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With technological, research, and theoretical advancements, the amount of data being gen-
erated for analysis is growing rapidly. In many cases, the number of subjects may be small,
but the number of measurements taken on each subject may be very large. Consider, for ex-
ample, two groups of patients. The subjects in one group are diseased and the other subjects
are not. Over 9,000 relative fluorescent unit (RFU) signals, measures of the presence and
abundance of proteins, are collected in a microarray or protoarray from each subject. Typi-
cally these kind of data show marked skewness (departure from normality) which invalidates
standard multivariate normal-based theory. What is more, due to the cost involved, only a
limited number of subjects can be included in the study. Therefore, standard large-sample
asymptotic theory cannot be applied. It is of interest to determine if there are any differences
in RFU signals between the two groups, and more importantly, if there are any RFU signal
and group interaction effects. If such an interaction is detected, further research is warranted
to identify any of these biological signals, commonly known as biomarkers.

To address these types of phenomena, we present inferential procedures in two-factor re-
peated measures multivariate analysis of variance (RM-MANOVA) models where the covari-
ance structure is unknown and the number of measurements per subject tends to infinity.
Both in the univariate case, in which the number of dimensions or response variables is one,
and the multivariate case, in which there are several response variables, different sums of
squares and cross product matrices are proposed to compensate for the unknown structure
of the covariance matrix and unbalanced group sizes. Based on the new matrices, we present
some multivariate test statistics, deriving their asymptotic distributions under fairly general
conditions. We then use simulation results to assess the performance of the tests, and we
analyze a real data set to demonstrate their applicability.

Keywords: MANOVA · Repeated measures · Longitudinal data · High-dimensionality ·
Unstructured variance/covariance · Non-normality · Stationarity · α-mixing · Central limit
theorem · Kronecker product · Bootstrapping · Simulation study
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Notation

A a matrix, denoted by boldface font

Ajj′ the (j, j′)th element of matrix A

ajj′ii′ the (i, i′)th entry of the (j, j′)th block of matrix A

A·j the jth column of matrix A

Ai· the ith row of matrix A

A′ the transpose of matrix A

E (·) the expected value function

Var (·) the variance function

Cov (·) the covariance function

tr (·) the trace function (of a matrix)

vec (·) the vectorization function for matrices

⊕ the direct sum matrix operator
m⊕
i=1

the direct sum matrix operator for several (indexed) matrices

⊗ the Kronecker product matrix operator

H0 or H0 a null hypothesis (may have additional clarifying addenda)

SS shorthand for ”sums of squares”

SSCP shorthand for ”sums of squares and cross products”

CLT shorthand for ”Central Limit Theorem”
limit∑
index

the sum operator (compare to below)?

Σ a matrix, usually the variance-covariance matrix (boldface)

Im m×m identity matrix

Jm m×m matrix of ones

Pm defined to be Im − 1
mJm

1m m× 1 vector of ones

N(µ, σ) normal distribution with parameters µ, σ

MV N(µ,Σ) multivariate normal distribution with parameters µ,Σ

MVNn,p(µ,Σ) np-multivariate normal distribution with parameters µ,Σ

χ2
n χ2-distribution with n degrees of freedom

Fn1,n2 F -distribution with degrees of freedom n1, n2

MVN shorthand for ”multivariate normal” (in distribution)

ANOVA shorthand for ”analysis of variance”

MANOVA shorthand for ”multivariate analysis of variance”

RM-ANOVA shorthand for ”repeated measures analysis of variance”

RM-MANOVA shorthand for ”repeated measures multivariate analysis of variance”
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Chapter 1

Introduction

1.1 Background

In the dance of statistical academia, theory is often a step or two behind necessity. Booming

advancements in technology and research over recent decades have created a need for statis-

tical theory to address the real-life phenomena from which data so often arise. Traditionally,

whether with proper justification or out of the need and desire for mathematical tractability,

many assumptions are imposed in statistical methods. For instance, independence among

subjects is the theoretical bedrock of the classical Central Limit Theorem first proposed over

a century ago. Since that time much has changed. The aim of this dissertation is to present

inferential procedures for two-factor repeated measurements analysis of variance, both when

the number of response variables is one or when it is several, and when the number of measure-

ments taken on each subject is very large (tends to infinity). To date, there is some research

relinquishing assumptions regarding the covariance structure among such data, and there are

many results dealing with dependent measurements within each subject. However, to the best

of our knowledge, no work has been done in both of these areas with the added relaxation

1



1.1. BACKGROUND 2

of the assumption on the underlying distribution. Thus far it has been assumed that the

data arise from a normal or multivariate normal distribution, a condition which is dismissed

in this paper seeking robustness. To address the scenario described above, this dissertation

presents robust, formal tests of significance along with their asymptotic distributions, and real

data are analyzed to illustrate the applicability of these new methods. For a more detailed

account of these distinctions, please refer to Sections 2.1 and 4.1 beginning on pages 13 and

73, respectively.

In order that the reader may have sufficient background regarding some of the topics and

methods used in this dissertation, this chapter gives some insight as regards said topics. Sec-

tion 1.2.1 will include a discussion of the direct sum and some of its properties, and Section

1.2.2 will do the same for the Kronecker product. The vec(·) notation will be presented briefly

in Section 1.2.3. Section 1.3 will discuss various modes of convergence, as well as ”big-O” and

”little-o” notation, which are used throughout the entire dissertation. Proofs or justification

of many of the properties will be supplied in Appendix A. The topics discussed in this chap-

ter vary in mathematical intensity; however, most (if not all) of the topics are uncommonly

utilized in the usual education of the general mathematician or statistician. For this reason,

it is my hope to achieve a balance between necessity and brevity. In the least I trust this will

be both refreshing and a good exercise. In case the reader is already quite familiar with the

aforementioned topics, he is advised to proceed direction to Chapter 2.

The remainder of the dissertation will be organized as follows. Chapter 2 will discuss the

new techniques for addressing the univariate case. This will include some necessary techni-

cal lemmas and properties, a discussion of the adjusted sums of squares, and an overview of

treating these sums of squares as quadratic forms even in the presence of heteroskedasticity

and unbalanced group sizes. Furthermore, Chapter 2 will present test statistics with their

asymptotic distributions, addressing any necessary assumptions along the way. Chapter 3

will present a large-scale simulation study to evaluate the finite sample performance of the

asymptotic results in Chapter 2. Chapter 3 will include simulation results for the achieved

size and power of the test statistics. Regarding the size of tests, many different scenarios are
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considered, and the modified test statistics will be compared with the traditional methods.

Also, a brief exploration using bootstrapping techniques to estimate the variances of the test

statistics will be included. Chapter 4 will closely mimic Chapter 2 as it is the multivariate

extension to the univariate case. The differences in setup, design, hypotheses, and especially

the forms of the test statistics will be addressed throughout Chapter 4. This chapter will also

include a simulation study for one of the multivariate criteria commonly used in the statisti-

cal literature. Chapter 5 will give a practical example applying the new test statistics, and a

summary discussion will be included here as well.

1.2 Some Matrix Operators

As linear algebra and matrix notation make many future results much more tractable and

simple, there is reason to present background on some of its lesser known topics, such as the

direct sum, the Kronecker product, and vec(·) notation.

1.2.1 Direct Sum

The direct sum operator provides shorthand notation for otherwise cumbersome matrices.

When working with design matrices, quadratic forms, and other statistical topics, direct sum

notation (when applicable) significantly limits the amount of sometimes detailed work, which

often becomes too complex to follow.

Definition 1.2.1. The direct sum is a matrix operation mapping two matrices A and B, with

dimensions m×n and p×q, respectively, to a block matrix C with dimension (m+p)×(n+q)

such that A and B are the diagonal block entries of C, and all other entries are defined to be

zero. It is denoted by the symbol ⊕, such that

⊕ : A,B → C,
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where

C = A⊕B =

 A 0

0 B

 .

This definition can be extended to several matrices.

Definition 1.2.2. The direct sum of multiple matrices Ai, i = 1, . . . ,m, is

m⊕
i=1

Ai = A1 ⊕ · · · ⊕Am = diag(A1, . . . ,Am) =


A1 0

. . .

0 Am

 .

Some properties of the direct sum are given below.

Property 1.2.3. For any size matrices A, B, and C,

(A⊕B)⊕C = A⊕ (B ⊕C) = A⊕B ⊕C.

The notion of associativity is intuitive based on the definition of direct sum. This concept

clearly extends to several matrices, though it will not be shown here, by a recursive extension

of the proof given in Appendix A.

Next we examine how scalars distribute across the direct sum of two matrices. The proof is

very straightforward, and though somewhat trivial, serves the purpose of comparison between

the direct sum and Kronecker product (discussed in the next section).

Property 1.2.4. For any size matrices A and B, and scalar k,

k(A⊕B) = kA⊕ kB.
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It should be noted that, provided k 6= 1 and A,B 6= 0,

kA⊕B 6= k(A⊕B) 6= A⊕ kB.

Again, the second statement in Property 1.2.4 is relatively obvious, but serves as a compar-

ison between the direct sum and Kronecker product.

The trace of the direct sum of matrices is the sum of the traces of the individual matrices

(Property 1.2.5). In working with the expected value of quadratic forms, this property is used

heavily.

Property 1.2.5. For any size matrices Ai, i = 1, . . . ,m,

tr

(
m⊕
i=1

Ai

)
=

m∑
i=1

tr (Ai) .

Property 1.2.6 gives a formula for evaluating the determinant of the direct sum of two

matrices. As with Properties 1.2.3 and 1.2.4, this result easily extends to more than two

matrices via a recursive argument.

Property 1.2.6. For any size matrices A and B,

det (A⊕B) = det (A) det (B).

While the next (and last) property presented here almost needs no proof, it is included to

stress the importance of ordering and syntax. When working with sums of squares, basic

linear models, and especially more complicated topics, the careless writer or reader may easily

become entangled by statements that appear very innocent and similar to one another.

Property 1.2.7. In general, ⊕ is not commutative; i.e., for generic matrices A and B,

A⊕B 6= B ⊕A.
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1.2.2 Kronecker Product

To further streamline future notation, we now introduce the notion of the Kronecker product.

A special case of the tensor product, the Kronecker product, similar to the direct sum, is an

operator used to ease the notation for matrices which can grow large quickly or to consolidate

matrices which already have an appropriate structure. Recall that matrices are said to be

conformable in an additive sense if they have the same dimension; matrices are conformable

in a matrix-multiplicative sense if the number of columns of the left matrix is equal to the

number of columns of the right matrix.

Definition 1.2.8. The Kronecker product is a matrix operation mapping two matrices A

and B, with dimensions m × n and p × q, respectively, to a block matrix C with dimension

(mp)× (nq) such that each element of A is expanded by being multiplied by the entire matrix

B to form mn p× q block entries of C. It is denoted by the symbol ⊗, such that

⊗ : A,B → C,

where

C = A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 ,
where

aijB =


aijb11 · · · aijbp1

...
. . .

...

aijb1q · · · aijbpq

 .

As in the previous section, we will list some major properties of the Kronecker product

followed by their proofs. We begin with the way in which scalars interact with the Kronecker

product.
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Property 1.2.9. For a constant k and matrices A and B,

(kA)⊗B = A⊗ (kB) = k(A⊗B).

Next, we examine the associative nature of the Kronecker product. As is to be expected,

the Kronecker product is associative.

Property 1.2.10. For matrices A, B, and C,

(A⊗B)⊗C = A⊗ (B ⊗C). (1.1)

Property 1.2.10 says that the parentheses (1.1) can just as easily be omitted. Properties

1.2.11 and 1.2.12 display how the Kronecker product distributes over addition and multipli-

cation.

Property 1.2.11. For conformable matrices A, B, and C,

(A+B)⊗C = A⊗C +B ⊗C

and

A⊗ (B +C) = A⊗B +A⊗C.

Property 1.2.12. For conformable matrices A, B, C, and D,

(A⊗B)(C ⊗D) = AC ⊗BD.

It is useful to note that Property 1.2.12 naturally extends to

(
m⊗
i=1

Ai

) m⊗
j=1

Bj

 =

m⊗
i=1

AiBj ,
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where
m⊗
i=1

Ai is defined analogously to
m⊕
i=1

Ai as in Definition 1.2.2.

The inverse of the Kronecker product of two matrices is equal to the Kronecker product of

their respective inverses. The same is true for the transpose; both notions are given explicitly

in the properties below.

Property 1.2.13. For invertible matrices A and B,

(A⊗B)−1 = A−1 ⊗B−1.

Property 1.2.14. For matrices A and B,

(A⊗B)′ = A′ ⊗B′.

The trace of the Kronecker product of matrices is the product of the traces of the individual

matrices.

Property 1.2.15. For matrices A and B,

tr (A⊗B) = tr (A) tr (B) .

Again, this property can be extended recursively to several matrices such that for matrices

Ai, i = 1, . . . ,m,

tr

(
m⊗
i=1

Ai

)
=

m∏
i=1

tr (Ai) .

While the following is not as intuitive as the lack of commutativity of the direct sum, it can

be easily seen that matrices do not commute over the Kronecker product. Again, though this

may seem rather trivial, it is important to note in order to ensure the proper usage and syntax

when working with both the direct sum and the Kronecker product.
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Property 1.2.16. In general, ⊗ is not commutative; i.e., for generic matrices A and B,

A⊗B 6= B ⊗A.

1.2.3 vec Notation

Test statistics used later in this dissertation are comprised of quadratic forms. While data are

conveniently represented in matrices, manipulation of the data to compute the test statistics

and to study their distributions is often simplified by reorganizing such matrices as vectors.

An operator that is useful in this regard is the ”vec” operator.

In order to preserve the notion of the quadratic form, we will now start with a matrix of

observational values, then transform this matrix to a vector using the vec function.

Definition 1.2.17. Let A be an m×n matrix, and denote by A·j the jth column of A. Then

the vectorization of A, written vec (A), produces the mn-column vector

vec (A) =


A·1

...

A·n

 .

Essentially, the vec function stacks the columns of a matrix, one below the other going from

left to right. Note that to stack the rows, or line up the rows and then transpose, simply

take the vectorization of the transpose of the desired matrix. Now we are ready to interject

important properties relating the trace, vectorization, and the Kronecker product.

Property 1.2.18. For conformable matrices A, B, and X,

vec (AXB) =
(
B′ ⊗A

)
vec (X) .
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Property 1.2.19. For conformable matrices A, B, and C,

tr (ABC) =
(
vec
(
A′
))′

(I ⊗B) vec (C) .

Property 1.2.20. For conformable matrices A, and B,

tr (AB) =
(
vec
(
A′
))′

vec (B) .

Property 1.2.21. For vector a,

vec
(
aa′
)

= a⊗ a.

Property 1.2.22. For conformable matrices A, B, X, and Y ,

(vec (Y ))′ (A⊗B) vec (X) = tr
(
A′Y ′BX

)
.

The proof of this property is due to Proposition 31 in Broxson [13]. We will mainly use this

in the context of quadratic forms, i.e., when Y = X. In this case, the result becomes

(vec (X))′ (A⊗B) vec (X) = tr
(
A′X ′BX

)
.

In later sections, we will have a quadratic form that can be written much like the LHS of

the equation above, but it is far more efficient to calculate the RHS. Especially in simulation

studies, this result saves precious time.
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1.3 Convergence: Modes and Notation

Two main modes of convergence will be used in the dissertation: convergence in probability

and convergence in distribution (law). If there is no specification, the usual convergence in

limit should be assumed, which is denoted by →. That is, f(x) converges to L as x → a, or

limx→a f(x) = L, is written f(x)→ L as x→ a.

First we define the two modes of convergence. In these definitions, let | · | represent the

Euclidean norm and let F (·) represent the distribution function.

Definition 1.3.1. We say a sequence of random vectors X1,X2, . . . converges in probability

to X, written Xn
p−→X as n→∞, if for every ε > 0, P (|Xn −X| > ε)→ 0 as n→∞.

Definition 1.3.2. We say a sequence of random vectors X1,X2, . . . converges in distribution

(or converges in law, or converges weakly) to X, written Xn
D−→ X as n → ∞, if

FXn
(x)→ FX (x) as n→∞, for every point x at which FX (x) is continuous.

It is well known that

Xn
p−→X =⇒ Xn

D−→X.

We will also use the ”big-O” and ”little-o”’ notation throughout this dissertation. These

are useful when discussing two sequences of numbers.

Definition 1.3.3. Consider two functions f and g. If there exist K,M > 0 such that |f(x)| ≤

K|g(x)| whenever |x| > M , we write f(x) = O(g(x)) as x → ∞, and we say that f/g is

bounded for x large enough. If there exist K, δ > 0 such that |f(x)| ≤ K|g(x)| as x → 0

whenever |x| < δ, we write f(x) = O(g(x)) as x → 0, as we say that f/g is bounded for x

small enough.

In essence, f(x) = O(g(x)) means that f/g is bounded as x get sufficiently large or small,

whichever is contextually applicable.
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Definition 1.3.4. Consider two functions f and g. We write f(x) = o(g(x)) as x → ∞ if

f(x)
g(x) → 0 as x→∞. We write f(x) = o(g(x)) as x→ 0 if f(x)

g(x) → 0 as x→ 0.

In essence f(x) = o(g(x)) means that f is converging to 0 more rapidly than g.

Similar notation that will be used in the dissertation include ”big-O-p,” Op(·), and ”little-

o-p,” op(·). The definitions of Op(·) and op(·) are akin to O(·) and o(·), excepting mainly

that the mode of convergence is convergence in probability and functions are of random

variables/vectors. Formal definitions (due to Serfling [40]) are given below.

Definition 1.3.5. Consider a sequence of random variables {Xn} with corresponding distri-

bution functions {Fn}. We say {Xn} is bounded in probability, and write Xn = Op(1), if for

every ε > 0 there exist Mε and Nε such that

Fn(Mε)− Fn(−Mε) > 1− ε for all n > Nε.

More generally, considering another sequence of random variables {Yn}, the notation Xn =

Op(Yn) means that the sequence {Xn/Yn} is Op(1).

We can see that

Xn
D−→ X =⇒ Xn = Op(1).

Definition 1.3.6. Consider a sequence of random variables {Xn} and {Yn}. We write

Xn = op(Yn) to denote that

Xn

Yn

p−→ 0 as n→∞.

For example, we may write Σ−G = op(1) to mean that Σ−G p−→ 0.



Chapter 2

Inference for a Large Number of

Repeated Measures: Univariate

Case

2.1 Introduction

In many experimental or observational studies, an outcome variable is observed from each

subject repeatedly. The subjects are often grouped according to the treatment they received

or the experimental conditions to which they were subjected. Sometimes the grouping occurs

due to a natural phenomenon, such as the sex of the subject, and other times the group-

ing is imposed by the researcher. These data may be generated by longitudinal studies or

crossover designs, among others, and they are appearing with great frequency. We will refer

to such analysis as repeated measures analysis of variance, or repeated measures ANOVA or

RM-ANOVA for short. The central idea of this chapter is to fuse to previous papers and

make possible a more comprehensive analysis, which is contained in Chapter 4. The results in

13
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Chapter 2 are very similar to those found in Wang and Akritas [45], though the methods and

arithmetic techniques are more akin to what is found in Harrar and Bathke [26]; these papers

do not make the same assumptions, and Chapter 2 will take a subset of assumptions from each

paper. The specific assumptions will be discussed in greater detail in subsequent paragraphs

and sections. The key assumption that is lifted is that of an underlying distribution. To the

best of our knowledge, no work has been done removing the normality assumption for the

data with the arithmetic methods used in Chapter 2; furthermore, as Chapter 4 will indicate,

we can find no work in the case of a multivariate response variable dropping the assumption

of normality.

The most commonly encountered repeated measures data can be viewed as arising from a

two-factor crossed design. Consider the following scheme. Let Xijk be independent random

variables with mean µij and covariance given by Cov
(
Xijk, Xij′k

)
= σjj′ (for now, unstruc-

tured), for i = 1, . . . , a; j = 1, . . . , b; and k = 1, . . . , ni. The usual setting gives the interpre-

tation that Xijk is the response from the kth subject in the ith group at the jth time point,

though ”group” and ”time” merely offer one interpretation. Define here, for ease of later use,

X =


X1

...

Xb

 , where Xj =


X1j

...

Xaj

 and Xij =


Xij1

...

Xijni

 . (2.1)

We shall consider the model µij = µ + αi + βj + γij , where the unknown constants αi, βj ,

and γij correspond to the main effects of factor A, the main effects of factor B, and the

interaction effects between factors A and B, respectively. As usual, these shall be subject

to the sum-to-zero identifiability constraints
∑

i αi =
∑

j βj =
∑

i γij =
∑

j γij = 0. It is

noteworthy that Xijk and Xi′j′k′ are assumed to be independent only if i 6= i′ or k 6= k′. If

we let εijk = Xijk − µij , then εi1k, εi2k, . . . is considered as a sequence of dependent random

variables.

The primary hypotheses of interest are
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(i) Hβ
0 : βj = 0 for j = 1, . . . , b;

(ii) Hγ
0 : γij = 0 for i = 1, . . . , a and j = 1, . . . , b; and

(iii) Hα
0 : αi = 0 for i = 1, . . . , a.

Initially, attention will be given to the first two hypotheses. These translate to having no main

effects of the levels of factor B (often the temporal factor) and no interaction effects between

the levels of factor A and levels of factor B, respectively. The motivation for this order of

presentation is that the main effects of factor B and the interaction effects both rely heavily

on the same asymptotic theory, and their results can be consolidated with a suitable choice of

appropriate notation. The asymptotic nature of the main effects of factor A is dealt with in

the initial stages of the analysis, and then the theory is carried out similar to the usual case

without relying on any asymptotic structure.

The asymptotic framework to be considered is that the number of levels of one of the fac-

tors, namely factor B, is large (tends to infinity) but that of the other factor and the sample

size per treatment remain fixed [26]. In many current applications dealing with longitudinal

data, such as fast functional magnetic resonance imaging or disease readings from thousands

of signal intensities [45], vast quantities of data are being collected, often in a spatial or tem-

poral context. Other applications include technological advancements in biotechnologies [26].

It should be noted that in general the fixed quantities a and ni need not be small nor large.

For example, consider two groups of patients, one with Parkinson’s disease and the other

without. Protein microarrays are collected on each subject, and the response variable is a

measure of protein. From each of these, over 9,000 relative fluorescent unit (RFU) signals are

output giving the presence and abundance of human proteins [24]. We can think of factor

A as a grouping factor (diseased or not) and factor B as a genome factor. It is especially of

interest whether there are effects of genome or an interaction between group and genome. In

these cases, if effects are found, more research is warranted to identify the specific proteins

that are greatly influenced by group differences; these are known as biomarkers. However, if
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no effects are found, there is little reason to attempt to identify biomarkers, making this stage

of analysis very pertinent. Given no interaction effects are present, a test for group effects

should be conducted. If there are group effects, meaning protein levels are different among

the groups, more research is warranted on the proteins.

Brunner et al. point out that aside from a very restrictive set of covariance structures, the

usual repeated measures theory has failed to produce valid, high-dimensional inference proce-

dures [14]. To date, classical multivariate analysis cannot be applied in the high-dimensional

case where the number of repeated measurements is greater than the sample size since the

covariance matrix will not be invertible [14]. Moreover, even the current methods not relying

on a structured covariance matrix have a major source of concern. These methods assume

normality of the responses from each subject [26]. This is often an unrealistic assumption.

Furthermore, many asymptotic methods of analysis do not embrace the dependent nature

of the repeated measurements collected from each subject. This dissertation addresses all

three of these limitations: no covariance structure is assumed, no underlying distribution is

assumed, and dependency is embraced. Following methods such as those found in Billingsley’s

central limit theorem for dependent random variables [8], this dissertation develops inferential

procedures for high-dimensional data in a very robust setting, including when the number

of response variables is greater than one. These tests are assessed via simulation, and the

results are compared to traditional repeated measures methods. New sums of squares similar

to those from Wang and Akritas [45] are considered to account for potential heteroskedas-

ticity and unbalanced group sizes. An increasingly popular method of reorganizing the sums

of squares into quadratic forms is employed, yet the algebra used in the proofs of the main

results, though greatly simplified using this technique, remains somewhat arduous. Various

technical assumptions must still be made, such as a mixing condition [11], and these do pro-

vide some limitations which deserve further attention.

The remainder of this section will have the following organization. Section 2.2 will further

the problem of interest, addressing the new sums of squares and arguing why they can and

should be put into quadratic forms. Also included in Section 2.2 will be some necessary lem-
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mas regarding the moments of the SS quadratic forms and some properties of the specific

middle matrices of the SS quadratic forms. Section 2.3 will address the test statistics for the

hypotheses of interest, while Section 2.4 will discuss the asymptotic distributions of these test

statistics. Section 2.4 will also include details regarding some assumptions needed for the

asymptotic theory.

2.2 Preliminaries

2.2.1 Sums of Squares

As this chapter progresses, many assumptions will be needed for the sake of later proofs. We

shall state them near the topics from which they arise. The first such assumption is given

here.

Assumption 2.2.1. The data Xijk are random variables with mean µij, where Xijk and

Xi′jk′ are independent for i 6= i′ or k 6= k′.

It serves now to define the modified sums of squares (SS). The SS due to factor B will be

AMβ; the SS due to interaction will be AMγ; the SS due to error will be AME. Define

AMβ :=
1

b− 1

a∑
i=1

b∑
j=1

(
X̃·j· − X̃···

)2
,

AMγ :=
1

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(
Xij· − X̃i·· − X̃·j· + X̃···

)2
, and

AME :=
1

a(b− 1)

a∑
i=1

b∑
j=1

1

ni(ni − 1)

ni∑
k=1

(
Xijk −Xij· −Xi·k − X̃i··

)2
; (2.2)
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where

X̃··· =
1

ab

a∑
i=1

b∑
j=1

1

ni

ni∑
k=1

Xijk,

X̃i·· = Xi·· =
1

bni

b∑
j=1

ni∑
k=1

Xijk,

X̃·j· =
1

a

a∑
i=1

1

ni

ni∑
k=1

Xijk,

Xij· =
1

ni

ni∑
k=1

Xijk,

Xi·k =
1

b

b∑
j=1

Xijk, and

n =

a∑
i=1

ni. (2.3)

Since the covariance terms (σjj′) are different for each level of factor B but the same for

different levels of factor A, and since the covariance is assumed to have no structure, it does

not make sense to use the usual weighting structure as in homoskedastic ANOVA [45]; the

SS do not have the same expectation under heteroskedasticity. There the data are combined

when forming the hypothesis sum of squares. For instance, consider Hγ
0 . If we let µ̃1×ab =[

µ11 · · · µ1b µ21 · · · µab

]
, then we can write the null hypothesis of no interaction

effect as Hγ
0 : µ̃ (P a ⊗ P b) = 0. Defining

X =

[
X11· · · · X1b· X21· · · · Xab·

]
,

it would be reasonable to use Kγ := X (P a ⊗ P b)X
′
to estimate (quantify) the variation due

to the departure from Hγ
0 . Then, similar algebra to that seen in the proof of Proposition 2.2.2

can show that Kγ = (a − 1)(b − 1)AMγ as in (2.2). Analogous arguments would justify the

other sums of squares.

Theoretical development of the results in this paper will be much more tractable and smooth
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if the SS are expressed as quadratic forms. This requires the use of the direct sum and the

Kronecker product. Recall these operations and their properties are given in Chapter 1 and

Appendix A. In general, let 1m be the m× 1 vector of 1s, Im be the m×m identity matrix,

Jm be the m×m matrix of 1s, and Pm := Im − 1
mJm.

Proposition 2.2.2. The sums of squares from (2.2) can be put in the following quadratic

forms.

AMβ =
1

b− 1
X ′

(
P b ⊗

[(
a⊕
i=1

1

ni
1ni

)
1

a
Ja

(
a⊕
i=1

1

ni
1′ni

)])
X;

AMγ =
1

(a− 1)(b− 1)
X ′

(
P b ⊗

[(
a⊕
i=1

1

ni
1ni

)
P a

(
a⊕
i=1

1

ni
1′ni

)])
X;

AME =
1

a(b− 1)
X ′

(
P b ⊗

(
a⊕
i=1

1

ni(ni − 1)
P ni

))
X. (2.4)

Proof: To rewrite the sums of squares from summation notation to quadratic forms requires

building matrices and vectors that take repeated means from (2.3) in various fashions and then

simplifying. First, for this proof only, let

G =
a⊕
i=1

1

ni
1ni .

