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Barbian, Kent D., M.S., May 1999 Microbiology

Characterizing the Molecular Biology of a Bacteriophage-Like Particle From 
Bartonella bacilliformis

Director: Michael F. Minnick

B. bacilliformis and B. henselae, agents of Oroya fever and cat-scratch disease, 
respectively, are known to produce bacteriophage-like particles (BLPs) that package 14- 
kbp segments of the host chromosome. Data from this study suggest that a number of 
other Bartonella species including B. quintana, B. doshiae, and B. grahamii also contain 
similar BLPs for the 14-kbp extrachromosomal DNA fragment was present in their total 
genomic preparations. RFLP and southern blot analysis of the BLP DNA from B. 
bacilliformis suggest that packaging is much less random than observed in B. henselae 
phage. Data also suggest that these linear, double-stranded, BLP DNA molecules have 
non-covalently closed ends with 3' overhangs. The 3' overhangs are not complementary 
to one another, as ligation attempts were unsuccessful. Additionally, BLP DNA 
molecules appear to be packaged immediately upon synthesis as there is no unpackaged 
phage DNA present within the host cell. SDS-PAGE analysis of purified BLPs from B. 
bacilliformis showed three major proteins with apparent molecular masses of 32, 34, and 
36 kDa. Intact BLPs were also observed by transmission electron microscopy and 
appeared to be round to icosahedral and approximately 80 nm in diameter.

To determine if BLPs contribute to horizontal gene transfer, mutants of B. bacilliformis 
were generated by allelic exchange with a suicide vector construct termed pK B l. pKBl 
contains a pMBl origin of replication, a kanamycin resistance cassette (nptY), and an 
internal fragment of the 16S-23SrDNA intergenic spacer region. Homologous 
recombination between pKBl and one of the three rRNA opérons present in the B. 
bacilliformis chromosome led to its disruption and produced a kanamycin-resistant 
phenotype. Southern blot analysis confirmed that allelic exchange had occurred. 
Furthermore, it was shown that BLPs from some of these strains were able to package the 
mutagenized region containing the kanamycin resistance cassette. However, numerous 
attempts at intraspecies transduction with BLPs from these strains were unsuccessful.
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Chapter I 

Introduction

Bartonella bacilliformis is a small, motile, gram negative, hemotrophic bacterium 

(1) that is approximately 0.25 to 0.5 pm in width by 1.0 to 3.0 pm in length. Upon 

exposure, this intracellular pathogen is capable of invading and replicating inside human 

erythrocytes and endothelial cells (2,3). This parasitic pathogen, is transmitted to humans 

by the bite of a female sandfly of the Phlebotomus genus (4) and is endemic to the South 

American Andes regions of Peru, Ecuador, and Colombia (1). B. bacilliformis is the 

etiologic agent of Oroya fever, also termed Carrion’s disease (5), and manifests itself with 

a biphasic disease process. The primary, or hematic, phase is characterized by fever, skin 

discoloration, and a severe hemolytic anemia (6 ) where nearly all of the circulating 

erythrocytes are infected (2) and close to 80% are lysed (7). Without antibiotic therapy, 

mortality rates can reach as high as 40% during this phase (1,8). Appearing one to two 

months following the hematic phase is the secondary, or tissue, phase in which the 

bacterium invades the vasculature. This phase, in which the bacterium invades human 

endothelial cells, is characterized by the appearance of small blood-filled warts, or 

hemangiomas, on the surface of the face and extremities and is termed verruga peruana 

(9). Often, the verruga stage presents with additional complications such as 

immunosuppression, hepatosplenomegaly, and lymphadenopathy (10). This stage of the 

Bartonella infection is rarely fatal and it usually resolves itself with time. The 

mechanisms by which B. bacilliformis gains entry into erythrocytes and endothelial cells, 

as well as additional virulence determinants, are currently being investigated 

(2,3,11,12,13).



Over the past decade, the Bartonella genus has undergone a dramatic re

organization with respect to its taxonomy. Since its initial classification by Barton in 

1909 (14), B, bacilliformis was the only organism within this bacterial genus. However, 

bacteria once constituting the Rochalimaea and Grahamella genera were recently re

classified as Bartonella based upon 16S rRNA sequence similarities (15,16). 

Furthermore, there has been additional novel species added to the Bartonella genus with 

B. clarridgeiae being the most recent (17). The Bartonella genus has been growing at 

alarming rates over the last decade and is now composed of 13 species.

Currently, five Bartonella species pose a significant health threat to humans and 

cause a variety of emerging infectious diseases (18,19,20,21). Horizontal transfer of 

genes encoding virulence determinants and / or antibiotic-resistance markers may be 

contributing to this emergence. Horizontal gene transfer in bacteria is mediated via four 

mechanisms: 1) natural transformation, 2) conjugation, 3) transduction, or 4) 

transposition (22). However, bacterial conjugation between Bartonella, or transposition, 

has never been shown for any Bartonella species, and work by our lab suggests that 

Bartonellae cannot be naturally transformed (23).

Previous literature has shown that two Bartonella species, B. bacilliformis and B.
\

henselae, agents of Oroya fever and cat-scratch disease, respectively, produce 

bacteriophage-like particles (BLPs) that package near-random, 14-kbp fragments of 

Bartonella DNA (24). The heterogeneous mixture of double-stranded host DNA 

contained in the B, henselae BLPs is protected from chloroform / DNase I treatments by 

capsid proteins (24,25). Electron microscopy has revealed round to icosahedral 

extracellular particles approximately 40 nm in diameter attached to the surface of B.
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bacilliformis and B. henselae cells (24,26). BLPs are non-lytic even when Bartonella are 

subjected to induction agents such as UV irradiation and / or the addition of mitomycin C. 

Currently, little more is known of these BLPs or the mechanisms by which the DNA is 

packaged, although data available on generalized defective phages suggests that headful 

packaging into a pre-formed capsid head may be taking place (27,28).

These extracellular particles, or BLPs, are so termed because of their unusual 

characteristics when compared to true bacteriophages. A true bacteriophage typically 

exhibits one of two modes of replication, the first of which is the virulent or lytic cycle. 

During this cycle, a bacteriophage attaches and injects its nucleic acid into a host 

bacterium. This viral nucleic acid then requisitions the host cell’s metabolic machinery to 

produce multiple progeny which are released upon cell lysis. These mature bacteriophage 

subsequently infect other host bacteria to continue the cycle. The second mode of 

replication, known as lysogeny, is characterized by the phage genome integrating with the 

host chromosome to produce a prophage. This prophage is replicated with the host 

chromosome and remains dormant until influenced by any number of DNA-damaging 

environmental factors. Under such environmental conditions, lysogens (a bacterium 

containing a prophage) can spontaneously produce mature phage that can re-establish the 

lytic cycle (2 2 ).

