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Ball, Patrick N., Ph.D., December 2001 Microbiology & Biochemistry

Subsurface microbiology: Viral transport studies and the microbial ecology of 
landfill environments.

Director Dr. William E. Holben

To investigate the transport behavior and fate of viruses in subsurface 
environments field experiments were conducted in an unconfined, cold-water 
aquifer by seeding viruses into established monitoring well networks. Both 
natural and forced gradient experiments were conducted using bromide, 
bacteriophages MS2, <t>X174, PRD1 as well as, poliovirus (Chat 1 strain). 
Breakthrough curves were established and percent relative breakthrough (RB), 
attenuation (RA), collision efficiencies (a) and aqueous mass balance data was 
calculated. A third experiment was conducted in a sewage impacted aquifer.
Here an additional forced gradient experiment was conducted in the established 
well network. During this study bromide and MS2 were seeded into the 
groundwater and both aqueous and solid phase data was collected and a total 
system mass balance was determined.

Information from these studies lead to the realization that high concentrations of 
virus are capable of moving with the average velocity of the groundwater and 
capable of surpassing setback distances commonly used between source wells 
and septic systems. Additionally, viral isoelectric points (pi) have a major 
influence on adsorption (effect a  values), which in turn, appears to be a major 
controlling factor for attenuation. However, adsorbed viruses may have lower 
inactivation rates and are capable release back into the aqueous portion of the 
aquifer. Further, under forced gradients the bacteriophage % RB is increased 
relative to natural gradients, while that of poliovirus is decreased. Also, pore 
exclusion transport may be enhanced under a forced gradient. By performing a 
total mass balance (solid and aqueous phase) the validity of the parameters RB, 
RA, and a  were tested. Although calculated values were consistent with 
measured values, the attenuated portion of the virus proved difficult to quantify.
A Multi-tiered approach using a combination of molecular techniques was used 

to access gross microbial community structure and diversity and identify possible 
key members of landfill environments. Phylogenetic analysis identified 
microorganisms whose “best match” in established databases distinguished them 
as candidates in a proposed model of landfill microbial community members. 
Physical and chemical environments of landfills and their relative unexplored 
nature suggest some of the “best match” identities could be undescribed 
bacterial species or sub-species.
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Chapter 1 

General Introduction

It is estimated that between 70 and 110 million people, approximately 50% of the 

population o f  the United States, use groundwater as their main source for drinking water 

supplies (Rose, 1998). Aquifers that are shallow, cold, unconfined and prolific are 

especially susceptible to contamination with various pathogenic microorganisms. 

Groundwater contamination has been implicated as the source in about half o f all 

microbial disease outbreaks, accounting for several million illnesses per year (Keswick 

and Gerba, 1980). Sources o f pathogens include leaking sewer lines, land application of 

sewage, and septic system effluent

Septic effluents can contain pathogenic human viruses (>100 enteric viruses) 

which may be shed in fecal matter during episodes o f infection (Rao and Melnick, 1987). 

These types o f  pathogens are especially noteworthy because their infectious dose can be 

exceedingly low; in some cases a few viruses may cause disease onset (Abbaszadegan et 

al., 1999). These viruses are generally quite robust; capable of withstanding low pH and 

organic solvents, conditions that may prevail within septic systems. Such characteristics

allow for survival in saturated zones o f cold water aquifers for long periods o f time. In

turn, this provides an opportunity for viral transport over tens to hundreds o f meters from 

a source.

From research conducted in our own laboratory we have isolated seeded 

coliphage (acknowledged as an acceptable surrogate for modeling the behavior o f enteric 

viruses in field studies) in monitoring wells over 40 m from the site o f  injection, and

1
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recovered bacteriophage at measurable titers nine months after the time o f input These 

inherent capabilities highlight the threat o f  viral disease(s) being contracted via water 

transmission. In fact, many cases o f  gastroenteritis have reportedly been contracted 

through this route, with the likelihood that a great number o f illnesses go unreported or 

that the source o f  origin is unknown (Bitton and Gerba, 1984; Moore, 1982). To assume 

that this occurs only in third world countries is naive. In 1993, this laboratory found titers 

o f roughly ISO PFU/ ml o f virus, from raw sewage coming into the Missoula wastewater 

treatment plant This may account for the three to five unexplained cases o f Hepatitis A 

that occur annually in Missoula County (Greg Oliver).

Specific concentrations o f  human viruses allowable in drinking water are as yet 

undefined. The World Health Organization (WHO) has suggested that drinking water 

should contain less than one infectious particle per 1,000 liters, while the Environmental 

Protection Agency (EPA) has suggested a limit o f no more than two viruses in 

10,000,000 liters (Regli, 1991). Despite these recommendations, laboratory methods for 

detection o f viruses to such high levels o f  sensitivity do not currently exist At best even 

under ideal conditions, approximately one virus in 1,000 liters is the lowest level of 

detection currently capable o f being measured. In view o f these facts the EPA has 

proposed a draft Ground Water Disinfection Rule (GWDR); (National Primary Drinking 

Water Regulations: Ground Water Rule -  EPA), with work currently underway to 

complete a final version. In the current GWDR, water providers must demonstrate that 

the number o f  infectious particles in drinking water reaching a wellhead is such that less 

than one infection per 10,000 people occurs per year. This roughly translates into the 

aforementioned < 2 viruses/107 liter, based on a risk assessment performed by Regli et al.

2
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in 1991. Also stipulated under the draft GWDR, potable water providers would not be 

required to chemically treat groundwater if such water, through the process o f “natural 

disinfection”, meets the above requirement

Adequate delivery o f groundwater to wells under “natural disinfecting” conditions 

is an attractive alternative to conventional chemical or physical means of treatment and 

supply (Maclar, 1995). Although the risks are not completely defined, products or 

byproducts associated with chemical treatment can affect human health adversly. The 

cost o f providing safe drinking water by these methods can be astronomical, and 

providers required to continue service to the public must recover that cost by increasing 

fees to customers. A proposed method for granting disinfection variances is based on 

models predicting concentrations o f  virus that would enter the capture zone of a supply 

well. However, to date, the models proposed have generally under-predicted 

concentrations and over-predicted travel times o f viruses. (Yates and Jury, 1995). It is 

obvious that to use this sort of predictive tool more information on virus fate and 

transport must be gathered and analyzed. O f particular interest are data from laboratory 

studies that can be correlated with field scale studies. Integrating these approaches would 

seem to provide the most reliable information concerning these questions.

There is a general lack o f information that describes transport parameters of virus 

in a presumptive high-risk aquifer, such as the groundwater system found in the Missoula 

valley. Due to its nature, this highly conductive, cold, coarse-grained groundwater 

system, the sole source supply to city and rural residents, represents a “worst case 

scenario”, when considering the potential for subsurface virus transport and survival. 

Knowledge o f the partitioning behavior o f viruses between the bound and unbound

3
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phases in this type o f  setting is vital. Such information may be used to re-evaluate safe 

setback distances between septic system drain-fields and tanks and potable water sources, 

and possibly aid in implementing appropriate remediation strategies. This information 

will also provide insight for evaluation o f the controls and constraints on the natural 

disinfection process. Major variables to be considered will be maximum concentrations 

and travel times.

Field and column/batch experiments cited in the literature suggest that adsorption 

and inactivation are the principal mechanisms that control the fate and transport of 

viruses in subsurface environments (Yates et al., 1987; Goyal and Gerba, 1979; Bales et 

al., 1993; Gerba, 1984). Additionally, dispersion may account for the reduction of virus 

concentrations by a dilution effect Dispersion is generally controlled by the 

hydrogeological properties o f an aquifer. Factors such as groundwater velocity and 

sediment dispersivity result in this dilution process.

Adsorption seems to be the most critical factor controlling the transport and fate 

o f viruses in groundwater systems, especially in systems with similar hydrogeologic 

characteristics and cold water temperatures as in the Missoula valley. A number of 

factors influence virus adsorption to soil particles, including soil type and chemistry, pH, 

ionic strength, hydrophobic interactions and type and strain o f virus (Goyal and Gerba, 

1979; Keswick and Gerba, 1980; Gerba, 1984; Jansons et al., 1989a; Bales et al., 1993; 

Yeager and O’Brien, 1979). Researchers have gone to great effort in trying to describe 

the interactions that occur between viruses and adsorbent matrices (Gerba, 1984). Two of 

the most important results of this research are the realization that the binding event is 

reversible and possibly protective in nature (Bales et al., 1993; Bales et al., 1995; Bitton,

4
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1975; Grant et al., 1993; Herbold-Paschke et al., 1991; Hurst et al., 1980). The former 

effect is evident, based on our previous research at two separate experimental sites 

(Erskine Fishing Access site and Frenchtown High School) during several transport 

experiments in which the bacteriophages MS2, PRD1 and 0X 174 and attenuated polio 

virus type I (chat strain) were used (Fig. 1).

P2-9, 25 ft

1.E+09
1.E+08
1.E+07

I  1.E+06
1.E+05

1.E-KJ3
1.E+02
1.E+01
1.E+00

-MS2

-PRD-1

-PHDC174

-Pofc)

•Bronx 
2nd axis

40 60
Hours Post-injoction

Figure 1. Breakthrough curve constructed from data obtained from monitoring well 
(from Erskine field site, natural gradient experiment).

The long tailing that follows the peak concentration o f the vims that passes the 

monitoring wells indicates that the main mass of the virus is most likely adsorbed and 

then slowly released over time back into the flow system (Fig 1). This phenomenon poses 

a potential threat to downgradient wells. It has also been proposed that a portion o f the 

tailing may be the result o f unabsorbed aqueous phase vims entering lower velocity 

portions o f the aquifer.

Though not well understood, the main mode o f  inactivation o f virus particles 

appears to be temperature controlled, with inactivation having a positive correlation with 

increases in temperature (Yahya et al, 1993, Yates and Yates, 1987, Snowdon et al.,
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1989). However, there may be other contributing factors such as chemical (e.g., 

enzymatic degradation and low levels of dissolved oxygen) or physical events (e.g., 

conformational changes on virus surface) that cause either permanent or temporary loss 

o f infectivity, thus contributing to inactivation (Bales et al., 1993). Most previous concern 

about subsurface transport has focused on the portion o f  the virus that is transported in 

the aqueous phase. This fraction should be found first and farthest down gradient, 

entering well capture zones. The fact that this portion may represent a relatively small 

concentration is not trivial. With sources reaching values greater than 10>0 PFU/ml 

(Abbaszadegan et al., 1999), one can easily see that even small percentages still represent 

large quantities o f  potentially infectious particles. To meet the proposed limitations o f < 2 

viruses/liter reaching the wellhead, a 13 log reduction in the virus concentration from 

source would be required. Under the influence o f a pumping well there may be an 

increase in viral concentrations arriving at capture zones. In addition, this elevated level 

may persist for longer periods o f time than would be normally encountered under natural 

conditions.

The research that conducted provides data useful in a number of relevant areas.

For issues concerning water quality and disinfection, these studies provide data relevant 

to developing natural disinfection criteria necessary for well and aquifer protection. 

Protective regulations provide health, and cost benefits, by reducing chemical or physical 

groundwater disinfection treatments. In addition, this research also provides information 

related to the potential health risks posed to the public in areas that could be considered 

under threat o f contamination by defining transport parameters in “high risk” 

environments (cold and highly conductive aquifers).

6
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To summarize, increasing human population densities put a burden on local water 

supplies, both in a consumptive and additive manner. In areas where groundwater 

supplies the majority o f  domestic water, the risk o f  groundwater contamination by 

pathogenic microorganisms appears to be increasing. It is ironic that the same features 

that make an aquifer desirable for obtaining quality drinking water (e.g., high 

transmissivity, cold) also make it more susceptible to becoming contaminated with 

microbial pathogens such as human enteric viruses. Unfortunately, there is a paucity of 

information available to the public and policy makers concerning these issues.

Insufficient data on primary factors that control the transport and fate of microorganisms 

are the limiting element impeding this process o f information acquisition and 

dissemination. Understanding controlling parameters is paramount to gaining insight into 

natural disinfection processes for viruses.

Dissertation organization, research aims and the scope and nature of research 

project

Dissertation organization:

Chapter 1, presented above, is a general introduction to the topic o f subsurface viral 

transport and presents the conceptual framework for the subject-matter of this 

dissertation. Chapter 2 provides an introduction to concepts and factors controlling viral 

transport Chapter 3 is a review o f supporting research and background information from 

a previous experiment, which sets the stage for the original research that was conducted.

It highlights the main points o f a manuscript published in the journal WATER

7
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RESEARCH. Chapter 4 is a  draft o f  a manuscript entitled “Viral Attachment During 

Groundwater Transport Under Field Pumping Conditions: Mass Balance Approach” 

submitted for publication. Chapter 5 is a draft o f a manuscript entitled “Partitioning o f 

MS2 During Transport in a Septic Effluent Impacted Unconfined Aquifer” and in the 

process o f being submitted for publication.

Research Aims:

The specific aims o f this research are to address and quantify the processes affecting 

virus transport through an aquifer, the fate o f the viruses and how working wells further 

influence these processes. The information gathered from this study further define critical 

processes controlling virus concentrations in groundwater systems. Our approach uses 

field experiment data to examine the validity of laboratory observations. There have been 

few experiments using viruses (bacteriophage and particularly human enteric viruses) at 

field scale.

Scope and nature o f research project:

The nature o f this project bridges the gap between hydrogeology and microbiology and in 

that sense required an interdisciplinary approach. The findings gathered during the 

natural gradient experiment helped identify critical areas yet to be addressed. The 

following approach was used:

1) A forced gradient, multiple-virus field experiment was conducted, and a mass balance 

based on the aqueous phase mass was computed. This measured quantity was compared 

to theoretic viral mass values computed using relative breakthrough analysis.

8
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2) I describe and quantitatively examine the partitioning processes o f a virus between the 

aqueous phase and solid phase during transport at the field scale. The petitioning process 

was examined by seeding the bacteriophage MS2 through an injection into the capture 

zone o f  a pumping well and computing both an aqueous and bound phase mass balance. 

Then results o f  these computations were compared with theoretical values computed 

using relative breakthrough and attenuation analysis.

9
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Chapter 2 

General Concents in Viral Transport;

This chapter addresses critical factors influencing virus fate and transport in subsurface 

environments. These include physical, chemical and biological components.

General hydrodynamic factors that may affect virus fate and transport:

The transport o f a solute through saturated subsurface porous media is principally 

controlled by advection and dispersion. The main mass o f a conservative solute is 

transported at approximately the average flow velocity o f the groundwater. This process 

is referred to as advection. The distribution of the solute mass can also be altered during 

transport by mechanical dispersion and molecular diffusion. Together these spreading 

mechanisms, hydrodynamic dispersion, have a tendency to cause solute mass to spread 

three-dimensionally along their flow paths.

Mechanical dispersion results from the composition o f  the subsurface substrate 

and its innate properties. Three-dimensional spreading occurs when the solute enters 

pores o f different sizes and pore channels of different lengths, as the velocities field is 

effected so is the rate o f solute transport. Spreading in the direction o f flow is termed 

longitudinal dispersion (Fetter, 1994). The three-dimensional mechanical dispersion is 

equal to the product of the average linear velocity o f the solution and the directional 

dynamic dispersivity. Dynamic dispersivity is defined as a factor that accounts for the 

scale effect observed at field scales (Fetter, 1994). This mechanical process results in the 

mass o f the solute becoming increasingly diffuse (concentration becomes lower) as the 

length of the flow path increases.

10
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The second component o f  hydrodynamic dispersion is molecular diffusion. 

However, molecular diffusion is usually considered independent o f solution movement 

and is a function o f a  chemical gradient Molecular components move due to kinetic 

energy or Brownian motion (random motion) along a gradient of concentration. It is 

considered the primary factor in solute movement in the vicinity o f sediment particles 

(Penrod et al. 1996) and when flow velocities are extremely small.

Solutes that are not conservative react or interact in several different manners. 

Under conditions where the solute is reactive (usually charged particles) and/or the 

matrix o f  the porous media is charged (such as clay particles) solute transport can be 

affected by retardation. Under these conditions, the solute may become adsorbed causing 

the rate o f the solute mass travel to fall below the average flow velocity. The amount of 

solute adsorbed per unit o f  adsorbing material may be plotted as an adsorption isotherm. 

This type o f information is used to describe the relationship that exists between solutes 

and matrices. It is the basis from which a distribution coefficient (K) can be determined, 

which in turn can be used to compute a retardation factor (R) that describes the impact 

adsorption has on solute transport

Real geologic porous media are normally not isotropic and homogeneous in their 

composition and distribution of these properties affects solute transport. This means that 

variations in grain shape, composition, and distribution can have significant effects on 

solute transport. Harvey et al. (1993) cited physical heterogeneities as being responsible 

for differential transport o f bacteria and bromide. LeBlanc et al. (1991) reported similar 

findings for transport o f a conservative tracer at the same site. Woessner et al. (1998) 

found that local heterogeneities created a zone o f preferential flow within the capture

11
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zone o f a pumping well producing increased transport rates and higher than predicted 

concentrations o f virus at a withdrawal well head during a bacteriophage tracer 

experiment

Non-hydrodynamic factors that affect virus fate and transport:

Movement o f  viruses in ground water environments is generally controlled by 

colloidal deposition that can be viewed in two parts; transport and attachment (Loveland 

et al. 1996). Attachment o f colloids is thought to be controlled by the hydrodynamic 

approach and surface chemical interactions (Loveland et al. 1996). The Deijaguin- 

Landau-V erwey-O verbeek (DLVO) theory attempts to quantify particle/collector 

interactions by examining the balance between the van der Waals forces (responsible for 

attractive forces) and double-layer interactions (responsible for repulsive forces; Gerba, 

1984). Factors that influence virus attachment may include, but are not limited to, ionic 

strength and valency, organic matter, pH, dissolved oxygen and soil composition.

Ionic strength and valency -  High ionic strength solutions generally lead to increased 

virus attachment to surfaces because they constrict the thickness o f the double layer that 

exists between particles o f like charge (Gerba, 1984). Additionally, the valency o f cations 

is important, and increased adsorption is positive correlated with valency (trivalent > 

divalent > monovalent; Bitton, 1975). This is only true when the pH o f the solution is 

above the pi o f the virus and sediment, which is typically the case in aqueous 

environments with near neutral pH (Lance and Gerba, 1984). They also indicated that 

high salt content in sewage and tap water increased vims attachment A similar result was 

reported by Kinoshita et al. (1993) for the bacteriophage PRD1 in column studies.
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Viruses in wastewater effluents with conductivities o f 500 -  600 p.mhos/cm3 

demonstrated higher retention to soils when compared to experiments with similar soils 

in which distilled water with conductivity o f approximately 10 pmhos/cm was used 

(Bitton and Gerba, 1984).

O rganic m atter - Evidence suggesting that the presence o f organic matter in 

groundwater hinders virus adsorption to sediment can be found in the literature (Bitton 

and Gerba, 1984; Powelson et al., 1991; Bales et al., 1989,1993). Although most o f these 

studies were conducted in laboratories, two recent field experiments in sewage-impacted 

areas report similar findings (Pieper et al., 1997; Schijven et al., 1999). It is believed that 

the organic materials compete for similar binding sites on sediments (Bitton and Gerba, 

1984) and also coat the surface o f viruses altering their adsorption behavior to solids 

(Gerba, 1984). Sobsey et al. (1980, 1995) and Moore et al. (1982) concluded that muck 

soils (high organic content) had a lower adsorption capacity then typical mineral soils, 

such as sand.

pH  -  Because most viruses have a capsid (outer coat) constructed of ionizable amino 

acids (in the form o f proteins), pH o f the environment plays a significant role on the 

charge that can be found on the capsid. However, each virus is characterized by its own 

isoelelectric point (pi) value (i.e., the pH where total negative and positive charges on the 

capsid are equal), which is ultimately affected by pH o f the surrounding environment. A 

number o f  experiments suggest that pi appears to be one o f the most important factors 

affecting virus transport in subsurface media (Bales et al., 1993; Loveland et al., 1995; 

Jin et al., 1997; Pieper et al., 1997; Dowd et al., 1998; DeBorde et al., 1999; Ball et al., 

1999 submitted). This argument also holds true for the surface o f the sediment, whose
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exposed charged groups can be modified by the pH of the aqueous environment 

Typically, the net charge o f the virus will be negative at pH values above neutrality. This 

appears to also be true for most major soil components, including sands, clays and 

organics.

Both attachment and detachment o f bacteriophage are pH sensitive. Bales et al. 

(1991) and Kinoshita et al. (1993) report that bacteriophage attachment to sand was 

reduced at pH ranges between 5.5 and 8.0. Loveland et al. (1995) and Schijven et al. 

(1999) demonstrated in laboratory settings that viral detachment was pH susceptible, 

increasing with rising pH values, probably due to changes related to hydrophobic 

characteristics existing on the sediment In field studies conducted by Bales et al. (1995) 

and Ryan et al. (1999), the bacteriophage PRD1 recoveries were enhanced after pulse 

injections o f high pH solutions (pH >8.3). Conversely, lower pH conditions have been 

shown to enhance virus adsorption (Goyal and Gerba, 1979, Sobsey et al., 1980, 

Loveland et al., 1995).

Dissolved oxygen (DO) -  Under increased dissolved oxygen (DO) conditions an oxic 

environment predominates. This condition is considered conducive to the formation of 

metal-oxide rich environments. Oxide species, such as Fe203 , are positively charged and 

thus can promote virus adsorption (Gerba, 1984, Loveland et al., 1995, Pieper et al., 1997 

and Ryan et al., 1999) through electrostatic interactions. In 34 soils tested by Moore et 

al. (1982), those containing metal oxide species were determined to be the most effective 

at virus adsorption.

Soil types -  Soils are extremely complex environments and may contain a number of 

components such as sand, silt, gravel, clay and organic matter. Each of these components
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can influence on how viruses soifo. When Moore et al. (1981) examined 34 different soils 

they found that poliovirus adsorption varied was 16 - 79% in muck type soils and as high 

as 99.99% for sand-rich sediments. Their general conclusions indicated that there was a 

significant correlation between the total amount of negatively- charged soil material and 

adsorption. This was a  confirmation o f the findings of Sobsey et al. (1980) using 

poliovirus in various soils and adsorption conditions. Bitton and Gerba (1984) summed 

up data from a number o f studies by saying that, in general, fine textured soils were the 

most effective at adsorbing viruses and that muck type soils were typically the least 

effective.

Burge and Enkiri (1978) used the bacteriophage 0X 174 to examine the 

adsorption characteristics o f five soils with various cation exchange capacities (CEC), 

clay contents, specific surface areas (SSA) and organic carbon (OC) content. In general, 

their results indicate that virus adsorption capacities increased with corollary increases in 

CEC, OC, SSA and clay content The soil that demonstrated the least virus adsorption 

capability was also the coarsest and had the highest pH, which appears to be consistent 

with later research results. Meschke and Sobsey (1998) conducted batch studies using six 

different soil types ranging from very high clay content to pure sand and including one 

with organic muck soil. In this study the soils containing clays exhibited the greatest 

adsorption o f viruses, while the lowest adsorption observed was for soils containing 

organic muck and coarse sand.

V irus type - Different types and strains o f viruses behave differently during their 

transport in subsurface environments. This heterogeneity in transport behavior came to
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light when researchers were attempting to identify suitable surrogates for enteric viruses 

that were safe, easy to handle and allowed for efficient assays. Goyal and Gerba (1979) 

examined the adsorption o f 33 different viruses including many enteric viruses and 

bacteriophages. They concluded that, although a number o f the viruses behaved similarly, 

some closely related species did not have similar adsorption properties. It also appeared 

that most human enteric viruses were more readily adsorbed then most bacteriophages. 

Some researchers have classified viruses into three distinct groups depending on the 

adsorptive nature (Goyal and Gerba, 1979; Gerba et al., 1980,1981; Bales et al., 1991). 

Group I, includes many of the commonly used surrogates like MS2 and 0X 174; they 

exhibited relatively low adsorption to test soils. Group II, which includes poliovirus I, 

exhibited a high adsorption behavior. The C  bacteriophage was categorized separately in 

Group III based on its variability o f adsorption behaviors, unique to most test soils.

Blanc and Nasser (1996) showed in laboratory tests that poliovirus and 

bacteriophages MS2 and PRD1 all had different binding characteristics. In batch studies, 

Meschke and Sobsey (1998) using poliovirus, Norwalk virus and bacteriophage MS2, 

also demonstrated that adsorption was dependent on virus type. Using six different soils 

ranging from very high clay content to pure sand, they showed that the general trend in 

adsorption for all cases was o f the following order: poliovirus > Norwalk virus> MS2. 

Field studies conducted by DeBorde et al. (1999) confirmed that the adsorption behaviors 

o f poliovirus and the bacteriophages PRD1, MS2 and 0X174 differed, with poliovirus 

exhibiting the greatest degree o f adsorption. Powelson and Gerba, (1994) concluded that 

poliovirus was significantly retarded as compared to MS2 and PRD1 during saturated 

flow in column experiments, again indicating the highest rate of adsorption. Most likely,
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the individual biological characteristics (e.g., amino acid composition o f the capsid) and 

perhaps to some extent the capsid geometry, play a major role in the adsorption behavior 

o f viruses (Powelson et al., 1993; Dowd et al., 1999; Ball et al., 1999 submitted).

Virus Survival:

As for virus activity and behavior in the subsurface, one must consider two 

distinctly different environments: groundwater and sediment/soil matrix. Clearly 

temperature and soil type are two o f the most dominant factors governing fate and 

transport o f viruses. However, in soils and sediments other factors such as the degree of 

soil saturation, soil chemistry and particulate association exert additional influences. 

Typically daily inactivation rates for viruses are expressed in terms of the following rate 

equation (measured in day'1):

C ^ C o ^ )

Where Q  is virus concentration at time t, C0 is initial concentration and K is the 

inactivation rate.

Virus survival in groundwater: Inactivation is a major factor contributing to the 

loss o f  viable virus mass during subsurface transport Inactivation, or loss o f replication 

ability, could occur due to a number o f reasons that may include but are not limited to; 

physical or chemical alteration/destruction o f genetic material or capsid proteins and 

interference with receptors due to geometric distortion or hindrance. While a  number of 

researchers (Yahya et al., 1993; Yates et al., 1985; Powelson et al., 1990; Enriquez et al., 

1995) have found temperature to be the single most important factor responsible for 

inactivation in groundwater, Jansons et al., (1989) reported dissolved oxygen to be the 

most critical factor leading to loss o f infectivity for a suite of enteric viruses. They
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postulated that dissolved oxygen might be directly responsible for oxidative damage to 

viruses. Snowdon et al., (1989) established that temperature was indeed important to 

virus inactivation, but the chemical and particulate composition o f the liquid had a greater 

overall negative effect on survival. Experimentally determined inactivation rates for a 

number o f different viruses in groundwater differ over 2 orders of magnitude (Gerba and 

Bitton, 1984) depending on the virus type. However, Sobsey et al., (1995) compared 

survival o f two bacteriophages with two enteric viruses found in sewage contaminated 

seawater. They found that a 4 log unit reduction was reached in time intervals that ranged 

from one to 10 weeks under similar experimental conditions. This would suggest that 

there is a wide range o f inactivation rates for viruses depending on their type.

Virus survival in soils: The literature contains conflicting information regarding 

the relationship between the attachment process and viral inactivation. A number of 

studies indicate that inactivation is inhibited by adsorption (Moore et al., 1975; Bitton et 

al., 1975; Babich and Stotzky, 1980; Liew and Gerba, 1980; Sobsey et al., 1980). 

However, other investigation indicate that inactivation is augmented by attachment 

(Bitton, 1974; Moore et al., 1982; Gerba, 1991). Clearly, a number o f factors must 

influence virus survival in soils. As with groundwater, temperature is critical to 

inactivation rates on soils and sediments and shows a positive correlation (Duboise et al., 

1976; Yeager and O ’Brien, 1979; Hurst et al., 1980; Hurst, 1988). Typically the average 

inactivation rate in the 1 to 8° C range was four times longer than at 20 to 25° C.

