at harvest.  Three of the four pairwise effects on G. aristata appear to be facilitative 

and one competitive.  These effects on biomass are unreliable because of the very low sample 

size, but mortality data strongly supports the patterns of facilitative responses that were 

calculated from biomass results.  When grown alone nine of the ten (90%) G. aristata 

individuals either died or failed to re-sprout by the time of harvest.  In contrast, in pairwise 

interactions with other native species only 68% of G. aristata individuals either died or failed to 

resprout at harvest.  To statistically compare predicted interaction strengths to experimentally 

measured strengths, I performed a parametric bootstrap using experimentally derived pairwise 

RII and SD data to bound randomly drawn distributions of 1000 iterations.  These data were used 

to estimate 95% confidence intervals around path analysis model outputs (Excel 2007).  

Results 

   Pairwise interaction intensities 

 In pairwise interactions, native species exerted significant negative (competitive) effects 

on each other in 8 of 16 measured interactions (P < 0.05; Table 1).  An additional 3 of 16 



competitive interactions showed trends towards competition, but were not significant (P < 0.10).  

Significant RII values ranged from -0.20 ± 0.08 to -0.58 ± 0.11 with a mean of -0.38 ± 0.04.   

 

   Multispecies native communities 

RII indices derived among natives in multispecies community plots were substantially 

lower than those derived from pairwise interactions.  In multispecies interactions only 4 of 16 

interactions had significant net direct effects, and all were competitive.  Furthermore, these 

significant RII values ranged from -0.14 ± 0.07 to -0.36 ± 0.14, with a mean of -0.23 ± 0.04, 36% 

lower than the mean significant RII in pairwise competition (P = 0.053).   For all species, 

significant interactions in multispecies native community plots had lower RII values than the 

RIIs in pairwise interactions, but these differences were not significant.  However, 4 of the 8 

significant interactions from pairwise interactions were reduced to non-significance in native 

multispecies plots.  In addition, the mean RII for all species in all pairwise interactions was -0.26 

± 0.04, whereas the mean RII value for all species in multispecies communities was -0.08 ± 0.03; 

P = 0.003). 

 

   Invaded multispecies native communities 

The invader C. stoebe had strong significant competitive effects on all native species in 

pairwise interactions.  Interaction strengths varied from -0.20 ± 0.09 (P = 0.051) against P. 

spicata to -0.80 ± 0.08 (P < 0.001) against F. idahoensis.  Centaurea stoebe maintained strong 

competitive effects on three of the four native species when competing in communities.  In 

multispecies communities RII values for the significant effects on natives ranged from -0.29 ± 

0.12 to -0.34 ± 0.10. The reduction in intensity from pairwise interactions to community plots 



was significant for F. idahoensis (difference in competitive effect =+0.46; P = 0.002) and S. 

comata, (difference in competitive effect =+0.48; P = 0.006).  In contrast, the interaction 

between C. stoebe and L. lewisii shifted from significant in pairwise plots (RII= -0.24 ± 0.11; P = 

0.047) to non-significant in community plots (RII = -0.08 ± 0.11; P = 0.480). 

The mean RII for interactions among natives in multispecies communities that contained 

the invader C. stoebe were significantly less than mean pairwise interactions (0.0008 ± 0.04; P < 

0.001) but were not significantly different from mean native community interactions (P = 0.33). 

There were two significant interactions among native species in plots containing C. stoebe; one 

facilitative (+0.20 ± 0.09 between Gaillardia aristata and Pseudoroegneria spicata) and one 

competitive (-0.29 ± 0.12 between P. spicata and Festuca idahoensis).  There were also two 

interactions that were marginally significant (P < 0.10); one facilitative and one competitive.  RII 

values among natives ranged from +0.27 ± 0.14 to -0.29 ± 0.12.   

 

   Indirect interaction scenarios 

    For two interaction scenarios, I examined sets of direct interaction strengths in greater 

detail in order to look for congruence between the modeled net effects from pairwise interactions 

and the measured net effects from experimental communities.  In other words,  are pairwise 

effects additive, do non-transitive loops occur, or do emergent interaction modifications occur?  

This allowed me to quantify the potential for indirect effects among competitors and potentially 

explain the general differences between pairwise models for competitive outcomes and 

multispecies models.  The interaction scenarios I modeled were the effects of Pseudoroegneria 

spicata on F. idahoensis and the effects of L. lewisii on F. idahoensis.  Pseudoroegneria spicata, 

a dominant bunchgrass significantly suppressed F. idahoensis in pairwise interactions (RII = -



0.30 ± 0.09; P < 0.005).  Linum lewisii, a perennial forb, also had strong competitive effects on 

F. idahoensis (RII = -0.38 ± 0.11; P = 0.003). 

 Pseudoroegneria spicata had moderate negative net direct effects on F. idahoensis in 

native community plots (RII = -0.14; P = 0.053).  These effects were smaller than the effects of 

P. spicata measured in pairwise plots, but the difference between the two treatments was not 

significant (P = 0.193).  Linum lewisii exerted strong competitive effects on F. idahoensis in 

native community plots (RII = -0.18 ± 0.08; P = 0.043).  The difference between effects 

measured in pairwise interactions and effects measured in native community plots was large (-

0.20), but this difference was not significant (P = 0.143).   

In path analysis models for these two scenarios, I found that for one species, P. spicata, 

pairwise based models of indirect interactions involving the other species (RII = -0.12) 

accurately predicted the measured effects between P. spicata and F. idahoensis at the community 

level (RII =-0.14).  In contrast, predictions from pairwise interactions for the net effects of L. 

lewisii on F. idahoensis significantly overestimated (RII = -0.34) the net effects measured in 

communities (RII = -0.18).   

The estimated 95% confidence intervals for the modeled interaction between P. spicata  

and F. idahoensis were +0.14 to -0.38 and the estimated 95% confidence intervals for the 

modeled interaction between L. lewisii and F. idahoensis were -0.05 to -0.61.  Thus, the modeled 

results were not significantly different from measured results for both cases.   

Discussion 

 When species experience more complex competitive environments due to an increased 

diversity of competitors and thus greater numbers of simultaneous interactions, the strength of 

the interactions between species declined.  In addition, I found no evidence of competitive loops 



among species, suggesting that processes other than non-transitive competition caused declines 

in interaction strengths in multispecies communities.  Further, my results indicate that the 

measured effects of competition in multispecies communities cannot be easily predicted from 

pairwise interactions.  This suggests that competition among groups of species in communities 

has emergent, or non-additive, properties that are quite different than the sum of the pairwise 

interactions.  These differences may be due to the presence of strong, but not easily quantified or 

modeled, indirect effects that reduce the net direct effects of one species on another.  I found 

little evidence for clear hierarchical rules, in one case additive pairwise indirect effects explained 

the discrepancy between pairwise and multispecies competitive interactions, and in one case the 

strength of multispecies interactions appear to be explained by interaction modifications.  In 

other words, interaction modifications occur and appear to have important effects on the way 

competition functions in multispecies communities.  

 The degree to which we can predict community interactions and species performance 

when in complex, multi-species assemblages from simple experiments remains a largely 

unanswered question in ecology.  My results are not consistent with theory that establishes 

competition as a solely exclusionary process at all levels of organization (Hardin 1960).  In fact, 

my results suggest that pairwise experiments that are analyzed as purely additive direct effects 

(Goldberg and Werner 1983, Keddy and Shipley 1989, Shipley and Keddy 1994, Keddy et al. 

1994, 1998, 2000, Fraser and Keddy 2005, Storkey et al. 2010) are poor predictors of assembly 

rules, for how species become organized in communities.  

In contrast to theory developed from pairwise experiments in the context of hierarchical 

assembly rules, there has been a developing body of theory over the last 30 years highlighting 

the importance of indirect facilitative interactions (Stone and Roberts 1991, Miller 1994, Levine 



1999, Callaway and Pennings 2000, Pages and Michalet 2003, Callaway and Howard 2006, 

White et al. 2006, Weigelt et al. 2007, Koorem and Moora 2010, Saccone et al. 2010), which 

suggests that pairwise interactions may overestimate the competitive effects of species that are 

interacting in complex communities.  More recently, explicit tests of the predictive power of 

pairwise interactions have further suggested that non-additive, or higher order, interactions 

greatly change the way that species compete in complex, multispecies groups (Dormann and 

Roxburgh 2005, Dormann 2007, Perkins et al. 2007, Weigelt et al. 2007, Engel and Weltzin 

2008).  For example, Dormann and Roxburgh (2005) found that Lotka-Volterra (LV) type 

models built from pairwise outcomes did not accurately predict biomass and coexistence for 

three species mixtures in five out of the six combinations grown.  Similarly, LV models did not 

predict biomass and coexistence in an experimental seven species mixture.  However, when a 

‘non-additive’, or higher order, competition coefficient was added to the model, predictions more 

closely matched experimental outcomes. This suggests that indirect interactions can be important 

for determining the outcomes of competition within communities, but whether or not non-

transitive interactions played any role in these indirect effects was not tested. 

Weigelt et al. (2007) measured the effect of one, two and three species neighborhoods on 

a target species to test the assumption that competitive effects in multi-species communities are 

additive.   Yield density models suggested that competitive intensity in most multi-species 

assemblages could be accurately predicted by pairwise interaction outcomes.  However, certain 

combinations of species showed significant deviations from the predictions of the model 

generated from pairwise interactions.  But when non-additive parameters were added to the 

model, the predictive power of the model was significantly increased, indicating that indirect 



interactions among specific combinations of species can result in non-additive effects that are 

difficult to predict from more simplistic, pairwise derived models. 

I found that in direct pairwise interactions, all native species exerted significant 

competitive effects on at least one other species.  However, when assembled into native 

multispecies communities, only the two most dominant competitors, Pseudoroegneria spicata 

and Linum lewisii, were able to significantly suppress other native species (Table 1).  

Concomitantly, I found the mean interaction strength between native species significantly 

decreased from -0.26 ± 0.04 in pairwise interactions to -0.08 ± 0.03 (P = 0.003) in multispecies 

community interactions.  I also found the mean interaction strength among significant 

interactions to decrease significantly from -0.38 ± 0.04 in pairwise interactions to -0.23 ± 0.04 (P 

= 0.053) in multispecies community interactions.   

I also found that C. stoebe exerted very strong competitive effects on all native species in 

pairwise interactions, potentially establishing the only clear single species competitive hierarchy 

in my experiment.  But the effects of C. stoebe were greatly reduced for three of the four natives 

in invaded multispecies interactions.  In addition, the mean interaction strength among all natives 

in invaded multispecies communities was significantly lower than the mean interaction strength 

of natives in pairwise interactions suggesting that even extraordinarily strong competitors cannot 

maintain pairwise level competitive effects when in multispecies communities. 

Considered together, my results and similar results from the recent literature, provide 

strong support for the argument that indirect facilitative interactions buffer against competitive 

exclusion.  As an example, the competitive effect of P. spicata on F. idahoensis in pairwise 

arrangements is much larger than the competitive effect in multispecies communities, suggesting 

that indirect effects are altering interaction strengths.  However, it is not possible to evaluate 



whether these indirect effects are additive or non-additive without building models of 

interactions using path analysis methods.  To do this, I used the direct effects (RII) from pairwise 

experiments of P. spicata on all other native species and all other species on F. idahoensis to 

estimate the additive direct and indirect effects of P. spicata on F. idahoensis in multi-species 

communities.  I found approximate congruence between the estimated (-0.12) and measured 

effects (-0.14), suggesting that the competitive effects of a dominant, highly competitive 

bunchgrass appear to be the result of additive direct and indirect effects – in other words, by 

adding the key competitive interactions among all community members interacting in pairwise 

fashion I am able to predict the competitive effect of P. spicata on F. idahoensis in multispecies 

communities.  I also estimated the competitive effect of L. lewisii on F. idahoensis in a multi-

species community context in an attempt to tease out the cause of differences in interaction 

strength between pairwise and multispecies community treatments.  Unlike the scenario for P. 

spicata and F. idahoensis, the path analysis estimated effect (-0.33) and the measured effects (-

0.18) of L. lewisii on F. idahoensis are not congruent.  This suggests that there are powerful non-

additive indirect interactions between species that greatly reduced the competitive effect of L. 

lewisii when growing in complex communities.  These non-additive effects cannot be predicted 

from pairwise interactions and most importantly this suggests that interaction modifications 

rather than non-transitivity determine competitive outcomes at the community level. 