Further, let

A =
1

b
J b ⊗

(
1

a
JaG

′
)
,

B = Ib ⊗
(

1

a
JaG

′
)
,

C =
1

b
J b ⊗G′, and

D = Ib ⊗G′.
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From here, we build the following vectors using the means from (2.3). Observe

[
X̃··· · · · X̃···

]′
=

[
1ab

(
1

b
1′b ⊗

[
1

a
1′a

a⊕
i=1

1

ni
1′ni

])]
X

=

(
1

b
J b ⊗

[
1

a
Ja

a⊕
i=1

1

ni
1′ni

])
X = AX,

[
X̃·1· · · · X̃·1· · · · X̃·b· · · · X̃·b·

]′
=

[(
Ib ⊗

[
1

a
1′a

a⊕
i=1

1

ni
1′ni

])
X

]
⊗ 1a

=

(
Ib ⊗

[
1

a
Ja

a⊕
i=1

1

ni
1′ni

])
X = BX,

[
X̃1·· · · · X̃a·· · · · X̃1·· · · · X̃a··

]′
=

[
1b ⊗

[
1

b
1′b ⊗

a⊕
i=1

1

ni
1′ni

]]
X

=

(
1

b
J b ⊗

a⊕
i=1

1

ni
1′ni

)
X = CX,

[
X11· · · ·Xa1· · · · X1b· · · ·Xab·

]′
=

(
Ib ⊗

a⊕
i=1

1

ni
1′ni

)
X = DX.

Then, noting that the proper stacking is now achieved, we can write

(b− 1)AMβ = (BX −AX)′ (BX −AX) and

(a− 1)(b− 1)AMγ = (DX −CX −BX +AX)′ (DX −CX −BX +AX) .

To ease the calculations later, let us note that we can write

B −A = Ib ⊗
(

1

a
JaG

′
)
− 1

b
J b ⊗

(
1

a
JaG

′
)

= P b ⊗
(

1

a
JaG

′
)

and

D −C −B +A = Ib ⊗G′ −
1

b
J b ⊗G′ − Ib ⊗

(
1

a
JaG

′
)

+
1

b
J b ⊗

(
1

a
JaG

′
)

=
[
P b ⊗

(
IaG

′)]− [P b ⊗
(

1

a
JaG

′
)]
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= P b ⊗
(
P aG

′) .
Continuing with the sums of squares, we now see that

(b− 1)AMβ = X ′ (B −A)′ (B −A)X

= X ′
[
P ′b ⊗

(
G · 1

a
J ′a

)][
P b ⊗

(
1

a
JaG

′
)]
X

= X ′
[
(P bP b)⊗

(
G · 1

a
Ja ·

1

a
JaG

′
)]
X

= X ′
[
P b ⊗

(
G · 1

a
JaG

′
)]
X,

which coincides with (2.4). We also see that

(a− 1)(b− 1)AMγ = X ′ (D −C −B +A)′ (D −C −B +A)X

= X ′
[
P ′b ⊗

(
GP ′a

)] [
P b ⊗

(
P aG

′)]X
= X ′

[
(P bP b)⊗

(
GP aP aG

′)]X
= X ′

[
P b ⊗

(
GP aG

′)]X,

which also coincides with (2.4).

Since AME involves a weighted sum whose indices run from 1 to ni, where ni varies,

its manipulation to a quadratic form is not as straight-forward as with AMβ and AMγ.

The principles involved, however, are quite similar. Essentially there is a nested, weighted,

unbalanced term in the sum of squares; as a result, there needs to be a nested term accounting

for this weighted unbalance. Instead of defining terms outside of the calculation (as with AMβ

and AMγ), we will take a more ”brute-force” approach to this part of the proof.

To save space, terms that have duplicate appearances may be defined internally with under-

braces. Similar to the techniques used above, observe that we can write

a∑
i=1

b∑
j=1

1

ni(ni − 1)

ni∑
k=1

(
Xijk −Xij· −Xi·k − X̃i··

)2
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=



X −



X11·
...

X11·
...

Xa1·
...

Xa1·
...

Xab·
...

Xab·



−



X̃1·1
...

X̃1·n1

...

X̃a·1
...

X̃a·na

X̃1·1
...

X̃a·na



+



X̃1··
...

X̃1··
...

X̃a··
...

X̃a··

X̃1··
...

X̃a··


︸ ︷︷ ︸

:=A1



′

(
Ib ⊗

[
a⊕
i=1

1

ni(ni − 1)
Ini

])
[A1]

= X ′

Ib ⊗
(

a⊕
i=1

Ini

)
− Ib ⊗

(
a⊕
i=1

1

ni
Jni

)
− 1

b
J b ⊗

(
a⊕
i=1

Ini

)
+

1

b
J b ⊗

(
a⊕
i=1

1

ni
Jni

)
︸ ︷︷ ︸

:=A2


′

×

(
Ib ⊗

[
a⊕
i=1

1

ni(ni − 1)
Ini

])
[A2X]

= X ′

Ib ⊗
(

a⊕
i=1

P ni

)
− 1

b
J b ⊗

(
a⊕
i=1

P ni

)
︸ ︷︷ ︸

:=A3


′(
Ib ⊗

[
a⊕
i=1

1

ni(ni − 1)
Ini

])
[A3X]

= X ′

[
P b ⊗

(
a⊕
i=1

P ni

)]′(
Ib ⊗

[
a⊕
i=1

1

ni(ni − 1)
Ini

])[
P b ⊗

(
a⊕
i=1

P ni

)]
X

= X ′

[
P b ⊗

(
a⊕
i=1

1

ni(ni − 1)
P ni

)]
X,

and this coincides with (2.4).

We can get the desired results by simply multiplying by the appropriate terms for each of
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AMβ, AMγ, and AME.

Remark: Note, we rely heavily on the facts that Im, 1
mJm, and Pm are symmetric and

idempotent for any m; also, direct sums and direct products comprised of these matrices will

also be symmetric and idempotent. Recall that a square matrix A is idempotent if A2 = A.

Since it is of interest to examine the differences of sums of squares, we introduce the following

notation. Define Cβ, Cγ , and CE to be the defining matrices of the sums of squares such

that

AMβ = X ′CβX,

AMγ = X ′CγX,

AME = X ′CEX. (2.5)

Let φ be one of the factors under consideration: β or γ. Then we define

C∗φE :=

(
a⊕
i=1

1

ni
1ni

)
c(φ)

(
a⊕
i=1

1

ni
1′ni

)
− 1

a

a⊕
i=1

1

ni(ni − 1)
P ni , (2.6)

where

c(φ) =


1
aJa, φ = β

1
a−1P a, φ = γ

,

and

SφE :=
1

b(b− 1)
(J b − Ib)⊗C∗φE . (2.7)

We wish to write the SS differences as the sum of two components. The first component

will take on a form which is more tractable, a desirable trait in the modeling and hypothesis

testings stages. The second component will be shown to be asymptotically negligible. For
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φ ∈ {β, γ}, we can now write

AMφ−AME = X ′(Cφ −CE)X

= X ′
(

1

b− 1
P b ⊗C∗φE

)
X

= X ′
(

1

b
Ib ⊗C∗φE −

1

b(b− 1)
(J b − Ib)⊗C∗φE

)
X

= X ′
(

1

b
Ib ⊗C∗φE

)
X −X ′SφEX.

(2.8)

2.2.2 Moments of Quadratic Forms

Consider X from (2.1). Denote the (j, j′)th element of Σ := Cov
(
[Xi1k · · ·Xibk]

′) by σjj′ ,

which are the same for all i and k by assumption. That is,

Σ :=


σ11 · · · σ1b

...
. . .

...

σb1 · · · σbb

 . (2.9)

Furthermore, we now see

Var (X) = Σ⊗ In. (2.10)

The following lemmas give the first and second moments of quadratic forms in X.

Lemma 2.2.3. Let A be a (bn) × (bn) matrix of constants. A can then be thought of as

having b2 blocks of size n× n. Denote by ajj′ii′ the (i, i′)th element of the (j, j′)th n× n block

of matrix A. Furthermore, let the vector of random variables X =

[
X ′1 · · · X ′b

]′
, where

X ′j =

[
X1j · · · Xnj

]
. Assume that Xij and Xi′j′ are independent for i 6= i′. Moreover,
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assume E (Xij) = 0 and Cov
(
Xij , Xij′

)
= σjj′. Then

E
(
X ′AX

)
=

b∑
j,j′=1

n∑
i=1

ajj′iiσjj′ .

Remark: The double-index notation for the summation,
∑b

j,j′=1, is equivalent to the double

sum
∑b

j=1

∑b
j′=1. Analogous extensions of this notation are also used throughout.

Proof: Observe that we can write

E
(
X ′AX

)
=

∑
j,j′,i,i′

ajj′ii′E
(
X ′ijXi′j′

)
=

∑
j,j′,i

ajj′iiE
(
X ′ijXij′

)
=

b∑
j,j′=1

n∑
i=1

ajj′iiσjj′ .

Lemma 2.2.4. Consider X as defined in Lemma 2.2.3. Let A be a matrix of the same form

as in Lemma 2.2.3, and let B and bjj′ii′ be defined similarly. Then,

E
[
(X ′AX)(X ′BX)

]
=

b∑
j,j′,l,l′=1

[
n∑
i=1

E
(
X ′ijXij′X

′
ilXil′

)
ajj′iibll′ii

+ σjj′σll′
n∑
i 6=i′

ajj′iibll′i′i′ + σjlσj′l′
n∑
i 6=i′

ajj′ii′bll′ii′

+ σjl′σj′l

n∑
i 6=i′

ajj′ii′bll′i′i

 . (2.11)

Proof: Observe

E
[
(X ′AX)(X ′BX)

]
= E

 ∑
j,j′,i,i′

ajj′ii′X
′
ijXi′j′

∑
l,l′,k,k′

bll′kk′X
′
klXk′l′


= E

 ∑
j,j′,i,i′

∑
l,l′,k,k′

ajj′ii′bll′kk′X
′
ijXi′j′X

′
klXk′l′
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=
∑
j,j′,i,i′

∑
l,l′,k,k′

ajj′ii′bll′kk′E
(
X ′ijXi′j′X

′
klXk′l′

)
(2.12)

=
b∑

j,j′,l,l′=1

[
n∑
i=1

E
(
X ′ijXij′X

′
ilXil′

)
ajj′iibll′ii

σjj′σll′
n∑
i 6=i′

ajj′iibll′i′i′ + σjlσj′l′
n∑
i 6=i′

ajj′ii′bll′ii′+

+ σjl′σj′l

n∑
i 6=i′

ajj′ii′bll′i′i

 . (2.13)

Notice that the four terms in expression (2.13) come from a reorganization of indices from

the previous expression (2.12). In order, the four terms in (2.13) correspond to the following

relationships among i, i′, k, k′ in (2.12): (1) i = i′ = k = k′; (2) i = i′ 6= k = k′; (3)

i = k 6= i′ = k′; and (4) i = k′ 6= i′ = k.

Remark: For most of the applications presented later in this chapter, we will have A = B.

Notice the second moment above depends on the fourth mixed moments of the data. This

component vanishes if the diagonal entries of the blocks of either A or B are all zero.

2.2.3 Asymptotically Equivalent Forms of the Sums of Squares

The goal of this section will be to show that the second component of (2.8), X ′SφEX, vanishes

as b tends to infinity. To begin to see how the Lemmas 2.2.3 and 2.2.4 can be applied to the

framework of this chapter, we notice that SφE from (2.7) has the same form as A from the

lemmas. Since for arbitrary m; Im, Jm, and Pm are symmetric; using the properties of

the direct sum and the Kronecker product we can see that C∗φE from (2.6) is symmetric for

φ ∈ {β, γ}. Furthermore, for C∗βE and C∗γE defined in (2.6), C∗βE is an n×n matrix (a2 blocks
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of size ni × ni′), such that the

(i, i)th block =
1

ani(ni − 1)
(Jni − Ini), and the

(i, i′)th block =
1

anini′
1ni1

′
ni′
,

and C∗γE is an n× n matrix (a2 blocks of size ni × ni′), such that the

(i, i)th block =
1

ani(ni − 1)
(Jni − Ini), and the

(i, i′)th block =
−1

a(a− 1)nini′
1ni1

′
ni′
.

To see this, first let the use here (and throughout) of boldface zeros (0) in the top-right and

bottom-left corners of a matrix indicate that all non-specified elements are zero. Then, let

δ =
1

a

a⊕
i=1

1

ni(ni − 1)
P ni . Since 1− 1

ni
=
ni − 1

ni
,

δ =


1
n2
1a
In1 + 1

n2
1(n2

1−1)a
(In1 − Jn1) 0

. . .

0 1
n2
aa
Ina + 1

n2
a(n2

a−1)a
(Ina − Jna)

 .

Second, let δ1 =

(
a⊕
i=1

1

ni
1ni

)
1

a
Ja

(
a⊕
i=1

1

ni
1′ni

)
. Then

δ1 =



1
n1

0

...

1
n1

. . .

1
na

...

0 1
na




1
a . . . 1

a

...
. . .

...

1
a . . . 1

a





1
n1

0

...

1
n1

. . .

1
na

...

0 1
na



′
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=



1
n2
1a

1n11
′
n1

1
n1n2a

1n11
′
n2

. . . 1
n1naa

1n11
′
na

1
n1n2a

1n21
′
n1

1
n2
2a

1n21
′
n2

. . .
...

...
. . .

. . . 1
n2naa

1n21
′
na

1
n1naa

1na1
′
n1

. . . 1
na−1naa

1na1
′
na−1

1
n2
aa

1na1
′
na


.

Third, let δ2 =

(
a⊕
i=1

1

ni
1ni

)
1

a− 1
P a

(
a⊕
i=1

1

ni
1′ni

)
. Then

δ2 =



1
n1

0

...

1
n1

. . .

1
na

...

0 1
na





1
a

−1
a(a−1) . . . −1

a(a−1)

−1
a(a−1)

1
a

. . .
...

...
. . .

. . . −1
a(a−1)

−1
a(a−1) . . . −1

a(a−1)
1
a





1
n1

0

1
n1

. . .

1
na

...

0 1
na



′

=



1
n2
1a

1n11
′
n1

−1
n1n2a(a−1)1n11

′
n2

. . . −1
n1naa(a−1)1n11

′
na

−1
n1n2a(a−1)1n21

′
n1

1
n2
2a

1n21
′
n2

. . .
...

...
. . .

. . . −1
n2naa(a−1)1n21

′
na

−1
n1naa(a−1)1na1

′
n1

. . . −1
na−1naa(a−1)1na1

′
na−1

1
n2
aa

1na1
′
na


.

The results follow noticing that C∗βE = δ1 − δ and C∗γE = δ2 − δ.

Combining the forms of C∗βE and C∗γE with Lemmas 2.2.3 and 2.2.4, we have the following

corollary about the two moments of the quadratic forms X ′SφEX.

Proposition 2.2.5. For X as given in (2.1), let

Cov (X) = Var (X) := Σx = Σ⊗ In.

For φ ∈ {β, γ},

E
(
X ′SφEX

)
= 0,
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and

E
[
(X ′SφEX)2

]
=

b∑
j 6=j′
l 6=l′

(σjlσj′l′ + σjl′σj′l) ·
1

b2(b− 1)2
· 1

a2

 a∑
i=1

1

ni(ni − 1)
+ α(φ)

a∑
i 6=i′

1

nini′

 ,

where α(φ) =

 1 if φ = β

1
(a−1)2

if φ = γ
.

Proof: First, notice that

SφE =
1

b(b− 1)
(J b − Ib)⊗C∗φE

is a matrix with all block diagonal entries equal to zero. This is due to the fact that J b − Ib

has zero diagonal elements; then by the properties of scalar and Kronecker products, so does

SφE . Further, since C∗φE has zero diagonals, SφE will have zero block diagonals. Applying

Lemma 2.2.3 then gives

E
(
X ′SφEX

)
= 0.

To complete the proof, we need to show the second claim in the statement of the theorem

holds. For the sake of notation, consider

A = SφE =
1

b(b− 1)
(J b − Ib)⊗C∗φE ,

and consider the notation given in Lemma 2.2.4, where now B = A. Similar to the arguments

above, for all j, j′, ajj′ii = 0. Thus,

b∑
j,j′,l,l′=1

 n∑
i=1

E
(
X ′ijXij′X

′
ilXil′

)
ajj′iiall′ii + σjj′σll′

n∑
i 6=i′

ajj′iiall′i′i′

 = 0.
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Observe that for j = j′ or l = l′, ajj′ii′ = all′ii′ = 0, which would imply

b∑
j,j′,l,l′=1

σjlσj′l′
n∑
i 6=i′

ajj′ii′all′ii′ = 0.

Consequently, consider j 6= j′ and l 6= l′. Since 1
b(b−1)(J b − Ib) is constant everywhere except

the diagonal elements, for all j, j′, l, l′ such that j 6= j′ and l 6= l′, ajj′ii′ = all′ii′ . Then, in the

case when φ = γ, we sum the appropriate elements of A to produce

σjlσj′l′
n∑
i 6=i′

ajj′ii′all′ii′ = σjlσj′l′

(
1

b(b− 1)

)2 [ n1(n1 − 1)

n2
1(n1 − 1)2a2

+ · · ·+ na(na − 1)

n2
a(na − 1)2a2

+
n1n2

n2
1(n2)2a2(a− 1)2

+ · · ·+ na−1na
n2
a−1(na)2a2(a− 1)2

]

= σjlσj′l′ ·
1

b2(b− 1)2
· 1

a2

 a∑
i=1

ni(ni − 1) +
1

(a− 1)2

a∑
i 6=i′

nini′

 ;

in the case when φ = β, similar algebra shows

σjlσj′l′
n∑
i 6=i′

ajj′ii′all′ii′ = σjlσj′l′ ·
1

b2(b− 1)2
· 1

a2

 a∑
i=1

ni(ni − 1) +
a∑
i 6=i′

nini′

 .
Also observe that for j = j′ or l = l′, ajj′ii′ = 0 = all′i′i, which would imply

b∑
j,j′,l,l′=1

σjl′σj′l

n∑
i 6=i′

ajj′ii′all′i′i = 0.

Again, consider j 6= j′ and l 6= l′. Since C∗φE is symmetric, we know for all j 6= j′ and l 6= l′,

ajj′ii′ = all′i′i, for i = 1, 2, . . . , n. Therefore, for all j, j′, l, l′ such that j 6= j′ and l 6= l′,

ajj′ii′ = all′i′i. Thus, by arguments similar to those above, in the case when φ = γ,

σjl′σj′l

n∑
i 6=i′

ajj′ii′all′i′i = σjl′σj′l ·
1

b2(b− 1)2
· 1

a2

 a∑
i=1

ni(ni − 1) +
1

(a− 1)2

a∑
i 6=i′

nini′

 ; (2.14)
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in the case when φ = β,

σjl′σj′l

n∑
i 6=i′

ajj′ii′all′i′i = σjl′σj′l ·
1

b2(b− 1)2
· 1

a2

 a∑
i=1

ni(ni − 1) +
a∑
i 6=i′

nini′

 . (2.15)

It follows from combining (2.14) and (2.15) that

E
[
(X ′SφEX)2

]
=

b∑
j 6=j′
l 6=l′

(σjlσj′l′ + σjl′σj′l) ·
1

b2(b− 1)2
· 1

a2

 a∑
i=1

1

ni(ni − 1)
+ α(φ)

a∑
i 6=i′

1

nini′

 ,

where α(φ) =

 1 if φ = β

1
(a−1)2

if φ = γ
.

Since the first moment is 0, we see straightaway that Var (X ′SφEX) = E
[
(X ′SφEX)

2
]
.

We also have an immediate corollary. In essence, if we assume that the covariance terms

decay fast enough, then the second moment converges to zero, which, by Markov’s Inequality,

implies the quadratic form X ′SφEX converges to zero in probability [29].

Assumption 2.2.6. For some δ > 0,

b∑
j 6=j′
l 6=l′

(σjlσj′l′ + σjl′σj′l) = O(b3−δ) as b→∞.

Corollary 2.2.7. Suppose Assumption 2.2.6 holds. Then, for φ ∈ {β, γ},

√
bX ′SφEX = op(1) as b→∞.

Proof: Since a and ni; i = 1, 2, . . . , n; are fixed constants we recognize that

E
[
(
√
bX ′SφEX)2

]
= b

 b∑
j 6=j′
l 6=l′

(σjlσj′l′ + σjl′σj′l)

O(b−4).
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Then by Assumption 2.2.6,

E
[
(
√
bX ′SφEX)2

]
= O(b3−δ)O(b−3) = O(b−δ) as b→∞.

Therefore,

E
[
(
√
bX ′SφEX)2

]
→ 0 as b→∞,

and since convergence in quadratic mean implies converges in probability [29],

√
bX ′SφEX = op(1).

2.3 Test Statistics

We now turn our attention to the development of the test statistics. From Corollary 2.2.7, we

see that we can now consider

√
b (AMφ−AME) =

√
bX ′

(
1

b
Ib ⊗C∗φE

)
X + op(1), (2.16)

which essentially means that the left-hand-side and the first term in the right-hand-side have

the same asymptotic distribution by Slutsky’s Theorem [20]. From here, we first define asymp-

totically equivalent versions of the test statistics. The rationale behind this is that the asymp-

totically equivalent versions are much more tractable.

For φ ∈ {β, γ}, define asymptotically equivalent versions of the test statistics as

Tφ :=
√
b

(
X ′
[

1

b
Ib ⊗C∗φE

]
X

)
=

1√
b

b∑
j=1

X ′jC
∗
φE
Xj . (2.17)

We then have the following results regarding the mean and variance of Tφ.
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Proposition 2.3.1. For φ ∈ {β, γ},

E (Tφ) = 0.

Proof: Since C∗φE has zeros in all of its diagonal elements,
1√
b
Ib ⊗C∗φE will have zeros in

all of its block diagonal elements. Then, by Lemma 2.2.3, E (Tφ) = 0.

Proposition 2.3.2. For φ ∈ {β, γ},

Var (Tφ) = E
(
T 2
φ

)
=

2

a2

 a∑
i=1

1

ni(ni − 1)
+ α(φ)

a∑
i 6=i′

1

nini′

 · 1

b

 b∑
j,l=1

σ2
jl

 ,

where α(φ) =

 1 if φ = β

1
(a−1)2

if φ = γ
.

Proof: Since C∗φE has zeros in all of its diagonal elements,
1√
b
Ib ⊗ C∗φE will have zeros

in all of its block diagonal elements. Then, by Lemma 2.2.4, the first two terms in (2.11)

will be zero. Further, by the symmetry of Ib, C
∗
φE

, and thereby
1√
b
Ib ⊗C∗φE , the third and

fourth terms in the bracketed sum from Lemma 2.2.4 are equal. Thus we can simplify, letting

A =
1√
b
Ib ⊗C∗φE , to see

E
(
T 2
φ

)
=

b∑
j,j′,l,l′

(σjlσj′l′ + σjl′σj′l)
n∑
i 6=i′

ajj′ii′all′ii′ .

Because of the properties of the identity matrix and the Kronecker product, ajj′ii′ and all′ii′

will only be nonzero when j = j′ and l = l′, respectively. Since all of the b× b diagonal blocks

are identical, we can simplify further to see

E
(
T 2
φ

)
=

n∑
i 6=i′

a2
11ii′

b∑
j,l=1

2σ2
jl.
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For φ = β,

n∑
i 6=i′

a2
11ii′ =

a∑
i=1

(
1

ani(ni − 1)

)2

(ni(ni − 1)) +
a∑
i 6=i′

(
1

anini′

)2

(nini′)

=
a∑
i=1

1

a2ni(ni − 1)
+

a∑
i 6=i′

1

a2nini′
.

For φ = γ, the only difference is the first term in the second sum, which is −1
a−1 times the

corresponding terms above. Since this term is squared, the negative is irrelevant, and (a−1)2

is included in the denominator of the second sum. This gives

n∑
i 6=i′

a2
11ii′ =

1

a2

 a∑
i=1

1

ni(ni − 1)
+ α(φ)

a∑
i 6=i′

1

nini′

 ,

where α(φ) =

 1 if φ = β

1
(a−1)2

if φ = γ
. Notice that this term multiplied by 2 is free of b. Thus,

by Assumption 2.4.2, we can write

E
(
T 2
φ

)
=

1

a2

 a∑
i=1

1

ni(ni − 1)
+ α(φ)

a∑
i 6=i′

1

nini′

 · 1

b

b∑
j,l=1

σ2
jl,

where α(φ) =

 1 if φ = β

1
(a−1)2

if φ = γ
. Finally, since E (Tφ) = 0 by Proposition 2.3.1, Var (Tφ) =

E
(
T 2
φ

)
, and the result is proven.

The SS defined above, and consequently the test statistics based on them, would only be

useful if they can detect departures from the null hypotheses. Since we are examining group

and interaction effects, it is reasonable to want the proper sums of squares (AMφ) to be equal

to the error sums of squares (AME) only under the appropriate null hypotheses. This is the

subject of Proposition 2.3.3.

Proposition 2.3.3. For φ ∈ {β, γ}, E (AMφ) = E (AME) if and only if Hφ
0 holds.
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Proof: Recall from (2.8) that, for φ ∈ {β, γ}, we can write

AMφ−AME = X ′
[(

1

b
Ib −

1

b(b− 1)
(J b − Ib)

)
⊗C∗φE

]
X.

Let D =
1

b
Ib −

1

b(b− 1)
(J b − Ib). Observe that, since C∗φE is symmetric, for µ = E (X),

E (AMφ−AME) = tr
[
(D ⊗C∗φE )(Σ⊗ In)

]
+ µ′(D ⊗C∗φE )µ

= tr
(
DΣ⊗C∗φE

)
+ µ′(D ⊗C∗φE )µ

= tr (DΣ) tr
(
C∗φE

)
+ µ′(D ⊗C∗φE )µ

= µ′(D ⊗C∗φE )µ,

since the zero diagonal elements of C∗φE imply tr
(
C∗φE

)
= 0.

It now suffices to show that µ′(D⊗C∗φE )µ = 0 if and only if Hφ
0 holds. Recall the µij , the

identifiability constraints, and the hypotheses Hβ
0 and Hγ

0 from the beginning of Section 2.2.

Analogous to (2.3), denote

µ̃··· =
1

ab

a∑
i=1

b∑
j=1

1

ni

ni∑
k=1

µijk = µ,

µ̃i·· =
1

b

b∑
j=1

1

ni

ni∑
k=1

µijk = µ+ αi,

µ̃·j· =
1

a

a∑
i=1

1

ni

ni∑
k=1

µijk = µ+ βj ,

µ̄ij· =
1

ni

ni∑
k=1

µijk = µ+ αi + βj + γij ,

µ̄i·k =
1

b

b∑
j=1

µijk = µ+ αi. (2.18)

Observe that since we consider the model µij = µ+αi+βj +γij , all instances of 1
ni

∑ni
k=1 µijk

could be written µij .
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Notice from the third equality in (2.8) that

µ′(D ⊗C∗φE )µ = µ′(Cφ −CE)µ = µ′Cφµ− µ′CEµ.

The proof will be complete if we show that µ′CEµ = 0 and that µ′Cφµ = 0 if and only if

Hφ
0 holds. To that end, observe that

µ′(CE)µ =
1

a(b− 1)

a∑
i=1

b∑
j=1

1

ni(ni − 1)

ni∑
k=1

(µijk − µ̄ij· − µ̄i·k + µ̃i··)
2

=
1

a(b− 1)

a∑
i=1

b∑
j=1

1

ni(ni − 1)

ni∑
k=1

µij − µij − 1

b

b∑
j=1

µij +
1

b

b∑
j=1

µij

2

=
1

a(b− 1)

a∑
i=1

b∑
j=1

1

ni(ni − 1)

ni∑
k=1

02 = 0,

where the second and third equalities follow from (2.18).

Finally, by (2.18),

µ′(Cβ)µ =
1

b− 1

a∑
i=1

b∑
j=1

(µ̃·j· − µ̃···)2 =
1

b− 1

a∑
i=1

b∑
j=1

β2
j ,

and

µ′(Cγ)µ =
1

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(µ̄ij· − µ̃i·· − µ̃·j· + µ̃···)
2 =

1

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

γ2
ij .

We can now see that µ′Cφµ = 0 if and only if Hφ
0 holds, and the theorem is proved.

2.4 Asymptotic Distributions

We now wish to derive the asymptotic distributions of the asymptotically equivalent versions

of the test statistics, Tφ, from (2.17), for φ ∈ {β, α}. In addition to the assumptions already
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made, this will require some general assumptions which are fairly weak. We will also need an

arsenal of lemmas. These test statistics are used to test the main effects of factor B, which is

high dimensional (i.e., there are b levels of factor B and b tends to infinity), and the interaction

effects between factors A and B, which is also high-dimensional. In practice, factor B is often

a temporal factor (longitudinal or repeated measurements), and factor A is often a grouping

factor.

From there, we will present a test statistic for factor A. While it relies on the high dimen-

sional nature of factor B, the asymptotic technique will be distinct from that of the statistics

regarding factor B and the interaction.

First we must prove some basic properties regarding functions of stationary, α-mixing se-

quences (both to be defined soon), as well as an inequality regarding moments of the random

variables used. Then we will derive the asymptotic distribution of Tφ with the aid of Theorem

27.5 from Billingsley [8].