Soil moisture content is also a very important parameter of vims inactivation in 

soil zones above the saturated soil (i.e., in the vadose zone). Yeager and O’Brien (1979) 

found that the desiccation o f eight various soils containing viruses accounted for an
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average reduction in the titer o f active viruses o f 5 log units as compared to their 

saturated counterparts. Sagik et al. (1980) reported 99% inactivation o f poliovirus in soil 

when the soil moisture dropped approximately 10% below saturating conditions. The 

same degree o f  inactivation took 8 to 10 weeks to occur under saturated conditions. 

Bitton and Gerba (1984) reported that virus survival in sludge-amended soils was greatly 

affected by desiccation (8 days in dried- vs. 35 days in wetted-soils).

Although temperature and moisture content have been identified as critical factors 

affecting inactivation in partially saturated soils, soil characteristics and biological factors 

also play a role in saturated media. Hurst et al. (1980) determined that pH extremes and 

exchangeable cations affected activity and survival. It is assumed that pH variability 

affects adsorption and therefore survival (Hurst et al. 1980; Gerba, 1984). The cation 

content o f the soil may also affect adsorption, but more directly may increase the thermal 

stability o f virions via electrostatic bridging interactions (Yeager and O ’Brien, 1979b).

Soil type has also been linked to virus inactivation in a more indirect matter 

(Yeager and O ’Brien 1979a; Moore et al. 1981; Hurst 1980; Sobsey et al. 1980). Because 

the specific characteristics o f the soil that seem to have a positive effect on survival also 

correlate with increased adsorption, investigators speculate that adsorption plays a key 

role in diminishing inactivation rates. Murray and Laband (1979) reported that the 

presence o f oxidized mineral species in certain soil types enhanced viral infectivity after 

desorption. Hurst et al. (1980) and Sobsey et al. (1980,1986) reported that sorption 

variability of viruses led to differences in inactivation rates in similar soils and in sewage. 

This notion was later confirmed by Blanc and Nasser (1996), who demonstrated 

differences in inactivation between poliovirus, MS2 and PRD1 when incubated in soils
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with similar saturating conditions and temperatures. Although these same experiments 

reported microbial activity as a possible explanation for virus inactivation, it was difficult 

to conclude this due to other confounding factors.

The mechanisms responsible for attachment and inactivation o f viruses have yet 

to be fully characterized or identified. Nonetheless, a number o f studies have at least 

recognized some of the factors that affect both activities.

The following portions of the dissertation examines transport processes in field 

settings with a suite of viruses that have been identified as having differing attachment 

and survival characteristics. By examining the transport processes and fate of this suite of 

viruses, I hope to provide valuable data that allows me to more fully understand how viral 

pathogens behave during subsurface transport in saturated porous media.
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Chapter 3

Supporting Research and Background

Natural gradient seeding experiment at the Erskine Fishing Access site:

Literature observations:

The effects o f differing hydrogeologic settings on viral transport are poorly documented. 

Difficulties characterizing the physical properties governing transport in sand, gravel and 

cobble dominated aquifers have also confounded our ability to understand and predict 

virus transport processes in these types o f high velocity groundwater systems. Virus 

transport studies in coarse-grained aquifers have documented viruses traveling over 900 

m (Noonan and McNabb, 1979). Rates o f virus transport in sand and gravel aquifers, 

measured by monitoring peak concentrations from viral injections have been reported at 

0.2 to 1 m/d in the glacial outwash o f Cape Cod (Bales et al., 1995; Pieper et al., 1997), 1 

to 2.9 m/d in fluvial sand and gravel near Frenchtown, MT. (DeBorde et al., 1998a,b), 11 

to 132 m/d in a floodplain aquifer o f the Emme Valley, Switzerland (Rossi et al., 1994 ) 

and over 300 m/d in highly permeable alluvial aquifers o f the Canterbury Plains o f New 

Zealand (Noonan and McNabb, 1979). However, few field experiments have been 

described in aquifers dominated by gravel and cobbles, such as the Erskine site. Thus, 

predicting virus fate and transport under such conditions is uncertain.
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Objectives:

To address the uncertainties associated with predications in these types o f hydrogeologic 

settings, a natural gradient experiment was conducted in an attempt to characterize the 

movement and fate o f four viruses (the bacteriophages MS2, PRD1, and 0X 174, and 

attenuated polio virus type-1 (CHAT strain)) during transport through 40.S m o f the 

gravel-dominated floodplain aquifer at Erskine. The behavior o f  viruses during transport 

was compared and the study results in the context o f proposed natural disinfection criteria 

were also examined.

To achieve these goals, the data obtained were analyzed by a number o f different 

methods. Breakthrough curves (time vs. concentrations) at sampling wells in the center of 

the viral plumes were constructed to examine and compare arrival times, concentrations 

and compute velocities for each virus.

Relative virus breakthrough (RB) at monitoring wells, and the degree of virus 

attenuation by attachment to the aquifer material were calculated using the procedure 

described by Harvey and Garabedian (1991). RB is calculated using concentration versus 

time data from a sampling point centered in the tracer plume. It is a comparison between 

the ratio o f the measured and source virus concentration and the same ratio of the 

conservative tracer (bromide). RB is calculated by the following expression:

t t
f  f

RB =  J C t d t / J  Brj dt
*o Co lo Bro 

Where Co and Bro are the initial virus and bromide concentrations at the injection

well (PFU/ml (Plaque Forming Units) and mg/L), and Ctand Brt are the concentrations at

a monitoring well at some time t after the tracer injection. The terms to and tf are the

times representing the beginning and end o f the breakthrough curve. The percent of
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relative attenuation (RA) is derived by converting RB to a percent and subtracting the 

result from one hundred (RA = 1OO-RB).

In addition, the collision efficiency factor a  (a parameter in filtration theory 

representing the collision between particles (virus) and collector grains) was determined, 

a  represents the ratio o f  the rate o f collisions resulting in attachment to the total rate of 

collisions (Harvey and Garabedian, 1991) and is defined as follows:

a  = d {[1 -2(ot|/x)ln(RB)]2 -1}/ 6(l-0)TiaL 

where d is the average grain diameter (L), (Xl is the longitudinal dispersivity (L ) , x is the 

transport distance (L), 6 is the porosity and r\ is the single collector efficiency caused by 

Brownian motion (dimensionless). In the work described here, the value r) was 

determined as presented by Harvey and Garabedian (1991) and defined by Pieper et al. 

(1997):

T( = 0.9 As 1/3 [(keT/pdpdv)]273 

where As is the Happel sphere-in-cell model correction factor, ke is the Boltzmann 

constant (1.38 X 10 *23 J mol^K*1), T is absolute temperature (K), p. is the dynamic 

viscosity (mass/(Lt)), dp is the virus diameter (L), d is the average grain diameter (L) and 

v is the fluid velocity (L/t). As is calculated where e = (1-0)1/3:

As = 1-e5 /(l-1.5e + 1.5es - e 6).

Finally, a mass balance o f the viruses and bromide was estimated from the 8 h 

data. These values were used to approximate the mass of each virus present in the 

aquifer.
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Experiment preparation and characterization:

We completed a rigorous site characterization that included monitoring o f rhodamine dye 

(conservative tracer), bromide (conservative tracer), and the bacteriophage MS2 (reactive 

tracer), throughout the instrumented field site at Erskine fishing access (Fig. 1). Although 

the conservative chemical tracers were useful for determining many aquifer parameters, 

their limits of detection were not sufficient to monitor and characterize long flow paths 

within the instrumented site. For increased sensitivity (lower detection limits), the 

bacteriophage MS2 was injected into the aquifer at concentrations exceeding 10l° 

PFU/ml. Despite the adsorptive nature o f virus particles, their use as tracers for long 

distances exceeded the capabilities o f either bromide or rhodamine. These experiments 

were necessary to fully characterize the hydrogeologic properties and stratigraphy of the 

flow field, as well as to test the validity o f preliminary data gathered at the Erskine field 

site. Due to the dynamic and complex nature of groundwater flow, it was essential to 

establish as completely as possible a model of the physical system so that data collected 

would represent the true fate and transport parameters o f viruses in these settings.

The shallow unconfined aquifer that underlies the Erskine field site is composed 

o f Quaternary fluvially derived fine-to coarse-grained sands, gravels and cobbles. This 

complex stratigraphy forms an anisotropic and heterogeneous aquifer that is extremely 

prolific. Parameters and water chemistry data for Erskine site are represented in Table 1.
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Figure 1. Erskine experimental site map. W1 -  withdrawal well; 14 -  injection well; 
numbered wells designated M are multi-level sampling wells

Table 1 - Aquifer properties and water data from Erskine Fishing Access

AVERAGE K fHYD CONDI 900-1.38x10* m/d
AVERAGE VELOCITY (BR) 22-29.3 m/d

VIRUS VELOCITY 33.8 m/d
HYDRAULIC GRADIENT 5.0x10-*

AVERAGE TEMPERATURE 10.3° C
PH 7.4

TOTAL DISSOLVED SOLIDS 3.5 mft/L
WATERTYPE Ca, HCOi

POROSITY 0.15-0.2
SPC. CONDUCTANCE. 288 mS/cm2
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Instrumentation of the Erskine site resulted in the establishment o f 89 monitoring 

wells and 20 four-port multi-level samplers. Each multi-level sampling well was 

constructed with three O.S cm diameter high-density polyethylene (HDPE) tubes affixed 

to a 1.3 cm diameter PVC pipe and extending to different depths. The HDPE sampling 

ports extended to 0.8, 2.7, 3.6 m below ground surface and the PVC pipe extended to 4.5 

m below the ground surface. The ends o f  the tubing and PVC were perforated over 5 cm 

and covered with nylon mesh. A dedicated 0.3 m long flexible tube was attached to the 

above ground end o f each HDPE tube port, and a separate dedicated HDPE tube placed in 

the PVC pipe. This arrangement allowed sampling with portable peristaltic pumps 

equipped with MASTERFLEX quick release heads (Cole-Parmer, Vernon Hills, IL). This 

well construction and network arrangement insured that virus seeded at well 14 (screened 

from 1.8 to 2.3 m below land surface) would pass through the arcs of multi-level 

monitoring wells located 7.5,19.4,30, and 40.5 m downfield from that point (Fig. 2).

Following site characterization and instrumentation, bromide, the bacteriophages 

MS2, d>X174 and PRD1, and attenuated poliovirus type I (CHAT strain) were injected as 

a slug source under natural gradient conditions into the injection well 14, in the autumn o f

1996. Table 2 shows the concentrations o f  tracer and diameter o f  each virus used in this 

multiple virus seeding experiment. A 72 h sampling regime was implemented in which 

approximately 245 samples were collected and analyzed to determine bromide, 

bacteriophage and poliovirus concentrations. Only those samples perceived as being 

directly in the flowpath were analyzed for poliovirus. Based on the results of the prior 

bacteriophage tracer study, we were able to limit the number o f samples analyzed to 

those deemed most relevant for the purposes o f this multi-virus study.
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Table 2 -  Virus injection concentrations and diameter

24 nm
Ml

2.90x10
5.40x10'
3.40x10

mg/L

65 nm
32 nm

28 nm

1143

Summary of results:

Breakthrough curves were constructed for wells along the line of preferential flow within 

the site. Breakthrough curves for monitoring wells M2, M7 and M14 are presented in Fig 

3. Analyses of breakthrough curves revealed that, while a portion o f the seeded viruses
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traveled at rates similar to that o f bromide, the majority attached to the aquifer material in 

the vicinity o f the injection well and along the flow path. Thus, virus attachment to the 

aquifer material represents an important process affecting virus transport These data also 

indicate a heterogeneous nature in the virus population with regards to transport behavior.

Examination of relative breakthrough (RB), relative attenuation (RA) and C/C0 

curves indicated that a significant portion o f the virus mass remained attached to the 

aquifer material, and that the attenuated poliovirus attached at proportionally higher rates 

than the other injected viruses. Poliovirus also had a significantly higher collision 

efficiency (a) then the other viruses (Table 3), which is consistent with the higher 

attachment rates observed in the field.
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Table 3. Relative Breakthrough (RB), Relative Attenuation (RA) and Collision 
Efficiency (a ) o f Viruses After 7.5 and 19.4 m o f Transport

Virus Well M2-9 (7.5 m from 14) Well M7-9 (19.4 m from 14)
RB% RA% a RB% RA% a

MS2 51
(29-92)*

49
(8-71) 0.004-0.182 15

(8-26)
85

(74-92) 0.004 -  0.202

PRD1 29
(16-51)

71
(49-84) 0.014 - 0.632 12

(7-21)
88

(79-93) 0.005 -  0.385

0X 174 35
(19-62)

65
(38-81) 0.006-0.311 6

(4-12)
94

(88-96) 0.007-0.317

Polio Type 1 
(Chat)

1
(0.6-1.9)

99
(98.1-99.4) 0.047-2.108 0.2 

(0.1-0.5)
99.8

(99.5-99.9) 0.019-0.866
■  ̂ f i \ . . .
Range values (given in parentheses) were calculated using 95% confidence limits of ±14% for bromide, 

±15% for the bacteriophage, and ±15% for virus measurements. Collision efficiency range calculated using 
a mean grain size o f0.00125 m and 0.012m.

From these data, a range o f average velocities was calculated using peak arrival 

time and distance from the injection point (Table 4).

Table 4 - Apparent transport velocities (m/d) calculated from breakthrough curve peaks.

M2
7.5m

M7
19.4m

M14
30m

22.5-30 26-29.25 NC'
30 23.4-39 25.7-36
30 26-39 36
30 33.4-39 18-36

Aft^natodTolio 45 33.4-58.5 NC
•NC -  Not completed

The viruses and bromide appear to have at least overlapping (within a range) 

transport rates, with one significant exception. At M2 (7.5 m) poliovirus arrived before 

bromide and the other viruses. Similar particulate reactive tracer behavior has been 

reported in the literature (Rossi et al., 1994) and was observed in the field in prior
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experiments completed at this site (data not shown). This phenomenon has also been 

reported for laboratory experiments using coliphage MS2 and f2, in which transport rates 

in columns were interpreted to be 1.6 to 1.9 times that o f bromide (Bales et al., 1989). To 

reconcile this observation, the following hypothesis was proposed by DeBorde et al. 

(1999). “Although poliovirus is being transported at similar rates as the bacteriophage 

and bromide, the high attachment rate during the early stage o f transport results in a 

truncation o f  the virus breakthrough curve. This causes an apparent peak to arrive before 

the bromide or bacteriophage peak”. The truncation process can be defined by applying a 

simple algorithm to the conservative Br (C/Co) data:

Br.ADJ = [Brt - (K*t*Br,)] *t is time in (h) hours

where, Brt = bromide concentration (C/Co) at time t (h); t = time of arrival at well M2 

(h); K = net virus attachment value/h; and BrtADJ = the attachment transformed Br data. 

Calculation o f K. from a set o f conservative tracer and virus tracer field data is 

accomplished by substituting virus concentrations for BrADJ. The application o f this 

equation results in a peak shift to the left, as was observed for the poliovirus in the field 

experiment.

Viral transport plumes constructed from “snapshot” data analysis for all the wells 

at given depth intervals allowed for the examination o f virus distribution throughout the 

flowfield (data not shown). From this it was determined that the highest observed 

concentrations o f tracer remained in the injection well throughout the experiment,
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suggesting that the viral tracer is being held up at the injection site either by adsorption 

and attachment or hydrogeological conditions.

Data also suggested that using bromide as a tracer in these types of 

hydrolgeological settings is limited because the high dispersal rates limit its detection, 

compared to the high titer capability vims. Attempts at calculating mass balances based 

on the 8 h plume viral distribution were unsuccessful due to the lack o f detailed viral 

concentration data at critical locations.

Conclusions from the natural gradient multi-virus natural gradient study:

Observations from this experiment suggest the following: 1) average transport rates for a 

portion o f  the vims are similar to the average groundwater flow velocity as defined by the 

conservative tracer bromide (i.e. advective transport); 2) aqueous vims concentrations 

were significantly reduced during transport by apparent attachment to aquifer material; 3) 

attenuated polio vims concentrations versus time and distance declined at a faster rate 

than did the three bacteriophages (i.e. poliovirus may have a higher collision efficiency); 

4) long tails on vims breakthrough curves imply that some of the attached viruses are 

released back into the groundwater over time (i.e., adsorption/desorption results in 

retarded transport); 5) poliovirus breakthrough may be truncated by high rates of 

attachment with negligible desorption while, unattached poliovirus travels at rates similar 

to bromide.

These findings imply that virus-impacted water in a highly conductive aquifer 

creates two problems with regard to water quality. The first is a high concentration of 

vims moving with the average velocity of the groundwater. This work showed that high
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concentrations o f  virus reach and pass the commonly used 30.5 m setback distances 

between wells and septic systems that is implemented in most states. The second is that 

attached viruses appear to be released back into the aqueous phase creating a long-term 

low-level viral source, and are subsequently transported downgradient to wells.
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Chapter 4

NOTE: This work was submitted for publication in Environmental Science and 
Technology.

Viral Attachment During Groundwater Transport Under Field Pumping 

Conditions: Mass Balance Approach

Patrick N. Ball, William W. Woessner, Dan C. DeBorde and Thomas Troy

ABSTRACT

Groundwater supplies contaminated with microbes cause over half o f the water­

borne disease outbreaks in the United States. However, models necessary to predict 

pathogen transport require additional field scale calibration data. The bacteriophages 

M S2,0X174 and PRD1, attenuated poliovirus type-1 (CHAT strain), and bromide were 

seeded into an instrumented flow field as a slug 21.5 m from a well pumping at a steady 

rate o f 408 L/min to produce a forced gradient. The well is located in sand and gravel 

with cobbles, and is within a rapid flowing (27 m/d), cold (10° C), neutral (pH 7.2), 

unconfined groundwater system. Over the 47 h duration o f the test, 77% o f the bromide, 

55 % o f the PR D 1,17% of the MS2, 7% o f the 0X 174 and 0.12% of the poliovirus 

injected masses were recovered. In general, the percentage of virus recovery appears 

correlated with reported viral isoelectric point (pi) values, with the possible exception of 

PRD1. Relative breakthrough (RB) analyses at the pumping well overestimated the mass 

o f  PRD1 and MS2 collected, and more closely represented the captured masses of 

0X 174 and poliovirus. Analyses o f MS2 and bromide data show that the majority of 

attachment occurred within the first few meters and hours of transport.
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INTRODUCTION

Approximately 50% of the potable water supplying over 100 million people 

throughout die United States originates as groundwater (1). During die past few decades, the 

occurrence o f disease attributed to consumption of contaminated groundwater has steadily 

risen (2,3). Over 900,000 groundwater-related disease episodes are reported annually in the 

United States (1) and it is estimated that, worldwide, approximately 7 million disease 

episodes are associated with use or consumption of contaminated groundwater (2-4).

The contamination of groundwater may occur from a variety o f sources including 

broken sewer lines, land application o f sewage sludge or septic systems prevalent in 

many suburban and rural areas (5-14). These effluents may contain pathogenic human 

viruses. Of particular interest are enteric viruses that are shed in fecal matter during bouts 

o f infection and may be present at 108 to 1010 virions per gram o f feces (15, 16). These 

pathogens are o f particular concern because their infectious dose can be exceedingly low 

(16), and they are generally quite robust, being able to withstand low pH and organic 

solvents. These characteristics allow virus survival in groundwater for up to 9 months 

(10, 13 and data unpublished), and depending on groundwater flow rates and aquifer 

sediment characteristics, transported tens to hundreds of meters (17-20).

In an effort to protect the public from water-borne diseases, Congress passed the 

Safe Drinking Water Act in 1986. Current proposed revisions to that act include the 

Ground Water Disinfection Rule (21), where, under one provision, public water supplies 

would be exempt from treatment for pathogens if it could be demonstrated that 

acceptable levels o f pathogens could be achieved by “natural disinfection” (21). Natural 

disinfection is the reduction o f contaminant levels by physical, mechanical, chemical and
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biological processes occurring along the groundwater flow path, and represents an 

attractive alternative to conventional water treatment

The main processes controlling viral attenuation in groundwater systems include 

mechanical dispersion, inactivation, and irreversible sorption (23-26). Additionally, 

survival can be dependent on both viral and site characteristics (10, 27,28). Many of 

these characteristics can be quantified in the laboratory. However, only a limited number 

o f controlled field experiments have been conducted that allow transfer o f laboratory 

results to field scales and conditions. Also, most field efforts have focused on observing 

the transport o f a single virus type, usually a surrogate for a disease-causing virus, and 

usually over only a few meters under natural gradient conditions (18, 29, 30, 31). 

Natural-gradient, multi-virus transport studies are rare (19, 22) and single- or multi-virus 

transport studies involving forced gradient flow to a pumping well are even more 

uncommon (32).

A major limitation o f field-scale virus tracer tests found in the literature is the 

general absence o f virus mass balance calculations. This occurs because lack of solid 

phase data, limited sampling frequency, detection limits o f analytical techniques, and 

analytical error introduce unacceptable uncertainty in mass balance calculations (19).

A proposed method for granting disinfection variances for viruses is based on the 

development o f one or more models that would predict virus concentrations at a supply 

well (23, 33 -35). However, models employed to date generally under-predict 

concentrations and over-predict travel times o f vimses, making them inadequate 

predictors of virus fate and transport in the field (12,22).
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Our research was designed to quantify, under field conditions, attachment and 

transport characteristics o f four viruses using mass balance and breakthrough analysis 

techniques. Four seeded viruses rapidly moved through over 20 m o f aquifer within the 

capture zone o f a pumping well. The results obtained allowed quantification o f virus 

attachment, evaluation o f relative breakthrough (RB) calculations (as suggested by 

Harvey and Garabedian (36)), and an examination of the possible factors controlling 

attachment.

Field Methods

The multi-virus injection experiment was conducted within a remote grassland portion of 

the active floodplain o f the Clark Fork River at the Erskine Fishing Access Study Site 

located approximately 24 km west of Missoula, Montana (Fig. 1). Prior to the 

experiment, the viruses chosen for use were approved by the University o f Montana 

Biohazards Committee, Missoula City-County Health Department, Montana Department 

o f Environmental Quality, and Region 8 EPA. Also, an Environmental Assessment 

(Montana Environmental Policy Act) was submitted at the request of the Montana 

Department o f Fish, Wildlife, and Parks.

The aquifer underlying this area is shallow and unconfined, dominated by cobbles 

and gravel, with lenses of medium- to coarse-grained sands extending to a depth of 6 m. 

Below this depth the aquifer is predominately finer sands. The sediments are essentially 

free o f iron coatings and are composed o f regional lithology o f argillaceous meta- 

sedimentary and granitic source rocks. The high-energy fluvial depositional environment 

at this site has resulted in a highly heterogeneous sediment package. Hydraulic 

conductivities derived from standard aquifer testing using four pumping wells and tracer
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breakthrough curve analysis range from 800 to 36,000 m/d. The water table is typically 

2.1 to 2.5 m below ground surface (19). A portion o f  the aquifer contains a zone o f 

preferential flow (K=l 3,000 m/d) extending from the water table to approximately 2.7 m; 

it is within this zone that the majority o f the tracer network is located (22). Additional 

hydrologic properties and water chemistry data is contained in Table 1.

Table 1. Aquifer characteristics and water chemistry

Hydrologic Properties
Porosity 0.15
Gradient 0.00043
K (m/d) 800-36,000
GW Velocity (m/d) 27
W ater Chemistry
Water Type Calcium, Bicarbonate
Conductivity 288 pS/cm
DO 3.5 mg/1
pH 7.2
Temp. (C) 10.3

•DeBorde, et al. (25)

A tracer well network was developed previously for natural gradient experiments 

(19). The well network contains injection and multi-level observation wells containing 

three to four 0.5 cm diameter polyethylene ports bundled to a 1.3 cm diameter PVC tube 

perforated over 5 cm at its bottom. For this work a new tracer injection well, 16 and 

additional multi-level samplers were added resulting in the network shown in Fig 1. The 

site was instrumented with over 100 small diameter and multi-level wells that allowed 

water level monitoring and sampling at three to four depths within 2.5 m of the water 

table. The injection well (16) located 21.5 m from the pumping well (W1) was completed
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as a 2.54 cm diameter PVC tube perforated to allow release o f the tracer over an interval 

extending from the water table to a depth o f 0.45 m. Well W1 was constructed of 10.2 cm 

diameter steel casing with 3 m o f wire wrapped screen (0.12 cm wide slots) extending 

from 1.6 to 4.6 m below land surface (22). An identical second well (W4) located 180 m 

down groundwater-gradient (west) from W1, was used for re-injection of the pumped 

water. Spacing o f pumping and injection wells was designed and tested to assure minimal 

pumping flow-freld disruption and to prevent re-circulation o f re-injected water. Well W1 

was pumped at a constant rate o f408 IVmin for 1.3 h to establish a steady state flow field 

and then continued at this constant rate for an additional 47 h. Once the steady state was 

established, 37.8 L o f site groundwater containing bromide and the four viruses was 

injected by gravity in 16 over a 15 min period (Table 2).

Samples were collected from W1 over the next 47 h at half-hour intervals for the 

first 7 h, at 1 h intervals from 8 to 32 h, 2 h intervals to 40 h, and then at 43 and 47 h. 

Sample volumes and frequencies were based on a prior pilot test using bromide and the 

coliphage MS2 (22).

Viral and bromide samples were collected in both 50 and 250-ml sterile 

containers from a valve located at the well head and immediately placed on ice. Samples 

were transported to the University of Montana, Division o f Biological Sciences 

laboratory and held at 4oC until analyzed, generally within 24 - 48 h. Controls held at 

similar temperatures had no detectable loss in infectivity over a month. Bromide samples 

were collected at the well head, placed on ice and transported to the University of 

Montana, Murdock Environmental Geochemistry Laboratory. Virus and bromide samples
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Table 2: Virus and Bromide Concentrations values at W1.

Tracers
Time MS2** PHIX174** PRD1** Polio*** Br****
(hours) (PFU/raL) (PFU/mL) (PFU/mL) (PFU/mL) mg/L
0 ND* ND ND ND ND
0.5 ND ND ND ND ND
1 ND ND ND ND ND
1.5 ND ND ND ND ND
2 1.67E+04 1.82E+01 1.55E+03 1.04E-01 7.50E-04
2.5 4.08E+05 3.85E+02 2.69E+04 8.35E-01 5.58E-02
3 9.65E+05 5.50E+02 6.84E-KJ4 1.25E+00 1.85E-01
3.5 1.33E+06 8.47E+02 7.48E+04 6.30E-01 2.67E-01
4 7.70E+05 5.06E+02 8.03E+04 1.04E-01 2.89E-01
4.5 8.91E+0S 4.73E+02 9.90E+04 1.04E-01 2.73E-01
5 7.28E+05 3.30E+02 4.93E+04 1.04E-01 2.45E-01
5.5 5.94E+05 2.25E+02 6.31E-KM ND 2.12E-01
6 4.20E+05 1.65E+02 3.04E+04 ND 1.83E-01
6.5 4.18E+05 1.26E+02 4.54E+04 ND 1.56E-01
7 2.44E+05 1.14E+02 3.24E+04 ND 1.36E-01
8 1.77E+05 7.81E+01 2.60E+04 ND 1.04E-0I
9 1.00E+05 6.16E+01 1.95E+04 ND 7.88E-02
10 1.08E+05 5.17E+01 1.56E+04 ND 6.78E-02
11 5.72E+04 2.64E+01 1.23E+04 ND 5.78E-02
12 4.29E+04 3.41E+01 1.11E+04 ND 4.88E-02
13 4.73E+04 2.55E+01 6.82E+03 ND 4.58E-02
14 4.62E+04 2.77E+01 1.03E+04 ND 4.18E-02
15 6.16E+04 1.54E+01 6.91E+03 ND 4.08E-02
16 5.17E+04 2.18E+01 7.83E+03 ND 3.78E-02
17 4.84E+04 1.67E+01 7.77E+03 ND 3.88E-02
18 6.49E+04 2.09E+01 5.17E+03 ND 3.68E-02
19 3.74E+04 2.04E+01 5.41E+03 ND 3.58E-02
20 5.06E+04 1.85E+01 6.80E+03 ND 3.48E-02
21 3.19E+04 1.38E+01 7.26E+03 ND 3.38E-02
22 4.51E+04 1.93E+01 6.03E+03 ND 3.38E-02
23 2.80E+04 1.22E+01 5.55E+03 ND 3.08E-02
24 2.19E+04 1.46E+01 4.76E+03 ND 3.08E-02
26 2.53E+04 1.47E+01 5.37E+03 ND 2.88E-02
28 2.10E+04 1.59E+01 4.04E+03 ND 2.68E-02
30 2.13E+04 1.92E+01 4.33E+03 ND 2.48E-02
32 2.09E+04 1.43E+01 4.14E+03 ND 2.18E-02
34 1.41E+04 1.83E+01 2.45E+03 ND 2.18E-02
36 1.37E+04 2.34E+01 2.44E+03 ND 1.88E-02
40 1.04E+04 2.87E+01 1.76E+03 ND 1.58E-02
44 8.11E+03 3.13E+01 1.76E+03 ND 1.38E-02
47 8.07E+03 3.20E+01 1.04E+03 ND 8.75E-03

# correctec for background
•Sampled, Not Detectable 
• •  +/-15%, 95% confidence limits 
• • •  +/- 60%, 95% confidence limits 
• • • •  +/-14%, 95% confidence limits
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were collected less frequently from the injection well and selected multilevel ports o f 

monitoring wells located within the tracer study area

Analytical Techniques

Bromide was determined using standard ion chromatography methods (37). Analytical 

detection limit (PQL) was 0.01 mg/1. Combined analytical and sampling precision were 

determined to be 14% (95% confidence limits) based on replicate analysis.