For both path analysis scenarios the calculated 95% confidence intervals from parametric 

bootstrap techniques yielded only non-significant differences for all effects.  In fact, the 95% 

confidence intervals were so large that it raises questions about whether or not predictions can be 

made from path analyses using such experimental data.  I conducted my experiment in as near 

equilibrium conditions as possible, and yet my data lacked the precision necessary to use path 



analysis models for estimates of community level effects.  Other studies have suggested that in 

complex, diverse communities the outcome of competition between species simply cannot be 

predicted because of the inherently complicated nature of multi-species competition (Huisman 

and Weissing 2001).  Because of this, I argue that if we are to understand how competition 

shapes community structure, we must seek to use sophisticated experiments in natural conditions 

that actually measure interaction strengths between species within communities and not rely on 

models for predictions about community level interactions between species.   

Pairwise and highly controlled experiments can teach us much about the mechanisms by 

which plants interact (Caldwell et al. 1985, Callaway and Aschehoug 2000), how conditional 

factors affect interactions (Tilman 1982, Besaw et al. in press), how particular traits might 

contribute to competitive outcomes (Harris 1967), and how other organisms may affect 

competitive outcomes (Aschehoug et al. in press), but a growing body of literature indicates that 

these outcomes cannot be used to accurately predict community assembly.  Far more 

importantly, these outcomes cannot be used to estimate the strength or importance (Brooker et al. 

2005) of competition in given community scenarios.  My results suggest that the most useful 

information on the importance of competition on the distribution and abundance of species, or 

the assembly of species into communities comes from field experiments conducted within the 

natural matrix of communities in which the mixture of neighbors is manipulated (Grace and 

Wetzel 1981, Gurevitch 1986, D’Antonio and Mahall 1991, Pennings and Callaway 1992, 

Callaway et al. 1996). 

My results also provide strong support for the inclusion of indirect interactions and non-

additive processes into theory that seeks to make predictions about how communities assemble 

through competitive interactions at a single trophic level.  For example, hierarchical assembly 



theory is grounded in the basic premise that competition continually acts to exclude species from 

complex systems.   But I found that complex suites of multi-species interactions greatly reduce 

competitive intensities among species and therefore also reduce the likelihood of competitive 

exclusion within communities.  In other words, multi-species competition may reduce the 

strength of plant-plant interactions to such low levels that coexistence becomes possible despite 

the presence of competition.   

Importantly, my results did not support the current non-transitive alternative to 

hierarchical assembly rule theory, which requires that competitive loops form in order for 

competition to allow or drive coexistence among different species.  These non-hierarchical 

processes have been demonstrated in some systems (Buss 1980, Sinervo and Lively 1996) but 

have not, to my knowledge, been empirically demonstrated in plant communities.  I found no 

evidence of competitive loops in my novel experimental system; however, I did find evidence of 

powerful indirect interactions and non-additive effects without the formation of competitive 

loops indicating that emergent “interaction modifications” were a key process.  Such interaction 

modifications have not received formal attention in the ecological literature. 

Despite clear differences between hierarchical and non-hierarchical assembly rule theory, 

common ground can be found in the power of direct interactions.  Hierarchical assembly rule 

theory assumes that direct interactions are always more powerful than any indirect effects and 

therefore, direct competitive effects lead to competitive exclusion.  Non-hierarchical assembly 

rule theory requires a requisite set of direct interactions - indirect interactions are a necessary by-

product of competitive reversals - but such explicit reversals, at least so far, appear to exist more 

in theory than in nature for plant communities.  A central proposition of the work here is that I 

propose that plants may assemble in communities based on “modified interactions”.  That is to 



say indirect interactions, additive and non-additive, are potentially more important in the context 

of complex communities than direct interactions.  Instead of assembly rules based solely on 

direct interactions, the suite of interactions experienced by individuals in space and time within 

communities may be highly emergent in ways that are specific to the particular combination of 

neighbors and their indirect effects on the system. 
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Figure 1.  Experimental design for iterative omission, Latin square plot design.  All species were 

planted 10 cm apart horizontally and 14 cm on diagonal.  All plot designs were replicated (n=10 

for species grown alone and in pairs, n=8 for species grown in native four species plots, n=10 for 

native five species, n=10 for invaded four native species plots, and n=12 for invaded five species 

plots) with all possible combinations of species.  All species occupied all possible locations 

within each plot via replication to avoid bias in location within the plot.   
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Figure 2.  Path analysis models for the predicted effects of Pseudoroegneria spicata on Festuca 

idahoensis (left panel) and the predicted effects of Linum lewisii on F. idahoensis.  All path 

coefficients are equal to pairwise competition derived RII values.  
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Pairwise Interactions 

 Pseudoroegneria 

spicata 

Festuca 

idahoensis 

Stipa 

comata 

Linum lewisii 

P. spicata  -0.30 ± 0.09 -0.58 ± 0.11 -0.23 ± 0.13* 

F. idahoensis -0.13 ± 0.11  -0.43 ± 0.19 -0.24 ± 0.13* 

S. comata -0.20 ± 0.08 -0.07 ± 0.10  -0.30 ± 0.15* 

L. lewisii -0.26 ± 0.10 -0.38 ± 0.11 -0.45 ± 0.12  

Gailardia 

aristata 

-0.11 ± 0.13 -0.12 ± 0.10 -0.43 ± 0.13 +0.10 ± 0.16 

Centaurea 

stoebe 

-0.20 ± 0.09 -0.80 ± 0.08 -0.77 ± 0.09 -0.24 ± 0.11 

     

Native Community Interactions 

 Pseudoroegneria 

spicata 

Festuca 

idahoensis 

Stipa comata Linum lewisii 

P. spicata  -0.14 ± 0.07 -0.22 ± 0.09 -0.10 ± 0.11 

F. idahoensis +0.02 ± 0.13   -0.10 ± 0.15 -0.11 ± 0.10 

S. comata -0.01 ± 0.12 +0.08 ± 0.06  +0.12 ± 0.11 

L. lewisii -0.10 ± 0.10 -0.18 ± 0.08 -0.36 ± 0.14  

Gailardia 

aristata 

-0.15 ± 0.09 +0.08 ± 0.05 +0.11 ± 0.20 -0.20 ± 0.16 

  



Invaded Community Interactions 

 

 Pseudoroegneria 

spicata 

Festuca 

idahoensis 

Stipa comata Linum lewisii 

P. spicata  -0.29 ± 0.12 -0.02 ± 0.15 -0.25 ± 0.12* 

F. idahoensis 0.00 ± 0.11  +0.02 ± 0.12 -0.02 ± 0.11 

S. comata -0.04 ± 0.13 +0.08 ±0.16  -0.08 ± 0.10 

L. lewisii -0.16 ± 0.10 -0.05 ± 0.14 +0.11 ± 0.19  

Gailardia 

aristata 

+0.20 ± 0.09 +0.27 ± 0.14* +0.10 ± 0.14 +0.15 ± 0.09 

Centaurea 

stoebe 

-0.34 ± 0.10 -0.34 ± 0.10 -0.29 ± 0.12 -0.08 ± 0.11 

 

Table 1.   Net direct effects (RII) of each species interaction in pairwise, native multi-species 

community and invaded multi-species community plots.  The top row represents the target 

species and the left column the competitor.  Bold values represent significant interactions 

(P<0.05) and asterisks indicate marginally significant interactions (P<0.10). 
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Summary 

 Virtually all investigations of trait mediated indirect interactions (TMIIs) have focused on 

predator-prey and herbivore-plant systems.  However, because of the high degree of phenotypic 

plasticity found in plants, plant-plant interactions offer a unique opportunity to ask questions 

about how changes in phenotype can influence both the strength and direction of interactions 

with other species.  We know of no examples in which researchers have investigated TMIIs in 

the context of plant-plant interactions, but there are many examples of plants exhibiting plasticity 

to both abiotic and biotic conditions in ways that should affect the way they interact with their 

neighbors, and genetically mediated indirect interactions have been demonstrated.  Furthermore, 

because of the complex, multi-species nature of plant communities, plants are often 

simultaneously subjected to combinations of direct and indirect interactions, which makes plant-

plant interactions a potentially very rewarding area to experimentally test TMIIs.  Here we 

highlight the literature in which different components of TMIIs have been demonstrated, and 

discuss how these examples can provide more complete tests of TMIIs.  We also speculate on the 

potential for TMIIs to expand our understanding of how plant communities are organized. 

Introduction 

Ecologists have long recognized the importance of phenotypic plasticity as a mechanism 

by which organisms acclimate and adapt to local environments.  Phenotypic plasticity is 

commonly defined as variation in the morphological or physiological phenotype of a given 

genotype in response to the abiotic and biotic environment (Bradshaw 1965).  Plants are 

particularly plastic organisms because they must solve the fundamental problems of resource 

acquisition, competition, and herbivore attack without mobility (Sultan 1987; Sultan 2000).  

Plasticity has been demonstrated in the morphological, developmental, physiological and 



biochemical traits of plant species, with many traits showing flexibility in expression both 

between and within individual plant species (Novoplansky 2002; de Kroon et al. 2005; 

Valladares et al. 2006).  The plastic responses vary not only in their form, but also in their 

permanence.  Responses may be permanent for the lifetime of an individual, fixed for long 

periods of time (e.g. a growing season), or dynamic at the scale of minutes (Metlen et al. 2009). 

Research on the nature of plasticity and its potential to broaden the ecological niches of 

species in shifting abiotic and biotic conditions has historically focused on the morphological 

responses of plants.  However, morphological responses tend to be slow and are largely 

irreversible—two parameters that are not favored by selection (Valladares et al. 2007).  In 

contrast to changes in morphology, plants can also respond via biochemistry.  These responses 

can be exceptionally rapid and highly ephemeral (Metlen et al. 2009); traits that lend themselves 

to adaptive value and are favored by natural selection, but biochemical traits have been studied 

very little in the explicit context of plasticity. 

Plasticity and trait variation have been studied extensively in plants, but the ecological 

consequences of such phenotypic variation are poorly understood (Miner et al. 2005).  

Experimental settings commonly overestimate the degree to which plants can exhibit plastic 

responses to changes in natural conditions.  This may be because of the continually changing 

conditions in nature which makes optimization of some plastic responses difficult, especially if 

plastic responses have long lag times and are largely irreversible.  In addition, the diffuse nature 

of competition among plants within communities may limit a plant’s ability to exhibit its 

maximum potential plasticity in response to biotic interactions.  Thus there appear to be greater 

limits and constraints to plasticity in plants in natural systems than would be predicted from 

responses to controlled environments (Valladares et al. 2007).  However, investigations that 



focus on trait responses that can mediate multiple environmental stimuli in plants should have a 

higher potential for adaptive value.  For example, secondary biochemistry responses to nutrient 

stress may also mediate competitive or facilitative interactions (Tharayil et al. 2009) and 

therefore can potentially provide a more stable cue for plant plasticity responses in natural 

systems. 

It’s surprising that the consequences of plasticity for interactions among plants have not 

been more deeply explored since high phenotypic plasticity in plants is thought to be a 

characteristic of ‘‘good competitors’’ (Grime 2001), and good competitors can have powerful 

effects on communities (Connell 1983).  Species classified as good competitors generally show 

more rapid responses to variation in their environment, such as adjusting root:shoot ratios, leaf 

specific area, proportions of fine to coarse roots, and diversity of biochemistry, than species that 

are poor competitors (Grime 2001; Callaway et al. 2003).  Despite the high degree of plasticity 

expressed by plants, and the potential for this plasticity to affect the way a species might interact  

with its neighbors (known as trait mediated interactions or TMI), very few studies have been 

conducted with plants that focus on plasticity and interactions.  However, by re-examining 

earlier work with a focus on plasticity we can piece together direct evidence for TMIs.  

