Effects of electrode hole size on the LAMPF polarized ion source

Glen Allen Morris
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Morris, Glen Allen, "Effects of electrode hole size on the LAMPF polarized ion source" (1990). Graduate Student Theses, Dissertations, \& Professional Papers. 8310.
https://scholarworks.umt.edu/etd/8310

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Mike and Maureen MANSFIELD LIBRARY

Copying allowed as provided under provisions

 of the Fair Use Section of the U.S. COPYRIGHT LAW, 1976.Any copying for commercial purposes or financial gain may be undertaken only with the author's written consent.

Universityof
Montana

EFFECTS OF ELECTRODE HOLE SIZE ON

THE LAMPF POLARIZED ION SOURCE
av
Glen Allen Morris
M.S. Mathematics. Univ. of Wisconsin

A thesis submitted to the Department of Fhvsics
in partial fulfillment of the requirements for the MASTER OF SCIENCE

UNIVERSITY OF MONTANA

1990

Approved by

Date $-1+190$

UMI Number: EP39111

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI
 Diasertation Publiahing

UMI EP39111
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Effects of Electrode Hole Size on the LAMFF Folarized Ion Source
Director: Havden. Fi. J. and Jakobson. M.J.
Some experiments at the Los Alamos Meson Physics Facilitv (LAMFF) are limited by the intensity of the particle beams Lsed. The proposed LAMFF optically pumped polarized ion beam source should provide a more intense beam if some difficulties can be overcome. A single large (60 -mil) hole in each of the source electrodes calises large transverse velocity componente in the beam which lead to low beam intensity. Alternatives to the single large hole must be considered.

In this study, we explore the effect of electrode hale size on final beam current and efficiency. Using Monte Carlo simulation. we trace the progress of beam degradation through the ion beam source and quantify the effect of hole size on ion beam source performance. Alternatives to the use of a single large (6o-mil) hole in each electrode have been evaluated.

CONTENTS

Fage
AESTFACT i i
TAELE OF CONTENTS iii
LIST DF TABLES AND FIGURES iv
INTFRODUCTION 1
A. The Proposed LAMFF Folarized Ion Eeam Source 1
E. This Thesis and Eeam Imorovement Ξ
BACKGFDUND 8
A. Simulating the LAMFF Ion Source ε
E. The Coordinate System 8
C. Macroparticles and Macrofilaments 8
D. Simulating ECF Source Effects 9
E. Eeam Quality Farameters 9
F. Calculating Spare Charge Effects 11
FFIDELEM STATEMENT 13
METHOD OF SOLUTION 14
FESULTS 18
A. Ferformance of the Standard Configuration 18
E. Discussion 19
GRAPHS 23
AFFENDICES 38
A. The FOISSON Field Genertor 30
E. SCHAF Computer Code for the Optically Fumped Ion Source 46
FEFEFIENCES 59

LIST_OF_TAELES_AND_FIGUFES.

Fage
Table I. Farameters of the standard configuration 7
Fig. 1. Standard Configuration of the LAMFF Ion Source. 5
Fig. 2. Coordinate Axes and Electrode Structure 6
Fig. S. $^{(0)}$ Effect of $V_{\perp}(O), T_{1}$, and a on Limiting Current. 23
Fig. 4: Output Current Density (if) vs. Hole Diameter (a) 24
Fig. Sa. Output Current vs. Input Current 25
Fig. Sb. Dutput Current vs. Input Current for Small Holes 26
Fig. 6. Final Fraction of Farticles Femaining in the Eeam 27
Fig. 7. Fimal Eeam Current Density ($i_{f}=4 I_{f} /\left(x a^{2}\right)$) 28
Fig. 日. Macroparticle Count (N) near the Electrode Holes 29
Fig. 9. Equipotoential and Electric Field Lines near the Electrodes. 30
Fig. 10. Equipotential Surfaces due to the Electrode Fotentials 玉1
Fig. 11. Axial Electrode Fields near the Injector Line in the Electrode Fiegion. ($a=60 \mathrm{mils}$) 32
Fig. 12. Foial Electric Fields near the Iniector Line in the Electrode Fegion. ($a=20 \mathrm{mils}$) 3.
Fig. 13. Fiadial Electric Fields near the Injector Line in the Electrode Fiegion. (a $=60 \mathrm{mils}$) ت4
Fig. 14. Radial Electric Fields near the Injector Line in the Electrode Fegion. (a $=20 \mathrm{mils}$ 35
Fig. 1s. Fadial Electric Field $\times 10^{-5}$ (N/C). Hole Diameter $=1.50 \mathrm{~mm}$ (60 mils) 36
Fig. 16. Radial Electric Field $X 10^{-5}(N / C)$. Hole Diameter $=0.5 \mathrm{~mm}$ (20 mils) 37

INTEODUCTION

A. The Froposed_LAMFE Folarized Ion Eeam Source. The Los Alamos Meson Fhvsics Facility (LAMFF) conducts a variety of experiments using beams of accelerated particles. Many of the experiments utilizing the LAMFF H- polarized beams are limited by the iritensity of the beam. The proposed LAMFF optically pumped ion source should provide a more intense beam if some difficulties with the source can be overcome:

1. The Deam particles (protons) originate in a source which ejects tinem with divergent velocity components.
2. In the polarized ion beam source, the particles undergo charge exchanges and pass unavoidably through electric and magnetic fields which produce bean divergence and particle losses.
Z. The particle beams are sufficiently intense that space charge effects are not negligible.

It is hoped that shaped magnetic and electric fields can be used to offset the defocussing effects of the sodium cell charge exchangers, space charge, magnetic fringe fields, and other fields.

The standard configuration of the LAMFF polarized ion source is depicted in Figure 1. . The ion source, including its magnets, is roughly 15 cm . in diameter and 90 cm . in length. The horizontal line extending from the electron cyclotron resonance (ECR) source on through the ionizer represents the injector line. Ideally, thiss will coincide with the centerline of the beam.

The ECFi source contains a dense ionized oas (olasma) in the mannetic field of the ECF solenoid* Flasma protons are accelerated into the circular openino of the first electrode.

The electrode structure is shown in Figure 2. Each electrode is a conductina disc perpendicular to the injector line with its cylindrical hole centered about the injector line. The first. the extraction electrode at an arbitrary voltage, is followed by an electrode which can also be set at an arbitrarv voltace. The third electrode is at oround potential. Maximum voltage differences are of the order of a few thousand volts. For the voltace settings shown in Figure 1 , many protons are lost in the first electrode. but those which clear that electrode are accelerated by the second electrode and generally continue on throwoh the ion soutree.
\%. In the ECFF sourcen microwave energy produces the plasma of electrons and protons from hvdrogen atoms. The phrase "optical pumping" applies onlv to the sodium cell charge exchangers, in which laser energv excites electrons to states of lower binding energy. This makes electrons available to passing protons.

There is a version of the LAMFF ion source which works reasonably well with many of the parameters fixed at specific values. Consequently, it is natural to take that system as a standard and vary some of the parameters. always checking to see if improvement has occurred. It is this standard configuration which is shown in figure 1 , and whose parameters are listed in Table I. The four free parameters set conditions in the electrode reqion. The other parameters remain fined in this study.
E. Ihis Thesis and Eeam Imerovement.

This study deals with the design of the electrode structure. In particuler, it is concerned with how to reduce the transverse velocity of the protons emeraing from the electrodes. The central task is to explore the effects of electrode hole size on the performance of the ion beam source.

Ideallv one could determine the effects of various hole sizes by calculating particle trajectories through the ion source. The trajectory of each particle is the solution to equations of motion incorporating the field forces influencing the particle. However" the initial conditions of the particles are unknown.