Strains, m edia and growth conditions: The following viruses and their host cells were 

used for enterovirus and coliphage assays, as well as virus stock propagation: Poliovirus 

type 1, Chat attenuated vaccine strain, ATCC VR-192 and its host, Buffalo Green 

Monkey Kidney (BGM) cells; somatic coliphage 0X 174, ATCC 13706-B1 and its host 

Escherichia coli C, ATCC 13706; male-specific coliphage MS2, ATCC 15597-B1 and its 

host E. coli C3000 ATCC 15597 and coliphage PRD-1 with its host Salmonella 

typhimurium. The latter were a generous gift from Dr. Suresh Pillai o f Texas A&M 

University. The BGM cells were originally obtained as a gift from USEPA, Cincinnati, 

Ohio.

BGM and ELAH media were filter sterilized through a 0.22 micron filter and 

stored at 4° C. These solutions were tested for sterility by monitoring 100 ml aliquots, 

held at 37° C, for contaminant growth. Before use, a 5 ml aliquot of PSA (penicillin 

(lOOunits/ml), streptomycin (0.1 mg/ml), amphotericin B (25 pg/ml)) and 0.25 ml o f 

tetracycline was added to each media. Both PSA (Sigma) and tetracycline (Sigma) were 

prepared as per directions in the USEPA Manual o f Virological Methods (47).
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A frozen stock o f BGM cells was used as a starting culture and propagated 

weekly or biweekly with a 1:3 or 1:4 split, following the procedures as given by the 

USEPA Manual of Virologica! Methods (47). Stock BGM cells were grown in 175 cm2 

tissue culture flasks in BGM media amended with 5 or 10% heat inactivated fetal calf 

serum (Gibco). BGM media contains a 1:1 mixture o f L-15 (Leibovitz, Sigma) and MEM 

(Minimal Essential Eagle with Hanks salts and L-glutamine without NaHCo3, Sigma) 

supplemented with 0.75g/l NaHCo3-

To build a large stock for injection, poliovirus was amplified on the BGM cells. 

To accomplish this, 5 ml o f  poliovirus with an approximate titer o f 7.5x104 PFU/ml was 

used to inoculate confluent BGM cells into 50 175cm2 tissue culture flasks. The cells 

were prepared for the inoculum by removing BGM maintenance media and rinsing 

briefly with 10 ml o f ELAH media (Earles lactalbumin hydrosyslate (Sigma) 

supplemented with 2.2g/l NaHCC>3) without serum. ELAH was also used for cell 

maintenance after virus addition. The inoculated cells were incubated for 90-120 minutes 

at room temperature to allow virus adsorption. After this period, 40-50 ml o f ELAH 

containing 2% IgG-ftee calf serum (Gibco) was added. Flasks were incubated statically at 

37° C and virus propagation was monitored based on microscopic analysis o f cell 

pathogenicity.

Large stocks o f the three bacteriophages were attained through propagation on 

proper bacterial hosts. To achieve this single bacterial colonies were picked from fresh 

tryptone-yeast agar (1% w/v tryptone (Difco), 0.1% w/v yeast and dextrose (Difco),

0.022% w/v CaCh and 0.8% w/v NaCl with 1.5% agar) plates grown at 37° C, for each 

respective bacterial host. The colonies were used to inoculate 10 ml o f tryptone-yeast
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(TY) broth, which was incubated at 37° C on a shaker overnight The overnight cultures 

were then transferred into polypropylene centrifuge tubes and stored at -70° C for future 

use as inoculum. Klett flasks (Bellco) containing sterile TY broth, were inoculated 1:20 

with either fresh or frozen overnight cultures. These cultures were monitored at 510 nm 

until they reached mid-log phase o f growth, between 0.500 and 0.600 OD units. These 

cultures were then inoculated with their respective bacteriophage and allowed to grow 

overnight at 37° C with shaking.

The bacteriophage and poliovirus were harvested by precipitation after a initial 

large-volume, low-speed centrifugation to remove cell debris. The resulting viral 

suspensions were brought to a final concentration o f 0.5 M NaCl and 7.5% polyethylene 

glycol (PEG) 8000, and gently stirred overnight at 4° C. The viral precipitates were 

pelleted by centrifugation at 3400 rpm at 4° C for 25 min then, resuspended in phosphate 

buffer saline (PBS) (Add 5.38 g/1 sodium phosphate, monobasic, 8.66 g/1 sodium 

phosphate, dibasic and 8.77 g/1 o f NaCl. Adjust pH to 7.4 with NaOH). This solution was 

then dialyzed against 2.5 liters o f  stirring PBS for 24 h at 4° C with three buffer changes. 

Control experiments indicated that this method was essentially quantitative for virus 

recovery. For poliovirus, the final volume o f concentrate was mixed 1:1 in Earle's 

minimal media (Sigma) supplemented with lactalbumin hydrolysate (Sigma). These 

samples were stored at -80° C until used in field injection experiment 

Coliphage assay: A single agar plaquing method was employed to assay all three 

bacteriophage because o f its relative simplicity and efficiency. The single agar procedure 

was performed as follows: bacterial host cultures were grown to mid-log phase, as 

described previously and placed on ice to halt growth. One ml o f host bacteria was added
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to 10 ml o f ground water sample and placed in a  37° C water bath for 3 to 5 m. Next, 11 

ml o f soft agar (2x TY broth with 1.4% w/v agar (Difco) held at 51° C) was added to the 

mixture. Ten ml o f the mixture was immediately poured onto each o f two 100 mm petri 

dishes. After the agar hardened, the dishes were inverted in a 37° incubator. The phage 

titer in PFU/ml was then determined by counting the number o f plaques that formed on 

the plates.

Poliovirus assay: The poliovirus in groundwater samples was assayed on 3-day old 

BGM cells that were grown in 25 cm2 tissue culture flasks. The cells are prepared for the 

assay as described previously with minor modifications made to compensate for the 

volume difference o f the tissue culture flasks. Briefly, 1 ml o f sample, diluted one to one 

with ELAH media containing antibiotics without calf serum, was added to the BGM cells 

in tissue culture flasks. The sample was exposed to the BGM host cells for 90 min at 

room temperature to initiate viral attachment. The inoculum was then removed and 10 ml 

o f an agar-medium overlay was added to the flasks. The agar-medium overlay is 

comprised o f equal volumes o f  a 3.0% autoclaved agar water solution and a solution, of: 

80% v/v 2X 199 medium (Sigma); 4% v/v Gamma Globulin-free calf serum (Gibco); 6% 

v/v o f a 7.5% NaHCo3 solution; 2% v/v o f  a  1% MgCh solution; 4% v/v 1M HEPES 

buffer (Sigma) plus 2% v/v PSA; and 0.1% v/v tetracycline. This solution was 

supplemented with 2% v/v o f sterile skim milk (Difco) just prior to addition o f  the 3% 

agar solution. The agar-medium overlay was held in a 41° C water bath during use. After 

the overlay was added, the flasks were covered to protect them from light and allowed to 

harden before they were inverted and put in a  37° C incubator. The flasks were monitored 

for 5 days, with plaques counted on a daily basis. The titer was then determined when the
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number o f plaques counted remained constant To visualize plaques on the BGM cells, 2 

ml o f 0.1% crystal violet in 50% ethanol was applied after the agar overlay was carefully 

removed. The stain helped differentiate living cells from dead cells and thus aided in 

counting cells. To increase detection levels o f  the poliovirus assay, a similar PEG 

precipitation procedure was employed to the groundwater samples described above. The 

final volume was mixed 1:1 in Earle’s minimal media supplemented with lactalbumin 

hydrolysate and filtered through a 0.45 pm  filter to remove indigenous bacteria. These 

samples were stored at -70° C until host cells were ready.

Sampling and analysis errors were calculated at +/-15% at 95 % confidence limits 

for the bacteriophage assays. The poliovirus was found at lower concentrations in the 

groundwater and errors were correspondingly higher (+/-60%) increased as expected.

Data Analyses

Distribution bromide and MS2 were mapped in plain and cross sectional view for 

the 3 h sampling time point (Figs 2 and 3). Data were reviewed to assess the location o f 

the center o f  mass to assure sampling network captured the bromide and MS2.
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Figure 2. Plain-view maps o f bromide (A) and MS2 (B) concentrations at 3 h sampling 
time point Concentrations of bromide are in mg/1 and MS2 in log PFU/ml. The highest 
concentrations measured at 3 h sampling are shown.
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Figure 3. Longitudinal profiles o f bromide (A) and MS2 (B) concentrations at 3 h 
sampling. Concentrations o f bromide are in mg/l and MS2 in log PFU/ml. The highest 
concentrations measured at 3 h sampling are shown. Profile location is shown in Figure 1.
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Breakthrough curves for the four viruses and bromide were constructed and peak 

arrival times were compared at W l. W1 breakthrough data were used to compute relative 

breakthrough (RB) as described by Harvey and Garabedian (36). The RB is calculated 

using concentration versus time data from a sampling point centered in the tracer plume. 

For these analyses, the breakthrough data at W l were used to compare the ratio o f  the 

measured and source virus concentrations to a similar ratio of the conservative tracer 

(bromide):

t t
f  f

RB = J Q d t / /  Bij dt (1)
*0 Co *0 Bio

where Co and Broare the initial respective virus and bromide concentrations at the 

injection well (in PFU/ml and mg/L, respectively), Q and  Brt are the concentrations at 

W l at some time t after the tracer injection, and to and tf are the times representing the 

beginning and end of the breakthrough curve. Relative attachment (RA) was computed as 

1 -  RB.

Mass balances were calculated for bromide and each virus by integrating the 

measured virus concentrations pumped from W l over 47 h. Concentrations between 

sampling periods were averaged and then multiplied by the volume of water extracted 

between sampling periods to compute the 47 h mass balance for bromide and the viruses. 

These values were then compared to relative breakthrough computations (RB) as 

described above (36).

To examine the behavior o f the viruses at the injection well and at select multi­

level samplers and W l, plots o f the normalized difference in the bromide and virus
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concentration ratios relative to the bromide ratio were generated by applying the 

following equation:

A  = (Brc/co~ Virusoco)/Brc/co (2)

where Brc/co is the normalized bromide concentration at time t and V iru so co  is the 

normalized virus concentration at t, and A is dimensionless and < 1.0.

RESULTS

Breakthrough of bromide and the viruses was detectable at Wl 2 h after injection 

(Table 2; Fig. 4). Bromide and coliphage concentrations remained above detection limits 

during the remainder of the 47 h test, while the poliovirus concentration fell below 

detection limits (0.1 PFU/ml) after the 5 h sampling time. Breakthrough peak 

concentrations occurred at 3.5 to 4 h for bromide and the bacteriophages. The poliovirus 

peak occurred earlier at 3 h. Previous work at this site has suggested that the observed 

poliovirus peak may be the result o f truncation of the breakthrough curve by the 

attachment process and/or related to the more rapid transport of this virus, though the 

latter is considered less likely (19). Bromide, MS2 and PRD1 breakthrough curve tailing 

behavior is similar, continuing to decline slowly over time. However, after leveling off, 

4>X174 concentrations increased over the last 15 h (Fig. 4; Table 2).
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Figure 4. Bromide and virus breakthrough curves at W l.

Comparison of the cumulative mass of tracers collected at Wl with the initial 

injection mass shows a recovery of 77%, 55%, 17%, 7% and 0.12% of bromide, PRD1, 

M S2,0X 174 and poliovirus respectively (Fig. 5). Assuming the bromide recovery 

reflects conservative transport in the heterogeneous flow field, about 45% o f the PRD1, 

83% o f the M S2,93% of the 0X174 and >99% of the poliovirus remained in the aquifer 

system at the end of the test period. Analysis of the breakthrough curves for RB yielded 

values o f 80%, 27%, 10% and 0.05% for PRD1, M S2,0X 174 and poliovirus, 

respectively. A summary o f the mass balance data and RB analysis is presented in Table
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Figure 5. The cumulative percent o f bromide and virus masses recovered at Wl during 
47 h o f pumping at 408 1/min.

Table 3. Results o f mass balance computations and RB analyses at W l.

Tracer % Mass 
Recovered %RB

% Mass 
Remaining in the 

Aquifer

%RA
(100%-
%RB

Bromide 77 N/A 23 N/A
PRD1 55 80 45 20
MS2 17 27 83 83

0X174 7 10 93 90
polio 0.12 0.05 >99 >99
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The transport process was examined by plotting die normalized difference in 

C/Co ratios (Equation 2) verses time at W l (Figure 6A and 6B). The negative values at 2 

h indicate that the C/Co value for the viruses was greater than that for bromide.

However, after the initial sampling M S2,0X 174 and poliovirus ratios were less than the 

bromide ratio (i.e. positive values). Poliovirus ratios were continuously positive. The 

PRD1 ratio was more variable, becoming less than the bromide ratio after 3.5 h, then 

negative again at the 4.5 h sampling interval. Virus data at the injection point and 

multilevel-sampling wells were less complete than at W l. Data from the less frequently 

sampled injection well (no additional poliovirus sampling after the initial injection 

sampling) show 0X 174 normalized ratios were initially positive (time zero and 1 h) 

while PRD1 at the 2 and 3 h samplings and MS2 at 2 h sampling were negative (Fig. 6C). 

The normalized ratios for these two bacteriophages then remained positive for the 

duration o f the experiment, increasing to 0.80 to 0.90, respectively (Fig. 6C). The 0X174 

ratio became negative by the 24 h sampling and remained negative for the duration o f the 

experiment. Groundwater samples collected at multilevel sampling ports were analyzed 

primarily for MS2 (Fig. 7). The MS2 normalized difference ratio at the injection well and 

sampling points within 2 m of 16 were at 0.40 to 0.50 within 1.5 h of the injection. At 7.5 

m from the injection point the first detectable virus and bromide arrival (1 h) resulted in a 

negative ratio value, as did the sampling at Wl (2 h) (Figure 6B and 7). The normalized 

ratio then increased to a plateau of 0.7 to 0.8.
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Figure 6. (A) The difference between the C/Co ratio for bromide and each for virus 
normalized to the C/Co ratio for bromide plotted at Wl for the first 47 h o f sampling. (B) 
Details o f the first 8 h o f sampling at W l from Figure 6A. (C) The difference between the 
C/Co ratio for bromide and each virus normalized to the C/Co ratio for bromide plotted at 
16 for each sampling time.
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Figure 7. The difference between the C/Co ratio for bromide and MS2 normalized to the 
C/Co for the bromide plotted at the injection and monitoring wells.

DISCUSSION

Virus Breakthrough a t W l

Transport of bacteriophage within the coarse-grained heterogeneous floodplain deposit 

during both natural gradient conditions (19) and a preliminary pumping experiment (22) 

revealed that peak virus concentrations at all monitoring points occurred at times 

coincident with the bromide peak. Based on peak arrivals during this experiment (3.5 to 

4 h) bacteriophage and bromide were being transported at an average rate o f 129 to 147 

m/d along the 21.5 m flow path. However, actual velocities increase from about 95 m/d 

at 16 to over 240 m/d within 1 m o f W l.

The poliovirus peak appears to have arrived at Wl at about 3 h. We have 

previously proposed that this apparently more rapid transport o f  poliovirus at this coarse­

grained site is an artifact o f breakthrough truncation caused by its high attachment rate 

(19). Restated here, the attachment process causes a shift to the left o f the poliovirus
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peak with respect to the bromide and coliphage peaks. The bromide peak could be 

adjusted to match the polio virus peak as follows:

BrtADj = [Brt - (KtBr,)] (3)

where, Brt = bromide concentration (C/Co) at time t (h); t = time of arrival at an 

observation point (h); K = net virus attachment value/h; and BrtADj = the attachment- 

transformed Br data. K was calculated from a set o f ionic tracer and virus field data by 

substituting virus concentrations for BrADJ- This attenuation hypothesis is also supported 

by the more asymmetric shape (steeper leading edges) o f  the breakthrough curves for all 

bacteriophages as compared to the Br breakthrough curve (i.e. the proposed attachment 

process has resulted in the different symmetry o f the poliovirus curve compared to that o f 

the bacteriophage curves).

Comparing the mass balance for the viruses to the bromide tracer allows 

quantification o f the attachment process throughout the duration of the experiment 

(assuming that all unaccounted for virus are attached to the aquifer sediment and 

inactivation is negligible over the short duration o f the experiment) (29). Using the range 

o f measured average flow velocities, the groundwater flowing between 16 and Wl was 

exchanged 12 to 13.4 times during the 47 hr experiment However, 23 % o f the bromide, 

and higher percentages o f each virus remained in the aquifer at the end o f the test (Table 

3). This suggests that the aquifer is highly heterogeneous. RB analyses preformed as 

suggested by Harvey and Garabedian (36) generally overestimated the mass of PRD1 

(80% v 55%) and MS2 (27% v 17%) that was collected at W l (Table 3). The predicted
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RB o f 0X 174 and poliovirus more closely approximated the measured values (Table 3). 

Apparently, the behavior of PRD1 and MS2 was poorly represented by the RB analysis in 

this aquifer. Part of this discrepancy may be due to the way the RB analysis equally 

weights sampling intervals even though they vary in length. Further, the velocity was not 

constant in this flowfield which may affect predicted RB. Averaging o f the tracer 

concentrations for intervals o f pumping time during mass balance calculations may have 

also made comparison of the two methods less appropriate.

Table 4. Virus and Sediment Characteristics

Virus Diameter (urn) pi*

PRD-1 65 4.2 (>3.2**)

MS2 24 3.9

0X174 32 6.6

poliovirus(type 1, 
chat strain)

28 7.5 & 4.5

Aquifer Sediment

Quartz dominated 2-3.5

•Gerba (23) and Dowd et al. (32) **Ryan ct al. (28)

The ordering of virus attachment (from less to more) in this near neutral pH 

groundwater system is approximately coincident with the commonly reported isoelectric 

point values o f the viruses (Table 4). PRD1 (pl=4.2), however, is an exception to this 

general observation as its reported pi value is slightly higher than that o f MS2 (pl=3.9), 

yet it soibed to a lesser extent (more mass arrived at W l). Because all of the viruses in
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this experiment were subjected to identical conditions, it appears that some other inherent 

property o f PRD1 mitigates its sorption behavior.

Several factors that may contribute to virus sorption in groundwater systems 

include electrostatic interactions, ionic interactions, london forces (van der Waals) and 

hydrophobic effects (24,38-41). However, depending on the pH of the system and the 

viral isoelectric points, the resulting forces may be either attractive or repulsive. Because 

the outer surface (capsid) o f the virion is composed o f proteins, functional group 

ionization may lead to a variety o f charged groups (both positive and negative) being 

present on the virus surface. In general, the overall surface charge o f a virus will be 

positive if pH conditions are below its pi and negative if above it. However, localized 

areas on the virus surface may be dominated by either positive or negative charges, and 

may influence viral soiption (42). Generally, mineral surfaces found in sediments are 

predominately negatively charged at near-neutral pH. Thus, viruses with the highest pi 

values (polio and 0X174) would likely attach to the sediments to a greater extent 

compared to those with lower pi values (MS2 and PRD1). This is consistent with our 

observations and those o f prior studies (43).

That MS2 and PRD1 adsorb at all may seem like an anomaly. In theory, these 

bacteriophage should be experiencing a net repulsive force due to their overall net 

negative charge. A model proposed by Bohn et al. describes how forces between two 

particles of similar charge can attract one another (26,44). Briefly, two layers o f counter­

ions are associated with the colloidal particle. The inner layer, or Stem layer, is held 

tightly to the molecule, neutralizing the charge on its surface. The outer (Gouy) layer is 

more diffuse but contains enough oppositely charged ions to attract particles of like
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charge. The conditions within the Gouy layer may control the attractive forces acting in 

the vicinity o f  the aquifer sediment particle. These forces, along with van der Waals 

attractions, are believed to control colloid particle interactions (e.g. a virus) as described 

by the DLVO (Derjaguin-Landau-Verway-Overbeek) theory (26,45). Loveland et al. 

(39) point out that reversible attachment o f  like-charged particles may occur in the 

secondary minimum o f a DLVO potential energy profile. It is suggested that this may be 

due to comparable thermal and potential energy existing between the objects (virus and 

sediment).

Since van der Waals interactions are generally considered the primary attractive 

force for colloidal particles, particle diameter may also influence the sorption process (41, 

43). The propensity o f larger diameter viruses, like PRD1, for attachment to a fixed 

aquifer particle may be restricted because o f the dominance o f more like charges 

(resulting in net repulsion). Small changes in the diameter o f spherical particles translate 

into significant changes in surface area. Further, infinitesimal change in distance between 

objects may lead to a substantial decrease in energy between them as van der Waals 

interactions act over only very short distances (26). In this situation, the potential energy 

between the virus and sediment is reduced leading to less attachment (39). PRD1 may not 

be able to overcome the primary maximum energy barrier as is required to become 

irreversibly adsorbed. Instead it would stay in a minimum energy state and be only 

transiently adsorbed, thus more likely to undergo subsequent detachment. Consequently, 

although pi value is probably the primary property controlling sorption, in the case o f 

MS2 and PRD1, diameter appears to also be an important factor (41,43).
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This explanation assumes the commonly reported pi value o f 4.2 for PRD1 is 

representative o f  conditions at our site. Ryan et al. (31), conducting virus transport 

studies at Cape Cod, MA recently determined the pi of PRD1 to be approximately 3.2, 

considerably lower than the commonly reported value in Table 5 and lower than that of 

MS2. If conditions at our site are similar to those reported by Ryan et al. (31), the degree 

of virus attachment at our site would correlate very well with increasing viral pi values.

The behavior o f PRD1, MS2 and 0X174 (initial negative normalized ratios) 

indicate that viruses are being preferentially transported through more direct flowpaths to 

W1 than was bromide during the initial phase of the experiment (Figure 6 A and 6B). 

Under forced gradient conditions, more water preferentially flows through the larger pore 

channels. The C/Co ratio for PRD1 also remains higher than the equivalent C/Co ratio for 

bromide at W1 for a longer period o f time than the other viruses. Possibly, pore 

exclusion and the resulting transport through only larger pores at this field site facilitates 

transport o f the larger diameter PRD1 virus and results in a greater mass arriving at W1. 

Thus, although pi value is probably the primary property controlling virus sorption, in the 

case o f PRD1, diameter also appears to be an important controlling factor (32, 36).

Virus Detachment

PRD1, MS2 and attenuated poliovirus are detaching during the experiment, as 

indicated by the long tails on the breakthrough curve (Fig. 4). The rate o f detachment of 

OX174 increased after 20 to 25 h as indicated by the change in slope in this region o f the 

breakthrough curve (Fig. 4), and the negative values shown in Figure 6. A similar 

detachment trend was observed at the injection well, occurring between the 14 and 24 h
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sampling times. Apparently, 0X 174 attachment is only partially reversible under our test 

conditions. This is in contrast to lab studies which report that contact time with sediments 

is the most important factor controlling attenuation, and further, that 0X174 transport is 

not retarded (2,40). Our field observations for 0X174 may reflect the rapid transport 

velocities and/or large number o f pore volumes that were exchanged during our 

experiment

Additional Observations

Plots o f  normalized C/Co ratio vs. time (equation 2), and the frequent sampling 

intervals, revealed two additional aspects relative to virus transport under forced gradient 

conditions. The occurrence o f negative normalized ratios at W1 that indicate preferential 

transport o f the bacteriophage have been described previously. In contrast, bromide, as an 

non-reactive ion, enters all available pores, which results in a lower normalized bromide 

value at its initial detection at W1. A similar response was observed for MS2 at a 

sampling point 7.S m from the injection point (Fig. 7). In this field setting, the apparent 

pore exclusion process appears to dominate transport only temporarily. The attachment 

process then becomes the primary factor.

Another notable observation is that normalized ratios for MS2 are 0.30 to 0.40 

during the first 1 h sampling within 0.84 and 1.78 m of 16 (Fig. 7). Limited sampling for 

other viruses showed similar trends with plateaus at 0.70 to 0.80 within 4 to 6 h o f 

injection. This suggests the attachment process occurs rapidly and in the immediate 

vicinity o f 16 with only an additional 0.20 to 0.30 increase in the normalized ratio 

recorded at wells 7.5 - 21.5 m down-gradient o f W l. Others have also reported a high
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degree o f attachment occurring close to a virus source (29). Only 4>X174 appeared to 

show a reversal in this process, suggesting its attachment is less stable with time.

Based on our experimental results, a  concentration vs. time relationship for virus 

travelling to, and arriving at, a pumping well located 21.5 m from a slug virus source in a 

similar groundwater system could be estimated using the following equation:

Virusct- (BrCt/co*(l-A)*Virusco) (4)

where a sampling location at time t, Virusct is the virus concentration, B ra/co  is the 

normalized bromide concentration, A is the solution to equation 2, and Virusco is the 

initial concentration o f the injected virus. Though specific for our site and experimental 

design, this relationship may prove useful for estimating peak virus concentrations at a 

down-gradient well and/or to plan initial concentrations for field seeding experiments. 

Using this strategy, a preliminary bromide tracer experiment would be required to obtain 

B rct/co data for a site. Approximate values o f  A (0.7 to 0.8) derived from MS2 and PRD1 

results could be used to estimate Virusct- Analysis of the behavior o f attenuated 

poliovirus would require an A value o f about 0.99. Before generating a more robust 

bromide-virus relationship (as for equation 4), additional field experiments conducted 

under differing conditions with the same and other viruses would be needed to evaluate 

whether A can be reasonably estimated without the need to seed indicator virus at a 

particular site.

Optimal modeling o f virus transport will require additional development o f time- 

distance and virus attachment-detachment relationships. Results to date indicate that
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such factors could be derived at our field site only by conducting additional virus seed 

experiments under a  variety o f pumping conditions, combined with more comprehensive 

sampling o f multilevel monitoring wells within the plume flow path. Specific attachment 

and detachment rates could then be derived and used to calibrate virus transport models.
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Chapter 5

NOTE: This work to be submitted for publication.