For example, Callaway (1990) found that the root architecture of Quercus douglasii 

seedlings demonstrated plasticity to variation in water source.  Quercus douglasii seedlings with 

experimentally restricted access to deep stores of water produced roughly twice as many fine 

lateral roots and more than 5x the lateral root mass as seedlings with access to a deep water 

source.  This phenotypic plasticity demonstrated by seedlings in controlled experiments 

corresponded with apparent plasticity in the field, where mature trees without access to deep 

water possessed very dense surface lateral root systems while trees with deep water access did 



not (Callaway et al. 1991).  Plasticity in root architecture in the field appeared to create a TMI as 

trees with abundant shallow roots strongly suppressed understory productivity; whereas trees 

without abundant shallow roots had strong facilitative effects. 

More recently, ecologists have extended the view of TMIs from direct interactions 

between plants to indirect interactions (TMIIs) among species.   While we know of no studies of 

plant-plant interactions that test for the presence of TMIIs, conceptually all of the necessary 

components to produce TMIIs have been studied, making the next step ripe for empirical 

research.  For example, in the scenario of the TMI apparently mediated by plasticity in the root 

architecture of Quercus douglasii, this plasticity also correlated with different understory 

community compositions.  The abundance of the native Nassella (nee Stipa) pulchra was higher 

under trees with abundant shallow roots (Callaway et al. 1991).  Simultaneously the abundance 

of European annuals (primarily Avena fatua and Bromus diandrus), which can competitively 

exclude natives like Nassella, was lower.  This pattern suggests the occurrence of a TMII but 

does not demonstrate it.  However, a relatively simple experiment could explore this spatial 

pattern in the context of TMIIs, and similar experiments could be used to study TMII in other 

systems.  The key would be to determine whether shallow root architecture simply promoted 

Nassella directly, or altered the competitive effects of the European annuals in ways that 

indirectly promoted Nassella (see Rice & Nagy 2000).  Using Nassella as a target species, TMIIs 

would be demonstrated if experimental treatments in which European annuals were removed 

from around Nassella under trees without shallow root architecture improved the growth or 

fitness of Nassella.  

This link between plastic responses to environment and its affect on plant-plant 

interactions (direct and indirect) represents a major gap in our understanding of how plant 



communities assemble.  TMIs and TMIIs have the potential to create tremendous variation, or 

conditionality, in the outcomes of interactions among competing species, and thus have 

important implications for how competitors might coexist (Chesson & Rosenzweig 1991).  In 

other words, we know that indirect interactions among groups of competitors can promote 

coexistence among species that would otherwise be likely to competitively exclude each other 

(Miller 1994; Callaway & Howard 2007), thus plasticity among species can greatly enhance the 

potential for indirect interactions to sustain coexistence among competing species and thus 

increase community diversity.    

Interactions among plants 

Negative direct interactions among plants appear to derive primarily from the need to 

acquire basic resources such as light, water and nutrients, which are often in limited supply 

(Goldberg 1990; Miller & Travis 1996).  Because plants are sessile, resource competition 

between individuals can be intense, potentially making coexistence difficult when essential 

resources are scarce (Tilman 1982).  In addition, allelopathy, the negative biochemical effects of 

neighbors on each other (Turlings et al. 1990; Williamson 1990; Mahall & Callaway 1992; 

Schenck et al. 1999), can also be a mechanism by which plant species inhibit each other. 

Positive interactions among plants, or facilitation, occur when the presence of one plant 

enhances the growth, survival, or reproduction of a neighbor (Callaway 2007).  But it is 

important to note that facilitation by one species on another may correspond with reciprocal 

negative, positive, or neutral responses.  Direct positive interactions may incorporate a wider 

range of mechanisms than direct negative interactions (Callaway 2007).  Like competition, 

facilitation may occur through resource effects, one species increasing nutrient, water, or light 

availability to another, or through chemical effects (Metlen et al. 2009).  However, facilitation 



can also be driven by non-resource processes.  Most commonly, species that are physically 

tolerant to stresses such as cold, heat, wind, salinity, and disturbance buffer other species from 

these abiotic conditions.  

Indirect interactions among plants can be derived from direct resource competition, 

allelopathy, or facilitation (Pages & Michalet 2003; Callaway & Howard 2007; Callaway 2007), 

but these have received far less attention than the direct impacts that plants have on one another.  

This may be because plants are generally embedded within a matrix of many other plants, all of 

which require the same basic resources of light, water and nutrients; thereby creating an 

environment in which direct interactions appear to be assured.    However, the highly aggregate 

nature of plant communities also sets the stage for common and strong indirect interactions - 

situations in which the direct interaction between two species is caused or altered by 

simultaneous interactions with additional species (Miller 1994; Levine 1999; Callaway & 

Pennings 2000; Callaway & Howard 2007; Cuesta et al. 2010).   

Ecological consequences of plant interactions 

Competition and facilitation among plants are the basic processes through which TMIs 

and TMIIs can operate, and these interactions can be powerful organizing forces in structuring 

plant communities (Allen & Forman 1976; Grime 1977; Connell 1983; Tilman 1985; Ortega & 

Pearson 2005; Callaway 2007; Cavieres & Badano 2009).  Because of this, evaluating species’ 

inherent competitive abilities can likely provide some insight into how they will perform in a 

community context.  However, assessing the relative competitive strengths of species is difficult 

in anything other than simple pairwise or “bioassay” experiments; and it now is becoming 

apparent that such experiments do not accurately predict how individuals may respond when 

subjected to the diffuse nature of interactions found in plant communities (Callaway & Howard 



2007; Perkins et al. 2007; Engel & Weltzin 2008; Schmidtke et al. 2010; Aschehoug 2011; 

Chapter 1).   Even more, rankings of competitive effects and responses may not be complete 

indicators of individual competitive abilities when plants are in real communities (Wang et al. 

2010).  Thus theory for how plant communities assemble that fails to incorporate indirect 

interactions is probably incomplete, and this has very important implications for studying TMIIs.   

There are two general, but contrasting, theories for how plant species may assemble into 

communities under equilibrium conditions as a result of competition among plants.  The first 

does not incorporate indirect interactions, and thus does not have the potential to integrate 

TMIIs, and poses that plant communities are competitively transitive in nature (Goldsmith 1978; 

Mitchley & Grubb 1986; Keddy & Shipley 1989).  In other words, all species in a given pool, or 

community, can be ranked in a linear competitive hierarchy.  The strict “pecking order” that 

results from hierarchical competitive abilities provides a predictive tool for community 

organization.  A transitive, or hierarchical, perspective on assembly rules assumes that 

communities will consistently move towards dominance by the best competitor in the hierarchy 

in a homogeneous abiotic environment, and this can potentially lead to the development of 

monocultures.  An important theoretical consequence of not allowing TMIIs among plants in 

such transitive or hierarchical communities is that weak competitors will be competitively 

excluded given enough time and the absence of non-equilibrium processes.  In this paradigm 

only non-equilibrium forces, such as fire, herbivory (which can establish TMIIs) or abiotic 

heterogeneity, can prevent the dominance of a small number of species or the formation of 

monocultures in a local community.  

 In contrast to hierarchical assembly rules is the theory that plants exhibit non-transitive or 

non-hierarchical competitive properties as they form communities (Jackson & Buss 1975; May 



& Leonard 1975; Petraitis 1979).  Whereas hierarchical organization is best described 

mathematically as A>B>C, non-hierarchical organization occurs when loops form in the 

hierarchy such as A>B, B>C, but C>A.  In other words, species C indirectly benefits species B 

by having a direct negative impact on species A, which creates the opportunity for TMIIs to be 

included in conceptual models.  Given the right starting point, a simple loop within a suite of 

competing species can result in a perpetually shifting state in which all three species coexist 

indefinitely (Buss & Jackson 1979).  This coexistence is based entirely on the balance of direct 

competitive interactions, but leads to the formation of complex networks of species interactions 

which may be mediated directly or indirectly via plant plasticity.  Proponents of non-transitive 

competitive processes note that because plants interact with many other species simultaneously, 

clear pecking orders are likely rare.  In addition, sporadic reversals of dominance among species 

can create powerful and facilitative indirect effects among competitors which can transform 

overall community structure.  

When community members interact in complex “networks” of interactions, competitive 

exclusion is much less likely.  In addition, coexistence may be maintained among large pools of 

species in the absence of abiotic heterogeneity or non-equilibrium processes.  Mathematical 

evaluations of such interactions predict that such indirect interactions among competitors can 

allow large communities of species to coexist (Karlson & Jackson 1981; Laird & Schamp 2006; 

Laird & Schamp 2008).   

Non-transitive theory requires quite specific combinations or sequences of interactions 

among species to produce indirect interactions, and thus TMIIs.  However, groups of plant 

species appear to compete in ways that produce indirect interactions, but without the competitive 

“loops” required for non-transitive theory.  In other words, some species appear to “modify” 



interactions among other species without establishing the classic non-transitive combinations of 

competitive dominance (Callaway & Pennings 2000; Metlen 2010).   

A key commonality of the transitive and non-transitive theories of plant community 

assembly is the requirement of strong, species-specific, direct negative effects.  In a hierarchical 

system, the direct effect of each species on another is linear; a single dominant species that exerts 

primary control of community wide species diversity via competitive interactions, and 

subdominant species that exert lesser degrees of control in direct proportion to their place in the 

hierarchy.  In non-hierarchical systems, there is the requirement of at least one of the weaker 

competitors directly outcompeting a species of higher competitive ranking.  In other words, a 

species that loses most of its interactions with other community members must be able to 

outcompete a species that wins most of its interactions in the community, an unlikely scenario 

without the presence of TMIs.  In fact, the conditionality of competitive outcomes may be 

explained in large part by the plastic response of plants to competition (Cahill et al. 2010).  

Transitive and non-transitive processes occur in communities but plants also experience 

“diffuse” competition in a community context.  Instead of a distinct interaction with another 

single species, for which ranks might be determined, a plant experiences the additive effects 

(positive or negative) of many species interacting in space and time.  Such diffuse interactions 

may have profound impacts on the species composition of plant communities (Davidson 1980; 

Vandermeer 1980; Wilson & Keddy 1986; Miller 1994; Li & Wilson 1998; Levine 1999; 

Callaway & Pennings 2000) and provide tremendous potential, conceptually if not logistically, to 

study TMIIs.   



There is a substantial escalation in the complexity of assembly rules as we move from 

transitive to non-transitive models and as we add interaction modifications and diffuse 

interactions to competitive loops.  And this complexity increases again once we consider that 

most current thinking is built on the construct, or at least the implicit assumption, that plants are 

fixed in their competitive abilities.  However, we know that plants vary in their competitive 

abilities both within and between populations.  For example, Grøndahl & Ehlers (2008) found 

that genotypic variation in the production of different terpenes by ecotypes of Thymus 

pulegioides and T. serpyllum altered the effects of the Thymus species on co-occurring plant 

species.  The ecological effects demonstrated for Thymus species (also see Ehlers & Thompson 

2004; Jensen & Ehlers 2010) corresponded with selective effects of Thymus on their neighbors.  

Plants that came from sites where they co-occurred naturally with a carvacrol (a terpene)-

producing ecotype of Thymus also performed better on soil treated with carvacrol.  This example 

of how genotypic variation can affect the competitive effects of a species derives from at least 

two general ways that plants interact directly, facilitation and allelopathy. If relatively subtle 

differences in ‘fixed’ competitive interactions can have such a large impact on community 

formation, then phenotypic shifts that lead to changes in interaction outcomes (TMIs and TMIIs) 

have the potential to be very powerful in determining how plant communities assemble. 

Plasticity and direct interactions 

 In both transitive and non-transitive models, the intensity of direct interactions 

determines the degree to which plants can coexist.  Therefore understanding how plasticity 

affects interaction intensities can greatly improve our ability to predict plant coexistence in 

communities.  Much is known about how plant traits such as morphology, growth rates, final 

size, reproduction, qualitative and quantitative biochemical traits, and biomass allocation can 



vary widely for a given genotype (Sultan 1987; Sultan 2000; Metlen et al. 2009), which creates 

exceptional opportunities for exploring how phenotypic plasticity within an individual species 

can influence interactions with other species and the subsequent effects on the structure of plant 

communities. 