In bacterial transduction, DNA is transferred between cells via bacteriophages 

(27,28). This genetic transfer of host genes by phage can occur in one of two ways. In 

the first, called generalized transduction, random host DNA is incorporated into a few of 

the phage heads in place of the viral genome. In contrast, specialized transduction occurs 

when prophage DNA imperfectly separates from the host chromosome and some adjacent
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bacterial genes are excised along with prophage DNA and are subsequently packaged into 

phage heads. In both cases, a few transducing virus particles are “defective” in that 

bacterial genes have replaced some, or all, necessary viral genes (22). These “defective” 

viral particles can attach to and inject their contents into another host bacterium, after 

which homologous recombination and allelic exchange vrith the transduced DNA and 

bacterial chromosome can occur, thus altering the recipient bacterium’s genetic material. 

This alteration can have dramatic effects on both the evolution and survival of the newly 

transformed bacterium.

In summary, BLPs, or “defective” phages, are unique when compared to true 

bacteriophages. Although they have some properties which are similar to phage, most 

BLPs package host DNA into preformed capsid heads and do not contain any apparent 

genomic material from the phage. Similar BLPs have been found in a variety of unrelated 

bacterial species including PBSX phage from Bacillus subtilis (27,29) and VSH-1 phage 

from Serpulina hyodysenteriae (30), which has been shown to undergo generalized 

transduction. We hypothesize that Bartonella BLPs participate in intraspecies (and 

possibly interspecies) horizontal gene transfer via transduction-mediated genetic 

exchange.

Recent increases in the numbers of Bartonella species and human diseases 

associated with them is the basis for this research. Horizontal transfer of genetic material 

is one primary mechanism by which microorganisms evolve to survive in a variety of 

environmental habitats. The ability to acquire novel gene products by genetic transfer can 

confer tremendous selective advantages upon the recipient strain. These advantages, 

presented by phenotypic changes brought about by novel genes, can include any number
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of alterations within the organism and may enable it to exploit new environments Given 

the widespread occurrence of defective phages in bacteria, a better understanding of their 

role in genetic exchange would greatly enhance our knowledge regarding the genetics and 

evolution of bacteria in general.

The purpose of this research was to provide a better understanding of the biology 

of the B. bacilliformis BLPs and their potential role in generalized transduction. BLP 

DNA was isolated and characterized along with BLP-associated proteins in order to gain 

a better understanding of BLP genetics and biology. Purified BLPs as well as BLPs 

associated with B. bacilliformis were observed by transmission electron microscopy. 

Finally, numerous transduction experiments were attempted to explore whether 

transduction-mediated genetic exchange plays a role in the virulence and emergence of 

Bartonella species and emerging diseases. This research has provided a better 

understanding of the molecular biology regarding the BLPs from B. bacilliformis and 

provides clues to investigate their potential role in mediating genetic exchange via 

generalized transduction. Although much additional work is needed to fully understand 

the mechanisms behind the BLPs, results from this study form a strong foundation on 

which to build.



Chapter II

Materials and Methods

2 . 1  Growth of bacterial strains

Bartonella species and stains, as well as E. call strains, used in this report are 

summarized in Table 2.1. The B. bacilliformis strains were grown on a standard medium, 

termed HIBB, consisting of heart infusion agar plates (Difco, Detroit, MI) supplemented 

with 4% defibrinated sheep erythrocytes (v / v) and 2% filter-sterilized sheep serum (v / 

v) (Quad Five, Ryegate, MT) for 2-3 days at 30®C in a water-saturated atmosphere. Other 

Bartonella species were similarly cultured, but at 37°C with 5% CO2 . E. coli strains used 

for propagation of cloned genes were grown overnight at 37®C in Luria-Bertani medium 

with standard antibiotic supplements when required (31), The antibiotic supplements 

used in this study included 25 pg/ml kanamycin sulfate (Kan), and 2 |Xg / ml 

chloramphenicol (Cam) (Sigma Chemical Co., St. Louis, Mo.) which were used 

individually or combined depending upon experimental conditions.

2.2 Purification of BLPs

BLPs were prepared by inoculating either B. bacilliformis or B. henselae strains

onto Bartonella growth medium. After 4 days of incubation, 36 plates were harvested

into 15 ml of SM (32) phage buffer. Treatment with 3% (v / v) chloroform was used to

lyse the bacterial cells, whose cellular debris was subsequently removed by centrifugation

for 5 min at 6000 x g. The supernatant was collected, chloroform treated as before, and

centrifuged a second time to completely eliminate all viable bacteria. DNase I was added

to the remaining supernatant to a final concentration of 2 |ig / ml, and incubated at 37®C

for 2 h to digest chromosomal DNA. The BLPs were then pelleted by ultracentrifugation

6



Table 2.1 Bacterial species and strains used in this study.

Species*/Strain Relevant Characteristics Reference

Bb/KC583 Neotype strain Brenner et a l, 
1991 (33)

Bb/KC584 Peruvian isolate, 1963 Brenner et a l , 
1991 (33)

Bb/JB584 HG584 cured of pEST (Kan^,Cam^) Battisti and 
Minnick, 1997 (13)

Bb/JB585 fla  gene from JB584 interupted by insertion Battisti and
of pUB508 (Kan* ,̂Cam^j/7a') Minnick, 1997 (13)

Bb/KB484 JB584 containing pBBRIMCS (Kan^,Cam^) This study
Bb/KB584 One of three 16S-23S ITS regions of JB584 

interrupted by insertion of pKBl (Kan* ,̂Cam^)
This study

Bb/KB585 One of three 16S-23S ITS regions of JB584 
interrupted by insertion of pKBl (Kan* ,̂Cam^)

This study

Bb/KB6 8 6 Spontaneous chloramphenicol resistance of 
KB585 (Kan^,Cam^)

This study

Be/ Isolate from cat with B. henselae septicemia Lawson and 
Collins, 1996 (17)

Be/ Human endocarditis isolate Daly et a l , 
1993 (34)

Bd/R18 Type strain Birtles et a l , 
1995 (16)

Bg/V2 Type strain Birtles et a l, 
1995 (16)

Bh/Houston Type strain Regnery et a l.
R1302 1992 (35)

Bq/Fuller Type strain Myers et a l, 
1979 (36)

Bv/Baker Vole agent Weiss and Dasch, 
1982 (37)

Ec/DH5a Used for cloning and propagation of relevant Gibco - BRL
plasmids (Gaithersburg, MD)

*Bb = B. bacilliformis^ Be = B. clarridgeiae; Be = B. elizabethae; Bd = B. doshiae;
Bg = B. grahamii; Bh = B, henselae; Bq = B. quintana; Bv = B. vinsonii; Ec = E. coli
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for 2 h in a SW60 rotor, model # 1040 (Beckman, Palo Alto, California), at 100,000 x g 

using a 15% sucrose cushion. The supernatant was discarded and the pellets were 

resuspended in 150 pi of fresh SM buffer and stored at 4®C until needed.

2.3 Preparation and Manipulation of DNA

Nucleic acids for use in DNA hybridization or PCR were extracted from 

suspensions of either bacteria or BLPs using a CTAB technique (cetyltrimethyl- 

ammonium bromide) as described by Ausubel et a l (32). Plasmids were either extracted 

by an alkaline lysis procedure outlined by Bimboim and Doly (38), or by a Qiagen Midi 

Prep kit (Qiagen, Inc., Chatsworth, CA) as per the manufacturer’s instructions.