Partitioning of MS2 During T ransport in a Septic Effluent Impacted Unconfined 

Aquifer

Patrick N. Ball, William W. Woessner, Jeffery Fink, Dan C. DeBorde and William 

Holben

Abstract

Equitable rules to protect public health and safety can be developed only by taking into 

account the presence of both unbound and bound viruses in aquifer systems. Few field 

studies have attempted mass balance analysis (i.e., total numbers of virus or bacteria 

added = fraction bound + fraction free + fraction inactivated). Without such field-scale 

mass balance data, regulatory agencies lack sufficient information to assess risks 

accurately and formulate appropriate protective regulations. The bacteriophage MS2 and 

a bromide tracer were seeded as a slug source into the water table a well (IW1) located 

3.24 m upfield from a well (EW1) pumped at a constant rate. The breakthrough and 

partitioning behavior was observed and quantified. For the aqueous phase, groundwater 

samples were collected at predetermined intervals over a 48 h period. The portion o f the 

seeded virus collected at the EW1 was calculated by integrating the mass collected over 

averaged time intervals throughout the duration of the 48 h test The mass collected 

during this time was 45.3% of the total input virus at the injection well. For the solid 

phase analyses, sediment cores were extracted from the flowfield along a transect 

between the injection well and the pumping well. The bacteriophage was extracted from
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the sediment sections and the data presented as virus/gram. The predicted dimensions of 

the plume were determined by flow models and bacteriophage samples and each 

sediment section was appropriately weighted by width, depth and length to approximate 

the plume shape at that particular location. After analysis o f the solid phase samples, the 

total corrected mass contribution was 5.5%. The total mass contributed by both the 

aqueous and solid phase was 51% o f the original input mass o f MS2 indicating that 

approximately 49% o f the input mass eluded detection. In addition, the relative 

breakthrough (RB), relative attenuation (RA) and collision efficiency (a) were 

calculated. The RB calculation was comparable to the actual mass captured in the well. 

However the RA calculation overestimated the mass contributed by the solid phase. This 

suggests that irreversible adsorption may account for less attenuation then was previously 

hypothesized.
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Introduction

The 1986 Congress recognized the inadequacy o f  existing regulations governing 

groundwater supplies to protect public health from water-borne diseases and amended the 

Safe Drinking Water Act to allow inclusion of additional contaminants on a three-year 

cycle. Although agencies are aware that human enteric viruses cause groundwater 

contamination, at the present time most public water supplies relying on groundwater are 

not required to monitor for viruses. However, efforts to revise current rules and 

formulate new regulations that would protect groundwater from viral pathogens are 

hampered by a limited understanding o f the processes affecting movement and fate o f 

viral pathogens in various groundwater systems (Yates and Jury, 1995; Macler, 1995). 

Attachment o f viruses during transport, inactivation, and hydrodynamic dispersion are 

recognized as primary processes controlling aqueous phase viral concentrations measured 

in groundwater (Goyal and Gerba, 1979; Noonan and McNabb, 1979; Gerba, 1984; Yates 

et al., 1987; Bales et al., 1993, 1995; Rossi et al., 1994; Pieper et al., 1997; DeBorde et 

al., 1998a,b). The key factors influencing rates of attachment and detailed quantification 

o f this process under field conditions have been assessed only indirectly at a few field 

sites (Alhajjar et al., 1987; Jansons et al., 1989a,b; Bales e ta l., 1989,1995,1997; Rossi 

et al., 1994; Pieper et al., 1997; Ball et al., 1999; Schijven et al., 1999).

Virus inactivation has been studied in lab settings and at a limited number o f field 

sites (Hurst et al., 1980; and Yates et al., 1985; Yates and Yates, 1987; Jansons et al., 

1989a; Snowdon et al., 1989; Yahya et al, 1993; Pieper et al., 1997; Ball et al., 1999; 

Schijven et al., 1999). Literature to date generally indicates that inactivation rates are 

directly proportional to groundwater temperature (Hurst et al., 1980; Yates et al., 1985;
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Yates and Yates, 1987; Jansons et al., 1989a; Snowdon et al., 1989; Powelson et al.,

1990; Yahya et al., 1993). It has also been suggested that sorbed virus may have slower 

inactivation rates than those in the aqueous phase (Moore et al., 1975, Liew and Gerba, 

1980, Grant et al., 1993).

The potential for survival of virus in groundwater systems for periods o f months 

to years increases the chances o f virus reaching groundwater supplies (Y ahya et al., 1993; 

Yates and Yates, 1987; DeBorde et al. 1999; data unpublished). In column and field 

experiments, it has been observed that a portion o f the attached virus detach from the 

bound phase over time. This process is poorly quantified, yet it represents a potential 

source o f persistent viral contamination. This process can be enhanced when systems are 

chemically or hydrologically perturbed (Bales et al., 1993; Loveland et al., 1996). Thus, 

the sorbed portion may represent a persistent risk to public health, especially considering 

the low infectious dose of some viruses (Abbaszadegan et al., 1999).

Development o f equitable rules that will protect public health and safety requires 

understanding processes governing the transport and survival o f both the aqueous phase 

and bound phase virus. The work described here was designed to quantitatively examine 

the partitioning o f  a virus between the aqueous phase and bound phase during transport at 

the field scale. These data describe processes within a sand and gravel dominated 

unconfined aquifer that is receiving septic system effluent. The partitioning process was 

primarily observed by seeding the bacteriophage MS2 into the capture zone of a pumping 

well, analyzing aqueous and solid phase samples, and computing an aqueous and bound 

phase mass balance. Various factors controlling virus binding and survival were 

examined by column experiments and elution of virus from field sediment cores.
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Materials and Methods 

Bacteriophage: The bacteriophage MS2 was used as a  model organism for the seeding 

experiment MS2, a  virus of Escherichia coli and innocuous to humans, was injected as a 

slug input source at 1.27xl014 total virus in 21 o f virus-free site groundwater. This 

bacertiophage is well characterized and has been used previously in numerous field 

investigations (Bales et al., 1991; Jin et al., 1997; DeBorde et al., 1998a,b, 1999; Ball et 

al., 1999; Schijven et al., 1999). Physically similar to most human enteroviruses, MS2 is a 

small (27-30 nm dia.), naked icosahedral RNA virus with a reported isoelectric point (pi) 

o f 3.9 (Bales etal., 1991). MS2 has generally been accepted as a surrogate for human 

pathogens in many studies, and is under consideration by the USEPA as a marker 

organism for monitoring water quality (LAWPRC Study Group, 1991).

Field site: The Frenchtown High School Site is located about 25 km west of the 

University o f Montana, Missoula Campus (Fig. 1). This rural high school disposes of 

approximately 12,000 L/d of sewage and wastewater in a 1860 m2 drainfield south o f the 

school. This system and the underlying unconfined aquifer were described previously by 

DeBorde et al. (1998a,b). At the study site, septic effluent discharges in the vadose zone 

and flows through 1.8 to 2.4 m of fine to medium sand to the water table located 3.1 - 3.2 

m below land surface (DeBorde et al. 1998; Lauerman, 1999). Groundwater in the 5 m 

thick sand and gravel aquifer flows through the site from the northeast to the southwest at 

about 3.6 m/d. The study site was located approximately 6 m downfield from the 

southern edge o f the septic-drainfield (Fig. 1). Physical and chemical properties o f the 

study site are summarized in Table 1.
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Figure 1. Location of Frenchtown High School field site with inset o f septic system and 
locations o f injection well, monitoring well and pumping well indicated. Also indicated 
sire the locations o f the sediment cores extracted from the site.

Field Methods:

(i) Well construction: A GEOPROBE™ 5400 was used to drive a flush-coupled steel 

casing (3.2 cm ID) with an expendable point to a depth of 4.6 m. Piezometers for sampling 

and the injection well were installed by inserting the screened PVC well pipe into the casing 

and sdlowing the hole to collapse around the wells during casing extraction. Coarse
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Table 1. Hydrological and water quality data for Frenchtown High School field site. 
Information gathered from previous work by Lauerman (1999) as well as current 
research.

Hydrologic Properties
Porosity 0.25

Gradient 0.002
K (m/d) 240 -  300

GW Velocity (m/d) 3.6
Water Chemistry

Water Type Calcium, Bicarbonate
'Conductivity 325 pS/cm

Dissolved oxygen (DO) 4.7 mg/1
pH 6.6

Ave. Temperature (C°) 9.6
Ca (mg/1) 63
Mg (mg/1) 18
Na (mg/1) 17
K. (mg/1) 2.1
Cl (mg/1) 6.9

Noj-N (mg/1) 4.3
HCOj (mg/1) 200

Colorado silica sand was used to fill any un-collapsed areas o f the borehole above the water 

table (20 to 40 cm) then the remaining hole was backfilled with sand from the site and 

surface-sealed with bentonite. Bundle piezometers (multilevel samplers) were constructed 

using a center tube o f 1.3 cm OD PVC pipe perforated over an interval o f 7.6 cm from its 

base (4.8 m) and wrapped with a fine mesh nylon screen (Fig. 2). To the outside of this 

PVC tube a series o f 0.95 cm OD polyethylene tubes perforated over the terminal 5 cm, 

and wrapped with fine nylon screen were located at intervals 2.9, 3.1, 3.2, 3.4, 3.5, 3.6, 

3.8,4.0, and 4.2 m below land surface (Fig. 2). The 2.54 cm diameter PVC injection well 

(IW) was constructed by perforating the terminal 25 cm and wrapping the perforations

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with a fine mesh nylon screen. This well was installed with the perforations extending 25 

cm below the water table (Fig. 2). The 7.6 cm diameter production well (EW1) consisted 

o f  a sand point with 1.5 m of #30 slot (0.76 cm) wire wrapped screen installed from 3.3 

to 4.8 m below land surface (Fig. 2). The well was installed by augering a pilot hole to 

the water table, then driving the well into place with the GEOPROBE™.

G r o u n d  S u r f a c e

Injection
Well

2 .5 4  c m

Interval

M u l t i l e v e l  s a m p l e r s *  F I  t h r o u g h  F 6  

P r o d u c t i o n  W e l l  -  E W 1
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1 J  c m

Productk
Well

7 .6  c m

|
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3.5 n

3  J  m  t o  4 .8  m

3.6 a  ■

7 .6  c m

Figure 2. Details of the arrangement and construction of multilevel sampling wells, 
injection and production well

(ii) Conservative Tracer Tests: Well EW1 was pumping at a constant rate of 45.4 L/m 

until steady state flow conditions were established (approximately 1.3 h). As the 

discharge rate was held constant, 2 1 o f  bromide tracer (1458 mg/L) was injected at IW1 

as a  slug over a 15 m interval. The multilevel wells were sampled using a peristaltic
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pump. The production well (EW1) was also sampled over a 24 h period by obtaining 

samples directly from the well head.

After reviewing test results, it appeared bromide concentrations in the production well 

were below detection limits o f 0.01 mg/1. To derive a  dilution factor occurring at EW1, a 

separate 70 minute test was performed by injection o f  a 1 L slug o f  bromide with a 

concentration o f 1025 mg/1 o f bromide at F6-3.2 located less than 0.5 m from EW1 which 

was being pumped at a 45.4 L/m. These results and the bromide data collected at F6 ports 

3.2 and 3.4 were used to develop a synthetic bromide breakthrough curve for the 24 h 

bromide test at EW1.

(iii) Groundwater Sampling: A steady state flow field was created by maintaining 

discharge at well EW1 at 45.4 L/m during the 48 hour test (Fig. 1). Aqueous samples were 

obtained from the multilevel samplers FI through F6 using peristaltic pumps equiped with 

Masterflex™ tubing (Cole Parmer Instrument Co., Vemon Hills, IL) to collect 50 to 100 ml 

of groundwater per sample. The tubing was autoclaved and installed to each multilevel 

sampling port (0.25 OD polyethylene tubing) where it remained dedicated to that port for 

the duration of the experiment To avoid contaminating hourly samples, prior to sample 

collection a minimum number o f bore volumes were purged and deposited into a waste 

container. Samples were also collected from the pumping well EW1 at predetermined 

intervals (0.5 to 1.0 h) based on prior tracer studies. All samples were collected in sterile 

polypropylene containers, and immediately placed on ice for transport to the laboratory at 

The University o f Montana During die experiment, samples were taken at upgradient 

wells, to monitor die background concentration of native male-specific bacteriophage 

entering the network system from die drainfield.
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(iv) Solid Phase Sampling: The coring o f the saturated zone was concentrated on centers 

o f the viral plumes within the first 3 m o f the injection well. Using the GEOPROBE™ 

(Fig.l and 3) unit a  borehole was augered to the approximate location o f the water table 

(3.1 to 3.2 m below land surface). Because o f the difficulty in obtaining intact cores from 

the sand and gravel unit, 0.9 m by 7.6 cm sections o f new Shelby coring tubes were used 

to take multiple sediment cores at and below the water table. Cores were extracted in the 

field and samples representing approximately IS cm intervals were placed in individual 

plastic Zip-loc™ bags, labeled and immediately placed on ice. Where complete 

undisturbed intact cores were obtained they were wrapped with sterile foil and placed 

horizontally on ice. All samples were transported directly to the laboratory for analysis.

Laboratory Methods:

(i) Sample Processing for MS2 Analysis: Samples collected from the liquid phase were 

assayed by the single layer plaque method with appropriate dilutions. The bacteriophage 

propagation and assay methods were described in detail previously in chapter 4 and in 

DeBorde et al. (1998a).

Sediment samples were mixed by hand until homogeneous, carefully emptied out 

o f bags onto clean surfaces, visually examined for anomalies, photographed and archived. 

Large cobbles were removed from the homogenized mixture and samples of the mixed 

sediments, gravels and sand were placed in a pre-weighed sterile SO ml polypropylene 

centrifuge tubes. Tubes were re-weighed to obtain true sample weights (75 - 87 g). These 

samples were considered to represent o f the homogenized core section corresponding to 

individual locations within the field site.
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Figure 3. Depiction o f the GEOPROBE™ unit extracting sediment from field site.

Virus were extracted from core sections by a modified version of the Berg method 

(Hurst, 1997). Briefly, 50 ml o f 5% beef extract solution (50 g beef extract, 6.7 g 

Na2HP04 * 7H2O and 0.6 g citric acid) was added to each solid phase sample (Wt/Vol 

ranged from 57 to 68%). The mixture was shaken on high for 30 min on a tabletop- 

oscillating shaker (Eberbach Corp. Ann Arbor, MI) to thoroughly suspend the virus. The 

virus suspensions were then subjected to centrifugation for 20 min o f 8000 x g at 4° C to 

remove sediment debris. Ten ml o f cleared virus suspension was mixed with 10 ml o f IX 

tryptone-yeast broth (TYB) (1% w/v tryptone, 0.1% w/v yeast, 1% w/v dextrose, 0.022%
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w/v CaCh and 0.8% w/v NaCl) and assayed following the single-agar layer technique as 

described by DeBorde et al. (1998 a).

Background levels o f MS2: Both aqueous and solid phase background levels o f MS2 

were assayed prior to injection to determine the level o f  resident MS2 within the study 

site. The installation o f  the multi-level wells (F1-F6) provided cores and coring sediment 

for determination o f  solid phase background virus levels. Levels o f  MS2 in all core 

sections assayed were determined to be below the detection limit (0.1 PFU/ml). Upon 

completion o f their installation, these same wells were assayed for aqueous phase MS2 

and all wells were below detection limits at every sampling port. To insure that there was 

no detectable background MS2, a complete sampling was conducted just prior to the slug 

injection. These samples were also all below detection limits.

MS2 inactivation: MS2 survival was determined for both laboratory and field setting 

temperatures. The rate o f laboratory inactivation was tested by assaying a stock of MS2 

diluted in site groundwater held at 4° C. The temperature field samples were maintained 

at prior to assays. Previously, the rate o f field inactivation was determined by holding 

field injectate (virus in site groundwater) at temperatures that were equivalent to the site 

groundwater (DeBorde et al., 1998a). This was accomplished by suspending an Oakridge 

Tube (Nalgene, Nalge Nunc International, Rochester, NY) containing the 

groundwater/virus solution below the water table in a well located at the Frenchtown 

High School field site. Samples were periodically taken and brought back to the 

laboratory where they were assayed. The results o f this control experiment can be seen in 

Figure 4. The graph displays a natural log transformation o f the change in MS2 titer (as 

infective particles) as a function of time.
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Figure 4. Plot o f temperature dependent inactivation rates determined for MS2 under 
laboratory storage conditions (4° C) and at field conditions (11°). The graph displays a 
natural log transformation of the change in MS2 titer as a function of time.
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Figure 5. Plot o f the inactivation rates of bound and unbound MS2 at a temperature range 
o f  12° to 17° C. The graph displays a natural log transformation of the change in MS2 
titer as a function o f time.
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To compare inactivation between bound and unbound virus, a groundwater 

solution o f known titer was incubated with saturated sediment. The viral solution and 

solution/sediment slurry were then incubated at approximately 15° C and assayed during 

the next 46 days (Fig. 5). Figure 5 also represents a natural log transformation of change 

in MS2 titer as a function o f time. The objective of the experiment was to determine rates 

o f inactivation based on virus titer end points. The nature o f the experiment does not 

allow for absolute quantification o f bound virus, however the goal o f the experiment did 

not necessitate this.

Typically inactivation rates are expressed in terms o f (hours'1) based on the 

following rate equation:

Ct= C 0*e’Kt

where Ct is virus concentration at time t, C0 is initial concentration and K is the 

inactivation rate. The inactivation rate was determined for each o f the experiments 

described above and the data are presented in Table 4.

Virus elution efficiency: Extraction efficiency from sediment was determined by a 

series o f experiments in which a known amount of virus diluted in site groundwater was 

added to homogenized sub-samples o f background cores. To allow for adsorption, this 

mixture was incubated at 4° C for approximately one hour. The inoculated sediment 

samples were then subjected to the solid phase extraction procedure described above. An 

average extraction efficiency o f 73% (+/- 7.7%) was determined by averaging the results 

o f the six trials. In addition, a control experiment determined viral inactivation during 

shaking in the beef extract extraction buffer to be 17%, or 83% survival rate. Thompson 

et al. (1998) have shown that MS2 inactivation during batch sorption experiments
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occurred during agitation and correlated it to forces associated with air-water/air-so 1 id 

interface on polypropylene surfaces. The combined effects o f  these two factors were 

considered in the final determination o f MS2 mass contained in the solid phase.

Site sorption: To determine whether site sediment and/or groundwater may have an 

effect on virus adsorption, an additional control experiment was performed. Small 

columns were constructed which contained sand-sized sediment from either Frenchtown 

High School or the Erskine fishing access sites (DeBorde et al., 1998a,b, 1999).

Triplicate columns contained equal amounts of coarse sands and fine gravel representing 

sediments typical o f the sites and in contact with the viruses. After the columns were 

conditioned with their respective site groundwater 24 to 36 hours at 4° C, MS2 diluted in 

the relevant site groundwater was applied to the top o f the column in 0.5 pore volume and 

allowed to flow through at equal rates (calibrated by drops collected per unit time 

interval). Groundwater was then applied continuously in 1 pore volume increments until 

six fractions containing a total volume of approximately 70 ml were collected. Each 

fraction was analyzed by the single layer plaque assay and total PFU/volume was 

determined. Total PFU was determined by summing the fractions. The percent MS2 

unabsorbed was determined and is displayed graphically in Fig. 6a.

At the conclusion o f the sorption assays, four o f the six columns were analyzed to 

ensure that preferential flow was not responsible for the differences in sorption. The 

experimental design was similar to that o f the virus assay except that bromide was used 

as a conservative tracer, less volume was used, and a greater number o f fractions were 

collected. To accomplish this, bromide (50 ppm) contained in 0.5 pore volume was 

flushed through the column and chased by site groundwater. 2 ml fractions were collected
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and analyzed using a bromide probe (Cole-Parmer, Vernon Hills, IL). The millivolt 

readings obtained were converted to bromide concentrations by log transformation 

regression analysis based on standardized bromide concentrations. The results, shown in 

Fig. 6b, are C/Co bromide values versus fraction number and indicate that the bromide 

tracer behaved similarly during transport through the columns. These data would suggest 

that MS2 was not transported under preferential flow conditions through these columns.

P e r c e n t  M S 2  U n a d s o r b e d
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Figure 6. 6A - Bar graph comparing the percent of unabsorbed MS2 from small-scale 
columns using site specific sediment and groundwater (Erskine vs Frenchtown High 
School). 6B -  Graph comparing the behavior of bromide during transport through 
columns 1 through 4 used in experiment 6A.
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Column construction: Both the inactivation and sorption experiments were performed in 

60 CC syringe (Becton Dickinson, Franklin NJ) columns. To construct the columns, the 

bottom o f the syringes were fitted with fine

polypropylene mesh, to hold in sediment 

material, and PVC stopcocks (Cole-Parmer, 

Vemon Hills, IL) to control flow rates. The 

syringes and mesh were sterilized by 

autoclaving prior to use. Each stopcock was 

assumed to be sterile based on lack of 

contamination in pre-flush fractions from the 

column. The column structure is shown 

schematically in Fig. 7.

Syringe Column 

e r

Site specific 
groundwater

Site specific 
sediment

Polypropylene mesh 

Stopcock

Figure 7. Schematic representation of small column construction for sorption studies of 
sediments.

Data analysis: 

Mass Balance Calculations:

(i) Aqueous phase: To calculate the contribution to the total mass from the aqueous phase, 

samples collected at EW1 were assayed and the data integrated over the 48 h time course of 

the experiment. Data were integrated by averaging the sum o f the PFU/ml between 

consecutive sampling time intervals, multiplying this value by the average rate of 

groundwater pumped between the intervals, and then multiplying this product by the actual 

time between sampling intervals.
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(II) Solid phase: To calculate the contribution to the total mass balance from the solid 

phase, the viral plume shape was estimated based on the results o f multi-level well 

samples (defining the plume edges and depth) and modeling of the capture zone o f the 

pumping well. Virus mass values were based on the results of extractions from cores 

taken along the centerline of the plume. Eluted virus concentrations were converted to 

numbers o f  virus per gram sediment, then differentiated into intervals representing the 

plume area associated with the location o f each core sample. Sediment volumes were 

then computed by multiplying the area by the identified plume thickness. This number 

was in turn multiplied by 1.5g/cm3, the average density o f unconsolidated sediment 

(Fetter, 1994), to provide the total grams of sediment contained in each respective flow- 

field sector. Finally an estimate o f the total viral mass contained in this volume was 

obtained by multiplying the virus/gram value for the appropriate core sample by the 

mass o f  the interval. The total quantity o f virus attached to sediment was determined by 

summing the values for all intervals within each sampling area.

Additional Calculations:

Mattess and Pekdeger (1981) suggested that it was appropriate to employ filtration 

theory to describe the removal o f colloidal particles during viral transport. Harvey and 

Garabedian (1991) extended this by proposal incorporating a colloidal filtration model 

into a simple, one-dimensional transport model describing viral transport in subsurface 

environments. Colloidal filtration allows particle removal by irreversible attachment to 

be incorporated into a transport model.
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(i)  R elative B reakthrough  (R B ) and R ela tive  A ttenuation  (R A ): Relative virus 

breakthrough and relative virus attenuation were calculated for the monitoring well F3-

3.4 (1 m from the injection point) using the procedure o f Harvey and Garabedian (1991). 

RB is a measurement that compares the ratio o f  source virus concentration and measured 

values to those o f bromide at the same points.

t t
f  f

RB = / Q  d t/ / Brt dt (1)
*o Co *o Bio

Where Co is the initial concentration o f virus (PFU/ml)
B r0 is the initial concentration o f bromide (mg/L)
C, virus concentration at wells at time t affer injection 
Brt bromide concentration at wells at time t after injection 
to time representing the beginning point o f the breakthrough curve 
tf time representing the ending point o f  the breakthrough curve

Essentially one integrates the area under the breakthrough curve for both virus and

bromide. The value derived for RB may then be converted to a percentage (RB x 100)

and subtracted from 100 to establish a new precentage value designated as relative

attenuation (RA).

(ii) Collision efficiency: An additional parameter that can be calculated is the collision 

efficiency, a  (Harvey and Garabedian, 1991; Pieper et al, 1997). In porous media, a  is the 

ratio o f collisions resulting in attachment to the total collisions between virus and aquifer 

grains, a  is thought to be an indicator o f the intersurface forces (controlled by 

physicochemical factors) experienced by the virus as they contact aquifer grains and may 

be a useful expression that allows for virus attenuation to be compared between sites with 

varying hydrogeological properties, a  values are calculated by the following set of 

equations:
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a  = d[(l - 2 (aL/x) In (RB)2) -1] / 6(l-0)r| a L (2)

where d is the average grain diameter (mm) 
a t  is longitudinal dispersivity (m) 
x is transport distance (m)
RB is relative breakthrough as described before 
0 is the porosity
T| is the single collector efficiency (for Brownian diffusion contribution)

ri = 0.93As1/3(kBT/ndpdv)2/3 (3)

where ke is the Boltzmann constant (1.38x1 O'23 J/mol x K)
T is the absolute temperature
p. is the dynamic viscosity o f the fluid (1.139xlO'3 kg/m x s) 
dp is the particle (vims) diameter (m) 
d is the average grain size 
v is the fluid velocity
As is the Happel sphere-in-cell model correction factor

As= (1 - e5) / (1 -  1.5e + 1.5e5 - e5) (4)

where e = (1 - 0)1/3

The single collector efficiency term, T| is the rate at which particles strike a single porous 

media grain divided by the rate at which particles move toward the grain. It represents the 

physical factors that determine particle collisions. The variables used for this calculation 

were obtained or derived from data at F3-3.4 and are given in Table 2.

(iii) Virus T ransport Behavior: Behavior o f the vims during transport was examined at 

the monitoring well F3-3.4. Plots of the normalized difference in the bromide and vims 

concentration ratios relative to the bromide ratio versus time were generated using the 

following quation:

A =  (Brc/co-  Virusc/coV Brc/co (5)

where Brc/co is the normalized bromide concentration at time t 
Virusc/co is the normalized vims concentration at t 
A is dimensionless and < 1.0.
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Plots o f A versus time are positive when the C/Co value o f bromide is greater than the 

C/C0 value of the virus.

Table 2. Parameters used to calculate collision efficiencies (a) during transport a 
Frenchtown High School.

Parameters Values Comment
Velocity 0.15 m/h Measured by virus peak arrival at F3

♦Average Grain Diameter 0.0024 m Sieve analysis-measurement reflecting 
the sand and gravel fraction

0.00014 m Sieve analysis-measurement reflecting 
the finer sand fraction

Longitudinal Diipersivity 0.003 Obtained via type curve fitting 
Using a Pec let number of 40

Distance 1 m Distance between IW1 and F3

♦♦Porosity 0.25 Determined by estimation based on 
sediment type and consistencv

Relative Breakthrough 0.50 Calculated (see materials and methods)

Relative Attenuation 0.50 Calculated (see materials and methods)

Collision Efficiency (a) 0.035 Calculated using parameters form this 
table with .0024 m grain dia.

0.0003 Calculated using parameters form this 
table with .00014 m grain dia.

* and •♦ were determined in a previous study at this site (DeBorde 1998)

Results:

Bromide was injected as a slug at the water table in IW1 at the Frenchtown High 

School field site on June 23,1998. A follow-up Br tracer test was conducted on July 7, 

1998 between monitoring well F6 and the pumping well EW1 to determine a dilution 

constant occurring at EW1. The duration of the sampling for this test was 70 minutes. 

After the completion o f the bromide dilution test, bacteriophage MS2 was injected as a 

slug at IW1. Groundwater samples were collected over the next 48 h from F3-4, F6-3.2 

and the pumping well EW1. Samples were taken less frequently from selected ports o f 

wells F I , F2, F4 and F5, and all ports o f all wells at the 48 h time point. On July 9 and 

10,1998 saturated sediment cores and sediment material were extracted between the
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pumping well, EW l, and the injection well IW1 (refer to Fig. 1). Coring was 

successfully completed to a depth o f approximately 1.5 m below the water table.

Breakthrough Curves: Breakthrough curves were constructed using data from 

wells F3 and F6 at 3.4 m and 3.20 m depths intervals respectively (Fig. 8A and 8B). 

Preliminary bromide tracer tests revealed that these wells and depths exhibited the 

greatest mass passing through them. In addition, a  breakthrough curve was also 

constructed for the samples collected at well EWl (Figure 8C). The viral breakthrough 

curves for wells F3 and F6 are typical o f MS2 breakthrough curves observed in other 

field experiments (Ball et al., 1999, DeBorde et al., 1998a,b). The breakthrough curves 

exhibit a steep leading edge and a long trailing tail. The peak MS2 mass arrived at F3 at 

6 h with a concentration o f 1.02 X 109 PFU/ml (C/C0 o f .016). Peak MS2 mass arrived at 

F6 at 24 h with a concentration o f 1.30 X 109 PFU/ml (C/C0 of .021). In contrast to these 

wells, the EWl breakthrough curve geometry was different, exhibiting two distinct 

peaks (at 4 h and 20 h). The 4 h peak mass was 2.12 X 104 PFU/ml (C/C0 o f 3.36E-07) 

and the 20 h peak mass was 1.85 X 106 PFU/ml (C/C0 o f 2.92E-05). The shape o f the 

second and larger peak had fairly typical geometry in that the leading edge is quite steep 

and the trailing edge is long and flat.