A substantial component of the way that plants affect each other (either negatively or 

positively) is based on plant size and growth rate.  For example, Brooker et al. (2005) reanalyzed 

data from Reader et al. (1994) to compare the intensity of the competitive effect of neighbors on 

Poa pratensis to the importance of the competitive effect.  Among grasslands that varied in 

productivity, both components of competition were significantly affected by total neighbor 

biomass.  Plant size can also affect facilitative interactions.  Tewksbury & Lloyd (2001) found 

that larger Olneya testota trees in the Sonoran Desert supported higher numbers of beneficiary 

species and larger beneficiary perennials than small canopies.  Because of the importance of the 

size of individual plants for competitive and facilitative effects, phenotypic plasticity in size may 

have substantial effects on interaction outcomes.   

Morphological plasticity as a response to abiotic conditions, however, is often slow and 

costly, which may limit the ability of plants to respond when subjected to intense competition 

(Novoplansky 2002).  Biochemical responses, such as the release of secondary metabolites that 

increase nutrient availability in the rhizosphere, are less costly and more ephemeral responses 

that can have immediate impacts on plant performance (Metlen et al. 2009) and potentially 

effects on neighboring competitors.  Li et al. (2007) found that the cluster root forming species 

Vicia faba increased phosphorus availability in the soil rhizosphere via the release of acidifying 

chemicals (citrate and malate).  The biochemical response of V. faba to phosphorus deficiency is 

also exceptionally fast; lab tests show it reducing the pH of nutrient agar by ~2 units in 6 hours.  



Such changes in soil acidity can result in 10-fold changes in phosphorus availability.   In field 

experiments, the increase in phosphorus availability resulted in an overyielding of 26% for V. 

faba.  In addition, V. faba directly facilitated Zea mays thru the shared increase in phosphorus 

availability leading to an overyielding of 43% by Z. mays.  This example demonstrates the strong 

potential for biochemical plasticity to be a model system for understanding how TMIs and TMIIs 

can impact both competitive and facilitative interactions and the organization of communities. 

Plasticity and indirect interactions 

We know of no examples in which phenotypic plasticity in a plant trait has been shown to 

alter indirect interactions among other plant species.  Conceptually, however, all of the 

component pieces of TMIIs can be examined from existing empirical studies.  What is lacking is 

a comprehensive set of experiments that explicitly link plasticity and indirect interactions.  

Ideally, such studies would entail an experiment in which species “A” demonstrated two or more 

phenotypes (e.g. APh1 and APh2), and then the indirect effects of these two phenotypes would be 

tested in experiments involving two or more other neighbors (Figure 1).  For example, in Figure 

1A, the hypothetical APh1 has weak competitive effects on species B, and species B has strong 

competitive effects on species C.  Thus the indirect effects of APh1 on C are weak.  In contrast, 

the hypothetical APh2 has strong competitive effects on species B, and thus strong indirect 

facilitative effects on species C.  Figure 2 illustrates how TMIIs might occur when there is 

plasticity in a facilitative benefactor (species A) or a beneficiary (species B).   

  Next we suggest potential scenarios in nature in which these TMIIs might occur, with the 

goal of stimulating ideas for how such studies might be approached in the future.  An intriguing 

scenario may exist for Quercus agrifola, the native perennial herb Pholistima auritum, and 

European annual grasses in California grasslands.  Pholistima can form near monocultures 



directly beneath the canopies of some Q. agrifolia trees, but is much less abundant in the 

grassland directly adjacent to the canopies where European annuals dominate (Parker & Muller 

1982).  However, if Pholistima is not present under the oaks, European grass species are 

intensely facilitated (as Pholistima itself appears to be) by Q. agrifolia which suggests that the 

low abundance of annual grass species in the understory is not due to the direct effects of the 

oaks.  Instead, it appears that once facilitated, Pholistima excludes the European annual grasses 

through the inhibitory effects of its litter and leachates.  In field experiments, fresh Pholistima 

litter reduced Bromus germination by 73% and Avena by 96%.  However, when experiments 

were conducted with Pholistima litter that had been leached, at least 92% of seeds germinated in 

every treatment.  Quercus agrifolia appears to have powerful negative indirect effects on grasses, 

and the stage is set for the next necessary step for TMIIs – if Q. agrifolia demonstrates plasticity 

in some way that affects its facilitative effect on Pholistima, the indirect effects of the tree on 

annual grasses are likely to change as well. 

 Quercus douglasii and Q. agrifolia may help us understand the effects of plasticity on 

indirect interactions (Figure 2, Model 1), but plants show a great deal of plasticity in response to 

neighbors as well (Callaway et al. 2003; Cahill et al. 2010).  We know of no examples in which 

plastic responses have been connected to cascading indirect interactions with other species, but 

much like the Quercus example above, we can speculate about how the plastic response to 

competition may lead to indirect interactions. 

 Cahill et al. (2010) found that plants altered their root foraging strategies based on the 

amount and distribution of resources in the soil and the presence of competitors.  When grown 

alone, Abutilon theophrasti had broadly developed root systems regardless of whether resources 

were uniformly or patchily distributed within the soil.  However, when in competition with a 



conspecific, A. theophrasti was highly plastic in root distribution and distance from stem 

depending on the distribution of resources, suggesting that plants are capable of altering the 

plastic response of roots to nutrients depending on the presence or absence of a competitor, a 

good example of a TMI.  While this example highlights the plastic response of A. theophrasti to 

competition, this particular set of experiments was limited to pairwise competition, which does 

not test TMIIs.  Nevertheless, the alteration of root system morphology based on the presence of 

competitors and variable resources suggests that when placed in a multi-species context, the 

intensity of competition that A. theophrasti experiences (stronger or weaker) is highly dependent 

on the plastic response.  A test of this TMII response could easily be carried out by replicating 

the experiments with multiple competitors.  TMIIs would be demonstrated if competition 

intensities differed between single and multiple competitor experiments. 

Plasticity and exotic invaders 

 Plasticity expressed by any plant species provides an opportunity to explore TMIIs in 

novel ways, but exotic invaders might provide unusually good opportunities because they are 

thought to be unusually plastic (Richards et al. 2006; Hulme 2008) and unusally strong 

competitors (Maron & Marler 2008).  High phenotypic plasticity has been suggested as a good 

predictor of invasiveness (Mal & Lovett-Doust 2005; Chun et al. 2007, but see Bossdorf et al. 

2005; Hulme 2008). Unlike our focus here on plasticity and TMII, both Richards et al. (2006) 

and Hulme (2008) focus on the potential role of plasticity in allowing an invader to express 

advantageous phenotypes as they colonize a broad range of environments (Bradshaw 1965; Van 

Valen 1965; Whitlock 1996; Sultan et al. 1998; Sultan et al. 1998; Donohue et al. 2001; 

Richards et al. 2005).  While likely true, exotic “invasion” is only defined in part by colonization 

by exotic species.  Callaway & Maron (2006) and Hierro et al. (2005) note that exotic 



“invasions” involve biogeographic shifts in the fundamental ecology of a species; generally 

much higher abundances and stronger apparent impacts in non-native ranges than in native 

ranges.  Thus the essence of an “invader” as opposed to an “exotic” is not just in the processes 

involved in colonization, but in the processes involved in the attainment of very high densities, 

biomass, and impacts on other species.  It is in the context of plasticity within these processes 

and impacts that invaders provide the best opportunities to study TMIIs.  

 Strong competitive interactions are likely to play an important role in establishing the 

dominance of some invaders (D'Antonio & Mahall 1991; Levine et al. 2003; Vila & Weiner 

2004; Maron & Marler 2008; Munshaw & Lortie 2010).  Release from specialist herbivores or 

pathogens may allow plants to be more competitive in non-native ranges (Keane & Crawley 

2002), or successful invaders may possess competitive advantages because they come from a 

more competitive species pool, or happen to possess inherent traits that give them an advantage 

relative to their new neighbors.  Invaders may have strong competitive effects in their non-native 

ranges through their ability to attain higher biomass, or because of novel traits that confer more 

subtle competitive advantages (Callaway & Pennings 2000; Callaway & Ridenour 2004).  There 

have been quantitative biogeographic comparisons of productivity, biomass, or density in both 

the native and non-native ranges of invasive plant species (Woodburn & Sheppard 1996; 

Grigulis et al. 2001; Paynter et al. 2003; Jakobs et al. 2004; Beckmann et al. 2009), and many 

studies have clearly documented strong negative impacts of invaders in their non-native ranges; 

apparently much stronger than most if not all native species (e.g. Bruce et al. 1997; Ridenour & 

Callaway 2001; Lu & Ma 2005; Ortega & Pearson 2005; Hejda et al. 2009).  One study has 

quantified the impact of an invasive species on the productivity or diversity of its neighbors in 

the field in both its native and non-native ranges.  Inderjit et al. (in press) found that the canopies 



of Ageratina adenophora, a widespread and aggressive subtropical invader, had facilitative 

effects on other species in its native Mexico but highly inhibitory effects in its non-native ranges 

in China and India. 

 Despite the wealth of information on the plasticity of invaders and the powerful impacts 

they have in their non-native ranges, we know nothing about the phenotypic plasticity of 

invaders within the context of TMIs or TMIIs.  We can only speculate again on likely scenarios 

and ways in which we might experimentally explore TMIIs produced by the phenotypic 

plasticity expressed by exotic invasive species.  For example, when the California native shrubs 

Haplopappus ericoides and H. venetus var. seloides grow in the absence of competition their root 

systems are concentrated near the soil surface (D'Antonio & Mahall 1991).  However, when 

competing with the exotic Carpobrotus edulis the root systems of Haplopappus shift to a much 

deeper morphology as they are displaced by the mat-forming exotic (D'Antonio & Mahall 1991).  

This change in rooting depth by Haplopappus suggests that neighboring species can exert strong 

control over the phenotype of competitors—in this case inducing a change that may result in a 

tradeoff in access to nutrients and water (Ho et al. 2005).  Further, a change in Haplopappus 

rooting depth may decrease the intensity of competition between Haplopappus and Carpobrotus 

but may increase the intensity of competition with other species that utilize deeper soil sections 

which would represent a TMII.  

Carpobrotus invades different abiotic habitats (D'Antonio 1993) which is likely to elicit 

plastic responses by Carpobrotus (Weber & D'Antonio 1999).   Plasticity expressed by 

Carpobrotus may change its effects on the root architecture of Haplopappus, creating a complex 

suite of plastic effects and responses between the two species.  It would be intriguing to explore 



the next step by experimentally subjecting Haplopappus to competition with other species while 

it is experiencing at least two different manifestations of plasticity in Carpobrotus.   

Chemically mediated interactions among plants, such as allelopathy, can also have strong 

impacts on the organization of communities and represents a promising area in the search for 

TMIIs.  Centaurea stoebe, an European invader in North America, exudes the compound (±)-

catechin from its roots (Tharayil & Triebwasser 2010), which can inhibit the growth of 

neighboring competing plants (Callaway et al. 2005; Inderjit et al. 2008a; Inderjit et al. 2008b; 

Simoes et al. 2008; He et al. 2009; Pollock et al. 2009); but see (Blair et al. 2006; Duke et al. 

2009).  In addition to inhibiting neighbor performance, (±)-catechin is also a chelator, the 

addition of which makes phosphorus available in soils where it is bound by calcium (Thorpe et 

al. 2006; Tharayil et al. 2008; Tharayil et al. 2009) which can improve the performance of C. 

stoebe in phosphorus deficient soils.  Native species vary a great deal in their susceptibility to 

(±)-catechin (Thorpe et al. 2009).  Weir et al. (2006) found that two good competitors with C. 

stoebe, Lupinus sericeus and Gaillardia grandiflora, produced levels of oxalate in their root 

exudates that were more than an order of magnitude higher than that of three poor competitors.  

They also found that oxalic acid reduces the oxidative damage generated by (±)-catechin.  

Furthermore, exposure to (±)-catechin increased the exudation of oxalate by G. grandifolia by 4x 

and L. sericeus by 50x.  This suggests that some native plants may respond to competition with 

C. stoebe in a plastic way, which is a demonstration of a TMI. This response creates the 

opportunity for a TMII involving the amelioration of (±)-catechin effects on co-occurring 

species.  Interestingly, native grasses are highly spatially associated with L. sericeus in 

communities invaded by C. stoebe and field experiments show that L. sericeus indirectly 

facilitates native grasses in vegetation dominated by C. stoebe.  This facilitation was correlated 



with the presence of oxalic acid in the soil in the field.  When oxalic acid was applied to the roots 

of native grasses it alleviated the allelopathic effects of (±)-catechin, indicating that root secreted 

oxalic acid may act as a chemical facilitator for plant species that do not produce the chemical.  