2.4.1 Testing for the Main Effects of Factor B and the Interaction Effects

The goal of this section is to derive the asymptotic distribution of Tφ, which, in turn, will also

allow us to define the asymptotic distribution of
√
b(AMφ − AME). This holds because we

showed earlier that
√
b(AMφ−AME) can be written as Tφ plus an asymptotically negligible

component, and the latter can be ignored as b tends to infinity.

First we need to define stationarity, a basic definition in the study of time series [41].

Definition 2.4.1. Consider a sequence of RVs {Yt}. We say that {Yt} is stationary if for any

collection of indices {t1, . . . , tn}, n = 1, 2, . . ., the distribution of {Yt1 , . . . , Ytn} is the same as

the distribution of the time-shifted series {Yt1+m, . . . , Ytn+m} for any time-shift m ∈ Z; that

is,

{Yt1 , . . . , Ytn}
d
= {Yt1+m, . . . , Ytn+m}

for m ∈ Z and all n = 1, 2, . . .. If {Yt} is stationary, we say that stationarity holds for {Yt}.
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Assumption 2.4.2. For all i and k, {Xijk}bj=1 is stationary.

The assumption of stationarity (among others) allows for a simplified expression for the

covariance terms that appear in the variance of Tφ. Under the assumption of stationarity,

Proposition 2.3.2 has the following corollary.

Corollary 2.4.3. Suppose Assumption 2.4.2 holds. Then, for φ ∈ {β, γ},

Var (Tφ) = E
(
T 2
φ

)
=

2

a2

 a∑
i=1

1

ni(ni − 1)
+ α(φ)

a∑
i 6=i′

1

nini′

σ2
11 + 2

b−1∑
j=1

(
1− j

b

)
σ2

1,1+j

 ,

where α(φ) =

 1 if φ = β

1
(a−1)2

if φ = γ
.

Proof: Continuing from the last line of the proof of Proposition 2.3.2, we see that under

Assumption 2.4.2,

b∑
j,l=1

σ2
jl =

1

b

 b∑
j=1

σ2
jj + 2

b−1∑
j=1

(b− j)σ2
1,1+j


=

1

b

bσ2
11 + 2

b−1∑
j=1

(b− j)σ2
1,1+j


= σ2

11 + 2
b−1∑
j=1

(
1− j

b

)
σ2

1,1+j .

Next we need to define α-mixing. The concept was first discussed in the mid-1950s by

Rosenblatt [38], who presented a new CLT, though we will take the technical definition from

Bradley [11] and Billingsley [8].

Definition 2.4.4. Consider a probability space (Ω,F , P ), and any two σ-fields (or σ-algebras)
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A ⊂ F and B ⊂ F . Define

α(A,B) := sup
A∈A,B∈B

|P (A∩B)− P (A)P (B)|.

Consider a sequence of random variables {Xt} which is not necessarily stationary. For −∞ ≤

K ≤ L ≤ ∞, define the σ-field

FLK := σ (Xt,K ≤ t ≤ L) ,

which is the σ-field generated by Xk, . . . , XL. For each m ≥ 1, define the dependence coefficient

αX(m) := sup
k∈Z

α
(
Fk∞,F∞k+m

)
.

Then {Xt} is said to be α-mixing with αX(m) if αX(m)→ 0 as m→∞.

There are many types of mixing, known as mixing conditions, which all describe some

measure of dependence. α-mixing, also know as strong mixing, is the most common of these

mixing conditions; for a complete list see Bradley (2005) [11]. m-dependence, a common

notion in many time series contexts, is the highest ranking of the mixing conditions, implying

all the others, while α-mixing is the lowest in the hierarchy.

For a sequence to be α-mixing means that the dependence in the elements of the sequence

decays as the lag between them increases. The purpose of the following lemma is to show

that measurable functions of independent, stationary, α-mixing sequences are also stationary

and α-mixing. This result is primarily needed because Tφ is a scaled average of functions of

multiple independent sequences.

Lemma 2.4.5. Suppose {X(1)
t }, {X

(2)
t }, . . . , {X(r)

t } are independent, stationary, α-mixing

sequences with αX(i)(m) for i = 1, . . . , r, and suppose g is a measurable function. Define the

sequence {Zt} by Zt = g(X
(1)
t , . . . , X

(r)
t ). Then {Zt} is stationary and α-mixing.
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Proof: To prove that stationarity holds, consider, for any integer k ≥ 1, a collection of

indices {t1, . . . , tn} where n ≤ k. Consider any m ∈ Z. Under the assumption of stationarity,

we know that

{X(1)
t1
, . . . , X

(1)
tn }

d
= {X(1)

t1+m, . . . , X
(1)
tn+m}

...

{X(r)
t1
, . . . , X

(r)
tn }

d
= {X(r)

t1+m, . . . , X
(r)
tn+m}.

Consider any set A contained in the support set of (Zi1 , . . . , Zin), and denote its inverse image

by B. Then B = {(X(1)
i1
, . . . , X

(1)
in
, . . . , X

(r)
i1
, . . . , X

(r)
in

) : (Zi1 , . . . , Zin) ∈ A}.

Then, since g is measurable and the {X(i)
t } are stationarity,

P [(Zi1 , . . . , Zin) ∈ A] = P
[(
X

(1)
i1
, . . . , X

(1)
in
, . . . , X

(r)
i1
, . . . , X

(r)
in

)
∈ B

]
= P

[(
X

(1)
i1+m, . . . , X

(1)
in+m, . . . , X

(1)
i1+m, . . . , X

(1)
in+m

)
∈ B

]
= P [(Zi1+m, . . . , Zin+m) ∈ A] .

Therefore, {Zt1 , . . . , Ztn}
d
= {Zt1+m, . . . , Ztn+m}; thus, {Zt} is stationary.

To prove that α-mixing holds, we use Theorem 5.2 from Bradley [11]. Here we have a finite

number of sequences, r, whereas Bradley’s Theorem 5.2 has infinitely many. To reconcile this,

we simply define all sequences past the initial r sequences to be sequences of zeros [11]. Then

we have

αZ(m) ≤
r∑
i=1

αX(i)(m)→ 0 as r →∞,

so {Zt} is α-mixing.

Using Lemma 2.4.5, we wish to show that the asymptotically equivalent version of the test

statistic, Tφ, defined in (2.17) is stationary and α-mixing. To do this, we use the form in the
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last expression of (2.17). Recall that

Xj =

[
X1j1 · · · X1jn1 · · · Xaj1 · · · Xajna

]′

is an n× 1 vector whose elements are mutually independent. Then define

Zj = X ′j

(
1√
b
C∗φE

)
Xj . (2.19)

Proposition 2.4.6. For Zj defined in (2.19), {Zj} is stationary and α-mixing.

For an arbitrary matrix A, the notation [A]ij will represent the (i, j)th element of A; for a

vector a, the notation [a]i will represent the ith element of a.

Proof: First observe that we can write

Zj =
n∑

l,l′=1

(
1√
b

[
C∗φE

]
ll′

)
[Xj ]l[Xj ]l′ .

Then we can rearrange and write n independent, stationary, α-mixing sequences as follows.

Let

Y (1) = X111, X121, X131, . . .

...

Y (n1) = X11n1 , X12n1 , X13n1 , . . .

Y (n1+1) = X211, X221, X231, . . .

...

Y (n1+n2) = X21n2 , X22n2 , X23n2 , . . .

...

Y (n) = Xa1na , Xa2na , Xa3na , . . .
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where we recall that n =
∑a

i=1 ni.

Let Y
(i)
j be the jth element of Y (i), i = 1, . . . , n. Then we can write

Zj = g
(
Y

(1)
j , . . . , Y

(n)
j

)
=

n∑
l,l′=1

(
1√
b

[
C∗φE

]
ll′

)
Y

(1)
j

...

Y
(n)
j


l


Y

(1)
j

...

Y
(n)
j


l′

.

Then by Lemma 2.4.5, {Zj} =
{
X ′j

(
1√
b
C∗φE

)
Xj

}
, as in (2.19), is stationary and α-mixing.

We now state the next assumption. The following assumption is necessary to appeal to the

dependent CLT used in the proof of main theorem of this chapter.

Assumption 2.4.7. For all i and k, {Xijk}bj=1 is α-mixing with αX(m) = O(m−5).

The major tool for finding the asymptotic distribution is the dependent CLT proved in

Billingsley [8]. Since E (Zj) = 0 as shown in the proof of Proposition 2.4.8, we need E
(
Z12
j

)
<

∞ in order to apply Billingsley’s theorem.

Proposition 2.4.8. For Zj defined in (2.19),

E (Zj) = 0.

Proof: Recall that C∗φE has zeros in all of its diagonal elements, and thus 1√
b
C∗φE will as

well. Then by Lemma 2.2.3,

E (Zj) = E

[
X ′j

(
1√
b
C∗φE

)
Xj

]
= 0.

In order to appeal to the CLT found in Billingsley [8], we need to make an appropriate

assumption regarding the 24th moments of the random variable Xijk. The summands in
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Billingsley’s CLT must have finite 12th moments in order for the theorem to hold [8]. Propo-

sition 2.4.9 shows that it is sufficient for the 24th moment of Xijk to be finite for all i and

k.

Proposition 2.4.9. For Zj defined in (2.19), if E
(
X24
ijk

)
< ∞ for all i and k, then

E
(
Z12
j

)
<∞.

Proof: In this proof, for the sake of notation, let A = 1√
b
C∗φE , where aij will denote the

(i, j)th element of A. Also, since Xj is an n × 1 vector, we will use the notation [Xj ]l to

denote the lth element of Xj , where l = 1, . . . , n. However, note that given j, for a fixed l,

[Xj ]l is simply some Xijk for some i and some k. Then the hypothesis of the lemma can be

written as E
(
[Xj ]l

)
<∞ for all l.

Suppose then that E
(
[Xj ]n

)
< ∞ for all n. Then we know for r ≤ 24, E

(
| [Xj ]n |

r
)
< ∞

for all n. Observe,

E
[(
X ′jAXj

)12
]

= E

 n∑
l,l′=1

all′ [Xj ]l [Xj ]l′

12

= E


 n∑
l=1

all [Xj ]
2
l +

n∑
l,l′=1

l 6=l′

all′ [Xj ]l [Xj ]l′


12

≤
(

max
l,l′
|all′ |

)12

E

∣∣∣∣ n∑
l=1

[Xj ]
2
l +

n∑
l,l′=1

l 6=l′

[Xj ]l [Xj ]l′

∣∣∣∣12

 .

Let

(
max
l,l′
|all′ |

)12

= κ. Then by the cr-inequality twice applied [29], we proceed to see that

E
[(
X ′jAXj

)12
]
≤ κ · 211

E

(∣∣∣∣ n∑
l=1

[Xj ]
2
l

∣∣∣∣12
)

+ E

∣∣∣∣ n∑
l,l′=1

l 6=l′

[Xj ]l [Xj ]l′

∣∣∣∣12
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≤ κ1

 n∑
l=1

211 · E
[(

[Xj ]
2
l

)12
]

+

n∑
l,l′=1

l 6=l′

211 · E
[(

[Xj ]l [Xj ]l′
)12
]

= κ2

 n∑
l=1

E
(

[Xj ]
24
l

)
+

n∑
l,l′=1

l 6=l′

E
(

[Xj ]
12
l [Xj ]

12
l′

)

= κ2

 n∑
l=1

E
(

[Xj ]
24
l

)
+

n∑
l,l′=1

l 6=l′

E
(

[Xj ]
12
l

)
E
(

[Xj ]
12
l′

) ,

where the last step is justified since [Xj ]l and [Xj ]l′ are independent for l 6= l′, l, l′ = 1, . . . , n;

and κ1 and κ2 absorb the necessary constants in the intermediate steps.

Since all of the expectations in the final expression are finite, we have

E
(
Z12
j

)
= E

[(
X ′jAXj

)12
]
<∞.

We now have the last assumption necessary before presenting the major theorem of this

chapter.

Assumption 2.4.10. For all i and k, E
(
X24
ijk

)
<∞.

We use the previous lemmas to derive a test statistic, which we shall call T ∗φ , for testing the

hypotheses of a main effect of factor B (Hβ
0 , often temporal) and an interaction effect between

factors A and B (Hγ
0 , often temporal versus group/level). As a reminder, let us first give a

list of assumptions that we have hitherto made.

Assumption 2.2.1. The data Xijk are RVs with mean µij, where Xijk ⊥ Xi′jk′ for i 6= i′ or

k 6= k′.
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Assumption 2.2.6. For some δ > 0,

b∑
j 6=j′
l 6=l′

(σjlσj′l′ + σjl′σj′l) = O(b3−δ) as b→∞.

Assumption 2.4.2. For all i and k, {Xijk}bj=1 is stationary.

Assumption 2.4.7. For all i and k, {Xijk}bj=1 is α-mixing with αX(m) = O(m−5).

Assumption 2.4.10. For all i and k, E
(
X24
ijk

)
<∞.

Now we can state the theorem regarding the asymptotic distributions of the test statistics for

the main effect of factor B and the interaction effect. Although the assumption of stationarity

is needed to appeal to Billingsley’s theorem, in general this assumption is not needed as shown

in the multivariate case (Chapter 4). The assumption of stationarity is also useful in finding

a tractable consistent estimator of the variance of the test statistic.

Theorem 2.4.11. Suppose Assumptions 2.2.1, 2.2.6, 2.4.2, 2.4.7, and 2.4.10 hold. For

φ ∈ {β, γ}, define

T ∗φ =
√
b (AMφ−AME) . (2.20)

Then, for σ2
φ = Var (Tφ) from Proposition 2.3.2, and under Hφ

0 ,

T ∗φ
σφ

D−→ Z as b→∞,

where Z ∼ N(0, 1).

Proof: By Corollary 2.2.7, we know that Tφ is asymptotically equivalent to T ∗φ , since T ∗φ is

equal to Tφ plus some asymptotically negligible component. Therefore, the asymptotic results

that hold for Tφ will also hold for T ∗φ .

Using Assumption 2.2.1, we know that the Zjs defined in (2.19) are independent and iden-

tically distributed. By Proposition 2.4.8, E (Zj) = 0. Using Assumption 2.4.10, we appeal to



2.4. ASYMPTOTIC DISTRIBUTIONS 46

Proposition 2.4.9 to see that E
(
Z12
j

)
< ∞. Using Assumptions 2.4.2 and 2.4.7, we see by

Proposition 2.4.6 that Zj is stationary and α-mixing.

We see that these correspond to the conditions of Theorem 27.5 from Billingsley [8], so

the desired result is proved where Tφ replaces T ∗φ . However, since these are asymptotically

equivalent as b→∞, the result is proved for T ∗φ .

In the case where there is only one group, i.e., when a = 1, there is no need to test

for interaction, yet we can still test for main effects of Factor B. This situation arises, for

example, when interest lies in testing for no growth over time for a sample of subjects, or

H0 : µ1 = · · · = µb, where µi is the mean growth at time (or level) i. This hypothesis can be

tested by T ∗β using the results of Theorem 2.4.11 with a = 1. Letting a = 1 and supposing

Assumptions 2.2.1, 2.2.6, 2.4.2, 2.4.7, and 2.4.10 hold, define

T ∗β =
√
b (AMβ −AME) . (2.21)

Then, for σ2
β = Var (Tβ) from Proposition 2.3.2, and under Hβ

0 ,

T ∗β
σβ

D−→ Z as b→∞,

where Z ∼ N(0, 1).

In practice, we need a consistent estimator σ̂φ of σφ. Then, by Slutsky’s Theorem [20],
T ∗φ
σ̂φ

D−→ Z as b→∞. Of more specific interest in σ2
φ from Theorem 2.4.11 (or Corollary 2.4.3)

is

σ2
11 + 2

b−1∑
j=1

(
1− j

b

)
σ2

1,1+j , (2.22)

for which we need a consistent estimator. Recall that σ1,1+j = γ(j), j = 0, . . . , b− 1, are the

values of the autocovariance function at lag j. Given the form of the model, under the null

hypotheses these quantities will be the same for all n subjects. Therefore, it is reasonable to
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estimate γ(j), j = 0, . . . , b− 1, for all n subjects and take the average as the overall estimate

of γ(j).

Let γ̂(h) be the estimate of γ(h) = σ1,1+h, h = 0, . . . , b− 1; and let γ̂(i,k)(h) be the estimate

of γ(h) based on the data for the kth subject in the ith level of factor A. We will use the usual

time series methods for finding the estimate of the autocovariance function of a stationary

time series [41]. This brings us to the estimates

γ̂(h) =
1

n

a∑
i=1

ni∑
k=1

γ̂(i,k)(h) for h = 0, . . . , b− 1; (2.23)

where

γ̂(i,k)(h) =
1

b

b−h∑
j=1

(
Xijk −Xi·k

) (
Xi,j+h,k −Xi·k

)
. (2.24)

If we make the further assumption that for each i and k, {Xijk}∞j=1 is a linear process, we

can state that this is a consistent estimator. Shumway and Stoffer [41] show in Theorem A.6

that for a fixed h, γ̂(h)
p−→ γ̃(h) as b→∞ for linear processes, where

γ̃(h) =
1

n

a∑
i=1

ni∑
k=1

1

b

b−h∑
j=1

(Xijk − µi·k) (Xi,j+h,k − µi·k) .

Their assumption that the fourth moments of the white noise variates are finite is weaker than

Assumption 2.4.10. The value of n is fixed; this is also required in Theorem A.6. For the sake

of formality, let us state formally the assumption.

Assumption 2.4.12. For all i and k, {Xijk}∞j=1 is a linear process. More specifically, Xijk =∑∞
t=−∞ ψtεi,j−t,k, where the εijk are independent and identically distributed with E (εijk) = 0

and Var (εijk) = σ2
ε .

One goal of Chapters 3 and 4 will be to show that this assumption is not necessary. For

instance, in Chapter 3, a new bootstrapping technique will be discussed as a method for

estimating σφ from Proposition 2.3.2. As it stands, we have the following proposition.
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Proposition 2.4.13. Let Assumption 2.4.12 hold. For γ̂(k), k = 0, . . . , b − 1, from (2.23),

the estimator, σ̂2
φ, given by

σ̂2
φ =

2

a2

 a∑
i=1

1

ni(ni − 1)
+ α(φ)

a∑
i 6=i′

1

nini′

γ̂(0)2 + 2

[b∗]∑
j=1

(
1− j

b

)
γ̂(j)2

 , (2.25)

where α(φ) =

 1 if φ = β

1
(a−1)2

if φ = γ

, is a good estimator for σ2
φ = Var (Tφ). (Note that b∗ is

defined to be O(b) such that b∗ < b.)

Proof: We know that for a fixed h, γ̂(h)
p−→ γ(h) as b → ∞. Then, by the Continuous

Mapping Theorem [7], γ̂2(h)
p−→ γ2(h) as b→∞.

Now, observe that

1

γ̂2(0)

1

b

[b∗]∑
h=1

(
1− h

b

)
ρ̂2(h)− 1

γ̂2(0)

1

b

b∑
h=1

(
1− h

b

)
ρ2(h)

=
1

γ̂2(0)

1

b

[b∗]∑
h=1

(
1− h

b

)(
ρ̂2(h)− ρ2(h)

)
− 1

b

b∑
h=[b∗]+1

(
1− h

b

)
ρ2(h)

 .
Assuming that

∑∞
h=1 ρ

2(h) <∞,

0 ≤ lim
b→∞

1

b

b∑
h=[b∗]+1

(
1− h

b

)
ρ2(h) = lim

b→∞

b∑
h=[b∗]+1

ρ2(h)

b
= 0.

In practice, we can take b∗ = bm for m ∈ (0, 1). Since
(
ρ̂2(h)− ρ2(h)

)
∈ [−1, 1], we know that

ρ̂2(h) − ρ2(h) = op(1) uniformly in h. Continuous functions on compact sets are uniformly

continuous, and the convergence follows from the Continuous Mapping Theorem. Thus,

0 ≤ 1

b

[b∗]∑
h=1

(
1− h

b

)(
ρ̂2(h)− ρ2(h)

)
=

1

b

[b∗]∑
h=1

(
1− h

b

)
op(1)→ 0 as b→∞.
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Therefore, (2.23) is a consistent estimator of γ(h), and (2.25) is a consistent estimator of

σ2
φ = Var (Tφ).

2.4.2 Testing for the Main Effects of Factor A

The main goal of this section is to present a test statistic for the main effects of factor A (the

non-high dimensional factor) and derive its asymptotic distribution. As b tends to infinity, we

can use subject means over the length of b to compare group means and test whether there

are significant differences. We use quadratic forms in means in order to apply the theory of

quadratic forms.

First we must establish necessary notation and the SS as quadratic forms. Begin by defining

X̃ :=



X1·1
...

X1·n1

...

Xa·1
...

Xa·na



=


X̃1

...

X̃a

 , (2.26)

where X̃i is defined to be the ni×1 vector containing the means over b of each subject treated

with the ith level of factor A.

Recall, the hypothesis of interest is that there is no effect of factor A, or more precisely

(iii) Hα
0 : αi = 0 for i = 1, . . . , a,

which, in practice, is often thought of as there being no group effects.
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Recall that for fixed i and k, {Xijk}bj=1 is assumed to be stationary and α-mixing. Also,

{Xijk}bj=1 and {Xi′jk′}bj=1 are independent for i 6= i′ or k 6= k′. Therefore, we know that Xi·k

and Xi′·k′ are iid for i 6= i′ or k 6= k′.

By Theorem 27.5 in Billingsley [8], we see that under Assumptions 2.2.1, 2.2.6, 2.4.2, 2.4.7,

and 2.4.10, for each combination of i and k, and under Hα
0 ,

√
bXi·k
σ̃

D−→ Z as b→∞, (2.27)

for Z∼N (0, 1), where σ̃2 = Var

 1√
b

b∑
j=1

Xijk

 = O(1). It will be seen later why we are not

concerned with the specific details of the form of σ̃2. Then, again under Assumptions 2.2.1,

2.2.6, 2.4.2, 2.4.7, and 2.4.10, we see that under Hα
0

√
b X̃

D−→MVN
(
0, Σ̃

)
, as b→∞, (2.28)

where Σ̃ = σ̃2In and MVN denotes the multivariate normal distribution.

If we think of the levels of factor A as being groups, then we can define the between groups

SS, H, and the within groups SS, G, in the usual way. The former compares each group mean

to the overall mean whereas the latter compares the group means and the subject means for

all groups. These SS can be defined as

H := b
a∑
i=1

ni

(
Xi·· − X̃···

)2
, (2.29)

and

G := b

a∑
i=1

ni∑
k=1

(
Xi·k −Xi··

)2
. (2.30)

The following propositions help us utilize the theory of quadratic forms.

Proposition 2.4.14. The sums of squares from 2.29 and 2.30 can be put in the following
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quadratic forms.

H =
(√

b X̃
)′( a⊕

i=1

1

ni
Jni −

1

n
Jn

)(√
b X̃

)
;

G =
(√

b X̃
)′( a⊕

i=1

P ni

)(√
b X̃

)
. (2.31)

Proof: First, observe

H =
a∑
i=1

b∑
j=1

ni

(
Xi·· − X̃···

)2

= b

a∑
i=1

ni

(
X

2
i·· − 2Xi··X̃··· + X̃2

···

)
= b

[(
a∑
i=1

niX
2
i··

)
− 2X̃···

(
a∑
i=1

niXi··

)
+ X̃2

···

(
a∑
i=1

ni

)]

= b

[(
a∑
i=1

niX
2
i··

)
− 2X̃···

(
nX̃···

)
+ nX̃2

···

]

= b

[(
a∑
i=1

niX
2
i··

)
− nX̃2

···

]

= b

([
a∑
i=1

ni

(
X̃
′
i

1

ni
1ni

)(
1

ni
1′ni
X̃i

)]
− n

(
X̃

1

n
1n

)(
1

n
1′nX̃

))

= b

[
X̃
′
(

a⊕
i=1

1

ni
Jni

)
X̃ − X̃

′
(

1

n
Jn

)
X̃

]

=
(√

b X̃
)′( a⊕

i=1

1

ni
Jni −

1

n
Jn

)(√
b X̃

)
.

Second, observe

G =

a∑
i=1

b∑
j=1

ni∑
k=1

(
Xi·k −Xi··

)2
= b

a∑
i=1

ni∑
k=1

(
X

2
i·k − 2Xi·kXi·· +X

2
i··

)
= b

a∑
i=1

[(
ni∑
k=1

X
2
i·k

)
− 2niX

2
i·· + niX

2
i··

]
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= b
a∑
i=1

(
ni∑
k=1

X
2
i·k − niX

2
i··

)

= b
a∑
i=1

X̃
′
i

(
Ini −

1

ni
Jni

)(
X̃i

)

= b X̃
′


(
Ini − 1

ni
Jni

)
X̃1

...(
Ini − 1

ni
Jni

)
X̃a



=
(√

b X̃
)′

In1 − 1

n1
Jn1 0

. . .

0 Ina − 1
na
Jna


(√

bX̃
)

=
(√

b X̃
)′( a⊕

i=1

P ni

)(√
b X̃

)
.

In order to appeal to the theory of quadratic forms, we first need some results regarding

the matrices of the quadratic forms in Proposition 2.4.14. The following properties addresses

these necessities. Observe, for n =
a∑
i=1

ni,

(1)

(
a⊕
i=1

1

ni
Jni

)
1

n
Jn =

1

n
Jn =

1

n
Jn

(
a⊕
i=1

1

ni
Jni

)
,

(2)
a⊕
i=1

1

ni
Jni −

1

n
Jn is idempotent,

(3)

a⊕
i=1

P ni is idempotent, and

(4)

(
a⊕
i=1

1

ni
Jni −

1

n
Jn

)
a⊕
i=1

P ni = 0.
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To see (1), rewrite the LHS breaking up Jn to get the following.




1
n1
Jn1 0

. . .

0 1
na
Jna

 1

n
1n

1′n =

(
1

n
1n

)
1′n =

1

n
Jn.

To see that the first equality holds, notice that the 1/n remains, and for each row, ni 1s

are being added but then multiplied by 1/ni, leaving 1. Since 1
nJn is symmetric, the second

equality in (1) holds since

(
a⊕
i=1

1

ni
Jni

)′
=

(
a⊕
i=1

1

ni
J ′ni

)
=

(
a⊕
i=1

1

ni
Jni

)
.

To see (2), first observe that since 1
ni
Jni is idempotent, so is

a⊕
i=1

1

ni
Jni =

a⊕
i=1

(
1

ni
Jni

)2

=

(
a⊕
i=1

1

ni
Jni

)2

.

Appealing to (1), we can observe that

(
a⊕
i=1

1

ni
Jni −

1

n
Jn

)2

=

(
a⊕
i=1

1

ni
Jni

)2

− 2

n
Jn +

(
1

n
Jn

)2

=
a⊕
i=1

1

ni
Jni −

1

n
Jn.

To see (3), use the fact that P ni is idempotent to see that

(
a⊕
i=1

P ni

)2

=

a⊕
i=1

P 2
ni

=

a⊕
i=1

P ni .
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To see (4), appeal to (1) and observe that

(
a⊕
i=1

1

ni
Jni −

1

n
Jn

)
a⊕
i=1

P ni =

a⊕
i=1

1

ni
JniP ni −

1

n
Jn

(
a⊕
i=1

P ni

)

=
a⊕
i=1

0− 1

n
Jn

(
a⊕
i=1

Ini

)
+

1

n
Jn

(
a⊕
i=1

1

ni
Jni

)

= − 1

n
Jn +

1

n
Jn

= 0.

Using H and G as defined in (2.31), we can define two independent asymptotic χ-square

random variables and use them to develop an asymptotic F random variable. The usual

F -test is implemented by taking the ratio of independent χ-square random variables divided

by their respective degrees of freedom, which gives a random variable with an F -distribution

[37]. Since we have shown that X̃ has an asymptotic multivariate normal distribution, we

can appeal to the Continuous Mapping Theorem to derive an asymptotic F -test [7], [37]. This

is the subject of the following theorem.

Theorem 2.4.15. Suppose Assumptions 2.2.1, 2.2.6, 2.4.2, 2.4.7, and 2.4.10 hold. For H

in (2.29) and G in (2.30), define

F ∗α =
H/(a− 1)

G/(n− a)
. (2.32)

Then

F ∗α
D−→ Fa−1,n−a as b→∞,

where Fa−1,n−a represents an F -distribution with degrees of freedom a− 1 and n− a.

Proof: First, we can use (2.28) to see that

√
b X̃

D−→ Z, as b→∞, (2.33)
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where Z ∼ MVN
(
0, Σ̃

)
. Define the matrices AH and AG such that

H

σ̃2
=

(√
b X̃

)′ AH

σ̃2

(√
b X̃

)
, (2.34)

G

σ̃2
=

(√
b X̃

)′ AG

σ̃2

(√
b X̃

)
. (2.35)

We will show that
H

σ̃2
and

G

σ̃2
have asymptotic χ2-distributions with degrees of freedom a− 1

and n − a, respectively. Then we will argue that H is asymptotically independent of G, so

that (2.32) will have an asymptotic F -distribution with numerator degrees of freedom (a− 1)

and denominator degrees of freedom (n− a) [37].