It appears that the MS2 peak arrived slightly ahead of the bromide peak at F3-3.4 

(Fig.8A). Such behavior has been reported in previous field experiments (Rossi et al., 

1994, DeBorde et al., 1998 a & b). The peak concentration of MS2 arrived at 6 h, while 

the bromide had concentration peaks at 6.5 and 7 h. In contrast, the simulated bromide 

curve for F6-3.20 (generated from data obtained at F6-3.4 and the dilution test 

conducted between F6 and E W l) indicates that the bromide peak may have arrived prior
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-  3.2 m and C) E W l. Note that the scale on the right is for bromide and that on the left is 
for MS2.
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to the MS2 peak. It also appears that there is the beginning o f a second peak between 18 

and 24 h. Unfortunately the bromide tracer tests did not extend beyond 24 h, so the data 

for the second peak are incomplete. As for EW l, the data set was incomplete and again 

is simulated from bromide data derived from F6. The first sampling point at EWl (6 h) 

contained the greatest concentration of bromide. However, there is no way to determine 

the actual relative position of the peak, nor can the magnitude be determined from the 

incomplete data se t The last sampling point at EWl (24 h) indicates that a second peak 

may be starting. If that is the case, this bi-phasic curve is similar to the MS2 

breakthrough curve that clearly has two distinct peaks. The second and most significant 

peak of MS2 arrived prior to that of the bromide (Fig. 8C).

Relative Breakthrough (RB), Relative Attenuation (RA) and Collision

Efficiency ( a ) :  Due to the incomplete bromide data obtained from F6 and EW l, RB and

RA were only calculated at F3.4. For MS2, at F3-3.4, the RB was 51% and the RA was 

49%. The latter value is a comparison of the time-integrated mass of MS2 relative to that 

o f bromide (Harvey et al., 1989).

In addition, the RB calculation was used to calculate the collision efficiency (a) at 

F3-3.4. For F3-3.4 a  values ranged from 0.0003 to 0.035.

Viral T ransport Behavior: The viral transport process was examined by plotting the 

normalized difference in C/Co ratios (Equation 5) verses time at F3-3.4 (Fig. 9). The 

negative values at the 4 h and 5 h sampling points indicate that the C/Co value for the 

viruses is greater than that for bromide. Bromide was below detection limits for sampling 

times prior to this, even though MS2 was detectable 3 h prior. After the 5 h sampling 

point, normalized ratios were positive values and remained positive for the remainder of
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the sampling times. Interestingly, the ratios reached a fairly static level (0.77) by 8.S h, 

and then fluctuated only slightly through the remaining time periods, gradually increasing 

to 0.88 (Fig.9). These positive values indicate that the C/Co values for the virus were less 

than for bromide indicated the possible occurrence o f preferential flow.

MS2 Behavior at F3

0.5

• 0 .5

• 1 .5

• 2 .5

Time (h)

Figure 9. Plot o f the differences in the C/Co ratio for bromide and MS2 normalized to the 
C/Co ratio for bromide plotted at F3 for the first 24 hours o f the experiment.

Mass Balance (Aqueous Phase): Data from groundwater samples collected at 

EWl were integrated over the 48 h time course o f experiment. This integrated value 

revealed that 45.3% (5.74 X 1013 total PFU) o f the MS2 injected at IW1 was recovered in 

groundwater samples drawn from EWl (Fig. 10). The C/C0 value for MS2 at the 48 h 

sampling time period was greater than all of the C/C0 values prior to the 14 h sampling 

period. This suggests that a significant amount of viral mass remained within the aqueous 

portion o f  the system after the 48 h period. Although this phenomenon is difficult to 

envision based on Figure 10, it is much clearer in Figure 8C which shows the tail of the
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breakthrough curve at EWl at 48 h is only approximately 1.5 log units below its peak 

value at 20 h (6.46 x 104 vs. 1.85 x 106). Using the simulated data for Br collected at 

EW l, an apparent total o f < 5% of the injected bromide was captured during the 24 h 

bromide tracer test conducted compared to the first 24 h o f the MS2 injection test in 

which about 26% o f the injected mass was collected.

MS2 Accumulated with Time

3 0 -

105 11Time (h)
4 0

4 0

Figure 10. Aqueous phase samples collected at EWl and integrated over the 48 hour 
time course o f experiment. Analysis revealed that 45.3% (5.74 X 10 13 total PFU) o f the 
MS2 injected at IW1 was recovered in the groundwater samples drawn from EWl during 
the pumping test.

The 48 h “snapshot” sampling o f the entire flowfield for MS2 allowed for 

analysis o f the distribution o f bacteriophage. Figure 11 provides a graphic representation 

o f MS2 distribution in the multi-level sampling wells. From this figure, it is clear that the 

majority o f MS2 was dispersed throughout the system in a fairly even fashion, from IW 

through F3, F6 and finally into EWl in both the horizontal and vertical planes.
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Figure 11.48 h “snapshot” sampling of MS2 in the multi-level monitoring wells 
illustrating the distribution o f bacteriophage throughout the flow-field (refer to Fig. 1)

Mass Balance (Solid Phase): Analysis o f the cores extracted from the field in the 

approximate center o f the path o f the viral plume, indicated that approximately 5.5% (7.0 

X 1012 total PFU) o f the input virus mass was attached to the solid phase within the flow- 

field system (Fig. 12 and Table 3). The majority (> 97%) of the solid phase viral mass 

was located within 0.5 m o f the injection well (cores 7,13 and 15) and >78% was 

located between the 3.4 and 3.5 m depth intervals.
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Table 3. Relative and total percent o f MS2 extracted from Frenchtown High School 
field-site. Columns and rows correspond to core number and depth intervals respectively 
(refer to Fig. 1).

Depth
(m) Core Total

MS2
Total

• / .

15 13 7 4 2E 2CD 2AB F6
2.7 - 2.9 5.11E+09 ND 2.43E+U 5.00E+08 ND ND ND ND 2.48E+11 0.20

2.9-3.1 2.11E+09 1.31E+09 9.17E+10 7.56E+07 ND 2.53E+08 1.37E+09 1.60E+08 9.70E+10 0.08
3.1 - 3.2 6.42E+10 I-S8E+U 7.87E+10 9.27E+07 ND ND ND 5.86E+08 3.02E+1I 0.24
3.2-3.4 2.73E+11 5.36E+1I 2.85E+12 2.17E+09 5.71E+10 ND 7.41E+09 7.24E+08 3.73E+12 2.94

3.4-3.5 3.71E+U 1.06E+12 2.34E+11 2.99E+10 6.92E+10 3.56E+09 4.88E+09 2.57E+08 1.77E+12 1.39
3.5-3.7 6.05E+10 7.06E+U 6.54E+10 2.70E+09 ND ND ND 8.66E+07 8.35E+11 0.66

00• ND 1.16E+10 ND 3.29E+08 ND ND ND 8.92E+07 1.20E+I0 0.01
Total MS2 7.76E+11 2.47E+12 3.56E+12 3.57E+10 1.26E+U 3.S1E+09 1J7E+10 1.90E+09 7.0 E+12

Total •/. 0.61 1.95 2.81 0.03 0.10 0.00 0.01 0.00 5.50
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Figure 12. Relative contribution (as % o f total) of MS2 from each depth and core interval 
within the flowfield.
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Discussion:

The viral injection experiment undertaken at the Frenchtown High School field site was 

designed to generate a  mass balance o f the input bacteriophage MS2. To complete this 

computation, quantification o f fate, and the mass o f bacteriophage in the aqueous and 

solid phase must be considered. The portion o f the seeded virus collected at the pumping 

well was 45.3% o f the total input virus at the injection well, while the bacteriophage 

extracted from the sediment sections accounted for 5.5% o f the seeded mass.

The total mass contributed by both the aqueous and solid phase was ~  51% of the 

original input mass o f  MS2. This means that approximately 49% o f the input mass eluded 

detection. Since such extensive loss o f virus by inactivation is not supported by results of 

control experiments, the virus are most likely within the interstitial fluids located between 

the injection point and the pumping well.

Breakthrough C urve Observations: Although the peak virus concentration at 

F6 arrived 18 h later (24 h) than at F3 (6 h), the viral concentration was 1.27 times 

greater in F6 (1.02 x 109 vs. 1.30 x 109 PFU/ml). There are a number o f possible 

explanations for this observation. The first, and possibly most logical, explanation is that 

the peak mass was not captured during any of the scheduled sampling periods at F3. For 

example, the peak may have passed F3 sometime between hour 5 and 6 or between hour 

6 and 6.5. Examination o f viral concentrations at hours 5 and 6 indicates that the peak 

concentration was closer to the 6 h sampling time point

Another possibility is that the position of the F3 sampling well was not in the 

center o f the plume, but rather located to one side. However, at the 48 h comprehensive 

sampling F2 and F4, which bracket F3 approximately 30 cm to the East and W est
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respectively, indicated that the mass at F3 was at least 4 orders o f magnitude greater 

then either F2 or F4 at similar depth intervals (Fig. 11). It is still possible, and in fact 

likely, that F3 was not exactly in the center o f the viral mass.

Alternatively, F3 and F6 were both located in very nearly the same position 

relative to the center o f  the observed viral density, then it would appear that the pumping 

o f  EW l might be responsible for this phenomenon. Pumping of EWl (located 

approximately 20 cm behind F6) may have concentrated the virus from the up-gradient 

aqueous phase into a smaller volume o f groundwater around F6 as it converged at E W l. 

However, if  this were the case, then the bromide concentrations should have confirmed 

this observation by showing the same trend. Unfortunately, this can not be confirmed or 

discounted because o f the incomplete bromide data gathered at F6. However, it does 

appear that bromide may be increasing as indicated by the final sampling time point

Another possible explanation o f the observed behavior is an effect o f 

groundwater flow velocity on virus adsorption. At lower flow rates, the virus have 

increased chances to contact soil particles and increased contact time with those 

particles, thus allowing for increased adsorption probability. Lance and Gerba (1980) 

observed that doubling flow rates through soil columns increased viral breakthrough 

significantly. Gerba et al. (1981) reported similar findings, showing a negative 

correlation between flow rate and adsorption. Jin et al. (1997) argued that residence time 

for 4>X174 and MS2 within a column had a direct effect on the degree o f  attentuation. 

Because the groundwater velocity increases in a logarithmic manner as it approaches the 

extraction well in our system, this remains as a possible explanation for the observed 

transport behavior.
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Filially, it is conceivable that the observed behavior is a  consequence of 

preferential flow paths in the system. Perhaps some geological structures provided a 

more favorable conduit through the aquifer between IW1 and F6 as opposed to IW1 and 

F3. There may exist a zone (a lense of coarser material) within the aquifer that contains 

a  greater hydraulic conductivity (K) that allows transport to the extraction well to be 

enhanced. This type o f heterogeneous geological distribution is not unprecedented in 

this formation. Woessner et al. (1998) reported that a zone o f preferential flow created 

an area with increased hydraulic conductivity (6.5 times the average K. of the site) that 

was responsible for a greater concentration of MS2 arriving at a sampler located in a 

coarse-grained flood plain aquifer. However, this was not verified by observation of 

sediment material from cores.

Further examination o f F3 and F6 breakthrough curves shows differences in 

tailing behavior. For F3, from the peak at 6 h to 24 h there was an overall 2.2 log 

reduction or a 1.22 x 10*1 log reduction/hour. For F6, from the peak at 24 h to 48 h, there 

was only a 1.5 log reduction or a 6.25 x 10'2 log reduction/hour. This trend may indicate 

that detachment in the vicinity o f the extraction well (near F6) may be increased as flow 

velocity increases. Harton and Wilson (1998), observed periods o f increased virus 

detachment when flow rates were substantially elevated.

Some substantiation o f the argument that detachment affects down-gradient virus 

concentration comes from comparison of behavior between the virus and bromide 

breakthrough curves at F3 (Fig. 13). During the final 24 hours o f the experiment the 

C/Co value for bromide at F3 was reduced by approximately 2 log units.
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C/Co for MS2 and Bromide at F3

1 .0 6 - 0 1

1 .0 E - 0 2

BrC/Co
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Figure 13. Breakthrough curves (as C/Co) for MS2 and bromide at F3. Note that during 
the final 24 h C/Co for MS2 decreases by approximately 0.5 log units while bromide 
decreases by approximately 2 log units.

During this same time period, the C/Co value o f virus was reduced by approximately 0.5 

log units. If we assume that the loss in the non-reactive bromide is due to dispersion and 

that the virus would conform to this sort o f dispersive behavior, then one would assume 

that the loss o f virus would be equal. That scenario neglects to take into account the 

adsorptive nature o f the virus, which would increase its attenuation. To reconcile this 

discrepancy, it is possible that detachment o f virus from up-gradient locations 

contributes to the moderate slope of the virus breakthrough curve tail. This implies that 

the observed differences between the normalized bromide and virus curves may be a 

result o f behaviors inherent in the virus and not occurring in non-reactive tracers, i.e. 

retardation. Schijven et al. (1999), using a one-site kinetic model to approximate 

parameter values that included attachment and detachment coefficients, were able to
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simulate maximum breakthrough values for MS2 from a field experiment adequately. 

However, they were unable to use the model to fit estimated data to the trailing edge of 

the observed data that showed higher than predicted numbers o f viruses. They concluded 

that there must be an unknown removal/release process taking place that affected trailing 

edge behavior. They also suggested that the attachment process must be reversible.

Peak arrival times for bromide and virus at F3 appeared to differ slightly. For 

MS2 the peak arrival time was 6 h, while the bromide peak apparently arrived between

6.S and 7 h (bromide concentrations were equal at these two times). However, this 

phenomenon is not unprecedented as similar findings from field experiments have been 

reported by Powelson et al. (1993), Rossi et al. (1994) and DeBorde et al. (1998 a,b).

Bales et al. (1989) using column experiments, calculated that transport rates for 

the bacteriophages MS2 and £2 were 1.5 to 2.0 times that o f bromide. Kretzschmar et al. 

(1999), studying deposition rates in sediment columns, reported significantly faster 

breakthrough for latex beads compared to bromide. In both cases, breakthrough rate was 

considered a function o f a pore exclusion process. However DeBorde et al. (1998 b) 

proposed that the high collision efficiencies o f virus could result in a truncation of 

breakthrough curves. This would shift the peak arrival o f  the viral breakthrough curve to 

the left (earlier in time) producing a peak arrival that is earlier than the non-truncated 

bromide plume. While MS2 does not have as high a collision efficiency as poliovirus, its 

estimated a  value is significant relative to bromide.

Finally, the MS2 breakthrough curve at EWl was examined in detail. As 

mentioned previously, it appears to contain two separate and unequal peaks. The most 

logical explanation for this behavior is the existence o f  a preferential flow path(s)
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between IW1 and EW l. In this scenario, the mass o f  MS2 entered the groundwater, 

some portion was immediately drawn into conduits o f higher (preferential) flow. These 

high flow zones apparently bypassed F6 as indicated by a comparison of MS2 

concentrations in F3 and EWl at similar times (compare Figs. 8A-C). For example, the 8 

h sampling reveals that F6 contains 6.15 x 101 pfii/ml while EWl contains 5.73 x 103 

pfu/ml. However, this may simply be a function of the larger screened interval at EWl 

collecting over a greater area in the aquifer than the sample ports of F6.

RB, RA and a  Observations: The degree o f virus attenuation by attachment was 

examined using the procedure described by Harvey and Garabedian, (1991). At F3 the 

calculated RB o f 51% was very similar to that measured for MS2 by DeBorde et al. 

(1999) in a natural gradient field experiment at this site. There was a substantial 

difference in the transport distances between the two studies (1 m and 7.5 m), yet the 

a  values were still quite similar. This may indicate that the majority of the attenuation 

occurs quickly and within close proximity o f the injection site, a hypothesis supported 

by die solid phase data discussed previously.

The RA value indicates that 49% o f the mass was attenuated in this region, 

presumably by adsorption to aquifer material. This was unexpected considering that the 

groundwater chemistry in the area is impacted by the septic tank effluent Both Pieper et 

al. (1997) and Ryan et al. (1999) found variation in the calculated RB using the 

bacteriophage PRD1 during transport studies in a sand dominated aquifer containing 

both uncontaminated and sewage-impacted zones. In both studies the sewage-impacted 

zone had a significantly higher RB with respect to the uncontaminated zone. While the
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bacteriophage was different in those experiments, and site chemistry not identical, one 

would have expected to see the same general trends apply to the current experiments.

The a  values measured for MS2 transport at F3 range from 0.0003 to 0.035. The 

range is a reflection o f the two predominant grain diameter values o f  the sediment; 

0.00014 m (finer sand fraction) and 0.0024 m (coarser sands and gravels). This range o f 

values is consistent with those reported from other field transport tests. DeBorde et al.

(1999) reported a  values ranging from 0.004 to 0.182 for MS2 in a sand and gravel 

dominated aquifer. Schijven et al. (1998) estimated the a  value o f F-specific RNA 

bacteriophages during dune infiltration to be 0.002 for a well located 2 m from the input 

source. However at a second well location, 4 m from the source, the a  value dropped to 

approximately 0.0007. In the sand-dominated Cape Cod aquifer, Pieper et al. (1997) and 

Ryan et al. (1999), using PRD1 estimated an a  value of 0.013 for the uncontaminated 

portion and 0.0014 in the contaminated zone. At the same site, Harvey et al. (1989, 

1995), studying transport o f bacteria and protozoa calculated a  value ranges o f 0.0054 - 

0.0097 and 0.026 - 0.069 respectively. Interestingly, the a  values calculated for PRD1 in 

column studies using Cape Cod sands were much higher (ranging from 0.59 to 0.94) 

than those reported by both Pieper and Ryan (Kinoshita et al., 1993). The observed 

differences in calculated a  values were attributed to organic matter content of the 

sediments.

Ryan et al. (1999) suggest that charge environment as a function o f pH (zeta 

potential) on the biocolloid and aquifer grain geochemical heterogeneities are the most 

important factor when considering a  interactions. In a complex environment such as the
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flow fields used here there are a number o f factors which contribute to these parameters, 

and determining one controlling factor is unlikely.

Virus Transport Observations: To examine the transport behavior o f MS2 at F3, a plot 

o f the normalized difference in bromide and virus concentration ratios relative to 

bromide concentration versus time were generated using equation 5. The initial negative 

normalized ratios (at the 4 and 5 h sampling times) indicate that detectable MS2 is 

reaching F3 prior to detectable bromide (Fig. 9). A similar approach produced 

comparable results during an earlier field experiment preformed by Ball et al. (1999). It 

was suspected that pumping conditions caused increased volumes o f groundwater to be 

channeled into the larger pore diameters with liquid velocity being proportional to the 

square o f the pore radius. This created a preferential flow condition that may have led to 

or exacerbated a pore exclusion process. Under these conditions, the viruses do not 

interact with a large portion of the sediments, decreasing the adsorption probability 

(Yates and Yates, 1989). This would also appear to be a valid explanation for the 

negative values in the current case. After the 5 h sampling time there was a steady 

increase o f values (all positive, indicating C/Co values for virus being less than 

bromide.) until the 8.5 h sampling where an apparent plateau was encountered (Fig. 9). 

This behavior may be the result o f two concurrent factors: attachment and detachment. 

The majority o f the attachment takes place quickly and in the immediate vicinity o f the 

injection well. At early time periods after injection, dynamic adsorption equilibrium 

occurs between the virus and sediment (Grant et al., 1993). This is reversible, and 

equilibrium is established when the rate o f adsorption equals the rate o f desorption. In a 

dynamic aquifer system the unabsorbed portion is likely to be transported under the
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influence o f  advection, and may be affected by a pore exclusion process. The latter 

likely accounts for the early peak arrival and the initial negative normalized ratios o f 

virus at downgradient monitoring wells. With time, equilibrium is established with a 

somewhat steady state o f aqueous virus concentration, and these viruses are transported 

downgradient by advection. This temporal steady state declines over time as the 

adsorbed virus source is continually diminished. This situation may explain the plateau 

o f  the normalized ratios and long tailing in breakthrough that is eventually established. 

This scenario is also supported by the observation o f slow detachment o f virus from 

sediments reported by Schijven et al. (1999).

V irus Partition Analysis Observations: An attempt to quantify viruses in the aqueous 

and solid phases was undertaken to test the validity o f the RB and RA analysis.

Aqueous Phase: The 45% o f the input MS2 collected at EW l, in theory, represents the 

%RB o f MS2 as calculated by the method o f Harvey et al. (1989,1991). To test the 

validity o f  this computation, one may compare the calculated %RB value with that o f the 

viral mass o f  injected MS2 recovered from EW l. Previously Ball et al. (1999) 

performed this analysis on data collected from the Erskine Fishing Access research site 

and determined that the RB analysis slightly overestimated the true mass o f MS2 

collected at a  pumping well (27% vs. 17%). For the present study, the only valid RB 

data available are from F3 and not E W l. To extrapolate the data for estimates at EWl 

we must make the following assumptions: 1) Since the majority o f the adsorption occurs 

quickly and in the immediate vicinity o f the injection point, there is a relatively small 

difference in the virus mass reaching EWl compared to F3. Although the peak masses 

differ by roughly 1000 fold, this difference is likely due to the 1000 fold dilution at EWl
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due to pumping. Data from solid phase analysis also support this notion. 2) The pumping 

effect allows for minimal dispersion o f  the bromide so the mass o f bromide at EWl is 

comparable to that at F3, disregarding the 1000 fold dilution. 3) The conservative nature 

o f  the bromide results in no significant attenuation between F3 and E W l. 4) Prior data 

from a natural gradient experiment (Ball et al. 1999) suggests that RB declined 

approximately 3% per meter during transport This may be a maximum value since 

dispersion was likely a major cause o f  this decline under those conditions.

Using 3% per meter reduction, the % RB at EW l would be approximately 45% 

(51% at F3 - 6% (2 m travel to EWl)). It would thus appear that the RB o f 51% 

computed for F3 is quite reasonable based on the 45% mass o f MS2 that was collected at 

EW l.

Solid Phase: The MS2 sorbed to the solid phase of the aquifer is, in theory, equal to the 

RA. We can thus compare directly measured sorbed virus to the calculated RA. We were 

able to recover 5.5% of the total input MS2 from the solid phase of the aquifer. This is a 

somewhat unsatisfactory result, considering the calculated RA, and the difference in 

observed mass indicated that 49% o f the total mass o f virus remained in the aquifer 

(presumably adsorbed to sediments). Therefore, a discrepancy o f about 43% exists.

There are a few factors that may help explain this outcome. First, there may have 

been a greater amount o f MS2 that remained in the aqueous phase than anticipated. The 

48 h sampling interval contributed ~ 1.4% of the total MS2 collected. This extended 

tailing continues over time as the later sampling periods typically showed little change in 

slope over time. Further, the solid phase coring required two days to complete, with 

most core retrieval occurring on day two. By extrapolation based on the predicted slope
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o f  the EWl breakthrough curve tail section, the anticipated aqueous phase total mass 

would be approximately 49% through an additional 48 h period. Although this is a crude 

approximation, this mass (presumably originating from an sorbed solid phase source) 

could have passed through the site. However, this still does not balance the mass.

Another possibility is that viral inactivation may reduce values for both the 

aqueous and solid phases in our activity based assays. However, evidence from the 

inactivation control experiments does not support that claim in the context of this 

experiment Inactivation rates (-K) were determined by the equation presented in 

Materials and Methods (Laboratory methods -  (ii) controls -  survival). Table 4 below 

displays these for both laboratory and simulated field conditions.

Table 4 -  Inactivation rates determined under various conditions. Inactivation rates are 
expressed as a positive constant value but are calculated as -  K values and determined by 
the equation Q =  C0*e'Kt for both laboratory and simulated field conditions.

Sample Experimental Conditions Inactivation Rate 
(- K) (hours1)

Lab Stock (4° C) MS2 in groundwater held at 4JC. Test sample 
storage effects.

8.75 x lO 3

Enclosed (11° C) MS2 in groundwater held at 11°C. Test field 
inactivation rates.

5.52 x 10*3

MS2 liquid (15u C ) MS2 in groundwater held at 15UC. Compare 
inactivation rates to bound.

2.14 x HT*

MS2 bound (15UC ) MS2 in groundwater and sediment held at 1S°C. 
Compare inactivation rates to unbound.

1.34 x KT*

Using these K values, it would take over 417 hours (17 days +) at the temperatures in the 

field to produce a -  log reduction o f MS2 in the aqueous phase. In addition, it was also 

apparent that the aqueous phase MS2 was inactivated more quickly than the bound
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phase. The temperature at which this experiment was conducted is not representative of 

that in the field but likely represents an overestimation o f in-situ inactivation rates.

It is possible that the conditions or method in which the elution control 

experiments were conducted may not have simulated in-situ processes such as, sorption 

sufficiently. For example, the hour incubation period may not have been sufficient for 

complete adsorption resulting in an over estimation o f elution efficiency. Loveland et al. 

(1996) in viral attachment -  detachment experiments reported that the majority of
9

attachment occurs within an hour, but that reaching equilibrium may take up to 5 hours.

Another possibility is that viruses were trapped in unconnected pore spaces or 

dead-end pores. In this situation, the virus would only appear to be sorbed to sediment 

but in reality are in the aqueous phase. During some phase o f the coring procedure these 

viruses were drained out o f the system, essentially lost, and therefore not accounted for 

by either aqueous or solid phase assays. This situation could be enhanced by physical 

perturbations occurring during the coring process and core recovery. Coring may have 

mobilized large numbers o f previously sorbed viruses.

It should also be noted that a full solid phase sample set (all depth intervals) was 

not obtained (see Table 3). However, the missing data are almost exclusively from cores 

and depths predicted to be less significant in terms o f viral mass. We estimate that the 

missing data would likely account for only an additional 2%.

It is difficult to explain the results from the solid phase analysis. It is likely a 

combination o f the noted factors that resulted in die observed solid phase values. 

However, the data indicate that a  significant portion o f the virus mass may remain in the 

aqueous phase o f the aquifer and is not necessarily adsorbed to sediment. This is an area
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that requires further investigation, both in terms o f the techniques employed and in 

interpretation o f results.

Additional Observations

As noted previously, most (97%) o f the measured solid phase mass was located within 

0.5 m o f the injection well. These data support the prior observations o f DeBorde et al. 

(1998b) and Schijven et al. (1999) who determined that relative bacteriophage removal 

declined with distance from the input source. The data also bolster the hypothesis that 

viral detachment is the primary process maintaining virus concentrations after the main 

mass has passed a monitoring point, accounting for the long gradual declining tail 

typically observed on breakthrough curves (Bales et al. 1995).

That the fact the majority (>78%) o f MS2 was found between the 3.20 and 3.50 m 

depth intervals indicates little vertical dispersion and that the majority of virus remained 

at the level o f injection. It thus seems unlikely that any significant virus mass passed 

EW1.

There is strong evidence in the literature that sewage impacted groundwater or 

sediments reduce virus adsorption (Bales et al. 1989,1991,1995, 1997; Kinoshita et al. 

1993; Powelson et al. 1993,1994; Jin et al. 1997; Pieper et al. 1997; Ryan et al. 1999; 

Schijven et al. 1999). Sobsey et al. (1995) found that viral reduction was greater in 

sandy soil columns perfused with groundwater then in those perfused with wastewater 

effluent They also noted appreciable numbers o f virus in effluents from coarse sandy 

columns. One might predict that coarse sandy and gravel sediments, especially saturated
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with septic impacted groundwater, may be very inefficient at virus adsorption. The 

results o f our field experiments seem to confirm those predictions.