Restriction digestion, Klenow and SI nuclease treatment, ligation, dénaturation / 

renaturation, and transformation of DNA fragments into E. coli DH5a were all carried 

out under standard conditions (32) utilizing enzymes from a variety of suppliers. DNA 

fragments used for cloning purposes were extracted from ethidium bromide-stained 

agarose gels by a GeneClean kit (Bio 101, Inc. La Jolla, CA). Plasmids used or generated 

in this report are summarized in Table 2.2.

2.4 Agarose gel electrophoresis and Southern blot analysis

Nucleic acids extracted from bacterial cells or BLPs were separated via 

electrophoresis through a 0 .8 % (wt / vol) agarose gel containing ethidium bromide using 

TBE running buffer. The gels were photographed and/or the DNA transferred to 

nitrocellulose membranes (0.45 pm-pore- size, Schleicher & Schuell, Keene, N.H.) by the 

method of Southern (39) and subsequently baked for Ih at 80®C to fix the DNA. DNA 

for probing was purified from agarose gels using a GeneClean kit following PCR



Table 2.2 Plasmids used or generated in this study.

Plasmid Relevant Characteristics Reference

pKRT3 pUC19 containing 1.8-kbp BamRl Minnick et a l.
fragment of the 16S-23S ITS region 1995 (40,41)
from B. bacilliformis

pUBl B. bacilliformis suicide vecor containing Battisti and Minnick,
the npti gene, Kan*̂ 1997(13)

pKBl pUBl containing 1.33-kbpR<arwHI/S'a/I 
fragment of the 16S-23S ITS region 
from pKRT3, Kan*̂

This study

pBBRlMCS B. bacilliformis shuttle vector, Repec, Kovach et al^
RepBb, Cam*̂ 1994 (42)

pBBRlMCS-2 B, bacilliformis shuttle vector, Repec, Kovach et a l.
RepBb, Kan̂ 1995 (43)

lp l 6 a linear plasmid from Borrelia burgdorferi Barbour and Garon
with covalently closed ends 1987 (44)
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amplification or restriction endonuclease digestion. Probes were labeled by random 

primer extension with the Klenow fragment of E. coli polymerase I (Gibco-BRL) and [a- 

^^P]dCTP (New England Nuclear, Boston, Mass.). Nitrocellulose blots were probed 

overnight at 60°C and washed four times at high stringency (approximately 7% 

mismatch) for 30 min at 60®C with 0.3 x SSC. The blots were subsequently exposed for 

25 min to X-ray film (X-Omat XAR-5; Eastman Kodak Co., Rochester, N.Y.) to visualize 

hybridized DNA fragments.

2.5 SDS-PAGE and Inununoblotting

Proteins from BLP preparations were resolved by electrophoresis through SDS- 

polyacrylamide (12.5% acrylamide) gels using methods adapted from Laemmli (45). The 

gels were then stained with Coomassie brilliant blue to visualize protein bands. For 

immunoblots, separated proteins were transferred from gels to nitrocellulose membranes 

(0.45 pm-pore size) via electrophoresis (46). The membranes were dried briefly, then 

incubated in 0.3% Tween-20 and 2% non-fat, dry skim milk in phosphate-buffered saline 

(PBS) pH 7.4 for 1 h at 25®C to block all non-specific binding sites. After rinsing in PBS, 

the membranes were incubated in patient antiserum followed by a secondary horseradish 

peroxidase-conjugated goat anti-human IgG. The membranes were finally developed 

with PBS containing 4-chloro-1 -napthol and H2 O2  and observed to see if BLP capsid 

proteins were detected.

2.6 Transmission Electron Microscopv

Intact bacterial cells and/or purified BLPs were concentrated by centrifugation and 

were resuspended in a 10% glycerol-water (v / v) solution. Suspensions were prepared 

for negative- stain electron microscopy on Silicon Monoxide Type-A support grids (300



11
mesh copper). Samples were allowed to electrostatically attach to the grids for a period 

of 5 min. Excess liquid was subsequently blotted away and the grids were allowed to air 

dry an additional 2 min. Grids were then stained with 2.0% filter-sterile uranyl acetate 

(pH - 7.0) for 3 min. After destaining with 1 M ammonium acetate (pH - 7.0) for 4 min 

and washing with deionized for H2 O 1 min, the grids were air dried and examined at 75 

kV with a Hitachi 7100 Transmission Electron Microscope (Hitachi, Mtn. View, Calif)

2.7 Generation of Kan^ B. bacilliformis mutants

Kan^ mutants were obtained via allelic exchange and homologous recombination 

with a suicide vector construct, termed pKBl, and the Bartonella chromosome. pKBl 

was constructed by cloning a 1.33 kbp Bam\{\ / SaR fragment of the 16S-23SrDNA ITS 

region from B, bacilliformis into pUBl. After construction of pKBl, the plasmid was 

electroporated into B, bacilliformis JB584 and allowed to homologously recombine with 

one of the three 16S-23SrDNA opérons within the Bartonella chromosome. The Kan^ 

mutants were selected by plating the electroporated bacteria onto growth medium 

containing kanamycin. Following an incubation of approximately 12 days, individual 

Kan^ colonies were harvested, grown, and analyzed via PCR and Southern blot analysis 

to verify recombination of the kanamycin resistance cassette into the host chromosome.

2.8 Electroporation of B. bacilliformis

Six to eight plates of B. bacilliformis were grown as stated above for 3 days and 

harvested into 1 ml of 4®C heart infusion broth (HIB). The cells were subsequently 

washed four times in 1 ml of ice-cold 1 0 % glycerol water (v / v) with intermittent 

centrifugations for 20 min at 4000 x g at 4°C. Following the final wash, the bacterial 

pellet was resuspended in 400 pi of 10% glycerol water. Approximately 40 pi of the
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bacterial suspension was combined with 0.25 to 3 |xg of DNA in pre-chilled 0.2-cm 

disposable electroporation cuvettes and allowed to sit on ice for 5 min. Electroporation 

was performed using a Bio-Rad Gene Puiser (BioRad Laboratories, Hercules, CA) using 

an exponential decay waveform set at a field strength of 12.5 kV/cm, a pulse time of 5 

msec, and capacitance held constant at 25 pF as previously described for Bartonella (23). 

Immediately following electroporation, cells were removed from the disposable cuvette 

and resuspended in 1 ml of filter-sterile recovery broth (HIB supplemented with 0.5% (w 

/ v) BSA fraction V, 5% (v / v) sheep erythrocyte lysate, and 5 mM L-methionine) and 

transferred to a sterile culture tube. After incubation at 30®C for 16-20 h, the 

cell/recovery broth suspension was centrifuged for 10 min at 4000 x g at 4°C to pellet the 

bacteria. Following the removal of 900 pi of supernatant, the pellet was resuspended and 

plated onto standard Bartonella growth medium supplemented with Kan and/or Cam, 

where required for selection. Antibiotic-resistant strains appeared following 7-15 days of 

incubation.

2.9 Coincubation of two B. bacilliformis strains for transduction

Two plates of 2-day-old bacteria (KB484 and KB585) were harvested separately 

into 500 pi of HIB, enumerated by plate counts, and plated onto growth medium 

containing the antibiotic for which it was sensitive to control for spontaneous mutations. 

