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A common problem in imaging science is to estimate some underlying true image given noisy mea-
surements of image intensity. When image intensity is measured by the counting of incident photons
emitted by the object of interest, the data-noise is accurately modeled by a Poisson distribution, which
motivates the use of Poisson maximum likelihood estimation. When the underlying model equation
is ill-posed, regularization must be employed. I will present a computational framework for solving
such problems, including statistically motivated methods for choosing the regularization parameter.
Numerical examples will be included.
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Chapter 1

Introduction

An inverse problem is a problem in which some unknown quantity must be estimated using measure-

ments indirectly related to that quantity. A broad array of research falls under the umbrella of solving

inverse problems. Inverse problems arise in geophysics, remote sensing, imaging science, and other

fields. In groundwater modeling, for example, one estimates material parameters of an aquifer from

measurements of pressure of the fluid that immerses the aquifer. Many inverse problems cannot be

solved analytically and so computational methods play an important role in obtaining an estimate.

It is often the case that a small amount of noise in the data leads to large errors in the estimates.

Such problems are referred to as ill-posed. In order to deal with ill-posedness, techniques known as

regularization methods have been developed.

1.1 Astronomical Imaging Example

A common problem in astronomical imaging is to estimate the image of an object in outer-space using

pictures of that object recorded using a ground-based telescope. Turbulence in the atmosphere causes

distortions in the planar wave-front resulting in a blurred image being recorded. The blurred image

1
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can be described by the equation

z = Aue, (1.1)

where z ∈ RN is a vector obtained by lexicographical ordering [34] of the
√

N×
√

N blurred image

array, A is the forward model matrix, and ue is a vector obtained by lexicographical ordering of the
√

N×
√

N underlying true image array. Equation (1.1) is a discretization of a continuous model often

given by convolution:

z(x,y) =
∫ ∫

Ω

a(x− x′,y− y′)ue(x′,y′)dx′dy′, (1.2)

where a is the point-spread function, and Ω ∈ R2 is the computational domain. The inverse problem

is to estimate ue given measurements of z. The process of recording z introduces noise into the

measurements and this needs to be taken into account when estimating ue. The blurred image z is

recorded using a charged-coupled device (CCD) camera. A CCD camera consists of an array of pixels

onto which photons fall and are counted. It is known that errors in counting processes are well-modeled

by a Poisson distribution. A statistical model for the observations z is

z = Poiss(Aue + γ)+N(0,σ2I), (1.3)

where Poiss(λ ) indicates a Poisson random vector with mean λ , and N(0,σ2I) indicates a normally

distributed random vector with mean 0 and covariance σ2I, where I denotes the identity matrix. γ

models the background intensity, and the Gausssian term is a result of background noise in the record-

ing electronics. See [33] for a more detailed description of this model.

1.2 Positron Emission Tomography Example

Positron emission tomography (PET) is a technique that is used to track the uptake of certain metabo-

lites in an organism. In a typical case, a solution of glucose that has been tagged with a radioactive

isotope is injected into a patient. When the isotope decays, a photon is emitted, which anihilates with



1.3. ILL-POSED POISSON LIKELIHOOD ESTIMATION 3

an electron, causing a pair of photons to propagate in opposite directions. If the two photons reach the

detectors at either end of the connecting line within a short enough period of time, an event is recorded

along that line, known as a line of response (LOR). The mean intensity along the ith LOR is modeled

[32] by

Ii = e−
∫

Li
µ(s)ds

∫
Li

ue(s)ds+ γi, (1.4)

where ue is the target emission density function, γi is the expected number of erroneous counts along

the ith LOR, and µ is the attenuation function. Note that the collection of all line integrals
∫

Li
ue(s)ds

defines the Radon transform of ue. The exponential term represents the probability that an event along

the ith LOR is recorded. In practice, PET data is discrete and the discretized version of equation (1.4)

is given by

Ii = [Aemissue]i + γi,

where Aemiss = GARadon, with G denoting a diagonal matrix with [G]ii = e−
∫

Li
µ(s)ds, and ARadon de-

noting the discrete Radon transform matrix. [ARadon]i, j is the length of the intersection of the ith LOR

with the jth computational grid element. Note that this model does not take into account detector

efficiency or detector dead time. For a more detailed discussion of the model of PET data see [29].

Since PET data consists of photon counts, the noise in the data is well-modeled by a Poisson distribu-

tion. Hence the statistical model for PET data is given by

z = Poiss(Aemissue + γ). (1.5)

1.3 Ill-Posed Poisson Likelihood Estimation

In the astronomical imaging and PET imaging examples the noise in the data follows a Poisson dis-

tribution. In many situations, this distribution is approximated by a Gaussian distribution. This is

advantageous because methods for solving the resulting least-squares estimation problem have been

studied extensively. However an improvement in the estimate of the target image can be obtained by
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using the correct noise model [34]. In this situation the resulting estimation problem entails minimiz-

ing the negative logarithm of the Poisson likelihood function. This problem can be stated as:

uML = argminu≥0{T0(u;z) def
=

n

∑
i=1

[Au]i + γi− zi ln([Au]i + γi)}. (1.6)

This convex minimization problem is nonnegatively constrained and has no closed-form solution.

Iterative methods exist for solving such problems; for example the Richardson-Lucy [34], and the

algorithm we will present in Chapter 2.

Since the estimation problem in both examples is ill-posed, regularization is required. If an iterative

method is used to solve (1.6), then a regularization method can be formulated as a stopping rule [7].

Alternatively, a penalty term can be added to the minimization problem. The estimate of the target

image is then found by solving

uα = argminu≥0{Tα(u)
def
= T0(u;z)+αJ(u)}, (1.7)

where α is the regularization parameter and J(u) is the regularization function. A theoretical justifi-

cation for employing this approach is given in [5, 11, 12]. In the PET imaging example, the Tikhonov

regularized problem is known as the penalized maximum likelihood problem and has been extensively

studied [3, 14–19, 22, 24, 27, 31, 36].

In Chapter 2, an algorithm is described for solving the convex, nonnegatively constrained minimization

problem and convergence of the algorithm is proven for various functions J, given that the resulting

function Tα satisfies certain properties.

In Chapter 3 the addition of a penalty term is motivated using a Bayesian framework. From that

perspective, it is apparent that the form of J(u) should reflect whatever prior knowledge is available

about the unknown image. For example, if the unknown image is known to be smooth, then taking

J(u) = uT Lu, where L is a discretization of the negative Laplacian operator, is an appropriate choice
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[11]. In this case the regularization term is quadratic and L is referred to as the regularization matrix.

If on the other hand edges are known to exist in the target image, regularization functions which allow

for edge-preservation are of interest. Taking J(u) to be the total variation function is one option for an

edge-preserving penalty term [5, 31]. In Chapter 5, the construction of a quadratic regularization term

that allows for edge-preservation is described, while [13] describes a more statistically rigorous proce-

dure for constructing an edge-preserving quadratic regularization term. The advantage of a quadratic

penalty term is that computing uα is more efficient than when total variation regularization is used.

In Chapter 3, it is also shown that for quadratic regularization terms in which the regularization matrix

satisfies certain conditions and for the discrete approximation of the total variation function that is

given in [6], the conditions necessary for the convergence of the nonnegatively constrained convex

minimization algorithm presented in Chapter 2 are met.

The regularization parameter controls the contribution of the penalty term to the solution. Hence some

method of selecting a value of α that yields a quality reconstruction is desired. In the case of least

squares estimation, such methods are well-developed. However, those methods cannot be directly

applied to problems in which the data noise model is Poisson. In Chapter 4, a Taylor series argument

is used to approximate the negative-log of the Poisson likelihood with a weighted sum of squares

term. This approximation is used to extend certain methods for selecting the value of α to the case of

Poisson likelihood estimation [8].

The regularization parameter selection methods that will be considered are: generalized cross valida-

tion (GCV), unbiased predictive risk estimation (UPRE), and the discrepancy principle (DP). GCV

selects the value of α that minimizes the GCV function, which is an approximation of leave-one-out

cross validation function for large-scale problems [34, 35]. DP makes an approximation from which

it follows that an appropriate value for α is that which yields a solution for which the sum of squares

of the weighted residuals is equal to the mean of a χ2 distribution [26, 34]. The UPRE method selects

the value of α that minimizes an unbiased estimator of the predictive risk [34]. In Chapter 4 these

methods are introduced in detail.
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In Chapter 5, the methods and general framework are tested on examples in both the contexts of the

astronomical and PET imaging. Multiple synthetic data sets are used and the results indicate that our

framework yields good reconstructions.

We end with conclusions in Chapter 6

The work in this thesis is based on the papers [4, 8–10].



Chapter 2

The Optimization Algorithm

Material in this chapter is based on the work in [4].

This chapter contains a method for solving non-negatively constrained convex optimization problems

as well as a proof of convergence of the method. Both the method and the proof of convergence are

the subject of [4]. The optimization problem of interest has the form:

min
u∈Ω

T (u), (2.1)

where Ω = {u∈Rn | ui ≥ 0, i = 1, . . . ,n} and T : Ω→R is a function for which the following assump-

tions hold:

Assumption 1: T is coercive, twice continuously differentiable, and ∇2T (u) is positive definite

for all u ∈Ω;

Assumption 2: The gradient of T is Lipschitz continuous with Lipschitz constant L.

Here ∇T and ∇2T denote the gradient and Hessian, respectively, of T . Note that in [4], T was assumed

to be strictly convex, while here the stronger assumption that ∇2T is positive definite over Ω is made.

7
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Lemma 2.1.2 below establishes that if ∇2T (u) is positive definite for all u∈Ω then T is strictly convex

over Ω. T is coercive on Ω if the following is holds:

‖u‖2→ ∞ implies T (u)→ ∞ for u ∈Ω. (2.2)

T is strictly convex on Ω if it has the property that for u1,u2 ∈Ω and τ ∈ [0,1], the following inequality

holds:

T (τu1 +(1− τ)u2)< τT (u1)+(1− τ)T (u2). (2.3)

2.1 A Gradient Projection-Reduced Newton (GPRN) method

Here I present an iterative method for solving problems of form (2.1). This method has a nested

iterative design in which one outer iteration consists of two stages. The first stage entails performing

gradient projection iterations in order to identify the active set. The second stage uses conjugate

gradient (CG) iterations to compute a Newton step on the free (inactive) variables.

2.1.1 Preliminaries

The projection of u ∈ Rn onto Ω is given by

P(u) := argminv∈Ω‖u−v‖= max{u,0}, (2.4)

where max{u,0} is the vector whose ith component is 0 if ui < 0 and ui otherwise. The active set for

a vector u ∈Ω is defined to be

A (u) = {i | ui = 0}, (2.5)

and the inactive set I (u) is defined to be the complementary set of indices.
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The reduced gradient of T at u ∈Ω is defined to be

∇redT (u) =

 [∇T (u)]i, i ∈I (u),

0, i ∈A (u),
(2.6)

and the projected gradient of T at u ∈Ω is given by

∇projT (u) =

 [∇T (u)]i, i ∈I (u) or i ∈A (u) and ∂T (u)
∂ui

< 0,

0, otherwise.
(2.7)

The reduced Hessian of T at u ∈Ω is given by

∇
2
redT (u) =

 [∇2T (u)]i, j, i ∈I (u) and j ∈I (u),

0, otherwise.
(2.8)

2.1.2 The Gradient Projection Iteration

The first stage of the GPRN algorithm is defined by the gradient projection iteration. The gradient

projection iteration is defined as follows: given uk ∈Ω, uk+1 is found by the following computations:

pk = −∇T (uk), (2.9)

λk = argminλ>0{T (P(uk +λpk))}, (2.10)

uk+1 = P(uk +λkpk). (2.11)

In the implementation of the gradient projection iteration, an inexact solution to subproblem (2.10) is

obtained by using a projected backtracking line search. This is accomplished by using a line search

algorithm to generate a sequence {λ j
k }m

j=0, which is terminated once λ
j

k satisfies

T (uk(λ
j

k ))≤ T (uk)−
µ

λ
j

k

‖uk−uk(λ
j

k )‖
2, (2.12)
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where µ ∈ (0,1) and

uk(λ ) = P(uk +λpk). (2.13)

Then in (2.10), λk
def
= λ m

k . In the line search algorithm that generates the sequence {λ j
k }m

j=0, the initial

step length parameter is given by

λ
0
k =

‖pk‖2

〈∇2T (uk)pk,pk〉
. (2.14)

At the jth line search iteration, if (2.12) is not satisfied by λ
j−1

k , then λ
j

k is computed as follows.