To further examine the effect o f septic effluent small-scale column experiments 

were conducted (see Materials and Methods -  Laboratory methods- (ii) controls- site 

sorption). Frenchtown High School site sediment was compared to sediment from the 

Erskine site which has similar sediment textures, but is not under the influence o f septic 

waste. The results showed that the fraction o f unabsorbed MS2 for Frenchtown High 

School sediments was 19% greater than that of Erskine sediments (69% versus 50%). 

The difference is also reflected in the lower a  values calculated for Frenchtown High 

School, 0.0003, versus the lowest value for Erskine 0.004. This points to the importance 

of a  calculations for specific viruses and sites. Determining a  on a case-by-case basis 

may aid in predicting the degree o f attenuation expected for a suite o f  viruses within a 

variety o f sediment conditions and types.

CmlwiQP?

Our attempts to quantify the partitioning behavior o f the bacteriophage MS2 during 

transport through a large septic system drain field met with mixed results. Overall, it 

would appear that the RB calculation was quite useful for predicting the mass o f injected 

MS2 that reached the extraction well. On the other hand, due to a combination o f 

factors, validating the RA value by direct observation was less successful. However, this 

initial and novel effort was valuable for laying the conceptual framework for future
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experiments to address issues concerning partitioning behavior. Below are some useful

recommendations for further experiments:

1) A comprehensive knowledge o f the site hydrogeological and chemical properties is 

required for comparison to other studies.

2) Thorough site characterization attained by conservative tracer experiments is 

required for appropriate and complete vims (or other) reactive tracer injection 

experiments (for example; to determine length o f experiment and appropriate 

injection concentrations).

3) For solid phase analysis, recovery o f intact cores can be difficult, depending on the 

matrix composition. An improved method for core recovery would be beneficial. To 

this end, perhaps prefabricated-screened cores constructed o f  site material and placed 

in-situ in predetermined locations in the flow field may provide a viable alternative 

that would produce more reliable data.

4) Further investigation is required to fully understand what factors (hydrological, 

physicochemical, viral properties) control attenuation of virus concentrations in 

aquifer systems.
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Chapter 6 

Concluding Remarks

Why is groundwater so important and why do we study subsurface viral transport? As 

much as 40% o f the water we use in the United States is derived from groundwater 

sources. Over the last decade, the incidence o f water-borne illnesses attributed to 

groundwater has increased by 50%, bringing the total reported illnesses to more than 

seven million per year. In addition, groundwater can be difficult and expensive to treat or 

remediate. Microorganisms such as viruses, protozoa and bacteria are quite different in 

terms o f  size, survival mechanisms and transport characteristics. For these reasons, 

protection o f groundwater resources and assessments of pathogen risk demand the study 

o f subsurface microbial transport Such studies are complex and often necessitate a 

multidisciplinary approach. The studies presented herein concerning viral transport in the 

subsurface are important in developing a more complete understanding and provide 

insights for appropriate strategies for protecting the health and safety o f groundwater 

supplies.

There have been a number o f previous studies illustrating the presence of viral 

pathogens in water supplies, yet our understanding of their movement and fate in 

subsurface environments remains limited. The majority of the current preceptions comes 

from laboratory experiments preformed on a limited spatial and temporal scale (e.g., in 

small columns). To further our current level o f understanding, we performed virus 

injection and recovery experiments to assess the movement and fate o f viruses in the 

subsurface. Some additional and unique qualities of these studies were inherent and
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others planned including: the nature o f die aquifer (coarse, cold and highly conductive); 

the use of multi-component tracers (bromide, three different bacteriophages and an 

attenuated human virus); attempting mass balance calculations that quantify partitioning 

behavior between the aqueous and solid phases.

The work presented in chapter three discribed the results of a multi-virus natural 

gradient experiment conducted in a coarse-grained cold aquifer. Based on the results of 

this study, it was concluded that high concentrations of virus are capable o f moving with 

the average velocity o f the groundwater and are capable o f surpassing commonly used 

setback distances between source wells and septic systems. Virus adsoiption appears to 

be a significant factor in viral attenuation, however adsorbed virus were capable of 

subsequent release representing a continuing source of viral contamination (Fig. 1).

Time

Decrease of Viral Titer with Distance over Time
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Ground Level

•  Unattached Virus 
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Figure 1. Depiction o f virus (breakthrough curves) as they enter groundwater and travel 
downgradient.
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This is particularly significant considering that viruses within the portion o f the aquifer 

impacted by the seeding remain viable for more than nine months. It also appears that 

high collision efficiencies might mask true transport rates o f some viruses. This seems to 

be the case for poliovirus. These initial data provided the framework for follow-up 

studies presented in Chapters four and five.

Chapter four presented data gathered from the same site at which the natural 

gradient experiment was conducted. From this study it was determined, through a mass 

balance experiment performed under a forced gradient, that viral attenuation was most 

likely affected by inherent viral properties such as isoelectric points and possibly size. 

That work also suggested that the majority o f adsorption occurred rapidly and in close 

proximity o f the injection point In addition, in this particular hydrogeological setting, 

the relative breakthrough (RB) calculation did not satisfactorily determine PRD1 and 

MS2 concentrations arriving at the extraction well. However, RB calculations more 

closely approximated the observed behavior o f 0X 174 and poliovirus. These results 

suggest that viral properties are an important factor contributing to their fate and transport 

in subsurface environments and, in particular, affecting adsorption/desorption behavior. 

This experiment also indicated that pumping conditions might induce a pore exclusion 

transport phenomenon.

Although it is difficult to make direct comparisons between the natural gradient 

(M7) and forced gradient (Wl) studies because different wells were involved in 

sampling, some general trends can be examined. Table 1 illustrates the calculated RB for 

the natural and forced gradient experiments. Table 1 also contains the measured mass 

recovered during the forced gradient experiment to facilitate comparison of the data. In
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general, it appears that active pumping significantly increases the mass o f bacteriophage 

arriving at an extraction well. Curiously, the forced gradient appeared to have the 

opposite effect on poliovirus transport

Table 1. Comparison o f relative breakthrough data between natural and forced gradient 
experiments

E xperim ent F orced  G radient N atural G radient

Tracer % Mass 
Recovered %RB %RB

PRD1 55 80 12
MS2 17 27 15

0X174 7 10 6
oolio 0.12 0.05 0.2

This observation is further supported by the data contained in Fig 2. which illustrates the 

influence the pumping well has on the peak relative concentrations (C/Co) values of the 

viruses at approximately 7.5 m from the injection site.

MS2

iig&H

SSIllHi

PRD1 PWC PcNo

Figure 2. Forced Gradient C/Co /  Natural Gradient C/Co o f each virus at approximately 
7.5 m. At 100% (dark line) the relative concentrations would be equal.
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Collectively, for the three bacteriophages, the influence o f  the forced gradient 

dramatically increased the peak C/Co values over those o f  die natural gradient. However, 

poliovirus exhibited a decreased C/Co value 53% under forced gradient flow compared to 

the natural gradient by 53%. This result is possibly due to the high collision efficiency 

(a) o f  poliovirus which, in turn, can be correlated to its relatively high isoelectric poin t 

Over the same distance, transport rates (m/d) were enhanced under forced gradient 

conditions by 3 to 4 times for the bacteriophage and approximately 2.5 times for 

poliovirus as compared to rates under natural gradient conditions. This indicates that, 

within this particular hydrogeologic setting, the pumping at the extraction well did not 

increase viral dispersion along the flow path but instead increased transport in a more 

uniform fashion. In summary, under these experimental conditions the influence o f an 

enhanced gradient: 1) increased aqueous phase concentrations; 2) decreased the log 

reduction of virus per meter (i.e., attenuation); and 3) decreased time o f travel for 

bacteriophages along the flow path. However this was not true for poliovirus which 

showed only a decrease in travel time. All indications suggest that inherent viral 

properties play a key role in subsurface transport behavior.

While we were able to calculate a mass balance for the aqueous portion o f  the 

virus during transport, we are aware that a significant portion o f the viruses (the sorbed 

fraction) was accounted for only by inference. Understanding the significance o f this 

adsoibed portion o f the viral mass led us to realize the importance of conducting a two- 

phase mass balance experiment (aqueous and solid phases).

Chapter five presents data from a study in which we attempted to calculate a mass 

balance by determining virus-partitioning behavior between the aqueous and solid phases
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during transport The results from this combined forced-gradient/coring study allowed us 

to account for a total o f  51% of the input virus concentration. This approach also allowed 

us to test the validity o f  the theoretical parameters, RB, RA and a . Although these 

calculated values were consistent with the measured values o f virus concentrations 

through time, it was assumed that the attenuated portion was adsorbed to the aquifer. 

However our findings revealed that the missing viral mass may not necessarily be tightly 

sorbed, instead they are entrained in lower velocity portions o f  the aquifer or dead end 

pores or only tenuously adsorbed to the sediments. The coring and solid phase analyses 

helped confirm what had been suspected regarding the location o f the sorbed viruses 

since the majority (97%) o f  the virus recovered from the solid phase was within the 

immediate vicinity (0.5 m) o f the injection site.

Policy Implications:

The data collected from our studies on viral transport in the subsurface suggest a need to 

address the following issues. 1) The use o f  bacteriophage as indicators of viral 

contamination may not accurately reflect the behavior o f enterioviruses, such as 

poliovirus. 2) Under similar “worst case” conditions as in cold, highly transmissive 

subsurface environments set-back distances between potable water wells and potential 

virus sources must exceed the commonly used 30.5 m. 3) Viruses in aquifers may remain 

a threat to public health for periods beyond expected due to prolonged periods o f slow 

detachment. 4) Predicting the fate and transport of virus requires detailed data concerning 

physical and chemical characterization o f  the aquifer properties. 5) Current theoretical 

calculations regarding virus breakthrough and attenuation may not be a satisfactory 

method o f  determining virus concentrations arriving at groundwater sources. They lack
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the proper input parameters that account for attachment and detachment Log reduction in 

virus concentrations is site and virus dependent 

Suggested  R esearch:

The results of these studies and others indicate that the complex nature o f natural aquifer 

systems make analysis o f viral subsurface transport and fate difficult However, field 

studies are necessary for testing theoretical applications and more importantly, observing 

and measuring real phenomena related to virus transport With that in mind, the following 

issues should be addressed.

1) Continued field injection experiments that include mass balance analysis o f both 

aqueous and solid phases with improved coring and viral recovery techniques. 2) Long 

term in-situ survival experiments using live assays with appropriate virus species should 

be performed. 3) We must determine the effects o f groundwater velocity on viral 

attenuation. 4) There is a  need to develop attachment and detachment rates for viruses 

that would allow more robust simulation o f virus transport in relation to the surface 

properties o f both viruses and sediment
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C hapter?

A ssessm en t o f Microbial Community Structure in Landfill M aterial by 

Bisbenzim idazole-C esium  Chloride Equilibrium D ensity G radients, 

D enaturing Gradient Gel E lectrophoresis (DGGE) and Sequencing o f

16S rDNA G enes.

Patrick N Ball and William Holben. Division of Biological Sciences, The University 
of Montana

Abstract

Assessing the structural complexity of microbial communities in environmental 

samples is critical to understanding how they function. Detecting and 

characterizing native microbial species is paramount to this. However, this can be 

a daunting task considering that some estimates place bacterial density between 

1 0 8 and 1 0 9 cells per gram of surface soil, possibly representing several thousand 

different populations (Torsvik et al. 1990a,b). Recognizing the shortcomings of 

culture based methods, which typically recover only 0 .1  -  1 .0 % of the organisms 

in a sample, recent years have seen a proliferation of molecular techniques 

utilized to investigate these questions. In this study we employed and combined 

three molecular techniques in an attempt to determine the community structure 

in two samples representing different, but common, sanitary landfill practice, 

namely direct emplacement, and landfilling of incinerated municipal solid waste 

(MSW). Using bisbenzimidazole-cesium chloride equilibrium density gradients,
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total community DNA directly extracted from landfill samples was fractionated 

based on its %G+C content. To increase the resolution of this coarse 

examination of total community structure, we employed denaturing gradient gel 

electrophoresis (DGGE) to examine fractions of the total community. Finally, a 

more traditional done and sequence technique was applied to the community 

DNA fractions in an attempt to identify community members and assess the 

microbial diversity of these landfill ecosystems.

By using this combination of methods we were able to demonstrate 

microbial community differences between the two types of landfill samples. More 

importantly, we were able to identify some pertinent microbial community 

members, and show the existence of a diverse community structure that may 

indude some species that are unique to or dominant in landfill ecosystems.
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Introduction

Landfills are important constructed systems for managing societal waste, 

yet they remain a relatively unexplored complex terrestrial environment. One of 

the major barriers to the study of landfill environments is their intrinsic 

heterogeneity (Barlaz 1996a, 1997; Gerba et al. 1992; Palmisano and Barlaz 

1996). Carefully planned laboratory studies have shed some light on certain 

events that occur during organic decomposition. However in-situ studies are 

most desired for determining the true nature of a landfill's operation (Barlaz et 

al. 1989). The objective of this study was to investigate the total microbial 

community structure of two differing landfill ecosystems. To do so, we employed 

three various approaches to compliment and enhance the investigation. G+C 

content-based fractionation of the total microbial community DNA provided a 

broad scale view of the two populations. Coupling this with comprehensive and 

selective DGGE analysis provided a more complete means of viewing and 

comparing community structures. Finally, to identify members of the landfill 

communities, clone libraries were generated from select fractions of the total 

communities. All three methods indicated that there was a diverse community 

present. Additionally, sequence analysis suggests the possibility for the existence 

of some unique organisms.

Municipal solid waste (MSW) typically consists of articles such as wrapping 

and packaging materials, discarded furniture and appliances, clothing, food
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scraps, cans, bottles, newspapers, wood and yard trimmings and clippings (US 

EPA 1999a). Other more toxic materials and synthetic chemicals may also be 

included, such as paints, paint thinners and batteries. Data from 1996 show that 

the U.S. produced more than 209 million tons of MSW, equivalent to roughly 4.3 

pounds of waste per person per day. Of that, 57% was buried in landfills (US 

EPA 1999a). It is likely that this trend will mandate landfilling as a significant 

means of managing MSW in to the future. This is of particular concern for areas 

of limited size and space. To ease this crisis, incineration of material prior to 

burial is considered a viable option. Incineration can reduce the overall amount 

of combustible material in landfill-bound waste by 90% volume and 60% weight 

(US EPA 1999a). This option also has potential detrimental consequences, most 

of which are concerned with air emission quality. These issues are beyond the 

scope of this investigation. Nevertheless, there is still a need to dispose of post 

incineration material, which typically consists of fly ash mixed with 

noncombustible and incompletely combusted materials (US EPA 1999a). 

Regardless of management strategy, landfills remain the preferred terminal 

disposal method of MSW.

Although MSW may be diverse in nature, cellulose (a natural polymer 

composed of repeat units of the monomer glucose) and hemicellulose (a natural 

polymer composed of several different sugars, mostly pentoses) comprise 45- 

60% of the dry weight of MSW and represent the major biodegradable 

constituents of MSW (Barlaz 1996a; 1997; and Gerba et al. 1992). Lignin is
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another common organic compound found in landfills and is usually associated 

with cellulose possibly as degradation intermediates. Structurally, lignin is a 

complex of cross-linked aromatic rings, and under anaerobic conditions is 

considered extremely recalcitrant and has been implicated as interfering with 

cellulose degradation (Barlaz, 1996a; 1997; and Gerba et al. 1992).

The decomposition of these abundant compounds in landfills usually 

culminates in the production of methane (ChU) and carbon dioxide (CO2) (Barlaz 

et al. 1990). This process can be extremely slow, and depending on conditions, 

decomposition rates can be essentially negligible (Barlaz, 1996a,b; 1997). 

Although chemical and physical processes can affect decomposition directly, the 

process is controlled mainly through microbially mediated interactions. Microbial 

degradation involves the biological reduction (in complexity) of chemical 

compounds catalyzed and kinetically controlled through enzymatic activities. 

There are many additional factors that contribute to this overall process, but our 

concern for the purposes of this investigation are the microbial consortia 

involved.

There is a paucity of information in the literature on the representative 

microbial community members found in landfills. The majority of the available 

information comes from culture-based techniques that are typically concerned 

with isolating populations of organisms that carry out specific activities such as 

cellulose degradation (Westlake et al. 1995), anaerobic or aerobic fermentation 

(Palmisano e t al. 1993) or anaerobic decomposition (Qian and Barlaz 1996).
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Others infer the nature of microbial landfill residents by characterizing 

microorganisms in aquifers underlying the landfill (Ludvigsen et al. 1999; Roling 

et al. 2000).

More recently a few studies using molecular approaches have attempted 

to describe landfill microbial communities. Uoyd-Jones and Lau (1998) cloned 

16S rDNA sequences from a landfill site in Quebec to investigate the microbial 

diversity of a polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl 

(PCB) contaminated environment. Their results indicated that the vast majority 

of the cloned sequences (>90%) showed little similarity to known sequences 

contained within the Ribosomal Database Program (RDP). Based on the 

clustering of the sequences in a phylogenetic tree construct, the majority of the 

clones matched taxonomic divisions (Low G+C Gram-positive and 

a, 8, y - Proteobacteria) indicated by a blast search conducted on the sequences 

through the National Center for Biotechnology Information (NCBI). In another 

study, van Verseveid et. al. (1999) used Biolog plates and denaturing gradient 

gel electrophoresis (DGGE) to profile the physiology and members of a Dutch 

landfill site under investigation for its in-situ bioremediation potential. The DGGE 

pattern dearly showed that different consortia are distributed spatially in the 

landfill. Although they did not publish any information regarding the identity of 

community members, the DGGE approach they employed provides a convenient 

way of monitoring the community as a whole in various locations throughout the 

landfill. Further, this investigation claimed to have inventoried approximately 111
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clone sequences representing, as yet, unidentified organisms. Another recent 

study by Wise et. al. (1999) used dilution-based culture analysis and DGGE 

analysis to isolate novel members of methanotrophic bacteria in a former landfill 

site located in Georgia.

Microbial communities in soils, sediments and other terrestrial 

environments can be extremely complex (Borneman et al. 1996; Liestack and 

Stackebrandt 1992; Stackebrandt et al. 1993; Torsvik et al. 1990a,b; Ward et al. 

1990). DNA renaturation experiments suggest that there are 103-104 genome 

equivalents per gram of soil (Torsvik et al. 1990a), representing possibly up to 

104 individual species (Torsvik et al. 1990b). Characterizing the phenotypic and 

genotypic diversity in complex microbial communities has become easier with the 

emergence of modem molecular techniques in microbial ecology. These 

techniques offer many advantages over the more traditional methods to assess 

these parameters (Head et al. 1998; Lane et ai. 1985; Olsen et al. 1986; Pace et 

al. 1986), and have allowed for initial identification of many presumptively new 

microorganisms (Bams et al. 1994,1999; Dojka et al. 1998,2000; Hugenhultz et 

al. 1998a,b; Kuske et al. 1997; Liesack and Stackenbrandt 1992; Stackenbrandt 

et al. 1993; Ward et al. 1990; Pace 1997), as well as many that appear to be 

cosmopolitan (Kuske et al. 1997).

Perhaps the greatest drawback to the more traditional, culture-based 

methods such as plate counts, colony morphology analysis and biochemical 

assays, is their inability to reliably capture all of the microbial types present in
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any give sample (Amann et al. 1995; Hugenhultz and Pace 1996; Pace et al. 

1986). This is capitulated in the notion of viable but unculturable microbes 

(Colwell et al. 1985; Roszak and Colwell 1987) and, as a consequence, typically 

only 0.1 to 1.0% of all organisms in a given environmental sample are culturable, 

leaving >99% unculturable (Staley and Konopka 1985). Further it is suggested 

that only 20% of the prokaryotic organisms occurring in nature have been 

identified (Muyzer et al. 1993).

A more direct method of assessing microbial numbers is by microscopy, 

particularly when used in conjunction with fluorescent dyes, such as 4',6- 

Diamidino-2-phenylindole (DAPI) or acridine orange (Hobbie et al. 1977).

Although superior to plate counts, in terms of total number of organisms, these 

also have their shortcomings. Since many bacteria share similar physical 

attributes, such as size and general morphology the ability to characterize 

genetically or metabolically distinct populations is severely limited. Further, 

background interference caused by indiscriminant dye binding in many cases can 

give erroneous results.

Despite these limitations, the importance of traditional microbiological 

methods cannot be overlooked. Based on the establishment and analysis of pure 

cultures of microorganisms a systematic scheme based on physical, metabolic 

and biochemical analysis of characteristics has been established. Without this 

framework of established identities, there would be no anchoring point for 

determining or interpreting the importance of DNA or protein sequence
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relatedness of newly identified organisms. Indeed, bacterial relatedness, such as 

indicating that two isolates are similar species, must not only share no less than 

70% DNA-DNA homology (97% for 16S rDNA molecules), but also phenotypic 

and ecological relevance (Stackebrandt and Goebel 1994). Discarding these 

traditional methodologies and established systematics for the identification of 

microorganisms in favor of sole reliance on molecular phylogenetic techniques 

would be a mistake. The traditional methods provide a crucial framework of 

relevant phenotypic attributes (i.e. activities) rather then relying solely on 

analysis of sequence divergence to characterize relatedness of microbial 

populations.

More recent techniques based on 16S rRNA, rRNA genes (rDNA) or 

functional gene PCR amplification using specific or universal primers are now 

commonplace in many environmental microbial ecology laboratories. In principle, 

similar techniques may be applied to a number of genes, usually tailored to 

answer a particular question. However, for identifying a specific microbial 

population at least to the genus level, the 16S subunit of the ribosome (16S 

rRNA) is generally considered the best choice. This gene sequence, which 

encodes a critical cellular function, has maintained its overall functional and 

structural integrity throughout millions of years of evolution. For 16S rDNA 

sequence analysis, the basis for the approach is anchored in both the relative 

similarities (conserved regions) and slight differences in sequences (variable 

regions) of the 16S rDNA molecule. Certain sequences within the 16S rDNA are
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highly conserved from organism to organism (signature sequences) while other 

sequences are specific only among distinct groups ("phylogenetic cohorts") of 

organisms, typically at the domain or division level of taxonomy. However, some 

short stretches of sequence have been identified as group, genus or species- 

specific (Amann et al. 1995). Based on the distribution of these conserved and 

variable regions, PCR primers can be designed to bind the conserved regions and 

span the variable regions within the 16S rDNA gene. By examining these unique 

areas (via sequencing analysis or hybridization probes) one can determine the 

likely identity of the organism or at least determine its closest match to other 

known organisms. This can best be achieved through software-based matching 

of similar sequences by way of electronic databases and is only as reliable as the 

database itself. The existence of extensive databases (e.g. Ribosomal Database 

Project [RDP]) is another reason why the 16S rDNA gene is a good tool for 

molecular analysis.

Molecular phylogenetic techniques have made us realize that life can be 

genetically designated into three primary domains; Bacteria, Eucarya and 

Archaea (Woese 1987) as opposed to plants and animals as previously thought. 

Although these approaches may suffer from their own deficiencies, such as lack 

of definitive species and sub-species resolution and inability to indicate function 

and activity, they can nicely demonstrate the enormous microbial diversity 

existing in terrestrial and other environments. In fact, there are currently 36 to 

38 divisions (containing ca. 400 named genera and 4,200 species) recognized
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within the Bacteria domain, representing a three-fold increase over the 12 

"relatedness" groups (known as divisions) within the domain Bacteria which 

Woese described in 1987 (Woese 1987). About one third of these divisions 

contain only environmentally derived sequences (i.e. uncultured organisms) and 

many of the remaining divisions are only poorly represented by cultured 

organisms and are dominated by sequence data alone (Hugenholtz et al. 1998). 

It is therefore difficult to predict the breadth of the diversity within these groups.

Besides detection of non-culturable populations, direct molecular 

approaches allow for the monitoring of specific populations in a complex 

assemblage of microorganisms, and the ability to determine community 

responses (of both general and specific community members depending on the 

design of the experiment) to environmental changes or perturbations.

While there is no doubt that molecular techniques have made major 

contributions to our understanding of microbial ecology, we must remain 

cognizant of some precautions when using these methods to describe residents 

of environmental habitats. As pointed out by some researchers, uncertainties 

related to rRNA gene copy numbers (Cole and Girons, 1994; Farrelly et al. 1995), 

sequence domination by select members of a microbial community (Ward et al. 

1992), quantitative recovery of nucleic acids from environmental samples 

(Holben 1997), PCR conditions (Head et al. 1998), and chimera and heteroduplex 

formation (Liesack et al. 1991; Kopczyski et al. 1994; Wang and Wang 1997) 

may hamper interpretation and confound results. Further, Hugenholtz et al.
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(1998) point out that analyzing sequences <500 nudeotides (nt) long may be 

insufficient for phylogenetic determinations of novel organisms.

In this study we used a multi-tiered approach to examine the variations 

and complexities in the microbial community structures in two samples. One 

sample was identified as typical landfill material, and consisted of a mixture of 

trash and soil recovered from an established landfill in Japan. The other sample, 

also from Japan, consisted of the residual ash from incinerated trash that was 

subsequently mixed with soil and buried. Although these samples are different in 

their composition, they are representative of two common methods for disposing 

of munidpal solid waste (MSW).

Using a combination of contemporary molecular techniques, identified 

typical members of two different landfill microbial communities. In doing so, we 

hope that this will serve as a pilot study that may lead to further investigations 

into the practice of landfilling MSW.

Ultimately an understanding of the ecology, physiology and biochemistry of 

microorganisms and their influences on microbial processes, is important in 

determining and enhancing their role in waste decomposition and mineralization. 

Eventually, this type of information may aid in design and management of 

landfills. For example, landfill amendments or perturbations that may enhance or 

inhibit certain microbial activities may be a desirable management strategy. 

Customized microbial inocula, depending on circumstance, may also prove be a 

beneficial management tool.
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Approach: The first method used to examine these landfill microbial 

communities employs fractionation of total community DNA based on the 

characteristic percent guanine and cytosine (%G+C) content of microbial 

populations. Purified total community DNA was fractionated by bisbenzimidazole- 

cesium chloride equilibrium density gradients as described by Holben and Harris 

(1995). Essentially, this is accomplished by inducing changes in the buoyant 

density of DNA based on its %G+C content by interactions with the DNA binding 

dye bisbenzimidazole. Because DNA from different organisms contains 

characteristic and different relative amounts of G and C (hence A and T), 

different molar amounts of bisbenzimidazole (Hoeseht 33258) bind to the 

adenine and thymidine bases inducing differences in the bouyant density of the 

DNA which fractionates at distinct locations in cesium chloride equilibrium density 

gradients. The utility of this approach is based in its comprehensiveness and not 

necessarily in its level of taxonomic resolution. However, chromosomal %G+C 

content is characteristic for some phylogenetic groups of prokaryotes at some 

coarse level of taxonomy, generally at the genus level. This technique generates 

a profile of the entire microbial community in terms of relative abundance versus 

%G+C content The relative abundance of various phylogenetic groups may be 

estimated by the relative abundance of DNA at some particular %G+C. This is 

an excellent technique for resolving a highly diverse community into a more 

manageable level of complexity and thereby allowing previously intractable 

questions to be addressed.
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The %G+C fractionation approach has been successfully used to 

characterize and monitor microbial communities in a number of environments. 

Holben and Harris (1995) originally used this methodology to follow changes in 

soil bacterial communities after carbon and water amendments. Nusslien and 

Tiedje (1998) examined bacterial community diversity in chronologically young 

tropical soil. They also employed it as a method to compare bacterial 

communities in similar soils following changes in vegetative cover (Nusslien and 

Tiedje 1999). Gsell et al. (1997) used it to examine the seasonal relationship 

between the sediment bacterial community structure and physicochemical 

parameters in groundwater upwelling zones within an alkaline fen. Holben et al. 

(1998) investigated microbial populations in various compartments within a 

multi-compartment activated sludge system for nitrogen removal. Apajalahti et 

al. (1998) initially characterized the total bacterial community in the 

gastrointestinal (GI) tract of chickens and Santo Domingo et al. (1998) recently 

used the approach to describe how the diet of crickets influences their hindgut 

bacterial community. This approach also allows one to fractionate total 

community DNA into components that contain only portions of the community 

structure. Fractionation of the %G+C profile permits one to selectively 

investigate areas of particular interest, such as those areas that contain varying 

biomass quantities in response to a treatment.