In this study, initial particle position is chosen randomly over a limited region on a particular plane. Initial velocity is specified in a similar way. Ey solving the equations of motion for many particles with initial
conditions randomly chosen from specified distributions, statistical distributions can be computed which describe the state of the beam particles as they progress along the beam. The precise form and parameters of the initial distribution of transverse velocity and position have not been found to be critical. (See Jakobson (1987) and Havden (1989).)

This approach is a form of Monte Carlo simulation. Like some other mathematical methods, it is now truly useful because of advances in computer technology.

FIG, 1. standard configuration of thi Laypr ion source

: ORIGIN OF COORDINATES
FIG. 2. COORDINATE AXES AND ELECT

TABLE I. Parameters of the Standard Configuration. 7

Parameter	Math. Symbol	SCHAR Symbol(s)	Value
Potential on Electrode 1 Potential on Electrode 2 Potential on Electrode 3			$\begin{gathered} 5000 \mathrm{~V} \\ -600 \mathrm{~V} \\ 0 \mathrm{~V} \end{gathered}$
Axial Magnetic Field near the Electrodes Radial Magnetic Field near the Electrode	Bo	B	$\begin{gathered} 1.56 \mathrm{~T} \\ 0 \mathrm{~T} \end{gathered}$
Initial Proton Speed	v_{0}	V	$1.6 \mathrm{E} 5 \mathrm{~m} / \mathrm{s}$
Initial Maximum Transverse Speed	$V_{\perp}(0)$	vsxmax, vSymax	Variable
Diameter of the Electrode Holes	a	XOMAX, YOMAX	Variable
Length of Region 1 (Electrode 1)	T1	SOUDIS (1)	Variable
Length of Region 2 (Gap)		SOUDIS (2)	. 001 m
Length of Region 3 (Electrode 2)		SOUDIS (3)	. 001 m
Length of Region 4 (Gap)		SOUDIS (4)	. 001 m
Length of Region 5 (Electrode 3)		SOUDIS (5)	. 001 m
Distance (Electrodes to Neutralizer)		CELLEN(1)	. 112 m
Neutralizer Solenoid Field Length		CELLEN (2)	. 0965 m
Drift Region Length		CELLEN(3)	. 632 m
Ionizer Solenoid Field Length			
Third Solenoid Hole Radius		RRCUT	. 00714 m
Input Current	Io	CURR	Variable

BACKGROUND

A. Simulating the LAMFF Ion Source. When using computer simulation to studv the response of the LAMFF optically pumped ion source to hole size. questions qrise:

1. What coordinate syetem should be adopted?
2. How many barticles should be used in each simulation?
3. What should be the initial position and velocity distribution for the simulation particles?
4. What measures of beam quality can be used to determine the optimum hole size?
5. How should space charge effects be calculated?

This studv uses a computer code known as SCHAF (clescribed in Appendi\% E). How schaf deals with these questions is described next..
E. The Coordinate System: The oriain of coordinates is at the center of the opening to the first electrode hole. The right handed Cartesian coordinate axes are shown in Figure 2. The z-axis points along the centerline through the electrode holes.
C. Macroparticles and Macrofilaments. In computer simulation of ion beams the particles are represented by macroparticles or macrofilaments. Each macrofilament. represents a given fraction of the beam charge. The equations of motion are solved for each particle. The number (N_{0}) of these particles should be large enough to be sufficiently representative, vet conservative of
computer time. If space charoe is considered. comouter time $i s$ proportional to the square of N_{0}. Experience or testing is reauired to chose this number.

SCHAF has a mode of calculation, called the line moden which is used for calculating the space charge force on a particle. In this mode the beam $i s$ considered to be composed of infinitelv long charged filaments. called macrofilaments. Each macrofilament is fixed in time. Iies parallel to the z-axis. at the xy-oosition of a particle. D. Simulating ECF Source Effectos SCHAF simulates the effect of the ECF source by
(1) using KV or parabolic distributions to assion initial conditions (at $z=0$) to the N particles over an ellipsoid in $X \hat{X} Y \hat{Y}-$-space, and
(2) assuming the particles all have the same speed. The version of SCHAR used offers only the $k V$ distribution. A KU distribution is one in which the particles are uniformly distributed over an area in $X, Y(r e a l)$-space, an area in $X \dot{X}$ phase space, an area in $Y \bar{Y}$ phase space, and an area in $\dot{X}, \dot{Y}(r e a l)$-space. (See Kapchinskij. 1959.) In this study the X, Y and \dot{X}, \bar{Y} elliptical areas are initially circular. The initial particle soeed $i=1 . \mathrm{s}_{\mathrm{s}} * 10^{5} \mathrm{~m} / \mathrm{s}$. E. Eeam Euality Farameters. Ferhaps the ideal measure of beam quality at an axial coordinate (a) would be the Liouville volume of the swarm of points representing the particules in XFxYFV-space. Here F\% and FV are the oeneralized monenta. In this space the volume of an
initially kV-distributed swarm usually remains ellipsoidal. In addition, if the particles do not interact, the density of points in the 4-dimensional volume would remain constant by Liouville's theorem. However, volumes in XFXYy phase space cannot be measured. For this reason, SCHAR uses the spatial derivatives $X^{\prime}=d X / d Z$ and $Y^{\prime}=d Y / d Z$, and tracks the beam quality in $X X^{\prime}-$ space and in $Y y^{\prime}-s p a c e$.

In each of these planes sCHAF uses two types of volumes which can be used to describe beam quality:

1. E-volumes and
2. s-valumes.

E-volume measures are areas of 2 -dimensional convex regions in the spaces of $X X^{\prime}$ and $Y Y^{\prime}$. G-volumes are statistical measures of beam quaiity.

In this study, sCHAR provides emittance (s-volume) as a measure of beam quality. Emittance is most clearly defined in 2 dimensions in a coordinate system rotated so that $\sum_{k=1}^{N} x_{k} X_{k}$ and $\sum_{k=1}^{N} Y_{k} Y_{k}$ are zero. SCHAFi defines the X and Y emittances in this case as

$$
\begin{aligned}
& E_{x}=4 \pi X_{r m s} X_{r m s}, \text { and } \\
& E_{y}=4 \pi Y_{r m s} Y_{r m s} .
\end{aligned}
$$

X-emittance is, then, the area of an ellipse having semi axes $2 x_{r m s}$ and $2 x_{r m s}$.

At timess particle interactions or non-linear fields influence the particle motionss to the extent that these initially ellipsoidal phase space projections become non-
ellipsoidal. Another possibility $i s$ that the particles mav not be distributed uniformly in these phase spaces. In either instance. the emittance will not equal the projected area of the particle swarm. For this reason, emittance must be interpreted carefullv. If, on the other hand. the phase space distribution is uniform and ellipsoidal, the emittance equals the projected area.

In the software, an unrotated coordinate system is used and so emittance must be calculated by a more oeneral equation. This is discussed in Appendix E.

Another important component of beam qualitv is total current, which relates directly to the number (N) of particles left in the beam. SCHAF kecos track of N. From the current (I_{0}) input to the first electrode hole, the current per macrofilament (I_{0} / N_{0}) can be used to calculate the beam current at $z:$

$$
\begin{aligned}
I(z)= & I_{0}\left(N(z) / N_{0}\right), \text { where } \\
N= & N(z)=
\end{aligned} \quad \begin{aligned}
& \text { mamber of remaining } \\
& \text { mafilaments at } z .
\end{aligned}
$$

F. Calculating Space Charge Effects. A particle will be subject to the electric field force set up by the macrofilaments. This simulates the space charge force on each particle. For each particle schaf considers the forces between that particle and the macrofilaments which correspond to the other particles. The sum of these forces is the space charge force on the particle. The sum of this force and the other field forces determines the path of
the particle. Thus a charge-carrying entity is considered to be a filament carrying a significant fraction of the total current as far as its effects on other entities is concerned. When its motion is being calculated, the same entity is considered to be a particle (in the electrode region, a protons.