The two strains were combined into 350 pi of HIB from which three 100 pi aliquots were 

plated onto non-selective growth medium to allow for interaction between the two strains. 

After 1 day, the resulting growth was harvested into 350 pi of HIB and plated 

accordingly:
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100 |xl onto HIBB containing Kan and Cam 

100 |xl onto HIBB containing Kan and Cam 

50 (il onto HIBB containing Kan only 

50 |il onto HIBB containing Cam only

Similar platings were performed after 2 and 3 days, respectively. After a 20-day 

incubation period, double antibiotic-resistant colonies were harvested, grown, and 

characterized via Southern blot and PCR analysis.

2.10 Infection of B. bacilliformis strains with purified BLPs from Kan^ B. bacilliformis 
mutants

Two plates of 2-day-old bacteria (KB484) were harvested into 500 pi of sterile 

recovery broth. Bacteria were enumerated by plate counts to obtain approximate numbers 

being infected. Additionally, approximate BLP numbers were determined by running the 

DNA obtained from 50 pi of BLPs out on an agarose gel stained with ethidium bromide. 

A 50 pi aliquot of purified BLPs from Kan^ B. bacilliformis mutants was then added to 

the harvested KB484 bacteria and allowed to incubate at 30°C for 1 h. Following 

incubation, three 1 0 0  pi aliquots were plated onto non-selective growth medium and 

allowed to grow for 24,48, and 72 h. After the allotted time period, the resulting growth 

was harvested into 350 pi of HIB and plated as above except the HIBB containing Kan 

was replaced with a third HIBB plate containing Kan and Cam. After a 20-day 

incubation period, double antibiotic-resistant colonies were harvested, subcultured, and 

characterized via Southern blot and PCR analysis.
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2 . 1 1  PCR analysis

PCR amplifications were achieved using a core kit and Taq polymerase (Perkin 

Elmer) following procedures developed by Mullis et a l (47). Reaction mixtures (100 pi) 

contained 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 200 pM of each dNTP, 4 mM MgCh, 

approximately 100 ng of template DNA, 0.1 pg of each primer, and 2.5 U AmpliTaq 

DNA polymerase. Thirty cycles with a profile of 94°C for 1 min, 65®C for 1 min, and 

72®C for 3 min, were run on a Gene Amp 2400 Thermocycler (Perkin Elmer, Norwalk, 

CT). Cycling was preceded by a hot start (95®C for 5 min) and followed by a final 

extension (72°C for 5 min). Ten microliters of each amplified product was analyzed by 

agarose (1.2% agarose) gel electrophoresis using standard protocol (32).

Single-stranded oligonucleotide primers specific for the kanamycin and 

chloramphenicol resistance cassettes were synthesized by The University of Montana 

Murdock Molecular Biology Facility. Primers for the identification of B. bacilliformis 

species were used as before (48).



Chapter III 

Results

BLP Characteristics

3.1 Extrachromosomal DNA in haciUiformis

When total DNA was prepared from various Bartonella cultures and subjected to 

agarose gel electrophoresis, a band migrating at 14-kbp was observed in five species of 

Bartonella^ including all strains of B. bacilliformis (Table 3.1). Species of Bartonella 

that did not exhibit the extrachromosomal element included B. clarridgeiae^ B. 

elizabethae, and B. vinsonii (Table 3.1). DNA isolated from B. bacilliformis JB584 

clearly exhibited the 14-kbp extrachromosomal element (Figure 3.1, Lane 2). This 14- 

kbp DNA fragment was always present in DNA preparations from B. bacilliformis and 

appears to co-migrate with the BLP DNA observed in B. henselae (24).

3.2 BLPs associated with B. bacilliformis

Transmission electron microscopy was performed to examine a) the BLP particle 

in association with the B. bacilliformis bacterium and b) purified BLPs. Particles of 

approximately 80 nm in diameter were found to exist freely as well as attached to the 

surface of the bacterial cells (Figure 3.2, Panel A). The BLPs from B. bacilliformis 

appeared to be round to icosahedral, however, they were nearly twice the size of the B. 

henselae BLPs (24). This size difference is also in contrast to BLPs that have been 

previously described for this microorganism by Umemori et al, (26). Also noted was the 

absence of tail structures as previously reported (26).

15



16

Table 3.1 Presence of 14-kbp extrachromosomal elements in various Bartonella species 
and strains.

Bacterium Strain 14-kbp DNA?

B. bacilliformis KC583 YES
B. bacilliformis KC584 YES
B. bacilliformis JB584 YES
B. bacilliformis KB584 YES
B. bacilliformis KB585 YES
B. henselae Houston R 1302 YES
B. quintana Fuller YES
B. doshiae R18 YES
B. grahamii V2 YES

B. clarridgeiae Type strain NO
B, elizabethae Type strain NO
B. vinsonii Baker NO
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Figure 3.1 Total DNA preparation of B. bacilliformis JB584 cultures. Total DNA, 
showing the presence of a 14-kbp extrachromosomal element, was resolved on a 0 .8 % 
agarose gel. Lane 1, X phage DNA cleaved with HindUl as a molecular size standard; 
lane 2, total DNA preparation from B. bacilliformis JB584.



18

%

Figure 3.2 Transmission electron micrographs showing^Za' B. bacilliformis JB585 (to 
eliminate contaminating flagella) and associated BLPs. Panel A, whole B, bacilliformis 
JB585 cells showing attached BLPs (magnification 17,000 x). Panel B, purified 
BLPs from B. bacilliformis JB585 (magnification 20,000 x). The bars shown 
represent 250 nm.
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3.3 Purification of BLPs and BLP nucleic acids

BLPs were purified from B. bacilliformis cultures following the procedures 

outlined in Table 3.2. These relatively pure preparations of BLPs were examined by 

transmission electron microscopy (Figure 3.2, Panel B). Nucleic acid extraction of the 

purified BLP preparation followed by agarose gel electrophoresis, revealed a single band 

migrating at 14-kbp (Figure 3.3, Lane 3). These results suggest that there is a direct 

correlation between the BLPs from B. bacilliformis and the 14-kbp extrachromosomal 

element present in total genomic preparations. The purification scheme described in 

Table 3.2 was developed to optimize yield and purity of BLPs from Bartonella cultures. 

Furthermore, nucleic acids obtained from these relatively pure preparations were used 

extensively for many experiments described within this study.

3.4 BLP nucleic acid

To begin to characterize the nucleic acid harbored by B. bacilliformis BLPs, 

purified nucleic acid preparations from B. bacilliformis JB584 were treated with 

deoxyribonuclease I (DNase I) and subjected to agarose gel electrophoresis. DNase 

sensitivity of the 14 kbp fragment indicated that the BLP nucleic acid was DNA (data not 

shown). Furthermore, the BLP DNA was resistant to degradation if the particles were 

incubated with DNase I prior to nucleic acid extraction (Figure 3.6, Lane 6 ), suggesting 

that the particle protects the enclosed DNA from degradation. Isolated BLP DNA failed 

to rapidly renature when subjected to alkaline dénaturation followed by neutralization 

(Figure 3.4, Lane 4). An identical treatment had minimal effects on a linear plasmid with 

covalently-closed hairpin ends (Ip 16) from Borrelia burgdorferi which was seen to
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Table 3.2 Flowchart outlining the protocol used in the purification of BLPs 
firom^. bacilliformis.