Again, this example is not an explicit test of TMIIs, but it does suggest that the chemically 

mediated suite of indirect interactions derives from the plastic response of some species to the 

presence of a novel chemical in the soil rhizosphere.   

Conclusion 

 Although we know of no examples in which researchers have specifically investigated 

the effects of plasticity on indirect interactions among plants, the requisite component pieces of 

TMIIs in plants are well understood.  Because of both the highly plastic nature of plants and a 

myriad of probable indirect interactions in plant communities, TMIIs among plants are clearly an 

important future research direction.  But beyond linking existing ideas about plasticity and 

interactions, we also have considered how to use TMIIs to provide fundamental insight into 

broader ecological questions, such as how plant communities assemble, or how invasive species 

can act as powerful reorganizing forces in communities. 

 Among the more promising lines of research, the biochemical plasticity of plants (Metlen 

et al. 2009) has the potential to provide highly dynamic and inducible phenotypic shifts in plants 

that may also have strong allelopathic effects on some, but not all, neighbors (e.g. Thorpe et al. 

2009), and in some, but not all abiotic contexts (Pollock et al. 2009).  Because plant secondary 

biochemistry can also be specialized in purpose and unique to a family, genus, or even an 

individual species, the potential for plasticity, and thus TMIIs, via plant biochemistry is nearly 

endless.  In addition, the cascading effects of induced biochemical plasticity could also be 



facilitative as it can provide associational defense (Pfister & Hay 1988) and possibly alert other 

species to the presence of herbivores (Karban et al. 2006). 

 The absence of studies of TMIIs among plants may be due in part to the daunting matter 

of experimenting with highly diffuse interactions occurring among multiple species.  But diffuse 

interactions are the product, in part, of the immobility of plants, and immobility in multi-species 

complexes may be why plants are so unusually plastic and provide such exceptional 

opportunities for studying TMIs and TMIIs.  Exploring how shifts in phenotypes respond to 

changing abiotic and biotic conditions, and in turn affect interactions with multi-species 

complexes, may yield major advances towards a more mechanistic understanding of the 

distributions and abundances of plant species. 
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Figure 1.    A conceptual model of how a phenotypic shift in species A can alter the competitive 

effect (solid line) of species A on species B, resulting in an increase in indirect (dashed line) 

benefit to species C.  b)  A model of how a phenotypic change in species B in response to 

competition by species A can result in a change in the indirect effect of species A on species C.  

Both models represent TMIIs as a result of competitive interactions. 



 

 

Figure 2.  A conceptual model of how a phenotypic shift in species A can alter the facilitative 

effect (solid line) of species A on species B, resulting in an increase in indirect (dashed line) 

negative effect on species C.  b)  A model of how a phenotypic change in species B in response 

to facilitation by species A can result in a change in the indirect effect of species A on species C.  

Both models represent TMIIs as a result of facilitative interactions. 
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Abstract 

 Invasive plant species can have strong effects on native plants which can result in mono-

dominant stands of exotics.  Because of the dramatic changes in native plant community 

composition post-invasion much research has sought to explain how invaders can reach such 

extreme levels of dominance.  It’s possible that invaders are simply better competitors than the 

native species they exclude.  This could occur through a release from host-specific enemies in 

their home ranges, specific traits that confer a competitive advantage in new ranges, or through 

alteration of ecosystem processes in non-native ranges.  However, in addition to strong 

competitive effects, some studies suggest that invaders may also alter interactions among native 

species in ways that can facilitate community collapse.  Despite the abundance of research 

investigating the impacts of invaders on native communities, changes in community assembly 

rules by invasive species remains an untested question in plant community ecology.  I analyzed 

plot data collected from eight grassland sites in western Montana to quantitatively assess the 

impacts of the invader Centaurea stoebe on the assembly rules of native plant species.  

Centaurea stoebe had strong negative impacts on native species diversity and abundance.  In 

addition, plots invaded by C. stoebe had 3-4 times lower standardized effect size (SES) C-scores 

than plots without C. stoebe in them suggesting that the level of species-specific co-occurrence 

between native species declines in the presence of a strong invader.  Although both uninvaded 

and invaded plots had a high proportion of species disassociation, or “forbidden combinations,” 

the decrease in co-occurrence suggests that C. stoebe may disassemble native communities by 

changing how the remaining native species interact with each other.  This disassembly may 

occur through the effects of C. stoebe on competitive interactions among native species resulting 

in shifts in community composition and structure.  



Introduction 

 Invasive species can exert strong competitive effects on natives (Levine et al. 2003, 

Maron & Marler 2008a), which can sometimes lead to the competitive exclusion of a large 

proportion of species in native communities.  These powerful impacts have been explored 

through comparisons of invaded and uninvaded sites with similar conditions and histories 

(Ridenour and Callaway 2001, Levine et al. 2003, Ortega and Pearson 2005, Jäger et al. 2007,  

Hejda et al. 2009), comparison of canopy effects in native and non-native ranges (Inderjit et al. 

2011), responses of natives as invasions proceed over time (Petsikos et al. 2007, Brewer 2008), 

removal of invaders (Alvarez and Cushman 2002), meta-analysis (Gaertner et al. 2009), 

experimental additions of invaders (Maron and Marler 2008a,b), or paired competition 

experiments (Callaway and Aschehoug 2000, Ridenour and Callaway 2001, Vila et al. 2004, He 

et al. 2009).  However, it is not clear how invaders accomplish such spectacular dominance.  One 

possible scenario is that some invasive species are simply better competitors than all of the 

native species they exclude.  This has been proposed to occur through several mechanisms 

including release from host-specific enemies that occur in native ranges (Elton 1958, Keane and 

Crawley 2002, Callaway et al. 2004), specific traits that yield greater competitive effects 

(Callaway and Aschehoug 2000, Callaway and Ridenour 2004, Kim and Lee 2010, Inderjit et al. 

2011), or competitive advantages through the effects of invaders on native ecosystems (Mack et 

al. 2001, Rout and Callaway 2009).  A second and non-mutually exclusive scenario, and one that 

to our knowledge is untested, is that invaders do not outcompete all natives, but instead, through 

their strong competitive effects they may also disrupt assembly rule interactions among natives.  

In other words, invaders might change the ways that natives interact with each other in ways that 

contribute to their demise.  In either scenario, competitive exclusion of native species may occur 



because invaders are able to reach much higher biomasses and thus exert greater, but mass-

symmetrical, effects (see Maron and Marler 2008a,b).  Alternatively, invaders may exert stronger 

gram per gram effects (Besaw et al. 2011). 

“Assembly rules” are the general rules that determine how species combine to form 

communities (Wilson et al. 1995, Wilson and Whittaker 1995, Belyea and Lancaster 1999) and 

provide a broad approach to link competitive interactions into a predictive framework for 

coexistence, competitive exclusion, and community structure.  There are two general categories 

of assembly rule theories for how plant communities assemble under equilibrium conditions.  

The first assumes that plant communities are competitively transitive in nature (Goldsmith 1978, 

Mitchley and Grubb 1986; Keddy and Shipley 1989).  In other words, all species in a given pool, 

or community, can be ranked in a linear hierarchy of competitive ability.  The second category 

incorporates complex interactions among groups of plant species resulting in “non-transitive”, or 

non-hierarchical, community assembly rules (Jackson and Buss 1975, May and Leonard 1975, 

Petraitis 1979).  Experiments and models of such non-transitive processes among competitors 

suggest that community members interact in “networks” of interactions, not hierarchies - some 

positive, some negative – and raise the alternative perspective that coexistence may be 

maintained among large pools of species even in the absence of abiotic heterogeneity or non-

equilibrium processes.  Hierarchical organization is best described mathematically as A>B>C, 

whereas non-hierarchical organization has been proposed to occur through “competitive loops” 

in the hierarchy such as A>B>C>A.  In other words, species C indirectly benefits species B by 

having a direct negative impact on species A.  Given the right starting point, a simple loop within 

a suite of competing species can result in a perpetually shifting state in which all three species 

coexist indefinitely.  This coexistence is based entirely on the balance of direct competitive 



interactions, but leads to the formation of complex networks of species interactions.  

Mathematical evaluations of such interactions predict that indirect interactions among 

competitors can allow communities of multiple species to coexist (Karlson and Jackson 1981, 

Laird & Schamp 2006, 2008, Allesina and Levine 2011).  

Assembly rules in natural communities have been well studied and vigorously debated 

(Weiher and Keddy 1999b) but we know little about how exotic invasions might affect assembly 

rules in native communities.  Invaders can competitively suppress and exclude natives, but do 

they also alter the complex interactions that occur among groups of competing native species?  

Experimentally examining networks of competitive interactions in the context of invasion may 

provide insight into whether or not natural communities assemble in any predictable way, how 

they assemble, and if they disassemble when interacting with new and highly competitive 

species.  For example, Gotelli and Arnett (2000) investigated the effects of the invasive red fire 

ant (Solenopsis invicta) on native ant communities along a 2000 km transect on the eastern coast 

of North America.  Solenopsis invicta not only reduced the density of native species at local 

scales, it changed patterns of co-occurrence among native ants from highly segregated (low 

coexistence) to patterns that were fully random and suggestive of no assembly rules at all.  

Similarly, non-experimental analyses of spatial associations and patterns provide insight in the 

effects of invaders on assembly rules.  Sanders et al. (2003) found strong disassembly of native 

ant communities by the invasive Argentine ant (Linepithema humile).  By following L. humile 

invasions over time they found that, much like S. invicta, L. humile changed patterns within 

communities of native ant species from highly segregated assembly rules to patterns of random 

assembly. 



 Assembly rules have been studied extensively in plant communities (Wilson and 

Roxburgh 1994, Wilson et al. 1995, Wilson and Whittaker 1995, Weiher and Keddy 1999a), but 

to our knowledge there have been no studies, such as those on invasive ants, of the effects of 

invasive plants on community assembly.  Exotic plant invasions are ubiquitous and have 

profound effects on the local abundance and diversity of native species.  In addition, plant 

communities are often a complex matrix of direct and indirect multi-species interactions, 

meaning that plant communities are a rich system for investigating assembly rules (Wilson and 

Roxburgh 1994, Wilson et al. 1995, Wilson and Whittaker 1995).  Plant communities worldwide 

are experiencing a large influx of new species as a result of the increased globalization of 

agriculture and commerce, providing the opportunity to learn much about how invasive species 

may disrupt the fundamental rules of how plants interact at the community level.  Here I 

examined how invasion varied native species composition in western Montana grasslands ( 

bluebunch wheatgrass (Pseudoroegnaria spicatum) type (Mueggler and Stewart 1980)) using 

ordination analysis and small scale assembly patterns with co-occurrence analysis. 

 

Methods 

Centaurea stoebe L. ssp. micranthos (Gugler) Hayek (spotted knapweed; nee C. 

maculosa Lam.) was introduced to North America in the early 1900s and is now an aggressive 

invader of western Montana grasslands.  At high densities C. stoebe displaces native species and 

decreases local plant diversity (Tyser 1992, Ridenour and Callaway 2001, Ortega & Pearson 

2005).  I compared community composition in eight grassland sites where C. stoebe varied in 

abundance.   