EROELEM STATEMENI

All but four of the design parameters of the standard electrode structure have a fixed velue. The four free parameters are:

$$
\begin{aligned}
V_{\perp}(0) & =\text { maximum transverse speed at } z=0 \\
T_{1} & =\text { thickness of the first electrode } \\
a & =\text { the diameter of each electrode hole } \\
I_{0} & =\text { current input to the electrode structure. }
\end{aligned}
$$

In this study, we discover how effective the standard ion gource is when these four parameters are varied.

The questions of primary interest ares

1. How much beam current can the standard ion source tramsmit at certain settings of ($V_{1}(0), T_{1}, a, I_{0}$) ?
2. Which hole size allows the standard ion source to transmit maximum current in the beam?
B. For each setting of (V\&(0), T, a), what imput current 1 eads to maximum output current?
3. What Iimits the output current?

Efficiency of transmission is of less concern, but will be concidered. Dne meesure of efficiency is Nf/No where Nf is the final number of perticles left in the beam. The questionss concerning efficiemey are:
5. For each setting of (V⒪, T, , a), what imput current 1 eads to a maximum value of $N_{f} / N_{0} ?$
6. What 1 imits the maximum value of $N_{f} / N_{o} ?$

METHOD OF SOLUTION
Appendix A describes the computer program FoISSON. Because of the cylindrical symmetry of the electrode structure used, the electric field whith it generates can be readily calculated by FoISSCiv.

Appendix B describes the space charge simulation program SCHAR. U'ing SCHAF, it is possible to simulate the dynamiにs of an ion beam subject to the fields calculated by FOISSON or obtained by some other means (York, 1989). The magnetic field due to the first solenoid can be regarded as axial and nearly uniform in the electrode region (Hayden, 1989). Its strength (1.56 T) is a SCHAR input.

Used together, POISSON and SCHAR provide a fairly accurate model for beam dynamics. If the distributions of position and velocity at $z=0$ are approximated, much can be learned about an ion source through computer simulation. This approach was applied to the LAMFF optirally pumped ion source in an effort to answer the questions posed.

Conditions at $z=0$ were approwimated in each case by an appropriate W distribution. The conditions bounding this distribution are

$$
(\dot{X}, \bar{Y}, \dot{Z}) \text { is velocity. }
$$

In this study,

$$
\begin{aligned}
& x_{0}=Y_{0}=a / 2 \text { (electrode aperture radius) } \\
& \dot{x}_{0}^{*}=\dot{Y}_{0}^{*}=v_{1}(0), \text { and } \\
& v_{0}=1.6 * 10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

With initial conditions thus specified, FOISSON and SCHAR were then used with various values of the four free parameters.

The parameter variations were as follows:

1. Si\% electrode hole sizes, that $i s$, $a=10,20,30,40,50$, or 60 mil 5.
2. For each hole size, 5 to 11 levels of input current (I_{0}) .
T. Initial maximum transverse speed ($V_{\perp}(O)$) and first electrode thickness (T_{1}) took on the following values.

$$
\begin{aligned}
& v_{\perp}(0)=30000 \mathrm{~m} / \mathrm{s}, T_{1}=.001 \mathrm{~m} \\
& v_{\perp}(0)=60000 \mathrm{~m} / \mathrm{s}_{4} T_{1}=.001 \mathrm{~m} \\
& v_{\perp}(0)=30000 \mathrm{~m} / \mathrm{s}_{4} T_{1}=.0016 \mathrm{~m}
\end{aligned}
$$

In other words, SCHAF was run for several input current levels for each of the 18 combinations of $V_{\perp}(O), T_{1}$ and a, a total of 110 SCHAF runs. (In contrast, a single geometry change with the actual ion beam source may require a month of technician time for disassembly, modification, assembly. Evacuation, and startup. :

FOISSON takes the electrode voltages and geometry map (which includes T_{1} and a) "then calculates and stores a grid of electric field values. SCHAR then uses the stored
electric field values, and accepts, from the keyboard, the maximum transverse speed $V_{\perp}(O)$ and the input current (I_{0}). The other program inputs, including the magnetic field strength, were set according to Table I. The initial number (N_{0}) of particles was 1000. SCHAF then assigned random initial conditions to these particles, in accordance with the KV distribution.

Eeginning at $z=0$, which is at the first electrode hole opening, SCHAF integrates the equations of motion, progressing axially, with z as an independent variable, through the electrode region and on through the rest of the ion source. At certain values of $z, ~ S C H A F$ provides output characterizing the locations and motions of the particles. If the macrofilaments are sufficiently numerous and initialialized with an appropriate distribution of positions and velocities, this output should match the statistics of real ion beams.

The most important outputs weres

$$
\begin{aligned}
& U_{\perp}=r \text { ros transverse speed, } \\
& N=\text { number of macrofilaments left. } \\
& \epsilon_{X}=X X^{\prime} \text { emittance. } \\
& \epsilon_{y}=Y Y^{\prime} \text { emittance. }
\end{aligned}
$$

Monitoring occurred at the following axial locations* (z) :
$z=1 \mathrm{~mm}$, the exit from the first electrode,
$z=2 \mathrm{~mm}$, the entrance to the second electrode,
$z=3 \mathrm{~mm}$, the exit from the second electrode,
$z=4 \mathrm{~mm}$, the entrance to the thirdelectrode,
$z=5 \mathrm{~mm}$, the exit from the third electrode,
$z=61 \mathrm{~mm}$, an arbitrary reference point, and
$z=845 \mathrm{~mm}$, the entrance to the ionizer.

This study is primarily concerned with final beam current (I_{f}). That quantity is calculated by multiplying the average final macrofilament count (\bar{N}_{f}) by the current-permacrofilament (I_{0} / N_{0}). SCHAF allows convenient rumreplication to obtain a statistically stable value of \bar{N}_{f}.

For each combination of $V_{\perp}(O), T_{1}, a$, and I_{0}, the beam responses were tabulated. Flots of current, current density, and the ratio N_{f} / N_{0} were then prepared to help answer the questions posed.

* If the thickness of the first electrode is changed, the monitoring locations are shifted along the axis a corresponding distance.

RESULTS.
Eerformance Characteristics. The simulations show that. for any of the 6 hole $\equiv i z e s$, the maximum final beam current is obtained when $V_{\perp}(O)=30000 \mathrm{~m} / \mathrm{s}$ and $T_{1}=.001 \mathrm{~m}$. (See Figure 3.) Consequently, in the interpretations that follow, it will be assumed that those conditions hold.

For the $40-\mathrm{mil}, 50-\mathrm{mil}$, and $60-m i l$ hole diameters, Figure S shows that the maximum beam current varies roughlv as the square of hole diameter. Consequentiv, if an arrangement with two $40-m i l$ holes oer electrode were operated for maximum beam current, that arrangement would deliver near-ly as much current as an arrangement with one 6o-mil hole in each electrode. A multihole armanoement of So-mil holes could also replace the sinale bo-mil hole per electrode. But Figures 4 and 7 show that the current density delivered by the 30-mil hole is much lower: about nineteen (19) holes of that size per electrode would be required to compete with a single 6 -mil hole per electrode. While Fiqure \mathcal{Z} indicates the 1 imiting current for each setting of ($V_{\perp}(0) . T_{1}$, a). Figures Sa and Sb indicate how to set the input current to achieve maximum output. For example. for $U_{\perp}(O)=30000 \mathrm{~m} / 3$ and $T_{1}=.001 \mathrm{~m}$, the $30-\mathrm{mil}$ hole delivers maximum beam current when $I_{0}=9$ ma.