Compute the solution of

λ̂
j

k = argminλ

{
T (uk)−‖pk‖2

λ +
T (uk(λ

j−1
k ))+λ

j−1
k ‖pk‖2−T (uk)

(λ j−1
k )2

λ
2

}
, (2.15)

and then set

λ
j

k = median{λ j−1
k /100, λ̂k,λ

j−1
k /2}. (2.16)

A criterion for terminating the gradient projection iterations needs to be specified. A similar algorithm

of Moré and Toraldo [25] gives a useful stopping rule; the iterations should be stopped once

T (uk)−T (uk+1)≤ γGP max
l<k
{T (ul)−T (ul+1)}, (2.17)

where 0 < γGP < 1 is fixed. In [4], γGP = .1, but its optimal value is problem dependent.

2.1.3 The Reduced Newton step

Though the convergence of gradient projection iterations has been established [23], interspersing the

gradient projection iterations with steps computed from the reduced Newton system

∇
2
redT (u)p =−∇redT (uk), (2.18)
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results in an improved rate of convergence [34]. For large-scale problems solving (2.18) directly is

inefficient. Instead a sequence {p j
k} that converges to an approximate solution pk of (2.18) is obtained

by applying conjugate gradient [34] iterations to minimizing

qk(p) = T (uk)+ 〈∇redT (uk),p〉+
1
2
〈∇2

redT (uk)p,p〉. (2.19)

The stopping rule for the conjugate-gradient iterations is analogous to (2.17):

qk(p
j
k)−qk(p

j+1
k )≤ γCG max

l< j
{qk(pl

k)−qk(pl+1
k )}, (2.20)

where 0 < γCG < 1 is fixed. If mCG is the smallest integer that satisfies (2.20), then pk is taken to be

pmCG
k .

After obtaining an approximate solution of (2.18), a backtracking line search is again performed with

the decrease condition:

T (uk(λ
m
k ))≤ T (uk). (2.21)

The Gradient Projection-Reduced Newton Iteration

Step 0: Select initial guess u0, and set k = 0.

Step 1: Given uk.

(1) Compute gradient projection iterations {uk, j} jk
j=0, with uk,0

def
= uk,

until either (2.17) is satisfied or GPmax iterations have been computed.

Step 2: Given uk
def
= uk, jk .

(1) Do CG iterations to approximately minimize the quadratic (2.19)

until either (2.20) is satisfied or CGmax iterations have been

computed. Return pk = pmCG
k .

(2) Find λ m
k that satisfies (2.21), and return uk+1 = uk(λ

m
k ).

(3) Update k := k+1 and return to Step 1.
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2.1.4 Proof of Convergence

Here the GPRN algorithm applied to (2.1) with T satisfying Assumptions 1 and 2 is shown to con-

verge. The proof requires that the line search parameters generated within stage 1 of the algorithm be

bounded. I will start by showing that this is so. First though, I need to state and prove some preliminary

lemmas.

This first lemma is used to establish that a sufficient condition for the strict convexity of T is that

∇2T (u) is positive definite for all u ∈Ω.

Lemma 2.1.1. Given that T is continuously differentiable, T is strictly convex over a convex set Ω if

and only if

T (v)> T (u)+∇T (u)T (v−u) (2.22)

for all u,v ∈Ω.

Proof. First, assume that for all u,v ∈Ω,

T (v)> T (u)+∇T (u)T (v−u).

Fix x1,x2 ∈Ω and ν ∈ (0,1). Setting u = νx1 +(1−ν)x2 and alternatively v = x1 or v = x2 gives

T (x1) > T (x)+∇T (x)T (x1−x), (2.23)

T (x2) > T (x)+∇T (x)T (x2−x). (2.24)

Multiplying (2.23) by ν , (2.24) by 1−ν , and adding yields

νT (x1)+(1−ν)T (x2)> T (u)+∇T (u)T (νx1 +(1−ν)x2−u). (2.25)
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Now substituting u = νx1 +(1−ν)x2 into (2.25) gives

νT (x1)+(1−ν)T (x2)> T (νx1 +(1−ν)x2).

Thus T is strictly convex.

Next assume that T is strictly convex. Then for any u,v ∈Ω and ν ∈ (0,1),

T (νv+(1−ν)u)< νT (v)+(1−ν)T (u).

This implies that
T (u+ν(v−u))−T (u)

ν
< T (v)−T (u),

and taking the limit as ν → 0 yields

∇T (u)T (v−u)≤ T (v)−T (u), (2.26)

which implies

T (x+ν(y−x))≥ T (x)+∇T (x)T [ν(y−x)]

for x,y ∈Ω) and ν ∈ (0,1). Now suppose Suppose for some x,y ∈Ω,

∇T (x)T (y−x) = T (y)−T (x).

Then

T (x)+ν∇T (x)T (y−x) = νT (y)+(1−ν)T (x)

> T (x+ν(y−x))

≥ T (x)+∇T (x)T [ν(y−x)],
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which is a contradiction. Therefore

∇T (u)T (v−u)< T (v)−T (u)

for all u,v ∈Ω.

Lemma 2.1.2. Given that T is twice continuously differentiable, T is strictly convex over Ω if ∇2T (u)

is positive definite for all u ∈Ω.

Proof. Taylor’s theorem states that for some ν , 0 < ν < 1,

T (v) = T (u)+∇T (u)T (v−u)+
1
2
(v−u)T

∇
2T (u+ν(v−u))(v−u). (2.27)

If ∇2T (u) is positive definite for all u ∈Ω, then

T (v)> T (u)+∇T (u)T (v−u),

and in light of Lemma 2.1.1, T is strictly convex.

This lemma will be used in some proofs of some of the other preliminary lemmas as well as in the

proof of convergence.

Lemma 2.1.3. For all u,v ∈Ω and λ ≥ 0,

(v−u(λ ))T (u(λ )−u+λ∇T (u))≥ 0, (2.28)

where u(λ ) = P(u−λ∇T (u)).
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Proof. Let u ∈Ω and define

A (u(λ )) = {i = 1, . . . ,n | u(λ )i = 0}. (2.29)

Let A (u(λ ))′ denote the complement of A (u(λ )). Given v ∈ Ω, define A (v) in a similar fash-

ion. Note that for i ∈ A (u(λ ))′, u(λ )i − ui + λ∇T (u)i) = 0. Also for i ∈ A (u(λ )) ∩A (v))′,

ui−λ∇T (u)i ≤ 0 and

(u(λ )i−ui +λ∇T (u)i)
2 = (ui +λ∇T (u)i)

2

≤ (vi−ui +λ∇T (u)i)
2.

Therefore it is the case that

‖u(λ )−u+λ∇T (u)‖2 =
n

∑
i=1

(u(λ )i−ui +λ∇T (u)i)
2

= ∑
i∈A (u(λ ))′

(u(λ )i−ui +λ∇T (u)i)
2 + ∑

i∈A (u(λ ))∩A (v)′
(u(λ )i−ui +λ∇T (u)i)

2

+ ∑
i∈A (u(λ ))∩A (v)

(u(λ )i−ui +λ∇T (u)i)
2

≤ ∑
i∈A (u(λ ))′

(vi−ui +λ∇T (u)i)
2 + ∑

i∈A (u(λ ))∩A (v)′
(vi−ui +λ∇T (u)i)

2

+ ∑
i∈A (u(λ ))∩A (v)

(u(λ )i−ui +λ∇T (u)i)
2

= ‖v−u+λ∇T (u)‖2. (2.30)

Equation (2.30) implies that

‖u(λ )−u+λ∇T (u)‖ ≤ ‖v−u+λ∇T (u)‖. (2.31)

It follows that the function

φ(t) = ‖(1− t)u(λ )+ tv−u+λ∇T (u)‖2/2 (2.32)
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achieves a local minimum at t = 0. Therefore,

0≤ φ
′(0) = (v−u(λ ))T (u(λ −u+λ∇T (u)). (2.33)

Note that (2.28) can be rewritten as

(u−u(λ ))T (v−u(λ ))≤ λ∇T (u)T (v−u(λ )). (2.34)

The result of setting v = u in (2.34) is the following corollary:

Corollary 2.1.4. For all u ∈Ω and λ ≥ 0,

‖u−u(λ )‖2 ≤ λ∇T (u)T (u−u(λ )). (2.35)

This next lemma is needed in the proof that the set of all line search parameters generated in step 1 of

the GPRN algorithm are bounded.

Lemma 2.1.5. Let u ∈Ω Then sufficient decrease condition (2.12) holds for all λ such that

0≤ λ ≤ 2(1−µ)

L
, (2.36)

where L is the Lipschitz constant for ∇T .

Proof. Let v = u−u(λ ). Then by the fundamental theorem of calculus,

T (u−v)−T (u) = T (u(λ ))−T (u) =−
∫ 1

0
∇T (u− tv)T vdt. (2.37)

Adding and subtracting ∇T (u)T v yields
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T (u(λ )) = T (u)+∇T (u)T (u(λ )−u)−
∫ 1

0
(∇T (u− tv)−∇T (u))T vdt,

which can be rewritten as

λ (T (u)−T (u(λ ))) = λ∇T (u)T (u−u(λ ))+λ

∫ 1

0
(∇T (u− tv)−∇T (u))T vdt. (2.38)

Note that ∥∥∥∥∫ 1

0
(∇T (u− tv)−∇T (u))T vdt

∥∥∥∥≤ ∫ 1

0
‖∇T (u− tv)−∇T (u)‖‖v‖dt

≤
∫ 1

0
L‖v‖tdt

= L‖u−u(λ )‖2/2,

(2.39)

and so applying Corollary 2.1.4 to the inequality

λ (T (u)−T (u(λ )))≥ λ∇T (u)T (u−u(λ ))−λL‖u−u(λ )‖2/2 (2.40)

yields

λ (T (u)−T (u(λ )))≥ (1−λL/2)‖u−u(λ )‖2, (2.41)

which implies the desired result.

The proof of convergence requires that the set of all line search parameters generated in step 1 of the

GPRN algorithm be bounded, and that is the subject of this next result.

Lemma 2.1.6. Let {{λk, j} jk−1
j=0 }∞

k=0 be the set of line search parameters generated by the gradient

projection iterations within step 1 of the GPRN algorithm. (Note that k denotes the outer iteration and
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j the inner gradient projection iterations). Then there exists constants β and M such that

0 < β < λk, j < M f or all j and k. (2.42)

Proof. Let {λ l
k, j}m

l=0 be the set of line search parameters generated by the jth gradient projection

iteration in step 1 of the kth outer iteration. Note that λk, j = λ m
k, j Recall that the initial step length

parameter is taken to be

λ
0
k, j =

‖pk, j‖2

〈∇2T (uk, j)pk, j,pk, j〉
. (2.43)

Note that since ∇2T (u) is positive definite for all u ∈Ω, we have the inequalities

0 < σmin,k, j‖pk, j‖2 ≤ 〈∇2T (uk, j)pk, j,pk, j〉 ≤ σmax,k, j‖pk, j‖2, (2.44)

where σmin,k, j and σmax,k, j are the minimum and maximum eigenvalues, respectively, of ∇2T (uk, j).