From the theory of linear models, we must therefore show that
AH

σ̃2
Σ̃ and

AG

σ̃2
Σ̃ are idem-

potent, which will imply the χ2-distributions [37]. We must also show that
AH

σ̃2
Σ̃
AG

σ̃2
= 0

to verify the asymptotic independence. These allow us to take the ratio of the χ2-random

variables divided by their respective degrees of freedom to get the appropriate F -distribution.

It is clear that
1

σ̃2
Σ̃ = I, and thus

(
1

σ̃2
Σ̃

)2

=
1

σ̃2
Σ̃. Therefore, it suffices to show that AH

and AG are idempotent and that AHAG = 0. Recognizing that AH =
a⊕
i=1

1

ni
Jni −

1

n
Jn

and AG =
a⊕
i=1

P ni , we see that these three conditions are exactly (2), (3), and (4) from

aforementioned properties. Furthermore, the rank of AH is a − 1 and the rank of AG is∑
i=1 a(ni − 1) = n − a, so the degrees of freedom of H and G are a − 1 and n − a, respec-

tively. Therefore, we have

H

σ̃2

D−→ χ2
a−1 and

G

σ̃2

D−→ χ2
n−a as b→∞.

Concordantly, by the Continuous Mapping Theorem [7],

F ∗α =
H/(a− 1)

G/(n− a)
=

H/σ̃2

a−1

G/σ̃2

n−a

D−→ Fa−1,n−a as b→∞.
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Under the usual assumptions of normality and independent measurements, the existing F -

test would be similar to that given above. (For a complete description of the unbalanced

F -test, see Davis [16].) However, relaxing the assumptions that the data follow a normal

distribution and that the measurements on each subject are independent forces another route

to be taken. In this scenario, we must first appeal to a CLT for dependent data [8]. After

the means for each subjects are taken, they are shown to be asymptotically normal. Since

the responses among subjects are assumed to be independent, this now reduces to the usual

F -test procedure given the necessary conditions for quadratic forms hold.



Chapter 3

Simulation Study for the Univariate

Case

3.1 Introduction

This chapter serves to present a simulation study for the test statistics in the univariate case.

Section 3.2 gives the design framework of the simulation study, including the various cases

considered. Section 3.3 discusses the main results of the achieved sizes of the various test

statistics, including a comparison to traditional methods and a further study using boot-

strapping techniques to estimate the variances of the test statistics. Section 3.3.3 gives a

comparison of the achieved power of the new and traditional tests; these results are for one

group size structure and one value of b.

57
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3.2 Simulation Design

For an assessment of the quality of the asymptotic distributions of the test statistics in The-

orems 2.4.11 and 2.4.15, we conducted a simulation study by generating data from multiple

distributions with various covariance structures and sample sizes/size structures.

The three distributions used to generate data for the simulation were the standard normal

distribution (labeled P1 in the simulation); the skew-normal distribution with location pa-

rameter 0, scale parameter 1, and skewing parameter 1 (P2); and the log-normal distribution

with log-scale parameter 0 and shape parameter 1 (P3). These three distributions increase

in the level of their skewness and kurtosis. Table 3.1 gives the mean, variance, skewness and

kurtosis of these three distributions. The three covariance matrices (b× b in dimension) used

will be labeled Σ1, Σ2, and Σ3 in the simulation. The first follows that of an ARMA(2,2)

process, which decays exponentially; the second follows polynomial decay such that the (i, j)th

element was given by ρ|i− j|−5/2, where ρ = 0.55; the third was given by 1.5I. For graphical

representation of the values in Σ1 and Σ2, see Figure 3.2 below. Two group size structures

were used, labeled N1 and N2. The first structure included four groups, or a = 4, where the

number of subjects in each group was n1 = 4, n2 = 5, n3 = 6, and n4 = 7. The second

structure included three groups, or a = 3, where the number of subjects in each group was

n1 = 10, n2 = 12, and n3 = 14.

For each combination of distribution, covariance structure, and group structure, 10,000 sim-

ulated data sets were generated for various values of b. The values of b were 5, 10, 20, 50, 100,

200, and 400. In each simulation the test statistics T ∗β , T ∗γ , and F ∗α were computed. Each time,

the statistic was compared to the 0.05 critical value for its corresponding standard normal or

F -distribution, and a decision to reject or fail to reject was made according as the statistic was

beyond or within the corresponding critical value. The average number of rejections, which is

the estimated size of the test, is reported for each case in Table 3.2. The estimated sizes for

the test based on T ∗β , which is the main effect of B (time effect), is given in a column labeled

β. The results of the test for an interaction effect between factors A and B and the test for
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the main effect of A (group effect) are similarly labeled γ and α.

Distribution
Function of Moment

P1 P2 P3

Mean 0 0.5642 1.6487
Variance 1 1.6817 4.6708
Skewness 0 0.1369 6.1849
Kurtosis 0 0.0617 110.9364

Table 3.1: Functions of the first four moments of the distributions for P1, P2, and P3.

Figure 3.1: Autocorrelation function (ACF) for an ARMA(2,2) process and the (i, j)th element
of the polynomial covariance matrix Σ2. The ARMA(2,2) ACF values are plotted as solid
lines and the polynomial ACF values are plotted as slightly offset dashed lines with points for
emphasis.

3.3 Achieved Sizes of the Tests

3.3.1 The New Method
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Looking at Table 3.2, the test of the main effect of factor A seems to be performing well

regardless of the covariance structure, group size structure, choice of distribution, or value of

b; however, it is slightly more variable and biased low for small b values such as b = 5 and

b = 10. These sizes seems to be very close to 0.05 throughout, which is the desired size of the

test.

The test for the main effect of factor B, as well as the test for the interaction effect, have

somewhat erratic results for b ≤ 20. The estimated sizes range from around 0.01 to 0.3 when

ideally they would be around 0.05. This is not all that surprising or concerning as b = 20 is

not sufficiently large for the asymptotic property of the test to take effect. These estimated

sizes seem to stabilize some for b = 50; however, for P3 and Σ3 the results are still poor. For

P3, the estimated sizes range from 0.02870 to 0.04110 when b = 400; this could be a possible

indication that for such skewness in a distribution (P3 is the log-normal), b = 400 is not yet

sufficiently large for the asymptotics to take effect.

In the cases of P1 and P2 and for b = 100, the results seem to begin to converge to the

desired size of 0.05, taking on values from approximately 0.04 to slightly greater than 0.05.

When b increases to 200, the estimated sizes are becoming more ideal, and even more still

when b = 400. The best results for large values of b seem to be for P1, which is the normal

distribution. It seems that the the effect of the dependence seems to go away quickly in the

absence of skewness.

Overall, the results are promising, though they do not, as a rule, seem to converge to 0.05

as fast as we would like. This may be due to the estimation technique used for Var (Tφ). This

problem warrants further research and is also addressed numerically in Section 3.3.3.

3.3.2 Comparison with Traditional RM-ANOVA

To gauge the effectiveness of the tests from Theorems 2.4.11 and 2.4.15 we ran the same simula-

tion for the usual test statistics used in traditional repeated measures ANOVA (RM-ANOVA).

In this setting the SS are different from those mentioned earlier. The underlying assumptions
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Pop Cov Samp
b = 5 b = 10 b = 20 b = 50

β γ α β γ α β γ α β γ α

P1 Σ1 N1 0.07290 0.08835 0.04920 0.06150 0.06570 0.04670 0.05255 0.05635 0.05045 0.04745 0.05110 0.05215
N2 0.07170 0.07270 0.05245 0.05750 0.05730 0.04865 0.05305 0.05470 0.04950 0.04505 0.04940 0.04875

Σ2 N1 0.06715 0.07750 0.05340 0.05395 0.05575 0.04925 0.04585 0.04860 0.04965 0.04230 0.04830 0.05175
N2 0.06610 0.06920 0.04820 0.05350 0.05200 0.04765 0.04640 0.05010 0.05065 0.04300 0.04665 0.04690

Σ3 N1 0.04955 0.05205 0.04805 0.03695 0.04140 0.04750 0.03535 0.03995 0.04855 0.03680 0.04055 0.04920
N2 0.05320 0.04745 0.05055 0.04105 0.03740 0.05020 0.03740 0.03570 0.04985 0.03925 0.03880 0.05080

P2 Σ1 N1 0.19210 0.08195 0.04780 0.10805 0.06350 0.05175 0.07490 0.05400 0.04915 0.05590 0.05105 0.04850
N2 0.29425 0.07200 0.05190 0.15480 0.05690 0.05070 0.09995 0.05155 0.05080 0.06680 0.04705 0.05245

Σ2 N1 0.21600 0.06805 0.04665 0.14125 0.05355 0.05030 0.10140 0.05045 0.04845 0.06795 0.04385 0.05420
N2 0.33225 0.06155 0.04965 0.22650 0.05035 0.05020 0.15445 0.04455 0.05000 0.09400 0.04255 0.05255

Σ3 N1 0.05310 0.05120 0.05050 0.04000 0.04000 0.05105 0.03635 0.03970 0.05085 0.03830 0.03690 0.04875
N2 0.04745 0.04895 0.05025 0.03785 0.03760 0.04620 0.03850 0.03735 0.05175 0.03845 0.04070 0.04790

P3 Σ1 N1 0.19360 0.01840 0.04130 0.06960 0.01750 0.04570 0.03770 0.01660 0.04635 0.02800 0.01770 0.04695
N2 0.28250 0.01655 0.04370 0.06960 0.01750 0.04570 0.05215 0.01420 0.04610 0.03390 0.01525 0.04635

Σ2 N1 0.20560 0.01690 0.04180 0.10610 0.01440 0.04390 0.06500 0.01350 0.04670 0.04135 0.01775 0.04890
N2 0.29895 0.01590 0.04185 0.17805 0.01160 0.04475 0.10420 0.01115 0.04590 0.05415 0.01465 0.04970

Σ3 N1 0.01360 0.01150 0.04235 0.01030 0.00840 0.04345 0.01080 0.01050 0.04815 0.01335 0.01440 0.04735
N2 0.01205 0.00885 0.04240 0.00785 0.00650 0.04550 0.00915 0.00710 0.04695 0.01155 0.01065 0.04940

Pop Cov Samp
b = 100 b = 200 b = 400

β γ α β γ α β γ α

P1 Σ1 N1 0.05045 0.05210 0.04830 0.04725 0.04850 0.05190 0.04750 0.05005 0.05075
N2 0.04815 0.04745 0.04815 0.04990 0.05065 0.05045 0.04700 0.04640 0.04870

Σ2 N1 0.04650 0.04775 0.05085 0.04775 0.04665 0.04995 0.04875 0.04725 0.05095
N2 0.04590 0.04615 0.05135 0.04440 0.04560 0.05095 0.04840 0.04610 0.05060

Σ3 N1 0.03955 0.04375 0.05390 0.04210 0.04225 0.05335 0.04215 0.04675 0.05030
N2 0.03965 0.04195 0.05100 0.04390 0.04130 0.05090 0.04420 0.04555 0.04865

P2 Σ1 N1 0.05425 0.04925 0.05065 0.05000 0.04790 0.04655 0.05380 0.04890 0.04940
N2 0.05680 0.04965 0.04925 0.05375 0.05095 0.05155 0.05160 0.05075 0.05065

Σ2 N1 0.05680 0.04755 0.05105 0.05565 0.04670 0.04975 0.05205 0.05055 0.04875
N2 0.07060 0.04540 0.05015 0.06200 0.04835 0.05205 0.05440 0.04915 0.05200

Σ3 N1 0.04000 0.04210 0.04915 0.04185 0.04360 0.05090 0.04200 0.04535 0.04855
N2 0.04005 0.04245 0.05050 0.04295 0.04690 0.04960 0.04515 0.04305 0.04825

P3 Σ1 N1 0.02720 0.02350 0.04770 0.03185 0.02855 0.04875 0.03515 0.03675 0.04870
N2 0.03210 0.02120 0.04795 0.03340 0.02715 0.04915 0.03615 0.03375 0.05205

Σ2 N1 0.03615 0.02170 0.04770 0.03255 0.02760 0.04810 0.03925 0.03375 0.04780
N2 0.04335 0.02080 0.04870 0.04215 0.02690 0.0515 0.04110 0.03280 0.05240

Σ3 N1 0.01940 0.01920 0.04560 0.02545 0.02555 0.05120 0.03155 0.03415 0.05005
N2 0.01785 0.01720 0.05100 0.02270 0.02405 0.04890 0.02870 0.03155 0.05110

Table 3.2: Simulated sizes for the tests with statistics T ∗β (β), T ∗γ (γ), and F ∗α (α) when
sampling from the normal (P1), skew-normal (P2), and log-normal (P3) distributions under
the three covariance structures Σ1, Σ2 and Σ3, and under the two group structures N1 and
N2. Results are for b = 5, b = 10, b = 20, b = 50, b = 100, b = 200, and b = 400.

also differ, mainly in that the data are assumed to arise from a normal distribution. While the

traditional methods also do assume that the compound symmetric (exchangeable) covariance

structure, they assume a restrictive covariance structure, namely that the covariance between

any two measurements from the same subject is the same. Recall that under the assumptions

of Theorem 2.4.11 the covariances need only to decay sufficiently fast. For a more complete

description of the traditional RM-ANOVA design, see Davis [16].

Based on the models, it is not surprising to see the results in Table 3.3. We first consider the
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test for the main effect of factor B (time effect). Under the Σ3 covariance structure, the sizes

seem to be okay, i.e., near 0.05, for both sample size structures, for all three populations, and

for any b. This comes as no surprise since the structure of Σ3 fits the assumptions given in

the traditional RM-ANOVA framework. However, under the other two covariance structures

the results differ. In these cases, the simulated sizes never get sufficiently close to the desired

level of 0.05. For P3, the log-normal distribution, the simulated sizes range from just under

0.5 to just over 0.11 as b increases; for P2, the skew-normal distribution, the simulated sizes

range from just under 0.35 to just over 0.11 as b increases; for P1, the normal distribution, the

simulated sizes hover around 0.1 for all levels of b. The tests for the time effect do not have

adequate size, and the results are worse as the distribution from which the data are generated

becomes more skewed.

We next consider the tests for the interaction effect between factors A and B. Similar to the

analysis above, under Σ3 the simulated sizes are okay (under 0.08) for N1 and good for N2

(around 0.05) as b increases. The discrepancy may be due to the fact that the overall number

of subjects is greater under N2 than under N1. However, under the other two covariance

structures, the simulated sizes range from around 0.08 to 0.12 as b increases, getting worse

as b increases. This is similar for any of the population distributions. Yet the sizes are not

sufficiently low, and it is disconcerting that the simulated sizes increase as b increases, whereas

under the tests from Theorem 2.4.11, the sizes are converging to 0.05 as b increases.

Overall, for both the tests of the main effect of factor B and the interaction effect, the test

from the traditional RM-ANOVA framework do not seem to be equipped to handle the given

conditions of the problem of interest, and the results from Theorem 2.4.11 are far superior.

However, the results are much different for the test of the main effect of factor A (group

effect). In the case of the log-normal distribution, the achieved sizes are a little lower than the

desired value of 0.05 when b is small, but this is not a problem as b increases. The results are

very similar to the simulation results in Table 3.2. This is not surprising since the dependen-

cies present in the time component, or longitudinal component, of the data become essentially

washed out by taking the average response from each subject over time. After that, appealing
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to the Continuous Mapping Theorem [7], the basic CLT, and the usual F -test argument lead

to the obvious, similar results [37].

Table 3.4 displays the simulated sizes from the tests from Theorems 2.4.11 and 2.4.15 where

the data were generated according the to traditional RM-ANOVA framework; i.e., the com-

pound symmetry (exchangeable) covariance structure was used. The purpose of this simula-

tion was to asses whether the new method performs well under the traditional setup. The

sizes are all appropriately close to 0.05, with the best results coming from the test of the main

effect of factor A. This table indicates that there is no concern regarding the performance

of the new method when the data are assumed to arise under the criteria of the traditional

RM-ANOVA setting.

In conclusion, the simulation study clearly indicates that the traditional RM-ANOVA meth-

ods are not as sufficient as those in Chapter 2 except for testing of a group effect. If a time

or interaction effect is to be tested, other methods, such as those in Chapter 2, should be

implemented, if the conditions for RM-AVONA are not met.

3.3.3 Estimating the Variance via Bootstrapping

The theoretical form of the values
T ∗φ
σφ

, φ ∈ {β, γ}, is a great starting point; however, in practice

an estimate for σφ is needed. The estimation of the variance of T ∗φ can be troublesome, and it

requires some stringent assumptions. Recall that to achieve a consistent estimator for σφ we

need assumption 2.4.12, that the series from the responses of each subject is a linear process.

This is a somewhat rigid assumption which is difficult to assess, and it should therefore be

avoided if at all possible.

One possible solution to avoid such assumptions would be to use a bootstrapping technique.

One major problem with bootstrapping time series data is capturing, or rather preserving,

the dependence structure found amid the data [25]. The block bootstrap is one of the most

prevalent methods for using bootstrapping techniques with time series data [19]. As with

the standard bootstrap, bootstrap samples are generated from the data and statistics are
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Pop Cov Samp
b = 5 b = 10 b = 20 b = 50

β γ α β γ α β γ α β γ α

P1 Σ1 N1 0.0747 0.0882 0.05 0.0938 0.0972 0.05 0.103 0.1091 0.0499 0.1014 0.1034 0.0513
N2 0.0776 0.0806 0.0526 0.0967 0.1007 0.0535 0.0982 0.1051 0.0504 0.1044 0.1138 0.0539

Σ2 N1 0.0732 0.0852 0.0445 0.0799 0.0925 0.0499 0.0873 0.099 0.0511 0.0923 0.0969 0.0504
N2 0.0743 0.0772 0.0486 0.0867 0.0859 0.0528 0.0894 0.0976 0.0527 0.0923 0.0939 0.0491

Σ3 N1 0.0509 0.0519 0.0516 0.0496 0.049 0.0515 0.0498 0.0537 0.0487 0.0474 0.0513 0.0492
N2 0.0508 0.054 0.0523 0.0489 0.0488 0.0488 0.0501 0.05 0.0482 0.048 0.0487 0.0483

P2 Σ1 N1 0.2141 0.0883 0.048 0.1704 0.1017 0.0487 0.1491 0.1088 0.0497 0.133 0.1104 0.0547
N2 0.311 0.0863 0.0492 0.2241 0.0971 0.0473 0.1823 0.1022 0.0476 0.1585 0.109 0.0512

Σ2 N1 0.2353 0.0802 0.052 0.2038 0.0903 0.0501 0.1821 0.095 0.0481 0.156 0.0922 0.0464
N2 0.3444 0.0741 0.0505 0.3056 0.0825 0.049 0.2555 0.0962 0.0487 0.1987 0.0906 0.054

Σ3 N1 0.047 0.0496 0.0457 0.0484 0.0476 0.0507 0.0524 0.0475 0.0498 0.0507 0.0472 0.0483
N2 0.0504 0.0502 0.0497 0.0527 0.0514 0.0501 0.0521 0.0508 0.0489 0.0499 0.0518 0.0516

P3 Σ1 N1 0.3256 0.0769 0.0404 0.2074 0.1012 0.0429 0.1637 0.1076 0.0425 0.1397 0.122 0.0466
N2 0.4536 0.0756 0.0416 0.2845 0.0949 0.0464 0.2156 0.0956 0.048 0.1658 0.1086 0.0444

Σ2 N1 0.3481 0.0709 0.0442 0.2784 0.0911 0.0493 0.2132 0.0956 0.0448 0.1655 0.1114 0.049
N2 0.4877 0.0694 0.0432 0.4237 0.0833 0.0435 0.3295 0.0889 0.0476 0.2321 0.0948 0.0451

Σ3 N1 0.032 0.0488 0.0427 0.0425 0.0552 0.0449 0.0489 0.0589 0.0468 0.0507 0.0752 0.0478
N2 0.0411 0.0397 0.0431 0.0436 0.0521 0.0459 0.0457 0.0474 0.0426 0.0514 0.0591 0.0423

Pop Cov Samp
b = 100 b = 200 b = 400

β γ α β γ α β γ α

P1 Σ1 N1 0.1044 0.1166 0.0488 0.1143 0.1136 0.0556 0.1124 0.1125 0.0515
N2 0.1062 0.1132 0.0498 0.1162 0.1172 0.0472 0.1126 0.1129 0.049

Σ2 N1 0.0975 0.1029 0.0481 0.0973 0.0957 0.0475 0.0975 0.0985 0.0509
N2 0.0973 0.0962 0.0498 0.0933 0.0908 0.0472 0.0983 0.0926 0.053

Σ3 N1 0.0528 0.0514 0.0494 0.0486 0.0484 0.0497 0.0492 0.0543 0.053
N2 0.0457 0.0471 0.0485 0.0528 0.0521 0.0517 0.0469 0.0467 0.0506

P2 Σ1 N1 0.1278 0.1155 0.0495 0.1263 0.1154 0.0491 0.1168 0.1109 0.0458
N2 0.1443 0.1102 0.0496 0.1349 0.1144 0.0481 0.1327 0.1115 0.0491

Σ2 N1 0.1455 0.0925 0.0515 0.126 0.0974 0.0513 0.1205 0.1002 0.0476
N2 0.163 0.0928 0.0462 0.1431 0.1029 0.049 0.1286 0.0998 0.0511

Σ3 N1 0.0442 0.0516 0.0504 0.0546 0.0502 0.0511 0.0505 0.0511 0.0525
N2 0.0492 0.0492 0.0503 0.0549 0.0486 0.0501 0.0501 0.0537 0.0511

P3 Σ1 N1 0.1331 0.1239 0.0483 0.1245 0.1257 0.0463 0.1184 0.1354 0.0478
N2 0.1424 0.1127 0.0464 0.1405 0.1151 0.0508 0.1343 0.1232 0.0518

Σ2 N1 0.1481 0.1136 0.0482 0.1281 0.1212 0.0493 0.1174 0.1254 0.0493
N2 0.1876 0.0953 0.046 0.1606 0.0989 0.0471 0.1357 0.1043 0.0479

Σ3 N1 0.0508 0.0808 0.0485 0.0534 0.0789 0.0511 0.0496 0.0833 0.0473
N2 0.0475 0.0561 0.0504 0.0501 0.0552 0.0444 0.0504 0.0602 0.0489

Table 3.3: Simulated sizes for the tests with F -statistics from traditional MANOVA (see
Davis, [16]) for the effect of factor B (β), interaction effect between factors A and B (γ),
and the effect of factor A (α) when sampling from the normal (P1), skew-normal (P2), and
log-normal (P3) distributions under the three covariance structures Σ1, Σ2 and Σ3, and under
the two group structures N1 and N2. Results are for b = 5, b = 10, b = 20, b = 50, b = 100,
b = 200, and b = 400.

calculated from each bootstrap sample. The standard deviation of these bootstrap sample

statistics is used as an estimate of the standard error of whatever statistic is of interest. The

standard bootstrap takes a sample with replacement from the original data to form each

bootstrap sample, yet it is not so simple when working with dependent data.

To illustrate the block bootstrap, consider for the moment that there is only one subject

whose b repeated measurements are a time series of unknown origin. The block bootstrap
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Sample
Test

b
Size 5 10 20 50 100 200 400

N1 β 0.0526 0.0410 0.0372 0.0392 0.0437 0.0397 0.0416
γ 0.0531 0.0377 0.0390 0.0369 0.0425 0.0402 0.0414
α 0.0461 0.0542 0.0486 0.0538 0.0482 0.0491 0.0489

N2 β 0.0528 0.0380 0.0402 0.0404 0.0419 0.0415 0.0427
γ 0.0472 0.0397 0.0366 0.0402 0.0434 0.0437 0.0463
α 0.0516 0.0494 0.0496 0.0503 0.0549 0.0500 0.0517

Table 3.4: Simulated sizes for the tests with statistics T ∗β (β), T ∗γ (γ), and F ∗α (α) when
sampling via the usual RM-ANOVA framework (from Davis [16]) and under the two group
structures N1 and N2. Results are for b = 5, 10, 20, 50, 100, 200, 400.

breaks the data into q blocks of responses. From the q blocks, the bootstrap sample is created

by sampling the blocks with replacement and aligning them end to end, preserving the order of

each block. For blocks of length l, each bootstrap sample will be ql in length, where, ideally,

ql = b. In the simulation discussion below, distinct (non-overlapping) blocks were chosen,

although the blocks could be overlapping and even of randomly varying lengths [25]. It has

been found that the difference in using non-overlapping or overlapping blocks for numerical

results is often very small [3].

The justification for extending the bootstrap to multiple dimensions (i.e., multiple subjects)

is the assumption that each subject is independent. It consequently stands to reason that

individual block bootstraps taken on the time series of each subject individually could be

combined to make one full bootstrap sample. The algorithm is as follows.

1. Begin with one subject.

2. Randomly sample q blocks, where ql = b.

3. Let the q blocks laid end to end be a block bootstrap of that subject.

4. Repeat steps 2 and 3, using the same q block locations, for each subject. This is now

the first full bootstrap sample X∗
1
.

5. Repeat steps 1 though 4 B times to obtain the bootstrap samples X∗
1
, . . . ,X∗

B
.
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6. Calculate the test statistic (T ∗φ)∗
b
, b = 1, . . . , B, for each corresponding bootstrap sam-

ple.

7. Use the variance of the B bootstrap statistics as an estimate for σ2
φ = Var

(
T ∗φ

)
.

The original simulation was repeated using this method within each simulation to calculate an

estimate of the standard deviation σφ instead of using the estimate from Proposition 2.4.13.

Block lengths of 1, 2, 2, 2, 4, 4, 4 were chosen corresponding to b values of 5, 10, 20, 50, 100,

200, 400 in keeping with the suggestion from Härdle et al. [25] that the block length should

be on the order of b1/4. For each simulation, 200 bootstraps were run to estimate σφ. The

estimated sizes of the tests are given in Tables 3.5 and 3.6.

For b ≤ 20, the estimated sizes for all tests were not acceptably small, ranging from about

0.1 to 0.4, where the critial value was 0.05. The estimated sizes do decrease toward 0.05 as b

increases, though the convergence is very slow. The size estimates seem to be smaller for Σ3

across the board, which provides some promise, but only for that specific case. In fact, this

makes sense since for Σ3 the bootstrapping reduces to the usual case. The sizes are not overly

large, but they are not an improvement over the original method for estimating the standard

deviation. This could be due to the role block length has to play in the estimate, but as the

simulations are expensive, only one setup was used. Further research in this area is needed.

In summary, the extended block bootstrap method did not seem to offer any improvement

as far as the sizes of the tests are concerned. However, the results do not seem to depend on

the population, and the sizes are relatively small and close to 0.05 for large values of b. Thus,

further research to find a theory that explains this phenomenon may prove fruitful.
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Pop Cov Samp
b = 5 b = 10 b = 20

β γ β γ β γ

P1 Σ1 N1 0.3782 0.3278 0.3246 0.2765 0.2346 0.1882
N2 0.3923 0.3548 0.3312 0.3011 0.2361 0.2141

Σ2 N1 0.3667 0.3112 0.2856 0.2419 0.1999 0.1637
N2 0.3839 0.3305 0.2978 0.2595 0.2150 0.1840

Σ3 N1 0.2884 0.2149 0.2119 0.1552 0.1455 0.1118
N2 0.2999 0.2635 0.2147 0.1794 0.1526 0.1154

P2 Σ1 N1 0.2468 0.3253 0.2431 0.2861 0.1912 0.1957
N2 0.1908 0.3514 0.2189 0.3045 0.1733 0.2134

Σ2 N1 0.2345 0.3092 0.1978 0.2483 0.1415 0.1682
N2 0.2007 0.3401 0.1505 0.2622 0.1153 0.1813

Σ3 N1 0.2823 0.2143 0.2071 0.1611 0.1349 0.1035
N2 0.2989 0.2417 0.2158 0.1832 0.1458 0.1213

P3 Σ1 N1 0.2215 0.3189 0.2102 0.2731 0.1532 0.1829
N2 0.1780 0.3369 0.1983 0.2942 0.1456 0.1996

Σ2 N1 0.2295 0.3071 0.1706 0.2254 0.1137 0.1550
N2 0.2055 0.3274 0.1367 0.2407 0.0934 0.1620

Σ3 N1 0.2228 0.1723 0.1661 0.1335 0.1091 0.0965
N2 0.2546 0.2028 0.1854 0.1496 0.1169 0.1030

Table 3.5: Using bootstrapping to estimate the variance of the test statistics: Simulated sizes
for the tests with statistics T ∗β (β), T ∗γ (γ), and F ∗α (α) when sampling from the normal (P1),
skew-normal (P2), and log-normal (P3) distributions under the three covariance structures Σ1,
Σ2 and Σ3, and under the two group structures N1 and N2. Results are for b = 5, b = 10,
and b = 20.