Figure 6 shows how to achieve maximum efficiency ($\mathrm{M}_{\mathrm{f}} / \mathrm{N}_{0}$). Using the larger hole diameters. maximum
efficiency is achieved at an input current which is comparable to the input current which produces maximum current output. For small holes, the simulations show that N_{f} / N_{0} rises with decreasing current but never peaks.

Discussion. The final beam current is

$$
I_{f}=I_{0}\left(N_{f} / N_{0}\right)
$$

According to the simulations, as source current increases, N_{f} / N_{0} may peak but then begins to decrease at a finite source current. This is shown in Figure 6. Eeam current also begins to diminsh at some level of source current and finally becomes very small. This is shown in Fiqure 5.

The beam current and efficiency eventually drop with increasing I_{0} because of particle losses. Factors possibly involved in these losses are:

```
initial radial displacement (Fio = Fi(Z=O))
initial radial velocitv (\dot{F}
space charge
radial electric fields
axial magnetic field (1.56 T)
awial. particle velocity
```

Other fields present, but not listed here, are negligible. An idea of the importance of each of the listed factors can be obtained by studying SCHAF simulation data obtained for the electrode region.

Figure E shows that, in the maximum current mode of
operation, at least 70% of the SCHAR particles are lost in the first electrode, that is, in the interval $z \leqslant 1 \mathrm{~mm}$. The reason for these losses is suggested, in the figure, by the decreasing number of particles left in the beam at $z=1 \mathrm{~mm}$, as imput current $i s$ increased. For each hole size, increasing input current increases the initial space charge. The SCHAF data verify, then, that space charge is instrumental in the loss of particles in the first hole, regardless of hole size.

Magnetic effects might also become more important as space charge goes up. Magnetic effects, space charge, and initial conditions contribute to accelerations that drive protons into the electrodes.

These factors are resisted by one thing - the inward radial electric field near the first electrode. However for most locations in the first hole, the inward electric field decreases with hole size. (See figures 13 through 16.) Consequently, for the same input current density, the number of particles lost in the first electrode increases with decreasing hole diameter. This may explain, in part, why the small holes (a < 40 mils) camot pass as much density of current as can larger holes.

Frotons in the bean emerging from the first hole are subjected to a forward- and inward-accelerating field. (See Figures 9 and $10 ., \quad$ Consequently, they almost always clear the second electrode. This is why Figure B shows so few
losses in the interval $2 \leqslant z \leqslant \mathbf{m m}$.
Using a 40-mil, 50-mil, or EO-mil hole diameter, and maximum current mode of operation, very few protons are lost at the second electrode and none are lost at the third electrode. The converging forward-accelerating electric field at the right end of the first hole accelerates the protons inward and forward to the extent that they clear the following electrodes. (See Figures 9-16.) The radial component of this focussing field is relatively Etrong in the lerger holes and this may explain why maximum current and efficiency are both achieved at relatively high input currents for hole diameters exceeding som mils. (See Figures 5 and 6.)

For these larger holes, the dotted curves in figure Q show that, when space charge is ignored, few simulation particles are lost in the first electrode. This confirms that space charge causes most of the divergence and particle losses when the hole diameter exceeds so mils.

Using small holes (a < 40 mils) and maximum current mode, a substantial percentage of the particles arriving at electrode 3 are lost in that electrode, and the same is true at the first electrode. While this must be partly due to space charge, the dotted curves show that that would occur at both electrodes even if space charge were absent. Thus one or more of the other listed factors is possibly instrumental in the loss of particles to the first and
third electrodes when these small diameters are used. The inward electric field is a possible contributor to particle losses: many protons, accelerated inward, can cross the beam and become divergent.

Because of the low diameter-to-length ratio of the small holes and perhaps because of the relative weakness of their inward electric field, maximum efficiency (N_{f} / N_{0}) canmot be achieved with them at any input current. This is in contrast to the use of large holes (a $>40 \mathrm{mils}$) for which maximum current and efficiency both occur at high input current.

Error bars have not been indicated on the graphs. Systematic errors predominate over statistical errors. The effect of hole size and initial electrode shape on the ECF source plasma is an important factor which has not been modelled. Large hole sizes will perturb the plasma.

FIG. 6. Final Fraction of Particles Remaining in the 耳eare

Figure 8. Macroparticle count (N) near the ${ }^{2}$ Electrode holes. $\mathrm{V}_{1}(0)=30000 \mathrm{~m} / \mathrm{S}$, $T_{1}=.0016 \mathrm{~m}$
 1000
19

FIG. 10 Equipotential Surfaces due to the Eleotrode Potentials. The z-axis of the source lies along the left side of the figure. The electrode hole size is 60 mils.

FIG. 15. Radial Electric Field X. 10^{-5} (N/C) Hole Diameter $=1.50 \mathrm{~mm}(60 \mathrm{mils})$

HAHA日 $r=r a d i a l$ coordinate

AFFENDIX_A

THE EOISSON_FIELD_GENEFATOF

The computer program FOISSON is one of several programs comprising a package known as the FOISSON/SUPEFFISH group codes. These codes are used to calculate magnetostatic and electrostatic fields and to compute resonant frequencies and fields in radio-frequency cavities. FOISSON is limited to problems having cylindrical or z-dimensional symmetry. (Fiefer to the 1987 POISSON/SUFEFFISH manual listed in the references.)

As a service to the user community, Los Alamos National Laboratory's Group AT-b maintains and distributes a standard version of the codes. Source code, executable code, and examples are on the common file system at the Los Alamos Laboratory. The package can be accessed there or through AFFANET, or acquired on magnetic tape.

Development of the codes began in the late sixties as the TFilM cocles created by A. Winslow and J. Spoerl at the Lawrence Livermore National Laboratory. These FOFTFAMM 77 codes were expanded and improved there principally by Fonald Holsinger with theoretical assistance from klaus Halbach. The work was financed partly by the U.S. Department of Energy ano completed in 1975 at the Los Alamos Laboratory. The University of California operates the 1 aboratory and holds the copyright.

Use of the program foISSON is facilitated by the use of 3
other programs from the package. A "FQISSON run" consists of running the following four programs.
(1) AUTOMESH - Accepts a manually-prepared file specifying the geometry and potentials. Assigns mesh points and generates (x, y)-coordinates for straight lines, circular arcs, and segments of hyperbolas.
(2) LATTICE - Generates a triangular mesh from the list of mesh points and physical coordinates generated by AUTOMESH.
(3) FOISSON - Solves Maxwell's electrostatic (magnetostatic) equations for the scalar (vector) potential for problems having 2 -dimensional Cartesian or B-dimensional cylindrical symmetry. Computes electric and magnetic fields.
(4) TEKFLOT - Flots the physical geometry and meshes generated by LATTICE and equipotential (or field) lines from FOISSON.

A sample run is included which calculates and plots the electric field near the electrodes of the standard ion source. In that run, which was made on the University of Montana VAX, the four programs are called AUTSO, LATGO, FOISO, and TEFSS, respectively.

In preparing the AUTSO (AUTOMESH) input, the user identifies the portions of the boundary having different potentials or current levels. For each such region, the user inputs the potential or current and the boundary of the region. The boundary input is a set of two-dimensional coordinates.

This was done for the ALTSO portion in the included example. In that part, the following inputs were coded into the file HFM4. DAT.