Equation (2.44) implies that

σ
−1
max,k, j ≤ λ

0
k, j ≤ σ

−1
min,k,h. (2.45)

Note that if (2.12) is satisfied for λ 0
k, j, then

σ
−1
max,k, j ≤ λk, j ≤ σ

−1
min,k,h, (2.46)

and it is the case that λk, j ≥ min
{

σ
−1
max,k, j,(1−µ)/(50L)

}
. If λ 0

k, j does not satisfy (2.12) then since

λ 0
k, j > 0, it must be the case that λ 0

k, j >
2(1−µ)

L , or else Lemma 2.1.5 would indicate that (2.12) would be

satisfied. Recall that in the line search algorithm, (2.16) specifies that λ l
k, j be chosen to be the median

of {λ l−1
k, j /100, λ̂ l−1

k, j ,λ l−1
k, j /2}, where λ̂

l−1
k, j is given by (2.15). Therefore λ

l−1
k, j > λ l

k, j and λ l
k, j ≤

λ 0
k, j

2l for

l = 1, . . . ,m, from which it follows that λ l
k, j → 0 as l→ ∞. This implies that there exists there exists

some m for which λ m
k, j ≤ 2(1−µ)/L and so the line search algorithm will produce a value that satisfies

(2.12) in a finite number of steps.

Suppose that the line search algorithm terminates at the mth iteration (meaning that λ m
k, j satisfies (2.12)
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and λ
m−1
k, j does not). Then Lemma 2.1.5 indicates that λ

m−1
k, j > 2(1−µ)

L and so

λ
m
k, j ≥

λ
m−1
k, j

100
>

1−µ

50L
. (2.47)

Inequality (2.47) combined with the fact that the line search algorithm always produces a decreasing

sequence yields the inequalities

min
{

σ
−1
max,k, j,(1−µ)/(50L)

}
≤ λk, j ≤ σ

−1
min,k, j. (2.48)

Now it needs to be shown that the set {σmax,k, j} is bounded from above and the set {σmin,k, j} has a

lower bound that is greater than 0. First note that each gradient projection iteration yields a decrease

in the value of T . The value of T is also decreased in step 2 of the outer iteration. Hence the coercivity

T implies that the set {uk, j} is bounded. Now assume that the set {σmax,k, j} does not have an upper

bound. Then there exists a sequence {u(k, j)i}∞
i=1 for which σ(max,k, j)i → ∞. Because {uk, j} is bounded

there exists a convergent subsequence {(u(k, j)i)p} → û. The fact that ∇2T (u) is square implies that

trace(∇2T (u)) = ∑
n
i=1 σi, where {σi}n

i=1 are the eigenvalues of ∇2T (u). (σ(max,k, j)i)p → ∞ implies

that trace(∇2T ((u(k, j)i)p))→ ∞. Now by assumption, the elements of ∇2T (u) are continuous and

so it follows that trace(∇2T (u)) is continuous. Therefore trace(∇2T ((u(k, j)i)p))→ trace(∇2T (û))

contradicts trace(∇2T ((u(k, j)i)p))→ ∞. Thus {σmax,k, j} is bounded.

Now let M be the upper bound of the set {σmax,k, j} and assume that {σmin,k, j} is not bounded away

from zero. Then there exists a sequence {u(k, j)i}∞
i=1 for which σ(min,k, j)i → 0, and the fact that {uk, j}

is bounded means there is a convergent subsequence {(u(k, j)i)p}→ û. Note that since det(∇2T (u)) =

Πn
i=1σi it is true that det(∇2T (uk, j))≤Mn−1σmin,k, j. (σ(min,k, j)i)p→ 0 implies that det(∇2T ((u(k, j)i)p))→

0. However the continuity of the elements of ∇2T (u), and hence det(∇2T (u)), give that det(∇2T ((u(k, j)i)p))→

det(∇2T (û)) = 0, which contradicts the assumption that ∇2T (u) is positive definite for all u ∈Ω.

The proof of convergence requires that the concept of a stationary point be defined.
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Definition 2.1.7. u ∈Ω is a stationary point if for all y ∈Ω,

〈∇T (u),y−u〉 ≥ 0. (2.49)

I will now state and prove a lemma that gives a sufficient condition for a solution to (2.1).

Lemma 2.1.8. Given that T is strictly convex and twice continuously differentiable, u is the unique

solution to (2.1) if and only if it is a stationary point.

Proof. Suppose that u is a solution to (2.1) and let v ∈Ω. Since Ω is convex the line segment joining

u and v lies entirely in Ω. So the function

φ(ν) = T (u+ν(v−u))

is defined for all ν ∈ [0,1] and has a local minimizer at ν = 0. Therefore

0≤ φ
′(0) = ∇T (u)T (v−u).

If there exists w ∈ Ω such that T (w) = T (u) and w 6= u, then the strict convexity of T gives that

T ((u+w)/2)< T (u), which contradicts u being a solution to (2.1).

Now suppose that u is a stationary point. Lemma (2.1.1 and (2.49) give that

T (v)> T (u)+∇T (u)T (v−u)≥ T (u).

Now I can state the main result on the convergence of the GPRN algorithm.

Theorem 2.1.9. The iterates {uk} generated by GPRN converge to the unique solution to prob-
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lem (2.1) for any initial guess u0 ∈Ω.

Proof. The coercivity of T combined with the fact that {T (uk)}∞
k=0 is monotone decreasing and

bounded from below implies that {uk} is a bounded set and so has a convergent subsequence. Let {ukl}

be the convergent sequence and u be its limit. Then the continuity of T implies that T (ukl )→ T (u).

Since {T (uk)} is monotone decreasing it must be the case that T (uk)→ T (u). Otherwise there would

exist some m such that T (uk) < T (u) for all k ≥ m. But then that would imply that for all kl > m,

T (ukl )< T (um)< T (u) which would contradict the fact that ukl → u.

Let ukl ,0(= ukl ) and ukl ,1 be defined as in Stage 1 of the GPRN iteration. Then T (ukl ,0)> T (ukl ,1) and

so T (ukl ,1)→ T (u). Equation (2.12) gives that

‖ukl ,0−ukl ,1‖
2 ≤

λkl ,0

µ
[T (ukl ,0)−T (ukl ,1)],

and because Lemma 2.1.6 states that the λkl ,0’s are bounded above T (ukl ,0)− T (ukl ,1) converges to

zero and so

‖ukl ,0−ukl ,1‖→ 0. (2.50)

It follows from Lemma 2.1.3 that for all y ∈Ω,

〈∇T (ukl ),ukl −y〉 = 〈∇T (ukl ,0),ukl ,1−y〉+ 〈∇T (ukl ,0),ukl ,0−ukl ,1〉

≤ 1
λkl ,0
〈ukl ,0−ukl ,1,ukl ,1−y〉+ 〈∇T (ukl ,0),ukl ,0−ukl ,1〉

≤ ‖ukl ,0−ukl ,1‖ ·
∥∥∥∥ukl ,1−y

λkl ,0
+∇T (ukl ,0)

∥∥∥∥ .
The λkl ,0’s are bounded below by Lemma 2.1.6. Since {uk} is a bounded set and ∇T is Lipschitz

continuous, ∇T is bounded on {ukl}. Letting kl → ∞ it follows from (2.50) that 〈∇T (u),u− y〉 ≤ 0

for all y ∈ Ω. u therefore satisfies the definition of a stationary point and by Lemma 2.1.8 u is a

solution of problem (2.1).
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It remains to be shown that uk→ u. Given v∈Rn such that u+v∈Ω, it follows from Taylor’s theorem

that there exists ν ∈ (0,1) for which

T (u+v) = T (u)+ 〈∇T (u),v〉+ 1
2
〈∇2T (u+νv)v,v〉. (2.51)

Let νk ∈ (0,1) be the value of ν which satisfies equation (2.51) when v = uk−u. It follows that

T (uk)−T (u) = 〈∇T (u),uk−u〉+ 1
2
〈∇2T (u+νk(uk−u))(uk−u),uk−u〉 (2.52)

≥ 1
2
〈∇2T (u+ν(uk−u))(uk−u),uk−u〉 (2.53)

≥ σmin

2
‖uk−u‖2, (2.54)

where equation (2.53) follows from Definition 2.1.7, and σmin is defined as follows. Consider the set

{u+ νk(uk−u)} and define σmin,νk to be the minimum eigenvalue of ∇2T (u+ νk(uk−u)). σmin is

then defined to be the inf{σmin,νk}. The same reasoning that was used in the proof of Lemma 2.1.6

to show that the set σmin,k, j was bounded away from zero can be used to show that {σmin,νk} is also

bounded away from zero. Hence σmin > 0. Thus T (uk)→ T (u) implies uk→ u.



Chapter 3

Regularization Functions

This chapter contains material from [4, 9].

Astronomical and medical imaging data consists of the photon counts that are recorded at each pixel

in an nx× ny array of pixels. Let z be the vector obtained by the lexicographical column ordering of

the data. The photon counts are noisy and the data model for z is given by

Z = Poiss(Aue + γ), (3.1)

where Poiss(λ ) is a Poisson-distributed independent random vector with mean λ , ue ∈Rn, A ∈Rn×n,

n = nxny and γ = γ1 with γ > 0. ue is the vector obtained by lexicographical column ordering of the

underlying true image array. The probability mass function for data z from (3.1) is

p(z | u) =
n

∏
i=1

e−[Au]i+γi([Au]i + γi)
zi

zi!
, (3.2)

where [Au+ γ]i, γi and zi are the ith components of Au, γ and z respectively.

Given data z that is a realization of the random vector Z it is of interest to estimate ue. The maximum

23
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likelihood estimate uML is found by maximizing p(z;u) in (3.2) with respect to u with the constraint

that u≥ 0. Alternatively uML is found by solving

uML = argminu≥0{T0(u;z) def
=

n

∑
i=1

[Au]i + γi− zi ln([Au]i + γi)}. (3.3)

Note that T0(z;u) is equal to − ln p(z | u) plus an additive constant.

The solution of (3.3) can be unstable with respect to the noise in z if A is ill-conditioned. Regulariza-

tion is therefore required, and Bayes Law provides statistical motivation for formulating a regularized

problem. In this context, ue is assumed to be a realization of a random vector U. Given a probability

density p(u) for U the posterior density is given by

p(u | z) = p(z | u)p(u)
p(z)

. (3.4)

The maximum a posteriori (MAP) estimate uMAP is found by maximizing (3.4) with respect to u.

This is equivalent to minimizing T (u) = T0(u;z)− ln p(u). The function − ln p(u) corresponds to the

penalty term in a deterministic setting. The probability density p(u) is determined by the distribution,

known as the prior, that ue is assumed to arise from. uMAP is therefore the solution of

uMAP = argminu≥0

{
Tα(u)

def
= T0(u;z)− ln p(u)

}
. (3.5)

The existence of uMAP requires that the cost function Tα possess certain properties on its domain,

namely coercivity and weak lower semicontinuity.

Definition 3.0.10. A function T : H → R is coercive if T (uk)→ ∞ for any sequence {uk}∞
k=0 of

elements of H for which ‖uk‖2→ ∞ as k→ ∞.

The definition of weak lower semicontinuity requires that weak convergence be defined.

Definition 3.0.11. A sequence { fn} in a Hilbert space H converges weakly to f∗, denoted by fn ⇀ f∗,

if for all f ∈H , limn→∞〈 fn− f∗, f 〉H = 0.
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Definition 3.0.12. A functional T : H → R is weakly lower semicontinuous if

T ( f∗)≤ liminf
n→∞

T ( fn) whenever fn ⇀ f∗. (3.6)

In finite-dimensional spaces weak convergence is equivalent to strong convergence and continuity

implies weak lower semicontinuity. Also convex functionals are weakly lower semicontinuous [34].