1) Harvest Bartonella from HIBB into SM phage buffer (Approx. 0.5 ml buffer / plate).

2) Add CHCI3 to a final concentration of 3% (v / v).

3) Centrifuge at 4,000 x g for 5 min to remove cell debris.

4) Repeat steps 2) and 3).

5) Incubate the resulting supernatant with DNase I (final cone. 2 |xg / ml) for 2 hours at 
37°C.

6 ) Centrifuge at 100,000 x g for 2 hours at 37®C.

7) Discard the supernatant and resuspend the pellet in SM phage buffer.

8 ) Store at 4®C for up to 2 weeks until needed.
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Figure 3.3 Analysis of BLP purity following the purification protocol. Total DNA, 
extracted from BLP preparations as prepared in Table 3.2, was resolved on a 0.8% 
agarose gel. Lane 1, \  phage DNA cleaved with HinàiW as a molecular size standard; 
lane 2, total DNA preparation of B. bacilliformis JB584 showing both chromosomal and 
BLP DNA; lane 3, DNA profile of purified BLPs showing a DNA band at approximately 
14 kbp.
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Figure 3.4 Alkaline dénaturation / renaturation analysis of BLP DNA on a 0.8% agarose 
gel showing that BLP DNA ends are not covalently closed. Lane 1, X phage cleaved with 
HindlU as a molecular size standard; lane 2, untreated BLP DNA; lane 3, BLP DNA 
treated with an equal volume of 0.2 N NaOH; lane 4, BLP DNA treated with an equal 
volume of 0.2 N NaOH followed by 1/10 th volume of 2 M Tris-HCl (pH 8.0) to renature 
the molecule; lanes 5, 6 , and 7, are the same treatments as done in lanes 2-4 above except 
using a covalently-closed linear plasmid (Ip 16) from Borrelia burgdorferi.
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rapidly renature (Figure 3.4, lane 7). These results suggested that the BLP nucleic acid 

consists of a 14-kbp, linear, double-stranded DNA with non-covalently closed ends.

To further characterize the termini of the BLP DNA molecules, ligation 

experiments were performed using T4 DNA ligase. Ligation experiments were 

performed at 15®C for 24 hours on untreated BLP DNA molecules (blunt or 

complementary overhangs), Klenow-treated BLP DNA molecules (5' overhangs), and SI 

nuclease-treated ( 5 'or 3' overhangs) BLP DNA molecules. Upon separation of the 

products by agarose gel electrophoresis, only the SI nuclease-treated BLP DNA 

molecules produced ligation products (Figure 3.5, Panel B, Lane 3). These results 

suggest that the BLP DNA molecules contain non-complementary 3' overhangs.

Attempts to ligate SI nuclease-treated BLP DNA molecules into pBBRlMCS for 

sequencing were unsuccessful.

To determine if BLP DNA exists as a free extrachromosomal element or if it is 

only found enclosed within a protein coat, chloroform (CHCI3) treatment of B. 

bacilliformis followed by agarose gel electrophoresis analysis of the DNA was 

performed. Upon analysis, only chromosomal DNA was observed and not the additional 

14-kbp extrachromosomal DNA (Figure 3.6, Lane 3). Furthermore, an equal aliquot of 

bacteria were treated with sodium dodecyl sulfate (SDS) to lyse both bacteria and BLPs. 

When the contents of the SDS-treated mixture was separated by agarose gel 

electrophoresis, both chromosomal DNA and the associated 14-kbp BLP DNA were 

present (Figure 3.6, Lane 5). These results suggest that the BLP DNA molecules are 

being packaged immediately upon synthesis and are protected from CHCI3 extraction. 

Additional experiments were performed by subjecting purified BLPs to either CHCI3 or
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Figure 3.5 Ligation analysis of BLP DNA on a 0.8% agarose gel showing that BLP DNA 
ends consist of non-complementaiy 3' overhangs. Panel A) Lane 1, X phage DNA 
cleaved with Hindlll as a molecular size standard; lane 2, untreated BLP DNA; lane 3, 
untreated BLP DNA subjected to T4 DNA ligase for 24 hr; lane 4, Klenow-treated BLP 
DNA; lane 5, Klenow-treated BLP DNA subjected to T4 DNA ligase for 24 hr. No 
ligation products were generated in lanes 2-5. Panel B) Lane 1, X phage DNA cleaved by 
Hindlll as a molecular size standard; lane 2, SI nuclease-treated BLP DNA; lane 3, SI 
nuclease-treated BLP DNA subjected to T4 DNA ligase for 24 hr; lane 4, pBBRlMCS 
linearized with EcoRV (a blunt-end endonuclease); lane 5, pBBRlMCS linearized with 
EcoRY  subjected to T4 DNA ligase for 24 hr. as a control. Ligation products were 
generated in lanes 3 and 5.
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Figure 3.6 A 0.8% agarose gel showing that “free” (unpackaged) BLP DNA molecules 
are not present inside the B. bacilliformis bacterium. Lane 1, X phage DNA cleaved with 
Hindlll as a molecular size standard; lane 2, total DNA preparation of B. bacilliformis 
JB584 incubated with DNase I (2 |xg / ml); lane 3, harvested B. bacilliformis JB584 
bacteria treated with CHCI3 (note the absence of the 14-kbp BLP DNA band); 
lane 4, purified BLPs subjected to CHCI3 (note the absence of 14-kbp BLP DNA; lane 5, 
harvested B. bacilliformis JB584 bacteria treated with 10% SDS (note the presence of 
both chromosomal and BLP DNA); lane 6 , purified BLPs incubated with DNase I (2 pg / 
ml) and treated with 10% SDS immediately prior to electrophoresis.
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SDS. Only the SDS-treated BLPs yield a visible 14-kbp band after being subjected to 

agarose gel electrophoresis (Figure 3.6, Lane 6 ). These data suggest that the BLPs 

encapsulate their nucleic acid inside a chloroform-resistant protein coat, or capsid, much 

like a true bacteriophage.

3.5 BLP proteins

To further investigate the BLP coat proteins, purified BLPs were compared to B. 

bacilliformis total cell lysates on Coomassie blue-stained SDS-PAGE gels. Three major 

bands were observed that bare remarkable similarities to those analyzed for B. henselae 

BLPs (24,25). The sizes of the three major bands were approximately 32, 34, and 36 kDa 

(Figure 3.7, Lane 3) and are consistent within the total cell lysate at high density(Figure 

3.7, Lane 2). A corresponding immunoblot was performed four times to determine if the 

BLP proteins were immunogenic. Although detection by human convalescent serum 

occurred, the detection was very faint, suggesting poor immune reactivity. By contrast, it 

has been shown that strong immune reactivity occurs in rabbits (49).