Fun 1 abel.

```
NFEG = Number of regions
DX = Horizontal mesh increment
DY = Vertical mesh increment
XMIN = Minumum horizontal coordinate
XMAX = Maximum horizontal coordinate
YMIN = Minimum vertical coordinate
YMAX = Maximum vertical coordinate
XFEGi = Location of mesh size change in the horizontal
    direction
KREG1 = Number of mesh points from XMIN to XFEG1.
KMAX = Number of mesh points from XMIN to XMAX.
YFEG1 = Location of first mesh size change in the
    vertical direction.
YFEGZ \(=\) Location of second mesh size change in the vertical direction.
LREG1 \(=\) Number of mesh points from YMIN to YREG1.
LREG2 \(=\) Number of mesh points from YREGi to YREG2.
LMAX = Number of mesh points from YMIN to YMAX.
NPOINT= Number of corners defining the boundary of the region.
Foint specifications defining the boundary of the all-inclusive region. Noteg in each region the corners (points) are either all read in in clockwise or all in in counterclockwise order.
```

Region specification for region 1:
CUR = Current level (amps) if it's a solenoid, voltage level (volts) if it's a static charged conductor.
MAT = Material code. A zero indicates that all
interior points are omitted from the problem. IBOUND = Eoundary indicatar. A zero indicates that field lines are parallel to the boundary. A one indicates that they are perpendicular to the boundary.
NFOINT = Number of FO entries (point specifications)
for region 1.
Foint specifications for region 1.
Region and point specification for regions 2, 3, and 4.
Each region or point specification must start and end with
the symbol .
Only the sample inputs are defined here, and many capabilities of the package are not mentioned. The file HFM4.DAT was prepared, AUTSD was started, and the filename
(HFM4) was given to AUTSO.
The inputs to LATSO (LATTICE) Consist of the name of the file (TAFE7S) containing the input generated by AUTSO, and some "CON-variables" to be used by LATTICE, POISSON, or TEKFLOT.

$$
\begin{aligned}
& \operatorname{CON}(19)=\text { ICYLIN = } 1 \text { cylindrical coordinates }(X=r, ~ Y=z) \\
& \operatorname{CON}(20)=\text { NBSUF = Upper boundary field line parameter } \\
& \operatorname{CON}(21)=\text { NESLO }=\text { Lower boundary field line parameter } \\
& \operatorname{CON}(22)=\text { NBSRT = Right boundary field line parameter } \\
& \operatorname{CON}(23)=\text { NBSLF = Left boundary field line parameter }
\end{aligned}
$$

These values were $0,0,1,1$, respectively, indicating field lines parallel to the upper and lower boundaries and perpendicular to the left and right boundaries of the general region.

```
CON(46) = ITYFE = Symmetry type (A safe choice is
    one(1), indicating no symmetry.)
CON(66) = XJFACT = O. for all scalar potential problems.
    (The decimal point is needed.)
```

The FOISSON (FOISQ) run itself begins with the name of the input file or unit (TTY in the sample) and the dump number (zero (O) in the sample). FOISSON accepts the list of mesh points in dump zero, a part of a large file generated by LATTICE.

```
CON(42) = KMIN= First radial mesh point
CON(4E) = KTOF = Last radial mesh point
CON(44) = LMIN = First axial mesh point
CON(45) = LTOF = Last axial mesh point
CON(54) = XMIN = Radial coordinate for KMIN
CON(5S) = XMAX = Radial coordinate for KTOF
CON(5G) = YMIN = Axial coordinate for LMIN
CON(57) = YMAX = Axial coordinate for LTOF
```

The coordinates were set to 0., .5. 7.0. and 12. in the sample run and the pointers to $1,11,1,26$, respectively.

This specifies a cylindrical geometry containing the electrode holes, the region of interest. (See Figure 1.) The radius of the region is twice that of the holes and it's extent (5.0 mm) equals the axial distance through the three holes. The axial centerline of the mesh coincides with that of the holes.

In preparing input for these programs, decimal points are required as in the sample. Users must also be careful to enter the terminator (S) as shown.

FOISSON solves the boundary value problem at the specified mesh points and indicates that dump number one has been written on the dump file. It then prompts the user with "? TYFE INFUT VALUE FOF DUMF" NUM ". Ey entering -1 at this point, the user terminates the foISSON run.

If a plot of the field or equipotential lines is desired the user runs TEKPLOT (TEKSO). The inputs required are

$$
\begin{aligned}
& \text { NUM }=\text { Dump number } \\
& \text { ITRI }=0 \text { for trianquiar mesh }(=1 \text { otherwise) } \\
& \text { NFHI }=\text { Number of equipotential lines }
\end{aligned}
$$

A plot is included in the sample run. The foISSO run generated a file called OUTFOI which contains the electrode field in and around the electrode holes. This file was then input to SClHAR ion beam simulation code as discussed in Appendix E.

```
* IMPE FPMA. DAT
    MN M0.3 20 HIL, (.0NH) DIANETER HOLE 14 JUY,1989
```



```
    XICIC1=1., KREC1=41,KHAX=101,
    YREG1=7., YREG2=12. ,LREG1=36.LREG2=86,LMAX=111S
    4PB Y=0.. X=0.s
    sin}Y=19.,X=0.
    $0}Y=19.,X=7.
    10
    #0 Y=0.. X=0.s
    #NEG MAT=0, IROUND=-1, CUR=5000., NPOINT=9%
    $N2 Y=0.. X=0.5
    sen Y=1.. X=0.%
    sPY Y=1.. X=6.%
    ivi}Y=7.,X=6.
    4<0 Y=7., X=.25%
    $00 Y=8.. X=.25$
    {0}Y=8.,X=7.
    ##0}Y=0.,X=7.
    *) Y=0., X=0.%
    SREG HPT=0,IEOUND=-1,CUR =-600. ,NPOINT=5$
    scre Y=9., X=7.s
    $10) Y=9., X=.255
    s+0}Y=10.,X=.25
    smit}Y=10., X=7.
    $0 Y=9.. X=7.%
    $EIG MAT=0, IECOHD=-1,CLR=0. ,NPOINT=9$
    s+n}Y{11.,X=7.
    #0 Y=11., X=.25$
    sm Y=12., X=.25$
    sin}Y=12.,X=6.
    40Y=18., X=6.%
    se0 Y=18%, X=0.%
    In}Y=19.. X=0.
    (t) Y=19., X=7.%
    #1 Y=41, X=7.8
$ EN AUTSO*
?ETPE INPUT FILE MAME
HFEA
RESION NO. i
0K
REGION NO. 2
O
RECTON NO. 3
RESION NO. 4
OK
FOTIRAN STOP
    * EUN LATSO
TTLPE INPUT FILE MANE
TAPE73
```

DUR O WILL HE SET UP FOR POISSON
REA MO. 320 MIL (.5yH) DIAMETER
TITPE IMPUT VALUES FOR CON(T)
*s 1 W21 0011 \# 461 *66 0. S
EAPGED TIME $=26.5$ SEC.
ITERATION CONVERCED
ELAPSED TIME $=48.7$ SEC.
CEMERATION COHPLETED
DUAP MMABER O HAS been uritten on tapez5. FORTRAN STOP
$\$$ IUN POISO
tTrpe "tTY" or input file mane
TTT
ITYPE INPUT VALUE FOR DUMPNUM $0 \div$