 The percent cover of all species in 800 1 x 1 m2 plots in western Montana grasslands was 

sampled in early summer (May-June) of 2000 (collected by Ortega and Pearson 2005).   Eight 

different sites were sampled, four with virtually no invaders and four that had been moderately 

invaded by C. stoebe.   All sites occurred on southwest aspects between 1300 and 1700 m 

elevation and were similar in slope, aspect, vegetation classification type and management 

history (Ortega and Pearson 2005).  Centaurea stoebe is an aggressive invader of western 

Montana grasslands, but the average C. stoebe cover for all invaded sites was 17%, much lower 

cover than this species can reach at other sites (Key 1988, Tyser 1992, Ridenour and Callaway 

2001,).  At each site, four transects were established perpendicular to the slope approximately 50 

m apart.  On each transect, vegetation was sampled in 25 systematically oriented 1 m2 quadrats 

placed every 10 m along each transect.  Thus there were 100 plots at each site.   In each plot, the 

percent cover of each species was estimated to the nearest 1%.  For all species that occupied less 

than 1% of a plot, a value of 0.5% was recorded.    I separated these 800 plots into two groups, 

those with C. stoebe occurring in them at any level of abundance (n=166), and those with no C. 

stoebe recorded (n=631).  In this analysis the percent cover of the dominant invader C. stoebe, all 

exotic species (n=23), conifers, and all rare species (< 2 total occurrences) were excluded from 

all plot data to avoid bias in the ordination analysis.  I compared the mean diversity of natives 

(total number of species) and the mean cover of natives in plots between these two groups using 

two sample means t-tests (Sigmaplot 11.2).  I also calculated rank-abundances by summing the 

percent cover in all plots by species and then ordering them numerically.  To plot rank-

abundance curves, the abundance data were natural log transformed (ln(x+1). 

 I conducted a non-metric multidimensional scaling (NMS) ordination analysis (PC-ORD 

5.0) of the data using natural log transformed (ln(x+1)) percent cover data from all plots.  NMS 



analysis allows one to make estimates of community similarity based on the unique species 

combinations and relative cover data from field plots.  The distance between points (plots) within 

the ordination space represents the degree of similarity for any two plots. 

I performed a co-occurrence analysis of species in the 631 plots without C. stoebe and of 

species in the 166 plots invaded by C. stoebe.  All percent cover data was converted into a matrix 

of binary values for presence (1) or absence (0) and organized by species (rows) and plot 

(column).  For all plots, we removed the percent cover of C. stoebe, all exotics and two species 

of conifer from the analysis in order to limit the test to native species response to the presence or 

absence of C. stoebe.  Using ECOSIM 7 (Gotelli and Entsminger 2009), we calculated the C-

score (Stone and Roberts 1990) for both types of plots in order to quantitatively explore the level 

of coexistence among pairs of species; the larger the C-score, the lower degree of co-occurrence 

of specific species pairs.  In other words, communities with large C-scores exhibit properties of 

species segregation, which is assumed to be driven by competition.   We evaluated the statistical 

significance of C-scores by comparing the observed community C-score (treatment) to a null 

community (control) which was generated by random assemblages of the observed data.  Our 

model assumed fixed row and column totals when calculating null communities.  The random 

assemblages were replicated 5000 times and used to calculate a standardized effect size (SES) 

for each community.  SES is a conversion of the C-score into units of standard deviations and 

allows for meaningful comparisons among matrices.  SES values greater than 1.96 demonstrate 

patterns of segregation that are significantly different from random assemblages of species. 

  



Results 

 Plots without C. stoebe had significantly more species per plot (mean = 6.50 ± 0.09) than 

plots invaded by C. stoebe (mean=4.65 ± 0.17; P < 0.001).  In addition, plots without C. stoebe 

had significantly higher percent cover of natives per plot (mean = 37.38 ± 1.15) than did plots 

with C. stoebe present (mean=31.43 ± 2.21; P = 0.018).   

Rank-abundance curves show strong differences in slope and rank position where 

abundance is zero (Fig. 1).  The three most dominant species in uninvaded plots were 

Balsamorhiza sagittata (ln abundance = 8.57), Pseudoroegneria spicata (8.04), and Festuca 

idahoensis (7.74).  All three species showed strong declines in plots with C. stoebe (B. sagittata 

= 7.91; P. spicata = 6.04; F. idahoensis = 3.76). 

NMS ordination analysis showed that, as a group, the 166 plots with C. stoebe had 

substantially different species compositions than the 631 plots without C. stoebe (Figure 2).  

NMS of the samples also explained variation in the data set well with a final stress score of 22.58 

for a three dimensional solution after 200 iterations.  The final instability score was 0.00407.  

The strongest differentiation between these two groups was along NMS axis 1, and the abundant 

species that showed the strongest relationships to axis 1 were Microsteris gracilis (Kendall’s Tau 

= 0.485,  F. idahoensis (Tau = 0.454), Lithophragma parviflora (Tau = 0.414), Lupinus species 

(Tau = 0.365), Physocarpus malvaceus (Tau = 0.174), which were not associated with C. stoebe, 

and B. sagittata (Tau = -0.581), Collomia linearis (Tau = -0.218, P. spicata (Tau = -0.204), 

Achillea millefolia (Tau = -0.107) which were associated with C. stoebe. 

 Native communities appear to be structured with a high degree of segregation among 

species.  In other words, native species demonstrate patterns of low coexistence or high numbers 

of “forbidden combinations” (Diamond 1975; SES C-score = 24.05).  Invaded communities, 



however, showed much weaker patterns of segregation (SES C-score = 7.33) indicating that the 

number of forbidden combinations were far fewer. 

Discussion 

My results provide correlative evidence from spatial patterns for the disassembly of 

native communities due to C. stoebe invasion.  Many studies have shown that invasive plant 

species suppress and eliminate native species locally (Alvarez and Cushman 2002, Petsikos et al. 

2007, Brewer 2008, Gaertner et al. 2009, Inderjit et al. 2011), and others have shown that 

invasive species can have disproportionally strong competitive effects (MacDougall and 

Turkington 2004, Vila and Weiner 2004, Maron and Marler 2008b), including C. stoebe (Maron 

and Marler 2008b, He et al. 2009, Aschehoug 2011, Dissertation Chapter 1).  Importantly, most 

studies to date investigating the effects of invasive species on plant communities focus on the 

direct effects of the invader on individual native species (Callaway and Aschehoug 2000, 

Ridenour and Callaway 2001).  Instead, these results are the first to suggest that plant invaders 

may fundamentally change how native species interact with each other and result in far less 

structure in the remaining native plant communities.  Importantly, my results are based on spatial 

patterns, and thus are a correlative first step towards understanding how invaders might affect 

assembly rules.  Experiments that control for site effects and potential indirect effects (e.g. 

through soil biota or herbivores) will be crucial.   

To my knowledge, the only other studies of the effect of exotic species on community 

assembly rules and structure have been conducted on ants.  Gotelli and Arnett (2000) found 

strong impacts on native ant community structure by the invasive red fire ant (Solenopsis 

invicta).  S. invicta altered native ant competitive interactions by shifting patterns of low 

coexistence to patterns of random assembly.  This significant change in how native ant species 



interact is thought to be driven by the strong competitive effects of S. invicta.  Similarly, Sanders 

et al. (2003) found that the invasive ant Linepithema humile caused native ant community 

structure to collapse from highly segregated to random assembly.  

Understanding the rules by which plant species assemble into communities is crucial in 

order to make predictions about species abundances and distributions and the structure of plant 

communities (Wilson and Roxburgh 1994, Wilson et al. 1995, Wilson and Whittaker 1995, 

Weiher and Keddy 1999a).  However, the search for assembly rules in ecology has not been 

without controversy (Diamond 1975, Simberloff and Connor 1979).   Although there is a 

growing consensus among plant ecologists that plant communities are more than random 

assemblages of species and therefore exhibit properties of assembly rules (Weiher and Keddy 

1995), there is disagreement regarding the nature of how assembly rules operate within 

communities.  Currently, the debate centers on whether or not competition acts to exclude 

species from communities (Keddy and Shipley 1989) or whether competition can act to promote 

coexistence within communities (Laird and Schamp 2006).  Plant invasions provide a unique 

opportunity for exploring the role of assembly rules and competition in structuring plant 

communities.  The introduction of new, highly competitive species can give us insight into 

potentially subtle assembly rules in native communities by disrupting the interactions between 

native species.  If assembly rules are present and detectable in native communities, changes in 

interactions in the presence of invaders can tell us how resilient community assembly rules are to 

the introduction of new species - invasive or not.  My results suggest that the invader, Centaurea 

stoebe, has dramatic effects on the underlying processes of competition resulting in shifts in both 

community composition (Figure 2) and structure (Figure 3).   Thus, my results provide further 

support for the presence of assembly rules - not only among native species, but also in 



moderately invaded systems.  This does not settle the debate about whether competition is an 

exclusionary force, or if competition supports coexistence in plant communities; however, these 

results indicate that invasive species can serve as a model system for exploring the fundamental 

nature of assembly rules in plant communities.   

My results also suggest that assembly rules may not be fixed, but instead are dynamic.  

Current theory predicts that assemblages of species interact in set or fixed ways to form 

communities.  However, plants are plastic in response to competition at the individual level 

(Cahill et al. 2010), thus it is also possible that plant assemblages can be plastic in the way they 

interact as a group in response to each other or new species.  Although both uninvaded and 

invaded plots exhibited significant properties of segregation (p<0.001), I found a 70% reduction 

in the SES C-score, a measure of coexistence among species, from native sites to invaded sites 

suggesting that the rules of competition between native species are fundamentally changed in the 

presence of C. stoebe.  In addition, the sampled sites represent an invasion level of C. stoebe 

(mean cover of 28% in invaded plots) that is much lower than what can occur in C. stoebe 

invasions (e.g., 60-100%; Ridenour and Callaway 2001).  Despite the relatively low percent 

cover of C. stoebe in invaded plots, I still found highly significant effects of invasion on species 

diversity and percent cover of native species.  Ortega and Pearson (2005) found that both of 

these measures are negatively correlated with C. stoebe cover, suggesting that as invasion level 

increases over time, native species diversity and percent cover will continue to decline.  

Therefore, even though our study only examines the early phases of C. stoebe invasion and 

community disassembly, it may be useful in making predictions about how assembly rules may 

change as invasion progresses.   



Recently there has been a renewed interest in the attributes of plant communities that 

might confer resistance to invasion (Levine and D’Antonio 1999).  Investigations have focused 

on how different levels of species diversity or particular combinations of species provide biotic 

resistance to invasions.  However, the results here suggest that invaders may be successful not 

only because of their particularly effective competitive abilities, but also because of the 

cascading effects they have on changing native species interactions.  Thus, biotic resistance may 

be conferred via not only the individual competitive abilities of native species, or their diversity 

per se, against invaders, but also by the stability of the networks of interactions occurring 

between natives during invasion.  Given that invasions are often patchy across landscapes, we 

may learn much from variation in fundamental ecological processes, such as competition and 

assembly rules, among these patches. 

My results provide circumstantial evidence for community disassembly by C. stoebe, 

especially when considered together with other studies on the effects of C. stoebe on North 

American grasslands (Tyser 1992, Kedzie-Webb et al. 2001, Ridenour and Callaway 2001, 

Ortega and Pearson 2005), but we cannot rule out factors other than competition as causes in our 

large scale correlation-based study - experimentally manipulating invasion rates and levels in 

intact native grasslands has ethical issues.  Furthermore, we do not know the mechanisms behind 

the strong competitive effects of C. stoebe on natives or how Centaurea may alter the ways that 

natives interact with each other.  Centaurea stoebe may gain competitive advantages through 

novel traits such as allelopathy (Inderjit et al. 2008, He et al. 2009), its effects on soil biota 

(Callaway et al. 2004), mass-based effects (Maron and Marler 2008b), or effects on resources.  

Regardless of the mechanism, my results are the first to suggest that invasive plants may not only 



competitively suppress native species, but also strongly alter the way native species interact with 

each other. 
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Figure 1.  Species rank abundance curves for plots with and without C. stoebe at eight sites in 

intermountain grassland in western Montana. 

  



         

Figure 2.  NMS ordination for all plots at all sites containing C. stoebe (n = 166, white circles) 

and all plots at all site not containing C. stoebe (n = 631, black circles).  Large circles show the 

means for each treatment and 95% confidence limits are within the circles.    
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Figure 3.  Effects of C. stoebe on native grassland community structure.  Standardized effect size 

of the calculated C-score for plots with and without C. stoebe.  Dashed line (SES=1.96) indicates 

the threshold between random assemblages (SES<1.96) and significantly segregated 

communities (SES>1.96).  
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Abstract  

 Competitive outcomes among plants can vary in different abiotic and biotic conditions. 