3.6 Packaging of host DNA into BLPs

Previous literature has stated that BLPs from B. henselae package host DNA in a 

“near-random” fashion (24). To assess the “randomness of packaging” of host DNA from 

B. bacilliformis into the associated BLPs, both Southern blot and RFLP analyses were 

performed. When purified BLP DNA was digested separately with several restriction 

endonucleases {BamRl, Hindlll^ EcoRI, and ClaY) and then separated by agarose gel 

electrophoresis, distinct banding patterns were observed (data not shown). In an effort to 

intensify all bands, the DNA fragments from the agarose gel above were transferred to a 

nitrocellulose membrane and probed with purified [^^P]dCTP-labeled BLP DNA. A
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Figure 3.7 Coomassie brilliant blue-stained SDS-polyacrylamide gel (12.5% acrylamide) 
showing B. bacilliformis JB584 whole-cell lysate and BLP associated proteins. Lane 1, 
molecular mass standards in kilodaltons; lane 2, B. bacilliformis JB584 whole-cell lysate 
showing a total protein profile; lane 3, protein profile of purified BLPs showing 3 major 
bands at approximately 32, 34, and 36 kDa.
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Figure 3.8 Southern blot showing the RFLP analysis of BLP DNA by various restriction 
endonucleases. Electrophoretically-separated BLP DNA fragments were transferred to 
nitrocellulose and probed using purified BLP DNA labeled with [^^PJdCTP.
Approximate positions of molecular size standards are indicated to the left. Lane 1, uncut 
BLP DNA migrating at 14-kbp; lane 2 ,5«/wHI-digested BLP DNA; lane 3, HinàlW- 
digested BLP DNA; lane 4, EcoRI-digested BLP DNA; lane 5, C/al-digested BLP DNA.
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representative autoradiograph is shown in Figure 3.8. Although the sum of the individual 

bands in each lane added to be greater than 14 kbp, a smear was not apparent. These data 

suggest that the 14-kbp BLP DNA is heterogeneous in nature but not completely random. 

In addition, not all fragments of the host chromosome are packaged into BLPs (Table 

3.3). Furthermore, two aliquots of host DNA, cut with HinàYH, were separated by 

agarose gel electrophoresis, transferred to nitrocellulose membranes, and probed with 

either [^^P]dCTP-labelled chromosomal DNA or [^^PJdCTP-labelled BLP DNA. The 

resulting autoradiographs indicated the presence of many more bands when chromosomal 

DNA was used as the probe (data not shown). This decrease in the number of resulting 

bands when BLP DNA was used as a probe suggests that packaging is far less random in 

B. bacilliformis BLPs than previously reported for B. henselae BLPs by Anderson et al 

(24).

To further analyze the specificity of packaging by the BLPs associated with B. 

bacilliformis, total genomic DNA preparations from B. bacilliformis strain JB584 were 

separated by agarose gel electrophoresis much like those in Figure 1, Lane 2. The 

resulting DNA was then transferred to nitrocellulose membranes and probed with specific 

loci from the host chromosome. An additional probe consisting of the plasmid 

pBBRlMCS was used on KB484 to determine if BLPs package plasmid DNA, The 

resulting Southern blots were evaluated based on radioactivity at the site of the 14-kbp 

DNA band (See Figure 3.10 for example). If radioactivity was present, as indicated on an 

autoradiograph, then the BLP DNA was considered to contain that specific locus from the 

host chromosome. The results are summarized in Table 3.3 and further confirm that



30

Table 3.3 BLP packaging of various loci from the B. bacilliformis JB584 chromosome.

Loci within host chromosome Packaged within BLP

16S-23S 775 regions Variable^
Invasion-Associated Locus B QalB) YES

Flagellin gene (/7a) NO
Gyrase B gene (gyrB) NO

Extrachromosomal elements (pBBRlMCS) NO

 ̂Three 168-23SrDNA loci exist; of those, one is packaged.
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packaging is non-random. An explanation regarding the packaging results of the 16S-23S 

ITS regions is provided in the next section.

Transduction Experiments

These experiments were designed to explore the potential role that BLPs play in 

horizontal gene transfer between Bartonella. An essential component towards 

accomplishing the proposed transduction experiments was the use of a system for site- 

directed mutagenesis of Bartonella to obtain a selectable, antibiotic resistance marker that 

could be used to track the transfer of genes from one microorganism to another. To 

accomplish this, we first needed to establish a site on the host chromosome that not only 

is packaged by BLPs but, also could be mutated without lethal effects to the bacterium. 

The 16S-23S ITS region within the Bartonella chromosome was chosen for three reasons. 

First, three target loci exist for the suicide vector to recombine with. Second, inactivation 

of one of the 16S-23 SrDNA opérons would not be lethal since there would still be two 

remaining. Finally, sequence similarities in this area exist across Bartonella species, 

hence constructs could be utilized for interspecies transduction experiments.

3.7 Development of suicide vector pKBl

An internal fragment of the 16S-23 SrDNA operon, previously cloned into pKRT3 

(40), was excised out o f pKRT3 with BamWl and SaïV restriction enzymes. The same 

enzymes were used to create compatible ends on the suicide vector pUBl (13). Upon 

ligation and propagation in E. coli, the recombinant plasmids were extracted and analyzed 

via restriction endonuclease digestion and PCR to verify the size as well as the various 

components associated with the suicide vector pKBl (Figure 3.9, A).
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Figure 3.9 Successful strategy used for site-directed mutagenesis of B. bacilliformis 
JB584. Mutagenesis of one of the three 168-23S ITS regions within the B. bacilliformis 
JB584 chromosome was accomplished using the pKBl suicide vector containing a 1333 
bp BamYH / Sali restriction fragment cloned from pKRT3. Following electroporation of 
pKBl into JB584, a crossover event between pKBl and one of the 168-23SrDNA 
opérons occured resulting in insertional inactivation of one of the three the targeted 
genes thus, confering a Kan^ phenotype.
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3.8 Development of Kan^ B. bacilliformis mutants

pKBl was electroporated into JB584 and allowed to homologously recombine 

with the host chromosome (Figure 3.9, C). After 10 days, two kanamycin-resistant 

B. bacilliformis mutants were isolated, grown, and subjected to genomic DNA extraction. 

The nucleic acid preparations were then subjected to agarose gel electrophoresis, PCR, 

and Southern blot analysis. Both strains, KB584 and KB585 (Table 2.1), possessed a 14- 

kbp fragment of BLP DNA that was consistent with total DNA preparations of all B. 

bacilliformis and B. henselae strains (Figure 3.10, Panel A). Southern blot analysis of the 

two kanamycin-resistant mutants with [^^PJdCTP-labeled npti showed that one mutant, 

KB585, contained the kanamycin-resistance cassette in both the chromosome and the 14- 

kbp BLP fragment (Figure 3.10, Panel B) whereas the other mutant, KB584, did not.

These data suggested that allelic exchange had occurred and a trackable selection marker, 

npti, was integrated into the B. bacilliformis chromosome and that BLPs from KB585 

were packaging it. This system provided an avenue to perform coincubation experiments, 

using a chloramphenicol-resistant B. bacilliformis strain (KB484), to attempt 

transduction.