BEGINNING OF POIS3ON EXECUTION FROM NUMBER O

PROB. NAME $=20 \mathrm{mLL}$ (. 5 mmin DIAMETER HOLE
ITYPE INFUT VALUES FOR CON (1)
$\bullet 42111 \quad 1.26 \mid 0540 . \quad .5$ 7. 12. s

cycle	AMIN	AriAX	RESIDUAL-AIR	ETA-AIR	RHOAIR	XJFACT
0	0.0000E+00	0.0000E+00	$1.0000 \mathrm{E}+00$	1.0000	1.9000	0.0000
200		RHOA	air optimized	0.9865	1.9486	LARBDA
Un701: :-TXB4:	$\begin{aligned} & -5.9970 E+02 \\ & 19: 05: 41 \mathrm{POI} \end{aligned}$	$\begin{gathered} 4.9998 E+03 \\ 0 \quad C P U=00 \end{gathered}$	$\begin{array}{r} 1.6279 E-03 \\ 0: 01: 58.52 \mathrm{PF}= \end{array}$	0.9865 $16410=22$	$\begin{aligned} & 1.9486 \\ & 44 \mathrm{ME}=1 \end{aligned}$	0.0000
400		RHOA	AIR OPTIMIZED	0.9591	1.9487	LAMBDA 1
unte1: :-TXB4:	$\begin{aligned} & -5.9970 \mathrm{E}+02 \\ & 19: 06: 43 \mathrm{PaI} \end{aligned}$	$\begin{gathered} 5.0000 \mathrm{E}+03 \\ \mathrm{CPU}=00 \end{gathered}$	$\begin{array}{r} 3.3151 E-06 \\ 0: 02: 19.28 \mathrm{PF}, \end{array}$	$\begin{gathered} 0.9591 \\ 172 \quad 10=22 \end{gathered}$	$\begin{aligned} & 1.9487 \\ & 47 \\ & \text { MEA }=1 \end{aligned}$	0.0000
450	-5.9970E+02	$5.0000 E+03$	4.3051E-07	0.9595	1.9487	0.0000
SOKUTION CONVERGED IN 450 ITERATIONS						
ELPPSED TIME $=387.2$ SEC.						
duf nurber 1 has been uritten on tapej5.						

```
ELMPSED TIME = 387.2 SEC.
DLIP NUMBER 1 HAS BEEN URITTEN ON TAPE35.
?TMPE INPUT VALUE. FOR DUMP NUM
```

-E
FOITRAN STOP
\$ 昨N TEKSO
?TIPE INPUT DATA- NUM, ITRI, NPHI, INAP, NSWXY,
1%25 S
INFJT DATA
NLIF= 1 ITRI= 0 NPHI= 25 INAP=0 NSUXY=0
PLETTING PROB. NAME = RUN NO. 3 20 MIL (.5MM) DIAMETER CYCLE=450
?TYPE INPUT DATA- XHIN, XHAX, YMIN, YMAX,
S
INFJT DATA
XHENN= 0.000 XHAX= 7.000 YHIN= 1.000 YMAX= 18.000
?ETME GO OR ND
GE

```

```

\square
PFOB. =FRUN NO. 3 Z 2 MIL (.SMM) DIAMETER CYCLE $=450$

```

\section*{AFFENDIX_E}

SCHAB COMPUTER_CODE FOR THE OETICALLY EUMEED YON_SOUFCE
In 1987, Hayden and Jakobson modified their computer program SCHAR to study beam degradation in the LAMFF optically pumped ion source (Hayden, 1987). The new version of SCHAR, known as SCHSLS, simulates the relevant features of the optically pumped ion source configuration described in the figures and table in section \(I\). Given the field due to the electrode potentials. SCHSLS can simulate the motions of protons injected into the first electrode hole. provided their initial conditions are known.

The output of SCHAR includes macrofilament count (NLEFT). emittances (sXVX,syvy,...), rms transverse velocity components (VXFMS.VYFMS), rms transverse position components (XRIMS.YRMS), and others. These variables are printed at key axial positions: at both sides of each electrode, at the reference point \(\{z=61 \mathrm{~mm})\), at the neutralizer, after it, at the entrance to the ionizer, and following the ionizer.

Fortions of a sample run are included. The run used the FOISSON-generated electric field presented in Appendix A. That field results from a single 20-mil cylindrical hole in each electrode, the electrodes being 1 mm thick and mutually separated by 1 mm gaps. They have potentials \(5 k \mathrm{~V}\), -. okv, and okv respectively. The magnetic fields in the standard ion source are calculated in SCHSLS.

The sample run begins with an editor (TECO) session in order to locate the field values in FOISSON's output file OUTFOI.LIS. (The field values began in line 146.)

Next, before SCHSLS could be run, the electric field data required conversion to a form which would be compatible with SCHSLS. The program OFFEAD was used for this purpose. The user-supplied inputs required by OFREAD were as follows.
\[
\begin{aligned}
& \text { Name of the output file (EMF, here) } \\
& N_{x}=\text { No. of X-points (radial mesh points, here) } \\
& N_{y}=\text { No. of Y-points (axial mesh points, here) } \\
& N_{2}=\text { No. of lines in ouTFoI.LISpreceeding the } \\
& \text { E-fielectric field data (145,here). } \\
& \text { fultiplier }
\end{aligned}
\]

In the sample, \(N_{x}=11\) AND \(N_{y}=26 . \quad\) This causes OFFEAD to extract a grid for an electric field which is cylindrical about the injector line and which has a diameter which is twice that of the hole diameter (. Smm) and which has a length extending through the electrode region (5mm).

Geometry input to AUTOMESH (Appendix A) was in millimeters; consequently, the electric field output by FOISSON was in volts/inm. Since SCHSLS requires that the electric field be in volts/m, the E-field multiplier was set at 1000 .


The inputs to SCHAR are:


FFAC2 (not used)
FFiACE (not used)
Third solenoid hole radius. (at ionizer entrance)
Ficture option.
Farticle 1 input override. (Allows nom-random input for one particle.)
Qverriding lengths for neutralizer, ionizer, and drift
region. (These override file input of lengths.)
Number of integration steps for those regions.
Fiandom number generator seed.
Number of holes per electrode.
INDEF indicates one (centered) hole per electrode.
Initial condition selector.
CR selects a KU distribution for position and \(F\) selects a \(K V\) distribution for position and a parabolic distribution for velocity.
Name of the input file containing the electric field.
Hole separation control (for multiple holes per electrode)
Number of regions in the electrode structure.
ICUT \(=\) Number of run-repititions for estimating the final beam current.
Number of integration steps in the 5 regions in the electrode region.
Lengths of the 5 regions ( 1 mm in the sample).
DELF \(=\) radial integration step size for electrode regions.
DELZ \(=\) axial integration step size for electrode regions.

Lipon the last entry, tables labelled "FESULTS AFTER
GOLENOID 排 \(\mathbf{O}^{\prime \prime}\) are printed. After integrating through
successive cells, the tables are printed for the other critical axial locations. With \(N=1000\), the entire run (replications included), sometimes required several hours on the VAXB600.

At each selected axial location the table shows the status of the particle population at that location. The number of particles is indicated and the average and rms angular momenta are shown.

The "QD MATFIX" is the correlation matrix of \(X, X\), \(Y\), and \(Y^{\prime}\) normalized by their maximum values specified in the input.
\[
\begin{aligned}
& Q Q(I, J)=\left(\sum_{H=1}^{N}\left(Q_{I}(K)-Q_{I}\right)\left(Q_{I}(K)-Q_{J}\right) /\left(N \hat{Q}_{I} \hat{Q}_{J}\right)\right) \gamma \\
& \text { where } \mathrm{G}_{\mathrm{I}}=\text { Ith. variable, } \\
& Q_{x}=\text { Mean value of } Q_{x} \text {, } \\
& \hat{Q}_{\mathbf{I}}=\text { Initial maximum of } Q_{I} \text {, } \\
& (I=1,2,3,4) \\
& \text { No }=\text { Number of macroparticles left, and } \\
& \boldsymbol{\gamma}=1 \text { for non-relativistic speeds. }
\end{aligned}
\]

The quantity "VOL4" is the volume of an ellipsoid representing the swarm of \(N\) points in 4 dimensional space:
\[
\text { VOL4 }=(4 \pi)^{2} \sqrt{|00|} / 2
\]

Six phase space areas are then printed - sXVX, SYUY, SXUY, SYVX, \(S X Y\), and SUSVY. These are computed from de. For example,
\[
5 X Y=4 \pi \sqrt{0 Q(1,1) * Q Q(3,3)-Q Q(1,3) * \operatorname{OQ}(3,1)}
\]

SX-EMITTANCE and SY-EMITTANCE are the emittances corresponding to the phase space areas sXVX and syVy
respectively:


The other outputs are
EXVX, EYVY, and EXY -- convex polygon areas (not used) NEDGEX, NEDGEY, and NEDGXY -- not used THETA -- not used
Z -- z coordinate (m)
XAVE, YAVE -- mean transverse position coordinates VXAVE, VYAVE -- mean transverse velocity coordinates SFAVE -- mean speed
X RMS, YAMS -- rms transverse position coordinates VXFMS, VYFiMS -- rms transverse velocity coordinates SPFims -- rms speed TUNANG -- tuning angle (not used)
"AVERAGE SFHEFE FADIUS" and "SFHERE FADIUS FMS" refer to
the mean and rms values of

respectively.
```