A theorem can now be stated concerning the existence of a minimizer of Tα [34, Chapter 2]

Theorem 3.0.13. Suppose that T : H → R is weakly lower semicontinuous and coercive and that Ω

is a closed and convex set. Then T has a minimizer over Ω and the minimizer is unique if T is strictly

convex.

Proof. Suppose that {uk} is a sequence for which T (uk)→ T∗
def
= infuk∈Ω T (uk). That {uk} is a bounded

sequence follows from the coercivity of T . Bounded sequences in Hilbert spaces have weakly conver-

gent subsequences [34]. Let {uk j} denote the weakly convergent subsequence of {uk} and u∗ its limit

and note that u∗ ∈ Ω because Ω, being closed and convex, is weakly closed [37]. It follows from the

weak lower semicontinuity of T that

T (u∗)≤ liminfT (uk j) = limT (uk) = T∗,

and hence T (u∗) = T∗. Now, suppose T is strictly convex. Then u∗ is unique because if for some

v 6= u∗, T (v) = T∗ the strict convexity of T implies that T∗ > T ((v+ u∗)/2) which contradicts the

definition of T∗.

In the next two sections I will discuss two different options for the form of − ln p(u) and show that

under certain assumptions, each option yields a cost function which has a unique minimizer on Ω.



3.1. TIKHONOV REGULARIZATION 26

3.1 Tikhonov Regularization

One option for the form of − ln p(u) that I will examine is to assume that

− ln p(u) = α/2〈Cu,u〉, (3.7)

where C is symmetric positive semi-definite. This is equivalent to assuming that U arises from a

Gaussian with mean 0 and covariance α−1C†, where “†” denotes pseudo-inverse. This option yields

a regularization term equivalent to that which is found in Tikhonov regularization. The choice of the

matrix C must be justified by the prior knowledge of ue that is available. Also necessary for our

analysis is the assumption that A and C have non-intersecting null spaces.

The most common choice, C = I, where I is the n× n identity matrix, yields a cost function which

penalizes proposed reconstructions with a large `2 norm. If ue is known to be smooth then an appropri-

ate choice is C = L, where L is a discretization of the negative Laplacian operator −∇2. This choice

yields a cost function which penalizes proposed non-smooth reconstructions.

A third choice for the form of C is presented in [4] and should be used when it is known a priori

that ue is smooth with the exception of discontinuities, the location of which are known (at least

approximately in practice). This form is given by

C = DT
1 ΛD1 +DT

2 ΛD2, (3.8)

where D1 and D2 are discretizations of the horizontal and vertical derivatives respectively, and Λ is a

diagonal matrix with [Λ]i,i = 1 if the ith pixel is away from an edge and [Λ]i,i < 1 if the ith pixel is

adjacent to an edge. The problem of constructing Λ is discussed in the presentation of the numerical

experiments in Chapter 5. Note that these three choices for C are all positive semi-definite [11].
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3.1.1 Analysis of the cost function for the case of a quadratic regularization term

In this section, I will show that cost functions of the form

T (u) = T0(u;z)+
α

2
uT Cu, (3.9)

where T0(u;z) is given in (3.3), α > 0 is the regularization parameter, and C ∈ Rn×n is a positive

semi-definite matrix, are strictly convex and coercive on Ω. Note this is the cost function that results

when − ln p(u) in (4.1) is given by equation (3.7).

The gradient and Hessian of T0(u;z) with respect to u are given, respectively, by

∇T0(u;z) = AT
(

Au− (z− γ)

Au+ γ

)
, (3.10)

∇
2T0(u;z) = AT diag

(
z

(Au+ γ)2

)
A, (3.11)

where diag(v) is the diagonal matrix with its diagonal given by v. For v,w ∈ Rn, the notation v/w

denotes component-wise division and v2 denotes the vector obtained from squaring the components

of v. Note then that ∇T (u) = ∇T0(u;z)+αCu and ∇2T (u) = ∇2T0(u;z)+αC.

The assumptions are made that z > 0, Au ∈Ω when u ∈Ω, and that the intersection of the null spaces

of A and C is trivial. Then it follows that for v,u ∈Ω,



3.1. TIKHONOV REGULARIZATION 28

〈∇2T (u)v,v〉 =

〈(
AT diag

(
z

(Au+ γ)2

)
A+C

)
v,v
〉

≥ min
i=1,...,n

{
zi

([Au]i + γ)2

}
‖Av‖2

2 + 〈Cv,v〉 (3.12)

> 0, (3.13)

since A and C have non-intersecting null spaces.. Thus ∇2T (u) is positive definite for all u ∈Ω which

implies (see Lemma 1.1.3) that T is a strictly convex function on Ω.

In addition to strict convexity, it is desirable that T also have the property of coercivity on Ω. Note

that since Au ∈Ω when u ∈Ω, |[Au]i|= [Au]i. It follows that for u ∈Ω

T (u)≥ ‖Au+ γ‖1−‖z‖∞

n

∑
i=1

ln([Au]i + γi)+
α

2
uT Cu. (3.14)

Now for c > 0, −c lnx is a convex function of x and so Jensen’s inequality implies that

−‖z‖∞

n

∑
i=1

ln([Au]i + γi)≥−n‖z‖∞ ln‖Au+ γ‖1. (3.15)

Inequalities (3.14), (3.15) give that

T (u)≥ ‖Au+ γ‖1−n‖z‖∞ ln‖Au+ γ‖1 +
α

2
uT Cu, (3.16)

and the assumption that A and C have non-intersecting null spaces implies that sup{‖Au‖1,uT Cu}→

∞ as ‖u‖2→ ∞. Furthermore x− c lnx→ ∞ as x→ ∞. Thus T (u)→ ∞ as ‖u‖2→ ∞.

The convergence of the iterative method that is used to compute uMAP requires that ∇T be Lipschitz

continuous on Ω. Let u,v ∈Ω and note that
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‖∇T (u)−∇T (v)‖2 =

∥∥∥∥AT
(

Au+ γ− z
Au+ γ

− Av+ γ− z
Av+ γ

)
+αC(u−v)

∥∥∥∥
2

≤ ‖A‖2F(u,v)+ασmax(C)‖u−v‖2, (3.17)

where σmax(C) denotes the maximum eigenvalue of C and

F(u,v) =

∥∥∥∥ (A(u−v))� z
(Au+ γ)� (Av+ γ)

∥∥∥∥
2

≤ ‖A‖2

∥∥∥∥ z
γ2

∥∥∥∥
2
‖u−v‖2. (3.18)

Inequality (3.17) combined with inequality (3.18) implies that

‖∇T (u)−∇T (v)‖2 ≤
(
‖A‖2

2

∥∥∥∥ z
γ2

∥∥∥∥
2
+ασmax(C)

)
‖u−v‖2.

Thus ∇T is Lipschitz continuous. Hence the optimization method of Chapter 2 is convergent for

Tikhonov regularization.

3.2 Total Variation Regularization

Another option for the form of − ln p(u) is to assume that − ln p(u) = αJ(u), where J(u) is a dis-

cretization of an approximation of the total variation (TV) function. This assumption is equivalent to

assuming that U arises from the TV prior. Here

J(u) def
=

1
2

n

∑
i=1

ψ([D1u]2i +[D2u]2i ), (3.19)
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whereψ(t) :=
√

t +β . β is a small positive parameter that is included to ensure that J(u) is differ-

entiable [34]. Total variation regularization should be used when ue is known to be “blocky”, i.e.

piecewise constant, with the exception of jump discontinuities, and the length of the curves on which

the discontinuities occur is relatively small.

3.2.1 Analysis of the cost function for the case of total variation regularization

When total variation regularization is used the cost function that must be minimized is

T (u) = T0(u;z)+αJ(u), (3.20)

where J(u) is given by (3.19). Using arguments similar to those in subsection 3.1.1 it can be shown

that T is strictly convex and coercive on Ω. Such calculations require that the gradient and Hessian of

J be known.

Given u ∈Ω, to compute the gradient of J at u note that for v ∈Ω,

d
dτ

J(u+ τv) |τ=0 =
n

∑
i=1

ψ
′([D1u]2i +[D2u]2i )([D1u]i[D1v]i +[D2u]i[D2v]i)

= 〈diag(ψ ′(Du2))D1u,D1v〉+ 〈diag(ψ ′(Du2))D2u,D2v〉, (3.21)

where Du2 := (D1u)2 + (D2u)2 and ψ ′(Du2) is the vector whose ith component is ψ ′([D1u]2i +

[D2u]2i ). Here v2 = v�v. Hence the gradient of J has the form

∇J(u) = L1(u)u, (3.22)
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where

L1(u) =

 D1

D2


T  diag(ψ ′(Du2)) 0

0 diag(ψ ′(Du2))


 D1

D2

 . (3.23)

Given v,w ∈Ω, the Hessian of J at u can be computed as follows:

∂ 2

∂τ∂ξ
J(u+ τv+ξ w)

∣∣∣∣
τ=ξ=0

=
n

∑
i=1

ψ
′([D1u]2i +[D2u]2i )([D1w]i[D1v]i +[D2w]i[D2v]i)

+
n

∑
i=1

ψ
′′([D1u]2i +[D2u]2i )(2([D1u]2i [D1w]i[D1v]i +[D1u]i[D2u]i[D1w]i[D2v]i)

+2([D2u]2i [D2w]i[D2v]i +[D2u]i[D1u]i[D2w]i[D1v]i))

= 〈diag(ψ ′(Du2))D1w,D1v〉+ 〈diag(ψ ′(Du2))D2w,D2v〉

+2〈diag(D1u2
ψ
′′(Du2))D1w,D1v〉+2〈diag(D12uψ

′′(Du2))D1w,D2v〉

+2〈diag(D12uψ
′′(Du2))D2w,D1v〉+2〈diag(D2u2

ψ
′′(Du2))D1w,D1v〉,

where ψ ′′(Du2) is the vector whose ith component is given by ψ ′′([D1u]2i +[D2u]2i ) and

D12u = D1u�D2u. It follows that the Hessian of J can be written as

∇
2J(u) = L1(u)+2L2(u), (3.24)

where

L2 =

 D1

D2


T  diag((D1u)2�ψ ′′(Du2)) diag(D12u�ψ ′′(Du2))

diag(D12u�ψ ′′(Du2)) diag((D1u)2�ψ ′′(Du2))


 D1

D2

 . (3.25)

Note that for ψ(t) =
√

t +β , ψ ′(t) = (t + β )−1/2/2 and ψ ′′(t) = −(t + β )−3/2/4. Now, for any
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v,u ∈Ω, v 6= 0,

〈∇2J(u)v,v〉 = vT (L1(u)+2L2(u))v

=
n

∑
i=1

[D1v]2i

 1

2
√
[D1u]2i +[D2u]2i +β

− [D1u]2i
2([D1u]2i +[D2u]2i +β )

3
2


−

n

∑
i=1

[D1v]i[D2v]i
[D1u]i[D2u]i

([D1u]2i +[D2u]2i +β )
3
2

+
n

∑
i=1

[D2v]2i

 1

2
√
[D1u]2i +[D2u]2i +β

− [D2u]2i
2([D1u]2i +[D2u]2i +β )

3
2


=

1
2

(
n

∑
i=1

[D1v]2i ([D2u]2i +β )

([D1u]2i +[D2u]2i +β )
3
2
−

n

∑
i=1

2[D1v]i[D2v]i[D1u]i[D2u]i
([D1u]2i +[D2u]2i +β )

3
2

+
n

∑
i=1

[D2v]2i ([D1u]2i +β )

([D1u]2i +[D2u]2i +β )
3
2

)

=
1
2

n

∑
i=1

([D1v]i[D2u]i− [D2v]i[D1u]i)2 +β ([D1v]2i +[D2v]2i )
([D1u]2i +[D2u]2i +β )

3
2

≥ 0, (3.26)

Thus ∇2J(u) is positive semi-definite for all u ∈Ω.