3.4 Power Simulation

3.4.1 Main Results and Comparison with Traditional RM-ANOVA

In order to further assess and compare the tests from Theorems 2.4.11 and 2.4.15, we ran

simulations under N2 and for b = 100 with representing perturbations signifying various

alternative hypotheses and calculated the power of the test. The choices of N2 and b = 100

are due to the fact that the simulated sizes of the tests from Theorem 2.4.11 were among the

more desirable for all covariance structures and population distributions. Note that under

P3 the simulated sizes were not as close to 0.05 as desired for any sample size structure or

value of b. Each alternative hypothesis was used for all three covariance structures and all

three population distributions. For the test of the main effect of factor B (time effect), the

alternatives A1, . . . , A9 correspond to β1 = 0.01, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4. The same values
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Pop Cov Samp
b = 50 b = 100 b = 200 b = 400

β γ β γ β γ β γ

P1 Σ1 N1 0.1657 0.144 0.1194 0.1036 0.0985 0.0911 0.0876 0.085
N2 0.1734 0.1505 0.1198 0.1159 0.1045 0.0920 0.0918 0.0920

Σ2 N1 0.1414 0.1165 0.1046 0.0922 0.0833 0.0822 0.0800 0.0679
N2 0.1416 0.1245 0.1099 0.0950 0.0916 0.0792 0.0775 0.0735

Σ3 N1 0.0902 0.0765 0.0769 0.0729 0.0661 0.0617 0.0598 0.0572
N2 0.0924 0.0879 0.0823 0.0760 0.0645 0.0623 0.0591 0.0594

P2 Σ1 N1 0.1407 0.1358 0.112 0.1051 0.0902 0.0939 0.0929 0.0835
N2 0.1386 0.1450 0.1026 0.1115 0.0915 0.0953 0.0872 0.0864

Σ2 N1 0.1079 0.1212 0.0885 0.0902 0.0736 0.0839 0.0699 0.0672
N2 0.0934 0.1264 0.0775 0.0965 0.0721 0.0853 0.0702 0.0716

Σ3 N1 0.0942 0.0788 0.0793 0.0644 0.0629 0.0606 0.0605 0.0552
N2 0.0935 0.0811 0.0786 0.0704 0.0616 0.0637 0.0589 0.0558

P3 Σ1 N1 0.1221 0.1377 0.1052 0.1057 0.0930 0.0862 0.0858 0.0853
N2 0.1158 0.144 0.0937 0.1111 0.0862 0.0963 0.0798 0.0884

Σ2 N1 0.0865 0.1192 0.0749 0.0881 0.0715 0.0719 0.0637 0.0733
N2 0.0774 0.1231 0.0666 0.0928 0.0630 0.0795 0.0630 0.0693

Σ3 N1 0.0803 0.0709 0.0701 0.0696 0.0633 0.0636 0.0582 0.0572
N2 0.0861 0.0760 0.0764 0.0760 0.0637 0.0646 0.0583 0.0608

Table 3.6: Using bootstrapping to estimate the variance of the test statistics: Simulated sizes
for the tests with statistics T ∗β (β), T ∗γ (γ), and F ∗α (α) when sampling from the normal (P1),
skew-normal (P2), and log-normal (P3) distributions under the three covariance structures Σ1,
Σ2 and Σ3, and under the two group structures N1 and N2. Results are for b = 50, b = 100,
b = 200, and b = 400.

for γ21 and α2 correspond to the alternatives A1, . . . , A9 when testing the interaction effect and

the main effect of factor A (group effect), respectively. The simulated powers were calculated

for the tests from Theorems 2.4.11 and 2.4.15, labeled ARMU (asymptotic repeated measures,

univariate case), and the traditional RM-ANOVA design, labeled RMA. The results are given

in Tables 3.7, 3.8, and 3.9.

We begin with the comparison of power for the tests of the main effect of factor B. For

simplicity, we refer to these as the ARMU and RMA methods (or tests, or statistics) as

mentioned above. Table 3.7 appears to indicate that the simulated power is as good or better

in the RMA method for all populations and covariance structures. Under Σ1 and Σ2 the

RMA method simulated powers are greater for all alternative hypotheses. However, this is

not wholly indicative of a better test since the sizes of these tests are greater than the desired

level of 0.05; in fact, they were simulated to be anywhere from 0.0975 to 0.1481. Tests with

differing sizes are generally not comparable with respect to power. Under Σ3 the RMA method
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has greater power in addition to having appropriate size. This is natural since the structure

of Σ3 aligns with the traditional RM-ANOVA assumptions found in Davis [16].

For the ARMU method, the power of the tests makes a significant jump under alternative

hypotheses A5 or A6 for population distributions P1 and P2. These correspond to β1 being 1

or 1.5. When β2 is at least 2, which is alternative hypothesis A7, the simulated power is nearly

or exactly 1 under all conditions except for the combination P1 and Σ3, where it is 0.8918,

which is still very large. These results indicate the sensitivity in the ARMU tests increases

greatly when the deviation from the null hypothesis is at least 1 for one level of factor B.

However, the sensitivity in the tests is low under P3, which is the log-normal distribution.

Here the power does not significantly increase until the deviation is very large, and the size of

these tests is also small. It appears that the increased skewness of the underlying population

is leading to poor test performance all around.

Overall, for the tests of the main effect of factor B, the RMA method seems preferable under

Σ3, but for all other cases the ARMU method appears better as the sizes are more preferable

and the estimate power increases more quickly.

In comparing simulated powers for the tests of effect of interaction we first note that under

P3 none of the results are good. The size of the tests for the ARMU method are too low

(around 0.02) while the size of the tests for the RMA method are too high (around 0.1). In

all cases, the simulated power shows little to no increase as the deviation in the alternative

hypotheses increases.

Both methods do not show a significant jump in power until the alternative A8 or A9, which

corresponds to γ21 = 3 or γ21 = 4, respectively. Under covariance structures Σ1 and Σ2

and for populations P1 and P2, the simulated power in the ARMU method is much greater

than in the RMA method when the deviation in the alternative hypothesis is great; when

the deviation is at most 2 (A7) the RMA method has slightly better simulated powers and is

systematically better for detecting smaller deviation. However, the sizes of the RMA method

tests are not near 0.05–they are closer to 0.1–so the tests are not directly comparable. Under

Σ3 the sizes are comparable. Here, though, the ARMU method has simulated powers at least
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as good as the RMA method for P1 and P2, and much greater for alternative hypotheses A8

and A9.

Overall, for the tests of the interaction effect of factors A and B, the ARMU method seems

preferable under all cases, having good power and appropriate size; however, neither method

performs well under the log-normal distribution, where the underlying population distribution

is too skewed for the test of interaction to perform well.

In comparing simulated powers for the tests of the main effect of factor A, the results for the

ARMU method and RMA method are not distinguishable. Both have appropriate simulated

sizes and all tests are very sensitive to departures from the null hypotheses. For populations

P1 and P2, the powers reach 1 or nearly 1 by A3, which corresponds to α2 = 0.5, and are very

high for A2, which corresponds to α2 = 0.25. The simulated powers do not increase greatly

for P3 until A3, and it is not until A5, which corresponds to α2 = 1, when the simulated

powers are all 1 or nearly 1. Again, this may be a byproduct of the log-normal distribution

being extremely skewed.

To summarize the power comparison of the tests from the ARMU method and the RMA

method, the ARMU method seems the better overall choice. The ARMU method does no

worse than the RMA method across the board, and the RMA method has many instances

where the simulated size was not ideal (away from 0.05) for b = 100. Both methods performed

very well for the tests of the main effect of factor A. Both methods seemed to perform more

poorly under P3, the log-normal distribution, which is likely due to the fact that this is a

highly skewed distribution compared to the normal and skew-normal distributions. The tests

for the main effect of factor B were more sensitive than the tests for the effect of interaction.
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Design Hyp
P1 P2 P3

Σ1 Σ2 Σ3 Σ1 Σ2 Σ3 Σ1 Σ2 Σ3

ARMU H0 0.0505 0.0465 0.0396 0.0543 0.0568 0.0400 0.0272 0.0362 0.0194
A1 0.0510 0.0447 0.0387 0.0520 0.0530 0.0411 0.0286 0.0321 0.0206
A2 0.0532 0.0483 0.0444 0.0506 0.0484 0.0468 0.0247 0.0307 0.0183
A3 0.0879 0.0628 0.0583 0.0733 0.0495 0.0663 0.0247 0.0236 0.0214
A4 0.1753 0.1116 0.0871 0.1735 0.0743 0.1331 0.0312 0.0231 0.0244
A5 0.3954 0.2234 0.1662 0.4223 0.1356 0.2827 0.0322 0.0235 0.0261
A6 0.9263 0.6534 0.5117 0.9757 0.6011 0.7817 0.0564 0.0259 0.0480
A7 0.9999 0.9744 0.8918 1 0.9810 0.9910 0.1168 0.0379 0.0898
A8 1 1 0.9999 1 1 1 0.5142 0.1454 0.3146
A9 1 1 1 1 1 1 0.9271 0.4873 0.7079

RMA H0 0.1044 0.0975 0.0528 0.1278 0.1455 0.0442 0.1331 0.1481 0.0508
A1 0.1152 0.1007 0.0506 0.1219 0.1158 0.0512 0.1270 0.1360 0.0527
A2 0.1313 0.1101 0.0565 0.1191 0.1008 0.0575 0.1182 0.1260 0.0527
A3 0.2054 0.1522 0.0828 0.1899 0.1099 0.1023 0.1125 0.1055 0.0602
A4 0.3886 0.2538 0.144 0.3681 0.1645 0.2052 0.1235 0.0993 0.0660
A5 0.6520 0.4093 0.2512 0.6848 0.3015 0.4057 0.1362 0.1012 0.0808
A6 0.9848 0.8540 0.6488 0.9968 0.8123 0.8787 0.2117 0.1135 0.1247
A7 1 0.9955 0.9463 1 0.9977 0.9978 0.3716 0.1615 0.2111
A8 1 1 1 1 1 1 0.8432 0.4020 0.5518
A9 1 1 1 1 1 1 0.9957 0.8132 0.8970

Table 3.7: Effect of factor B : Simulated powers for the test (time effect) with statistic T ∗β
(ARMU) and the corresponding traditional RM-ANOVA F -statistic (RMA, from Davis [16])
when sampling from the normal (P1), skew-normal (P2), and log-normal (P3) distributions
under the three covariance structures Σ1, Σ2 and Σ3, for the group structure N1, and for
b = 100. Results are for multiple alternative hypotheses Ai.

Design Hyp
P1 P2 P3

Σ1 Σ2 Σ3 Σ1 Σ2 Σ3 Σ1 Σ2 Σ3

ARMU H0 0.0521 0.0478 0.0438 0.0493 0.0476 0.0421 0.0235 0.0217 0.0192
A1 0.0520 0.0492 0.0438 0.0476 0.0470 0.0449 0.0244 0.0225 0.0181
A2 0.0486 0.0465 0.0431 0.0497 0.0468 0.0415 0.0205 0.0227 0.0184
A3 0.0530 0.0457 0.0435 0.0529 0.0450 0.0436 0.0237 0.0220 0.0181
A4 0.0512 0.0469 0.0404 0.0562 0.0531 0.0448 0.0239 0.0237 0.0206
A5 0.0519 0.0517 0.0474 0.0626 0.0548 0.0443 0.0200 0.0231 0.0194
A6 0.0744 0.0581 0.0479 0.0988 0.0691 0.0562 0.0262 0.0228 0.0226
A7 0.1113 0.0754 0.0642 0.1837 0.1029 0.0836 0.0284 0.0276 0.0204
A8 0.3365 0.1739 0.1349 0.5839 0.3152 0.2303 0.0388 0.0304 0.0253
A9 0.7344 0.4173 0.3033 0.9512 0.7083 0.5400 0.0611 0.0431 0.0293

RMA H0 0.1166 0.1029 0.0514 0.1155 0.0925 0.0516 0.1239 0.1136 0.0808
A1 0.1131 0.1020 0.0496 0.1134 0.0973 0.0540 0.1300 0.1164 0.0790
A2 0.1107 0.1003 0.0537 0.1079 0.0918 0.0515 0.1287 0.1146 0.0751
A3 0.1203 0.0996 0.0506 0.1203 0.1040 0.0503 0.1288 0.1141 0.0775
A4 0.1214 0.1004 0.0499 0.1223 0.1040 0.0568 0.1302 0.1148 0.0775
A5 0.1242 0.1100 0.0591 0.1289 0.1080 0.0539 0.1337 0.1128 0.0761
A6 0.1456 0.1143 0.0634 0.1586 0.1221 0.0644 0.1367 0.1159 0.0803
A7 0.1708 0.1283 0.0727 0.2112 0.1507 0.0764 0.1347 0.1295 0.0827
A8 0.2777 0.1810 0.1010 0.3938 0.2478 0.1248 0.1563 0.1363 0.0884
A9 0.4691 0.2991 0.1523 0.6792 0.4323 0.2442 0.1827 0.1462 0.0915

Table 3.8: Effect of interaction between factors A and B : Simulated powers for the test with
statistic T ∗γ (ARMU) and the corresponding traditional RM-ANOVA F -statistic (RMA, from
Davis [16]) when sampling from the normal (P1), skew-normal (P2), and log-normal (P3)
distributions under the three covariance structures Σ1, Σ2 and Σ3, for the group structure
N1, and for b = 100. Results are for multiple alternative hypotheses Ai.
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Design Hyp
P1 P2 P3

Σ1 Σ2 Σ3 Σ1 Σ2 Σ3 Σ1 Σ2 Σ3

ARMU H0 0.0483 0.0509 0.0539 0.0507 0.0511 0.0492 0.0477 0.0477 0.0456
A1 0.2836 0.1476 0.2255 0.4060 0.2001 0.3103 0.0906 0.0750 0.0770
A2 0.9696 0.7062 0.9138 0.9975 0.8816 0.9830 0.3833 0.1949 0.2970
A3 1 0.9995 1 1 1 1 0.9403 0.6496 0.8564
A4 1 1 1 1 1 1 0.9991 0.9468 0.9949
A5 1 1 1 1 1 1 1 0.9973 0.9998
A6 1 1 1 1 1 1 1 1 1
A7 1 1 1 1 1 1 1 1 1
A8 1 1 1 1 1 1 1 1 1
A9 1 1 1 1 1 1 1 1 1

RMA H0 0.0488 0.0481 0.0494 0.0495 0.0515 0.0504 0.0483 0.0482 0.0485
A1 0.2862 0.1524 0.2228 0.4066 0.1990 0.3086 0.0948 0.0685 0.0810
A2 0.9695 0.7099 0.9055 0.9968 0.8764 0.9819 0.3846 0.1828 0.2962
A3 1 0.9999 1 1 1 1 0.9415 0.6411 0.8538
A4 1 1 1 1 1 1 0.9994 0.9519 0.9950
A5 1 1 1 1 1 1 1 0.9977 0.9999
A6 1 1 1 1 1 1 1 0.9999 1
A7 1 1 1 1 1 1 1 1 1
A8 1 1 1 1 1 1 1 1 1
A9 1 1 1 1 1 1 1 1 1

Table 3.9: Effect of factor A: Simulated powers for the test (group effect) with statistic F ∗α
(ARMU) and the corresponding traditional RM-ANOVA F -statistic (RMA, from Davis [16])
when sampling from the normal (P1), skew-normal (P2), and log-normal (P3) distributions
under the three covariance structures Σ1, Σ2 and Σ3, for the group structure N1, and for
b = 100. Results are for multiple alternative hypotheses Ai.



Chapter 4

Inference for Large Number of

Repeated Measures: Multivariate

Case

4.1 Introduction

In many experimental or observational studies, multiple outcome variables are observed from

each subject repeatedly. The subjects are often grouped according to the treatment they

received or the experimental conditions to which they were subjected. Sometimes the grouping

occurs due to a natural phenomenon, such as the sex of the subject, and other times the

grouping is imposed by the researcher. These data may be generated by longitudinal studies

or crossover designs, among others, and are the natural multivariate extension to the univariate

case presented in Chapter 2. Some authors refer to this as doubly multivariate data analysis

[9], [43]. In keeping with previous chapters, we will refer to such analysis as repeated measures

multivariate analysis of variance, or repeated measures MANOVA or RM-MANOVA for short.

73
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One strategy for analyzing multivariate repeated measures data, in particular when the

outcomes can be labeled as primary, secondary, and so forth (based on the advice of the

researcher), is to analyze each outcome variable separately using readily available longitudinal

data analysis methods [18], [44]. This approach has one major pitfall, however, in that it

completely ignores the covariance structure across the outcome variables which can lead to

invalid inference. Another approach is to conduct a univariate analysis only after establishing

multivariate significance [36].

The most commonly encountered multivariate repeated measures data can be viewed as

arising from a two-factor crossed design. This is merely an extension of the univariate case

save that the responses are now random vectors rather than random variables. Taking the

analog of the univariate case, let Xijk be independent, p × 1 random vectors with mean

µij = E (Xijk), for i = 1, . . . , a; j = 1, . . . , b; and k = 1, . . . , ni. When listed individually, let

X
(h)
ijk be the hth response variable from the kth subject treated with the ith level of factor A and

the jth level of factor B, for h = 1 . . . , p. The usual setting gives the interpretation that Xijk

is the vector of responses from the kth subject in the ith group at the jth time point. Assume

the mean vectors µij = E (Xijk) admit the decomposition µij = µ+αi +βj +γij , where the

unknown vectors of constants µ, αi, βj , and γij correspond to the overall mean, the main

effects of the ith level of factor A, the main effects of the jth level of factor B, and the interaction

effects of the ith level of factor A and the jth level of factor B, respectively. The interaction

effect will be denoted by Γ. As usual, these shall be subject to the identifiability restrictions,

or sum-to-zero constraints,
∑

iαi =
∑

j βj =
∑

i γij =
∑

j γij = 0. An essential aspect of

this model is that Xijk and Xi′j′k′ are assumed to be independent only if i 6= i′ or k 6= k′ since

observations are correlated through time. More specifically, defining εijk = Xijk − µij , we

consider εi1k, εi2k, . . . to be a sequence of dependent random vectors. Consequently, a matrix

of correlated observations is made per subject.

The primary hypotheses of interest are

(i) H(B)
0 : βj = 0 for j = 1, . . . , b;
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(ii) H(Γ)
0 : γij = 0 for i = 1, . . . , a and j = 1, . . . , b; and

(iii) H(A)
0 : αi = 0 for i = 1, . . . , a.

These null hypotheses correspond to no main effects of factor B, no interaction effects of level

of factor A and levels of factor B, and no main effects of factor A, respectively. As in the

univariate case, the asymptotic framework to be considered is that the number of levels of

one of the factors, namely factor B, is large (tends to infinity) but that the number of levels

of the other factor and the sample sizes within the levels of factors A and B remain fixed. See

Harrar and Bathke [26] for a similar asymptotic framework.

There are two commonly used approaches for modeling multivariate repeated measures.

These approaches are identified as the Doubly Multivariate Model (DMM) and the Multivari-

ate Mixed Model (MMM) [26]. These two approaches differ in the way covariance over time

is modeled. In a MMM, random effects are used to model the covariance in a way analogous

to the univariate mixed model and the hypotheses of interest can be formulated as linear hy-

potheses. On the other hand, a DMM stacks the multivariate repeated observations from the

same subject to form a vector of observations. Then the hypotheses of interest are formulated

as general linear hypotheses. While a MMM inherently imposes a structure on the covariance

over time, a DMM allows the most general structure for the covariance. For detailed accounts

of these two approaches, the reader is advised to consult Timm [43] and Boik [9].

Some advances have been made for the DMM in the past decade, assuming normality and

assuming the covariance matrix of the vector of observations per subject admits a Kronecker

product structure; i.e., the covariance of the vector

[
X ′i1k · · · X ′ibk

]′
is assumed to have

the form Ψ⊗Σ, where Ψ and Σ are b×b and p×p, respectively, and both are positive definite

matrices. Assuming independence across subjects and multivariate normality for the vector

of observations from each subject, Naik and Rao [34] proposed various tests for the three hy-

potheses of interest in a multivariate repeated measures design. Under similar assumptions,

Srivastava et al. [42] recently have obtained likelihood-based results in the general multivari-

ate linear model setup. There are a few authors who have addressed the issue of testing the
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validity of a Kronecker product structure for the covariance matrix (see, for example, Mitchell

et al. [32], Lu and Zimmerman [30]).

To the best of our knowledge, no work has been done removing the assumption of normality.

In this chapter, we develop methods for testing the time, treatment and interaction effects for

the multivariate repeated measures design for the unstructured covariance matrix case under

general assumptions on the underlying distribution generating the data. The reduction of the

results to the special case of a Kronecker product-type covariance structure will be indicated

later as appropriate. Another important contribution of this chapter is that it proposes modi-

fied versions of some multivariate test statistics, and their null distributions are derived for the

situation when the dimension of the vector of observations per subject tends to infinity but

replication size per group is limited. While this is similar to the univariate results from Chap-

ter 2, here the scope of the problem is broadened by removing the assumption of stationarity.

Similar asymptotic frameworks in a two-way cross classified layout have been considered by

Gupta et. al. [22], Bathke and Harrar [4], and Harrar and Bathke [26]. However, the present

work differs from these in important ways. In all three cases it is assumed that the observa-

tions under two different levels of factor B (the time factor in this case) are independent. The

test statistics considered in the present work take the dependence into account. Furthermore,

the derivation of the results in the face of dependence across the levels of factor B is much

more involved.

Methods for high-dimensional analysis have become increasingly popular due to the type

and amount of data arising in the present day. Recently, high throughput diagnostics and

biotechnological advancements such as fMRI and microarrays have produced vast amounts of

data to be analyzed [26], [24]. There are also agricultural and health sciences applications

needing new methods for analyzing multivariate data [10], [1]. In many such scenarios, the

number of levels of one factor is very large, but the sample size is often limited due to cost

or availability. For instance, Holden et. al [27] explore climate data in which high and low

temperatures are recorded daily for a long period of time across many sites in Montana. The

number of independent data collection sites is limited due to terrain. Microarrays are another
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example in which sample sizes become limited as they are monetarily expensive to collect

Furthermore, it may be unreasonable to assume a specific covariance structure or underlying

distribution for the data. The new methods in this chapter address both of these possible

limitations. Many current multivariate techniques assume a specific covariance structure, an

underlying normal distribution, or availability of a large number of replications [36], [28].

The remainder of this chapter will have the following organization. Section 4.2 will in-

clude some background lemmas and concepts necessary for multivariate computations. Also

included in Section 4.2 will be a brief account of a fairly weak dependence structure to be

assumed and a central limit theorem needed to prove the main theorems in later sections.

Section 4.3 will define the sum of squares matrices used to calculate the test statistics in both

their intuitive and more tractable forms, the latter being akin to the univariate quadratic

forms, and hence hereafter referred to as matrix quadratic forms. The test statistics will also

be included here. Section 4.4 will contain a discussion of the asymptotic null distributions of

the test statistics, which are the main results of this work. Section 4.5 will present a simula-

tion study, and Section 4.6 will give reductions to certain results under some specific, known

structures.

4.2 Preliminaries

In proving the main results of the dissertation, we need to compute the first and second

moments of matrix quadratic forms. To aid these calculations, we establish some formulas in

the following propositions.

Proposition 4.2.1. Let X =

[
X1 · · · Xb

]
, where Xj =

[
X1j · · · Xnj

]
and

Xij =

[
X

(1)
ij · · · X

(p)
ij

]′
. Assume that Xij and Xi′j′ are independent for i 6= i′ and

E
(∣∣∣X(r1)

ij X
(r2)
ij′ X

(r3)
il X

(r4)
il′

∣∣∣) < ∞ for j, j′, l, l′ = 1, . . . , b and r1, r2, r3, r4 = 1, . . . , p. Further

assume E (X) = M and Cov
(
Xij ,Xij′

)
= Σjj′, which is p× p. Let A be an (n · b)× (n · b)
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symmetric matrix of constants such that A is a block partitioned matrix with Ajj′ being the

n× n submatrices in the (j, j′)th blocks of A. Then

E
(
XAX ′

)
=

 b∑
j,j′=1

n∑
i=1

ajj′iiΣjj′

+MAM ′, (4.1)

where ajj′ii′ is the (i, i′)th element of the (j, j′)th block Ajj′ of A.

Further, let B, Bjj′, and bjj′ii′ be defined similarly to A, Ajj′, and ajj′ii′, respectively.

Then

E
[
vec
(
XAX ′

)
vec
(
XBX ′

)′]
=

b∑
j,j′,l,l′

{
n∑
i=1

E
[
vec
(
XijX

′
ij′
)

vec
(
XilX

′
il′
)′]

ajj′iibll′ii

+ vec
(
Σjj′

)
vec (Σll′)

′
n∑
i 6=i′

ajj′iibll′i′i′

+ vec (Σjl) vec
(
Σj′l′

)′ n∑
i 6=i′

ajj′ii′bll′ii′ + vec
(
Σjl′

)
vec
(
Σj′l

)′ n∑
i 6=i′

ajj′ii′bll′i′i

}
. (4.2)

Proof: Let µij = E (Xij). Observe,

E
(
XAX ′

)
= E

 b∑
j,j′=1

XjAjj′Xj′


=

n∑
i,i′=1

b∑
j,j′=1

ajj′ii′E
(
XijX

′
i′j′
)

=

n∑
i,i′=1

b∑
j,j′=1

ajj′ii′
[
Cov

(
Xij ,Xi′j′

)
+ µijµ

′
i′j′
]

=

 n∑
i=1

b∑
j,j′=1

ajj′iiΣjj′

+

 n∑
i,i′=1

b∑
j,j′=1

ajj′ii′µijµ
′
i′j′


=

 b∑
j,j′=1

n∑
i=1

ajj′iiΣjj′

+ E
(
MAM ′)

=

 b∑
j,j′=1

n∑
i=1

ajj′iiΣjj′

+MAM ′.
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Notice that the fourth equality is justified by the assumption of independence of Xij and

Xi′j′ for i 6= i′.

To prove (4.2), observe,

E
[
vec
(
XAX ′

)
vec
(
XBX ′

)′]
= E

vec

 b∑
j,j′=1

n∑
i,i′=1

ajj′ii′XijX
′
i′j′

 vec

 b∑
l,l′=1

n∑
k,k′=1

bll′kk′XklX
′
k′l′

′
=

b∑
j,j′=1

n∑
i,i′=1

b∑
l,l′=1

n∑
k,k′=1

E
[
vec
(
XijX

′
i′j′
)

vec
(
XklX

′
k′l′
)
ajj′ii′bll′kk′

]
=

b∑
j,j′,l,l′=1

{
n∑
i=1

E
[
vec
(
XijX

′
ij′
)

vec
(
XilX

′
il′
)]
ajj′iibll′ii

+
n∑
i 6=i′

E
[
vec
(
XijX

′
ij′
)

vec
(
Xi′lX

′
i′l′
)]
ajj′iibll′i′i′

+
n∑
i 6=i′

E
[
vec
(
XijX

′
il

)
vec
(
Xi′j′X

′
i′l′
)]
ajj′ii′bll′ii′

+
n∑
i 6=i′

E
[
vec
(
XijX

′
il′
)

vec
(
Xi′j′X

′
i′l

)]
ajj′ii′bll′i′i

}

=

b∑
j,j′,l,l′=1

{
n∑
i=1

E
[
vec
(
XijX

′
ij′
)

vec
(
XilX

′
il′
)′]

ajj′iibll′ii

+ vec
(
Σjj′

)
vec (Σll′)

′
n∑
i 6=i′

ajj′iibll′i′i′ + vec (Σjl) vec
(
Σj′l′

)′ n∑
i 6=i′

ajj′ii′bll′ii′

+ vec
(
Σjl′

)
vec
(
Σj′l

)′ n∑
i 6=i′

ajj′ii′bll′i′i

}
.

Note that the indices i, i′, k, and k′ are reduced to i and i′ with multiple summations; this

aids in recognizing the similarities between the terms in the final expression.

It is noteworthy that the first term in the RHS of (4.2) involves fourth moments, which have

the potential to cause difficulties. However, it is equally noteworthy that this term will vanish

if the diagonals of the blocks of either A or B are filled with zeros. This is indeed the case in
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the asymptotic results presented later.

In Theorems 4.4.7 and 4.4.12, we establish the asymptotic distribution of the test statistics

under the large number of repeated measures asymptotic framework. The central idea in the

proofs is to decompose the test statistics into a sum of dependent matrix quadratic forms

and an asymptotically negligible component. This is similar to the idea in the univariate case

given in Corollary 2.2.7, (2.16), and Theorem 2.4.11. Then a CLT for dependent vectors will

be applied on the former, non-negligible component. The CLT for dependent random vectors

used in this paper requires asymptotic independence of the past and future observations when

the separation is great enough.

Definition 4.2.2 gives a notion of weak dependence for a sequence of random vectors. It is

the analogous extension to α-mixing for a sequence of random variables given in Definition

2.4.4.