3.9 Coincubation of KB585 and KB484

Coincubation of KB585 and KB484 was performed to mimic a natural 

transduction event between two Bartonella strains. This experiment led to five new B, 

bacilliformis strains, KB6 8 6  (strains A-E), that demonstrated both a kanamycin and 

chloramphenicol resistant phenotype. Bacterial numbers were obtained by serial dilutions 

followed by CPUs to give approximately 2x10^ cells / ml of KB484 and 2.5 x 10  ̂cells / 

ml of KB585. However, spontaneous mutants giving chloramphenicol resistance were
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Figure 3.10 DNA hybridization analysis showing BLP packaging of the kanamycin 
resistance gene from KB585. Panel A) Total DNA, from B. bacilliformis strains JB584 
and KB585 showing both the chromosomal and BLP DNA, resolved on a 0.8% agarose 
gel. Lane 1, X phage DNA cleaved with HMWl as a molecular size standard; lane 2, total 
DNA preparations of B. bacilliformis JB584; lane 3, total DNA preparations from B. 
bacilliformis KB584 (mutant 1); lane 4, total DNA preparations from 5. bacilliformis 
KB585 (mutant 2); lane 5, same as lane 2; lane 6 , linearize suicide plasmid used to 
generate the B. bacilliformis mutants and which contains the kanamycin resistance 
cassette {npti).
Panel B) Corresponding Southern blot analysis of DNA from gel in panel A. The 
agarose gel was blotted to nitrocellulose and probed using a f  ̂ P]dCTP-labeled npti. 
While B. bacilliformis JB584 does not contain a chromosomal copy of npti (lanes 2 and 
5), both B. bacilliformis mutants do (lanes 3 and 4). However, only B. bacilliformis 
mutant 2, termed KB585, shows packaging of the kanamycin resistance gene {npti) by the 
BLPs (lane 4).
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also observed on control plates. Furthermore, PCR analysis (using both Kan and Cam 

primer sets) of the KB6 8 6  strains revealed the presence of only the kanamycin-resistance 

cassette, indicating that spontaneous antibiotic resistance to chloramphenicol was 

generating the observed phenotype rather than transduction (data not shown).

3.10 Infection of JB584 and KB484 with purified BLPs from KB585

In an effort rule out the possibility of conjugation and spontaneous 

chloramphenicol resistance, purified BLPs from strain KB585 were used in an attempt to 

transduce JB584 and KB484. An MOI of approximately 10 BLPs / Bartonella cell was 

determined by agarose gel electrophoresis. JB584 and KB484 numbers were obtained by 

serial dilutions followed by CPUs to give approximately 1x10^ cells / ml. Following an 

incubation period of approximately 28 days, no colonies were observed on growth media 

containing either Kan or a combination of Kan and Cam. These experiments were 

repeated a second time with the following change. When the purified BLPs were added 

to the JB584 and KB484 bacteria, the mixtures were incubated in the recovery broth for 

24 hours before being plated. These experiments met with similar results; no colonies 

were observed on growth medium containing similar antibiotic supplements as above.

3.11 Electroporation of JB584 and KB484 with purified BLP DNA from KB585

In a mock transduction experiment, the attachment and injection stage of the viral 

lifecycle was surpassed by direct electroporation of BLP DNA into JB584 and KB484. 

This was done in an effort to determine if attachment of the BLPs to the host, or injection 

of their nucleic acids, were impeding BLP- mediated genetic exchange. Very high 

concentrations of BLP DNA from KB585 (1 -3  fig) were electroporated into either 

JB584 or KB484, and the resulting electroporation mixture was plated on grovvth media
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containing the appropriate antibiotic supplements. Although homologous recombination 

and allelic exchange may have occurred at other sites within the host chromosome, it did 

not occur at a 16S-23S ITS region as no kanamycin-resistant colonies were observed.



Chapter IV 

Discussion

B. bacilliformis is a small, gram negative, intracellular parasite of human 

erythrocytes and endothelial cells. Although this hemotrophic bacterium is endemic to 

the Andes region of South America, twelve other species are found worldwide.

Currently, five Bartonella species pose a significant health threat to humans and are the 

cause of a variety of emerging infectious diseases. One primary mechanism for this 

emergence may stem from horizontal transfer of genes encoding virulence determinants. 

One mechanism in particular, transduction, may be facilitated by the bacteriophage-like 

particles (BLPs) found to be associated with many Bartonella species. These BLPs have 

previously been described in detail for B, henselae (24,25), however, little is knovm 

regarding the BLPs associated with B. bacilliformis. Thus, the basis for this research was 

to provide a better understanding of the biology and genetics of the B. bacilliformis BLPs 

and to build a foundation on which to further explore the potential role they play in 

generalized transduction between and within Bartonella species.

Although BLPs were found to be present in a variety of Bartonella species, this

study explored the basic characteristics of the BLPs from B. bacilliformis. We describe

an extracellular particle associated ^vith B. bacilliformis that appears to be round to

icosahedral and approximately 80 nm in diameter. The particle we observed is similar to

those described before (24,26), however, it is approximately twice the previously reported

diameter. Although we used afla'B. bacilliformis strain (JB585) to minimize flagella

contamination, we believe this size variation is due to swelling during the uranyl acetate

staining procedure (50). Similar to observations made by Anderson et a l (24), the

37
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absence of tail structures was observed in B. bacilliformis BLPs. This is in contrast to 

observations made by Umemori et al (26) in which tail structures were observed.

A 14-kbp extrachromosomal DNA element was observed in total DNA 

preparations of five Bartonella species including all strains of B. bacilliformis (Table 

3.1). Likewise, the 14-kbp extrachromosomal DNA element was associated with purified 

BLP preparations from B. bacilliformis JB584 (Figure 3.3). No 14-kbp 

extrachromosomal DNA elements were seen in B. clarridgeiae, B. elizabethae, or B. 

vinsonii suggesting that these Bartonella species are not infected or have been cured of 

BLPs. The 14-kbp extrachromosomal DNA was not seen in CHCla-treated B. 

bacilliformis cells suggesting that it is immediately packaged into a protein head or capsid 

by following a headful packaging mechanisms (27,28). Additionally, BLP DNA was not 

digested with DNase I until the BLPs were disrupted with SDS, further suggesting that 

the BLP DNA is being sequestered into a protective protein head. In this respect, BLPs 

appear to be quite similar to other generalized transducing bacteriophages.

To characterize the ends of the BLP DNA molecules, alkaline dénaturation 

followed by rapid neutralization was used, as well as various ligation techniques. First, 

the BLP DNA was shown to be alkaline-denaturable when subjected to basic conditions. 

The opposite was true when a covalently-closed linear plasmid (Ip 16) from Borrelia 

burgdorferi was treated with base followed by rapid neutralization. These observations 

suggest that the BLP DNA ends are not covalently closed (Figure 3.4). Secondly, ligation 

of BLP DNA molecules to one another only occurred after treatment with SI nuclease to 

remove single-stranded overhangs (Figure 3.5) whereas ligation of untreated or Klenow- 

treated BLP DNA was not observed. These data suggest that the BLP DNA ends consist
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of non-homologous 3' overhangs. Interestingly, it has been reported that homologous 

recombination and allelic exchange of genetic material occurs most readily if the invading 

DNA molecule contains a 3' overhang (51,52). This implies that the BLP DNA that is 

being packaged into the capsids would be optimally prepared to undergo homologous 

recombination and allelic exchange if injected into a suitable host, strengthening our 

hypothesis that Bartonella BLPs may engage in horizontal gene transfer via transduction- 

mediated genetic exchange.