As in the case of quadratic regularization the assumptions that Au ∈ Ω if u ∈ Ω and z > 0 are made.

Assuming that the intersection of the null spaces of A, and D1 and D2 are trivial we have that for

u,v ∈Ω,

〈∇2T (u)v,v〉 = 〈AT z
(Au+ γ)2 Av,v〉+ 〈(L1(u)+2L2(u))v,v〉

≥ min
i=1,...,n

{
zi

([Au]i + γ)2

}
‖Av‖2 + 〈∇2J(u)v,v〉

> 0, (3.27)
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To establish coercivity of T first note that

J(u) ≥ 1
2

n

∑
i=1

√
[D1u]2i +[D2u]2i

≥ 1
2
√

2

n

∑
i=1
|[D1u]i|+ ||D2u|i| (3.28)

=
1

2
√

2
(‖D1u‖1 +‖D2u‖1), (3.29)

where (3.28) is a consequence of Jensen’s inequality applied to the concave function
√

x. So for u∈Ω

it is the case that

T (u)≥ ‖Au+ γ‖1−n‖z‖∞ ln‖Au+ γ‖1 +
α

2
√

2
(‖D1u‖1 +‖D2u‖1). (3.30)

The invertibility of D1 and D2 imply that max{‖Au‖1,‖D1u‖1,‖D2u‖1} −−−−−→
‖u‖1→∞

∞ and inequal-

ity (3.30) implies that T (u)→ ∞ when ‖u‖1→ ∞. Thus T is coercive.

As in the case when the regularization term is quadratic, total variation regularization also yields a

cost function for which the gradient is Lipschitz continuous. The Lipschitz continuity of ∇T0 follows

from inequalities (3.17) and (3.18). It remains to be shown that ∇J(u) is Lipschitz continuous. Given

u,v ∈Ω note that

‖∇J(u)−∇J(v)‖2 = ‖L1(u)u−L1(v)v‖2

= ‖(DT
1 ψ
′(u)D1 +DT

2 ψ
′(u)D2)u− (DT

1 ψ
′(v)D1 +DT

2 ψ
′(v)D2)v‖2

≤ ‖DT
1 ψ
′(u)D1u−DT

1 ψ
′(v)D1v‖2 +‖DT

2 ψ
′(u)D2u−DT

2 ψ
′(v)D2v‖

≤ ‖DT
1 ‖2‖ψ ′(u)D1u−ψ

′(v)D1v‖2 +‖DT
2 ‖2‖ψ ′(u)D2u−ψ

′(v)D2v‖

≤ ‖DT
1 ‖2(‖ψ ′(u)D1(u−v)‖2 +‖(ψ ′(u)−ψ

′(v))D1v‖2)+‖DT
2 ‖2‖ψ ′(u)D2(u−v)‖2

+‖DT
2 ‖2‖(ψ ′(u)−ψ

′(v))D2v‖2. (3.31)
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The definition of ψ ′ can be used to obtain the following:

‖(ψ ′(u)−ψ
′(v))D1v‖1 = 1

2

n

∑
j=1

∣∣∣∣∣∣ 1√
[D1u]2j +[D2u]2j +β

− 1√
[D1v]2j +[D2v]2j +β

∣∣∣∣∣∣ |[D1v] j|

=
1
2

n

∑
j=1

∣∣∣∣∣∣
√
[D1v]2j +[D2v]2j +β −

√
[D1u]2j +[D2u]2j +β√

[D1v]2j +[D2v]2j +β

√
[D1u]2j +[D2u]2j +β

∣∣∣∣∣∣ |[D1v] j|

=
1
2

n

∑
j=1

∣∣∣√[D1v]2j +[D2v]2j +β −
√
[D1u]2j +[D2u]2j +β

∣∣∣√
([D1v]2j +[D2v]2j +β )

√
([D1u]2j +[D2u]2j +β )

|[D1v] j|

=
1
2

n

∑
j=1

∥∥∥∥∥∥ [D1v]2j +[D2v]2j − ([D1u]2j +[D2u]2j)√
[D1v]2j +[D2v]2j +β +

√
[D1u]2j +[D2u]2j +β

∣∣∣∣∣∣
·

√√√√ [D1v]2j
([D1v]2j +[D2v]2j +β )([D1u]2j +[D2u]2j +β )

≤ 1

2
√

β

n

∑
j=1

∣∣∣∣∣∣ (|[D1v] j|− |[D1u] j|)(|[D1v] j|+ |[D1u] j|)√
[D1v]2j +[D2v]2j +β +

√
[D1u]2j +[D2u]2j +β

+
([|D2v] j|− |[D2u] j|)(|[D2v] j|+ |[D2u] j|)√
[D1v]2j +[D2v]2j +β +

√
[D1u]2j +[D2u]2j +β

∣∣∣∣∣∣
≤ 1√

β
(‖D1(u−v)‖1 +‖D2(u−v)‖1).

It follows from the equivalence of norms on Rn that there exists some constant C > 0 such that

‖(ψ ′(u)−ψ
′(v))D1v‖2 ≤

C√
β
(‖D1(u−v)‖2 +‖D2(u−v)‖2).
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Therefore, inequality (3.31) implies that

‖∇J(u)−∇J(v)‖2 ≤ ‖DT
1 ‖2

(
‖ψ ′(u)D1(u−v)‖2 +

C√
β
(‖D1(u−v)‖2 +‖D2(u−v)‖2)

)

+‖DT
2 ‖2

(
‖ψ ′(u)D2(u−v)‖2 +

C√
β
(‖D1(u−v)‖2 +‖D2(u−v)‖2)

)

≤ ‖DT
1 ‖2

(
1

2
√

β
‖D1‖2 +

C√
β
(‖D1‖2 +‖D2‖2)

)
‖u−v‖2

+‖DT
2 ‖2

(
1

2
√

β
‖D2‖2 +

C√
β
(‖D1‖2 +‖D2‖2)

)
‖u−v‖2, (3.32)

which establishes the Lipschitz continuity of ∇J. Hence the optimization method of Chapter 2 is

convergent in the total variation case.



Chapter 4

Regularization Parameter Selection

Methods

The chapter contains material from [8, 10].

Suppose that given a realization z of an independent Poisson random vector Z with parameter vector

Aue + γ , where ue ∈ Ω
def
= {u ∈ Rn | u ≥ 0}, A ∈ Rn×n is an ill-conditioned matrix such that Au ∈ Ω

when u ∈Ω, and γ ∈Ω, a problem of interest is to estimate ue. Such an estimate may be obtained by

solving

uα = argminu∈Ω

{
Tα(u)

def
= T0(u;z)+

α

2
uT Cu

}
. (4.1)

where α > 0 is the regularization parameter, C is the regularization matrix, and T0 is the negative log

of the Poisson likelihood function, given by

T0(u;z) =
n

∑
i=1

[Au]i + γi− zi ln([Au]i + γi). (4.2)

In Chapter 3, different forms of C are discussed, and in Chapter 2, an algorithm is presented that can

36
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be used to compute uα . In this chapter, methods for selecting the value of α are discussed. Existing

methods for selecting α in the context of least squares estimation will be extended to the case of

Poisson likelihood estimation using a quadratic approximation of T0. The quadratic approximation

will be derived and then three methods, the discrepancy principle, generalized cross validation, and

unbiased predictive risk estimation, will be extended to selecting a value of α in (4.1).

4.1 Quadratic Approximation of T0

Many methods exist for selecting a value of α when the fit-to-data functional is a sum of squares of the

difference between the data and the prediction. These methods cannot be applied directly to solving

(4.1). However a Taylor series argument can be made to obtain a quadratic approximation of T0 and

that can be used to extend existing parameter selection methods to (4.1).

Computing a Taylor series expansion of T0 requires that various derivatives of T0 be computed. The

gradient and Hessian of T0 with respect to u are given by

∇uT0(u;z) = AT
(

Au− (z− γ)

Au+ γ

)
, (4.3)

∇
2
uuT0(u;z) = AT diag

(
z

(Au+ γ)2

)
A, (4.4)

where division and the square are understood to be computed component-wise and diag(v) denotes

the diagonal matrix with diagonal given by v. The gradient and Hessian of T0 with respect to z are

given by

∇zT0(u;z) = − ln(Au+ γ), (4.5)

∇
2
zzT0(u;z) = 0. (4.6)
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The mixed partials of T0 are given by

∇
2
uz = −AT diag

(
1

(Au+ γ)2

)
, (4.7)

∇
2
zu = −diag

(
1

(Au+ γ)2

)
A. (4.8)

(4.9)

Define the background-shifted exact data to be ze = Aue + γ . Letting h = u−ue and k = z− ze and

by constructing a Taylor series expansion of T0(u;z) about (ue;ze), it follows from (4.3)-(4.8) that

T0(u;z) = T0(ue +h;ze +k),

= T0(ue;ze)+kT
∇zT0(ue;ze)+

1
2

hT
∇

2
uuT0(ue;ze)h

+
1
2

hT
∇

2
uzT0(ue;ze)k+

1
2

kT
∇

2
zuT0(ue;ze)h (4.10)

+ O(‖h‖3
2,‖h‖2

2‖k‖2,‖h‖2‖k‖2
2,‖k‖3

2)

=
n

∑
i=1
{[Aue]i− [ze]i ln[Aue]i}− (z− ze)

T ln(Aue)

+
1
2
(Au−Aue)

T diag
(

1
Aue + γ

)
(Au−Aue)

−1
2
(z− ze)

T diag
(

1
Aue + γ

)
(Au−Aue)

−1
2
(Au−Aue)

T diag
(

1
Aue + γ

)
(z− ze)

+O(‖h‖3
2,‖h‖2

2‖k‖2,‖h‖2‖k‖2
2,‖k‖3

2) (4.11)

= T0(ue;z)+
1
2
(Au− (z− γ))T diag

(
1
ze

)
(Au− (z− γ))

+ O(‖h‖3
2,‖h‖2

2‖k‖2,‖h‖2‖k‖2
2,‖k‖2

2). (4.12)

The equality in (4.12) is obtained from (4.11) by adding and subtracting the term (z− ze)
T 1

ze
(z− ze).
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Therefore the second order Taylor series expansion of T0(u;z) around the point (ue;ze) consists of a

sum of a term that is constant with respect to u and a quadratic term:

1
2

rT diag
(

1
ze

)
r, (4.13)

where r = Au− (z− γ).

Because in practice ue is unknown, the quadratic approximation given in (4.13) cannot be used directly.

This motivates an application of the mean value theorem. First, for a fixed α > 0, define zα =Auα +γ ,

where uα is computed from (4.1), and let kα = zα − ze. Then considering the ith component of 1
ze

to

be a function of [kα ]i and noting that Au+γ > 0, the mean value theorem can be used to rewrite (4.13)

in the following manner:

1
2

rT
(

r� 1
ze

)
=

1
2

rT
(

r� 1
zα −kα

)
=

1
2

rT
(

r�
(

1
zα

+diag
(

1
(Au+ γ− k̂α)2

)
kα

))
, (4.14)

where [k̂α ]i lies in the interval with endpoints 0 and [kα ]i. Since r = Ah−k it is the case that

rT diag
(

r
(Auα + γ− k̂α)2

)
l = O(‖h‖2

2‖kα‖2,‖h‖2‖k‖2‖kα‖2,‖k‖2
2‖kα‖2). (4.15)

Thus (4.12), (4.14), and (4.15) yield the following approximation

T0(u;z) = T0(ue;z)+T WLS
0 (u;z)

+ O(‖h‖3
2,‖h‖2

2‖k‖2,‖h‖2‖k‖2
2,‖k‖2

2)

+ O(‖h‖2
2‖kα‖2,‖h‖2‖k‖2‖kα‖2,‖k‖2

2‖kα‖2). (4.16)

where

T WLS
0 (u;z) =

1
2

∥∥∥Z−1/2
α (Au− (z− γ))

∥∥∥2

2
, (4.17)

and Zα = diag(zα). We use approximation (4.16 to motivate three regularization parameter selection
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methods.