\$ FUN SCHGLSS
ENTEE "FILE" TD READ IN DATA FILE
FILE
ENTER FILLE NAME
TEY4
ENTER "CHANG" TO CHANGE FILE CONTENT,"/" FOR'FRINTOUT
CHANG
CHANGE INFUT DATA-CARRTAGE FETUFN SAYG NO CHANEE
XOMAX=2.50OE-04 NEW VALUE=
YOMAX= 2. SOOE-OA NEW VALUE=
VXGMAX= 3.000EFO4 NEN VALUE=`...
VYSMAX= 3.000E+04 NEW VALUE=
VO= 2.6OOE+OS NEW VALUE=
CONEO= 1.OOOE-OE NEW VALUE=
CLEF= O.OOOE+OO NEU VALUE=.00012E
NFAST=1000 NEN V/ALUE=
NGOL= 3 NEW VALUE=
BO= 1.560E+00 NEN VALUE=
CELIEN= 1.00OE-O1 NEW VALUE=
FLDLEN= 1.000E-O1 NEW VALUE=
NGTCEL= 16 NEW VALUE=
NGTFLD= 15 NEW VALIUE=
FAC2= 5.000E-01 NEW VALUE=
FRACB= 0.000E+00 NEN VALUE=
GHANGES MADE. ENTEF "FILE" TO WFITE NEW FILE
ENTER ORD SQLENOMD HOLE FADTUS IN METEFE. DEFAULT : M.
00714
EOTEE "GOF" FOF FTCTUFE OFTION.
ENGE "OR" FOF FAFTICLE al INFUT OVEFRJDE
EMTER "G" FOF OUEROTDTNG CEML LENGT゙M

```
-CELLEN( 1)=.112
NGT ( 1)=16
CELLEN(2)=.0965
NST! 2!=1.6
CELEN(3)=.632
NST( 3)={
ENTER FANDOM NUMBER SEEDGORG FIRST FUN
87
FILE NAME FOR SAVED FILE-MSTART WITH X-m-IS XGM
ENTEF "INDEF" FOR 1 HOLE, "CL7" FOR 7 HOLES, "CLIP"FOR 1.7 HOLES
"CL1S" FOF 13 HOLE STAR,."CLS7" FOR 37 HOLES, "GLOTS" FOR ELUTS IN CIFCLE
"FING" FOF EING INFUT
INDEF
ENTEF "F" FOF A FARAEOLIC V DISTRIEUTION
ENTEP NAME DF E-FILE
EM4
ENTEF C TO C HOLE GEFARATION. O. GIVES DEFAMLT TO OFTGTNAL.
UZGMAX GET EY ENEFGY AT 1.418B2E1EFGY
ENTER NUMEEF OF REGIONS IN GOURCE--5 MAX.
G
EMTEP CUTOFF NUMBEE FOR FARTICLES FOUND
1.46
# OE GTEPS TN FEETON 1 =10
* OT STEPS IN EEETON 2 =10
# OF STEFS TN REGICN 3 = =10
# GF STEES IN REGIDN 4 =10
* OF STEFS IN REGION 5 =10
```

 $* H * ~$
REGULTS AFTER GOLENOID

$$
1000 \text { FASTICLES LEFT IN THE EEAM }
$$ FIS ANG. WOM $=2.608 E+00$

NUMBEE OF CLGSE ENCOUNTERS:

EYVY $=0.0000000 E+00$
NEDEEV:= 0

```
SX-EMITTANCE= 4.879E+01 MM-MR SY-EMITTANCE= 4.603E+01 MM-MF
EX-EMITTANCE= 0.00OE+OO MM-MF EY-EMITTANCE= O.OOOE+OO MM-MMF
THETA=: 0.00 DEG.
XAVE=2.540E-06 XFMS= 1.2BEE-04
YAVE=-3.124E-06 YFMS= 1.2S1E-04
Z=0.0000000E+00
UXAVE=-5.229E+02 UXRME=1.50PE+04
UYAVE =-7.246E+02 UYFMS=1.485E+04
SPAVE= 1.6000000E+05 SFPMS= 6.0515SG6E-0Z
TUNE ANELE:= O.OO DEG. DIFF. ANGLE=. O.OO DEG.
AVEFAGE SFHERE FADIUS=9.787E-O1 SFHEFE FADIUS FME= 2.165E-01
NUMEEF OF FARTICLES IN RING # 1=1000 FEL., DENS.= 4.0000
NUMEEF DF FARTICLES IN FING 2= 0 FEL. DENE.=0.0000
```



```
NUMGER OF FAFTTCLES IN FING # 4:= 0 FEL. DENG."=0.0000
NUMBER IF FAFTICLES IN RTNG * S: 0 FEL. DENSS=0.0000
NLMEEF OF FAFTICLES IN FING # 6= 0 FELN DENS:=0.0000
NUMEEE OF FAFTICLES IN FING # 7= 0 FEL, DENG. = 0.0000
OUMBER OF PAFTICLES IN FING # B=0 PEL. DENG. = 0.0000
NUIMEFF OF PARTICLES IN RING *: 9=0 0 REL. DENS. =0.0000
NUMEEF OF FARTTCLES IN FTNG *1O= 0. REL. DENG.=0.0000
    O PARTICLES lOST
EKN= 1.2790074E+40 EFOT= 4.620A67E409 ETOT= 1.2068660E+10
```


REGION \# O. STEP \# O. ANG.MOM $=.05097$ RMS ANG.MOM $=2.272$

664 FARTICLES LEFT IN THE EEAM

NUMEEF OF CLOSE ENCOUNTEFS= 12825

		OQ MATEIX	
1. $361 \mathrm{E}-\mathrm{O1}$	-6.4日GE-01	- - . 697 ECOS	1-25\%E-62
-6.495E-01	3. $3755+00$	5. 5ASE-05	-5. 565E-92
-1.897E-03	5.545E-02	$1.480 \mathrm{E}-01$	-6-9.7 7 - 01
$1.257 \mathrm{E}-02$	-5.565E-02	-6. $947 \mathrm{E}-01$	З. $5368+00$