SDS-PAGE analysis of the BLP-associated proteins revealed three distinct bands 

with molecular masses of 32, 34, and 36 kDa (Figure 3.7). Three similar-sized BLP- 

associated proteins were also observed in two different strains of B. henselae and one 

strain of B. bacilliformis by Anderson et a l (24). Recently, one of the capsid genes 

associated with B. henselae BLPs, termed Pap 31, has been isolated and sequenced (25). 

Although it is not known if the B. bacilliformis BLP proteins are unique to the particle, 

the results suggest that the BLPs are composed of a distinct set of proteins that 

constitute phage head proteins. This suggests a possible mechanism of synthesis for 

capsid protein from genes contained within the B. bacilliformis chromosome. Thus, it is 

speculated that some time ago, a prophage expanded its host range to include an ancestor 

of the Bartonella genus. This prophage, carrying on in its life cycle to include other 

Bartonella strains and / or species, had since lost its ability to continue the normal 

bacteriophage lytic cycle yet, somehow continues to code for capsid proteins and a 

mechanism necessary for packaging of the 14-kbp fragments of host DNA (24).

Random packaging of 14-kbp segments of host chromosome appears to be 

common for BLPs associated with B. henselae (24,53). However, RFLP and Southern
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blot analysis of BLP DNA from B. bacilliformis suggests that packaging by these BLPs is 

much less random. Although the RFLP analysis revealed several BLP DNA fragments 

when subjected to various restriction endonucleases, the banding pattern was distinct and 

did not form a smear (Figure 3.8), as would be observed in a truly heterogeneous mixture 

of chromosomal DNA like that of the B. henselae BLP DNA (24). Furthermore, when 

B. bacilliformis chromosomal DNA was completely digested by HinâlW, transferred to 

nitrocellulose, and probed with [^^PJdCTP-labeled chromosomal DNA, smearing was 

seen as numerous bands were detected on the resulting autoradiograph. In contrast, when 

a similar preparation of B. bacilliformis chromosomal DNA was probed with [^^PJdCTP- 

labeled BLP DNA, a smearing effect was not observed; fewer bands were indicated on 

the resulting autoradiograph. These data suggest that packaging of B. bacilliformis 

chromosomal DNA into associated BLPs is non-random and confined to certain areas on 

the host chromosome. Perhaps one of these fragments contain the “ancestral” prophage 

genome.

To further investigate the non-random packaging event, specific loci from the B. 

bacilliformis chromosome were used to probe total genomic DNA preparations of B. 

bacilliformis JB584. We were also interested to determine if genes associated with 

virulence were being packaged into the BLPs. As supported by packaging data on BLPs 

from B. henselae (24), B. bacilliformis BLPs efficiently package at least one of the three 

16S-23S ITS regions located within the B. bacilliformis chromosome. By generating two 

Kan^ B. bacilliformis mutants, each with a different 16S-23SrRNA operon being 

inactivated by a crossover event with a suicide plasmid, we have discovered that at least 

one of the three 16S-23S ITS regions contained within the B, bacilliformis chromosome is
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not packaged (Figure 3.10). Additional studies revealed that the gyrB gene and the fla  

gene are not packaged by the B. bacilliformis BLPs. However, the ialB gene, located in 

the middle of a known virulence gene cluster ( 1 1 ,1 2 ), was shown to be packaged into the 

BLPs. Thus, BLPs may contribute to the recent emergence of Bartonella species and 

associated infectious diseases in humans by horizontal gene transfer and spread of 

virulence determinants via transduction.

The existence of a transduction event has never been shown for any Bartonella 

species. We have completed a series of experiments designed to provide a foundation for 

discovering the potential role BLPs play in generalized transduction. The first 

experiment was to insert a selectable, antibiotic-resistance marker into the B, 

bacilliformis chromosome such that it could be used to track the transfer of antibiotic 

resistance to antibiotic-sensitive strains. This was accomplished by electroporating a 

suicide vector, termed pKBl (Figure 3.9), into B. bacilliformis JB584 and allowing it to 

homologously recombine with one of the three 16S-23S ITS regions located within the B. 

bacilliformis chromosome, thus producing a kanamycin-resistant phenotype. Southern 

blot analysis confirmed that allelic exchange had occurred. The second experiment was 

to show packaging of this antibiotic-resistance marker into the B. bacilliformis BLPs.

This was accomplished by probing total DNA preparations of the two Kan^ B. 

bacilliformis mutants with [^^P]dCTP-labeled npti. It was shown that BLP DNA from 

Kan^ B. bacilliformis KB585, contained the npti gene (Figure 3.10), providing the means 

to explore the potential role that BLPs may play in generalized transduction.

Several unsuccessful attempts were made to demonstrate transduction by BLPs 

associated with B. bacilliformis. One possible explanation as to why we were
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unsuccessful in our transduction attempts stems from the natural phenomenon known as 

superinfection immunity. This phenomenon occurs when a lysogen is exposed to a 

mature bacteriophage similar to the integrated prophage (54). This phenomenon has been 

thoroughly studied and documented for both X phage and T4 phage infection of E. coli 

(27,54). Each of these phages have their own mechanisms for controlling subsequent 

infections of an already infected host cell. For example, X phage blocks expression of 

incoming viral DNA by utilizing repressor proteins already present in the cytoplasm. T4 

phage prevents further infection by degrading incoming viral DNA. Because all B, 

bacilliformis strains contain BLPs, these microorganisms may have a BLP-mediated 

mechanism that prevents further BLP infection. For this reason, future transduction 

studies will be directed at producing a cured indicator strain of B. bacilliformis (BLP ) or 

implementing the use of other BLP" Bartonella species such as B. vinsonii or B. 

clarridgeiae.

Another explanation as to why we were unsuccessful in our transduction attempts 

may be that B. bacilliformis harbors nucleases designed for the degradation of linear 

DNA molecules. Previous attempts by our lab to mutagenize with linear DNA 

molecules, either double-straded or single stranded, were unsuccessful (52).

Finally, the odds of a double-stranded crossover event are very low especially 

considering the heterogeneity of the BLP DNA. That is, only a minor fraction of the 

BLPs would contain the Kan::/7’S' locus.

Reasons for the recent increase in the incidence of Bartonellosis are unclear. It is 

posible that a contributing factor for this emergence is the horizontal transfer of genes 

encoding virulence determinants and / or antibiotic-resistance markers. BLPs may play
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an essential role in mediating this genetic exchange since it has been shown that BLP 

DNA has a 3' overhang for optimal homologous recombination. Furthermore, BLPs were 

found to package a known virulence gene, ialB, from the B. bacilliformis chromosome. It 

may also be possible for BLPs to package genes containing the spontaneous 

chloramphenicol resistance observed in the B, bacilliformis KB6 8 6  strains, thus 

effectively transducing antibiotic resistance to previously Cam^ strains. We intend to 

continue to investigate the role BLPs play in mediating genetic exchange among the 

Bartonella genus as well as to characterize the BLP genome in hopes of harnessing it as a 

potential tool in the genetic manipulation o f Bartonella bacilliformis.
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