A second approach utilized in these experiments is denaturing gradient gel 

electrophoresis (DGGE) (Muyzer et al. 1993). Using this approach we examined
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the diversity within specific bisbenzimidazole gradient fractions of particular 

interest to provide additional resolution of diversity. In addition, we compared 

the total community diversity as determined by this method as well. DGGE 

analysis operates on the principle that double stranded DNA fragments of similar 

length can be separated by polyacrylamide gel electrophoresis through gels cast 

with a gradient of denaturant based on sequence differences (Myers et al. 1987; 

Muyzer et al. 1993). This is achieved through electrophoresis of PCR amplified 

16S rDNA amplicons in polyacrylamide gels that contain uniformly increasing 

amounts of denaturing agents (urea and formamide) run under a constant 

elevated temperature (typically 60-65° C). Sequence variation within the 

fragments gives rise to randomly dispersed melting domains having different 

melting temperatures. It is within these melting domains where a transition from 

helical to open strands occurs, impairing the electrophoretic mobility of the DNA 

fragment (Muyzer et al. 1993). At some point in the gel gradient, a given 

fragment reaches a position where migration dramatically slows or ceases due to 

an effective change in the shape of the denatured DNA molecule. Thus 16S rDNA 

fragments of differing sequence will, by virtue of their inherent physical 

properties, stop moving in the gel at a specific point providing a gel band 

characteristic of the organism that encodes that particular sequence. To increase 

the resolving power of DGGE, a series of guanine and cytosine residues called a 

GC-damp (generally 30 - 50 nucleotides long) is typically added to the 5' end of 

one of the PCR primers (Sheffield et al. 1989). This GC-rich stretch is a non-
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melting region that keeps the two strands from separating completely into two 

detached strands that would have increased mobility (Myers et al. 1985,1987; 

Sheffield et al. 1989).

DGGE has been used in a variety of applications and environments. Some 

of the applications include the following. Muyzer et al. 1993 first described the 

use of DGGE for environmental applications to analyze complex microbial 

communities in mats and biofilms, and subsequently for examining hydrothermal 

vent communities (Muyzer e t al. 1995). The biodiversity and activity of sulfate- 

reducing bacteria in stratified water columns from Danish fjords was studied by 

Teske et al. (1996) by means of DGGE analysis of both 16S rDNA and rRNA. 

Felske et al. (1996) tried a similar approach to analyze microbial communities in 

soil samples. A number of researchers have applied DGGE to analyze soils of 

various types and origins for microbial community diversity and structure with 

success (Gelsomino et al. 1999; Kowalchuk et al. 1997; Kuske et al. 1997; 

McGraig et al. 1999a; Nusslein and Tiedje 1998,1999; Ovreas and Torsvik 1998). 

Additionally, a variety of aqueous environments have been studied using DGGE 

to profile community diversity (McGraig et al. 1999b; Ovreas et al. 1997; Schafer 

et al. 2000; Teske et al. 1996). One aquatic system that has illuminated our view 

of microbial diversity and proven to be a goldmine of unique and invaluable 

products are hot spring environments. Ward et al. (1998) provide an excellent 

review of work on characterizing cyanobacteria communities in hot springs.

Ferris et al. (1996) define the hot spring community as determined by a DGGE
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profile, and Ferris and Ward (1997) chronicled the seasonal dynamics of the 

community by DGGE. Muyzer and Smalla (1998) provide an excellent review of 

applications of DGGE in microbial ecology.

Another method that can be used to reduce the overall complexity of a 

community or focus on a particular population or guild is to use functional-gene 

or group-specific primers (Brinkhoff and Muyzer 1997; Holben et al. 1998). DGGE 

is a valuable tool for assessing microbial community structure in a variety of 

environments. This approach offers a means of viewing a complex assemblage of 

microorganisms in quick and efficient manner but of itself, provides no 

information regarding the identity of the organisms analyzed.

The third approach by which we examined landfill community structure 

provides the most detailed analysis and highest resolution of bacterial 

populations based on DNA sequence analysis and comparison. While numerous 

other studies have employed 16S rDNA sequence analysis, they generally used a 

"shotgun" approach where 16S sequences were amplified from total community 

DNA and cloned randomly. Thus, the most abundant organisms are most readily 

detected. However, this "shotgun" approach is not well suited to assessing total 

community diversity.

To better assess diversity in our landfill samples, the same fractionated 

samples that we preformed DGGE analysis on, were used to construct clone 

libraries of 16S rDNA fragments PCR amplified using a set of universal primers. 

Clones were screened for proper-sized inserts by restriction digest analysis. Five

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



clones of proper insert size representing each of the five fractions from the two 

individual landfill samples were prepared and subjected to DNA sequence 

analysis. To identify these organisms, the sequences were matched to similar 

sequences available in the RDP.
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M aterials and M ethods:

Landfill sam ple preparation:

The two landfill samples were provided by the National Institute for 

Resources and Environment in Tsukuba, Japan. One sample was identified as 

typical landfill material, consisting of a mixture of unprocessed municipal trash 

and soil (hereafter Raw). The other sample consisted of residual ash from 

incinerated trash that was mixed with soil (hereafter Ash). These two samples 

represent current technologies for sanitary landfills in Japan and elsewhere.

Portions of each sample were made into a slurry by combining 80 g of 

either landfill material with 40 ml of sterile deionized water in a Waring blender. 

The slurry was made homogeneous by blending for 30 s at full speed. Large 

portions of solid material were removed prior to homogenization.

Isolation  and purification o f tota l com m unity DNA:

Isolation: Total community DNA was extracted from the landfill slurries by the 

direct lysis method of Holben (1997) with minor modifications. Briefly, extraction 

buffer was composed of 200mM sodium phosphate buffer (NaP04), lOOmM 

ethylenediamine tetraacetate (EDTA) and 1.5% sodium dodecyl sulfate (SDS). 

The pH was adjusted to 8.0 by the addition of phosphoric acid, and the solution 

sterilized by autodaving. Triplicate samples were prepared by combining 20 g of 

landfill slurry with 20 ml of extraction buffer in sterile Oak Ridge tubes containing
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10 g of sterile glass (5 g of 0.2 mm and 5 g of 1 mm diameter; Sigma Chemical 

Co., S t Louis, MO.). The samples were then placed in a 70° C water bath and 

mixed every 5 min by vigorous vortexing. The slurries were then placed on a 

reciprocal platform shaker and shaken on the high setting (approximately 1 0 0  

oscillations/minute) for 30 min at room temperature. Large particulate sand soil 

and cell debris were removed by centrifugation at 10,000 RPM (7,796 x g) for 10 

min at 10° C.

The supernatant was transferred to clean Oak Ridge tubes and incubated 

on ice for 30 min to precipitate the SDS. The supernatant was centrifuged 

(Sorvall RC 5B Plus with SS34 rotor) at 10,000 RPM (7,796 x g) for 10 min at 10° 

C. The supernatants were transferred to clean Oak Ridge tubes and brought to a 

final volume of 25 mi by addition of dHzO. To this, 24.7 g of finely ground cesium 

chloride (CsCI; Cabot Corp., Revere, Pa.) was added, mixed by gentle inversion 

until completely dissolved and allowed to stand at room temperature for 15 min 

to precipitate any residual proteins. The mixture was then subjected to low 

speed centrifugation at 5,000 RPM (1,949 x g) for 10 min at 10° C. The 

precipitate formed a floating layer that was gently decanted. The remaining 

solution was subsequently transferred to 36.2 ml OptiSeal*11 polyallomer 

ultracentrifuge tubes (Beckman Instruments Inc., Palo Alto, Ca.) containing 2 ml 

of lOmg/ml ethidium bromide (EtBr). After mixing by gentle inversion, the 

refractive index (Rf) of the solution was adjusted to 1.3870 by addition of finely
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ground CsCI (to increase Rr) or deionized water (to increase Rf) using by a 

refractometer (Milton Roy Company, Rochester, N.Y.).

The tubes were carefully balanced by addition of CsCI balance solution (Rf 

-  1.3870, 1 mg/ml EtBr), properly sealed and placed in a Beckman VTi50 rotor. 

The EtBr-CsCI gradients were subjected to centrifugation in a Beckman L7 

ultracentrifuge at 45,000 RPM (90,000 x g) for 16 h at 18° C.

CsCI Gradient extraction: As a result of CsCI -  EtBr equilibrium density 

gradients established by ultracentrifugation, the DNA from the landfill samples 

was purified and formed a discrete band within the gradient. The DNA band was 

visualized under UV illumination and extracted by piercing the side of the 

ultracentrifuge tubes, below the DNA band, with a 16-gauge needle attached to 

a 5 ml syringe (Sambrook et al. 1989).

Triplicate samples from each landfill were pooled and a second CsCI -  EtBr 

equilibrium density gradient purification process was conducted using the 

protocol described above. The final volume of the extracted DNA was 

approximately 5 ml. This second round of ultracentrifugation produced a more 

concentrated and purified form of the total community DNA.

Isopropanol extraction o f th e  Ethidium bromide: To remove the ethidium 

bromide from the purified DNA, a series of isopropanol extractions were 

performed. The final 5 ml volume of DNA (from the above steps) was transferred 

to a 14 ml polypropylene Falcon11" tube (Becton Dickenson Labware, Lincoln Park, 

New Jersey). An equal volume of isopropanol (saturated with 5 M NaCI) was
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added, mixed by gentle inversion and allowed to sit until discrete phases formed. 

The top organic isopropanol layer was then carefully removed with a Pasteur 

pipette and discarded. This process was repeated a total of six times, until the 

pink color was no longer visible.

DNA concentration: The DNA solution (from the previous steps) was 

transferred into 30 mi Corextm tubes. Two volumes of deionized water and then 

one total volume of cold isopropanol were added. The tube was covered with 

parafilm, mixed by vortexing, and incubated overnight at -20° C. The resulting 

DNA precipitate was pelleted by centrifugation at 7,500 RPM (4,385 x g) for 1 h 

at 4° C. Following centrifugation, the supernatant was decanted and the tubes 

were inverted and allowed to completely air dry. The resulting DNA pellet was 

resuspended in 400 til of sterile deionized water by vigorously rinsing the side of 

the tube. The final solution was then transferred to a 1.5 ml eppendorf 

microfuge tube.

The DNA was further concentrated by the addition of 1/10 volume (40 jil) 

of 3M sodium acetate (pH 5.2) and 2 times the total volume (880 |il) cold 100% 

ethanol (EtOH). After overnight incubation at -20° C, the DNA precipitate was 

collected by centrifugation in a table-top microfuge (Eppendorf model 5415C) at 

14,000 RPM (16,000 x g) for 30 min at 4° C. The precipitated DNA formed a 

small white pellet at the bottom of the microfuge tube. The supernatant was 

decanted and the pellet rinsed with 1 ml of cold 70% ethanol, then subjected to 

centrifugation at 14,000 RPM for 5 min after which the supernatant was
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decanted. This washing process was repeated and the pellet vacuum dried at 

45° C with centrifugation in a Labconco Centrivap Concentrator (Labconco Corp., 

Kansas City, Missouri) for 15 min. The DNA pellet was then resuspended in 100 

pi of sterile deionized water.

DNA quantification: The total community DNA was quantified by spectroscopy 

in a Hewlett Packard (Hewlett Packard, Waldbronn, Germany) 8453 UV-visible 

spectrophotometer using the UV-visible ChemStation software package.

DNA visualization: The total community DNA was visualized by gel 

electrophoresis to confirm that the average fragment size was >20 Kb to 

facilitate the %G+C gradient analysis. Briefly, 1.5% agarose (SeaKem GTG, FMC 

Bioproducts, Rockland, ME) gels were prepared by adding 1.5 g of agarose per 

100 ml of lxTris-acetate-EDTA (TAE) buffer (4.84 g/l Tris, 1.14 ml/l glacial 

acetic acid, 2 ml/l 0.5M EDTA (pH 8.0)). The agarose solution was brought to a 

final concentration of 0.125pg/pl EtBr from a 125pg/pl EtBr stock solution prior ti 

casting the gels. DNA samples were prepared for loading on to the gel by 

combining the appropriate volume of 5x loading dye (100 mM EDTA, 50% 

glycerol, 0.15% bromophenol blue, 0.15% xylene cyanole) to a sample of DNA 

for a final loading dye concentration of lx. Typically, 4 to 8  pi of DNA sample 

with 1 to 2 pi dye were loaded on gels. Gels were run on a horizontal gel 

apparatus (Mupid 2 Mini-Gel Electrophoresis System, Japan) in lx TAE buffer 

containing a final concentration of 0.125pg/pl EtBr.
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Total com m unity profile analysis by bisbenzim idazole gradients: 

Preparation o f gradient com ponents: The purified total community DNA 

samples were fractionated by bisbenzimidazole-cesium chloride equilibrium 

density gradients as described previously by Holben and Harris (1995). The 

bisbenzimidazole-cesium chloride equilibrium density gradients were prepared by 

the following method: A solution of cesium chloride (CSCI) was prepared by the 

adding 231.8 g of finally ground CsCI into 250 ml deionized water. Adjustments 

to the CSCI solution was made so that a refractive index (Rf) of 1.3980 was 

achieved. The solutions were sterilized by passing through a 0.22 pm syringe 

Acrodisctm filter (Gelman Sciences, Ann Arbor, MI). A 1 mg/ml stock solution of 

bisbenzimidazole (Hoechst No. 33258, Sigma Chemical Co.) was prepared and 30 

pi was combined with 25 ml of CsCI solution in 36.2 ml OptiSealtm polyallomer 

ultracentrifuge tubes. Total community DNA solutions containing either 50 pg or 

75 pg from the Raw and Ash landfill samples in a total of 200 pi were prepared 

by dilution into sterile deionized water. Additionally, control DNA solutions were 

prepared by dilution of stocks from pure culture DNA solutions (Sigma Chemical 

Co.). Four total control DNA solutions were prepared, each containing 10 pg of 

DNA from each of the following bacterial species (total of 30 pg of DNA per 

control solution): Micrococcus lysodeikticus (72% G+C), Escherichia «?//'(50% 

G+C) and Qasbridium perfringens (27% G+C) in a total of 200 pi. These latter
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DNA stock solutions were used as controls for constructing standard curves of % 

G+C content by regression analysis.

Table 1: Sample concentrations prepared for analysis by bisbenzimidazole 
gradients.

Sample Content/Concentration

Al ASH landfill 50 ua
A2 ASH landfill 75 ug
B1 RAW landfill 50 ua
B2 RAW landfill 75 ua
Cl Control 30 ua total
C2 Control 30 ug total
C3 Control 30 ug total
C4 Control 30 ug total

Both landfill and control DNA samples were added to the 

bisbenzimidazole-cesium chloride solutions and vortexed thoroughly. The 

remaining volume of the tubes was filled with the CsCI solution (Rf 1.3980) 

sealed and balanced.

Fractionation o f com m unity DNA based  on %  G+C content: The DNA

samples were subjected to ultracentrifugation at 33,000 RPM (90,000 X g) for 72 

h at 18° C in a Vti-50 rotor (Beckman). Following centrifugation the equilibrated 

gradients were fractionated by displacement with Fluorinert (Sigma Chemical 

Co.) injected into the bottom of the ultracentrifuge tubes using a syringe pump 

at 1.5 ml/min. The displaced gradients were passed through a flow-through UV 

absorbance detector (Econo - UV, Bio-Rad, Hercules, CA.) and absorbance at 280 

nm was continuously recorded during fractionation. The selection of detection at
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280 nm is based on much lower levels of background absorbance even though 

the measured absorbance of DNA is at 260 nm. A fraction collector (Model 2128 

Fraction Collector, Bio-Rad) was used to collect the fractionated DNA in equal 

volumes of approximately 1 ml.

D enaturing Gradient Gel E lectrophoresis (DGGE):

PCR am plification o f  IB S rDNA: Partial 16s rDNA sequences of the 

component populations in total community DNA or bisbenzimidazole fractions 

were PCR amplified using a universal primer set which targeted the region 

between nucleotides 536 and 907. The sequence of 536 forward 

(5' CAGCACGCCGCGGTAATA 30 and 907 reverse (5' TTTGAGTTTCCTTAACTGCCC 

30 primers are published in Ferris et al. (1997) and Devereux and Mundfrom 

(1994) respectively. The forward primer (536fc) contained a GC clamp composed 

of an additional run of 40 nucleotides (5'

CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCC 30- Community analysis 

by denaturing gradient gel electrophoresis (DGGE) was performed essentially as 

described by Muyzer et al. (1993). PCR amplification was performed in 50 pi 

reactions containing: 0.2 mM dNTPs (Promega, Madison, WI); 20 pmoles of each 

primer; 5 pi of lOx PCR Buffer, (Boehringer Mannheim, GmbH, Germany) and 2.5 

units of 7 * 7  DNA polymerase (Boehringer Mannheim). The PCR amplification 

reaction was performed with a PTC-100 thermocycler (MJ Research, Watertown, 

MA.) under conditions suggested by Muyzer et al. (1993), with minor
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modifications. Their touchdown procedure was varied by increasing the final 55° 

primer annealing cycle to 10 cycles and increasing the final 72° extension period 

to 15 min. Thus, the entire cycle consisted of an initial 5 min 95° strand 

disassociation cycle; a one minute primer annealing cyde with an initial 

temperature of 65° C. The primer annealing temperature was then decreased by 

1° increments every other cyde until 55° C (for a total of 20 cydes). A this 

temperature (55° C) a total of 10 cydes was conducted a; a 3 min 72° C primer 

extension cycle (except for the final 15 min period at the end of the 30 cycles); 

with a one min 95° C strand disassociation cycle. The thermocycler was 

programmed with a 4° final holding temperature. The PCR products were 

analyzed on 1.5% agarose gels and quantified by comparison with low DNA 

mass ladder (Gibco BRL, Life Tecnologies, Gaithersburg, MD) through 

densitometric analysis using the Gel -  Doc 1000 (Bio-Rad) transilluminator 

system integrated with Molecular Analyst Software (Bio-Rad) package.

It appeared that co-precipitation of contaminating substrates that 

inhibited subsequent enzymatic amplification occurred. However, this was for the 

most part overcome by dilution of starting template DNA in sterile deionized 

water. Under some circumstances, re-amplification of amplicons was necessary 

to obtain enough DNA (250 to 500 ng) to visualize by DGGE analysis. When this 

was the case, re-amplification was conducted under similar PCR conditions. 

Typically pooled PCR products were concentrated by ethanol precipitation as
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described above. All PCR reaction sets included appropriate positive and 

negative controls.

The mixtures of PCR products representing partial 16S rDNA sequences 

amplified from total community DNA were separated by (DGGE) using the Bio- 

Rad D GENE System (Bio-Rad). The denaturing gradient gel was prepared from 

equal volumes of a 45% denaturant/5% acrylamide solution (18% formamide 

(v/v) and 3.14 M urea in 5% N,N-Methlenbisacrylamide) and a 60% 

denaturant/10% acrylamide solution (24% formamide (v/l) and 4.19 M urea in 

10% N,N'-Methlenbisacrylamide). The 18 x 20-cm vertical gradient gels were 

formed by using a linear gradient former (Hoeffer Scientific Instruments, San 

Francisco, CA). This gel was allowed to polymerize for 30-60 minutes. A 16-well 

5% acrylamide (5% N,N'-Methlenbisacrylamide) stacking gel was poured on top 

of the denaturing gel. The polymerized DGGE gel was placed in the D GENE 

apparatus that contained 6 1 of lx TAE buffer described above. PCR product (250 

to 500 ng) was mixed with loading buffer described above and loaded directly 

into the formed wells. The gel was run at 100 V for 14 to 16 hours at 60° C. As a 

positive control, 50 to 100 ng PCR products amplified from of purified DNA of 

Clostridium  perfringens was applied to one lane in the gel.

Banding patterns were visualized with a 5X solution of SyberGreen I (FMC 

Products, Rockland, ME) in lx TAE. The gel was covered with 7 ml of 

SyberGreen I solution, gently rubbed to insure complete coverage and incubated

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



at 37° C for approximately 1 h for complete staining. Banding patterns in the 

gels were viewed and photographed with a UV transilluminator.

Bands of interest were excised from the DGGE gel, placed in 1.5 ml 

eppendorf microfuge tubes and macerated. 50 pi of elution buffer (50mM KCI;

10 mM Tris-HCI (pH 9.0); 0.1% Triton X-100) was added and the mixture 

incubated at 37° C for 4 hours to elute the DNA from the gel as described 

elsewhere (Muyzer et al. 1996). This DNA was stored at -20° C for future cloning 

experiments.

Cloning o f PCR products.

PCR Am plification: The PCR amplification of the partial 16S rDNA sequences 

was performed on bisbenzimidazole gradient fractions by methods described 

previously, with the exception that the 536 forward primer did not contain the 

clamp sequence.

Cloning o f PCR Products: PCR products from total community DNA or 

bisbenzimidazole gradient fractions were purified using the QIAquick PCR 

Purification Kit (QIAGEN Inc., Santa Clarita, CA) according to the manufacture's 

specifications. Cloning of purified PCR products was conducted using the T7Blue- 

3 Perfectly Cloning Blunt Kit (Novagen, Inc. Madison, WI). This procedure 

involves an initial end conversion reaction that remove 3' A overhangs typically 

generated by Taq polymerase. This was carried out by the use of the end 

conversion mix contained in the cloning kit
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The amounts of DNA used in the end conversion reactions varied from 

sample to sample, ranging from 15 ng to 85 ng, contained in a final volume 10 

pi. The end-converted PCR products were then ligated into blunt ended pT7blue- 

3 vector that was prepared by digestion with EcoRV (GibcoBRL, Life 

Technologies™) and treatment with calf intestinal alkaline phosphatase 

(GibcoBRL, Life Technologies™) according to manufacture's specifications. The 

pT7blue-3 plasmid carries an ampicillin resistance marker and the a- 

complementation fragment of /acZcontaining an in-frame polylinker region. This 

polylinker contains the previously mentioned blunt end (EcoR V) cloning site that 

is flanked by EcoR /sites. Ligations were done in 12 pi reactions containing 

approximately 50 ng (50 ng/pl) of blunt end vector, between 15 and 85 ng of 

blunt end PCR product (representing no less then a 3:1 molar ratio of insert to 

vector), and lpl of buffered T4 DNA ligase (4 units). The reactions were 

incubated at 22° C for 2 - 3 h. Transformation of competent E. co/i Nova-blue 

strain cells (Novagen, Inc. Madison, WI) was accomplished by the method of 

Chung et al. (1989). Briefly, 20 ml of Luria Broth (LB) (1% w/v tryptone; 0.5% 

w/v yeast extract; 0.5% NaCI) containing 300 pg/ml ampiicillin and 12.5 pg/ml 

tetracycline was inoculated with one ml of an overnight culture of Nova-blue cells 

and incubated at 37° C for 2 h with shaking. The Nova-blue strain carries 

tetracycline resistance marker (Tn:10) on the F' episome that facilitates the blue- 

white detection strategy to ease selection. The culture was transferred to a 50 ml 

conical tube and centrifuged at 6,000 RPM for 5 min. The cell pellet was then
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resuspended in approximately 1 ml of TSS (LB supplemented with 10% w/v 

polyethylene glycol 8000 (PEG) 5% v/v dimethyl sulfoxide (DMSO) 50 mM 

MgCh), incubated on icef and aliquoted in 100 pi volumes into 1.5 ml eppendorf 

tubes. The entire volume of ligated plasmid (12 pi) was added to the competent 

cells. This mixture was then incubated on ice for 45 min. Following the 

incubation, 900 pi of TSS was added and the cells were allowed to grow for 75 to 

90 min wiht shaking at 37° C. Subsequently, 100 pi of the transformed cells was 

spread plated onto LB plates containing 12.5 pg/ml tetracycline, 300 pg/ml 

ampicillin, 40 pi of X-gal stock solution (20 mg/ml in dimethylformamide) and 4 

pi of IPTG stock solution (200 mg/ml). The remaining volume of cells was 

pelleted by centrifugation (30 sec at 10,000 RPM in a microfuge) and then 

resuspended in 100 pi of TSS and plated as described above.

Screening o f clones: Clones were selected based on blue/white colony 

formation where white colonies indicate that target DNA has been ligated into 

the cloning vector. White colonies were selected and grown overnight in 5 ml LB 

cultures containing 12.5 pg/ml tetracycline and 300 pg/ml ampicillin. 

Confirm ation o f insert DNA: Plasmid DNA was isolated using the QIAprep 

Spin Miniprep Kit (QIAGEN Inc.) according to manufacturer's specifications. The 

presence of properly sized inserts was confirmed using restriction digestion 

analysis with EcoKL (GibcoBRL, Life Technologies™). For positive confirmation, 8  

pi of prepared plasmid DNA was digested with EcoRL (GibcoBRL, Life 

Technologies™) according to manufacturer's specifications. Putative clones were
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analyzed for inserts of approximately 400 base pairs (bp) by gel electrophoresis. 

If the digestion produces) totaled ~400 bp they were subjected to DNA 

sequence analysis described below.

DNA seq u en ce analysis: Each confirmed done was subjected to DNA 

sequence analysis using 536F as the sequendng primer. Sequencing was 

performed at either of two different facilities; The University of Montana Murdock 

Molecular Biology Facility, or MWG-Biotech (High Point, N.C.)

P hylogenetic analysis: DNA sequence chromatograms were confirmed by 

visual analysis using EditView ABI automated sequence-viewing software, version 

1.0.1 (http://www2.perkin-elmer.com/ga/editview/editview.htm). Corrections 

and edits were made manually as necessary using the raw data chromatograms 

as references. The sequences were then submitted to the Ribosomal Database 

Project II (RDP-II) worldwide web site (http://www.cme.msu.edu/RDP/). 

Detection of potential chimeric PCR products was facilitated using the Chimera 

Check feature of the RDP site, and likely chimeras were not considered further. 

To assess the uniqueness of all the sequences, a similarity matrix was generated 

using the distance similarity matrix option of the RDP II site. Sequences with 

high similarity values were grouped. These common groups were manually 

aligned by editing sequences with additions of gaps and deletions using 

Seqpup™ available as a shareware program at 

(http://iubio.bio.indiana.edu/soft/molbio/seqpup/). Corrected and aligned 

sequences were then analyzed using Sequence Match option in the RDP II site.
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SAB values obtained were used as a measure of sequence relatedness to those 

currently held in the RDP II database. Sequences with particularly low SAB 

scores (~ < 0.5) were submitted to BLAST searching at 

(http://www.ncbi.nlm.nih.gov/BLAST/). The results were reported as % 

homology to the sequences returned from the search of these databases. For 

this purpose, percent homology is defined as the "similarity attributed to descent 

from a common ancestor" (Altschul et al. 1990).
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Microbial Comm unity analysis. Total microbial community diversity and 

structure from two distinct landfill samples were examined by three 

complimentary methods. Overall the data indicate the existence of complex 

microbial communities that appear to contain great diversity. In addition, data 

from fractionation based on % G+C content and DGGE profiles suggested that 

predominant members of the communities had a high G+C content.

Teasing apart the microbial assemblage of an environment is challenging. 

Although landfill environments have a diverse nutrient load, the majority of the 

nutrients are stable over time, a situation suited for the establishment of 

microbial climax communities (Harvey et al, 1997; Palmisano and Barlaz, 1996). 

Over time the composition of these communities is thought to remain similar 

(Hurst, 1997). However, at any given time the plausibility for the existence of 

transient, microbial populations may develop via niche enhancement due to 

environmental perturbances (Harvey et al, 1997; Hurst, 1997). These less 

prominent community members may be masked by numerically dominant 

established populations. Under these conditions, the less prominent members are 

not well represented in any survey based on a "shotgun" cloning approach. To 

facilitate recovery of DNA sequences from "minority" members of the 

community, we combined multiple approaches to produce ordered sub-samples 

of the community, each of which contained reduced complexity. This was 

achieved through the combination of three different methods of DNA-based
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analysis. We first employed microbial community fractionation based on its 

%G+C content to each of the two landfill samples. Secondly, we examined total 

sample and fractionated sample communities by DGGE analysis. Lastly, DNA 

from fractionated samples was cloned and sequenced to specifically identify 

microbial community members and evaluate the microbial diversity within landfill 

ecosystems. Based on the results obtained, no single population was dominant in 

any sample and enhanced detection of species diversity was realized. When 

posing purposeful questions in regards to microbial community composition, it is 

desirable to seek a more meaningful and tractable level of complexity. To 

accomplish this, we propose that this general strategy should prove useful for 

phylogenetic surveys of complex microbial communities.