Here we tested the effects of two phylotypes of Alternaria endophytes on the growth, 

competitive effects, and competitive responses of the exotic invasive forb Centaurea stoebe.  

Centaurea stoebe was a better competitor against North American grass species than native 

grasses from its European home range in the absence of endophytes.  However, one endophyte 

both increased the biomass of C. stoebe and reduced the competitive effect of North American 

grasses on C. stoebe.  The competitive effects of C. stoebe on grass species native to North 

America were enhanced by both fungal endophytes, but not for native European grasses.  We do 

not know the mechanism by which endophytes increased C. stoebe’s competitive ability, and 

particularly against biogeographically new neighbors, but one endophyte increased the 

competitive ability of C. stoebe without increasing its size, suggesting mechanisms unrelated to 

increased growth.  We tested only a fraction of the different endophytic fungi that have been 

found in C. stoebe, only scratching the surface of understanding their indirect effects.  However, 

our results are the first to demonstrate such effects of a fungal endophyte infecting an invasive 

forb, and one of the few to show that endophyte effects on competition do not have to be 

mediated through herbivory.   

 

Keywords: Alternaria, Centaurea, biogeography, community, competition, conditionality, 

endophyte, fungus, invasion, mutualism 
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Introduction 

Competition is a strong organizing force in plant communities (Connell 1983, Grace and 

Tilman 1990).  However, competitive outcomes are highly conditional, varying with abiotic 

conditions (Callaway et al. 1996), herbivore attack (Louda et al. 1990), and pathogens (Van der 

Putten and Peters 1997).  At the scale of continents, exotic invasions also suggest strong 

conditionality in competition because some species become much more dominant in their non-

native ranges than in their native ranges (Hierro et al. 2005).  This conditionality in dominance 

would seem to be related, at least in part, to unusually strong competitive suppression of resident 

species in the newly invaded range (Maron and Marler 2008).  This superior competitive ability 

of “invaders” in their new ranges has been primarily attributed to release from host-specific 

enemies (Keane and Crawley 2002), such that reduced herbivore and pathogen attack may give 

invaders a disproportional competitive edge in their new ranges where native species remain 

suppressed by their host-specific enemies.  Invaders may also directly exert greater competitive 

effects in their non-native ranges through their ability to attain higher biomass (Maron and 

Marler 2008), or through novel traits that confer greater competitive ability beyond that of size 

(Callaway and Aschehoug 2000,  Kim and Lee 2010, Inderjit et al. in press).  However, we know 

much less about the conditionality of competition between invaders and natives than we do about 

the conditionality of competitive interactions among native species. 

Mutualisms play powerful roles in some successful invasions (Richardson et al. 2000,  

Rout and Chrzanowski 2009, Callaway et al. in press) and there is evidence that the competitive 

ability of some invaders can be improved by associations with mutualists (Marler et al. 1999, 

Reinhart and Callaway 2004, 2006).  Fungal endophytes are mutualists that can provide indirect 

benefits via herbivore defense (Clay et al. 2005, Koh and Hik 2007, but see Faeth 2002, Faeth 



and Fagan 2002).  Fungal endophytes can also improve plant performance by altering 

rhizosphere microbial communities (Rudgers and Orr 2009) and helping plants cope with water 

stress (Elmi and West 1995).  Fungal endophytes also appear to directly increase the competitive 

effects of infected plants on other species (Marks et al. 1991, Rudgers and Orr 2009), but these 

effects are much less understood than herbivore-mediated effects.  Importantly, examples of 

endophyte-increased competitive effects are limited so far to a relatively small group of 

endophytes in grasses: those belonging to the family Clavicipitaceae (e.g., Neotyphodium; Clay 

et al. 1993; Clay and Holah 1999). 

There has been little investigation into the role of endophytic mutualists in the success of 

invasive species, with the exception of what has been learned from non-native agriculturally 

important grass species (Saikkonen et al. 2006).  Centaurea stoebe, an aggressive invader of 

western North American grasslands, provides an opportunity to substantially broaden our 

understanding of how non-clavicipitaceous endophytes affect interactions among plants 

(Newcombe et al. 2009) and their roles in invasion because Centaurea stoebe harbors many 

fungal endophytes (Shipunov et al. 2008).  Some of these endophytes have the potential to 

enhance the competitive and allelopathic effects of C. stoebe, while others may act as pathogens 

(Newcombe et al. 2009).   

We explored the role of two fungal endophytes on the growth of C. stoebe and on the 

competitive effects and responses of the invader when interacting with North American and 

European grass species.  Both endophytes are phylotypes of Alternaria (Shipunov et al. 2008).  

Some species in the genus Alternaria are pathogens of crops and trees, and are found in soils 

where they act as decomposers (Kwansa 1992).  However, species of the polyphyletic genus 

Alternaria also act as mutualistic endophytes with some plant species.  For instance, Musetti et 



al. (2007) found that Alternaria alternata is a defense mutualist against the downy mildew 

Plasmopara viticola in grapevines (Vitis).  Other very closely related pathogens of the order 

Pleosporales also appear to switch between pathogen and mutualist roles and aid plants in 

extreme environmental conditions (Marquez et al. 2007; McLellan et al. 2007) and can be 

common as endophytes (Porras-Alfaro et al. 2008).   

 We focused on three primary questions: 1) do fungal endophytes directly affect the 

growth and competitive ability of C. stoebe? 2) does C. stoebe have stronger competitive effects 

on and weaker competitive responses to native North American species than European species? 

and 3) do fungal endophytes affect competitive interactions between C. stoebe and North 

American natives more than competition with European species? 

Methods 

 We grew Centaurea stoebe in three treatments: 1) endophyte free; 2) infected with 

Alternaria phylotype ‘alt2f’ (isolate CID120); 3) infected with Alternaria phylotype ‘alt2b’ 

(isolate CID73).  The ‘alt2f’ phylotype is closely related to Alternaria longipes whereas the 

‘alt2b’ phylotype is closer to Alternaria alternata.  The CID73 isolate, or fungal individual, that 

we used was from seed of a C. stoebe plant collected along the Clearwater River, Idaho [lat.: 

46.4474333; long.: -116.861917; elev.: 233 m], whereas the CID120 isolate was from Heviz, 

Hungary [lat.: 46.8046667; long.: 17.25566667; elev.: 454 m].  These endophytes have been 

found in C. stoebe over wider ranges, but were chosen because of differences in their relative 

abundances in the native and non-native ranges of C. stoebe (Shipunov et al. 2008).  The ‘alt2f’ 

phylotype (CID73) is much less common in both the native and invaded ranges of its host than 

‘alt2b’ (CID120), the most abundant phylotype of the native range and quite common in the 

invaded range as well.  Endophyte infection rates of sampled populations of C. stoebe vary 



between 0-100%; however, less than 30% of all seeds contain endophytes of any kind (Shipunov 

et al. 2008).   

 Centaurea stoebe plants were grown either alone (n=10 per endophyte treatment) or in 

pairwise competition (n=10 per endophyte treatment per competitor) with each of four North 

American and four European grass species in a greenhouse at the University of Montana, 

Missoula, Montana, USA.  We selected grass species that are either dominant or common 

species in their respective native ranges.  North American grasses were Festuca idahoensis, 

Koeleria macranthus, Pseudoroegneria spicata, and Stipa comata. European grasses were 

Agropyron repens, Lolium rigidum, Melica ciliata, and Poa annua.  All grass seed was wild 

collected from native prairie surrounding Missoula, Montana and in grasslands containing C. 

stoebe near Iasi, Romania.  Endophyte-free seeds of Centaurea stoebe were raised from a parent 

stock of wild collected endophyte-free seed in a greenhouse at the University of Idaho.  All 

species were germinated in Petri dishes over a two week span prior to transplanting into 2.4 l (18 

cm diameter, 22 cm depth) pots to insure germination success and reduce priority effects among 

competing species that germinate at different times.  All pots were randomized in the greenhouse 

after planting to avoid the confounding effects of greenhouse microsite variability.  Soil in pots 

comprised of a 1:1 homogenous mix of autoclave-sterilized field collected soil (Missoula, 

Montana) and 20/30 grit sand.  All soil, sand and pots were autoclaved prior to planting to 

remove any confounding soil microbial effects.  Fungal endophytes were cultured on potato 

dextrose agar and applied exogenously to C. stoebe roots in the seedling stage prior to planting.  

To ensure adequate inoculation, seedlings were placed in Petri dishes of the cultured fungal 

endophytes and allowed to remain in contact with fungal hyphae for 12 hours.  Like other Class 

2 endophytes (Rodriguez et al. 2009), the Alternaria phylotypes studied here can colonize roots 



and leaves as well as the seeds from which they were originally isolated making our inoculation 

procedure an appropriate experimental manipulation that results in reliable colonization 

(Newcombe et al. 2009). 

 We tested the direct effects of endophytes on all grass species by directly applying fungal 

endophytes to the roots of grass seedlings using the same procedure as for C. stoebe seedlings.  

These seedlings and controls without fungal endophytes were planted alone (n=10 per species 

per endophyte treatment) in 500 ml cone-tainer pots.  Pots were filled with a 1:1 homogenous 

mixture of autoclave sterilized local native soil and 20/30 grit sand. 

 All plants were grown for 70 days prior to harvest.  Greenhouse temperatures were kept 

between 15 and 30° C. and natural light was supplemented by metal halide bulbs to maintain 

PAR above 1,200 µmols m-2 s-1.  Plants were watered two to three times per week.  Entire 

individual plants were harvested by washing and manually disentangling roots of competing 

species.  We subsampled the live roots of 36 individual grasses to test for horizontal transfer of 

endophytes from C. stoebe plants to grasses.  Subsampled roots were surface sterilized and 

cultured to determine infection rates.  We did live weight to dry weight conversions of all 

subsampled tissues using a conversion factor from the remaining root mass of subsampled plants.   

Harvested plants were dried at 60°C for 72 hours and weighed.  We used ANOVA 

(univariate GLM in PASW 18) where competitor species, region and endophyte treatment were 

fixed factors.  We also calculated Relative Interaction Intensity indices (RII; Armas et al. 2004) 

using endophyte-free C. stoebe grown alone as the control and competitor x endophyte 

interactions as the treatment.  RII is a measure of the strength of interaction between species 

centered on zero with negative interactions (competition) indicated by values between 0 and -1, 

and positive interactions (facilitation) indicated by values between 0 and +1.  RII allows for 



simple comparisons of interaction strength across taxa and treatments.  Statistical analyses and 

the results presented in the figures for RII were calculated using t-test comparisons (Excel 2007) 

and one-way ANOVA with Tukeys post hoc analysis (Sigmaplot 11.2) of RII values and SE 

(Armas et al. 2004 Appendix A) both among and between region x endophyte treatments and to 

determine whether RII values significantly differ from zero.   

Results 

 When C. stoebe was experimentally infected with the CID120 isolate from Hungary, 

plants were 46% larger (post-ANOVA Tukey test, p=0.001; Appendix, Table 1) than the 

uninfected controls and 36% larger (post-ANOVA Tukey’s test, p=0.003) than plants infected 

with the CID73 isolate from the Clearwater River of Idaho. 

 Endophyte-free C. stoebe were more than twice as suppressed by European grass species 

as by North American grass species (Fig. 1; Appendix, Table 1); however, both European and 

North American species suppressed endophyte-free C. stoebe (p<0.001, p=0.038).  When C. 

stoebe was infected by CID120, the competitive suppression by European grasses was as strong 

(p<0.001) as when C. stoebe was endophyte-free.  In contrast, C. stoebe infected by CID120 was 

unaffected by North American grasses (p=0.317).  When C. stoebe was infected by CID73, the 

competitive effect of the four European grass species analyzed as a group significantly 

suppressed C. stoebe (p<0.001) and this effect did not differ from that of either endophyte-free or 

CID120-infected C. stoebe.  Unlike the effects of the CID120 endophyte, when C. stoebe was 

infected by CID73, North American plants significantly suppressed the invader (p=0.028). 

 Endophyte-free C. stoebe marginally suppressed European grass species analyzed as a 

group (p=0.058; Fig. 2; Appendix, Table 2).  Endophyte-free C. stoebe tended to suppress North 

American grass species as a group but this effect was not statistically significant (p=0.072).  