Definition 4.2.2. Suppose (Ω,F , P ) is a probability space and let A and B be sub-σ-algebras

of F . Define the dependence coefficient α̃ by

α̃(A,B) = sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)|

as a measure of dependence between A and B. For a sequence of random vectors {Xt}, let

Fba := σ(Xa,Xa+1, . . . ,Xb) be the σ-algebra generated by Xa+1, . . . ,Xa+b and define

α(m) = sup
k∈Z

α̃
(
Fk−∞,F∞k+m

)
.

Then the sequence {Xt} is said to be α-mixing with αX (m) if αX (m)→ 0 as m→∞.

Notice that the quantity α(m) measures how much dependence exists between observations

separated by at least m periods.

The following CLT for α-mixing sequences of random variables (with p = 1) is due to White

and Domowitz [46]. The extension to p > 1 is straightforward by the Cramer-Wold device

[15].
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Theorem 4.2.3 (White and Domowitz, 1984). Let Z1, Z2, . . . , be an α-mixing sequence of

random variables with E (Zj) = 0. Assume

(i) there exists V 2 ∈ (0,∞) such that E
(
Tk(n)2

)
− V 2 → 0 as n → ∞, uniformly in k,

where Tk(n) = n−1/2
∑k+n

j=k+1 Zj;

(ii) E
(
|Zj |2r

)
≤ ∆ <∞ ∀ j and some r > 1; and

(iii) α(m) = O
(
m−λ

)
for some λ > r/(r − 1).

Then (nV 2)−1/2
∑n

j=1 Zj
D−→ N(0, 1) as n→∞.

Theorem 4.2.3 was originally proved by Serfling [39] under some restrictions on the depen-

dence which are not quite intuitive. White and Domowitz [46] have shown that the Theorem

holds true under the α-mixing dependence structure, which is much more intuitive. In com-

parison to the CLT from Billingsley [8], this one requires fewer assumptions. More precisely,

stationarity and existence of higher moments are not needed.

4.3 Sums of Squares and Test Statistics

4.3.1 Sums of Squares

Analogous to the univariate case in Chapter 2, where now we consider the p×1 random vector

Xijk rather than the random variable Xijk, for n =
∑a

i=1 ni, let

X̃ ··· =
1

ab

a∑
i=1

b∑
j=1

1

ni

ni∑
k=1

Xijk,

X ··· =
1

nb

a∑
i=1

b∑
j=1

ni∑
k=1

Xijk,

X̃i·· = Xi·· =
1

bni

b∑
j=1

ni∑
k=1

Xijk,
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X̃ ·j· =
1

a

a∑
i=1

1

ni

ni∑
k=1

Xijk,

Xij· =
1

ni

ni∑
k=1

Xijk, and

Xi·k =
1

b

b∑
j=1

Xijk. (4.3)

The multivariate analog to (2.2) allows us to define the hypothesis sums of squares and

cross products (SSCP) matrices for the main effects of factor B and the interaction effect Γ,

respectively, by

H(B) :=
1

b− 1

a∑
i=1

b∑
j=1

(
X̃ ·j· − X̃ ···

)(
X̃ ·j· − X̃ ···

)′
and (4.4)

H(Γ) :=
1

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(
Xij· − X̃i·· − X̃ ·j· + X̃ ···

)(
Xij· − X̃i·· − X̃ ·j· + X̃ ···

)′
,

(4.5)

and the within subjects error SSCP matrices by

G(B) :=
1

a(b− 1)

a∑
i=1

b∑
j=1

1

ni(ni − 1)

×
ni∑
k=1

(
Xijk −Xij· −Xi·k − X̃i··

)(
Xijk −Xij· −Xi·k − X̃i··

)′
, (4.6)

where G(Γ) = G(B). Note that for concise notation we will write, for example, H(φ) or G(φ),

where φ ∈ {B,Γ, A}, depending on the scenario; B is used for factor B, Γ for the interaction,

and A for factor A. Similar notation will also be utilized elsewhere.

These are different from the usual SSCP matrices to account for the unbalanced nature

of the levels in factor A. Using these, we define hypothesis SSCP matrices and the within

subjects error SSCP matrices for the main effect of factor B and the interaction, and then for

the main effects of factor A. The justification for this is analogous to that given in Section
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2.2.1.

Given no interaction effects, the hypothesis of no main effects H(A)
0 is equivalent to testing

H0 : µ̄1· = . . . = µ̄a·. This later hypothesis suggests that it will be reasonable to conduct

one-way MANOVA on the n means X1·1, . . . ,X1·n1 , . . . ,Xa·1, . . . ,Xa·na . In view of this, the

between and within group SSCP matrices for testing the effects of factor A become

H(A) :=
a∑
i=1

b∑
j=1

ni

(
Xi·· − X̃ ···

)(
Xi·· − X̃ ···

)′
(4.7)

and

G(A) :=
a∑
i=1

b∑
j=1

ni∑
k=1

(
Xi·k −Xi··

) (
Xi·k −Xi··

)′
, (4.8)

respectively. All of the SSCP matrices given above are invariant to translation; i.e., they are

invariant to adding a constant to all observations. Therefore, we can assume without loss of

generality that µ = 0.

Since the SSCP matrices H(φ) and G(φ) are directly analogous to the univariate case, we

have the following proposition above the matrix quadratic forms of H(φ) and G(φ). First, let

X have the following organization. Let

X =

[
X1 · · · Xb

]
; Xj =

[
X1j · · · Xaj

]
; Xij =

[
Xij1 · · · Xijni

]
. (4.9)

Also, define X̃ by

X̃ =

[
X1·1 · · · X1·n1 · · · Xa·1 · · · Xa·na

]
. (4.10)

Proposition 4.3.1. We can rewrite H(φ) and G(φ), for φ ∈ {B,Γ, A}, as the following.

H(B) =
1

a(b− 1)
X

(
P b ⊗

[(
a⊕
i=1

1

ni
1ni

)
Ja

(
a⊕
i=1

1

ni
1′ni

)])
X ′;

H(Γ) =
1

(a− 1)(b− 1)
X

(
P b ⊗

[(
a⊕
i=1

1

ni
1ni

)
P a

(
a⊕
i=1

1

ni
1′ni

)])
X ′;
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G(B) = G(Γ) =
1

a(b− 1)
X

(
P b ⊗

(
a⊕
i=1

1

ni(ni − 1)
P ni

))
X ′;

H(A) =
(√

bX̃
)( a⊕

i=1

1

ni
Jni −

1

n
Jn

)(√
bX̃
)′

;

G(A) =
(√

bX̃
)( a⊕

i=1

P ni

)(√
bX̃
)′
. (4.11)

Proof: These results are obtained by straightforward extensions of (2.4) and (2.31), where

p = 1, to the case where p > 1.

Analogous to the univariate case, we will wish to display these matrix quadratic forms more

succinctly. Thus, for φ ∈ {B,Γ}, we define C
(φ)
H and C

(φ)
G so that we can write

H(φ) = X

(
1

b− 1
P b ⊗C

(φ)
H

)
X ′ and G(φ) = X

(
1

b− 1
P b ⊗C

(φ)
G

)
X ′. (4.12)

We further define C(φ) such that C(φ) = Cφ
H −C

(φ)
G .

4.3.2 Test Statistics

In order that the inference might be valid, we first wish to show that for each of H(B), H(Γ),

and H(A), the expected value under the corresponding null hypothesis is equal to that of

G(B), G(Γ), and G(A) up to a constant multiple for H(A), respectively. This is necessary so

that the tests of the hypotheses will detect departures from the null hypotheses. In fact, the

following result holds.

Proposition 4.3.2. E
(
H(φ)

)
= E

(
G(φ)

)
if and only if H(φ)

0 holds for each φ ∈ {B,Γ}, and

E
(
H(A)/(a− 1)

)
= E

(
G(A)/(n− a)

)
if and only if H(A)

0 holds.

Proof: This proof will be organized into two cases. The first case will consider the main

effect of factor B and the interaction effect Γ, or φ ∈ {B,Γ}; the second case will consider the
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main effect of factor A, or φ ∈ {A}.

Case 1: Since there are many similarities for φ = B and φ = Γ, we treat them together.

We begin by observing that we are under the general framework of Proposition 4.2.1. We let

E (X) = M , and denote µ̃·j· similar to X̃ ·j· as in (4.3), etc.

To show that E
(
H(φ)

)
= E

(
G(φ)

)
, we consider the difference in the two terms and show

that it is 0 if and only if the corresponding null hypothesis holds. We will show that the first

term of (4.1) vanishes since the submatrix block diagonals are zero, and then we will argue

that the second term can equal 0 if and only if the corresponding null hypothesis holds.

Observe that

E
(
H(φ)

)
− E

(
G(φ)

)
= E

[
X

(
1

b− 1
P b ⊗C(φ)

)
X ′
]
.

Now, recognize that C(φ) is simply C∗φE from (2.6), which has zero diagonals. There-

fore, the submatrix blocks of 1
b−1P b ⊗ C(φ) will have zero diagonals, and the first term in

E
[
X
(

1
b−1P b ⊗C(φ)

)
X ′
]

from Proposition 4.2.1 is 0.

It remains to show that M
(

1
b−1P b ⊗C(φ)

)
M ′ = 0 if and only if and only if H(φ)

0 holds.

Similar to (4.3), observe that we can write

µ̃··· =
1

ab

a∑
i=1

b∑
j=1

1

ni

ni∑
k=1

µij =
1

ab

a∑
i=1

b∑
j=1

(
µ+αi + βj + γij

)
= µ

and

µ̃·j· =
1

a

a∑
i=1

1

ni

ni∑
k=1

µij =
1

ab

a∑
i=1

(
µ+αi + βj + γij

)
= µ+ βj

due to the identifiability constraints. Then we see we can write

M

(
1

b− 1
P b ⊗C(B)

)
M ′ =

1

b− 1

a∑
i=1

b∑
j=1

(
µ̃·j· − µ̃···

) (
µ̃·j· − µ̃···

)′
=

1

b− 1

a∑
i=1

b∑
j=1

(
µ− βj − µ

) (
µ− βj − µ

)′
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=
1

b− 1

a∑
i=1

b∑
j=1

βjβ
′
j ,

which is clearly 0 if and only if βj = 0 ∀ j.

Similarly we see that

M

(
1

b− 1
P b ⊗C(Γ)

)
M ′

=
1

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(
µ̃ij· − µ̃i·· − µ̃·j· + µ̃···

) (
µ̃ij· − µ̃i·· − µ̃·j· + µ̃···

)′
=

1

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(
µ+αi + βj + γij − (µ+αi)− (µ+ βj) + µ

)
×
(
µ+αi + βj + γij − (µ+αi)− (µ+ βj) + µ

)′
=

1

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

γijγ
′
ij ,

which is clearly 0 if and only if γij = 0 ∀ i, j.

Since the null hypotheses are H(B)
0 : βj = 0 ∀ j and H(Γ)

0 : γij = 0 ∀ i, j, Case 1 is proved.

�

Case 2: Consider matrices AH and AG such that H(A)/(a− 1) = X̃AHX̃
′

and H(G)/(n−

a) = X̃AGX̃
′
, for X̃ defined in (4.10). For X̃ we have

µi· = E
(
Xi·k

)
=

1

b

b∑
j=1

(
µ+αi + βj + γij

)
= µ+αi

due to the identifiability constraints.

Let the ith column of X̃ be denoted X̃i. Furthermore, let Cov
(
X̃i, X̃i

)
be denoted by Ψ,

which is the same for all i. Using Proposition 4.2.1 with b = 1 for an appropriate general

matrix A, we can write

E
(
X̃AX̃

′)
=

n∑
i,i′=1

aii′
[
Cov

(
X̃i, X̃i′

)
+ µi·µ

′
i′·

]
.
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First, recognize that Cov
(
X̃i, X̃i′

)
= 0 when i 6= i′. With some slight manipulation of the

subscripts, we see that this simplifies to

E
(
X̃AX̃

′)
= Ψ

n∑
i=1

aii +
a∑

i,i′=1

ni∑
k=1

ni′∑
k′=1

akk′ii′µi·µ
′
i′·, (4.13)

where the two-subscript aii′ is the usual (i, i′)th element of A and the four-subscript notation

akk′ii′ is the (i, i′)th element of the (k, k′)th block ofA. (Note that the two-subscript notation is

simpler and therefore more preferable if permitted.) ForA = AH = b
(⊕a

i=1
1
ni
Jni − 1

nJn

)
/(a−

1), the first term of (4.13) is Ψb
(∑a

i=1
1
ni
ni − 1

nn
)
/(a − 1) = bΨ. Moreover, for A =

AG = b (
⊕a

i=1P ni) /(n − a), the first term of (4.13) is Ψb
(∑a

i=1

(
1− 1

ni

)
ni

)
/(n − a) =

bΨ (
∑a

i=1 ni − 1) /(n− a) = bΨ. Therefore, for A = AH −AG, the first term of (4.13) is 0.

To prove E
(
H(A)/(a− 1)

)
−E

(
G(A)/(n− a)

)
= 0 if and only if H(A)

0 holds, it remains to

show that for A = AH −AG the second term of (4.13) is 0 if and only if H(A)
0 holds. Clearly,

the elements akk′ii′ of A = AH −AG are not all zero. Observe that under H(A)
0 , we can write

µ+αi as µ+α1 for all i. The second term of (4.13) can be written as

a∑
i,i′=1

ni∑
k=1

ni′∑
k′=1

akk′ii′µi·µ
′
i′· =

a∑
i,i′=1

ni∑
k=1

ni′∑
k′=1

akk′ii′ (µ+αi) (µ+αi)
′ .

When H(A)
0 does not hold, this is not equal to 0 because the components after akk′ii′ cannot

be pulled out in front of the summation and will add non-zero portions to the sum.

Now consider when H(A)
0 does hold. In that case, we can pull out the (µ+α1) (µ+α1)′

in front of the summation since all αi are equal under H(A)
0 . Then the second term of (4.13)

becomes

(µ+α1) (µ+α1)′
a∑

i,i′=1

ni∑
k=1

ni′∑
k′=1

akk′ii′ .

Calculating this quantity reduces to summing all of the elements of A = AH − AG =[
b
(⊕a

i=1
1
ni
Jni − 1

nJn

)
/(a− 1)

]
−[b (

⊕a
i=1P ni) /(n− a)]. The sum of the elements of 1

ni
Jni

is ni, and the sum of the elements of 1
nJn is n. Also, the sum of the elements of Ini is ni; there-
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fore, the sum of the elements of P ni is 0. Considering each of the a2 blocks, the overall sum of

all of the elements of A = AH−AG would then become
∑a

i=1 ni−n+
∑a

i=1 0 = n−n−0 = 0.

Thus, for A = AH −AG, the second term of (4.13) is

(µ+α1) (µ+α1)′ · 0 = 0.

This completes the proof for Case 2. �

Considering the conclusion of Proposition 4.3.2, we can compare the hypothesis SSCP ma-

trices and the corresponding error SSCP matrices to obtain a meaningful test statistic. In

traditional MANOVA, there are a multitude of test statistics from which to choose [28]. None

of these statistics perform uniformly better than the others in the whole parameter space

[36]. For this chapter, we consider the four most commonly used test statistics, namely the

Dempster, Wilks’ Lambda (likelihood ratio, or LR), Lawley-Hotelling (LH), and Bartlett-

Nanda-Pillai (BNP) criteria. In what follows, we present the test statistics for the main

effects and interaction in a unified manner. For φ ∈ {B,Γ, A}, define

(a) Dempster’s ANOVA Type criterion: T
(φ)
D = tr

(
H(φ)

)
/tr
(
G(φ)

)
,

(b) Wilks’ Lambda (Likelihood Ratio) criterion: T
(φ)
WL = − log

(∣∣∣G(φ)
∣∣∣ / ∣∣∣H(φ) +G(φ)

∣∣∣),

(c) The Lawley-Hotelling criterion: T
(φ)
LH = tr

(
H(φ)

(
G(φ)

)−1
)

and

(d) The Bartlett-Nanda-Pillai criterion: T
(φ)
BNP = tr

(
H(φ)

(
H(φ) +G(φ)

)−1
)

.

Unlike the two-way cross classified design considered by Harrar and Bathke [26], the design

under consideration in this chapter requires the use of different error SSCP matrices for testing

the effects of factors A and B and the interaction between them.
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4.4 Asymptotic Distributions

The asymptotic setup is that the number of levels of one of the factors, namely B, is large

but the sample size and the number of levels of the other factor (A) remain fixed. Harrar and

Bathke considered a similar asymptotic framework, but their results are applicable only when

observations for different levels of factor B are independent [26]. In this asymptotic situation,

because of the dependence across the levels of factor B, the within error SSCP matrix used for

testing main effects of factor B and the interaction effects between factors A and B (labeled

Γ) differ from that used for testing the main effects of factor A. Consequently, the results will

be different and new. Furthermore, the derivations are more involved.

In the remainder of this section we obtain the asymptotic null distributions of the four test

statistics for testing the main and interaction effects. To facilitate a succinct presentation of

the results, we introduce the vectors of constants µ
(φ)
ij , defined as µ

(φ)
ij = βj , αi + βj , or αi

according as φ = B, Γ, or A. Since the results for testing H(B)
0 and H(Γ)

0 are similar in form

and their derivations proceed along the same lines, we group them under the same heading in

the following subsection.

4.4.1 Testing for the Main Effect of Factor B and the Interaction Effect

The following theorem gives a probability limit for G(B) as defined in (4.11).

Theorem 4.4.1. Assume that a; ni for i = 1, . . . , a; and p are bounded as b → ∞. Fur-

ther suppose that E
(∣∣∣X(r1)

ijk X
(r2)
ij′kX

(r3)
ilk X

(r4)
il′k

∣∣∣) < ∞ for j, j′, l, l′ = 1, . . . , b and r1, r2, r3, r4 =

1, . . . , p and that Xi1k,Xi2k, · · · is an α-mixing sequence with αX (m) = O(m−5). Define

Σ =
1

ab

a∑
i=1

1

ni

b∑
j=1

Σjj ,
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and assume Σ = O(1) as b→∞. Then

G(B) −Σ
p−→ 0p×p as b→∞.

Remark: Σ defined above is different than Σ from Chapter 2.

Proof: Recall that C
(B)
G =

a⊕
i=1

1
ni(ni−1)P ni . Since 1

b−1P b = 1
b−1Ib −

1
b(b−1)J b = 1

bIb −
1

b(b−1) (J b − Ib), we can write

G(B) =
1

ab
X
(
Ib ⊗C

(B)
G

)
X ′ − 1

ab(b− 1)
X
(

(J b − Ib)⊗C
(B)
G

)
X ′ (4.14)

Since J b−Ib has zero diagonals, it follows from Proposition 4.2.1 that the second term of (4.14)

is op(b
−1). Furthermore, since the sum of the diagonal elements of P ni is ni(1−1/ni) = ni−1,

we again appeal to Proposition 4.2.1 to see that

E

[
1

ab
X
(
Ib ⊗C

(B)
G

)
X ′
]

=
1

ab

a∑
i=1

b∑
j=1

1

ni
Σjj = Σ.

To complete the proof it remains to show that

Var

[
1

ab
X
(
Ib ⊗C

(B)
G

)
X ′
]
→ 0 as b→∞.

Observe that

Var

[
1

ab
X

(
Ib ⊗

(
a⊕
i=1

1

ni(ni − 1)
P ni

))
X ′

]
=

1

(ab)2

a∑
i=1

1

n2
i

b∑
j=1

Var

(
Xij

1

ni − 1
P niX

′
ij

)

+
1

(ab)2

a∑
i=1

1

n2
i

b∑
j 6=j′

Cov

(
Xij

1

ni − 1
P niX

′
ij ,Xij′

1

ni − 1
P niX

′
ij′

)
.
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It is obvious that the first term is of order O(b−1). Now we can see that

Cov

(
Xij

1

ni − 1
P niX

′
ij ,Xij′

1

ni − 1
P niX

′
ij′

)
= O

(
|j − j′|−5/2

)
, (4.15)

which follows by noting that, for each fixed i, the random sequence of matrices

{Xij
1

ni−1P niX
′
ij}∞j=1 is an α-mixing sequence with dependence coefficient αX (m) = O(m−5)

(see, for example, Theorem 5.2 of Bradley, p.126 [12]) and that the covariance decays at the

rate O(m−5/2) (see, for example, Lemma 3 of Billingsley, p.377 [8]). Summing (4.15) over the

indices from above, we see that

b∑
j 6=j′

Cov

(
Xij

1

ni − 1
P niX

′
ij ,Xij′

1

ni − 1
P niX

′
ij′

)
=

b∑
j 6=j′

O
(
|j − j′|−5/2

)

=

b∑
t=1

2(b− t)O
(
t−5/2

)
= O(b).

Thus, the second term is also of order O(b−1) and the result is proved.

We know from Theorem 4.4.1 that, under two technical assumptions, G(φ) −Σ = op(1) as

b → ∞, and it is established in Theorem 4.4.7 below that
√
b
(
H(φ) −G(φ)

)
Ω = Op(1) for

φ ∈ {B,Γ} as b→∞ and for any matrix of constants Ω. In view of these, the expansions

T
(φ)
D = 1 +

1√
b

[√
b tr

(
H(φ) −G(φ)

)
· 1

tr (Σ)

]
+ op(b

−1/2),

T
(φ)
WL = log

∣∣∣Ip +H(φ)G(φ)−1
∣∣∣

= p log 2 +
1

2
√
b

[√
b tr

(
H(φ) −G(φ)

)
Σ−1

]
+ op(b

−1/2),

T
(φ)
LH = p+

1√
b

[√
b tr

(
H(φ) −G(φ)

)
Σ−1

]
+ op(b

−1/2), and

T
(φ)
BNP = tr

(
H(φ)G(φ)−1

(
Ip +H(φ)G(φ)−1

)−1
)

= 2p+
1√
b

[√
b tr

(
H(φ) −G(φ)

)
Σ−1

]
+ op(b

−1/2) (4.16)
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can be easily verified [21]. According to these expansions, one can see that all four test

statistics, scaled and centered suitably, can be expressed as

√
b
(
` T

(φ)
G − q

)
=
√
b tr

[(
H(φ) −G(φ)

)
Ω
]

+ op(1), (4.17)

where ` = 1, 2, 1, 4; q = 1, 2p log 2, p, 2p; and G = D,WL,LH,BNP, respectively; and Ω =

Σ−1,Σ−1,Σ−1, [tr (Σ)]−1Ip, respectively [26]. In light of the expression (4.17), the null dis-

tributions of the four test statistics can be derived in a unified manner by obtaining the null

distribution of
√
b tr

[(
H(φ) −G(φ)

)
Ω
]

for any fixed matrix Ω. The null distribution of the

latter quantity is given in Theorem 4.4.7.

Before presenting the main theorem of the section, we begin by listing a few assumptions.

These are akin to the univariate assumptions needed for Theorem 2.4.11, save that we no

longer need stationarity (Assumption 2.4.2) but we do have to make an assumption regarding

the estimation of the second moment. Recall the notation Cov
(
Xijk,Xij′k

)
= Σjj′ .

Assumption 4.4.2. For each j, assume that the random vectors Xijk are independently

distributed with E (Xijk) = µ
(φ)
ij and Var (Xijk) = Σjj for i = 1, . . . , a and k = 1, . . . , ni.

Assumption 4.4.3.
[
tr
(∑b

j,j′=1 Σjj′Ω
)]2

= o(b3) as b→∞.

Assumption 4.4.4. For each (i, k), the sequence of random vectors Xi1k,Xi2k, · · · is an

α-mixing sequence with αX(m) = O(m−λ) with λ > r/(r − 1) for r as in Assumption 4.4.5.

Assumption 4.4.5. E
(
‖Σ−1/2

jj (Xijk − µ
(φ)
ij )‖4r

)
≤M <∞ for some r > 1.

Assumption 4.4.6. There exists η2(Ω) ∈ (0,∞) such that b−1
∑m+b

j,j′=m+1 tr
(
ΩΣjj′

)2 −
η2(Ω)→ 0 as b→∞, uniformly in m.

Assumption 4.4.2 is analogous to Assumption 2.2.1 and simply supposes independence be-

tween subjects. Assumption 4.4.3 is analogous to Assumption 2.2.6 and is necessary for the

convergence of the distribution; essentially, the variability must decrease sufficiently fast as the

lag increases so the second term in the difference of the SSCP matrices will converge to zero.
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Assumption 4.4.4 is analogous to Assumption 2.4.7 and supposes that the dependence among

the data decays sufficiently quickly. Assumption 4.4.5 is roughly analogous to Assumption

2.4.10 and is simply a moment condition ensuring the existence of the expectations used in the

proof of Theorem 4.4.7. Assumption 4.4.6 replaces the univariate assumption of stationarity.

In the univariate case, stationarity was needed to find a consistent estimator of the variance

of the test statistic. In the multivariate case, Assumption 4.4.6 drives at the same cause, and

is a rather technical assumption needed to appeal to the Theorem from White and Domowitz

[46]. In light of these assumptions, we can now present Theorem 4.4.7, the main result of this

chapter.

Theorem 4.4.7. Suppose that Assumptions 4.4.2, 4.4.5, 4.4.6, 4.4.4, and 4.4.3 hold. Then

√
b

τ2
φ(Ω)

tr
[(
H(φ) −G(φ)

)
Ω
]

D−→ Z as b→∞,

where Z ∼ N(0, 1) and

τ2
φ(Ω) =

2η2(Ω)

a2

 a∑
i=1

1

ni(ni − 1)
+ c(φ)

a∑
i 6=i′

1

nini′

 , c(B) = 1, and c(Γ) = (a− 1)−2.

Proof: Recall the convenient re-expressions of H(φ) and G(φ) from (4.12). Similar to the

method in (4.14) in the proof of Theorem 4.4.1, we can decompose the difference between

H(φ) and G(φ) as

H(φ) −G(φ) = X

[
1

b
Ib ⊗C(φ)

]
X ′ −X

[
1

b(b− 1)
(J b − Ib)⊗C(φ)

]
X ′, (4.18)

where

C(φ) =


1
a

(
a⊕
i=1

1
ni

1ni

)
Ja

(
a⊕
i=1

1
ni

1′ni

)
− 1

a

a⊕
i=1

1
ni(ni−1)P ni , if φ = B

1
a

(
a−1⊕
i=1

1
ni

1ni

)
P a

(
a⊕
i=1

1
ni

1′ni

)
− 1

a

a⊕
i=1

1
ni(ni−1)P ni , if φ = Γ

.
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Then,

√
b tr

[(
H(φ) −G(φ)

)
Ω
]

=
√
b
{

tr
[
X
(
Ib ⊗C(φ)

)
X ′Ω

]
− tr

[
X
(

(J b − Ib)⊗C(φ)
)
X ′Ω

]}
=

1√
b

b∑
j=1

Z
(φ)
j − 1√

b(b− 1)
tr
[
(X
(

(J b − Ib)⊗C(φ)
)
X ′Ω

]
,

(4.19)

where Z
(φ)
j = tr

(
XjC

(φ)X ′jΩ
)

.

Using Proposition 4.2, observe that

E
(

tr
[
X
(

(J b − Ib)⊗C(φ)
)
X ′Ω

])
= tr

(
E
[
X
(

(J b − Ib)⊗C(φ)
)
X ′Ω

])
= tr

(
E
[
X
(

(J b − Ib)⊗C(φ)
)
X ′
]

Ω
)

= tr (0 ·Ω)

= 0

and that

Var

(
1√

b(b− 1)
tr
[
X
(

(J b − Ib)⊗C(φ)
)
X ′Ω

])
=

1

b(b− 1)2
Var

(
vec (Ω)′ vec

[
X
(

(J b − Ib)⊗C(φ)
)
X ′
])

=
1

b(b− 1)2
vec (Ω)′Var

[
X
(

(J b − Ib)⊗C(φ)
)
X ′
]

vec (Ω)

=
1

b(b− 1)2
vec (Ω)′

×

 b∑
j,j′,l,l′=1

2

a2

 a∑
i=1

1

ni(ni − 1)
+ c(φ)

a∑
i 6=i′

1

nini′

 vec (Σjl) vec
(
Σj′l′

)′ vec (Ω)

=
1

b(b− 1)2

2

a2

 a∑
i=1

1

ni(ni − 1)
+ c(φ)

a∑
i 6=i′

1

nini′


×

 b∑
j,l=1

vec (Ω)′ vec (Σjl)
b∑

j′,l′=1

vec
(
Σj′l′

)′
vec (Ω)
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=
1

b(b− 1)2

2

a2

 a∑
i=1

1

ni(ni − 1)
+ c(φ)

a∑
i 6=i′

1

nini′

 b∑
j,l=1

tr (ΣjlΩ)

2

= o(b−4)o(b3)→ 0 as b→∞,

where the last equality is justified by Assumption 4.4.3.