There was also strong evidence that community differences exist between 

the two samples. It appears that differing landfill practices may support differing 

microbial communities. In terms of management strategies, this may be 

important information. Understanding the interactions between the various 

existing microorganisms could lead to amendment protocols that may enhance a 

landfill's longevity, emission control, decomposition rates and magnitude and 

mitigation of harmful leachate.

Total DNA extraction  from  landfill environm ents:

The direct lysis protocol for the extraction of total community DNA yielded DNA 

molecules of predicted proper size (Fig. 1) and quantities of DNA expected from
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environments abundant in microorganisms (Table 2). Estimates of bacterial 

density in landfill soils are typically 1 x 109 to 1 x 1010 cells/gram (Barlaz, 1996

and Palmisano and Barlaz, 1996). If the 

average bacterium contains 9 x 10' 15 g of 

DNA/cell (Holben, 1997) then the estimated 

imi6 Kb Quantity of DNA extracted would range 

1 i.i98Kb between 9 pg and 90 pg/gram of soil. Based
10.180 Kb

on these approximations, our recovery of
9.162 Kb

DNA from landfill environments (refer to
8.144 Kb

table 2 ) was reasonable.

Figure 1. Total community DNA visualized on a 1.5% agarose gel. Lane A Raw 
total community sample; Lane B Ash total community sample; Land C High 
Molecular Weight marker.

Table 2 . Total community DNA yields from landfill samples.

Sample Calculated amount DNA 
based on spectrometry

Projected DNA recovery 
gram'1 landfill matrix

Estimated efficiency of 
DNA recovery

Raw
landfill

3.3 M.g/|il 7.7 jig/g 7.9% to 79%

Ash
landfill

2.0 pg/iil 5.1 iig/g 5.6% to 56%

Recoveries may have been greater if relatively large items from the MSW 

samples would not have been removed. Observations made by Suflita et al. 

1992, suggest that the majority of landfill microorganisms reside on surfaces of 

the relatively large constituents of MSW, so by their removal a significant 

biomass may have been absent for DNA extraction.
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Community analysis by Bisbenzim idazole-C esium  Chloride Equilibrium  

D ensity Gradients:

Aqueous mixtures of 10 ng of DNA from three bacteria species: Clostridium  

perfringens (27% G+C), Escherichia a?//(50% G+C) and Micrococcus 

iysodeikticus (72% G+C), were used to generate a relative abundance vs. % 

G+C control profile representing a range of % G+C content typically found in 

bacteria (Fig 2).

•A  G+C of Control DNA

m
2
?
1<
fts

X
OS

0 .0 E + 8 0

50 7 0 8 020 <03 0 4 0

%  G+C

Figure 2. Profiles of bisbenzimidazole-cesium chloride gradient-separated DNA 
from control organisms indicating Relative Abundance vs % G+C content of DNA.

This approach can also be applied to samples containing unknown and mixed

populations of bacteria. The total community profile analysis by bisbenzimidazole

gradients revealed differences in community composition between the two
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landfill communities (Fig. 3). Both communities produced relatively small peaks 

of roughly the same magnitude representing populations having approximately 

39% G+C content However, the raw landfill sample had a significant peak at

x
1
2

% G *C  of Total LandM! McrofaM C om uuity  DNA

0 M

0.1* m r
S '  0 .1 5

t  0 .1 3  
o 

>•
0.10

0.0*
0 .0 S

0 .0 3
« '" 5 r Z ?

0.00
3 0 3 S 4 0 4 5 50 5 5

% G +C
6 5 7 0 7 5 00

Figure 3. Total community DNA profiles of ash and raw landfill samples based 
on Bisbenzimidazole-Cesium Chloride Gradient fractionatation.

approximately 50% G+C, whereas the ash landfill profile has no discernable peak 

in this area. The raw landfill sample had its greatest abundance of total DNA 

centering around 61% G+C content, with an additional considerable shoulder of 

DNA centered around 65%. The largest peak for the ash community centered at 

65%, corresponding to the shoulder on the lagging edge of the raw sample
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described above. Further, the ash sample had a significant shoulder peak at 

about 6 8 % G+C content.

D enaturing Gel G radient E lectrophoresis (DGGE):

From the bisbenzimidazole gradient analysis it was suggested that the two 

landfill communities contained detectable differences. However, due to the 

limited resolution of that approach, it was difficult to say anything meaningful

regarding the overall diversity within 

each sample. By coupling the DNA 

fractionation approach with that of the 

DGGE analysis of PCR amplified partial 

16s rDNA genes, we obtained enhanced 

resolution and additional information 

regarding microbial diversity. Results 

from DGGE analysis of the total 

community indicated that there was 

substantial diversity in each community 

sample, and substantial differences 

between each community (figure 4).

Figure 4 . DGGE analysis of PCR amplified partial 16s genes of total community 
DNA from Raw and Ash landfill samples. Lane 1,1 Kb marker; Lane 2, Raw 
landfill sample; Lane 3, Ash landfill sample; Lane 4, Clostridium  perfringens DNA 
as control.
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The DGGE banding patterns of the two communities indicate that there is richer 

microbial diversity in the ash landfill sample versus that of the raw based on the 

total number of bands present However, it is possible that a significant portion 

of the microbial community may not have been resolved in this gel, as evidenced 

by the abundance of poorly-resolved bands in both community samples as 

indicated by the arrow A in Fig. 4. Interestingly, the two communities appear to 

share few dominant phylotypes. However, there is at least one common band 

between the communities, as indicated by arrow B on Fig. 4.

To obtain additional information on the populations present in each 

sample, we divided the fractionated total community DNA from each microbial 

landfill community into five fractions that were subsequently analyzed by DGGE 

analysis of partial 16s rDNA amplicons. Each sub-sample from each community 

represented a range of % G + C content as indicated in Table 3.

Table 3. Fractionated total community DNA from each sample was divided into 5 
sub-samples representing ranges of % G + C content.

Fraction 1 2 3 4 5

%>G+C 38 - 40% 49-51% 60 - 62% 64 -  6 6% 69 - 71%

Each gradient fraction was PCR amplified with a set of universal primers as 

described previously. The amplicons were then subjected to DGGE analysis along 

side their total community counterpart (Fig. 5). Lanes 7 and 13 of Fig. 5
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represent the pattern obtained from the total community DNA of the raw and 

ash samples, respectively. These samples are equivalent to those in Fig. 4 and 

the observations regarding their comparison were stated previously.

Lanes 2 - 6 ,  and 8  -12  of Fig. 5 represent the analyzed sub-samples of 

the total raw and ash landfill communities respectively.

Figure 5 . DGGE analysis of raw and ash samples. Lanes 2 through 6 are 
fractions of the composite raw sample shown in lane 7. Lanes 8  through 
12 are fractions of the composite ash sample shown in lane 13. The 
fractions correspond to the same %G+C for each of the raw and ash 
samples. Refer to table 3 for %G+C of fractions.
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A comparison between the corresponding fractions of the different samples was 

made and provides some interesting insights. In fraction 1 (lanes 6 and 12) 

which corresponds to 38 - 40% G+C content, there is no evident banding pattern 

for the ash sample. However, there appears to be a band in the corresponding 

raw sample. This is unexpected because, based on the % G+C profile, each 

community had a slight peak indicating that there was DNA in that fraction. The 

lack of PCR product in fraction 1 of the ash sample may result from products 

present only in the poorly resolved portion of the gel, or possibly from an 

inefficient or inhibited PCR reaction.

Fraction 2 (lanes 5 and 11), which corresponds to 49 - 51% G+C content, 

shows major differences between the two samples. The ash sample (lane 11) 

has no obvious bands, which was predicted from the % G+C profile. However, 

the raw sample displays a distinct pattern of one dominant band and two slightly 

visible bands (lane 5). This pattern can also be distinguished in lane 7, which 

represents the entire community of that sample.

Fraction 3 (lanes 4 and 10), which corresponds to a 60 - 62% G+C 

content, also reveals distinct differences between samples. Both indicate 

significant diversity based on the number of bands in this fraction, but different 

microbial populations are dearly present. This was expected based on the total 

% G+C profile of each sample. For the raw sample, this fraction represented the 

greatest % of total (lane 4). By comparison, this fraction represented only about 

half the abundance in the ash sample, yet, it appears to contain an equal or
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greater amount of diversity then its counterpart (iane 10 vs lane 4). Not only 

does there appear to be substantial diversity within this fraction, but there are 

also a number of dominant bands within the overall-banding pattern.

Fraction 4 (lanes 3 and 9), corresponding to around 65% G+C content 

also shows major differences in banding patterns between samples. Lane 4 

appears to show the greatest diversity while at the same time having the 

greatest number of major bands. Curiously, lane 9 has only a few minor bands, 

yet based on the total % G+C profile of the entire community, it represents the 

fraction with the greatest % of total for the ash sample. This may be another 

case where the amplicons are poorly resolved or the PCR reaction was inhibited.

Finally, fraction 5 (lanes 2 and 8), representing about 70% G+C content, 

also shows differences between samples. Lane 2 appears much like lane 3 in 

general banding pattern, but the intensity of the major bands has diminished. By 

contrast, lane 8, the last fraction of the ash sample, appears devoid of visible 

bands.

The relative position of 16s rDNA amplicons in the DGGE gel does not 

correspond to the overall % G+C content of the total DNA. Presumably this 

indicates that small stretches of DNA (in this case ~ 400 bp) may show localized 

differences in % G+C content or that the functional constraints on rDNA 

molecules prevent them from acquiring the general % G+C content of the 

genome at large.
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Overall the results from DGGE analysis indicate that there is a diverse 

microbial community structure both within and between landfill ecosystems.

Community an alysis by sequencing partial 1 6 s rDNA g en es.

To identify the phylogenetic affiliation of members of the ash and raw landfill 

microbial communities, random done libraries were generated from respective 

sub-samples. Five dones from libraries of each fraction, for a total of 50 clones, 

were sequenced. Of the 50 sequences obtained, 29 (Table 4) contained usable 

sequence data. The others were rejected based on inadequacies in sequence 

quality, or if they were possible chimeras.

Of the 29 dones sequenced, no identical sequence matches to known 

sequences in the Ribosomal Database (RDP) were obtained. In fact, only one 

clone achieved a Sab score (indicating degree of similarity) > 0.950.

The majority of the clones had Sab values between 0.500 and 0.800 and the 

identities of their dosest match are reported in Table 4. Clones with Sab scores 

below 0.600 were also subjected to Blast searches to access additional rDNA 

sequences to aid in identifying their phylogenetic affiliations (table 4).

Comparative analysis across the landfill samples to confirmed sequences 

from established databases revealed a range of bacterial diversity. Only one 

sequence was putatively identified as other than Eubacterial origin. Most of the 

best match identities were organisms that might be envisioned as members of a 

heterogeneous terrestrial environment such as a landfill.
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Many of these "best-match" organisms are known to degrade recalcitrant 

anthropogenic, but common, environmental contaminants. Others have 

metabolic pathways that produce substrates, either directly or in cooperation 

with other microorganisms, involved in methane production, a hallmark by­

product of biological landfill decomposition. Overall, the numerically dominant 

sequence type was Devosia riboflavina (str. Foster 4R3337), which was recently 

transferred from the genus Pseudomonas. It occurred only in the raw landfill 

sample, and was present in fractions 2, 3 and 4 (Table 4).

Fraction 3 also produced a clone common to fraction 2 and another with 

fraction 4. This inter-fraction similarity confirmed what was unveiled in DGGE 

banding patterns. These three fractions contained 38% of all the sequences, of 

which 64% of them were different. Fractions 1 and 5 of the raw sample 

contained fewer overall sequences, but all were dissimilar. The apparent 

sequence diversity obtained from this analysis of the ash sample exceeded that 

of the raw sample. The greater phylotype richness of the ash sample was 

predicted from a comparison of the DGGE patterns (Fig. 4 and 5). Of the 13 

sequences considered from these fractions, only two were identified as being 

from the same organism. Fractions 1 and 3 contained a sequence identified as 

Macrococa/s carouse/icus, a bacterium typically associated with composted 

manure. The matches to the other sequences obtained also were consistent with 

being members of a microbial landfill community, demonstrating abilities 

consistent with environmental microorganisms.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Of the sequences analyzed, 75% were different for one another in the raw 

sample, while 92% of the ash sample were distinct from one another. Of the 

number of dones analyzed, 83% of the sequences occurred only once. There 

were no common sequences shared between the raw and ash landfill microbial 

communities in spite of the evidence indicated by Fig. 4, arrow B. However, 

many of the best-match identities were consistent with organisms having 

common metabolic characteristics, and likely occupying similar niches in their 

respective habitats.

The success of this polyphasic approach to analyzing complex microbial 

community structures was confirmed by the consistency with which the G+C 

content of the genomic DNA (Table 4; column 1) of the closest matched 

organisms coincided with the G+C content of the landfill sample's fractions. The 

majority of organisms fractionated in accordance G+C content reported in the 

literature (Table 4; column 1).

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D iscussion

Our current understanding of MSW decomposition has been developed 

based on laboratory observations and experiments, and validated to some extent 

through limited field observations (Barlaz et ai. 1989; Barlaz 1996a,b, 1997; and 

Gerba et al. 1992). Barlaz et al. (1989) described the process of refuse 

decomposition as occurring in a series of phases. Even these early studies 

recognized that the onset of the decomposition process could occur efficiently 

only after the proper microbial assemblages are established. Briefly, he identified 

these phases as:

1) Aerobic decomposition -  Oxygen entrained in refuse at burial and associated 

with moisture is depleted through aerobic metabolism and large quantities of 

CO2 are produced. Due to high levels of microbial activity, temperature 

increases and the system moves towards a more anaerobic condition.

2) Anaerobic acid decomposition -  With the rapid depletion of oxygen, microbial 

activities shift accordingly and more organic acids are produced. Under 

anaerobic conditions CO2 increases, pH drops and acidic conditions prevail, 

inhibiting further aerobic decomposition and most hydrolysis of solids.

3) Methane production - Significant methane and carbon dioxide production 

begins. This shift in microbial activity leads to acid consumption and 

increasing pH conditions. An increase in cellulose and hemicellulose 

degradation begins.
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4) Decelerated methane production - Carboxylic acids are depleted, pH 

increases and the rate of methane production becomes increasingly more 

dependent on the rate of cellulose and hemicellulose decomposition directly. 

Christensen e t  al. (1995) extended these descriptions by pointing out that in 

theory, a landfill could return to an aerobic state through an additional series of 

steps. Most importantly, this would allow for microbially mediated oxidation of 

methane to carbon dioxide to occur.

Although our current knowledge is limited, an increased understanding of 

the microorganisms and processes involved in MSW decomposition would come 

from knowledge of the microorganisms involved, and their metabolism and 

requirements. Unfortunately, a paucity of direct field identification data exists 

concerning this information.

Our study represents an early and important step towards accomplishing 

that. Based on the observations by researchers, such as Palmisano et. al.(1993) 

who were able to culture comparable numbers of anaerobic and aerobic bacteria, 

and in light of the model proposed by Barlaz, predictions of microorganisms 

present in landfill ecosystems can be made. Using the anaerobic decomposition 

pathway designed by Brock et al. (1994), as a preliminary guide, modifications 

were made to include aerobic decomposition and methane oxidation (Fig. 6).
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Large and complex polymers

Cellulose, hemicellulose, large polysaccharides and proteins
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Figure 6. Proposed overall process of decomposition of landfill material.
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This diagram considers only the major carbon sinks as a source for 

microbial growth and succession. It should be realized that the nature of carbon 

sources and electron donors and acceptors varies greatly in a landfill 

environment, and this heterogeneity is likely to lead to the development of many 

metabolically diverse populations of microorganisms.

Predictions of likely types of microorganisms to be present based on Fig. 6 

are cited below.

• Hydrolytic and cellulolytic bacteria: low GC gram positives (genera 

Clostridium, BadHug), high GC gram positives (genera Corynebacterium, 

Actinomyces, Ceiiuiomonas, Eubacterium and propionic acid bacteria), and 

some gram negative bacteria (genera Cytophaga and Bacteroides).

• Aerobic decomposers: Proteobacteria (genera Pseudomonas, Arthrobacter 

and Azotobacte/) and other heterotrophic gram negative organisms (genera 

Rhizobium and Bradyrhizobium).

• Anaerobic and facultative decomposers: low GC gram positives (genera 

Clostridium, Bacillus), sulfate and sulfur reducing bacteria (genera 

Desuifovibrio and Desu/furomonas), and facultative gram negative bacteria 

(genera Enterobacter and Serratia).

• Fermentative and acidogenic bacteria (genera Oostridium  and Acetobacter).

• H2 producing bacteria (genera Syntrophobacter and Syntrophomonos).

• Methane producers (any of the 17 genera of methanogenic Archea).

• Methane consumers (genera Methyiococcus and Methyiomonas.).
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• In addition, fungi such as Trichoderma and Chaetomium are common 

cellulose degrading microorganisms and probably account for a large portion 

of the cellulose degradation occurring in landfills (Palmisano and Barlaz 

1996).

The use of bisbenzimidazole gradients provided a convenient method to 

determine the structure of complex microbial communities by fractionating them 

based on % G+C content of the genomic DNA of the component populations. 

This approach generates a profile of relative abundance of related phylogenetic 

groups that may be present in these types of environments, and is particularly 

powerful when information on which populations are present is obtained.

The DNA fractionation approach also proved to be a useful and informative 

way to compare gross microbial community differences between different sites. 

However, this technique has limitations. Because of its broad level of resolution, 

identifying specific populations of bacteria is difficult (Holben and Harris, 1995). 

Many bacteria, particularly those of the same genus, have DNA with similar % 

G+C content As a consequence, their absence at one site may be masked by 

the presence of one or several closely related organisms at another. Their loss at 

one site may also go unnoticed if a related genus or species becomes dominant.

This study coupled bisbenzimidazole gradients analysis with DGGE analysis 

and partial 16s rDNA sequence analysis. With the DGGE method, assessing 

genetic diversity becomes more feasible because it is based on smaller scale 

sequence variations found between more conserved genetic regions of the rDNA
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genes. As with most methods, certain caveats must be applied when using 

DGGE. Though it can distinguish groups of phylogenetically related populations 

without sequence information, it can only indicate relative similarities or 

differences between banding patterns. Thus, one cannot conclusively describe 

which populations comprise these communities without further analysis such as 

cloning and sequencing of relevant genes.

Despite the limitations of each approach, used in conjunction, these 

techniques provide a complementary suite of microbial community analytic tools. 

For the purposes of our investigation, the combination of these methods 

provided relevant information to allow comparison of resident populations in the 

two communities. This approach also provided insight to the complex nature of 

landfill microbial community structures in general. As individual methods, they 

revealed that there were distinct differences in microbial community structure 

between the raw and ash landfill samples and shed some light as to the identity 

of some residents.

Generally speaking, the bisbenzimidazole gradients analysis indicated that 

there were apparent differences in the two landfill communities and that there 

was greater diversity in % G+C content within the raw landfill sample than in the 

ash landfill sample. However, as pointed previously, it said little about the 

diversity that may be contained within each community. From this fractionating 

process we inferred the types of organisms that may comprise each community. 

Based on this % G+C analysis (refer to Fig. 3), it's assumed both samples
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contain a microbial population of Oostridium, Streptococcus and Bacillus species 

(spanning the lower % G+C region), along with a significant population of high 

GC gram positive and Pmteobactsria present in both communities. These 

classifications of microorganisms include a number of the common and dominant 

soil bacteria genera such as: Agrobacterium (55 to 65% G+C), Alcaligenes (55 to 

65% G+C), Arthobacter {60 to 70% G+C), Pseudomonas (55 to 68% G+C), 

Rhizobium (59 to 65% G+C) and Bradyrhizobium (60 to 65% G+C). The raw 

sample has an additional substantial population of organisms with a G+C content 

in the 50% range, such as the gamma group of the Proteobacteria. It is possible 

that incineration altered some component within the waste that is critical for 

success of a certain population of microorganisms. It is also conceivable that the 

components that comprise the raw MSW sample contained an inoculum that 

have 50% G+C content.

The % G+C general fractionation profile of the total community structures 

from these landfill samples displays similar trends to those % G+C fractionation 

profiles of the total community structures from other terrestrial environments, 

such as those explored by Holben and Harris (1995) and Nusslein and Tiedje 

(1998 and 1999). That is, the majority of the DNA has a % G+C content in the 

50 to 70% range, underscoring the notion that soil microbial communities 

contain organisms capable of performing similar functions, and occupying similar 

niches in varying environments. These guilds or ecotypes contain a comparable
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genomic % G+C, thus are likely to co-fracb'onate in a bisbenzimidazole gradient 

profile.

Though we could infer that the landfill samples contained a substantial 

microbial diversity, based on bisbenzimidazole gradients analysis of the total 

community structure, it was confirmed by DGGE analysis of the total community 

(refer to Fig. 4). From the number of visible bands detected on the gel, it was 

evident that the landfill communities contained a tremendous amount of 

microbial diversity.

Further, examination of the total community DGGE profiles of the two 

samples (Fig. 4) revealed additional information that could not be gleaned from 

the bisbenzimidazole gradient analysis. In contrast to the bisbenzimidazole 

gradient analysis, the DGGE banding patterns suggested that the ash landfill 

sample contains a richer microbial diversity than that of the raw landfill.

However, because a significant portion of the microbial community may not have 

been completely resolved in this gel we must use caution when making definitive 

observations about overall community diversity.

Further, it appears that the two communities share few dominant 

phylotypes, and relative to the number of bands, the raw sample has more 

dominant bands than the ash sample. This situation conforms to the theory that 

ecosystems with greater diversity have fewer dominant species (Ward et al. 

1998). In these environments competition aids in the establishment of diversity 

and limits the establishment of dominance by select phylotypes.
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To gather additional information on the diversity of the total community 

structure contained within the landfill samples, the bisbenzimidazole gradients 

were sub-fractionated into portions based on G+C content which appeared to 

possess the most relevant biomass (refer to Table 3, Fig. 3). By doing so we 

hoped to be able to PCR amplify 16S rDNA genes of those community members 

that may not have been represented well in a total community "shotgun" 

analysis approach.

In general, results appear to be consistent with expectations. The 

diversity of the entire community (Fig. 5 lanes 7 and 13) reflects the diversity 

contained in the five sub-fractions of the raw and ash landfill samples (Fig. 5 

lanes 2 - 6 ,  and 7 -12). For the raw sample it is clear that individual fractions, 

as a whole, displayed more intense banding patterns than that of the total 

community fraction. This suggests that certain fractions possess dominant 

microbial community members that are not necessarily as prevalent in the DGGE 

analysis of the total community. This is particularly evident for bands near the 

bottom of lanes 2 and 3 in Fig 5. This may imply that DGGE diversity analyses of 

complex total microbial communities are not necessarily accurate indicators of 

the overall structure of microbial assemblages.

This situation was not nearly as evident in the ash sample. The DGGE 

analysis of the total ash sample community displayed as intense a banding 

pattern as any single sub-fraction (lane 13 versus lanes 8 -  12) displayed. In 

fact, lanes 8 and 12 appear devoid of any bands, yet we know from cloning

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



experiments that they indeed contained bacterial 16S sequences. This is a 

difficult circumstance to reconcile. Because of the tremendous diversity contained 

within the total microbial community of the ash sample, one would have 

predicted that the individual fractions would have displayed more intense 

banding patterns dispersed more evenly throughout the sub-fractions. Instead, 

fractions 3 and 4 (lanes 9 and 10 in Rg 5) hold most of the DGGE bands. There 

is some logic and satisfaction in this circumstance. In both the raw and ash 

sample the majority of the DGGE bands reside in fractions 3 and 4, which 

correlates well with what one would expect based on the amount of DNA profiled 

in the bisbenzimidazole gradients (refer to Rg. 3).

Comparing the ash to the raw samples' sub-fractions DGGE banding 

patterns substantiated the differences in their total community structure that was 

predicted from bisbenzimidazole gradient and DGGE analysis of the total 

microbial community. It is apparent that the two differing MSW management 

strategies sustain varying microbial communities.

To reveal the identity of the community members, a phylogenetic analysis 

was conducted by sequencing 16S DNA clones generated from the sub- 

fractionated ash and raw landfill samples (refer to Table 4).

As predicted from previous data, the ash sample contained greater 

phylogenetic richness than the raw sample. Further, the two sites shared no 

common species, but some have close phylogenetic affiliations and most 

importantly, similar metabolic characteristics and capabilities (refer to Table 4).
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The diverse potential metabolic capabilities contained within the microbial 

community should come as no surprise. The heterogeneity of carbon sources and 

electron donors and acceptors in a landfill ecosystem offers an environment that 

would facilitate colonization by a diverse microbial assemblage. Although the 

microbial communities appear different they are likely to function similarly. From 

a more practical aspect, it would be beneficial to study the communities' 

functionality and efficacy based on turnover rates of components from their 

environments.

Our prediction for the presence of microorganisms based on the model 

outline in Rg. 6 was reasonably accurate. The majority of the "best match" 

microorganisms present have the metabolic capabilities to conform to this model 

and lend sound support to the "putative" identification of the two landfill 

community members. Others possess metabolic characteristics that allow them 

to obtain nutritional requirements from unique sources, which may be likely 

present in landfills. Examples of this indude Rhodanobacter Undanidasticus, 

capable of degrading lindane (chlorinated aliphatic compound) and Ralstonia 

picketii, capable of degrading toulene.

Because the majority of the SAB scores were low, qualifiers such as, "best 

match" and "putative" must be used. However, since landfill environments 

provide unique environments and their total microbial community surveys remain 

relatively uncharted, it is conceivable that these low SAB scores suggest the 

presence of yet unidentified bacterial species or sub-species. This would certainly
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not be unprecedented in unusual and unexplored environments such as landfills 

(Uoyd-Jones and Lau 1998; van Verseveld et al. 1999; Westlake et al. 1995; 

Wise et al. 1999).

Initially we were surprised by the absence of Methanogens. Particularly 

with the presence Smithella propionica (fraction 1 in raw sample) and 

Syntrophusgentianae (fraction 1 in ash sample), two bacteria that have been 

isolated in co-cultures with Methanogens. However, we also identified bacteria in 

both samples whose closest matches were Desu/furomonas pa/m itatis (fraction 1 

in raw sample), Desulfobulus elongatus (fraction 2 in ash sample) and 

Desulfocapsa thiozymogenes (fraction 2 in ash sample), all of which are capable 

of sulfate reduction. It is possible that the competition between Methanogens 

and Sulfate-reducing bacteria (SRBs) for H2 as an electron donor is to the 

advantage of SRBs and that Methanogens are present, but their activity is 

mitigated to the extent that their growth is limited. If this is true, it is likely 

temporary.

Another possibility for the paucity of Methanogens is because they are 

Archaea, and the universal primer set used was not stringent enough for proper 

binding to their 16S rDNA genes. As a consequence, they are not amplified 

during PCR.

Studies such as this one, which use a multi-tiered approach to query 

complex microbial communities in relatively unexplored environments, are 

excellent approaches for comparison and survey purposes. In our study, we
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determined that two different management strategies likely engender different 

microbial community structures, each containing diverse microbial species with 

seemingly similar metabolic potentials. Through phylogenetic analysis of limited 

magnitude we identified community assemblage members whose "best match" in 

established databases distinguished them as likely candidates in our proposed 

model of landfill microbial community members. Further, we suggest that due to 

the physical and chemical environments of landfills and their relative unexplored 

nature, some of the "best match" identities could be undescribed bacterial 

species. Based on our results, we recommend that a more comprehensive study 

be undertaken, which includes more intensive phylogenetic analysis coupled with 

in-situ  decomposition rate experiments. This would be an excellent means of 

determining what strategies, amendments or inocula may used for managing 

MSW in the future.
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