Centaurea stoebe infected by CID120 did not change in its effect on European grass species 

(p=0.074), but strongly suppressed North American grass species (p=0.005).  When C. stoebe 

was infected with CID73, there was still a trend towards suppression of European grass species, 

but this effect was not significantly different than the effects of endophyte-free or CID120-

infected C. stoebe (p=0.100).  In contrast, North American grass species were strongly 

suppressed by C. stoebe infected with the CID73 endophyte (p=0.005). 

 We found limited evidence for direct horizontal transfer of endophytes from C. stoebe to 

grass species.  Of the 20 subsampled European grass species, two were infected by CID120 and 

two were infected by CID73.  For North American grass species, we subsampled 16 individual 

plants and found three infected by CID120 and none infected by CID73.  In our tests of the direct 

effect of endophytes on grass species, we found no effects on European grass species (Appendix, 

Fig. 1).  However, North American grasses analyzed as a group were significantly inhibited by 

CID120.  This result was highly skewed by the sensitivity of Stipa comata to direct infection 

with CID120; S. comata was the only species of the eight tested to show significant effects to the 

direct application of CID120 and CID73 (Appendix, Table 3).  But when S. comata was grown 

in competition with C. stoebe, we found no significant differences between endophyte-free and 

endophyte-infected treatments (p=1.00, p=0.760; Appendix, Table 2). 

 

Discussion 

 The most novel contribution of our results is that the direct competitive effects of C. 

stoebe on native species in the invaded range were strongly enhanced by fungal endophytes.  

Importantly, the enhanced effects of endophytic fungi only occurred against North American 

natives and not against European natives.  The effects of endophytic fungi on competing grass 



species may have been direct, as horizontal transfer from C. stoebe to grasses did occur.  

However, only 7 of 36 grasses surveyed from the competition experiment showed any evidence 

of fungal endophyte infection, and only S. comata showed negative effects of direct application 

of either fungal endophyte.  If direct effects of the fungal endophyte via horizontal transfer are 

responsible for the suppression of grass species, we would have expected the highly sensitive S. 

comata to be suppressed more when in competition with endophyte infected C. stoebe than when 

in competition with endophyte free C. stoebe.  Instead, when S. comata was grown in 

competition with endophyte-free C. stoebe and endophyte-infected C. stoebe, there was no 

difference in the amount of suppression of S. comata by C. stoebe.  Therefore, the enhanced 

competitive effect of C. stoebe by fungal endophytes appears to be driven by changes in C. 

stoebe, or synergistic processes involving C. stoebe and endophytes, rather than the infection of 

the grass species by the endophytes themselves. 

 A second key finding of our study was that C. stoebe, with or without endophytes, was 

far more suppressed by European grass species than by North American grass species (Fig. 1), a 

general result that is consistent with other studies (Callaway and Aschehoug 2000, He et al. 

2009, Thorpe et al. 2009).  However, infection of C. stoebe by CID120 eliminated even the weak 

competitive effect of North American grass species on the invader that was manifest in 

endophyte-free and CID73-infection treatments, suggesting that CID120 improved the 

competitive response of C. stoebe as well as its competitive effect. 

 Infection of C. stoebe by CID120 also resulted in increased size when grown alone, 

which may explain the increased competitive effects of CID120-infected C. stoebe on North 

American grass species.  However, CID73 did not increase the size of C. stoebe when grown 

alone yet CID73-infected C. stoebe had much stronger competitive effects on North American 



grass species than endophyte-free C. stoebe.  In addition, C. stoebe did not significantly differ in 

size when grown in competition with North American grass species regardless of endophyte 

treatment (Appendix, Table 1), further suggesting that the effects of fungal endophytes on 

competition are derived from something other than increasing the size of C. stoebe. 

 There is little information in the literature for how fungal endophytes might increase 

plant size or influence plant competitive ability in the absence of herbivory, but Rodriquez et al. 

(2009) reports a number of Class 2 endophytes that increase the root or shoot biomass of their 

hosts.  Endophytes can increase plant defenses against herbivores through the production of 

alkaloids, which can indirectly increase competitive outcomes through herbivore preference for 

the less defended competitor (Clay et al. 1993).  Fungal endophytes can also alter soil microbial 

communities (Rudgers and Orr 2009), and this might provide indirect competitive advantages.  

However, we sterilized all substrates, thus the only biota that were in the pots were the 

experimentally added endophytes and any organisms that colonized the pots during the 

experiment.  To our knowledge, because we eliminated soil biota and herbivores, our results for 

C. stoebe are the first to demonstrate that endophytes can be a direct cause of increased 

competitive ability, rather than indirect.  Because we worked with an invasive species and fungal 

mutualists for which biogeographical information is scarce, we limited our study to greenhouse 

experiments.  However, for a better understanding the ecology of this invader-fungus mutualist 

field studies should be conducted in the non-native and native ranges of C. stoebe. 

Centaurea stoebe appears to be allelopathic (He et al. 2009, Ridenour and Callaway 

2001); however, the allelopathic effects of C. stoebe have been highly variable.  The fungal 

endophyte community infecting C. stoebe throughout its native and non-native range is very 

diverse taxonomically, and the proportion of individual plants infected by endophytes varies 



dramatically among populations (Shipunov et al. 2008).  Thus variation in endophytic infection 

has a great deal of potential to cause variation in competitive outcomes, and perhaps explain 

differences among experiments and variation within experiments.  Similarly, different 

endophytic fungi might produce different allelopathic chemicals (Rudgers and Orr 2009, 

Newcombe et al. 2009) or stimulate different levels of allelochemical production. 

 The biogeographic native ranges of the fungal isolates (Shipunov et al. 2008) is not clear, 

but the idea that C. stoebe may have picked up novel endophytic “weapons” in North America or 

imported an important novel weapon when it was introduced suggests important future 

questions.  However, even endophyte-free C. stoebe were far more competitively superior 

against North American than European species, indicating that fungal endophytes enhanced an 

extant competitive mechanism or provided another mechanism that operated in an additive 

fashion. 

The mechanism by which fungal endophytes increased C. stoebe competitive ability is 

unknown, but because of the strong biogeographic pattern in competitive outcomes, it would 

appear that the long term evolutionary histories among the interacting species is important 

(Callaway and Aschehoug 2000).  Global C. stoebe populations appear to be “mosaics of 

uninfected and infected plants” (e.g. Faeth 2002) and vary dramatically in the genetic identity of 

the endophytic fungi they host.  This diverse mixture of endophyte and host genotypic 

combinations may be maintained by different selective pressures including herbivory, abiotic 

factors and competition, which in turn can affect the growth, survival or reproductive costs of 

hosting endophytes such that net interactions can range from mutualism to parasitism (Faeth 

2002).  We tested only two of the more than 90 endophytes known to be found in the seeds of C. 



stoebe, but our results suggest that endophytes can change the outcomes of competitive 

interactions in newly invaded ranges.   
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Figure Legends 

 

Figure 1.  Response of C. stoebe to competition with European and North American grass 

species when either endophyte-free, infected with the CID120 endophyte, or infected with the 

CID73 endophyte.  Asterisks indicate a significant competitive interaction (p<0.05).  Error bars 

show 1 SE.   

 

Figure 2.  Competitive effect of Centaurea stoebe on European and North American grass 

species when either endophyte-free, infected with the CID120 endophyte, or infected with the 

CID73 endophyte.  Asterisks indicate a significant competitive interaction (p<0.05).  Error bars 

show 1 SE.   
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Appendix: Table 1, Table 2, Table 3, Figure 1.  

 

  Treatment  

 Endophyte-free CID120 CID73 

Grown alone 3.11 ± 0.19 4.57 ± 0.29 3.35 ± 0.23 

    

versus North American 
Species 

   

Festuca idahoensis 2.78 ± 0.24 3.14 ± 0.27 2.34 ± 0.21 

Koleria macranthus 2.08 ± 0.19 2.54 ± 0.26 1.60 ± 0.21 

Pseudoroegneria spicata 1.72 ± 0.26 1.68 ± 0.14 1.88 ± 0.27 

Stipa comata 3.18 ± 0.27 3.64 ± 0.33 3.68 ± 0.37 

All species together 2.39 ± 0.15 2.75 ± 0.17 2.30 ± 0.18 

    

versus European Species    

Agropyron repens 2.00 ± 0.34 3.03 ± 0.45 2.74 ± 0.50 

Lolium rigidum 0.92 ± 0.22 0.89 ± 0.12 0.77 ± 0.11 

Melica ciliata 2.82 ± 0.32 2.85 ± 0.32 2.34 ± 0.36 

Poa annua 1.06 ± 0.14 0.94 ± 0.13 0.83 ± 0.09 

All species together 1.67 ± 0.18 1.81 ± 0.21 1.54 ± 0.19 

 

Table 1.  Biomass (g) and SE for Centaurea stoebe either grown alone or in competition against 

grass species when either endophyte-free or infected with endophyte CID120 or CID73. 

  



 

 

  Treatment  

  Alone Endophyte-free CID120 CID73 

North American Species         

Festuca idahoensis 1.02 ± 0 .12 0.84 ± 0.14 0.63 ± 0.08 0.88 ± 0.18 

Koeleria macranthus 3.25 ±  0.44 1.69 ± 0.23 1.60 ± 0.20 2.06 ± 0.29 

Pseudoroegneria spicata 4.89 ± 0.45 4.05 ± 0.35 3.71 ± 0.31 2.82 ± 0.48 

Stipa comata 1.79 ± 0.22 1.02 ± 0.22 1.01 ± 0.09 0.77 ± 0.11 

All species  together 2.72 ± 0.29 2.02 ± 0.26 1.74 ± 0.21 1.72 ± 0.21 

          

European Species         

Agropyron repens 5.76 ± 0.56 4.39 ± 0.73 3.06 ± 0.49 3.98 ± 0.88 

Lolium rigidum 6.80 ± 0.56 5.60 ± 0.45 5.97 ± 0.79 6.16 ± 0.50 

Melica ciliata 1.86 ± 0.24 0.88 ± 0.17 0.88 ± 0.14 1.07 ± 0.17 

Poa annua 7.00 ± 0.48 5.85 ± 0.25 5.68 ± 0.49 5.60 ± 0.65 

All species together 5.40 ± 0.44 4.10 ± 0.42 4.01 ± 0.46 4.19 ± 0.46 

 

Table 2. Biomass (g) and SE of all grass species grown alone (endophyte-free) or in competition 

with Centaurea stoebe that is either endophyte-free or infected with endophytes CID120 or 

CID73.    



 

  Treatment  

  Endophyte-free CID120 CID73 

North American 
Species       

Festuca idahoensis 0.35 ± 0.08 0.31 ± 0.07 0.33 ± 0.04 

Koeleria macranthus 0.66 ± 0.08 0.52 ± 0.05 0.65 ± 0.07 

Pseudoroegneria 
spicata 0.97 ± 0.04 0.82 ± 0.08 0.88 ± 0.05 

Stipa comata 1.02 ± 0.09 0.61 ± 0.09 0.60 ± 0.10 

All species together 0.77 ± 0.06 0.59 ± 0.05 0.62 ± 0.46 

        

European Species       

Agropyron repens 1.34 ± 0.17 1.01 ± 0.05 1.25 ± 0.16 

Lolium rigidum 1.11 ± 0.06 1.34 ± 0.09 1.50 ± 0.06 

Melica ciliata 0.72 ± 0.06 0.48 ± 0.07 0.42 ± 0.06 

Poa annua 1.18 ± 0.08 1.00 ± 0.11 1.08 ± 0.09 

All species together 1.06 ± 0.05 0.98 ± 0.07 1.06 ± 0.08 

 

Table 3.  Biomass (g) and SE for all grass species grown alone and either endophyte-free or 

directly infected with endophyte CID120 or CID73.  



 

Figure 1.  Direct effects of fungal endophytes on the total biomass of European and North 

American grass species.  Bars indicate the dry mass of plants when grown alone and either 

endophyte-free or infected with either the CID120 endophyte or the CID73 endophyte.  Asterisks 

indicate a significant reduction in biomass versus endophyte-free plants (p<0.05).  Error bars 

show 1 SE.   
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