Similarly, using Proposition 4.2 again, we see that

Var

 1√
b

m+b∑
j=m+1

Zφj

 =
2

a2b

 a∑
i=1

1

ni(ni − 1)
+ c(φ)

a∑
i 6=i′

1

nini′

 b∑
j,j′=1

tr
(
Σjj′Ω

)2

→ τ2
φ(Ω) as b→∞,

where the convergence is due to Assumption 4.4.6.

Now, the proof will be complete by appealing to Theorem 4.2.3 for the first term of (4.19) if

we show that assumptions (conditions) (i) and (ii) of the that theorem are satisfied. Condition

(i) holds by Assumption 4.4.6. For condition (ii), note that E

(∣∣∣Z(φ)
j

∣∣∣2r) is uniformly bounded

by Assumption 4.4.5 because

E

(∣∣∣Z(φ)
j

∣∣∣2r) ≤ Kr

[
max
i,k

E
(
‖Σ−1/2

jj (Xijk − µ
(φ)
ij )‖4r

)](
Var

(
Z

(φ)
j

))r
,

which follows from Lemma 3 in Appendix A of Harrar and Bathke [26], where Kr is a constant

that depends only on r.

Theorem 4.4.7 is essentially a multivariate CLT for dependent random vectors provided at

least the fourth mixed moments are bounded and the dependence is not so strong as to impede

the asymptotic framework. In other words, the dependence over time must decay fast enough,

and the dependence due to responses must be mild enough to allow for a consistent estimate

of the overall covariance in the responses across parameters.

As in the univariate case, if there is only one level of factor A, the test statistic, more

specifically τ2
Γ, is not defined. In this case, these is no need to test for interaction, yet we
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can still test for a main effect of factor B. This is the subject of the following discussion,

which we get quasi gratis from Theorem 4.4.7. In practice, we can think of this as testing for

level profiles over the levels of factor B (which is often time). The random vectors from each

subject would remain about the same in the case of no main effects of factor B. For example,

if climate measurements were taken over time but no grouping was present among the sites,

the values of the response vector for each site would remain roughly the same over time if

there were no main effects present.

Letting a = 1 and supposing Assumptions 4.4.2, 4.4.3, 4.4.4, 4.4.5, and 4.4.6 hold, we can

define

τ2
B =

2η2(Ω)

n(n− 1)
.

Then √
b

τ2
B(Ω)

tr
[(
H(B) −G(B)

)
Ω
]

D−→ N(0, 1) as b→∞.

4.4.2 Estimating the Asymptotic Variance

Since G(φ) − Σ
p−→ 0p×p as b → ∞ by Theorem 4.4.1, the null distributions of the four

multivariate test statistics can be obtained from Theorem 4.4.7 by choosing Ω suitably, as

mentioned after (4.17). For instance, the asymptotic null distributions of T
(φ)
D for φ ∈ {B,Γ}

are obtained by setting Ω to [tr (Σ)]−1Ip. For the other three test statistics, Ω needs to

be set to Σ−1 to get the asymptotic null distributions. However, to apply the theorem in

practice, one needs a consistent estimator of η2(Ω). Based on the idea of banding the empirical

covariance matrix [6], it seems reasonable to estimate the covariance by its empirical version.

For application, this would give

η̂2(Ω) =
1

b

 b∑
j=1

U(j,h)∑
j′=L(j,h)

tr
(
ΩΣ̂jj′

)2
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as an estimate of

η2(Ω) =
1

b

 b∑
j,j′=1

tr
(
ΩΣjj′

)2 ,

for some 0 < h < 1 where Σ̂jj′ = (n − a)−1
∑a

i=1(Xijk − Xij·)(Xij′k − Xij′·)
′, and the

quantities L(j, h) and U(j, h) are the integer parts of max{1, j − bh} and min{b, j + bh},

respectively. Consistency of a similar estimator for the univariate case under slightly stronger

moment conditions has already been proved. For details, see Wang and Akritras [45].

4.4.3 Testing for the Main Effects of Factor A

It is shown in Theorem 4.4.12 that H(A) and G(A) are asymptotically independent and each

has a central Wishart distribution. The theorem has the important implication that the

asymptotic distributions of our test statistics reduce to the well known distributions in mul-

tivariate statistical theory. Similar technical assumptions must first be made, given here.

Assumption 4.4.8. For each j, assume that the random vectors Xijk are independently

distributed with E (Xijk) = µ
(A)
ij and Var (Xijk) = Σjj for i = 1, . . . , a and k = 1, . . . , ni.

Assumption 4.4.9. For each (i, k), the sequence of random vectors Xi1k,Xi2k, · · · is an

α-mixing sequence with α(m) = O(m−λ) with λ > r/(r − 1) for r in Assumption 4.4.10.

Assumption 4.4.10. E
(
‖Xijk − µ

(A)
ij ‖2r

)
≤M <∞ for some r > 1.

Assumption 4.4.11. There exists a positive definite matrix, Γ, such that

b−1

(
m+b∑

j,j′=m+1

Σjj′ − Γ

)
→ 0 as b→∞, uniformly in m, where Σjj′ = Cov

(
X1j1,X1j′1

)
.

We can now state the theorem.

Theorem 4.4.12. Suppose that Assumptions 4.4.8, 4.4.9 , 4.4.10, and 4.4.11 hold. Then

b−1/2H(A) D−→Wp(a− 1,Γ) and b−1/2G(A) D−→Wp(n− a,Γ) as b→∞,
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where Wp(q,Ψ) stands for p × p Wishart distribution with degrees of freedom q and expected

value qΨ. Moreover, H(A) and G(A) are asymptotically independent as b→∞.

Proof: Recall the definition of X̃ from (4.10) and that we can write

H(A) =
(√

bX̃
)(⊕a

i=1
1
ni
Jni − 1

nJn

)(√
bX̃
)′

and G(A) =
(√

bX̃
)

(
⊕a

i=1P ni)
(√

bX̃
)′

. It

is clear that the columns of X̃ are mutually independent and, under Assumptions 4.4.10,

4.4.11, and 4.4.9, we have b−1/2Xi.k ∼MVNp,n(0, In,Γ) by the multivariate version of The-

orem 4.2.3, where, for a p × n random matrix, the notation X ∼ MVNp,n(M ,Ξ,Ψ) means

vec (X) has an np-variate normal distribution with mean vector vec (M) and covariance ma-

trix Ξ⊗Σ (see, for example, Gupta and Nagar [23]). That H(A) and G(A) are asymptotically

independent Wishart matrices follows by the matrix variate versions of Cochran’s Theorem

(see Gupta and Nagar [23], Fujikoshi et al. [21]).

Given the results of Theorem 4.4.12, the asymptotic null distributions of the T
(A)
D , T

(A)
WL , T

(A)
LH

and T
(A)
BNP statistics do not have closed forms except in some special cases [2]. Good approx-

imations based on F -distributions were proposed by Dempster [17], Rao [35], McKoen [31],

and Muller [33] for the Dempster’s, Wilks’-Lamda, Lawley-Hotelling’s and Bartlett-Nanda-

Pillai’s statistics, respectively (see also Bathke et al. [5]). It needs to be pointed out that the

approximation for Dempster’s criterion involves estimating the degrees of freedom from the

sample, and Wilks’ Lambda criteron is defined without a ”− log” in front of it.

4.5 Simulation Study

This section presents simulated size results for the asymptotic likelihood ratio test statistics.

For an assessment of the quality of the asymptotic distributions of the test statistics in The-

orems 4.4.7 and 4.4.12, we conducted a simulation study by generating data from multiple

distributions with various covariance structures due to factor B and sample sizes. In each of
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these, the dimensions p = 2 and p = 3, i.e., the number of response variables, were explored.

For each set of criteria, 1,000 simulations were run. The discussion below is restricted to the

Wilks’ Lambda criterion; this likelihood ratio test is very common in multivariate analysis,

and the scale of the simulation and discussion would be too lengthy for the scope of this

section.

4.5.1 Setup

The two distributions used to generate data for the simulation were the multivariate stan-

dard normal distribution (labeled P1 in the simulation); and the multivariate skew-normal

distribution with location vector 0, covariance matrix I, and skewing matrix I (P2). The

level of skewness is greater for the multivariate skew-normal distribution. We assume that

Σjj′ = Ψjj′Σ; i.e., the Kronecker product covariance structure Ψ ⊗ Σ is assumed for each

subject. Since the null distributions of the test statistics are invariant under the transforma-

tion X → ΣX, we can assume WLOG that Σ = I. The three covariance matrices due to

factor B (b× b in dimension) used will be labeled Σ1, Σ2, and Σ3 in the simulation. The first

follows an ARMA(2,2) process, which decays exponentially. The second follows polynomial

decay, and the (i, j)th element was given by ρ|i− j|−5/2, where ρ = 0.55. The third was given

by 1.5I. Note that this is identical to those used in Chapter 3, the difference here being that

the covariance for the matrix X in Section 4.1 also accounts for the covariance due to the p

response variables. Since it can be shown that the likelihood ratio test statistic is invariant

to the covariance matrix due to the response variables, we use the identity matrix; thus, we

have Cov (X) = Ψb×b ⊗ In ⊗ Ip.

Furthermore, two group structures were used, labeled N1 and N2. The first structure in-

cluded four groups, or a = 4, where the numbers of subjects in each group were n1 = 4,

n2 = 5, n3 = 6, and n4 = 7. The second structure included three groups, or a = 3, where the

number of subjects in each group were n1 = 10, n2 = 12, and n3 = 14. This is again identical

to Chapter 3.
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For each combination of distribution, covariance structure, and group structure, 1000 sim-

ulations were run for various values of b. The values of b were 10, 20, 50, and 100, the

limitations due to lengthy computing times. In each simulation the test statistics T
(B)
WL , T

(Γ)
WL,

and T
(A)
WL were computed. Each time, the statistic was compared to the 0.05 critical value for

its corresponding asymptotic distribution, and a decision to reject or fail to reject was made

according as the statistic was beyond or within the corresponding critical value. The average

number of rejections, which is the estimated actual (achieved) size of the test, is reported for

each case in Table 4.1. The estimated sizes for the test based on T
(B)
WL , which is the main of

effect of B (often a time effect), is given in a column labeled B. The results of the test for the

interaction effect, Γ, and the test for the main effect of A (often a group effect) are similarly

labeled Γ and A.

4.5.2 Results

The test for the main effect of factor A seems to be performing fairly well regardless of the

value of b. However, for smaller values of b the simulated sizes are a little more variable. For

instance, the simulated sizes range from 0.031 to 0.059 for b = 5 and from 0.032 to 0.070 for

b = 10, whereas they range from 0.027 to 0.049 for b = 50 and from 0.025 to 0.06 for b = 100.

These sizes seem to be very close to 0.05 throughout, which is the desired size of the test, and

there appears to be no strong pattern based on the other conditions of the simulation.

When looking at the simulated sizes for the effect of factor B and the interaction effect,

both tests show similar patterns. For all values of b and p, and under both populations and

all covariance structures, the simulated sizes under N1 are less than under N2. In general,

these simulated sizes seem a bit erratic, but acceptably small. For b = 10, the simulated sizes

range from 0.059 to 0.332 when p = 2 and from 0.097 to 0.395 when p = 3. For b = 20, the

simulated sizes range from 0.034 to 0.282 when p = 2 and from 0.052 to 0.301 when p = 3.

For b = 50, the simulated sizes range from 0.006 to 0.178 when p = 2 and from 0.020 to 0.217

when p = 3. For b = 100, the simulated sizes range from 0.001 to 0.098 when p = 2 and from
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0.002 to 0.136 when p = 3. We can see here that simulated sizes are consistently higher for

p = 3 than they are for p = 2.

Dim Pop Cov Samp
b = 10 b = 20 b = 50 b = 100

B Γ A B Γ A B Γ A B Γ A

p = 2 P1 Σ1 N1 0.095 0.126 0.050 0.064 0.095 0.054 0.027 0.025 0.046 0.006 0.008 0.045

N2 0.331 0.332 0.035 0.239 0.282 0.048 0.166 0.178 0.040 0.097 0.088 0.038
Σ2 N1 0.059 0.083 0.059 0.028 0.047 0.050 0.006 0.011 0.042 0.003 0.005 0.054

N2 0.271 0.271 0.046 0.181 0.199 0.036 0.090 0.088 0.041 0.056 0.054 0.043
Σ3 N1 0.096 0.089 0.047 0.054 0.040 0.051 0.006 0.010 0.047 0.006 0.002 0.052

N2 0.276 0.308 0.037 0.203 0.172 0.040 0.104 0.094 0.049 0.051 0.046 0.048

P2 Σ1 N1 0.109 0.130 0.046 0.063 0.080 0.070 0.023 0.024 0.049 0.008 0.013 0.045
N2 0.331 0.314 0.042 0.237 0.251 0.032 0.130 0.160 0.042 0.098 0.097 0.048

Σ2 N1 0.063 0.086 0.050 0.034 0.034 0.054 0.013 0.018 0.046 0.005 0.001 0.042
N2 0.247 0.269 0.048 0.199 0.185 0.043 0.114 0.085 0.042 0.066 0.036 0.045

Σ3 N1 0.097 0.074 0.043 0.050 0.055 0.042 0.012 0.004 0.042 0.003 0.002 0.060
N2 0.300 0.277 0.049 0.182 0.207 0.051 0.076 0.108 0.041 0.055 0.053 0.041

Dim Pop Cov Samp
b = 10 b = 20 b = 50 b = 100

B Γ A B Γ A B Γ A B Γ A

p = 3 P1 Σ1 N1 0.153 0.163 0.046 0.085 0.103 0.040 0.044 0.034 0.044 0.014 0.019 0.033

N2 0.395 0.377 0.038 0.300 0.299 0.031 0.217 0.211 0.048 0.136 0.140 0.034
Σ2 N1 0.097 0.105 0.039 0.052 0.063 0.033 0.024 0.027 0.039 0.009 0.005 0.037

N2 0.326 0.323 0.031 0.231 0.239 0.050 0.138 0.160 0.047 0.067 0.079 0.039
Σ3 N1 0.133 0.130 0.052 0.072 0.061 0.043 0.023 0.032 0.027 0.003 0.005 0.042

N2 0.350 0.335 0.029 0.252 0.265 0.038 0.142 0.144 0.035 0.081 0.085 0.029

P2 Σ1 N1 0.150 0.168 0.045 0.090 0.103 0.036 0.039 0.030 0.039 0.020 0.022 0.037
N2 0.372 0.385 0.041 0.301 0.292 0.037 0.191 0.202 0.045 0.131 0.146 0.043

Σ2 N1 0.097 0.117 0.047 0.062 0.080 0.041 0.021 0.028 0.036 0.004 0.011 0.025
N2 0.313 0.341 0.036 0.233 0.242 0.045 0.141 0.152 0.032 0.069 0.089 0.036

Σ3 N1 0.125 0.122 0.041 0.067 0.075 0.041 0.020 0.016 0.042 0.002 0.002 0.056
N2 0.346 0.368 0.042 0.226 0.263 0.041 0.137 0.130 0.042 0.073 0.073 0.044

Table 4.1: Multivariate simulated sizes for the (Wilks’ Lambda Likelihood Ratio) tests with

statistics T
(B)
WL (denoted by B), T

(Γ)
WL (denoted by Γ), and T

(A)
WL (denoted by A) when sampling

from the multivariate normal (P1) and multivariate skew-normal (P2) distributions under the
three covariance structures Σ1, Σ2 and Σ3, under the two group structures N1 and N2, and
for the dimensions p = 2 and p = 3. Results are for b = 10, b = 20, b = 50, and b = 100.

4.5.3 Discussion and Conclusion

In general, there does not seem to be a clear pattern differentiating the test for the effects

of factor B and the test for the interaction effects. It does seem that the tests are somewhat

more stable for p = 3 than for p = 2, as the simulated sizes do not drop as quickly. Most of

the extremely low simulated sizes (≤ 0.01) are under the Σ3 covariance structure, and this

matter warrants further investigation.

As multivariate analysis usually requires even greater dimension than univariate analysis
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to perform adequately, it is possible that the asymptotics are not adequately portrayed with

b only reaching 100. Also, some of the rather unusual values in Table 4.1 could possibly

be due to the relatively small number of simulations (1000). Both of these restrictions are

results of lengthy computing time. For larger values of b, each simulation can last up to three

minutes, so repetition across all criteria and for 1000 simulations severely limits the scope of

the simulation analysis. We give a strong recommendation for further research in this area. To

that end, the other common statistics from (4.16) could also be explored. In general, however,

the simulation study is promising for the Wilks’ Lambda criterion, as the simulated sizes are

relatively small and stabilizing as b increases; also, they seem to be moving toward a low value

as b increases, possibly near the critical value of 0.05. As expected, the results for the main

effect of factor A are more pleasing since the test statistics do not directly depend on the

value of b, rather vectors are first average over each value b, and then the usual multivariate

theory is applied.

4.6 Reductions under Specific Covariance Structures

This final section will present some basic corollaries to some of the results when certain co-

variance structures are assumed. Certain instances arise in which making certain assumptions

regarding the covariance structure of the data become beneficial or even intuitive. We consider

two such cases. In both cases, the number of parameters is greatly reduced. For instance,

given that each subject is independent, the covariance has
bp(bp+ 1)

2
unknown parameters,

which, when b tends to infinity, is a great number of parameters. Consider the following

covariance reductions:

(1) Cov (X) = Σ× In ×Ψ, and

(2) Cov (X) = Σ× In × Ip.
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In both cases, Σ is p × p as defined before, and Ψ is b × b. We see that reduction (1) only

has
b(b+ 1)

2
+
p(p+ 1)

2
unknown parameters and reduction (2) only has

b(b+ 1)

2
unknown

parameters, both of which are substantially less than
bp(bp+ 1)

2
.

In general, we can think of Σ as the covariance due to time or the repeated measure. We

can think of Ψ as the covariance due to the response variables. Consider reduction (1) and

recall that the responses from the subjects are assumed to be independent. Then, for the kth

subject in the ith level of factor A (the ith group), we would have

Cov

([
X ′i1k · · · X ′ibk

]′)
= Σ×Ψ.

Still considering only one subject, we can reduce X to X∗ and write

X∗ =

[
X(1) · · · X(b)

]
=


(X(1))′

...

(X(p))′

 ,

where X(j) is the vector of responses from the jth time point over the p variables and X(h)

is the vector of responses for the hth variable over the b time points. Then we see that

Cov
(
X(j),X(j′)

)
= σjj′Ψ and Cov

(
X(h),X(h′)

)
= ψhh′Σ. More practically, the two sources

of covariance are separated under reduction (1), which may be reasonable due to the specific

situation. Note that reduction (2) is merely a further simplification of reduction (1), so its

detail is not provided. The intuition behind reduction (2) is that there is no covariance

between the response variables. This assumption may provide nice simplification, but it will

often be unreasonable.

In light of these reductions, we can simplify some of the earlier results. (4.1) from Proposition

4.2.1 would reduce to

(1) E
(
XAX ′

)
= Σ

b∑
j,j′=1

n∑
i=1

ajj′iiψjj′ +MAM ′, and
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(2) E
(
XAX ′

)
= Ip

b∑
j,j′=1

n∑
i=1

ajj′iiψjj′ +MAM ′.

Moreover, (4.2) from Proposition 4.2.1 would reduce to

(1) E
[
vec
(
XAX ′

)
vec
(
XBX ′

)′]
= Σ

b∑
j,j′,l,l′

n∑
i=1

E
[
vec
(
XijX

′
ij′
)

vec
(
XilX

′
il′
)′]

ajj′iibll′ii

+ vec (Σ) vec (Σ)′
b∑

j,j′,l,l′

ψjj′ψll′ n∑
i 6=i′

ajj′iibll′i′i′

+ ψjlψj′l′
n∑
i 6=i′

ajj′iibll′i′i′ + ψjl′ψj′l

n∑
i 6=i′

ajj′iibll′i′i′

 .

In the case of reduction (2), vec (Ip) vec (Ip)
′ simply replaces vec (Σ) vec (Σ)′.

To find an estimate of the probability limit for G(B) as in Theorem 4.4.1, the reductions

would yield the following simplifications:

(1) E

[
1

ab
X
(
Ib ⊗C

(B)
G

)
X ′
]

=
1

ab
tr (Ψ) Σ

a∑
i=1

1

ni
, and

(2) E

[
1

ab
X
(
Ib ⊗C

(B)
G

)
X ′
]

=
1

ab
tr (Ψ) Ip

a∑
i=1

1

ni
.

Note that the Σ notation used in the case of reduction (1) has replaced the earlier notation

in the estimator.



Chapter 5

Application and Discussion

5.1 Introduction

This chapter serves to provide some practical examples, a summary overview, conclusions,

and a discussion of further research needed. Section 5.2 will give a detailed example from the

univariate framework as well as a brief example from the multivariate framework. Section

5.3 will include a broad overview of the work of the dissertation and provide ideas for further

areas of research.

5.2 Practical Examples

Let us first consider an example from the univariate case from Chapter 2. Han et al. [24] col-

lected data from three groups of subjects in a study exploring human proteins and Parkinson’s

disease. 29 subjects in the study had been diagnosed with Parkinson’s disease (Diseased), and

two control groups without the disease were considered. One control group was comprised

of 20 younger subjects (Control Young) and the other was comprised of 20 older subjects
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(Control Old); when only one control group is considered (Control), the young control group,

there are 20 subjects total. From each subject, a protein microarray, or protoarray, was col-

lected containing 9,480 relative fluorescent unit (RFU) signals indicating the presence and

abundance of human proteins. When considering all three groups, this study yields a = 3,

n1 = 29, n2 = 20, n3 = 20, and b = 9480; examining only the control groups to see if there is

any significant difference between control groups, this study yields a = 2, n1 = 20, n2 = 20,

and b = 9480.

In the first case, a group effect would indicate that the levels of the proteins are different

between the diseased and control group. A main effect of factor B would indicate the protein

levels differ across the microarray. An interaction effect would indicate that the level of the

proteins (or change therein) depends on the group, or presence of Parkinson’s disease. Detec-

tion of a significant interaction effect is the first step in the goal of identifying biomarkers, or

the proteins which may indicate the presence/absence of the disease. If there are no differences

between the diseased and control groups for different proteins, there is little justification to

put in extra expense to look for specific differences. When considering only the two control

groups, we are primarily interested in the group effects. No effect would indicate that the age

of the control group is irrelevant.

First, let us look at the following figures. Figure 5.1 gives average RFU signal response

values for the group diagnosed with Parkinson’s disease as well as the two control groups,

whereas Figure 5.2 plots only the two control groups. Average windows were taken across the

9,480 signals such that 30 values are reported (for ease of visualization). Figure 5.2 seems

to indicate that there is little difference in the RFU signals between the two control groups.

Figure 5.1 seems to show that there may be a difference in the three groups as the responses

for the diseased group seem greater than the other two.

The test statistics from Theorems 2.4.11 and 2.4.15 are calculated and given in Tables 5.1

and 5.2. Based on the corresponding asymptotic distributions, the p-values are also given.

Table 5.1 considers the case when all three groups were analyzed, whereas Table 5.2 compares
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Figure 5.1: Parkinson’s: Disease vs. Controls: RFU signal (protein) averages across the 9,480
responses, broken into 30 averages for visualization. Values for five random subjects for each
of the two groups are plotted and the diseased group are plotted.

Figure 5.2: Parkinson’s: Control vs. Control : RFU signal (protein) averages across the 9,480
responses, broken into 30 averages for visualization. Values for five random subjects for each
of the two control groups are plotted.

only the two control groups. We can see from the p-value of 0.1588 that there is no significant

difference in the control groups. Based on the p-value of 0.0001, we see that there is a

significant group effect when the diseased group is included. Both scenarios indicate that
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there are significant main effects for RFU signal response and the interaction between RFU

signal and group. This comes as no surprise based on Figures 5.1 and 5.2. If there were

no main effects for RFU signal response, we would expect the lines to be roughly flat. The

interaction effect is less pronounced in both cases, but still very present. This may be difficult

to judge in Figures 5.1 and 5.2 as they are plotting average RFU signals. At any rate, it

appears that further study to attempt to identify biomarkers would be warranted.

T ∗β T ∗γ F ∗α
Statistic 2637.36 48.48 10.69

p-value 0.0000 0.0000 0.0001

Table 5.1: Parkinson’s: Disease vs. Controls: Statistics and p-values for the tests of RFU sig-
nal (protein) main effect (T ∗β ), interaction effect (T ∗γ ), and group effect (F ∗α) when considering
the Diseased, Control Young, and Control Old groups.

T ∗β T ∗γ F ∗α
Statistic 1698.39 7.25 2.07

p-value 0.0000 0.0000 0.1588

Table 5.2: Parkinson’s: Control vs. Control : Statistics and p-values for the tests of RFU signal
(protein) main effect (T ∗β ), interaction effect (T ∗γ ), and group effect (F ∗α) when considering only
the Control Young and Control Old groups.

Now let us first consider briefly an example from the multivariate case. Holden et al. [27]

have collected climate data from the state of Montana over many years. In the interest of this

analysis, let us consider two response variables, the minimum and maximum temperature for

a day (so p = 2). The data were collected for multiple sites across Montana, and the sites

have been separated into two groups based on elevation (so a = 2). The lower elevation group

consists of twelve sites (so n1 = 12) and the higher elevation group consists of ten sites (so

n2 = 10). Data were collected over a period of 145 days (so b = 145). It is known that the

maximum and minimum temperatures often seem not to differ as much in higher elevations

(peaks) as they do in lower elevations (valleys). It is of interest to test for an effect of elevation

(i.e., a group main effect), an effect of time (a main effect), and an interaction effect.

The test statistics for time and interaction effects were calculated via Theorem 4.4.7. The
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test statistic for a time effect was 21.7729 with a p-value of < 0.00005, and the test statistic

for a group-time interaction effect was −1.3179 with a p-value of 0.1875. This indicates that

there is a significant time effect, meaning that the maximum and minimum temperatures do

not remain the same over time. However, there is no evidence to support that these changes

are due to elevation. The usual multivariate test corresponding to Theorem 4.4.12 showed

no significant group effect, indicating that sites at higher elevations do not show significant

differences in maximum and minimum temperatures compared to those at lower elevations.

5.3 Discussion

Overall, the results in this work make progress in developing tests for dependent, repeated

measures when the number of measurements is large. The lack of covariance restrictions and

distributional assumptions make the tests widely applicable. That the asymptotic distribu-

tions are free from moments of the data generating distribution establishes robustness for the

existing theory derived under the assumption of normality. Also, since much of the theory

to date has been dependent on the number of subjects being large, the asymptotic theory

suggested in which only the number of measurements must be large helps to incorporate the

demands of recent data in this technological age. The methods using the Kronecker product,

direct sum, and vec notation while writing the sums of squares as quadratic forms (or matrix

quadratic forms) also serve to make the mathematics much more tractable. Furthermore, the

simulation study for the univariate case indicates that the tests perform at least as well as

the traditional methods, and they perform very well when b becomes very large.

Further areas of research include topics from the the following discussion. A more exten-

sive simulation study would help to ascertain under what circumstances the test statistics are

performing best. More variations in the setup could be considered, and the power simula-

tion study could be carried out to a greater extent. Also, a simulation study for the other

multivariate criteria could be conducted. Faster programming functions and software may
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aid in this endeavor as the simulations grow very extensive as the dimension increases. Many

of the assumptions are somewhat technical and could hopefully be relaxed, especially those

regarding moments. Also, methods to assess whether the necessary assumptions are met in

any given situation could be developed. The assessment of the α-mixing assumption would be

especially useful, not only in this research but in other areas as well. The consistent estimation

of the variance of the test statistics warrants further research. Moreover, the bootstrapping

method proposed to estimate such variances deserves to be revisited in greater depth. Finally,

as robustness was one of the main goals of the tests, it would be very interesting to explore

the reductions and simplifications that occur when a more specific structure is imposed. For

instance, if the data did arise from a multivariate distribution with a known covariance struc-

ture, it may prove very useful to see if better results could be achieved with the same or fewer

assumptions. These reductions would likely be problem-specific, yet useful nonetheless.
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[29] M. Loève, Probability Theory I, Fourth, Graduate Texts in Mathematics, vol. 45, Springer-Verlag Inc.,

New Jersey, 1977.

[30] N. Lu and D. L. Zimmerman, The Likelihood Ratio Test for a Separable Covariance Matrix, Statistics and

Probability Letters 73 (2005), no. 4, 449–457.

[31] J. J. McKeon, F Approximations to the Distribution of Hotelling’s T 2
0 Statistic, Biometrika 61 (1974),

no. 2, 381–383.

[32] M. W. Mitchell, M. G. Genton, and M. L. Gumpertz, A Likelihood Ratio Test for Separability of Covari-

ances, Journal of Multivariate Analysis 97 (2006), no. 5, 1025–1043.

[33] K. E. Muller, A New F Approximation for the Pillai-Bartlett Trace under H0, Journal of Computational

and Graphical Statistics 7 (1998), no. 1, 131–137.