4.2 Regularization Parameter Selection Methods

4.2.1 The Discrepancy Principle Method

The discrepancy principle (DP) is motivated by the idea that if uα is close to ue then the expected

discrepancy between uα and the data, E(T0(uα ;Z)), should be approximately equal to the expected

discrepancy between ue and the data, E(T0(ue;Z)). Note that here Z is the random vector of which

the data z is a realization and so T0(u;Z) is a random variable. Since

E(T0(ue;Z)) =
k

∑
i=1

([Aue]i + γi)− ([Aue]i + γi) ln([Aue]i + γi),

it cannot be evaluated directly because ue is unknown in practice. The quadratic approximation (4.16)

along with another approximation is used to compute an estimate of E(T0(ue;Z)) that does not depend

on ue. Note that from (4.16) and (4.17) it follows that

E(T0(u;Z))≈ T0(ue;ze)+E(T WLS
0 (u;Z)), (4.18)

and so if uα ≈ ue then

E(T WLS
0 (uα ;Z))≈ E(T WLS

0 (ue;Z)). (4.19)

An estimate of E(T WLS
0 (ue;Z)) must now be obtained. In order to do this, the approximation

Z− γ = Aue +η , (4.20)

where η is a Gaussian random vector with mean 0 and covariance matrix given by diag(Aue + γ), is
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made. Let

r(u;Z) def
= diag(Au+ γ)−1/2(Au− (Z− γ)), (4.21)

and note that that r(ue;Z) is a Gaussian random vector with mean 0 and variance In, where In de-

notes the n× n identity matrix. It follows from a standard statistical result that the random variable

‖r(ue;Z)‖2
2 has a chi-squared distribution with n degrees of freedom, for which the mean is n and the

variance 2n. Thus the discrepancy principle indicates that acceptable values of α are those that yield

values of ‖r(uα ;z)‖2 that are likely to be realizations of a χ2(n) random variable and so the following

criterion for acceptable values of α can be formulated: a value of α is appropriate if r(uα ;z) is within

two standard deviations of n; that is if

n−2
√

2n≤ 2T WLS
0 (uα ;z)≤ n+2

√
2n, (4.22)

where uα is computed from (4.1). A specific value of α can be chosen by approximately solving the

nonlinear equation

2T WLS
0 (uα ;z) = n. (4.23)

4.2.2 The Generalized Cross Validation Method

The regularization parameter selection method of leave-one-out cross validation selects the value of α

that minimizes

CV(α) =
1
n

n

∑
k=1

([Auk
α ]k + γ)− zk ln([Auk

α ]k + γ), (4.24)

where

uk
α = argminu∈Ω

{
∑
i 6=k

([Au]i + γi)− zi ln([Au]i + γi)+
α

2
uT Cu

}
. (4.25)

For large-scale problems minimizing (4.24) is not feasible. In the method of generalized cross val-

idation (GCV) for regularized least squares the minimizer is found of an approximation, referred to
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as the GCV function, of CV(α) for which optimization is much more efficient. The GCV method is

extended to (4.1) by making use of the quadratic approximation of T0 given in (4.16).

In order to derive the GCV function some preliminary definitions and arguments are needed. The reg-

ularization operator Aα is commonly defined to be the operator for which uα = Aαz. The derivation

of the GCV function for regularized least squares problems makes use of the fact that the regular-

ization operator in those problems is linear. For (4.1) however, Aα is nonlinear and hence a linear

approximation Aα satisfying uα ≈ AαZ−1/2
α (z− γ) is needed. To obtain such an approximation, first

define the matrix Dα to be the diagonal matrix with nonzero entries given by [Dα ]ii = 0 if [uα ]i = 0

and [Dα ]ii = 1 if [uα ]i > 0 and note that since Tα is strictly convex, uα is the solution of the equation

Dα∇Tα(Dαu) = 0 (4.26)

which has minimum norm [28]. After applying approximation (4.16), equation (4.26) becomes

DαAT Z−1
α (ADαu− (z− γ))+αDαCDαu = 0, (4.27)

for which the minimum-norm solution is

(Dα(AT Z−1
α A+αC)Dα)

†DαAT Z−1
α (z− γ). (4.28)

This motivates the following expression for Aα :

Aα = (Dα(AT Z−1
α A+αC)Dα)

†DαAT Z−1/2
α . (4.29)

Now let zk be defined by

[zk]i =

 zi i 6= k,[
Auk

α

]
k + γk i = k,

(4.30)
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and note that uk
α ≈ AαZ−1/2

α (zk− γ). Then

[Z−1/2
α Auα ]k− [Z−1/2

α Auk
α ]k

[Z−1/2
α z]k− [Z−1/2

α zk]k
=

[Z−1/2
α AAαZ−1/2

α (z− γ)]k− [Z−1/2
α AAαZ−1/2

α (zk− γ)]k

[Z−1/2
α z]k− [Z−1/2

α zk]k

=
∑

n
i=1([Z

−1/2
α AAα ]k,i[Z

−1/2
α (z− γ)]i− [Z−1/2

α AAα ]k,i[Z
−1/2
α (zk− γ)]i)

[Z−1/2
α z]k− [Z−1/2

α zk]k

= [Z−1/2
α AAα ]k,k,

and, since

1− [Z−1/2
α Auα ]k− [Z−1/2

α Auk
α ]k

[Z−1/2
α z]k− [Z−1/2

α zk]k
=

[Z−1/2
α (z− γ)]k− [Z−1/2

α Auα ]k

[Z−1/2
α z]k− [Z−1/2

α zk]k

=
[r(uα ;z)]k
[r(uk

α ;z)]k
,

it is the case that

[r(uk
α ;z)]k =

[r(uα ;z)]k
1− [Z−1/2

α AAα ]k,k
. (4.31)

Now (4.16) can be used to rewrite (4.24) as

CV(α) ≈ 1
n

T0(ue;z)+
1
2n

n

∑
k=1

[r(uk
α ;z)]2k

=
1
n

T0(ue;z)+
1
2n

n

∑
k=1

([r(uα ;z)]k)2

(1− [Z−1/2
α AAα ]k,k)2

, (4.32)

where (4.32) is a result of (4.31). The computation of (4.32) can still be prohibitively expensive for

large-scale problems and so the approximation

1− [Z−1/2
α AAα ]k,k ≈

1
n

trace(In−Z−1/2
α AAα) (4.33)

is used. Therefore the GCV approximation for (4.1) is given by

GCV(α) =
nT WLS

0 (uα)

trace(In−Z−1/2
α AAα)2

. (4.34)
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The fact that uα , and hence Aα and Zα , is computed directly from (4.1) is a key difference between

(4.34) and the GCV function used for regularized least squares problems; otherwise the forms of the

two approximations are very similar. The GCV method selects the value of α that solves

αGCV = argminα>0GCV(α). (4.35)

Randomized Trace Estimation The presence of Dα and Zα in the expression for Aα as well as the

size of Aα can cause the exact evaluation of the term trace(In−AAα) to be impractical. Instead an

estimate can be used that is computationally cheaper to evaluate. Note that if W is an n× 1 random

vector with mean 0 and covariance In, then for B ∈ Rn×n,

E(WT BW) = E

(
n

∑
i=1

n

∑
j=1

WiWjBi, j

)

=
n

∑
i=1

Bi,iE(W 2
i )

= trace(B).

Thus WT BW is an unbiased estimator of trace(B). This fact motivates estimating trace(In−AAα) by

taking a realization w of W and evaluating t(α) =wT (In−AAα)w. The variance of t(α) is minimized

when W is an independent random vector whose components take on the values of 1 and−1 each with

probability 0.5 [34].

4.2.3 The Unbiased Predictive Risk Estimator Method

The Unbiased Predictive Risk Estimator (UPRE) method entails the minimization of an estimator of

the expected value of the predictive risk T0(uα ;ze). The predictive risk cannot be evaluated because ze

is unknown.

As in the cases of the DP and GCV methods, the UPRE method for choosing α in regularized least
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squares problems is extended to (4.1) by employing the quadratic approximation of T0 given in (4.16).

The first step is to use (4.16) to write the predictive risk as

T0(uα ;ze)≈ T0(ue;ze)+T WLS
0 (uα ;ze). (4.36)

It is also the case that

T0(uα ;z)≈ T0(ue;ze)+T WLS
0 (uα ;ze). (4.37)

The expected value of the predictive risk and E(T0(u;z)) are then given by

E(T0(uα ;ze))≈ T0(ue;ze)+E(T WLS
0 (uα ;ze)), (4.38)

E(T0(uα ;z))≈ T0(ue;ze)+E(T WLS
0 (uα ;ze)). (4.39)

Arguments mimicking the reasoning found in [34, Section 7.1] can now be made. The following

lemma is needed.

Lemma 4.2.1. Let u ∈ Rn, B ∈ Rn×n, and η be an n×1 random vector with mean 0 and covariance

σ2In. Then

E(‖u+Bη‖2) = ‖u‖2 +σ
2trace(BT B). (4.40)

Proof.

E(‖u+Bη‖2) = E(uT u)+2E(uT Bη)+E[(Bη)T Bη ]

= ‖u‖2 +2E[(BT u)T
η ]+E(ηT BT Bη)

= ‖u‖2
2 +

n

∑
j=1

[BT u] jE(ν j)+
n

∑
i=1

n

∑
j=1

[BT B]i, jE(νiν j).

The result follows from the properties of η .

Let pα = Z−1/2
α (Auα−(ze−γ)) and as in the derivation of the DP method approximate Z with (4.20).
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Then

pα = (Z−1/2
α AAα − In)Z

−1/2
α Aue +Z−1/2

α AAαZ−1/2
α η .

If uα ≈ ue then Z−1/2
α ≈ diag(Aue + γ)−1/2 and so the approximation

cov(Z−1/2
α η) = In (4.41)

makes sense. It follows from (4.41) and Lemma 4.2.1 that

E(T WLS
0 (uα ;ze)) =

1
2

E(‖pα‖2)

=
1
2
‖(Z−1/2

α AAα − In)Z
−1/2
α Aue‖2 +

1
2

trace((Z−1/2
α AAα)

2). (4.42)

It is also the case that

r(uα ;z) = (Z−1/2
α AAα − In)Z

−1/2
α Aue +(Z−1/2

α AAα − In)Z
−1/2
α η ,

and again applying (4.41) and Lemma 4.2.1 yields

E(T WLS
0 (uα ;z)) =

1
2

E(‖r(uα ;z)‖2)

=
1
2
‖(Z−1/2

α AAα − In)Z
−1/2
α Aue‖2 +

1
2

trace((Z−1/2
α AAα)

2)− trace(Z−1/2
α AAα)

+
n
2
. (4.43)

Thus

E(T WLS
0 (uα ;ze)) = E(T WLS

0 (uα ;z))+ trace(Z−1/2
α AAα)−

n
2
, (4.44)

and the UPRE is defined to be

UPRE(α) = T WLS
0 (uα ;z)+ trace(Z−1/2

α AAα)−
n
2
. (4.45)

Note that UPRE(α) is an unbiased estimator of the expected value of the predictive risk. The UPRE
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method selects the value of α that solves

αUPRE = argminα>0UPRE(α). (4.46)

In practice randomized trace estimation is used to estimate the term trace(Z−1/2
α AAα) in (4.45).