VOL4 $=3.2565837 E+00$
$5 \times \cup X=2.556025 E E+00 \quad 5 V Y=2.5514195 E 400$
$5 \times Y Y=8.7174206 E+00 \quad 5 Y U X=5.908754 E+60$
$S X Y=1.7832688 E+00 \quad S V X V Y=4.354 B 969 E+91$
SIGMAS= $9.9 \% 98488 E+90$
$E X Y X=0.0000000 E+00 \quad E Y Y Y=0.0000000 E+00 \quad E X Y=0.0000000$
HEDGEX= 0 NEDGEY= 9 HEMOXY= O
SX-EMITTANCE= $1.979 E+01$ MHME SY-EMETTANCE= $1.976 E+O 1 M M-M R$
EX-EMITTANCE $=0.000 E+00$ MM-ME EY-EMITTANIE $=0.000 E+O O M M-M R$
THETA $=0.00$ DEG.
XAVE $=1.271 E-07 \quad$ XEAS $=9.22 E E-05$
$Y A \cup E=-2.184 E-06 \quad$ YFMS $=9.628 E-05$
$Z=1.0000000 E-03$
VXAVE $=-8.795 E+02 \quad$ UXFMS= 5.532E404
UYAVE = 1.B17E+OS VYFMS= 5. $647 E+04$
SFAVE $=3.1341963 E+O S \quad$ SFRMS $=$ G. G2SGO14E+OS
TUNE AMGLE= O.OO DEG. DIFF. ANGEE= O. OO DEG.
AYEFAGE SPHEEE FADIUS= $2.52 O E+00$ SFUEFE FADIUS FMS= 9330

NUMEEER	QF	FAFTICLES	IN	Fing	\# 1=	664	Fic!	DEME.	0
NUMEEF:	OF	FAFTICLES	IN	FiING	4 $2=$	\bigcirc	PEL	DENS	0.0000
NUMEER	OF	FAETICLES	IN	FING	\# $3=$	0	FEL.	DENS	0.0000
NUMEEF:	OF	FARTICLES	IN	RING	\# $4=$	0	EEL.	DENS	0.0000
RIJMEEF:	OF	FAETICLES	IN	FING	4 $5=$	0	FEL	DErse.	. 0.000
NUMEEF:	OF	FAETICLES	IN	FiING	\# $6=$	0	FEEL.	DENS	- 0000
NUMEEEF	OF	FARTICLES	IN	Fideg	4 $7=$	0	FEL	DENS.	- 0.000
NUMEEE:	OF	FARTICLES	IN	FING	4 $8=$	0	FiEL.	DENS.	0.0000
NUMEER	OF	FARTICLES	IN	FING	$48=$	0	FEEL	DENS.	0.0000
NUMEEF:	OF	FAPTICLES	IN	FING	\#10\%	0	FEL	DENS.	0.0000
3SG FAFTICLES loEt									

REGION \＃3，STEP \＃ 4 ANG ．MOM $=-.3304$ RMS ANG．MOM $=.5373$

6 farticles left if the meiam

$3.290 E+02$	$3.894 E+00$	$1.117 E+02$	$1.260 E+00$
$3.884 E+00$	$4.589 E-02$	$1.303 E+00$	$1.46 B E-02$
$1.117 E+02$	$1.305 E+00$	$1.417 E+02$	$1.65 E+00$
$1.260 E+00$	$1.468 E-02$	$1.63 S E+00$	$1.891 E-02$

YOLA＝8．1901103E－03
$S X V X=1.1384976 E+00$
SYUY＝2． $9859205 E-01$
$5 X U Y=2.6956205 E+01$
SYUX＝2．7541679E＋01
SVXVY＝3．19780eOE－01
SIGMAS $=3.5153671 E+02$
EXVX $=0.0000000 E+00$ EYVY $=0.0000000 E+00$
EXY $=0.0000000$
NEDGEX＝ 0
SX－EMITTANCE $=2.742 \mathrm{MM}-\mathrm{MR}$
EX－EMITTANCE $=0.000 \mathrm{MM}-\mathrm{MR}$
NEDGEY＝ 0
NEDGYY＝ 0
SY－EMITTANCE $=.7188$ MM－MR
THETA $=0.00$ DEG．

YAVE＝－1．205E－03 YRME＝3．26OE－0S
$Z=8.4550011 E-01$
UXAVE $=-1.83 S E+03 \quad$ UXFMS $=7.040 E+03$
VYAVE $=-1.640 E+0 S \quad$ VYFMS $=4.507 E+0 S$
SFAVE $=9.9173850 E+05 \quad$ SFFMG $=4.7943187 E+02$
TUNE ANELE $=0.00$ DEG．DIFF．ANGEE $=0.00$ DEG．
AVEFAGE SFHERE FADIUS＝2．252E＋O1 SFHEFE FATIUS FMS＝ 4.0101

NLIMEEF：	OF	FAFITICLES	IN	Fing	＋1＝	0	FEL．	DENS．$=$	0.0000
NUMEER	DF	FAFTICLES	IN	FING	＋ $2=$	0	FEL．	DENS．	0.0000
NUMEEF	OF	FARTICLES	IN	EING	\＃	1.	EEL．	DENS	0.0009
NUMEEE：	OF	FARTICLES	IN	FiING	： $4=$	5	FEL．	DENS．	0.0027
NUMBEF：	OF	FAFTICLES	IN	Fing	哲 $5=$	0	REL．	DENS．	0.0000
NUMBEF	OF	PARTICLES	IN	RING	\＃$\theta=$	O	CEL．	DENS．	0.0000
NUMBEF：	CF	PARTICLES	IN	FINS	年 $7=$	0	FEL．	DENS．	0.0000
NUMEEE	OF	FARTICLES	IN	EING	$8=$	0	PEL．	DENS．	0.0000
MUMEEF：	OF	FARTICLES	IN	FING	告 $8=$	0	FEL．	Dens．	0.0000
NUMEEE	OF	PARTICLES	IN	FING	＋10＝	0	FEL	DENS	0.0000

NLEFT= 114.
IFUN= 2 ISTAFT=-1926247624 IURITE $=10$ CUFNEW= 6. 25OE-O7
10
NLEFT $=134$
IFUN $=3$ ISTAFT $=-26875723$ IWFITE $=16$ CWFNEN= $6.667 E-67$
NLEFT $=140$
IFIUN $=4$ ISTAFT $=1346569949$ IWFITE 49 CUFNEW= 5.9 OE-O7
19
NLEFT $=145$
IFUN $=5$ ISTAFRT $=-10485678 B 1$ IWNITE $=24$ CUFNEN= 6.OOOE-O7
24
NLEFT $=137$
IFUN $=6$ ISTAFT $=-201476605$ IWFITE= 27 CURNEW= $5.625 E-07$
27
NIEFFT $=1.42$
IFUN $=7$ ISTAFT $=-1116682529$ IWFITE= TG CUFWEWI= 6n 7EGE-G7
38
Interrupt

FEFERENCES

Hayden, R.J. and Jakobson, M.J., The Space Charge Computer Frogram SCHAR. (Freprint) Dept. of Fhysics and Astronomy, University of Montana, 59812. (1987)

Hayden, Fi.J. and Jakobson, M.J., Univ. of Montana. van Dyck, . D. E. and York, F.L., Los Alamos National Laboratory. Beam Dynamics Calculations for the LAMFF Optically Fumped Ion Source. (Freprint) (1989)

Jakobson, M.J. and Hayden, R.J., Nuclear Instruments and Methods A258 5З6-541, North-Holland, Amsterdam (1987).

Jakobson, M.J. and Hayden, R.J., Macrofilament Simulation of High Current Eeam Transport. IEEE NS\#4, F2540 (1983)

Kapchinskij, M. and Vladimiskij, V.V., Conference on High Energy Accelerators and Instrumentation, CEFN, Geneva (1959).

Lawson, J.D. The Fhysics of Charged Farticle Eeams. Clarendon Fress. Diford, England. (1977)

FOISSON/SUFERFISH Reference Manual LA-UR-87-126. Los Alamos Accelerator Code Group MS H829. Los Alamos, New Mexico, 87545. Jan. 1, 1997.

York, F.L., Dulick, M., Cormelius, W. D., Van Dyck, D.E., Proceedings of the International Workshop on Hadron Facility Technology, Feb. 1987.