[34] D. D. Naik and S. S. Rao, Analysis of Multivariate Repeated Measures Data with a Kronecker Product

Structured Covariance Matrix, Journal of Applied Statistics 28 (2001), 91–105.

[35] C. R. Rao, An Asymptotic Expansion of the Distributions of Wilks’ Criterion, Bulletin of the International

Statistical Institute 33 (1951), no. 4, 177–180.

[36] A. C. Rencher, Methods of Multivariate Analysis, Wiley Series in Probability and Statistics, John Wiley

& Sons, Inc., Inc., New York, 2002.

[37] A. C. Rencher and G. B. Schaalje, Linear Models in Statistics, Second, Statistics/Probability, John Wiley

& Sons, Inc., Inc., New Jersey, 2008.

[38] M. Rosenblatt, A Central Theorem and a Strong Mixing Condition, Proceedings of the National Academy

of Sciences of the United States of America 42 (1956), no. 1, 43–47.

[39] R. J. Serfling, Contributions to Central Limit Theory for Dependent Variables, Annals of the Institute of

Statistical Mathematics 39 (1968), 1158–1175.

[40] , Approximation Theorems of Mathematical Statistics, Wiley Series in Probability and Statistics,

John Wiley & Sons, Inc., New York, 1980.

[41] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications With R Examples, Second,

Springer Texts in Statistics, Springer Science+Business Media, LLC, New York, 2006.

[42] M. S. Srivastava, T. von Rosen, and D. von Rosen, Estimation and Testing in General Multivariate Linear

Models with Kronecker product Covariance Structure, Sankhyā 71 (2009), no. 2, Ser. A, 137–163.
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Appendix A

Minor Proofs

A.1 Proofs from Section 1.2.1

The following contains the proofs of Properties 1.2.3 though 1.2.7.

Proof: Let A, B, and C be matrices and let k be a scalar. Observe,

(A⊕B)⊕C =

 A 0

0 B

⊕C

=


A 0

0 B
0

0 C



=


A 0

B

0 C
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=


A 0

B 0
0

0 C


= A⊕ (B ⊕C).

Since the third equality is equivalent to A⊕B ⊕C, Property 1.2.3 is proven. �

A simple argument shows Property 1.2.4 to be true. Observe,

k(A⊕B) = k

 A 0

0 B

 =

 kA 0

0 kB

 = kA⊕ kB.

Clearly, unless k = 1, or A = 0 or B = 0, k(A ⊕ B) 6= kA ⊕ B since B 6= kB, and

k(A⊕B) 6= A⊕ kB since A 6= kA. Thus, Property 1.2.4 is proven. �

Now, consider m matrices labeled Ai, i = 1, . . . ,m. Observe,

tr

(
m⊕
i=1

Ai

)
= tr



A1 0

. . .

0 Am




= tr (A1) + · · ·+ tr (Am)

=

m∑
i=1

tr (Ai) .

This proves Property 1.2.5. �

Furthermore, consider matrices C and D. Recall from Linear Algebra that if A and

D −CA−1B are invertible, then

det

 A B

C D

 = det(A) det(D −CA−1B).
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Therefore,

det(A⊕B) = det

 A 0

0 B


= det(A) det(B − 0A−10)

= det (A) det (B),

and Property 1.2.6 is proven. �

Finally, consider an easy counterexample to commutativity. Let A =

[
1

]
and B =

[
2

]
.

Then

A⊕B =

 1 0

0 2

 6=
 2 0

0 1

 = B ⊕A,

proving Property 1.2.7. All five direct sum properties have now been shown to be true. �

A.2 Proofs from Section 1.2.2

The following contains the proofs of Properties 1.2.9 though 1.2.16.

Before proceeding to the proofs of these properties, a short argument must be made to

justify some of the steps in the proofs. Since the individual parts of a partitioned matrix

behave like elements of a usual matrix, the Kronecker product of a partitioned matrix with

another matrix can be written as the partitioned matrix in which the parts are the Kronecker

products of the original parts with the usual matrix. This is straightforward from Definition

1.2.8. More explicitly, if A and B are matrices and A is partitioned such that

A =

 A1 A2

A3 A4

 ,
then
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A⊗B =

 A1 ⊗B A2 ⊗B

A3 ⊗B A4 ⊗B

 .
Clearly, since the partitioning of a matrix is arbitrary, this will hold for matrices of more than

four parts. However, this should suffice as the only argument necessary for the use of such a

tool.

Proof: Let A and B be matrices and let k be a scalar. Let A be an m × n matrix.

Observe,

(kA)⊗B =


(ka11)B · · · (ka1n)B

...
. . .

...

(kam1)B · · · (kamn)B



=


a11(kB) · · · a1n(kB)

...
. . .

...

am1(kB) · · · amn(kB)



= k


a11B · · · a1nB

...
. . .

...

am1B · · · amnB


= k(A⊗B).

Since that the second equality is equivalent to A⊗ (kB), Property 1.2.9 is proven. �

Furthermore, consider matrix C. Using the aforementioned argument regarding partitioned

matrices and Property 1.2.9, observe,

(A⊗B)⊗C =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

⊗C
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=


(a11B)⊗C · · · (a1nB)⊗C

...
. . .

...

(am1B)⊗C · · · (amnB)⊗C



=


a11(B ⊗C) · · · a1n(B ⊗C)

...
. . .

...

am1(B ⊗C) · · · amn(B ⊗C)


= A⊗ (B ⊗C).

This shows that the Kronecker product is associative and proves Property 1.2.10. �

For now, let B also be of size m× n. Observe,

(A+B)⊗C =


(a11 + b11)C · · · (a1n + b1n)C

...
. . .

...

(am1 + bm1)C · · · (amn + bmn)C



=


a11C + b11C · · · a1nC + b1nC

...
. . .

...

am1C + bm1C · · · amnC + bmnC



=


a11C · · · a1nC

...
. . .

...

am1C · · · amnC

+


b11C · · · b1nC

...
. . .

...

bm1C · · · bmnC


= A⊗C +B ⊗C.

A very similar argument will prove the second statement (but is not necessary here); thus,

Property 1.2.11 is proven. �

Now, let C have size n × p (to be conformable with A), and also consider a matrix D

conformable with B. Observe,

(A⊗B)(C ⊗D)
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=


a11B · · · a1nB

...
. . .

...

am1B · · · amnB



c11D · · · c1pD

...
. . .

...

cn1D · · · anpD



=


a11Bc11D + · · ·+ a1nBcn1D · · · a11Bc1pD + · · ·+ a1nBcnpD

...
. . .

...

am1Bc11D + · · ·+ amnBcn1D · · · am1Bc1pD + · · ·+ amnBcnpD



=


(a11c11 + · · ·+ a1ncn1)BD · · · (a11c1p + · · ·+ a1ncnp)BD

...
. . .

...

(am1c11 + · · ·+ amncn1)BD · · · (am1c1p + · · ·+ amncnp)BD


= AC ⊗BD.

This proves Property 1.2.12, and this argument can be repeated recursively to obtain to the

extension (
m⊗
i=1

Ai

) m⊗
j=1

Bj

 =

m⊗
i=1

AiBj ,

though that proof is not given here. �

Moreover, assume now that A and B are invertible. Denote by I the identity matrix. For

now, the size of I will be clear given the context of the situation. Also, realize quite trivially

that I ⊗ I = I, all three of which can be of differing sizes. Observe, by Property 1.2.12,

(A⊗B)(A−1 ⊗B−1) = AA−1 ⊗BB−1 = I ⊗ I = I,

and

(A−1 ⊗B−1)(A⊗B) = A−1A⊗B−1B = I ⊗ I = I.

Therefore, (A⊗B)−1 = A−1 ⊗B−1, and Property 1.2.13 is proven. �

Recall that (kB)′ = kB′. Observe,
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(A⊗B)′ =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB


′

=


(a11B)′ · · · (am1B)′

...
. . .

...

(a1nB)′ · · · (amnB)′



=


a11B

′ · · · am1B
′

...
. . .

...

a1nB
′ · · · amnB

′


= A′ ⊗B′,

which proves Property 1.2.14. �

Continuing to the property regarding the trace, let us now assume that A has size m×m.

Observe,

tr (A⊗B) = tr



a11B · · · a1mB

...
. . .

...

am1B · · · ammB




= a11tr (B) + · · ·+ ammtr (B)

= (a11 + · · ·+ amm)tr (B)

= tr (A) tr (B) .

This proves Property 1.2.15. �

For the proof of noncommutativity, consider a simple counterexample. Let A =

 1

2

 and

let B =

 1 0

0 1

. Then, clearly,
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A⊗B =



1 0

0 1

2 0

0 2


6=



1 0

2 0

0 1

0 2


= B ⊗A,

proving Property 1.2.16. All eight Kronecker product properties have now been shown to be

true. �

A.3 Proofs from Section 1.2.3

The following contains the proofs of Properties 1.2.18 though 1.2.22.

Proof: The proof of Property 1.2.22 can be found in Broxson (Propsition 31) [13], thus it

is omitted here. �

Using Property 1.2.22, Property 1.2.19 is merely the simplification when we let A′ = I,

Y ′ = A, B = B, and X = C. This proves Property 1.2.19. �

Using Property 1.2.22, Property 1.2.20 is merely the simplification when we let A′ = I,

Y ′ = A, B = I, and X = B. This proves Property 1.2.20. �

To prove Property 1.2.18, first suppose that B is m×n and that A and X conform. Write

B =

[
b1 · · · bn

]
and X =

[
x1 · · · xm

]
. Then, we can write the jth column of

AXB as

[AXB]·j = AXbk

= A

m∑
i=1

xibij

=

[
b1jA · · · bmjA

]
x1

...

xm
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=
(
b′j ⊗A

)
vec (X) .

Then if stack the columns, we see

vec (AXB) =


[AXB]·1

...

[AXB]·n



=


(
b′1 ⊗A

)
vec (X)

...(
b′n ⊗A

)
vec (X)



=


b′1 ⊗A

...

b′n ⊗A

 vec (X)

=
(
B′ ⊗A

)
vec (X) ,

and Property 1.2.18 is proven. �

Using Property 1.2.18, Property 1.2.21 is merely the simplification when we let A′ = a,

X = I1×1, and B = a′. Since vec (I1×1) = 1, Property 1.2.21 is proven. �



Appendix B

R Functions Implementing the Tests

B.1 Setup and Function Design

In order to properly and efficiently run the simulation code, the functions presented in Sections

B.2 and B.3 were written in the computer program R. These functions give vectors and

matrices such as 1m, Im, Jm, Pm, and the direct sum of such functions. The last two

functions were used specifically for running the simulation under the traditional RM-ANOVA

assumptions found in Davis [16].

I = function(x){diag(1,x)}

one = function(x){rep(1,x)}

J = function(x){one(x)%*%t(one(x))}

Jn = function(x){1/x*one(x)%*%t(one(x))}

Pn = function(x){I(x)-Jn(x)}

onesD = function(x){ # Block diagonal of 1/ni*1_ni

A = matrix(1)

for(i in 1:(length(x))){

A = bdiag(A,(1/x[i]*as.matrix(one(x[i]))))

}

A = A[-1,-1]

124
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return(A)

}

JD = function(x){ # Block diagonal of 1/ni*J_ni

A = matrix(1)

for(i in 1:(length(x))){

A = bdiag(A,(1/x[i]*one(x[i])%*%t(one(x[i]))))

}

A = A[-1,-1]

return(A)

}

PnD = function(x){ # Block diagonal of 1/(ni(ni-1))*P_ni

A = matrix(1)

for(i in 1:(length(x))){

A = bdiag(A,(1/(x[i]*(x[i]-1))*Pn(x[i])))

}

A = A[-1,-1]

return(A)

}

####

# Use the following for DAVIS

####

onesD2 = function(x){ # Block diagonal of 1/n*1_ni

A = matrix(1)

for(i in 1:(length(x))){

A = bdiag(A,(1/sum(x)*as.matrix(one(x[i]))))

}

A = A[-1,-1]

return(A)

}

PnD2 = function(x){ # Block diagonal of P_ni

A = matrix(1)

for(i in 1:(length(x))){

A = bdiag(A,Pn(x[i]))

}

A = A[-1,-1]

return(A)

}
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B.2 Univariate Case Function

The function HosslerMANOVAsim is passed a set of arguments and returns a vector of rejection

decisions, one decision corresponding to each test—the main effect of factor B (β), the inter-

action effect (γ), and the main effect of factor A (α). The first three arguments are wholly

necessary and will be described. The remaining arguments could easily be defined internally,

but for the sake of simulation speed, they are passed as arguments as to only be calculated

once. As such, their definitions are commented out in the function below. All of these argu-

ments are used in the middle matrix for the various sums of squares used to calculate the test

statistics.

The argument Xmat is an n × b matrix of data organized in the following manner. Each

row corresponds to one subject, and the b repeated measurements taken on each subject are

given in the columns. The rows are organized such that n1 subjects in the first level (group)

of factor A are given, followed by the n2 subjects in the second level, and so on for all a levels.

This matrix is vectorized in the main function resulting in a vector as prescribed by (2.1).

From the dimension of Xmat, the value of b is inferred.

Next, the argument ni is a vector of the number of subjects in each level of factor A, given

in order from n1 to na. The length of this vector implies the value of a and the sum of its

elements imply the value of n. Finally, the argument critVal is the critical value used for

each of the tests. This will be between 0 and 1, and, for example, was 0.05 for the simulation

study.

After the three test statistics are calculated, they are compared to the p-value correspond-

ing to critVal and the appropriate asymptotic distribution. The decision to reject or not is

made, and a 3 × 1 vector, called decisionVec, is returned containing True/False elements.

The simplicity of the function and its single output vector is due only to the nature of the

simulation study. To calculate and return fewer items significantly speeds up the simulation

process. For marketing or practical purposes, the test statistics, p-values, and decisions would

be reported.
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HosslerMANOVAsim = function(Xmat,ni,critVal,Cbeta,Cgamma,gBeta,gGamma,mid1,mid2,mid3,mid4){

a = length(ni)

b = dim(Xmat)[2]

n = sum(ni)

Xmat = as.matrix(Xmat)

X = as.matrix(as.vector(Xmat))

Xtilde = rowMeans(Xmat)

# C_beta_E^star matrix

# Cbeta = (bdiag(onesD(ni)) %*% (Jn(a)) %*% t(bdiag(onesD(ni)))) - 1/a*PnD(ni)

CbetaEstar = Cbeta

# C_gamma_E^star matrix

# Cgamma = (bdiag(onesD(ni)) %*% (1/(a-1)*Pn(a)) %*% t(bdiag(onesD(ni)))) - 1/a*PnD(ni)

CgammaEstar = Cgamma

####

# The middle matrices (the kronecker product) and quadratic forms

# for tests of factor B effect and interaction effect

# (Appeals to trace theorem)

####

# Time and interaction effect statistics

# mid1 = (b/(b-1))*Pn(b)

# mid2 = I(b)

Mid1 = mid1

Mid2 = mid2

Tbeta = sum(diag(Mid1%*%t(Xmat)%*%CbetaEstar%*%Xmat)) / sqrt(b)

Tgamma = sum(diag(Mid1%*%t(Xmat)%*%CgammaEstar%*%Xmat)) / sqrt(b)

bnew = ceiling(b^(1/2))

sigEstPieces = rep(0,bnew)

for(i in 1:n){

sigEstPieces = sigEstPieces + (acf(Xmat[i,],type="covariance",lag.max=(bnew-1),plot=FALSE)$acf)^2

}

sigEst = 1/n * (sigEstPieces %*% (1/bnew*c(bnew,(2*((bnew-1):1)))))

# gBeta = 2/a^2*( sum(1/(ni*(ni-1))) + (sum(1/(ni%*%t(ni)))-sum(diag(1/(ni%*%t(ni))))) )
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# gGamma = 2/a^2*( sum(1/(ni*(ni-1))) + 1/(a-1)^2*(sum(1/(ni%*%t(ni)))-sum(diag(1/(ni%*%t(ni))))) )

gFuncBeta = gBeta

gFuncGamma = gGamma

TbetaStat = Tbeta/sqrt(gFuncBeta*sigEst)

TgammaStat = Tgamma/sqrt(gFuncGamma*sigEst)

####

# Middle matrices and quadratic forms for test of factor A effect

####

# mid3 = I(n)-JD(ni)

# mid4 = JD(ni)-Jn(n)

Mid3 = mid3

Mid4 = mid4

G = b*t(Xtilde)%*%(Mid3)%*%Xtilde

H = b*t(Xtilde)%*%(Mid4)%*%Xtilde

FalphaStat = (H/(a-1))/(G/(n-a))

####

# p-value calculations with rejection decisions put into a vector and returned

####

betaPval = 2*pnorm(as.vector(-1*abs(TbetaStat)))

gammaPval = 2*pnorm(as.vector(-1*abs(TgammaStat)))

alphaPval = 1-pf(as.vector(FalphaStat),(a-1),(n-a))

betaR = betaPval<critVal

gammaR = gammaPval<critVal

alphaR = alphaPval<critVal

decisionVec = c(betaR,gammaR,alphaR)

return(decisionVec)

}

The function DavisMANOVAsim is very similar to HosslerMANOVAsim; however, the former

is code running simulations under the traditional assumptions. DavisMANOVAsim uses the

functions onesD2 and OnD2 from the first segments of code.

DavisMANOVAsim = function(Xmat,ni,critVal,Cbeta,Cgamma,gBeta,gGamma,mid1,mid2,mid3,mid4){
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a = length(ni)

b = dim(Xmat)[2]

n = sum(ni)

Xmat = as.matrix(Xmat)

X = as.matrix(as.vector(Xmat))

Xtilde = rowMeans(Xmat)

# gGamma = Jn(b)

# mid1 = Pn(b)

# mid2 = (n*a^2) * (bdiag(onesD2(ni)) %*% (Jn(a)) %*% t(bdiag(onesD2(ni))))

# mid3 = (n*a^2) * (bdiag(onesD2(ni)) %*% (Pn(a)) %*% t(bdiag(onesD2(ni))))

# mid4 = as.matrix(PnD2(ni))

Davis1_1 = gGamma

Davis1 = mid1

Davis2 = mid2

Davis3 = mid3

Davis4 = mid4

####

# Define SS for DAVIS

####

SS_R_Davis = sum(diag(Davis1%*%t(Xmat)%*%Davis4%*%Xmat))

SS_SG_Davis = sum(diag(Davis1_1%*%t(Xmat)%*%Davis4%*%Xmat))

temp1 = rowMeans(Xmat)

temp2 = c(0,cumsum(ni))

temp3 = rep(0,a)

for (k in 1:a){

temp3[k] = mean(temp1[(temp2[k]+1):(temp2[k+1])])

}

# temp 3 is Xbar_{i..}, group mean

temp4 = rep(mean(Xmat),a)

# Xbar_{...}, overall mean repeated a times

SS_G_Davis = b*sum((temp3-temp4)^2*ni)

temp5 = colMeans(Xmat)

# temp 5 is Xbar_{.j.}, time mean

temp6 = rep(mean(Xmat),b)

# Xbar_{...}, overall mean repeated b times
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SS_T_Davis = n*sum((temp5-temp6)^2)

# Need temp3 (Xbar_{i..}) and temp5 (Xbar_{.j.})

temp7 = c(0,cumsum(rep(ni,b)))

temp8 = rep(0,a*b)

for (k in 1:(a*b)){

temp8[k] = mean(X[(temp7[k]+1):(temp7[k+1])])

}

# temp 8 is Xbar_{ij.}, subject mean

temp9 = rep(temp8,rep(ni,b))

temp10 = rep(rep(temp3,ni),b)

temp11 = rep(temp5,rep(n,b))

temp12 = rep(mean(Xmat),n*b)

SS_GT_Davis = sum((temp9-temp10-temp11+temp12)^2)

####

# Time and interaction effect statistics

####

Fbeta_Davis = (SS_T_Davis/(b-1))/(SS_R_Davis/((n-a)*(b-1)))

Fgamma_Davis = (SS_GT_Davis/((a-1)*(b-1)))/(SS_R_Davis/((n-a)*(b-1)))

Falpha_Davis = (SS_G_Davis/(a-1))/(SS_SG_Davis/(n-a))

####

# p-value calculations with rejection decisions put into a vector and returned

####

betaPval = 1-pf(as.vector(Fbeta_Davis),(b-1),((n-a)*(b-1)))

gammaPval = 1-pf(as.vector(Fgamma_Davis),((a-1)*(b-1)),((n-a)*(b-1)))

alphaPval = 1-pf(as.vector(Falpha_Davis),(a-1),(n-a))

betaR = betaPval<critVal

gammaR = gammaPval<critVal

alphaR = alphaPval<critVal

decisionVec = c(betaR,gammaR,alphaR)

return(decisionVec)

}
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B.2.1 Bootstrapping

The function tsBOOTmanova was implemented when using bootstrapping to estimate the vari-

ance of the test statistics. It returns a vector of estimated standard deviations for the two

test statistics Tβ and Tγ . The arguments mid1BOOT, CbetaBOOT, and CgammaBOOT are not

wholly necessary. They are middle matrices for the quadratic forms and are only not included

internally for the sake of efficiency.

The argument dataBOOT is the matrix of data. The number of bootstrap samples conducted

is given by the value of the repsBOOT argument. The block length for the block bootstrap

method is given by the blockLengthBOOT argument, and bBOOT is the value of b (the number

of levels of factor B.

tsBOOTmanova = function(dataBOOT,repsBOOT,mid1BOOT,CbetaBOOT,CgammaBOOT,blockLengthBOOT,bBOOT){

beta_stat_storage = rep(0,repsBOOT)

gamma_stat_storage = rep(0,repsBOOT)

for (j in 1:repsBOOT){

tempData = tsBOOTsample(dataBOOT,blockLengthBOOT)

beta_stat_storage[j] = sum(diag(mid1BOOT%*%t(tempData)%*%CbetaBOOT%*%tempData)) / sqrt(bBOOT)

# TbetaBOOT

gamma_stat_storage[j] = sum(diag(mid1BOOT%*%t(tempData)%*%CgammaBOOT%*%tempData)) / sqrt(bBOOT)

# gammaBOOT

}

st_error_stats = c(sd(beta_stat_storage),sd(gamma_stat_storage))

return(st_error_stats)

}

In order to conduct the bootstrap samples, the function tsBOOTsample was implemented.

It takes in a matrix of data and the block length, and it returns a bootstrap sample of the

data.

tsBOOTsample = function(Data,blockLength){
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p = 1/4

# Exponent for block length, l, where l~n^p

data_length = dim(Data)[2]

#data_length

##block_length = round(data_length)^(p))

block_length = blockLength

#block_length

tempBootMat = as.matrix(cbind(Data,Data[,1:(block_length-1)]))

#tempBootMat

num_blocks = data_length/block_length

#num_blocks

boot_index = sample(1:data_length,num_blocks,replace=TRUE)

#boot_index

bootMat = c()

for (i in 1:num_blocks){

bootMat = cbind(bootMat,tempBootMat[,((boot_index[i]):(boot_index[i]+block_length-1))])

}

bootMat = as.matrix(bootMat)

return(bootMat)

}

B.3 Multivariate Case Function

The code to conduct the multivariate simulation is very similar to the code for the univariate

simulations. The arguments are similar, so their explanation is omitted. Since the simulation

was expensive and only the likelihood ratio test was considered, the output of the function

only includes the decisions for T
(φ)
WL. However, note that there are commented lines of code

that could be used for the other three statistics.

HosslerMANOVAsimMV = function(Xmat,ni,critVal,Cbeta,Cgamma,gBeta,gGamma,mid1,mid2,mid3,mid4){

a = length(ni)

n = sum(ni)

b = dim(Xmat)[2]/n
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p = dim(Xmat)[1]

Xmat = as.matrix(Xmat)

Xtilde = Xmat %*% (as.matrix(1/b*one(b)) %x% I(n))

Xmat2 = reorg(Xmat,p,n,b)

gFuncBeta = gBeta

gFuncGamma = gGamma

# mid1 = (1/(b-1))*Pn(b)

# mid2 = I(b)

# mid3 = I(n)-JD(ni)

# mid4 = JD(ni)-Jn(n)

Mid1 = mid1

# H^(B) middle matrix

# H_B_mid = (1/(b-1))*Pn(b) KRON (bdiag(onesD(ni)) %*% (Jn(a)) %*% t(bdiag(onesD(ni))))

H_B_mid = Mid1 %x% Cbeta

# H^(Gamma) middle matrix

#H_AB_mid = (1/(b-1))*Pn(b) KRON (bdiag(onesD(ni)) %*% (1/(a-1)*Pn(a)) %*% t(bdiag(onesD(ni))))

H_AB_mid = Mid1 %x% Cgamma

# G ^(B) = G^(Gamma) middle matrices

#G_B_mid = (1/(b-1))*Pn(b) KRON 1/a*PnD(ni)

G_B_mid = Mid1 %x% mid2

G_B_mid = Mid1 %x% mid2

G_AB_mid = Mid1 %x% mid2

# H^(A) middle matrix

# H_A_mid = JD(ni)-Jn(n)

H_A_mid = mid4

# G^(A) middle matrix

# G_A_mid = I(n)-JD(ni)

G_A_mid = mid3

####

# Matrices for test statistics

####
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H_B = as.matrix( Xmat %*% H_B_mid %*% t(Xmat) )

H_AB = as.matrix( Xmat %*% H_AB_mid %*% t(Xmat) )

G_B = as.matrix( Xmat %*% G_B_mid %*% t(Xmat) )

G_B = as.matrix( Xmat %*% G_B_mid %*% t(Xmat) )

G_AB = as.matrix( Xmat %*% G_AB_mid %*% t(Xmat) )

H_A = as.matrix( Xtilde %*% (b*H_A_mid) %*% t(Xtilde) )

G_A = as.matrix( Xtilde %*% (b*G_A_mid) %*% t(Xtilde) )

####

# Wilk’s Lambda (likelihood ratio) case test statistics with others for future work

###################

# Wilks’ Lambda (WL)

TbetaStat_WL = -log(det(G_B)/det(H_B+G_B))

# -log( prod(eigen(G_B)$values)/prod(eigen(H_B+G_B)$values) )

TgammaStat_WL = -log(det(G_AB)/det(H_AB+G_AB))

TalphaStat_WL = -log(det(G_A)/det(H_A+G_A))

# Lawley-Hotelling (LH)

# TbetaStat_LH = sum(diag(H_B%*%solve(G_B)))

# TgammaStat_LH = sum(diag(H_AB%*%solve(G_AB)))

# TalphaStat_LH = sum(diag(H_A%*%solve(G_A)))

# Bartlett-Nanda-Pillai (BNP)

# TbetaStat_BNP = sum(diag(H_B%*%solve(H_B+G_B)))

# TgammaStat_BNP = sum(diag(H_AB%*%solve(H_AB+G_AB)))

# TalphaStat_BNP = sum(diag(H_A%*%solve(H_A+G_A)))

# Dempster’s ANOVA Type (D)

# TbetaStat_D = sum(diag(H_B))/sum(diag(G_B))

# TgammaStat_D = sum(diag(H_AB))/sum(diag(G_AB))

# TalphaStat_D = sum(diag(H_A))/sum(diag(G_A))

###################

STATS_B = sqrt(b)*(c(2)*c(TbetaStat_WL)-c(2*p*log(2)))

STATS_AB = sqrt(b)*(c(2)*c(TgammaStat_WL)-c(2*p*log(2)))

STATS_A = c(TalphaStat_WL)

####

# Calculate variance component tau via eta

####

eta_beta = sqrt(sum(diag( (J(b)%x%solve(G_B)) %*% (Xmat2%*%PnD2(ni)%*%t(Xmat2)) )))

eta_gamma = sqrt(sum(diag( (J(b)%x%solve(G_AB)) %*% (Xmat2%*%PnD2(ni)%*%t(Xmat2)) )))

tau_beta = sqrt(eta_beta*gFuncBeta)



B.3. MULTIVARIATE CASE FUNCTION 135

tau_gamma = sqrt(eta_gamma*gFuncGamma)

####

# Calculate test statistics and p-values, make rejection decisions and put into vector

####

TbetaStat = STATS_B/tau_beta

TgammaStat = STATS_AB/tau_gamma

TalphaStat = (n-a+(-(p-(a-1)+1)/2))*STATS_A

alphaCritVal = qchisq((1-critVal),p*(a-1)) + 1/(n-a)*(((p-(a-1)+1)/2-(-(p-(a-1)+1)/2))

*(qchisq((1-critVal),p*(a-1))))

betaPval = 2*pnorm(as.vector(-1*abs(TbetaStat)))

gammaPval = 2*pnorm(as.vector(-1*abs(TgammaStat)))

#alphaPval = 1-pf(as.vector(FalphaStat),(a-1),(n-a))

betaR = betaPval<critVal

gammaR = gammaPval<critVal

alphaR = TalphaStat>alphaCritVal

decisionVec = c(betaR,gammaR,alphaR)

return(decisionVec)

}
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