Chapter 5

Numerical Results

This chapter contains material first presented in papers [4, 8–10]. The codes used to generate these

results, and which implement the methods of the previous chapters can be found at [2].

The nonnegatively constrained minimization algorithm presented in Chapter 2, regularization opera-

tors presented in Chapter 3, and the parameter selection methods presented in Chapter 4 were tested

on the astronomical imaging and positron emission tomography (PET) examples that were presented

in the introduction.

5.1 Astronomical Imaging Example

5.1.1 Statement of Problem

Recall that in astronomical imaging, the problem is to estimate the true image ue given observations z

for which the data-noise model is

z = Poiss(Aue + γ)+N(0,σ2I), (5.1)

48
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where γ gives the background intensity and σ2 is the variance of the instrument readout noise. Here

the observed image array and true image array are both n×n. The forward-model matrix A is therefore

N×N, with N = n2 and it arises from the discrete convolution of an image with an n×n point spread

function (PSF) a. a is computed using the Fourier optics PSf model [34]:

a =
∣∣F−1{p� eı̂φ}

∣∣2 , (5.2)

where F−1 denotes the two-dimensional inverse Fourier transform, p is the n× n indicator array

for an annulus, � signifies component-wise multiplication, ı̂ =
√
−1, and φ is the n× n array that

represents the distortion in the planar wavefronts of light resulting from turbulence in the atmosphere.

φ is obtained using the Kolmogorov turbulence model [30].

In the case of periodic boundary conditions, multiplication by the matrix A can be carried out much

more efficiently using fast fourier transforms (FFTs). In this case, multiplication by A can be written

as

Au = vec((ifft2(â�fft2(u)))) â = fft2(fftshift(a)),

where vec column stacks n×n arrays to obtain n2×1 vectors, fft2 and ifft2 are the discrete two-

dimensional Fourier and inverse Fourier transforms respectively, and fftshift swaps the first and

third and second and fourth quadrants of the array a. Multiplication by A can still be carried out using

FFT’s when zero boundary conditions are assumed, though a slightly different formulation results

[34].

The computational framework was tested using a standard synthetic data example developed at the US

Air Force Phillips Laboratory, Lasers and Imaging Directorate, Kirtland Air Force Base, New Mexico.

The image is a simulation of a satellite as seen through a ground-based telescope. The 256× 256

true image is shown on the left in Figure 5.1. Additionally, star field data was simulated and used to

perform numerical tests. The star field data is plotted on a log scale to aid in visualization and can be

seen on the right in Figure 5.1.
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Figure 5.1: True image of the satellite on the left and the true image of the star field, plotted on a log scale,
with entries less than 100 set to 0, on the right.

The noisy data was generated in Matlab using the poissrnd and randn functions. The values of γ

and σ were chosen to be γ = 10 and σ = 5. The corresponding blurred, noisy signals are displayed in

Figure 5.2. Again note that the star field data is plotted on a log scale.

In solving the inverse problem, (5.1) is approximated by

z+σ
2 = Poiss(Aue + γ +σ

2). (5.3)

This is done by making the approximation N(σ2,σ2)≈ Poiss(σ2) and using independence properties.

The approximation is made because the solution of the resulting maximum likelihood problem is much

easier to compute.

The signal-to-noise ratio (SNR) for (5.1) is defined to be

SNR =

√
‖Aue + γ‖2

E(‖z− (Aue + γ)‖2)
. (5.4)

Note that under the square root the numerator contains the noise-free signal and the denominator

contains the variance of the data z, also known as the noise power. For (5.1), E(‖z− (Aue + γ)‖2) =

∑
N
j=1([Aue] j + γi +σ2

i ). In order to test the methods on multiple data sets, the intensity of the true
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Figure 5.2: Blurred, noisy images of the satellite on the left, and the star field, plotted on a log scale, with
entries less than 100 set to 0, on the right, both with SNR = 30.

image is varied to obtain noise at four different levels of SNR.

5.1.2 Regularization Operators

Recall from Chapter 3 that three choices for C are considered: C= I, C=L, where L is a discretization

of the negative laplacian, and C = Θ, where

Θ = DT
x ΛDx +DT

y ΛDy. (5.5)

Dx and Dy are discretizations of the x- and y- partial derivatives respectively and Λ is a diagonal matrix

with [Λ]ii = 1 if the ith pixel lies in a region that is known to be smooth and [Λ]ii < 1 if the ith pixel

is known to be adjacent to an edge. L should be used in problems where the true image is known to

be smooth and Θ should only be used when the true image is known to be smooth except in regions

which contain sharp jumps in intensity (edges). In Chapter 3, the construction of Λ is not addressed.

If the location of the edges are prior knowledge, then the construction of Λ is simple. In fact, an

edge-preserving regularization matrix can be constructed which is a discretization of an anisotropic

diffusion operator [21]. In the examples presented here, the locations of the edges are not assumed to

be known a priori.
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The construction of Λ when the locations of the edges in ue are unknown involves first computing a

smooth approximation uapprox of ue. This is done by solving (4.1) with C = L and α chosen using one

of the three selection methods that have been presented. Let

v = [Dxuapprox]
2 +[Dyuapprox]

2, (5.6)

and define the vector vε by

[vε ]i =

 vi vi ≥ ε‖v‖∞,

0 otherwise,
(5.7)

where ‖ · ‖∞ denotes the `-∞ norm and 0 < ε < 1. For the experiments performed here, we chose

ε = 0.01. Now Λ is defined by

Λ = diag
(

max
{

1
1+ρvε

,
1

10

})
, (5.8)

where ρ is a scaling parameter. For the experiments performed here, ρ = 1. Note that under the

assumption that [vε ]i will be large if the ith pixel is near an edge, Λ has the effect of decreasing the

regularization parameter by an order of magnitude which results in a decrease in smoothing at the ith

pixel. However if [vε ]i = 0 then the regularization parameter remains approximately the same and a

reconstruction that is not smooth at that pixel will be penalized. For different applications, the values

of ε , ρ and 1
10 in (5.8) might need to be adjusted.

Constructing Λ in this manner suggests an approach in which the reconstructions are iteratively refined

by using (5.5) with (5.6)-(5.8) and taking uapprox to be the result of the previous iteration. The value

of α can be selected using one of the three regularization parameter selection methods presented in

Chapter 4. To summarize:

Iteratively Updated Diffusion Regularization

Step 0: Set Λ = I.
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Step 1: Select α using either of the GCV, UPRE, or DP methods and compute the solution uα of (4.1)

with regularization function (5.5).

Step 2: Set uapprox = uα and update Λ using (5.6)-(5.8), then return to Step 1.

5.1.3 Regularization Parameter Selection Methods

The three regularization parameter selection methods presented in Chapter 4 each require the solution

of a minimization problem. For GCV, the GCV function given in (4.34) must be minimized; for UPRE

the function is given by (4.45). For DP, recall that an appropriate choice for α is one for which

‖Z−1/2
α (Auα − (z− γ))‖2 = N.

Such an α might not exist, so α is selected by solving

αDP = argminα>0{(‖Z
−1/2
α (Auα − (z− γ)‖2−N)2}. (5.9)

In all three cases the minimization problem has the constraint that α > 0. Matlab’s fminbnd function

was used to solve the minimization problems. fminbnd requires that upper and lower bounds for the

minimizer be included in the input. A lower bound of 0 and an upper bound of 0.01 were used in

each case. The TolX parameter was set to 10−8 for the satellite example and 10−10 for the star field

example. It should also be noted that when DP is implemented, the minimum value of the right-hand

side of (5.9) achieved by fminbnd was on the order of 10−8 in all cases except one in which the

mininum value was on the order of 10−6.

The evaluation of the function to be minimized in each of the three methods requires the computation

of uα , where uα is the solution of (4.1) which is itself a minimization problem. This problem is solved

by applying the GPRN algorithm which is presented in Chapter 2. The maximum number of iterations
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was set to 50, and the tolerances on the step size and the size of the norm of the projected gradient

were both set to 10−6. In each iteration of the GPRN algorithm, a maximum of 5 gradient projection

iterations and 40 conjugate gradient iterations were allowed. The stopping tolerances for both the

gradient projection step and the reduced Newton step were both set to 0.1.

Experiments were performed on the star field and satellite data using C = I and with SNR = 5, 10, 30,

and 100. Using C = L and C = Θ experiments were performed on the satellite data (the star field data

was excluded because the true image is known to not be smooth) with SNR = 10 and 30. In each case

the relative error, given by
‖uα −ue‖
‖ue‖

,

is calculated for a range of values of α and the values that are recommended by the various methods.

The results of the satellite test case with C = In are displayed in Figure 5.3. All three selection

methods gave good recommendations, with GCV and UPRE recommending a value for α that is

slightly worse than that recommended by DP. Note that as α tends to 0, uα tends towards the solution

of the unregularized maximum likelihood problem which is not close to the true image because that

problem is ill-posed. When α is too large the penalty term dominates the minimization problem and

the contribution from the data model is underemphasized, yielding a reconstruction which is also far

from the true image.

The results from the star field test case are displayed in Figure 5.4. Again the three methods yielded

good recommendations for α with the caveat that the methods worked better when the SNR was 30

or 100 than when the SNR was 5 or 10. In this example UPRE gave the best recommendation. The

plots indicate that the optimal value of α is very small and hence regularization is not needed. One

explanation for this is that the nonnegativity constraints and the point-source nature of the true image

have a stabilizing effect on the inverse problem [20].

The results obtained from using C=L with the satellite data are displayed in the top row in Figure 5.5.

The three methods each gave a good recommendation for α , with UPRE giving the best recommenda-
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Figure 5.3: Satellite Test Case with C = In. Plot of relative error together with the values of α chosen by the
regularization parameter selection methods GCV, UPRE, and DP.
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Figure 5.4: Star Field Test Case. Plot of relative error together with the values of α chosen by the regularization
parameter selection methods GCV, UPRE, and DP.
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tion in both cases of SNR. The bottom row of Figure 5.5 contains the results that were obtained from

the satellite test case with C = Θ. Here uapprox was constructed using C = L and the value for α that

was selected by the UPRE method. Again the three methods each gave good recommendations for α ,

with the UPRE method giving the best recommendations.

Figure 5.5: In the top row, Satellite Test Case, with C = L. In the bottom row, Satellite Test Case, with C = Θ.
Plot of relative error together with the values of α chosen by the regularization parameter selection methods
GCV, UPRE, DP.

The reconstructions that were obtained from the blurred, noisy satellite data with a SNR of 30 and

using each of the three regularization matrices are displayed in Figure 5.6. The reconstructions were

each computed with the UPRE value of α . Included in Figure 5.6 is the reconstruction that was

obtained from the blurred, noisy star field data with a SNR of 30 and the value of α that was selected

by UPRE.
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In addition to testing the parameter selection methods, the iteratively updated diffusion regularization

method was examined using the satellite test data with SNR 30. At each iteration, the value of α was

selected using UPRE. Figure 5.7 contains, on the left, the plot of the reconstruction that was obtained

after four iterations and on the left a plot of the reconstruction that was obtained after 6 iterations.

Note that the bottom left plot in Figure 5.6 contains the result after 2 iterations. There is a noticeable

improvement going from 2 to 4 iterations. However going from 4 to 6 iterations does not yield a

reconstruction that is visibly much improved.

Figure 5.6: Reconstructions of the satellite: on the upper-left with Tikhonov regularization (C = I), on the
upper-right with Laplacian regularization (C = L), and on the lower-left with C = Θ. Reconstruction of the
star field with Tikhonov regularization is given (on a log scale and with entries less than 100 set to 0) on the
lower-right.
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Figure 5.7: The results from implementing the iteratively updated diffusion regularization function. On the left
is the result after 4 iterations and on the right is the result after 6.

5.2 PET Example

5.2.1 Statement of the Problem

Recall that in the PET imaging example the problem of interest is to estimate the true emission density

ue given observations z for which the data noise model is

z = Poiss(Aue + γ), (5.10)

where γ gives the expected erroneous counts and A is the forward-model matrix. Here the underlying

emission density array is n× n and for each of nφ angles there are detectors at ns different directed

distances from center of the computational domain oriented at angle and so A is M×N, where M =

nφ ns and N = n2.

A has the form

A = GAradon, (5.11)

where

G = diag
(

e−
∫

L1
µ(x)dx,e−

∫
L2

µ(x)dx, . . . ,e−
∫

LM
µ(x)dx

)
,
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Li indicates the ith line of response (LOR), µ(x) is the attenuation function, and Aradon is the matrix

that arises from the discretization of the radon transform. Note that [Aradon]i j is the length of the i

LOR with with the j computational grid element. Thus A is sparse and so multiplication by A is not

prohibitively expensive.

5.2.2 Regularization Parameter Selection Results

The synthetically generated true emission density ue that was used to generate the transformed, noisy

data is similar to that used in [32] and is shown on the left in Figure 5.8. As in the astronomical

imaging example, Matlab’s poissrnd function was employed to generate the noisy data using sta-

tistical model (5.10). The noisy sinogram is shown on the right in Figure 5.8, γ was assumed to be

1, and the attenuation function was assumed to be zero at all pixels. The unknown emission density

array is 128× 128, and the data was collected using 128 detectors at 128 different angles. Therefore

M = N = 1282. As in the astronomical imaging example, the SNR was varied in order to test the

methods on multiple data sets. For data arising from model (5.10), the SNR is given by

SNR =

√
‖Aue + γ‖2

∑
M
i=1([Aue]i + γi)

.

Plots of the relative solution error obtained for a range of values of α and the values recommended by

the selection methods are displayed in Figure 5.9. The MAP estimate of ue is calculated from (4.1)

with C = L. In both cases of SNR, the UPRE and GCV methods gave slightly better recommendations

than the DP method. The reconstructions obtained using the DP method are displayed in the top row in

Figure 5.10, and the bottom row contains reconstructions computed with the UPRE recommendations.

In addition to implementing the parameter selection methods with C = L in (4.1), the methods were

also employed to choose a value for α when C = Θ, the regularization matrix whose form is given in

(5.5) and which allows for edges present in the true image to be preserved in the reconstruction. Θ
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Figure 5.8: The true emission density ube is plotted on the left and the data b is plotted on the right. The
signal-to-noise ratio of z is 20.

Figure 5.9: Plots of α versus relative error are shown. The plot on the left is from data with a SNR of 5 and the
plot on the right is from data with a SNR of 20.
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Figure 5.10: Plots of the reconstructions obtained from the two data sets, with the reconstructions obtained
from data with SNR=5 on the left and SNR=20 on the right. The top row contains the reconstructions that were
computed with the DP recommendation and the bottom row contains reconstructions that were computed with
the UPRE recommendation.
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was constructed in the same manner as in the astronomical imaging example, with the exception that

the scaling parameter τ present in (5.8) was set to 500. The DP method was used to select the value

of α that was used to compute uapprox. Figure 5.11 contains plots of the relative solution error that

was computed over a range of values of α as well as the solution error corresponding to the parameter

selection method recommendations. As in the case when C = L, the UPRE and GCV methods both

gave slightly better recommendations in terms of the relative solution error than the DP method did for

both instances of SNR. The reconstructions computed using the DP recommendation are displayed in

Figure 5.12.

The computation of the estimates of the true emission density required the solution of the nonneg-

atively constrained minimization problem (4.1). The minimizer was computed using the GPRN al-

gorithm outlined in Chapter 2. A maximum of 50 iterations of the algorithm were allowed. The

tolerances on the step size and the size of the norm of the projected gradient were both set to 10−5. In

each iteration of the GPRN algorithm, a maximum of 5 gradient projection iterations and 30 conjugate

gradient iterations were allowed. The stopping tolerances for both the gradient projection step and the

reduced Newton step were both set to 0.1.

Figure 5.11: Plots of α versus relative error are displayed.
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Figure 5.12: Reconstructions computed using C = Θ and the DP recommendation for α are shown. The plot
on the left is the reconstruction computed from data with a SNR of 5 and on the right is the reconstruction that
was obtained from data with a SNR of 20.

5.2.3 Total Variation Regularization

In (4.1), the use of C = Θ yielded a quadratic penalty term that allowed for edge preservation. Total

variation regularization is another regularization technique that allows for the presence of sharp edges

in the resulting reconstruction. As discussed in Chapter 3, the fact that the algorithm used to solve the

nonnegatively constrained problem (4.1) requires that the function to be minimized be differentiable,

and so an approximation of the total variation function must be used due to the fact that the total

variation function is not differentiable at zero. The approximation that is used is given by

J(u) =
1
2

M

∑
i=1

√
[Dxu]2i +[Dyu]2i +β , (5.12)

where β > 0. In our experiments β = 1. Computing uα using total variation regularization entails

solving

uα = argminu>0

{
Tα(u)

def
= T0(u;z)+αJ(u)

}
. (5.13)

The solution of (5.13) was computed using an algorithm very similar to the GPRN algorithm outlined

in Chapter 2. The key difference is in the second stage. Instead of using conjugate gradient iterations
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to solve the reduced Newton system

∇
2
redTα(uk)p =−∇redTα(uk),

the system

∇
2
LDTα(uk)p =−∇redTα(uk), (5.14)

where ∇2
LDT (uk) = ∇2

redT0(ukz)+αL1(uk), and L1 is defined in (3.23) is solved instead. This step

will be referred to as the reduced lagged-diffusivity step due to the fact that when T0(u) is the regular

least squares function, the lagged-diffusivity fixed point iteration of [34] requires the solution of the

unreduced system

∇
2
LDTα(uk)p =−∇Tα(uk)

at each iteration. Hence the algorithm used to solve (5.13) will be referred as GPLD.

Figure 5.13 contains the plots analogous to those in Figure 5.9 which resulted from computing ue

from (5.13). Note that all three parameter selection methods yielded good recommendations for the

parameter value. Figure 5.14 contains plots of the reconstructions that were obtained using the UPRE

method to select the value of α for the data with a SNR of 5 and the DP method for the data with a

SNR of 20.

The evaluation of both the GCV and UPRE functions requires the computation of Aα . Recall that the

form of Aα was motivated by the fact that uα is the solution of equation (4.26) which has minimum

norm. In the case of total variation regularization, the solution of minimum norm of equation (4.26)

has the form

(Dα(AT Z−1
α A+αL1(Dαu))Dα)

†DαAT Z−1
α (z− γ), (5.15)

which motivates the following expression for Aα :

Aα = (Dα(AT Z−1
α A+αL1(Dαu))Dα)

†DαAT Z−1/2
α . (5.16)
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However it was found that better results were obtained by modifying (5.17) in the following manner:

Aα = (Dα(AT Z−1
α A+α(L1(u)+2L2(u))Dα)

†DαAT Z−1/2
α . (5.17)

Figure 5.13: Plots of α versus relative error are shown. The plot on the left is from data with a SNR of 5 and
the plot on the right is from data with a SNR of 20.

Figure 5.14: Plots of the reconstructions obtained from the two data sets with the UPRE recommendation
for the regularization parameter with SNR 5 (on the left) and the DP recommendation for the regularization
parameter with SNR 20 (on the right).

Numerical tests of the parameter selection methods applied to (5.13) were also performed on a syn-

thetically generated emission density that is based on an anatomical model of a normal brain and was

obtained from [1]. The true emission density is given on the left in Figure 5.15. The noisy sinogram
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data, generated using statistical model (5.10) and MATLAB’s poissrnd function, is shown on the

right in Figure 5.15. We again assumed that γ is a constant vector of 1s at all pixels, and that the

density vector µ is zero. Our computational grid is defined here by 128 detectors and angles, as well

as a 129×129 uniform computational grid for the unknown emission density. Thus M = 1282 and

N = 1292. Figure 5.16 contains, on the left, a plot of the relative error over a range of values of α

along with the recommendations by the three methods. On the right is a plot of the reconstruction

obtained using the DP recommendation. As in the previous cases, the three methods each gave a good

recommendation for α .

Figure 5.15: The true emission density xe is plotted on the left and the data b is plotted on the right.

Figure 5.16: On the left is a plot of α vs. the relative error for the brain image. On the right is the reconstruction
obtained using the DP recommendation.
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The efficiency of the GPLD algorithm was evaluated by comparing its performance to that of the

EM-TV algorithm presented in [31]. The algorithms were tested on data generated from the emission

density shown on the left in Figure 5.8 with SNR 5. The CPU time for computing uα using the GPLD

algorithm with 50 iterations and the DP recommendation for α , 0.00015, was 43.8 seconds. The

relative solution error was 0.1860. The CPU time for computing uα using the EM-TV algorithm with

50 outer iterations and 50 iterations to compute the dual variable and with α = 0.05 was 37.5 seconds.

The relative solution error was 0.2253. Note that a smaller relative error could be obtained by using a

better value of α , however I have so far been unable to incorporate the parameter selection methods

into the Matlab code for the EM-TV algorithm. Also in the EM-TV algorithm, in the computation of

the dual variable,if the iterates are stopped when the appropriate quantity becomes lower than some

stopping tolerance. A better relative error could be obtained, however the CPU time could be increased

significantly.



Chapter 6

Conclusions

In Chapter 1, Ill-posed Poisson estimation was introduced in the contexts of astronomical and PET

imaging. Since the maximum likelihood estimate is insufficient in such problems, regularization tech-

niques must be employed. Regularization introduced two important issues: what regularization func-

tion should be used and what value should the regularization parameter be set to. Also, computing

the solution of the regularized problem required a method for solving nonnegatively constrained min-

imization problems.

In Chapter 2, an algorithm for solving nonnegatively constrained minimization problems in which the

objective function is twice-continuously differentiable was described. Convergence of the algorithm

to a unique minimizer was proved for objective functions that are strictly convex, coercive, and whose

gradient is Lipschitz continuous.

In Chapter 3, regularization was motivated by taking a Bayesian approach and formulating a MAP

estimation problem. Chapter 3 also contains a discussion of various regularization functions and

proofs that those functions yield an objective function that satisfies the criteria for convergence of

the algorithm described in Chapter 2. Of interest were quadratic regularization terms in which the

regularization matrix was either the identity, a discretization of the negative Laplacian, or a matrix that

69
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yielded a regularization term that allowed for the preservation of edges. Total variation regularization

was also examined.

Methods for selecting the regularization parameter was the topic of Chapter 4. A Taylor series argu-

ment and an application of the mean value theorem were used to derive a weighted sum of squares

approximation of the negative log of the Poisson likelihood function. This approximation was used

to extend parameter selection methods that have been developed for least squares problems to regu-

larized negative-log Poisson reconstruction problems. The methods of interest were the discrepancy

principle, generalized cross validation, and unbiased predictive risk estimator methods.

In Chapter 5 numerical tests of the methods were performed in the context of the astronomical and

PET imaging examples. The selection methods were implemented with each of the regularization

functions described in Chapter 3. The methods were shown to give good recommendations for the

regularization parameter. Additionally the construction of an edge-preserving quadratic regularization

function was detailed.

A complete computational framework for solving ill-posed Poisson imaging problems has been pre-

sented.
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